1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/GCStrategy.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineJumpTableInfo.h"
51 #include "llvm/CodeGen/MachineLoopInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
55 #include "llvm/CodeGen/MachineOperand.h"
56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalIndirectSymbol.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/MC/MCAsmInfo.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCSectionXCOFF.h"
96 #include "llvm/MC/MCStreamer.h"
97 #include "llvm/MC/MCSubtargetInfo.h"
98 #include "llvm/MC/MCSymbol.h"
99 #include "llvm/MC/MCSymbolELF.h"
100 #include "llvm/MC/MCSymbolXCOFF.h"
101 #include "llvm/MC/MCTargetOptions.h"
102 #include "llvm/MC/MCValue.h"
103 #include "llvm/MC/SectionKind.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Remarks/Remark.h"
106 #include "llvm/Remarks/RemarkFormat.h"
107 #include "llvm/Remarks/RemarkStreamer.h"
108 #include "llvm/Remarks/RemarkStringTable.h"
109 #include "llvm/Support/Casting.h"
110 #include "llvm/Support/CommandLine.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/ErrorHandling.h"
113 #include "llvm/Support/Format.h"
114 #include "llvm/Support/MathExtras.h"
115 #include "llvm/Support/Path.h"
116 #include "llvm/Support/TargetRegistry.h"
117 #include "llvm/Support/Timer.h"
118 #include "llvm/Support/raw_ostream.h"
119 #include "llvm/Target/TargetLoweringObjectFile.h"
120 #include "llvm/Target/TargetMachine.h"
121 #include "llvm/Target/TargetOptions.h"
122 #include <algorithm>
123 #include <cassert>
124 #include <cinttypes>
125 #include <cstdint>
126 #include <iterator>
127 #include <limits>
128 #include <memory>
129 #include <string>
130 #include <utility>
131 #include <vector>
132 
133 using namespace llvm;
134 
135 #define DEBUG_TYPE "asm-printer"
136 
137 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
138 static cl::opt<bool>
139     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
140                              cl::desc("Disable debug info printing"));
141 
142 const char DWARFGroupName[] = "dwarf";
143 const char DWARFGroupDescription[] = "DWARF Emission";
144 const char DbgTimerName[] = "emit";
145 const char DbgTimerDescription[] = "Debug Info Emission";
146 const char EHTimerName[] = "write_exception";
147 const char EHTimerDescription[] = "DWARF Exception Writer";
148 const char CFGuardName[] = "Control Flow Guard";
149 const char CFGuardDescription[] = "Control Flow Guard";
150 const char CodeViewLineTablesGroupName[] = "linetables";
151 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
152 const char PPTimerName[] = "emit";
153 const char PPTimerDescription[] = "Pseudo Probe Emission";
154 const char PPGroupName[] = "pseudo probe";
155 const char PPGroupDescription[] = "Pseudo Probe Emission";
156 
157 STATISTIC(EmittedInsts, "Number of machine instrs printed");
158 
159 char AsmPrinter::ID = 0;
160 
161 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
162 
163 static gcp_map_type &getGCMap(void *&P) {
164   if (!P)
165     P = new gcp_map_type();
166   return *(gcp_map_type*)P;
167 }
168 
169 /// getGVAlignment - Return the alignment to use for the specified global
170 /// value.  This rounds up to the preferred alignment if possible and legal.
171 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
172                                  Align InAlign) {
173   Align Alignment;
174   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
175     Alignment = DL.getPreferredAlign(GVar);
176 
177   // If InAlign is specified, round it to it.
178   if (InAlign > Alignment)
179     Alignment = InAlign;
180 
181   // If the GV has a specified alignment, take it into account.
182   const MaybeAlign GVAlign(GV->getAlignment());
183   if (!GVAlign)
184     return Alignment;
185 
186   assert(GVAlign && "GVAlign must be set");
187 
188   // If the GVAlign is larger than NumBits, or if we are required to obey
189   // NumBits because the GV has an assigned section, obey it.
190   if (*GVAlign > Alignment || GV->hasSection())
191     Alignment = *GVAlign;
192   return Alignment;
193 }
194 
195 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
196     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
197       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
198   VerboseAsm = OutStreamer->isVerboseAsm();
199 }
200 
201 AsmPrinter::~AsmPrinter() {
202   assert(!DD && Handlers.size() == NumUserHandlers &&
203          "Debug/EH info didn't get finalized");
204 
205   if (GCMetadataPrinters) {
206     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
207 
208     delete &GCMap;
209     GCMetadataPrinters = nullptr;
210   }
211 }
212 
213 bool AsmPrinter::isPositionIndependent() const {
214   return TM.isPositionIndependent();
215 }
216 
217 /// getFunctionNumber - Return a unique ID for the current function.
218 unsigned AsmPrinter::getFunctionNumber() const {
219   return MF->getFunctionNumber();
220 }
221 
222 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
223   return *TM.getObjFileLowering();
224 }
225 
226 const DataLayout &AsmPrinter::getDataLayout() const {
227   return MMI->getModule()->getDataLayout();
228 }
229 
230 // Do not use the cached DataLayout because some client use it without a Module
231 // (dsymutil, llvm-dwarfdump).
232 unsigned AsmPrinter::getPointerSize() const {
233   return TM.getPointerSize(0); // FIXME: Default address space
234 }
235 
236 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
237   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
238   return MF->getSubtarget<MCSubtargetInfo>();
239 }
240 
241 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
242   S.emitInstruction(Inst, getSubtargetInfo());
243 }
244 
245 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
246   if (DD) {
247     assert(OutStreamer->hasRawTextSupport() &&
248            "Expected assembly output mode.");
249     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
250   }
251 }
252 
253 /// getCurrentSection() - Return the current section we are emitting to.
254 const MCSection *AsmPrinter::getCurrentSection() const {
255   return OutStreamer->getCurrentSectionOnly();
256 }
257 
258 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
259   AU.setPreservesAll();
260   MachineFunctionPass::getAnalysisUsage(AU);
261   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
262   AU.addRequired<GCModuleInfo>();
263 }
264 
265 bool AsmPrinter::doInitialization(Module &M) {
266   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
267   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
268 
269   // Initialize TargetLoweringObjectFile.
270   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
271     .Initialize(OutContext, TM);
272 
273   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
274       .getModuleMetadata(M);
275 
276   OutStreamer->InitSections(false);
277 
278   if (DisableDebugInfoPrinting)
279     MMI->setDebugInfoAvailability(false);
280 
281   // Emit the version-min deployment target directive if needed.
282   //
283   // FIXME: If we end up with a collection of these sorts of Darwin-specific
284   // or ELF-specific things, it may make sense to have a platform helper class
285   // that will work with the target helper class. For now keep it here, as the
286   // alternative is duplicated code in each of the target asm printers that
287   // use the directive, where it would need the same conditionalization
288   // anyway.
289   const Triple &Target = TM.getTargetTriple();
290   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
291 
292   // Allow the target to emit any magic that it wants at the start of the file.
293   emitStartOfAsmFile(M);
294 
295   // Very minimal debug info. It is ignored if we emit actual debug info. If we
296   // don't, this at least helps the user find where a global came from.
297   if (MAI->hasSingleParameterDotFile()) {
298     // .file "foo.c"
299     OutStreamer->emitFileDirective(
300         llvm::sys::path::filename(M.getSourceFileName()));
301   }
302 
303   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
304   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
305   for (auto &I : *MI)
306     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
307       MP->beginAssembly(M, *MI, *this);
308 
309   // Emit module-level inline asm if it exists.
310   if (!M.getModuleInlineAsm().empty()) {
311     // We're at the module level. Construct MCSubtarget from the default CPU
312     // and target triple.
313     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
314         TM.getTargetTriple().str(), TM.getTargetCPU(),
315         TM.getTargetFeatureString()));
316     assert(STI && "Unable to create subtarget info");
317     OutStreamer->AddComment("Start of file scope inline assembly");
318     OutStreamer->AddBlankLine();
319     emitInlineAsm(M.getModuleInlineAsm() + "\n",
320                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
321     OutStreamer->AddComment("End of file scope inline assembly");
322     OutStreamer->AddBlankLine();
323   }
324 
325   if (MAI->doesSupportDebugInformation()) {
326     bool EmitCodeView = M.getCodeViewFlag();
327     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
328       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
329                             DbgTimerName, DbgTimerDescription,
330                             CodeViewLineTablesGroupName,
331                             CodeViewLineTablesGroupDescription);
332     }
333     if (!EmitCodeView || M.getDwarfVersion()) {
334       if (!DisableDebugInfoPrinting) {
335         DD = new DwarfDebug(this);
336         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
337                               DbgTimerDescription, DWARFGroupName,
338                               DWARFGroupDescription);
339       }
340     }
341   }
342 
343   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
344     PP = new PseudoProbeHandler(this, &M);
345     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
346                           PPTimerDescription, PPGroupName, PPGroupDescription);
347   }
348 
349   switch (MAI->getExceptionHandlingType()) {
350   case ExceptionHandling::SjLj:
351   case ExceptionHandling::DwarfCFI:
352   case ExceptionHandling::ARM:
353     isCFIMoveForDebugging = true;
354     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
355       break;
356     for (auto &F: M.getFunctionList()) {
357       // If the module contains any function with unwind data,
358       // .eh_frame has to be emitted.
359       // Ignore functions that won't get emitted.
360       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
361         isCFIMoveForDebugging = false;
362         break;
363       }
364     }
365     break;
366   default:
367     isCFIMoveForDebugging = false;
368     break;
369   }
370 
371   EHStreamer *ES = nullptr;
372   switch (MAI->getExceptionHandlingType()) {
373   case ExceptionHandling::None:
374     break;
375   case ExceptionHandling::SjLj:
376   case ExceptionHandling::DwarfCFI:
377     ES = new DwarfCFIException(this);
378     break;
379   case ExceptionHandling::ARM:
380     ES = new ARMException(this);
381     break;
382   case ExceptionHandling::WinEH:
383     switch (MAI->getWinEHEncodingType()) {
384     default: llvm_unreachable("unsupported unwinding information encoding");
385     case WinEH::EncodingType::Invalid:
386       break;
387     case WinEH::EncodingType::X86:
388     case WinEH::EncodingType::Itanium:
389       ES = new WinException(this);
390       break;
391     }
392     break;
393   case ExceptionHandling::Wasm:
394     ES = new WasmException(this);
395     break;
396   case ExceptionHandling::AIX:
397     ES = new AIXException(this);
398     break;
399   }
400   if (ES)
401     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
402                           EHTimerDescription, DWARFGroupName,
403                           DWARFGroupDescription);
404 
405   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
406   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
407     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
408                           CFGuardDescription, DWARFGroupName,
409                           DWARFGroupDescription);
410 
411   for (const HandlerInfo &HI : Handlers) {
412     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
413                        HI.TimerGroupDescription, TimePassesIsEnabled);
414     HI.Handler->beginModule(&M);
415   }
416 
417   return false;
418 }
419 
420 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
421   if (!MAI.hasWeakDefCanBeHiddenDirective())
422     return false;
423 
424   return GV->canBeOmittedFromSymbolTable();
425 }
426 
427 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
428   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
429   switch (Linkage) {
430   case GlobalValue::CommonLinkage:
431   case GlobalValue::LinkOnceAnyLinkage:
432   case GlobalValue::LinkOnceODRLinkage:
433   case GlobalValue::WeakAnyLinkage:
434   case GlobalValue::WeakODRLinkage:
435     if (MAI->hasWeakDefDirective()) {
436       // .globl _foo
437       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
438 
439       if (!canBeHidden(GV, *MAI))
440         // .weak_definition _foo
441         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
442       else
443         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
444     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
445       // .globl _foo
446       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
447       //NOTE: linkonce is handled by the section the symbol was assigned to.
448     } else {
449       // .weak _foo
450       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
451     }
452     return;
453   case GlobalValue::ExternalLinkage:
454     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
455     return;
456   case GlobalValue::PrivateLinkage:
457   case GlobalValue::InternalLinkage:
458     return;
459   case GlobalValue::ExternalWeakLinkage:
460   case GlobalValue::AvailableExternallyLinkage:
461   case GlobalValue::AppendingLinkage:
462     llvm_unreachable("Should never emit this");
463   }
464   llvm_unreachable("Unknown linkage type!");
465 }
466 
467 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
468                                    const GlobalValue *GV) const {
469   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
470 }
471 
472 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
473   return TM.getSymbol(GV);
474 }
475 
476 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
477   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
478   // exact definion (intersection of GlobalValue::hasExactDefinition() and
479   // !isInterposable()). These linkages include: external, appending, internal,
480   // private. It may be profitable to use a local alias for external. The
481   // assembler would otherwise be conservative and assume a global default
482   // visibility symbol can be interposable, even if the code generator already
483   // assumed it.
484   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
485     const Module &M = *GV.getParent();
486     if (TM.getRelocationModel() != Reloc::Static &&
487         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
488       return getSymbolWithGlobalValueBase(&GV, "$local");
489   }
490   return TM.getSymbol(&GV);
491 }
492 
493 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
494 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
495   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
496   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
497          "No emulated TLS variables in the common section");
498 
499   // Never emit TLS variable xyz in emulated TLS model.
500   // The initialization value is in __emutls_t.xyz instead of xyz.
501   if (IsEmuTLSVar)
502     return;
503 
504   if (GV->hasInitializer()) {
505     // Check to see if this is a special global used by LLVM, if so, emit it.
506     if (emitSpecialLLVMGlobal(GV))
507       return;
508 
509     // Skip the emission of global equivalents. The symbol can be emitted later
510     // on by emitGlobalGOTEquivs in case it turns out to be needed.
