1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "AsmPrinterHandler.h"
16 #include "CodeViewDebug.h"
17 #include "DwarfDebug.h"
18 #include "DwarfException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/ObjectUtils.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/BinaryFormat/ELF.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetLoweringObjectFile.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSubtargetInfo.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Comdat.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GlobalAlias.h"
71 #include "llvm/IR/GlobalIFunc.h"
72 #include "llvm/IR/GlobalIndirectSymbol.h"
73 #include "llvm/IR/GlobalObject.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Mangler.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionELF.h"
92 #include "llvm/MC/MCSectionMachO.h"
93 #include "llvm/MC/MCStreamer.h"
94 #include "llvm/MC/MCSubtargetInfo.h"
95 #include "llvm/MC/MCSymbol.h"
96 #include "llvm/MC/MCSymbolELF.h"
97 #include "llvm/MC/MCTargetOptions.h"
98 #include "llvm/MC/MCValue.h"
99 #include "llvm/MC/SectionKind.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/Format.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/Path.h"
108 #include "llvm/Support/TargetRegistry.h"
109 #include "llvm/Support/Timer.h"
110 #include "llvm/Support/raw_ostream.h"
111 #include "llvm/Target/TargetMachine.h"
112 #include "llvm/Target/TargetOptions.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cinttypes>
116 #include <cstdint>
117 #include <iterator>
118 #include <limits>
119 #include <memory>
120 #include <string>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 
126 #define DEBUG_TYPE "asm-printer"
127 
128 static const char *const DWARFGroupName = "dwarf";
129 static const char *const DWARFGroupDescription = "DWARF Emission";
130 static const char *const DbgTimerName = "emit";
131 static const char *const DbgTimerDescription = "Debug Info Emission";
132 static const char *const EHTimerName = "write_exception";
133 static const char *const EHTimerDescription = "DWARF Exception Writer";
134 static const char *const CFGuardName = "Control Flow Guard";
135 static const char *const CFGuardDescription = "Control Flow Guard Tables";
136 static const char *const CodeViewLineTablesGroupName = "linetables";
137 static const char *const CodeViewLineTablesGroupDescription =
138   "CodeView Line Tables";
139 
140 STATISTIC(EmittedInsts, "Number of machine instrs printed");
141 
142 static cl::opt<bool>
143     PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
144                   cl::desc("Print 'sched: [latency:throughput]' in .s output"));
145 
146 char AsmPrinter::ID = 0;
147 
148 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
149 
150 static gcp_map_type &getGCMap(void *&P) {
151   if (!P)
152     P = new gcp_map_type();
153   return *(gcp_map_type*)P;
154 }
155 
156 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
157 /// value in log2 form.  This rounds up to the preferred alignment if possible
158 /// and legal.
159 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
160                                    unsigned InBits = 0) {
161   unsigned NumBits = 0;
162   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
163     NumBits = DL.getPreferredAlignmentLog(GVar);
164 
165   // If InBits is specified, round it to it.
166   if (InBits > NumBits)
167     NumBits = InBits;
168 
169   // If the GV has a specified alignment, take it into account.
170   if (GV->getAlignment() == 0)
171     return NumBits;
172 
173   unsigned GVAlign = Log2_32(GV->getAlignment());
174 
175   // If the GVAlign is larger than NumBits, or if we are required to obey
176   // NumBits because the GV has an assigned section, obey it.
177   if (GVAlign > NumBits || GV->hasSection())
178     NumBits = GVAlign;
179   return NumBits;
180 }
181 
182 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
183     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
184       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
185   VerboseAsm = OutStreamer->isVerboseAsm();
186 }
187 
188 AsmPrinter::~AsmPrinter() {
189   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
190 
191   if (GCMetadataPrinters) {
192     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
193 
194     delete &GCMap;
195     GCMetadataPrinters = nullptr;
196   }
197 }
198 
199 bool AsmPrinter::isPositionIndependent() const {
200   return TM.isPositionIndependent();
201 }
202 
203 /// getFunctionNumber - Return a unique ID for the current function.