511     if (GlobalGOTEquivs.count(getSymbol(GV)))
512       return;
513 
514     if (isVerbose()) {
515       // When printing the control variable __emutls_v.*,
516       // we don't need to print the original TLS variable name.
517       GV->printAsOperand(OutStreamer->GetCommentOS(),
518                      /*PrintType=*/false, GV->getParent());
519       OutStreamer->GetCommentOS() << '\n';
520     }
521   }
522 
523   MCSymbol *GVSym = getSymbol(GV);
524   MCSymbol *EmittedSym = GVSym;
525 
526   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
527   // attributes.
528   // GV's or GVSym's attributes will be used for the EmittedSym.
529   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
530 
531   if (!GV->hasInitializer())   // External globals require no extra code.
532     return;
533 
534   GVSym->redefineIfPossible();
535   if (GVSym->isDefined() || GVSym->isVariable())
536     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
537                                         "' is already defined");
538 
539   if (MAI->hasDotTypeDotSizeDirective())
540     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
541 
542   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
543 
544   const DataLayout &DL = GV->getParent()->getDataLayout();
545   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
546 
547   // If the alignment is specified, we *must* obey it.  Overaligning a global
548   // with a specified alignment is a prompt way to break globals emitted to
549   // sections and expected to be contiguous (e.g. ObjC metadata).
550   const Align Alignment = getGVAlignment(GV, DL);
551 
552   for (const HandlerInfo &HI : Handlers) {
553     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
554                        HI.TimerGroupName, HI.TimerGroupDescription,
555                        TimePassesIsEnabled);
556     HI.Handler->setSymbolSize(GVSym, Size);
557   }
558 
559   // Handle common symbols
560   if (GVKind.isCommon()) {
561     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
562     // .comm _foo, 42, 4
563     const bool SupportsAlignment =
564         getObjFileLowering().getCommDirectiveSupportsAlignment();
565     OutStreamer->emitCommonSymbol(GVSym, Size,
566                                   SupportsAlignment ? Alignment.value() : 0);
567     return;
568   }
569 
570   // Determine to which section this global should be emitted.
571   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
572 
573   // If we have a bss global going to a section that supports the
574   // zerofill directive, do so here.
575   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
576       TheSection->isVirtualSection()) {
577     if (Size == 0)
578       Size = 1; // zerofill of 0 bytes is undefined.
579     emitLinkage(GV, GVSym);
580     // .zerofill __DATA, __bss, _foo, 400, 5
581     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
582     return;
583   }
584 
585   // If this is a BSS local symbol and we are emitting in the BSS
586   // section use .lcomm/.comm directive.
587   if (GVKind.isBSSLocal() &&
588       getObjFileLowering().getBSSSection() == TheSection) {
589     if (Size == 0)
590       Size = 1; // .comm Foo, 0 is undefined, avoid it.
591 
592     // Use .lcomm only if it supports user-specified alignment.
593     // Otherwise, while it would still be correct to use .lcomm in some
594     // cases (e.g. when Align == 1), the external assembler might enfore
595     // some -unknown- default alignment behavior, which could cause
596     // spurious differences between external and integrated assembler.
597     // Prefer to simply fall back to .local / .comm in this case.
598     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
599       // .lcomm _foo, 42
600       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
601       return;
602     }
603 
604     // .local _foo
605     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
606     // .comm _foo, 42, 4
607     const bool SupportsAlignment =
608         getObjFileLowering().getCommDirectiveSupportsAlignment();
609     OutStreamer->emitCommonSymbol(GVSym, Size,
610                                   SupportsAlignment ? Alignment.value() : 0);
611     return;
612   }
613 
614   // Handle thread local data for mach-o which requires us to output an
615   // additional structure of data and mangle the original symbol so that we
616   // can reference it later.
617   //
618   // TODO: This should become an "emit thread local global" method on TLOF.
619   // All of this macho specific stuff should be sunk down into TLOFMachO and
620   // stuff like "TLSExtraDataSection" should no longer be part of the parent
621   // TLOF class.  This will also make it more obvious that stuff like
622   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
623   // specific code.
624   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
625     // Emit the .tbss symbol
626     MCSymbol *MangSym =
627         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
628 
629     if (GVKind.isThreadBSS()) {
630       TheSection = getObjFileLowering().getTLSBSSSection();
631       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
632     } else if (GVKind.isThreadData()) {
633       OutStreamer->SwitchSection(TheSection);
634 
635       emitAlignment(Alignment, GV);
636       OutStreamer->emitLabel(MangSym);
637 
638       emitGlobalConstant(GV->getParent()->getDataLayout(),
639                          GV->getInitializer());
640     }
641 
642     OutStreamer->AddBlankLine();
643 
644     // Emit the variable struct for the runtime.
645     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
646 
647     OutStreamer->SwitchSection(TLVSect);
648     // Emit the linkage here.
649     emitLinkage(GV, GVSym);
650     OutStreamer->emitLabel(GVSym);
651 
652     // Three pointers in size:
653     //   - __tlv_bootstrap - used to make sure support exists
654     //   - spare pointer, used when mapped by the runtime
655     //   - pointer to mangled symbol above with initializer
656     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
657     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
658                                 PtrSize);
659     OutStreamer->emitIntValue(0, PtrSize);
660     OutStreamer->emitSymbolValue(MangSym, PtrSize);
661 
662     OutStreamer->AddBlankLine();
663     return;
664   }
665 
666   MCSymbol *EmittedInitSym = GVSym;
667 
668   OutStreamer->SwitchSection(TheSection);
669 
670   emitLinkage(GV, EmittedInitSym);
671   emitAlignment(Alignment, GV);
672 
673   OutStreamer->emitLabel(EmittedInitSym);
674   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
675   if (LocalAlias != EmittedInitSym)
676     OutStreamer->emitLabel(LocalAlias);
677 
678   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
679 
680   if (MAI->hasDotTypeDotSizeDirective())
681     // .size foo, 42
682     OutStreamer->emitELFSize(EmittedInitSym,
683                              MCConstantExpr::create(Size, OutContext));
684 
685   OutStreamer->AddBlankLine();
686 }
687 
688 /// Emit the directive and value for debug thread local expression
689 ///
690 /// \p Value - The value to emit.
691 /// \p Size - The size of the integer (in bytes) to emit.
692 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
693   OutStreamer->emitValue(Value, Size);
694 }
695 
696 void AsmPrinter::emitFunctionHeaderComment() {}
697 
698 /// EmitFunctionHeader - This method emits the header for the current
699 /// function.
700 void AsmPrinter::emitFunctionHeader() {
701   const Function &F = MF->getFunction();
702 
703   if (isVerbose())
704     OutStreamer->GetCommentOS()
705         << "-- Begin function "
706         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
707 
708   // Print out constants referenced by the function
709   emitConstantPool();
710 
711   // Print the 'header' of function.
712   // If basic block sections is desired and function sections is off,
713   // explicitly request a unique section for this function.
714   if (MF->front().isBeginSection() && !TM.getFunctionSections())
715     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
716   else
717     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
718   OutStreamer->SwitchSection(MF->getSection());
719 
720   if (!MAI->hasVisibilityOnlyWithLinkage())
721     emitVisibility(CurrentFnSym, F.getVisibility());
722 
723   if (MAI->needsFunctionDescriptors())
724     emitLinkage(&F, CurrentFnDescSym);
725 
726   emitLinkage(&F, CurrentFnSym);
727   if (MAI->hasFunctionAlignment())
728     emitAlignment(MF->getAlignment(), &F);
729 
730   if (MAI->hasDotTypeDotSizeDirective())
731     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
732 
733   if (F.hasFnAttribute(Attribute::Cold))
734     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
735 
736   if (isVerbose()) {
737     F.printAsOperand(OutStreamer->GetCommentOS(),
738                    /*PrintType=*/false, F.getParent());
739     emitFunctionHeaderComment();
740     OutStreamer->GetCommentOS() << '\n';
741   }
742 
743   // Emit the prefix data.
744   if (F.hasPrefixData()) {
745     if (MAI->hasSubsectionsViaSymbols()) {
746       // Preserving prefix data on platforms which use subsections-via-symbols
747       // is a bit tricky. Here we introduce a symbol for the prefix data
748       // and use the .alt_entry attribute to mark the function's real entry point
749       // as an alternative entry point to the prefix-data symbol.
750       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
751       OutStreamer->emitLabel(PrefixSym);
752 
753       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
754 
755       // Emit an .alt_entry directive for the actual function symbol.
756       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
757     } else {
758       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
759     }
760   }
761 
762   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
763   // place prefix data before NOPs.
764   unsigned PatchableFunctionPrefix = 0;
765   unsigned PatchableFunctionEntry = 0;
766   (void)F.getFnAttribute("patchable-function-prefix")
767       .getValueAsString()
768       .getAsInteger(10, PatchableFunctionPrefix);
769   (void)F.getFnAttribute("patchable-function-entry")
770       .getValueAsString()
771       .getAsInteger(10, PatchableFunctionEntry);
772   if (PatchableFunctionPrefix) {
773     CurrentPatchableFunctionEntrySym =
774         OutContext.createLinkerPrivateTempSymbol();
775     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
776     emitNops(PatchableFunctionPrefix);
777   } else if (PatchableFunctionEntry) {
778     // May be reassigned when emitting the body, to reference the label after
779     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
780     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
781   }
782 
783   // Emit the function descriptor. This is a virtual function to allow targets
784   // to emit their specific function descriptor. Right now it is only used by
785   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
786   // descriptors and should be converted to use this hook as well.
787   if (MAI->needsFunctionDescriptors())
788     emitFunctionDescriptor();
789 
790   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
791   // their wild and crazy things as required.
792   emitFunctionEntryLabel();
793 
794   if (CurrentFnBegin) {
795     if (MAI->useAssignmentForEHBegin()) {
796       MCSymbol *CurPos = OutContext.createTempSymbol();
797       OutStreamer->emitLabel(CurPos);
798       OutStreamer->emitAssignment(CurrentFnBegin,
799                                  MCSymbolRefExpr::create(CurPos, OutContext));
800     } else {
801       OutStreamer->emitLabel(CurrentFnBegin);
802     }
803   }
804 
805   // Emit pre-function debug and/or EH information.
806   for (const HandlerInfo &HI : Handlers) {
807     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
808                        HI.TimerGroupDescription, TimePassesIsEnabled);
809     HI.Handler->beginFunction(MF);
810   }
811 
812   // Emit the prologue data.
813   if (F.hasPrologueData())
814     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
815 }
816 
817 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
818 /// function.  This can be overridden by targets as required to do custom stuff.
819 void AsmPrinter::emitFunctionEntryLabel() {
820   CurrentFnSym->redefineIfPossible();
821 
822   // The function label could have already been emitted if two symbols end up
823   // conflicting due to asm renaming.  Detect this and emit an error.
824   if (CurrentFnSym->isVariable())
825     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
826                        "' is a protected alias");
827   if (CurrentFnSym->isDefined())
828     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
829                        "' label emitted multiple times to assembly file");
830 
831   OutStreamer->emitLabel(CurrentFnSym);
832 
833   if (TM.getTargetTriple().isOSBinFormatELF()) {
834     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
835     if (Sym != CurrentFnSym)
836       OutStreamer->emitLabel(Sym);
837   }
838 }
839 
840 /// emitComments - Pretty-print comments for instructions.
841 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
842   const MachineFunction *MF = MI.getMF();
843   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
844 
845   // Check for spills and reloads
846 
847   // We assume a single instruction only has a spill or reload, not
848   // both.
849   Optional<unsigned> Size;
850   if ((Size = MI.getRestoreSize(TII))) {
851     CommentOS << *Size << "-byte Reload\n";
852   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
853     if (*Size) {
854       if (*Size == unsigned(MemoryLocation::UnknownSize))
855         CommentOS << "Unknown-size Folded Reload\n";
856       else
857         CommentOS << *Size << "-byte Folded Reload\n";
858     }
859   } else if ((Size = MI.getSpillSize(TII))) {
860     CommentOS << *Size << "-byte Spill\n";
861   } else if ((Size = MI.getFoldedSpillSize(TII))) {
862     if (*Size) {
863       if (*Size == unsigned(MemoryLocation::UnknownSize))
864         CommentOS << "Unknown-size Folded Spill\n";
865       else
866         CommentOS << *Size << "-byte Folded Spill\n";
867     }
868   }
869 
870   // Check for spill-induced copies
871   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
872     CommentOS << " Reload Reuse\n";
873 }
874 
875 /// emitImplicitDef - This method emits the specified machine instruction
876 /// that is an implicit def.
877 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
878   Register RegNo = MI->getOperand(0).getReg();
879 
880   SmallString<128> Str;
881   raw_svector_ostream OS(Str);
882   OS << "implicit-def: "
883      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
884 
885   OutStreamer->AddComment(OS.str());
886   OutStreamer->AddBlankLine();
887 }
888 
889 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
890   std::string Str;
891   raw_string_ostream OS(Str);
892   OS << "kill:";
893   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
894     const MachineOperand &Op = MI->getOperand(i);
895     assert(Op.isReg() && "KILL instruction must have only register operands");
896     OS << ' ' << (Op.isDef() ? "def " : "killed ")
897        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
898   }
899   AP.OutStreamer->AddComment(OS.str());
900   AP.OutStreamer->AddBlankLine();
901 }
902 
903 /// emitDebugValueComment - This method handles the target-independent form
904 /// of DBG_VALUE, returning true if it was able to do so.  A false return
905 /// means the target will need to handle MI in EmitInstruction.
906 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
907   // This code handles only the 4-operand target-independent form.
908   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
909     return false;
910 
911   SmallString<128> Str;
912   raw_svector_ostream OS(Str);
913   OS << "DEBUG_VALUE: ";
914 
915   const DILocalVariable *V = MI->getDebugVariable();
916   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
917     StringRef Name = SP->getName();
918     if (!Name.empty())
919       OS << Name << ":";
920   }
921   OS << V->getName();
922   OS << " <- ";
923 
924   // The second operand is only an offset if it's an immediate.
925   bool MemLoc = MI->isIndirectDebugValue();
926   auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0);
927   const DIExpression *Expr = MI->getDebugExpression();
928   if (Expr->getNumElements()) {
929     OS << '[';
930     ListSeparator LS;
931     for (auto Op : Expr->expr_ops()) {
932       OS << LS << dwarf::OperationEncodingString(Op.getOp());
933       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
934         OS << ' ' << Op.getArg(I);
935     }
936     OS << "] ";
937   }
938 
939   // Register or immediate value. Register 0 means undef.
940   if (MI->getDebugOperand(0).isFPImm()) {
941     APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF());
942     if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) {
943       OS << (double)APF.convertToFloat();
944     } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) {
945       OS << APF.convertToDouble();
946     } else {
947       // There is no good way to print long double.  Convert a copy to
948       // double.  Ah well, it's only a comment.
949       bool ignored;
950       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
951                   &ignored);
952       OS << "(long double) " << APF.convertToDouble();
953     }
954   } else if (MI->getDebugOperand(0).isImm()) {
955     OS << MI->getDebugOperand(0).getImm();
956   } else if (MI->getDebugOperand(0).isCImm()) {
957     MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
958   } else if (MI->getDebugOperand(0).isTargetIndex()) {
959     auto Op = MI->getDebugOperand(0);
960     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
961     // NOTE: Want this comment at start of line, don't emit with AddComment.
962     AP.OutStreamer->emitRawComment(OS.str());
963     return true;
964   } else {
965     Register Reg;
966     if (MI->getDebugOperand(0).isReg()) {
967       Reg = MI->getDebugOperand(0).getReg();
968     } else {
969       assert(MI->getDebugOperand(0).isFI() && "Unknown operand type");
970       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
971       Offset += TFI->getFrameIndexReference(
972           *AP.MF, MI->getDebugOperand(0).getIndex(), Reg);
973       MemLoc = true;
974     }
975     if (Reg == 0) {
976       // Suppress offset, it is not meaningful here.
977       OS << "undef";
978       // NOTE: Want this comment at start of line, don't emit with AddComment.
979       AP.OutStreamer->emitRawComment(OS.str());
980       return true;
981     }
982     if (MemLoc)
983       OS << '[';
984     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
985   }
986 
987   if (MemLoc)
988     OS << '+' << Offset.getFixed() << ']';
989 
990   // NOTE: Want this comment at start of line, don't emit with AddComment.
991   AP.OutStreamer->emitRawComment(OS.str());
992   return true;
993 }
994 
995 /// This method handles the target-independent form of DBG_LABEL, returning
996 /// true if it was able to do so.  A false return means the target will need
997 /// to handle MI in EmitInstruction.
998 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
999   if (MI->getNumOperands() != 1)
1000     return false;
1001 
1002   SmallString<128> Str;
1003   raw_svector_ostream OS(Str);
1004   OS << "DEBUG_LABEL: ";
1005 
1006   const DILabel *V = MI->getDebugLabel();
1007   if (auto *SP = dyn_cast<DISubprogram>(
1008           V->getScope()->getNonLexicalBlockFileScope())) {
1009     StringRef Name = SP->getName();
1010     if (!Name.empty())
1011       OS << Name << ":";
1012   }
1013   OS << V->getName();
1014 
1015   // NOTE: Want this comment at start of line, don't emit with AddComment.
1016   AP.OutStreamer->emitRawComment(OS.str());
1017   return true;
1018 }
1019 
1020 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
1021   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1022       MF->getFunction().needsUnwindTableEntry())
1023     return CFI_M_EH;
1024 
1025   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
1026     return CFI_M_Debug;
1027 
1028   return CFI_M_None;
1029 }
1030 
1031 bool AsmPrinter::needsSEHMoves() {
1032   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1033 }
1034 
1035 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1036   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1037   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1038       ExceptionHandlingType != ExceptionHandling::ARM)
1039     return;
1040 
1041   if (needsCFIMoves() == CFI_M_None)
1042     return;
1043 
1044   // If there is no "real" instruction following this CFI instruction, skip
1045   // emitting it; it would be beyond the end of the function's FDE range.
1046   auto *MBB = MI.getParent();
1047   auto I = std::next(MI.getIterator());
1048   while (I != MBB->end() && I->isTransient())
1049     ++I;
1050   if (I == MBB->instr_end() &&
1051       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1052     return;
1053 
1054   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1055   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1056   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1057   emitCFIInstruction(CFI);
1058 }
1059 
1060 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1061   // The operands are the MCSymbol and the frame offset of the allocation.
1062   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1063   int FrameOffset = MI.getOperand(1).getImm();
1064 
1065   // Emit a symbol assignment.
1066   OutStreamer->emitAssignment(FrameAllocSym,
1067                              MCConstantExpr::create(FrameOffset, OutContext));
1068 }
1069 
1070 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1071 /// given basic block. This can be used to capture more precise profile
1072 /// information. We use the last 3 bits (LSBs) to ecnode the following
1073 /// information:
1074 ///  * (1): set if return block (ret or tail call).
1075 ///  * (2): set if ends with a tail call.
1076 ///  * (3): set if exception handling (EH) landing pad.
1077 /// The remaining bits are zero.
1078 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1079   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1080   return ((unsigned)MBB.isReturnBlock()) |
1081          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1082          (MBB.isEHPad() << 2);
1083 }
1084 
1085 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1086   MCSection *BBAddrMapSection =
1087       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1088   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1089 
1090   const MCSymbol *FunctionSymbol = getFunctionBegin();
1091 
1092   OutStreamer->PushSection();
1093   OutStreamer->SwitchSection(BBAddrMapSection);
1094   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1095   // Emit the total number of basic blocks in this function.
1096   OutStreamer->emitULEB128IntValue(MF.size());
1097   // Emit BB Information for each basic block in the funciton.
1098   for (const MachineBasicBlock &MBB : MF) {
1099     const MCSymbol *MBBSymbol =
1100         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1101     // Emit the basic block offset.
1102     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1103     // Emit the basic block size. When BBs have alignments, their size cannot
1104     // always be computed from their offsets.
1105     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1106     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1107   }
1108   OutStreamer->PopSection();
1109 }
1110 
1111 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1112   auto GUID = MI.getOperand(0).getImm();
1113   auto Index = MI.getOperand(1).getImm();
1114   auto Type = MI.getOperand(2).getImm();
1115   auto Attr = MI.getOperand(3).getImm();
1116   DILocation *DebugLoc = MI.getDebugLoc();
1117   PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1118 }
1119 
1120 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1121   if (!MF.getTarget().Options.EmitStackSizeSection)
1122     return;
1123 
1124   MCSection *StackSizeSection =
1125       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1126   if (!StackSizeSection)
1127     return;
1128 
1129   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1130   // Don't emit functions with dynamic stack allocations.
1131   if (FrameInfo.hasVarSizedObjects())
1132     return;
1133 
1134   OutStreamer->PushSection();
1135   OutStreamer->SwitchSection(StackSizeSection);
1136 
1137   const MCSymbol *FunctionSymbol = getFunctionBegin();
1138   uint64_t StackSize = FrameInfo.getStackSize();
1139   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1140   OutStreamer->emitULEB128IntValue(StackSize);
1141 
1142   OutStreamer->PopSection();
1143 }
1144 
1145 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1146   MachineModuleInfo &MMI = MF.getMMI();
1147   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1148     return true;
1149 
1150   // We might emit an EH table that uses function begin and end labels even if
1151   // we don't have any landingpads.
1152   if (!MF.getFunction().hasPersonalityFn())
1153     return false;
1154   return !isNoOpWithoutInvoke(
1155       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1156 }
1157 
1158 /// EmitFunctionBody - This method emits the body and trailer for a
1159 /// function.
1160 void AsmPrinter::emitFunctionBody() {
1161   emitFunctionHeader();
1162 
1163   // Emit target-specific gunk before the function body.
1164   emitFunctionBodyStart();
1165 
1166   if (isVerbose()) {
1167     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1168     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1169     if (!MDT) {
1170       OwnedMDT = std::make_unique<MachineDominatorTree>();
1171       OwnedMDT->getBase().recalculate(*MF);
1172       MDT = OwnedMDT.get();
1173     }
1174 
1175     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1176     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1177     if (!MLI) {
1178       OwnedMLI = std::make_unique<MachineLoopInfo>();
1179       OwnedMLI->getBase().analyze(MDT->getBase());
1180       MLI = OwnedMLI.get();
1181     }
1182   }
1183 
1184   // Print out code for the function.
1185   bool HasAnyRealCode = false;
1186   int NumInstsInFunction = 0;
1187 
1188   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1189   for (auto &MBB : *MF) {
1190     // Print a label for the basic block.
1191     emitBasicBlockStart(MBB);
1192     DenseMap<StringRef, unsigned> MnemonicCounts;
1193     for (auto &MI : MBB) {
1194       // Print the assembly for the instruction.
1195       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1196           !MI.isDebugInstr()) {
1197         HasAnyRealCode = true;
1198         ++NumInstsInFunction;
1199       }
1200 
1201       // If there is a pre-instruction symbol, emit a label for it here.
1202       if (MCSymbol *S = MI.getPreInstrSymbol())
1203         OutStreamer->emitLabel(S);
1204 
1205       for (const HandlerInfo &HI : Handlers) {
1206         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1207                            HI.TimerGroupDescription, TimePassesIsEnabled);
1208         HI.Handler->beginInstruction(&MI);
1209       }
1210 
1211       if (isVerbose())
1212         emitComments(MI, OutStreamer->GetCommentOS());
1213 
1214       switch (MI.getOpcode()) {
1215       case TargetOpcode::CFI_INSTRUCTION:
1216         emitCFIInstruction(MI);
1217         break;
1218       case TargetOpcode::LOCAL_ESCAPE:
1219         emitFrameAlloc(MI);
1220         break;
1221       case TargetOpcode::ANNOTATION_LABEL:
1222       case TargetOpcode::EH_LABEL:
1223       case TargetOpcode::GC_LABEL:
1224         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1225         break;
1226       case TargetOpcode::INLINEASM:
1227       case TargetOpcode::INLINEASM_BR:
1228         emitInlineAsm(&MI);
1229         break;
1230       case TargetOpcode::DBG_VALUE:
1231       case TargetOpcode::DBG_VALUE_LIST:
1232         if (isVerbose()) {
1233           if (!emitDebugValueComment(&MI, *this))
1234             emitInstruction(&MI);
1235         }
1236         break;
1237       case TargetOpcode::DBG_INSTR_REF:
1238         // This instruction reference will have been resolved to a machine
1239         // location, and a nearby DBG_VALUE created. We can safely ignore
1240         // the instruction reference.
1241         break;
1242       case TargetOpcode::DBG_LABEL:
1243         if (isVerbose()) {
1244           if (!emitDebugLabelComment(&MI, *this))
1245             emitInstruction(&MI);
1246         }
1247         break;
1248       case TargetOpcode::IMPLICIT_DEF:
1249         if (isVerbose()) emitImplicitDef(&MI);
1250         break;
1251       case TargetOpcode::KILL:
1252         if (isVerbose()) emitKill(&MI, *this);
1253         break;
1254       case TargetOpcode::PSEUDO_PROBE:
1255         emitPseudoProbe(MI);
1256         break;
1257       default:
1258         emitInstruction(&MI);
1259         if (CanDoExtraAnalysis) {
1260           MCInst MCI;
1261           MCI.setOpcode(MI.getOpcode());
1262           auto Name = OutStreamer->getMnemonic(MCI);
1263           auto I = MnemonicCounts.insert({Name, 0u});
1264           I.first->second++;
1265         }
1266         break;
1267       }
1268 
1269       // If there is a post-instruction symbol, emit a label for it here.
1270       if (MCSymbol *S = MI.getPostInstrSymbol())
1271         OutStreamer->emitLabel(S);
1272 
1273       for (const HandlerInfo &HI : Handlers) {
1274         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1275                            HI.TimerGroupDescription, TimePassesIsEnabled);
1276         HI.Handler->endInstruction();
1277       }
1278     }
1279 
1280     // We must emit temporary symbol for the end of this basic block, if either
1281     // we have BBLabels enabled or if this basic blocks marks the end of a
1282     // section (except the section containing the entry basic block as the end
1283     // symbol for that section is CurrentFnEnd).
1284     if (MF->hasBBLabels() ||
1285         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1286          !MBB.sameSection(&MF->front())))
1287       OutStreamer->emitLabel(MBB.getEndSymbol());
1288 
1289     if (MBB.isEndSection()) {
1290       // The size directive for the section containing the entry block is
1291       // handled separately by the function section.
1292       if (!MBB.sameSection(&MF->front())) {
1293         if (MAI->hasDotTypeDotSizeDirective()) {
1294           // Emit the size directive for the basic block section.
1295           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1296               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1297               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1298               OutContext);
1299           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1300         }
1301         MBBSectionRanges[MBB.getSectionIDNum()] =
1302             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1303       }
1304     }
1305     emitBasicBlockEnd(MBB);
1306 
1307     if (CanDoExtraAnalysis) {
1308       // Skip empty blocks.
1309       if (MBB.empty())
1310         continue;
1311 
1312       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1313                                           MBB.begin()->getDebugLoc(), &MBB);
1314 
1315       // Generate instruction mix remark. First, sort counts in descending order
1316       // by count and name.