204 unsigned AsmPrinter::getFunctionNumber() const {
205   return MF->getFunctionNumber();
206 }
207 
208 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
209   return *TM.getObjFileLowering();
210 }
211 
212 const DataLayout &AsmPrinter::getDataLayout() const {
213   return MMI->getModule()->getDataLayout();
214 }
215 
216 // Do not use the cached DataLayout because some client use it without a Module
217 // (llvm-dsymutil, llvm-dwarfdump).
218 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
219 
220 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
221   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
222   return MF->getSubtarget<MCSubtargetInfo>();
223 }
224 
225 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
226   S.EmitInstruction(Inst, getSubtargetInfo());
227 }
228 
229 /// getCurrentSection() - Return the current section we are emitting to.
230 const MCSection *AsmPrinter::getCurrentSection() const {
231   return OutStreamer->getCurrentSectionOnly();
232 }
233 
234 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
235   AU.setPreservesAll();
236   MachineFunctionPass::getAnalysisUsage(AU);
237   AU.addRequired<MachineModuleInfo>();
238   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
239   AU.addRequired<GCModuleInfo>();
240   AU.addRequired<MachineLoopInfo>();
241 }
242 
243 bool AsmPrinter::doInitialization(Module &M) {
244   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
245 
246   // Initialize TargetLoweringObjectFile.
247   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
248     .Initialize(OutContext, TM);
249 
250   OutStreamer->InitSections(false);
251 
252   // Emit the version-min deplyment target directive if needed.
253   //
254   // FIXME: If we end up with a collection of these sorts of Darwin-specific
255   // or ELF-specific things, it may make sense to have a platform helper class
256   // that will work with the target helper class. For now keep it here, as the
257   // alternative is duplicated code in each of the target asm printers that
258   // use the directive, where it would need the same conditionalization
259   // anyway.
260   const Triple &Target = TM.getTargetTriple();
261   OutStreamer->EmitVersionForTarget(Target);
262 
263   // Allow the target to emit any magic that it wants at the start of the file.
264   EmitStartOfAsmFile(M);
265 
266   // Very minimal debug info. It is ignored if we emit actual debug info. If we
267   // don't, this at least helps the user find where a global came from.
268   if (MAI->hasSingleParameterDotFile()) {
269     // .file "foo.c"
270     OutStreamer->EmitFileDirective(
271         llvm::sys::path::filename(M.getSourceFileName()));
272   }
273 
274   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
275   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
276   for (auto &I : *MI)
277     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
278       MP->beginAssembly(M, *MI, *this);
279 
280   // Emit module-level inline asm if it exists.
281   if (!M.getModuleInlineAsm().empty()) {
282     // We're at the module level. Construct MCSubtarget from the default CPU
283     // and target triple.
284     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
285         TM.getTargetTriple().str(), TM.getTargetCPU(),
286         TM.getTargetFeatureString()));
287     OutStreamer->AddComment("Start of file scope inline assembly");
288     OutStreamer->AddBlankLine();
289     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
290                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
291     OutStreamer->AddComment("End of file scope inline assembly");
292     OutStreamer->AddBlankLine();
293   }
294 
295   if (MAI->doesSupportDebugInformation()) {
296     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
297     if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() ||
298                          TM.getTargetTriple().isWindowsItaniumEnvironment())) {
299       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
300                                      DbgTimerName, DbgTimerDescription,
301                                      CodeViewLineTablesGroupName,
302                                      CodeViewLineTablesGroupDescription));
303     }
304     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
305       DD = new DwarfDebug(this, &M);
306       DD->beginModule();
307       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
308                                      DWARFGroupName, DWARFGroupDescription));
309     }
310   }
311 
312   switch (MAI->getExceptionHandlingType()) {
313   case ExceptionHandling::SjLj:
314   case ExceptionHandling::DwarfCFI:
315   case ExceptionHandling::ARM:
316     isCFIMoveForDebugging = true;
317     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
318       break;
319     for (auto &F: M.getFunctionList()) {
320       // If the module contains any function with unwind data,
321       // .eh_frame has to be emitted.
322       // Ignore functions that won't get emitted.