1317       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1318       for (auto &KV : MnemonicCounts)
1319         MnemonicVec.emplace_back(KV.first, KV.second);
1320 
1321       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1322                            const std::pair<StringRef, unsigned> &B) {
1323         if (A.second > B.second)
1324           return true;
1325         if (A.second == B.second)
1326           return StringRef(A.first) < StringRef(B.first);
1327         return false;
1328       });
1329       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1330       for (auto &KV : MnemonicVec) {
1331         auto Name = (Twine("INST_") + KV.first.trim()).str();
1332         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1333       }
1334       ORE->emit(R);
1335     }
1336   }
1337 
1338   EmittedInsts += NumInstsInFunction;
1339   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1340                                       MF->getFunction().getSubprogram(),
1341                                       &MF->front());
1342   R << ore::NV("NumInstructions", NumInstsInFunction)
1343     << " instructions in function";
1344   ORE->emit(R);
1345 
1346   // If the function is empty and the object file uses .subsections_via_symbols,
1347   // then we need to emit *something* to the function body to prevent the
1348   // labels from collapsing together.  Just emit a noop.
1349   // Similarly, don't emit empty functions on Windows either. It can lead to
1350   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1351   // after linking, causing the kernel not to load the binary:
1352   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1353   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1354   const Triple &TT = TM.getTargetTriple();
1355   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1356                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1357     MCInst Noop;
1358     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1359 
1360     // Targets can opt-out of emitting the noop here by leaving the opcode
1361     // unspecified.
1362     if (Noop.getOpcode()) {
1363       OutStreamer->AddComment("avoids zero-length function");
1364       emitNops(1);
1365     }
1366   }
1367 
1368   // Switch to the original section in case basic block sections was used.
1369   OutStreamer->SwitchSection(MF->getSection());
1370 
1371   const Function &F = MF->getFunction();
1372   for (const auto &BB : F) {
1373     if (!BB.hasAddressTaken())
1374       continue;
1375     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1376     if (Sym->isDefined())
1377       continue;
1378     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1379     OutStreamer->emitLabel(Sym);
1380   }
1381 
1382   // Emit target-specific gunk after the function body.
1383   emitFunctionBodyEnd();
1384 
1385   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1386       MAI->hasDotTypeDotSizeDirective()) {
1387     // Create a symbol for the end of function.
1388     CurrentFnEnd = createTempSymbol("func_end");
1389     OutStreamer->emitLabel(CurrentFnEnd);
1390   }
1391 
1392   // If the target wants a .size directive for the size of the function, emit
1393   // it.
1394   if (MAI->hasDotTypeDotSizeDirective()) {
1395     // We can get the size as difference between the function label and the
1396     // temp label.
1397     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1398         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1399         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1400     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1401   }
1402 
1403   for (const HandlerInfo &HI : Handlers) {
1404     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1405                        HI.TimerGroupDescription, TimePassesIsEnabled);
1406     HI.Handler->markFunctionEnd();
1407   }
1408 
1409   MBBSectionRanges[MF->front().getSectionIDNum()] =
1410       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1411 
1412   // Print out jump tables referenced by the function.
1413   emitJumpTableInfo();
1414 
1415   // Emit post-function debug and/or EH information.
1416   for (const HandlerInfo &HI : Handlers) {
1417     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1418                        HI.TimerGroupDescription, TimePassesIsEnabled);
1419     HI.Handler->endFunction(MF);
1420   }
1421 
1422   // Emit section containing BB address offsets and their metadata, when
1423   // BB labels are requested for this function.
1424   if (MF->hasBBLabels())
1425     emitBBAddrMapSection(*MF);
1426 
1427   // Emit section containing stack size metadata.
1428   emitStackSizeSection(*MF);
1429 
1430   emitPatchableFunctionEntries();
1431 
1432   if (isVerbose())
1433     OutStreamer->GetCommentOS() << "-- End function\n";
1434 
1435   OutStreamer->AddBlankLine();
1436 }
1437 
1438 /// Compute the number of Global Variables that uses a Constant.
1439 static unsigned getNumGlobalVariableUses(const Constant *C) {
1440   if (!C)
1441     return 0;
1442 
1443   if (isa<GlobalVariable>(C))
1444     return 1;
1445 
1446   unsigned NumUses = 0;
1447   for (auto *CU : C->users())
1448     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1449 
1450   return NumUses;
1451 }
1452 
1453 /// Only consider global GOT equivalents if at least one user is a
1454 /// cstexpr inside an initializer of another global variables. Also, don't
1455 /// handle cstexpr inside instructions. During global variable emission,
1456 /// candidates are skipped and are emitted later in case at least one cstexpr
1457 /// isn't replaced by a PC relative GOT entry access.
1458 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1459                                      unsigned &NumGOTEquivUsers) {
1460   // Global GOT equivalents are unnamed private globals with a constant
1461   // pointer initializer to another global symbol. They must point to a
1462   // GlobalVariable or Function, i.e., as GlobalValue.
1463   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1464       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1465       !isa<GlobalValue>(GV->getOperand(0)))
1466     return false;
1467 
1468   // To be a got equivalent, at least one of its users need to be a constant
1469   // expression used by another global variable.
1470   for (auto *U : GV->users())
1471     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1472 
1473   return NumGOTEquivUsers > 0;
1474 }
1475 
1476 /// Unnamed constant global variables solely contaning a pointer to
1477 /// another globals variable is equivalent to a GOT table entry; it contains the
1478 /// the address of another symbol. Optimize it and replace accesses to these
1479 /// "GOT equivalents" by using the GOT entry for the final global instead.
1480 /// Compute GOT equivalent candidates among all global variables to avoid
1481 /// emitting them if possible later on, after it use is replaced by a GOT entry
1482 /// access.
1483 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1484   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1485     return;
1486 
1487   for (const auto &G : M.globals()) {
1488     unsigned NumGOTEquivUsers = 0;
1489     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1490       continue;
1491 
1492     const MCSymbol *GOTEquivSym = getSymbol(&G);
1493     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1494   }
1495 }
1496 
1497 /// Constant expressions using GOT equivalent globals may not be eligible
1498 /// for PC relative GOT entry conversion, in such cases we need to emit such
1499 /// globals we previously omitted in EmitGlobalVariable.
1500 void AsmPrinter::emitGlobalGOTEquivs() {
1501   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1502     return;
1503 
1504   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1505   for (auto &I : GlobalGOTEquivs) {
1506     const GlobalVariable *GV = I.second.first;
1507     unsigned Cnt = I.second.second;
1508     if (Cnt)
1509       FailedCandidates.push_back(GV);
1510   }
1511   GlobalGOTEquivs.clear();
1512 
1513   for (auto *GV : FailedCandidates)
1514     emitGlobalVariable(GV);
1515 }
1516 
1517 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1518                                           const GlobalIndirectSymbol& GIS) {
1519   MCSymbol *Name = getSymbol(&GIS);
1520   bool IsFunction = GIS.getValueType()->isFunctionTy();
1521   // Treat bitcasts of functions as functions also. This is important at least
1522   // on WebAssembly where object and function addresses can't alias each other.
1523   if (!IsFunction)
1524     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1525       if (CE->getOpcode() == Instruction::BitCast)
1526         IsFunction =
1527           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1528 
1529   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1530   // so AIX has to use the extra-label-at-definition strategy. At this
1531   // point, all the extra label is emitted, we just have to emit linkage for
1532   // those labels.
1533   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1534     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1535     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1536            "Visibility should be handled with emitLinkage() on AIX.");
1537     emitLinkage(&GIS, Name);
1538     // If it's a function, also emit linkage for aliases of function entry
1539     // point.
1540     if (IsFunction)
1541       emitLinkage(&GIS,
1542                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1543     return;
1544   }
1545 
1546   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1547     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1548   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1549     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1550   else
1551     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1552 
1553   // Set the symbol type to function if the alias has a function type.
1554   // This affects codegen when the aliasee is not a function.
1555   if (IsFunction)
1556     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1557                                                ? MCSA_ELF_TypeIndFunction
1558                                                : MCSA_ELF_TypeFunction);
1559 
1560   emitVisibility(Name, GIS.getVisibility());
1561 
1562   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1563 
1564   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1565     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1566 
1567   // Emit the directives as assignments aka .set:
1568   OutStreamer->emitAssignment(Name, Expr);
1569   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1570   if (LocalAlias != Name)
1571     OutStreamer->emitAssignment(LocalAlias, Expr);
1572 
1573   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1574     // If the aliasee does not correspond to a symbol in the output, i.e. the
1575     // alias is not of an object or the aliased object is private, then set the
1576     // size of the alias symbol from the type of the alias. We don't do this in
1577     // other situations as the alias and aliasee having differing types but same
1578     // size may be intentional.
1579     const GlobalObject *BaseObject = GA->getBaseObject();
1580     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1581         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1582       const DataLayout &DL = M.getDataLayout();
1583       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1584       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1585     }
1586   }
1587 }
1588 
1589 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1590   if (!RS.needsSection())
1591     return;
1592 
1593   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1594 
1595   Optional<SmallString<128>> Filename;
1596   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1597     Filename = *FilenameRef;
1598     sys::fs::make_absolute(*Filename);
1599     assert(!Filename->empty() && "The filename can't be empty.");
1600   }
1601 
1602   std::string Buf;
1603   raw_string_ostream OS(Buf);
1604   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1605       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1606                : RemarkSerializer.metaSerializer(OS);
1607   MetaSerializer->emit();
1608 
1609   // Switch to the remarks section.
1610   MCSection *RemarksSection =
1611       OutContext.getObjectFileInfo()->getRemarksSection();
1612   OutStreamer->SwitchSection(RemarksSection);
1613 
1614   OutStreamer->emitBinaryData(OS.str());
1615 }
1616 
1617 bool AsmPrinter::doFinalization(Module &M) {
1618   // Set the MachineFunction to nullptr so that we can catch attempted
1619   // accesses to MF specific features at the module level and so that
1620   // we can conditionalize accesses based on whether or not it is nullptr.
1621   MF = nullptr;
1622 
1623   // Gather all GOT equivalent globals in the module. We really need two
1624   // passes over the globals: one to compute and another to avoid its emission
1625   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1626   // where the got equivalent shows up before its use.
1627   computeGlobalGOTEquivs(M);
1628 
1629   // Emit global variables.
1630   for (const auto &G : M.globals())
1631     emitGlobalVariable(&G);
1632 
1633   // Emit remaining GOT equivalent globals.
1634   emitGlobalGOTEquivs();
1635 
1636   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1637 
1638   // Emit linkage(XCOFF) and visibility info for declarations
1639   for (const Function &F : M) {
1640     if (!F.isDeclarationForLinker())
1641       continue;
1642 
1643     MCSymbol *Name = getSymbol(&F);
1644     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1645 
1646     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1647       GlobalValue::VisibilityTypes V = F.getVisibility();
1648       if (V == GlobalValue::DefaultVisibility)
1649         continue;
1650 
1651       emitVisibility(Name, V, false);
1652       continue;
1653     }
1654 
1655     if (F.isIntrinsic())
1656       continue;
1657 
1658     // Handle the XCOFF case.
1659     // Variable `Name` is the function descriptor symbol (see above). Get the
1660     // function entry point symbol.
1661     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1662     // Emit linkage for the function entry point.
1663     emitLinkage(&F, FnEntryPointSym);
1664 
1665     // Emit linkage for the function descriptor.
1666     emitLinkage(&F, Name);
1667   }
1668 
1669   // Emit the remarks section contents.
1670   // FIXME: Figure out when is the safest time to emit this section. It should
1671   // not come after debug info.
1672   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1673     emitRemarksSection(*RS);
1674 
1675   TLOF.emitModuleMetadata(*OutStreamer, M);
1676 
1677   if (TM.getTargetTriple().isOSBinFormatELF()) {
1678     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1679 
1680     // Output stubs for external and common global variables.
1681     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1682     if (!Stubs.empty()) {
1683       OutStreamer->SwitchSection(TLOF.getDataSection());
1684       const DataLayout &DL = M.getDataLayout();
1685 
1686       emitAlignment(Align(DL.getPointerSize()));
1687       for (const auto &Stub : Stubs) {
1688         OutStreamer->emitLabel(Stub.first);
1689         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1690                                      DL.getPointerSize());
1691       }
1692     }
1693   }
1694 
1695   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1696     MachineModuleInfoCOFF &MMICOFF =
1697         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1698 
1699     // Output stubs for external and common global variables.
1700     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1701     if (!Stubs.empty()) {
1702       const DataLayout &DL = M.getDataLayout();
1703 
1704       for (const auto &Stub : Stubs) {
1705         SmallString<256> SectionName = StringRef(".rdata$");
1706         SectionName += Stub.first->getName();
1707         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1708             SectionName,
1709             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1710                 COFF::IMAGE_SCN_LNK_COMDAT,
1711             SectionKind::getReadOnly(), Stub.first->getName(),
1712             COFF::IMAGE_COMDAT_SELECT_ANY));
1713         emitAlignment(Align(DL.getPointerSize()));
1714         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1715         OutStreamer->emitLabel(Stub.first);
1716         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1717                                      DL.getPointerSize());
1718       }
1719     }
1720   }
1721 
1722   // Finalize debug and EH information.
1723   for (const HandlerInfo &HI : Handlers) {
1724     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1725                        HI.TimerGroupDescription, TimePassesIsEnabled);
1726     HI.Handler->endModule();
1727   }
1728 
1729   // This deletes all the ephemeral handlers that AsmPrinter added, while
1730   // keeping all the user-added handlers alive until the AsmPrinter is
1731   // destroyed.
1732   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1733   DD = nullptr;
1734 
1735   // If the target wants to know about weak references, print them all.
1736   if (MAI->getWeakRefDirective()) {
1737     // FIXME: This is not lazy, it would be nice to only print weak references
1738     // to stuff that is actually used.  Note that doing so would require targets
1739     // to notice uses in operands (due to constant exprs etc).  This should
1740     // happen with the MC stuff eventually.
1741 
1742     // Print out module-level global objects here.
1743     for (const auto &GO : M.global_objects()) {
1744       if (!GO.hasExternalWeakLinkage())
1745         continue;
1746       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1747     }
1748   }
1749 
1750   // Print aliases in topological order, that is, for each alias a = b,
1751   // b must be printed before a.
1752   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1753   // such an order to generate correct TOC information.
1754   SmallVector<const GlobalAlias *, 16> AliasStack;
1755   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1756   for (const auto &Alias : M.aliases()) {
1757     for (const GlobalAlias *Cur = &Alias; Cur;
1758          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1759       if (!AliasVisited.insert(Cur).second)
1760         break;
1761       AliasStack.push_back(Cur);
1762     }
1763     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1764       emitGlobalIndirectSymbol(M, *AncestorAlias);
1765     AliasStack.clear();
1766   }
1767   for (const auto &IFunc : M.ifuncs())
1768     emitGlobalIndirectSymbol(M, IFunc);
1769 
1770   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1771   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1772   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1773     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1774       MP->finishAssembly(M, *MI, *this);
1775 
1776   // Emit llvm.ident metadata in an '.ident' directive.
1777   emitModuleIdents(M);
1778 
1779   // Emit bytes for llvm.commandline metadata.
1780   emitModuleCommandLines(M);
1781 
1782   // Emit __morestack address if needed for indirect calls.
1783   if (MMI->usesMorestackAddr()) {
1784     Align Alignment(1);
1785     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1786         getDataLayout(), SectionKind::getReadOnly(),
1787         /*C=*/nullptr, Alignment);
1788     OutStreamer->SwitchSection(ReadOnlySection);
1789 
1790     MCSymbol *AddrSymbol =
1791         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1792     OutStreamer->emitLabel(AddrSymbol);
1793 
1794     unsigned PtrSize = MAI->getCodePointerSize();
1795     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1796                                  PtrSize);
1797   }
1798 
1799   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1800   // split-stack is used.
1801   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1802     OutStreamer->SwitchSection(
1803         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1804     if (MMI->hasNosplitStack())
1805       OutStreamer->SwitchSection(
1806           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1807   }
1808 
1809   // If we don't have any trampolines, then we don't require stack memory
1810   // to be executable. Some targets have a directive to declare this.
1811   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1812   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1813     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1814       OutStreamer->SwitchSection(S);
1815 
1816   if (TM.Options.EmitAddrsig) {
1817     // Emit address-significance attributes for all globals.
1818     OutStreamer->emitAddrsig();
1819     for (const GlobalValue &GV : M.global_values())
1820       if (!GV.use_empty() && !GV.isThreadLocal() &&
1821           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1822           !GV.hasAtLeastLocalUnnamedAddr())
1823         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1824   }
1825 
1826   // Emit symbol partition specifications (ELF only).
1827   if (TM.getTargetTriple().isOSBinFormatELF()) {
1828     unsigned UniqueID = 0;
1829     for (const GlobalValue &GV : M.global_values()) {
1830       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1831           GV.getVisibility() != GlobalValue::DefaultVisibility)
1832         continue;
1833 
1834       OutStreamer->SwitchSection(
1835           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1836                                    "", false, ++UniqueID, nullptr));
1837       OutStreamer->emitBytes(GV.getPartition());
1838       OutStreamer->emitZeros(1);
1839       OutStreamer->emitValue(
1840           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1841           MAI->getCodePointerSize());
1842     }
1843   }
1844 
1845   // Allow the target to emit any magic that it wants at the end of the file,
1846   // after everything else has gone out.
1847   emitEndOfAsmFile(M);
1848 
1849   MMI = nullptr;
1850 
1851   OutStreamer->Finish();
1852   OutStreamer->reset();
1853   OwnedMLI.reset();
1854   OwnedMDT.reset();
1855 
1856   return false;
1857 }
1858 
1859 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1860   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1861   if (Res.second)
1862     Res.first->second = createTempSymbol("exception");
1863   return Res.first->second;
1864 }
1865 
1866 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1867   this->MF = &MF;
1868   const Function &F = MF.getFunction();
1869 
1870   // Get the function symbol.
1871   if (!MAI->needsFunctionDescriptors()) {
1872     CurrentFnSym = getSymbol(&MF.getFunction());
1873   } else {
1874     assert(TM.getTargetTriple().isOSAIX() &&
1875            "Only AIX uses the function descriptor hooks.");
1876     // AIX is unique here in that the name of the symbol emitted for the
1877     // function body does not have the same name as the source function's
1878     // C-linkage name.
1879     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1880                                " initalized first.");
1881 
1882     // Get the function entry point symbol.
1883     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1884   }
1885 
1886   CurrentFnSymForSize = CurrentFnSym;
1887   CurrentFnBegin = nullptr;
1888   CurrentSectionBeginSym = nullptr;
1889   MBBSectionRanges.clear();
1890   MBBSectionExceptionSyms.clear();
1891   bool NeedsLocalForSize = MAI->needsLocalForSize();
1892   if (F.hasFnAttribute("patchable-function-entry") ||
1893       F.hasFnAttribute("function-instrument") ||
1894       F.hasFnAttribute("xray-instruction-threshold") ||
1895       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1896       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1897     CurrentFnBegin = createTempSymbol("func_begin");
1898     if (NeedsLocalForSize)
1899       CurrentFnSymForSize = CurrentFnBegin;
1900   }
1901 
1902   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1903 }
1904 
1905 namespace {
1906 
1907 // Keep track the alignment, constpool entries per Section.
1908   struct SectionCPs {
1909     MCSection *S;
1910     Align Alignment;
1911     SmallVector<unsigned, 4> CPEs;
1912 
1913     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1914   };
1915 
1916 } // end anonymous namespace
1917 
1918 /// EmitConstantPool - Print to the current output stream assembly
1919 /// representations of the constants in the constant pool MCP. This is
1920 /// used to print out constants which have been "spilled to memory" by
1921 /// the code generator.
1922 void AsmPrinter::emitConstantPool() {
1923   const MachineConstantPool *MCP = MF->getConstantPool();
1924   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1925   if (CP.empty()) return;
1926 
1927   // Calculate sections for constant pool entries. We collect entries to go into
1928   // the same section together to reduce amount of section switch statements.
1929   SmallVector<SectionCPs, 4> CPSections;
1930   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1931     const MachineConstantPoolEntry &CPE = CP[i];
1932     Align Alignment = CPE.getAlign();
1933 
1934     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1935 
1936     const Constant *C = nullptr;
1937     if (!CPE.isMachineConstantPoolEntry())
1938       C = CPE.Val.ConstVal;
1939 
1940     MCSection *S = getObjFileLowering().getSectionForConstant(
1941         getDataLayout(), Kind, C, Alignment);
1942 
1943     // The number of sections are small, just do a linear search from the
1944     // last section to the first.
1945     bool Found = false;
1946     unsigned SecIdx = CPSections.size();
1947     while (SecIdx != 0) {
1948       if (CPSections[--SecIdx].S == S) {
1949         Found = true;
1950         break;
1951       }
1952     }
1953     if (!Found) {
1954       SecIdx = CPSections.size();
1955       CPSections.push_back(SectionCPs(S, Alignment));
1956     }
1957 
1958     if (Alignment > CPSections[SecIdx].Alignment)
1959       CPSections[SecIdx].Alignment = Alignment;
1960     CPSections[SecIdx].CPEs.push_back(i);
1961   }
1962 
1963   // Now print stuff into the calculated sections.
1964   const MCSection *CurSection = nullptr;
1965   unsigned Offset = 0;
1966   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1967     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1968       unsigned CPI = CPSections[i].CPEs[j];
1969       MCSymbol *Sym = GetCPISymbol(CPI);
1970       if (!Sym->isUndefined())
1971         continue;
1972 
1973       if (CurSection != CPSections[i].S) {
1974         OutStreamer->SwitchSection(CPSections[i].S);
1975         emitAlignment(Align(CPSections[i].Alignment));
1976         CurSection = CPSections[i].S;
1977         Offset = 0;
1978       }
1979 
1980       MachineConstantPoolEntry CPE = CP[CPI];
1981 
1982       // Emit inter-object padding for alignment.
1983       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
1984       OutStreamer->emitZeros(NewOffset - Offset);
1985 
1986       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
1987 
1988       OutStreamer->emitLabel(Sym);
1989       if (CPE.isMachineConstantPoolEntry())
1990         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1991       else
1992         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1993     }
1994   }
1995 }
1996 
1997 // Print assembly representations of the jump tables used by the current
1998 // function.
1999 void AsmPrinter::emitJumpTableInfo() {
2000   const DataLayout &DL = MF->getDataLayout();
2001   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2002   if (!MJTI) return;
2003   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2004   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2005   if (JT.empty()) return;
2006 
2007   // Pick the directive to use to print the jump table entries, and switch to
2008   // the appropriate section.
2009   const Function &F = MF->getFunction();
2010   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2011   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2012       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2013       F);
2014   if (JTInDiffSection) {
2015     // Drop it in the readonly section.
2016     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2017     OutStreamer->SwitchSection(ReadOnlySection);
2018   }
2019 
2020   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2021 
2022   // Jump tables in code sections are marked with a data_region directive
2023   // where that's supported.
2024   if (!JTInDiffSection)
2025     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2026 
2027   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2028     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2029 
2030     // If this jump table was deleted, ignore it.
2031     if (JTBBs.empty()) continue;
2032 
2033     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2034     /// emit a .set directive for each unique entry.
2035     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2036         MAI->doesSetDirectiveSuppressReloc()) {
2037       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2038       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2039       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2040       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2041         const MachineBasicBlock *MBB = JTBBs[ii];
2042         if (!EmittedSets.insert(MBB).second)
2043           continue;
2044 
2045         // .set LJTSet, LBB32-base
2046         const MCExpr *LHS =
2047           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2048         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2049                                     MCBinaryExpr::createSub(LHS, Base,
2050                                                             OutContext));
2051       }
2052     }
2053 
2054     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2055     // before each jump table.  The first label is never referenced, but tells
2056     // the assembler and linker the extents of the jump table object.  The
2057     // second label is actually referenced by the code.
2058     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2059       // FIXME: This doesn't have to have any specific name, just any randomly
2060       // named and numbered local label started with 'l' would work.  Simplify
2061       // GetJTISymbol.
2062       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2063 
2064     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2065     OutStreamer->emitLabel(JTISymbol);
2066 
2067     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2068       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2069   }
2070   if (!JTInDiffSection)
2071     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2072 }
2073 
2074 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2075 /// current stream.
2076 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2077                                     const MachineBasicBlock *MBB,
2078                                     unsigned UID) const {
2079   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2080   const MCExpr *Value = nullptr;
2081   switch (MJTI->getEntryKind()) {
2082   case MachineJumpTableInfo::EK_Inline:
2083     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2084   case MachineJumpTableInfo::EK_Custom32:
2085     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2086         MJTI, MBB, UID, OutContext);
2087     break;
2088   case MachineJumpTableInfo::EK_BlockAddress:
2089     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2090     //     .word LBB123
2091     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2092     break;
2093   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2094     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2095     // with a relocation as gp-relative, e.g.:
2096     //     .gprel32 LBB123
2097     MCSymbol *MBBSym = MBB->getSymbol();
2098     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2099     return;
2100   }
2101 
2102   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2103     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2104     // with a relocation as gp-relative, e.g.:
2105     //     .gpdword LBB123
2106     MCSymbol *MBBSym = MBB->getSymbol();
2107     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2108     return;
2109   }
2110 
2111   case MachineJumpTableInfo::EK_LabelDifference32: {
2112     // Each entry is the address of the block minus the address of the jump
2113     // table. This is used for PIC jump tables where gprel32 is not supported.
2114     // e.g.:
2115     //      .word LBB123 - LJTI1_2
2116     // If the .set directive avoids relocations, this is emitted as:
2117     //      .set L4_5_set_123, LBB123 - LJTI1_2
2118     //      .word L4_5_set_123
2119     if (MAI->doesSetDirectiveSuppressReloc()) {
2120       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2121                                       OutContext);
2122       break;
2123     }
2124     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2125     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2126     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2127     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2128     break;
2129   }
2130   }
2131 
2132   assert(Value && "Unknown entry kind!");
2133 
2134   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2135   OutStreamer->emitValue(Value, EntrySize);
2136 }
2137 
2138 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2139 /// special global used by LLVM.  If so, emit it and return true, otherwise
2140 /// do nothing and return false.
2141 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2142   if (GV->getName() == "llvm.used") {
2143     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2144       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2145     return true;
2146   }
2147 
2148   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2149   if (GV->getSection() == "llvm.metadata" ||
2150       GV->hasAvailableExternallyLinkage())
2151     return true;
2152 
2153   if (!GV->hasAppendingLinkage()) return false;
2154 
2155   assert(GV->hasInitializer() && "Not a special LLVM global!");
2156 
2157   if (GV->getName() == "llvm.global_ctors") {
2158     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2159                        /* isCtor */ true);
2160 
2161     return true;
2162   }
2163 
2164   if (GV->getName() == "llvm.global_dtors") {
2165     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2166                        /* isCtor */ false);
2167 
2168     return true;
2169   }
2170 
2171   report_fatal_error("unknown special variable");
2172 }
2173 
2174 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2175 /// global in the specified llvm.used list.
2176 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2177   // Should be an array of 'i8*'.
2178   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2179     const GlobalValue *GV =
2180       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2181     if (GV)
2182       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2183   }
2184 }
2185 
2186 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2187                                           const Constant *List,
2188                                           SmallVector<Structor, 8> &Structors) {
2189   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2190   // the init priority.