323       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
324         isCFIMoveForDebugging = false;
325         break;
326       }
327     }
328     break;
329   default:
330     isCFIMoveForDebugging = false;
331     break;
332   }
333 
334   EHStreamer *ES = nullptr;
335   switch (MAI->getExceptionHandlingType()) {
336   case ExceptionHandling::None:
337     break;
338   case ExceptionHandling::SjLj:
339   case ExceptionHandling::DwarfCFI:
340     ES = new DwarfCFIException(this);
341     break;
342   case ExceptionHandling::ARM:
343     ES = new ARMException(this);
344     break;
345   case ExceptionHandling::WinEH:
346     switch (MAI->getWinEHEncodingType()) {
347     default: llvm_unreachable("unsupported unwinding information encoding");
348     case WinEH::EncodingType::Invalid:
349       break;
350     case WinEH::EncodingType::X86:
351     case WinEH::EncodingType::Itanium:
352       ES = new WinException(this);
353       break;
354     }
355     break;
356   }
357   if (ES)
358     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
359                                    DWARFGroupName, DWARFGroupDescription));
360 
361   if (mdconst::extract_or_null<ConstantInt>(
362           MMI->getModule()->getModuleFlag("cfguard")))
363     Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName,
364                                    CFGuardDescription, DWARFGroupName,
365                                    DWARFGroupDescription));
366 
367   return false;
368 }
369 
370 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
371   if (!MAI.hasWeakDefCanBeHiddenDirective())
372     return false;
373 
374   return canBeOmittedFromSymbolTable(GV);
375 }
376 
377 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
378   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
379   switch (Linkage) {
380   case GlobalValue::CommonLinkage:
381   case GlobalValue::LinkOnceAnyLinkage:
382   case GlobalValue::LinkOnceODRLinkage:
383   case GlobalValue::WeakAnyLinkage:
384   case GlobalValue::WeakODRLinkage:
385     if (MAI->hasWeakDefDirective()) {
386       // .globl _foo
387       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
388 
389       if (!canBeHidden(GV, *MAI))
390         // .weak_definition _foo
391         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
392       else
393         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
394     } else if (MAI->hasLinkOnceDirective()) {
395       // .globl _foo
396       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
397       //NOTE: linkonce is handled by the section the symbol was assigned to.
398     } else {
399       // .weak _foo
400       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
401     }
402     return;
403   case GlobalValue::ExternalLinkage:
404     // If external, declare as a global symbol: .globl _foo
405     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
406     return;
407   case GlobalValue::PrivateLinkage:
408   case GlobalValue::InternalLinkage:
409     return;
410   case GlobalValue::AppendingLinkage:
411   case GlobalValue::AvailableExternallyLinkage:
412   case GlobalValue::ExternalWeakLinkage:
413     llvm_unreachable("Should never emit this");
414   }
415   llvm_unreachable("Unknown linkage type!");
416 }
417 
418 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
419                                    const GlobalValue *GV) const {
420   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
421 }
422 
423 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
424   return TM.getSymbol(GV);
425 }
426 
427 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
428 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
429   bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
430   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
431          "No emulated TLS variables in the common section");
432 
433   // Never emit TLS variable xyz in emulated TLS model.
434   // The initialization value is in __emutls_t.xyz instead of xyz.
435   if (IsEmuTLSVar)
436     return;
437 
438   if (GV->hasInitializer()) {
439     // Check to see if this is a special global used by LLVM, if so, emit it.
440     if (EmitSpecialLLVMGlobal(GV))
441       return;
442 
443     // Skip the emission of global equivalents. The symbol can be emitted later
444     // on by emitGlobalGOTEquivs in case it turns out to be needed.
445     if (GlobalGOTEquivs.count(getSymbol(GV)))
446       return;
447 
448     if (isVerbose()) {
449       // When printing the control variable __emutls_v.*,
450       // we don't need to print the original TLS variable name.
451       GV->printAsOperand(OutStreamer->GetCommentOS(),
452                      /*PrintType=*/false, GV->getParent());
453       OutStreamer->GetCommentOS() << '\n';
454     }
455   }
456 
457   MCSymbol *GVSym = getSymbol(GV);
458   MCSymbol *EmittedSym = GVSym;
459 
460   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
461   // attributes.
462   // GV's or GVSym's attributes will be used for the EmittedSym.
463   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
464 
465   if (!GV->hasInitializer())   // External globals require no extra code.