2191   if (!isa<ConstantArray>(List))
2192     return;
2193 
2194   // Gather the structors in a form that's convenient for sorting by priority.
2195   for (Value *O : cast<ConstantArray>(List)->operands()) {
2196     auto *CS = cast<ConstantStruct>(O);
2197     if (CS->getOperand(1)->isNullValue())
2198       break; // Found a null terminator, skip the rest.
2199     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2200     if (!Priority)
2201       continue; // Malformed.
2202     Structors.push_back(Structor());
2203     Structor &S = Structors.back();
2204     S.Priority = Priority->getLimitedValue(65535);
2205     S.Func = CS->getOperand(1);
2206     if (!CS->getOperand(2)->isNullValue()) {
2207       if (TM.getTargetTriple().isOSAIX())
2208         llvm::report_fatal_error(
2209             "associated data of XXStructor list is not yet supported on AIX");
2210       S.ComdatKey =
2211           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2212     }
2213   }
2214 
2215   // Emit the function pointers in the target-specific order
2216   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2217     return L.Priority < R.Priority;
2218   });
2219 }
2220 
2221 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2222 /// priority.
2223 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2224                                     bool IsCtor) {
2225   SmallVector<Structor, 8> Structors;
2226   preprocessXXStructorList(DL, List, Structors);
2227   if (Structors.empty())
2228     return;
2229 
2230   const Align Align = DL.getPointerPrefAlignment();
2231   for (Structor &S : Structors) {
2232     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2233     const MCSymbol *KeySym = nullptr;
2234     if (GlobalValue *GV = S.ComdatKey) {
2235       if (GV->isDeclarationForLinker())
2236         // If the associated variable is not defined in this module
2237         // (it might be available_externally, or have been an
2238         // available_externally definition that was dropped by the
2239         // EliminateAvailableExternally pass), some other TU
2240         // will provide its dynamic initializer.
2241         continue;
2242 
2243       KeySym = getSymbol(GV);
2244     }
2245 
2246     MCSection *OutputSection =
2247         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2248                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2249     OutStreamer->SwitchSection(OutputSection);
2250     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2251       emitAlignment(Align);
2252     emitXXStructor(DL, S.Func);
2253   }
2254 }
2255 
2256 void AsmPrinter::emitModuleIdents(Module &M) {
2257   if (!MAI->hasIdentDirective())
2258     return;
2259 
2260   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2261     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2262       const MDNode *N = NMD->getOperand(i);
2263       assert(N->getNumOperands() == 1 &&
2264              "llvm.ident metadata entry can have only one operand");
2265       const MDString *S = cast<MDString>(N->getOperand(0));
2266       OutStreamer->emitIdent(S->getString());
2267     }
2268   }
2269 }
2270 
2271 void AsmPrinter::emitModuleCommandLines(Module &M) {
2272   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2273   if (!CommandLine)
2274     return;
2275 
2276   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2277   if (!NMD || !NMD->getNumOperands())
2278     return;
2279 
2280   OutStreamer->PushSection();
2281   OutStreamer->SwitchSection(CommandLine);
2282   OutStreamer->emitZeros(1);
2283   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2284     const MDNode *N = NMD->getOperand(i);
2285     assert(N->getNumOperands() == 1 &&
2286            "llvm.commandline metadata entry can have only one operand");
2287     const MDString *S = cast<MDString>(N->getOperand(0));
2288     OutStreamer->emitBytes(S->getString());
2289     OutStreamer->emitZeros(1);
2290   }
2291   OutStreamer->PopSection();
2292 }
2293 
2294 //===--------------------------------------------------------------------===//
2295 // Emission and print routines
2296 //
2297 
2298 /// Emit a byte directive and value.
2299 ///
2300 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2301 
2302 /// Emit a short directive and value.
2303 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2304 
2305 /// Emit a long directive and value.
2306 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2307 
2308 /// Emit a long long directive and value.
2309 void AsmPrinter::emitInt64(uint64_t Value) const {
2310   OutStreamer->emitInt64(Value);
2311 }
2312 
2313 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2314 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2315 /// .set if it avoids relocations.
2316 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2317                                      unsigned Size) const {
2318   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2319 }
2320 
2321 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2322 /// where the size in bytes of the directive is specified by Size and Label
2323 /// specifies the label.  This implicitly uses .set if it is available.
2324 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2325                                      unsigned Size,
2326                                      bool IsSectionRelative) const {
2327   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2328     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2329     if (Size > 4)
2330       OutStreamer->emitZeros(Size - 4);
2331     return;
2332   }
2333 
2334   // Emit Label+Offset (or just Label if Offset is zero)
2335   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2336   if (Offset)
2337     Expr = MCBinaryExpr::createAdd(
2338         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2339 
2340   OutStreamer->emitValue(Expr, Size);
2341 }
2342 
2343 //===----------------------------------------------------------------------===//
2344 
2345 // EmitAlignment - Emit an alignment directive to the specified power of
2346 // two boundary.  If a global value is specified, and if that global has
2347 // an explicit alignment requested, it will override the alignment request
2348 // if required for correctness.
2349 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2350   if (GV)
2351     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2352 
2353   if (Alignment == Align(1))
2354     return; // 1-byte aligned: no need to emit alignment.
2355 
2356   if (getCurrentSection()->getKind().isText())
2357     OutStreamer->emitCodeAlignment(Alignment.value());
2358   else
2359     OutStreamer->emitValueToAlignment(Alignment.value());
2360 }
2361 
2362 //===----------------------------------------------------------------------===//
2363 // Constant emission.
2364 //===----------------------------------------------------------------------===//
2365 
2366 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2367   MCContext &Ctx = OutContext;
2368 
2369   if (CV->isNullValue() || isa<UndefValue>(CV))
2370     return MCConstantExpr::create(0, Ctx);
2371 
2372   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2373     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2374 
2375   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2376     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2377 
2378   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2379     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2380 
2381   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2382     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2383 
2384   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2385   if (!CE) {
2386     llvm_unreachable("Unknown constant value to lower!");
2387   }
2388 
2389   switch (CE->getOpcode()) {
2390   case Instruction::AddrSpaceCast: {
2391     const Constant *Op = CE->getOperand(0);
2392     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2393     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2394     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2395       return lowerConstant(Op);
2396 
2397     // Fallthrough to error.
2398     LLVM_FALLTHROUGH;
2399   }
2400   default: {
2401     // If the code isn't optimized, there may be outstanding folding
2402     // opportunities. Attempt to fold the expression using DataLayout as a
2403     // last resort before giving up.
2404     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2405     if (C != CE)
2406       return lowerConstant(C);
2407 
2408     // Otherwise report the problem to the user.
2409     std::string S;
2410     raw_string_ostream OS(S);
2411     OS << "Unsupported expression in static initializer: ";
2412     CE->printAsOperand(OS, /*PrintType=*/false,
2413                    !MF ? nullptr : MF->getFunction().getParent());
2414     report_fatal_error(OS.str());
2415   }
2416   case Instruction::GetElementPtr: {
2417     // Generate a symbolic expression for the byte address
2418     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2419     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2420 
2421     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2422     if (!OffsetAI)
2423       return Base;
2424 
2425     int64_t Offset = OffsetAI.getSExtValue();
2426     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2427                                    Ctx);
2428   }
2429 
2430   case Instruction::Trunc:
2431     // We emit the value and depend on the assembler to truncate the generated
2432     // expression properly.  This is important for differences between
2433     // blockaddress labels.  Since the two labels are in the same function, it
2434     // is reasonable to treat their delta as a 32-bit value.
2435     LLVM_FALLTHROUGH;
2436   case Instruction::BitCast:
2437     return lowerConstant(CE->getOperand(0));
2438 
2439   case Instruction::IntToPtr: {
2440     const DataLayout &DL = getDataLayout();
2441 
2442     // Handle casts to pointers by changing them into casts to the appropriate
2443     // integer type.  This promotes constant folding and simplifies this code.
2444     Constant *Op = CE->getOperand(0);
2445     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2446                                       false/*ZExt*/);
2447     return lowerConstant(Op);
2448   }
2449 
2450   case Instruction::PtrToInt: {
2451     const DataLayout &DL = getDataLayout();
2452 
2453     // Support only foldable casts to/from pointers that can be eliminated by
2454     // changing the pointer to the appropriately sized integer type.
2455     Constant *Op = CE->getOperand(0);
2456     Type *Ty = CE->getType();
2457 
2458     const MCExpr *OpExpr = lowerConstant(Op);
2459 
2460     // We can emit the pointer value into this slot if the slot is an
2461     // integer slot equal to the size of the pointer.
2462     //
2463     // If the pointer is larger than the resultant integer, then
2464     // as with Trunc just depend on the assembler to truncate it.
2465     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2466         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2467       return OpExpr;
2468 
2469     // Otherwise the pointer is smaller than the resultant integer, mask off
2470     // the high bits so we are sure to get a proper truncation if the input is
2471     // a constant expr.
2472     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2473     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2474     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2475   }
2476 
2477   case Instruction::Sub: {
2478     GlobalValue *LHSGV;
2479     APInt LHSOffset;
2480     DSOLocalEquivalent *DSOEquiv;
2481     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2482                                    getDataLayout(), &DSOEquiv)) {
2483       GlobalValue *RHSGV;
2484       APInt RHSOffset;
2485       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2486                                      getDataLayout())) {
2487         const MCExpr *RelocExpr =
2488             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2489         if (!RelocExpr) {
2490           const MCExpr *LHSExpr =
2491               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2492           if (DSOEquiv &&
2493               getObjFileLowering().supportDSOLocalEquivalentLowering())
2494             LHSExpr =
2495                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2496           RelocExpr = MCBinaryExpr::createSub(
2497               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2498         }
2499         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2500         if (Addend != 0)
2501           RelocExpr = MCBinaryExpr::createAdd(
2502               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2503         return RelocExpr;
2504       }
2505     }
2506   }
2507   // else fallthrough
2508   LLVM_FALLTHROUGH;
2509 
2510   // The MC library also has a right-shift operator, but it isn't consistently
2511   // signed or unsigned between different targets.
2512   case Instruction::Add:
2513   case Instruction::Mul:
2514   case Instruction::SDiv:
2515   case Instruction::SRem:
2516   case Instruction::Shl:
2517   case Instruction::And:
2518   case Instruction::Or:
2519   case Instruction::Xor: {
2520     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2521     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2522     switch (CE->getOpcode()) {
2523     default: llvm_unreachable("Unknown binary operator constant cast expr");
2524     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2525     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2526     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2527     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2528     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2529     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2530     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2531     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2532     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2533     }
2534   }
2535   }
2536 }
2537 
2538 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2539                                    AsmPrinter &AP,
2540                                    const Constant *BaseCV = nullptr,
2541                                    uint64_t Offset = 0);
2542 
2543 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2544 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2545 
2546 /// isRepeatedByteSequence - Determine whether the given value is
2547 /// composed of a repeated sequence of identical bytes and return the
2548 /// byte value.  If it is not a repeated sequence, return -1.
2549 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2550   StringRef Data = V->getRawDataValues();
2551   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2552   char C = Data[0];
2553   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2554     if (Data[i] != C) return -1;
2555   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2556 }
2557 
2558 /// isRepeatedByteSequence - Determine whether the given value is
2559 /// composed of a repeated sequence of identical bytes and return the
2560 /// byte value.  If it is not a repeated sequence, return -1.
2561 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2562   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2563     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2564     assert(Size % 8 == 0);
2565 
2566     // Extend the element to take zero padding into account.
2567     APInt Value = CI->getValue().zextOrSelf(Size);
2568     if (!Value.isSplat(8))
2569       return -1;
2570 
2571     return Value.zextOrTrunc(8).getZExtValue();
2572   }
2573   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2574     // Make sure all array elements are sequences of the same repeated
2575     // byte.
2576     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2577     Constant *Op0 = CA->getOperand(0);
2578     int Byte = isRepeatedByteSequence(Op0, DL);
2579     if (Byte == -1)
2580       return -1;
2581 
2582     // All array elements must be equal.
2583     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2584       if (CA->getOperand(i) != Op0)
2585         return -1;
2586     return Byte;
2587   }
2588 
2589   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2590     return isRepeatedByteSequence(CDS);
2591 
2592   return -1;
2593 }
2594 
2595 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2596                                              const ConstantDataSequential *CDS,
2597                                              AsmPrinter &AP) {
2598   // See if we can aggregate this into a .fill, if so, emit it as such.
2599   int Value = isRepeatedByteSequence(CDS, DL);
2600   if (Value != -1) {
2601     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2602     // Don't emit a 1-byte object as a .fill.
2603     if (Bytes > 1)
2604       return AP.OutStreamer->emitFill(Bytes, Value);
2605   }
2606 
2607   // If this can be emitted with .ascii/.asciz, emit it as such.
2608   if (CDS->isString())
2609     return AP.OutStreamer->emitBytes(CDS->getAsString());
2610 
2611   // Otherwise, emit the values in successive locations.
2612   unsigned ElementByteSize = CDS->getElementByteSize();
2613   if (isa<IntegerType>(CDS->getElementType())) {
2614     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2615       if (AP.isVerbose())
2616         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2617                                                  CDS->getElementAsInteger(i));
2618       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2619                                    ElementByteSize);
2620     }
2621   } else {
2622     Type *ET = CDS->getElementType();
2623     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2624       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2625   }
2626 
2627   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2628   unsigned EmittedSize =
2629       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2630   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2631   if (unsigned Padding = Size - EmittedSize)
2632     AP.OutStreamer->emitZeros(Padding);
2633 }
2634 
2635 static void emitGlobalConstantArray(const DataLayout &DL,
2636                                     const ConstantArray *CA, AsmPrinter &AP,
2637                                     const Constant *BaseCV, uint64_t Offset) {
2638   // See if we can aggregate some values.  Make sure it can be
2639   // represented as a series of bytes of the constant value.
2640   int Value = isRepeatedByteSequence(CA, DL);
2641 
2642   if (Value != -1) {
2643     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2644     AP.OutStreamer->emitFill(Bytes, Value);
2645   }
2646   else {
2647     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2648       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2649       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2650     }
2651   }
2652 }
2653 
2654 static void emitGlobalConstantVector(const DataLayout &DL,
2655                                      const ConstantVector *CV, AsmPrinter &AP) {
2656   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2657     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2658 
2659   unsigned Size = DL.getTypeAllocSize(CV->getType());
2660   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2661                          CV->getType()->getNumElements();
2662   if (unsigned Padding = Size - EmittedSize)
2663     AP.OutStreamer->emitZeros(Padding);
2664 }
2665 
2666 static void emitGlobalConstantStruct(const DataLayout &DL,
2667                                      const ConstantStruct *CS, AsmPrinter &AP,
2668                                      const Constant *BaseCV, uint64_t Offset) {
2669   // Print the fields in successive locations. Pad to align if needed!
2670   unsigned Size = DL.getTypeAllocSize(CS->getType());
2671   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2672   uint64_t SizeSoFar = 0;
2673   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2674     const Constant *Field = CS->getOperand(i);
2675 
2676     // Print the actual field value.
2677     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2678 
2679     // Check if padding is needed and insert one or more 0s.
2680     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2681     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2682                         - Layout->getElementOffset(i)) - FieldSize;
2683     SizeSoFar += FieldSize + PadSize;
2684 
2685     // Insert padding - this may include padding to increase the size of the
2686     // current field up to the ABI size (if the struct is not packed) as well
2687     // as padding to ensure that the next field starts at the right offset.
2688     AP.OutStreamer->emitZeros(PadSize);
2689   }
2690   assert(SizeSoFar == Layout->getSizeInBytes() &&
2691          "Layout of constant struct may be incorrect!");
2692 }
2693 
2694 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2695   assert(ET && "Unknown float type");
2696   APInt API = APF.bitcastToAPInt();
2697 
2698   // First print a comment with what we think the original floating-point value
2699   // should have been.
2700   if (AP.isVerbose()) {
2701     SmallString<8> StrVal;
2702     APF.toString(StrVal);
2703     ET->print(AP.OutStreamer->GetCommentOS());
2704     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2705   }
2706 
2707   // Now iterate through the APInt chunks, emitting them in endian-correct
2708   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2709   // floats).
2710   unsigned NumBytes = API.getBitWidth() / 8;
2711   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2712   const uint64_t *p = API.getRawData();
2713 
2714   // PPC's long double has odd notions of endianness compared to how LLVM
2715   // handles it: p[0] goes first for *big* endian on PPC.
2716   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2717     int Chunk = API.getNumWords() - 1;
2718 
2719     if (TrailingBytes)
2720       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2721 
2722     for (; Chunk >= 0; --Chunk)
2723       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2724   } else {
2725     unsigned Chunk;
2726     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2727       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2728 
2729     if (TrailingBytes)
2730       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2731   }
2732 
2733   // Emit the tail padding for the long double.
2734   const DataLayout &DL = AP.getDataLayout();
2735   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2736 }
2737 
2738 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2739   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2740 }
2741 
2742 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2743   const DataLayout &DL = AP.getDataLayout();
2744   unsigned BitWidth = CI->getBitWidth();
2745 
2746   // Copy the value as we may massage the layout for constants whose bit width
2747   // is not a multiple of 64-bits.
2748   APInt Realigned(CI->getValue());
2749   uint64_t ExtraBits = 0;
2750   unsigned ExtraBitsSize = BitWidth & 63;
2751 
2752   if (ExtraBitsSize) {
2753     // The bit width of the data is not a multiple of 64-bits.
2754     // The extra bits are expected to be at the end of the chunk of the memory.
2755     // Little endian:
2756     // * Nothing to be done, just record the extra bits to emit.
2757     // Big endian:
2758     // * Record the extra bits to emit.
2759     // * Realign the raw data to emit the chunks of 64-bits.
2760     if (DL.isBigEndian()) {
2761       // Basically the structure of the raw data is a chunk of 64-bits cells:
2762       //    0        1         BitWidth / 64
2763       // [chunk1][chunk2] ... [chunkN].
2764       // The most significant chunk is chunkN and it should be emitted first.
2765       // However, due to the alignment issue chunkN contains useless bits.
2766       // Realign the chunks so that they contain only useful information:
2767       // ExtraBits     0       1       (BitWidth / 64) - 1
2768       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2769       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2770       ExtraBits = Realigned.getRawData()[0] &
2771         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2772       Realigned.lshrInPlace(ExtraBitsSize);
2773     } else
2774       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2775   }
2776 
2777   // We don't expect assemblers to support integer data directives
2778   // for more than 64 bits, so we emit the data in at most 64-bit
2779   // quantities at a time.
2780   const uint64_t *RawData = Realigned.getRawData();
2781   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2782     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2783     AP.OutStreamer->emitIntValue(Val, 8);
2784   }
2785 
2786   if (ExtraBitsSize) {
2787     // Emit the extra bits after the 64-bits chunks.
2788 
2789     // Emit a directive that fills the expected size.
2790     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2791     Size -= (BitWidth / 64) * 8;
2792     assert(Size && Size * 8 >= ExtraBitsSize &&
2793            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2794            == ExtraBits && "Directive too small for extra bits.");
2795     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2796   }
2797 }
2798 
2799 /// Transform a not absolute MCExpr containing a reference to a GOT
2800 /// equivalent global, by a target specific GOT pc relative access to the
2801 /// final symbol.
2802 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2803                                          const Constant *BaseCst,
2804                                          uint64_t Offset) {
2805   // The global @foo below illustrates a global that uses a got equivalent.
2806   //
2807   //  @bar = global i32 42
2808   //  @gotequiv = private unnamed_addr constant i32* @bar
2809   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2810   //                             i64 ptrtoint (i32* @foo to i64))
2811   //                        to i32)
2812   //
2813   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2814   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2815   // form:
2816   //
2817   //  foo = cstexpr, where
2818   //    cstexpr := <gotequiv> - "." + <cst>
2819   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2820   //
2821   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2822   //
2823   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2824   //    gotpcrelcst := <offset from @foo base> + <cst>
2825   MCValue MV;
2826   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2827     return;
2828   const MCSymbolRefExpr *SymA = MV.getSymA();
2829   if (!SymA)
2830     return;
2831 
2832   // Check that GOT equivalent symbol is cached.
2833   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2834   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2835     return;
2836 
2837   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2838   if (!BaseGV)
2839     return;
2840 
2841   // Check for a valid base symbol
2842   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2843   const MCSymbolRefExpr *SymB = MV.getSymB();
2844 
2845   if (!SymB || BaseSym != &SymB->getSymbol())
2846     return;
2847 
2848   // Make sure to match:
2849   //
2850   //    gotpcrelcst := <offset from @foo base> + <cst>
2851   //
2852   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2853   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2854   // if the target knows how to encode it.
2855   int64_t GOTPCRelCst = Offset + MV.getConstant();
2856   if (GOTPCRelCst < 0)
2857     return;
2858   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2859     return;
2860 
2861   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2862   //
2863   //  bar:
2864   //    .long 42
2865   //  gotequiv:
2866   //    .quad bar
2867   //  foo:
2868   //    .long gotequiv - "." + <cst>
2869   //
2870   // is replaced by the target specific equivalent to:
2871   //
2872   //  bar:
2873   //    .long 42
2874   //  foo:
2875   //    .long bar@GOTPCREL+<gotpcrelcst>
2876   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2877   const GlobalVariable *GV = Result.first;
2878   int NumUses = (int)Result.second;
2879   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2880   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2881   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2882       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2883 
2884   // Update GOT equivalent usage information
2885   --NumUses;
2886   if (NumUses >= 0)
2887     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2888 }
2889 
2890 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2891                                    AsmPrinter &AP, const Constant *BaseCV,
2892                                    uint64_t Offset) {
2893   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2894 
2895   // Globals with sub-elements such as combinations of arrays and structs
2896   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2897   // constant symbol base and the current position with BaseCV and Offset.
2898   if (!BaseCV && CV->hasOneUse())
2899     BaseCV = dyn_cast<Constant>(CV->user_back());
2900 
2901   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2902     return AP.OutStreamer->emitZeros(Size);
2903 
2904   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2905     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2906 
2907     if (StoreSize <= 8) {
2908       if (AP.isVerbose())
2909         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2910                                                  CI->getZExtValue());
2911       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2912     } else {
2913       emitGlobalConstantLargeInt(CI, AP);
2914     }
2915 
2916     // Emit tail padding if needed
2917     if (Size != StoreSize)
2918       AP.OutStreamer->emitZeros(Size - StoreSize);
2919 
2920     return;
2921   }
2922 
2923   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2924     return emitGlobalConstantFP(CFP, AP);
2925 
2926   if (isa<ConstantPointerNull>(CV)) {
2927     AP.OutStreamer->emitIntValue(0, Size);
2928     return;
2929   }
2930 
2931   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2932     return emitGlobalConstantDataSequential(DL, CDS, AP);
2933 
2934   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2935     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2936 
2937   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2938     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2939 
2940   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2941     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2942     // vectors).
2943     if (CE->getOpcode() == Instruction::BitCast)
2944       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2945 
2946     if (Size > 8) {
2947       // If the constant expression's size is greater than 64-bits, then we have
2948       // to emit the value in chunks. Try to constant fold the value and emit it
2949       // that way.
2950       Constant *New = ConstantFoldConstant(CE, DL);
2951       if (New != CE)
2952         return emitGlobalConstantImpl(DL, New, AP);
2953     }
2954   }
2955 
2956   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2957     return emitGlobalConstantVector(DL, V, AP);
2958 
2959   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2960   // thread the streamer with EmitValue.
2961   const MCExpr *ME = AP.lowerConstant(CV);
2962 
2963   // Since lowerConstant already folded and got rid of all IR pointer and
2964   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2965   // directly.
2966   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2967     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2968 
2969   AP.OutStreamer->emitValue(ME, Size);
2970 }
2971 
2972 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2973 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2974   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2975   if (Size)
2976     emitGlobalConstantImpl(DL, CV, *this);
2977   else if (MAI->hasSubsectionsViaSymbols()) {
2978     // If the global has zero size, emit a single byte so that two labels don't
2979     // look like they are at the same location.
2980     OutStreamer->emitIntValue(0, 1);
2981   }
2982 }
2983 
2984 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2985   // Target doesn't support this yet!
2986   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2987 }
2988 
2989 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2990   if (Offset > 0)
2991     OS << '+' << Offset;
2992   else if (Offset < 0)
2993     OS << Offset;
2994 }
2995 
2996 void AsmPrinter::emitNops(unsigned N) {
2997   MCInst Nop;
2998   MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2999   for (; N; --N)
3000     EmitToStreamer(*OutStreamer, Nop);
3001 }
3002 
3003 //===----------------------------------------------------------------------===//
3004 // Symbol Lowering Routines.
3005 //===----------------------------------------------------------------------===//
3006 
3007 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3008   return OutContext.createTempSymbol(Name, true);
3009 }
3010 
3011 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3012   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
3013 }
3014 
3015 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3016   return MMI->getAddrLabelSymbol(BB);
3017 }
3018 
3019 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3020 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3021   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3022     const MachineConstantPoolEntry &CPE =
3023         MF->getConstantPool()->getConstants()[CPID];
3024     if (!CPE.isMachineConstantPoolEntry()) {
3025       const DataLayout &DL = MF->getDataLayout();
3026       SectionKind Kind = CPE.getSectionKind(&DL);
3027       const Constant *C = CPE.Val.ConstVal;
3028       Align Alignment = CPE.Alignment;
3029       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3030               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3031                                                          Alignment))) {
3032         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3033           if (Sym->isUndefined())
3034             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3035           return Sym;
3036         }
3037       }
3038     }
3039   }
3040 
3041   const DataLayout &DL = getDataLayout();
3042   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3043                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3044                                       Twine(CPID));
3045 }
3046 
3047 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3048 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3049   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3050 }
3051 
3052 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3053 /// FIXME: privatize to AsmPrinter.
3054 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3055   const DataLayout &DL = getDataLayout();
3056   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3057                                       Twine(getFunctionNumber()) + "_" +
3058                                       Twine(UID) + "_set_" + Twine(MBBID));
3059 }
3060 
3061 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3062                                                    StringRef Suffix) const {
3063   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3064 }
3065 
3066 /// Return the MCSymbol for the specified ExternalSymbol.
3067 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3068   SmallString<60> NameStr;
3069   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3070   return OutContext.getOrCreateSymbol(NameStr);
3071 }
3072 
3073 /// PrintParentLoopComment - Print comments about parent loops of this one.
3074 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3075                                    unsigned FunctionNumber) {
3076   if (!Loop) return;
3077   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3078   OS.indent(Loop->getLoopDepth()*2)
3079     << "Parent Loop BB" << FunctionNumber << "_"
3080     << Loop->getHeader()->getNumber()
3081     << " Depth=" << Loop->getLoopDepth() << '\n';
3082 }
3083 
3084 /// PrintChildLoopComment - Print comments about child loops within
3085 /// the loop for this basic block, with nesting.
3086 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3087                                   unsigned FunctionNumber) {
3088   // Add child loop information
3089   for (const MachineLoop *CL : *Loop) {
3090     OS.indent(CL->getLoopDepth()*2)
3091       << "Child Loop BB" << FunctionNumber << "_"
3092       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3093       << '\n';
3094     PrintChildLoopComment(OS, CL, FunctionNumber);
3095   }
3096 }
3097 
3098 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3099 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3100                                        const MachineLoopInfo *LI,
3101                                        const AsmPrinter &AP) {
3102   // Add loop depth information
3103   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3104   if (!Loop) return;
3105 
3106   MachineBasicBlock *Header = Loop->getHeader();
3107   assert(Header && "No header for loop");
3108 
3109   // If this block is not a loop header, just print out what is the loop header
3110   // and return.
3111   if (Header != &MBB) {
3112     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3113                                Twine(AP.getFunctionNumber())+"_" +
3114                                Twine(Loop->getHeader()->getNumber())+
3115                                " Depth="+Twine(Loop->getLoopDepth()));
3116     return;
3117   }
3118 
3119   // Otherwise, it is a loop header.  Print out information about child and
3120   // parent loops.
3121   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3122 
3123   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3124 
3125   OS << "=>";
3126   OS.indent(Loop->getLoopDepth()*2-2);
3127 
3128   OS << "This ";
3129   if (Loop->isInnermost())
3130     OS << "Inner ";
3131   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3132 
3133   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3134 }
3135 
3136 /// emitBasicBlockStart - This method prints the label for the specified
3137 /// MachineBasicBlock, an alignment (if present) and a comment describing
3138 /// it if appropriate.
3139 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3140   // End the previous funclet and start a new one.
3141   if (MBB.isEHFuncletEntry()) {
3142     for (const HandlerInfo &HI : Handlers) {
3143       HI.Handler->endFunclet();
3144       HI.Handler->beginFunclet(MBB);
3145     }
3146   }
3147 
3148   // Emit an alignment directive for this block, if needed.
3149   const Align Alignment = MBB.getAlignment();
3150   if (Alignment != Align(1))
3151     emitAlignment(Alignment);
3152 
3153   // Switch to a new section if this basic block must begin a section. The
3154   // entry block is always placed in the function section and is handled
3155   // separately.
3156   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3157     OutStreamer->SwitchSection(
3158         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3159                                                             MBB, TM));
3160     CurrentSectionBeginSym = MBB.getSymbol();
3161   }
3162 
3163   // If the block has its address taken, emit any labels that were used to
3164   // reference the block.  It is possible that there is more than one label
3165   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3166   // the references were generated.
3167   if (MBB.hasAddressTaken()) {
3168     const BasicBlock *BB = MBB.getBasicBlock();
3169     if (isVerbose())
3170       OutStreamer->AddComment("Block address taken");
3171 
3172     // MBBs can have their address taken as part of CodeGen without having
3173     // their corresponding BB's address taken in IR
3174     if (BB->hasAddressTaken())
3175       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3176         OutStreamer->emitLabel(Sym);
3177   }
3178 
3179   // Print some verbose block comments.
3180   if (isVerbose()) {
3181     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3182       if (BB->hasName()) {
3183         BB->printAsOperand(OutStreamer->GetCommentOS(),
3184                            /*PrintType=*/false, BB->getModule());
3185         OutStreamer->GetCommentOS() << '\n';
3186       }
3187     }
3188 
3189     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3190     emitBasicBlockLoopComments(MBB, MLI, *this);
3191   }
3192 
3193   // Print the main label for the block.
3194   if (shouldEmitLabelForBasicBlock(MBB)) {
3195     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3196       OutStreamer->AddComment("Label of block must be emitted");
3197     OutStreamer->emitLabel(MBB.getSymbol());
3198   } else {
3199     if (isVerbose()) {
3200       // NOTE: Want this comment at start of line, don't emit with AddComment.
3201       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3202                                   false);
3203     }
3204   }
3205 
3206   if (MBB.isEHCatchretTarget() &&
3207       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3208     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3209   }
3210 
3211   // With BB sections, each basic block must handle CFI information on its own
3212   // if it begins a section (Entry block is handled separately by
3213   // AsmPrinterHandler::beginFunction).
3214   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3215     for (const HandlerInfo &HI : Handlers)
3216       HI.Handler->beginBasicBlock(MBB);
3217 }
3218 
3219 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3220   // Check if CFI information needs to be updated for this MBB with basic block
3221   // sections.
3222   if (MBB.isEndSection())
3223     for (const HandlerInfo &HI : Handlers)
3224       HI.Handler->endBasicBlock(MBB);
3225 }
3226 
3227 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3228                                 bool IsDefinition) const {
3229   MCSymbolAttr Attr = MCSA_Invalid;
3230 
3231   switch (Visibility) {
3232   default: break;
3233   case GlobalValue::HiddenVisibility:
3234     if (IsDefinition)
3235       Attr = MAI->getHiddenVisibilityAttr();
3236     else
3237       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3238     break;
3239   case GlobalValue::ProtectedVisibility:
3240     Attr = MAI->getProtectedVisibilityAttr();
3241     break;
3242   }
3243 
3244   if (Attr != MCSA_Invalid)
3245     OutStreamer->emitSymbolAttribute(Sym, Attr);
3246 }
3247 
3248 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3249     const MachineBasicBlock &MBB) const {
3250   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3251   // in the labels mode (option `=labels`) and every section beginning in the
3252   // sections mode (`=all` and `=list=`).
3253   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3254     return true;
3255   // A label is needed for any block with at least one predecessor (when that
3256   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3257   // entry, or if a label is forced).
3258   return !MBB.pred_empty() &&
3259          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3260           MBB.hasLabelMustBeEmitted());
3261 }
3262 
3263 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3264 /// exactly one predecessor and the control transfer mechanism between
3265 /// the predecessor and this block is a fall-through.
3266 bool AsmPrinter::
3267 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3268   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3269   // then nothing falls through to it.
3270   if (MBB->isEHPad() || MBB->pred_empty())
3271     return false;
3272 
3273   // If there isn't exactly one predecessor, it can't be a fall through.
3274   if (MBB->pred_size() > 1)
3275     return false;
3276 
3277   // The predecessor has to be immediately before this block.
3278   MachineBasicBlock *Pred = *MBB->pred_begin();
3279   if (!Pred->isLayoutSuccessor(MBB))
3280     return false;
3281 
3282   // If the block is completely empty, then it definitely does fall through.
3283   if (Pred->empty())
3284     return true;
3285 
3286   // Check the terminators in the previous blocks
3287   for (const auto &MI : Pred->terminators()) {
3288     // If it is not a simple branch, we are in a table somewhere.
3289     if (!MI.isBranch() || MI.isIndirectBranch())
3290       return false;
3291 
3292     // If we are the operands of one of the branches, this is not a fall
3293     // through. Note that targets with delay slots will usually bundle
3294     // terminators with the delay slot instruction.
3295     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3296       if (OP->isJTI())
3297         return false;
3298       if (OP->isMBB() && OP->getMBB() == MBB)
3299         return false;
3300     }
3301   }
3302 
3303   return true;
3304 }
3305 
3306 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3307   if (!S.usesMetadata())
3308     return nullptr;
3309 
3310   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3311   gcp_map_type::iterator GCPI = GCMap.find(&S);
3312   if (GCPI != GCMap.end())
3313     return GCPI->second.get();
3314 
3315   auto Name = S.getName();
3316 
3317   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3318        GCMetadataPrinterRegistry::entries())
3319     if (Name == GCMetaPrinter.getName()) {
3320       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3321       GMP->S = &S;
3322       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3323       return IterBool.first->second.get();
3324     }
3325 
3326   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3327 }
3328 
3329 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3330   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3331   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3332   bool NeedsDefault = false;
3333   if (MI->begin() == MI->end())
3334     // No GC strategy, use the default format.
3335     NeedsDefault = true;
3336   else
3337     for (auto &I : *MI) {
3338       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3339         if (MP->emitStackMaps(SM, *this))
3340           continue;
3341       // The strategy doesn't have printer or doesn't emit custom stack maps.
3342       // Use the default format.
3343       NeedsDefault = true;
3344     }
3345 
3346   if (NeedsDefault)
3347     SM.serializeToStackMapSection();
3348 }
3349 
3350 /// Pin vtable to this file.
3351 AsmPrinterHandler::~AsmPrinterHandler() = default;
3352 
3353 void AsmPrinterHandler::markFunctionEnd() {}
3354 
3355 // In the binary's "xray_instr_map" section, an array of these function entries
3356 // describes each instrumentation point.  When XRay patches your code, the index
3357 // into this table will be given to your handler as a patch point identifier.
3358 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3359   auto Kind8 = static_cast<uint8_t>(Kind);
3360   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3361   Out->emitBinaryData(
3362       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3363   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3364   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3365   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3366   Out->emitZeros(Padding);
3367 }
3368 
3369 void AsmPrinter::emitXRayTable() {
3370   if (Sleds.empty())
3371     return;
3372 
3373   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3374   const Function &F = MF->getFunction();
3375   MCSection *InstMap = nullptr;
3376   MCSection *FnSledIndex = nullptr;
3377   const Triple &TT = TM.getTargetTriple();
3378   // Use PC-relative addresses on all targets.
3379   if (TT.isOSBinFormatELF()) {
3380     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3381     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3382     StringRef GroupName;
3383     if (F.hasComdat()) {
3384       Flags |= ELF::SHF_GROUP;
3385       GroupName = F.getComdat()->getName();
3386     }
3387     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3388                                        Flags, 0, GroupName, F.hasComdat(),
3389                                        MCSection::NonUniqueID, LinkedToSym);
3390 
3391     if (!TM.Options.XRayOmitFunctionIndex)
3392       FnSledIndex = OutContext.getELFSection(
3393           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3394           GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
3395   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3396     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3397                                          SectionKind::getReadOnlyWithRel());
3398     if (!TM.Options.XRayOmitFunctionIndex)
3399       FnSledIndex = OutContext.getMachOSection(
3400           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3401   } else {
3402     llvm_unreachable("Unsupported target");
3403   }
3404 
3405   auto WordSizeBytes = MAI->getCodePointerSize();
3406 
3407   // Now we switch to the instrumentation map section. Because this is done
3408   // per-function, we are able to create an index entry that will represent the
3409   // range of sleds associated with a function.
3410   auto &Ctx = OutContext;
3411   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3412   OutStreamer->SwitchSection(InstMap);
3413   OutStreamer->emitLabel(SledsStart);
3414   for (const auto &Sled : Sleds) {
3415     MCSymbol *Dot = Ctx.createTempSymbol();
3416     OutStreamer->emitLabel(Dot);
3417     OutStreamer->emitValueImpl(
3418         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3419                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3420         WordSizeBytes);
3421     OutStreamer->emitValueImpl(
3422         MCBinaryExpr::createSub(
3423             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3424             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3425                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3426                                     Ctx),
3427             Ctx),
3428         WordSizeBytes);
3429     Sled.emit(WordSizeBytes, OutStreamer.get());
3430   }
3431   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3432   OutStreamer->emitLabel(SledsEnd);
3433 
3434   // We then emit a single entry in the index per function. We use the symbols
3435   // that bound the instrumentation map as the range for a specific function.
3436   // Each entry here will be 2 * word size aligned, as we're writing down two
3437   // pointers. This should work for both 32-bit and 64-bit platforms.
3438   if (FnSledIndex) {
3439     OutStreamer->SwitchSection(FnSledIndex);
3440     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3441     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3442     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3443     OutStreamer->SwitchSection(PrevSection);
3444   }
3445   Sleds.clear();
3446 }
3447 
3448 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3449                             SledKind Kind, uint8_t Version) {
3450   const Function &F = MI.getMF()->getFunction();
3451   auto Attr = F.getFnAttribute("function-instrument");
3452   bool LogArgs = F.hasFnAttribute("xray-log-args");
3453   bool AlwaysInstrument =
3454     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3455   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3456     Kind = SledKind::LOG_ARGS_ENTER;
3457   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3458                                        AlwaysInstrument, &F, Version});
3459 }
3460 
3461 void AsmPrinter::emitPatchableFunctionEntries() {
3462   const Function &F = MF->getFunction();
3463   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3464   (void)F.getFnAttribute("patchable-function-prefix")
3465       .getValueAsString()
3466       .getAsInteger(10, PatchableFunctionPrefix);
3467   (void)F.getFnAttribute("patchable-function-entry")
3468       .getValueAsString()
3469       .getAsInteger(10, PatchableFunctionEntry);
3470   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3471     return;
3472   const unsigned PointerSize = getPointerSize();
3473   if (TM.getTargetTriple().isOSBinFormatELF()) {
3474     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3475     const MCSymbolELF *LinkedToSym = nullptr;
3476     StringRef GroupName;
3477 
3478     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3479     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3480     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3481       Flags |= ELF::SHF_LINK_ORDER;
3482       if (F.hasComdat()) {
3483         Flags |= ELF::SHF_GROUP;
3484         GroupName = F.getComdat()->getName();
3485       }
3486       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3487     }
3488     OutStreamer->SwitchSection(OutContext.getELFSection(
3489         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3490         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
3491     emitAlignment(Align(PointerSize));
3492     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3493   }
3494 }
3495 
3496 uint16_t AsmPrinter::getDwarfVersion() const {
3497   return OutStreamer->getContext().getDwarfVersion();
3498 }
3499 
3500 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3501   OutStreamer->getContext().setDwarfVersion(Version);
3502 }
3503 
3504 bool AsmPrinter::isDwarf64() const {
3505   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3506 }
3507 
3508 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3509   return dwarf::getDwarfOffsetByteSize(
3510       OutStreamer->getContext().getDwarfFormat());
3511 }
3512 
3513 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3514   return dwarf::getUnitLengthFieldByteSize(
3515       OutStreamer->getContext().getDwarfFormat());
3516 }
3517