466     return;
467 
468   GVSym->redefineIfPossible();
469   if (GVSym->isDefined() || GVSym->isVariable())
470     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
471                        "' is already defined");
472 
473   if (MAI->hasDotTypeDotSizeDirective())
474     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
475 
476   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
477 
478   const DataLayout &DL = GV->getParent()->getDataLayout();
479   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
480 
481   // If the alignment is specified, we *must* obey it.  Overaligning a global
482   // with a specified alignment is a prompt way to break globals emitted to
483   // sections and expected to be contiguous (e.g. ObjC metadata).
484   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
485 
486   for (const HandlerInfo &HI : Handlers) {
487     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
488                        HI.TimerGroupName, HI.TimerGroupDescription,
489                        TimePassesIsEnabled);
490     HI.Handler->setSymbolSize(GVSym, Size);
491   }
492 
493   // Handle common symbols
494   if (GVKind.isCommon()) {
495     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
496     unsigned Align = 1 << AlignLog;
497     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
498       Align = 0;
499 
500     // .comm _foo, 42, 4
501     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
502     return;
503   }
504 
505   // Determine to which section this global should be emitted.
506   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
507 
508   // If we have a bss global going to a section that supports the
509   // zerofill directive, do so here.
510   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
511       TheSection->isVirtualSection()) {
512     if (Size == 0)
513       Size = 1; // zerofill of 0 bytes is undefined.
514     unsigned Align = 1 << AlignLog;
515     EmitLinkage(GV, GVSym);
516     // .zerofill __DATA, __bss, _foo, 400, 5
517     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
518     return;
519   }
520 
521   // If this is a BSS local symbol and we are emitting in the BSS
522   // section use .lcomm/.comm directive.
523   if (GVKind.isBSSLocal() &&
524       getObjFileLowering().getBSSSection() == TheSection) {
525     if (Size == 0)
526       Size = 1; // .comm Foo, 0 is undefined, avoid it.
527     unsigned Align = 1 << AlignLog;
528 
529     // Use .lcomm only if it supports user-specified alignment.
530     // Otherwise, while it would still be correct to use .lcomm in some
531     // cases (e.g. when Align == 1), the external assembler might enfore
532     // some -unknown- default alignment behavior, which could cause
533     // spurious differences between external and integrated assembler.
534     // Prefer to simply fall back to .local / .comm in this case.
535     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
536       // .lcomm _foo, 42
537       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
538       return;
539     }
540 
541     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
542       Align = 0;
543 
544     // .local _foo
545     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
546     // .comm _foo, 42, 4
547     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
548     return;
549   }
550 
551   // Handle thread local data for mach-o which requires us to output an
552   // additional structure of data and mangle the original symbol so that we
553   // can reference it later.
554   //
555   // TODO: This should become an "emit thread local global" method on TLOF.
556   // All of this macho specific stuff should be sunk down into TLOFMachO and
557   // stuff like "TLSExtraDataSection" should no longer be part of the parent
558   // TLOF class.  This will also make it more obvious that stuff like
559   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
560   // specific code.
561   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
562     // Emit the .tbss symbol
563     MCSymbol *MangSym =
564         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
565 
566     if (GVKind.isThreadBSS()) {
567       TheSection = getObjFileLowering().getTLSBSSSection();
568       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
569     } else if (GVKind.isThreadData()) {
570       OutStreamer->SwitchSection(TheSection);
571 
572       EmitAlignment(AlignLog, GV);
573       OutStreamer->EmitLabel(MangSym);
574 
575       EmitGlobalConstant(GV->getParent()->getDataLayout(),
576                          GV->getInitializer());
577     }
578 
579     OutStreamer->AddBlankLine();
580 
581     // Emit the variable struct for the runtime.
582     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
583 
584     OutStreamer->SwitchSection(TLVSect);
585     // Emit the linkage here.
586     EmitLinkage(GV, GVSym);
587     OutStreamer->EmitLabel(GVSym);
588 
589     // Three pointers in size:
590     //   - __tlv_bootstrap - used to make sure support exists
591     //   - spare pointer, used when mapped by the runtime
592     //   - pointer to mangled symbol above with initializer
593     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
594     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
595                                 PtrSize);
596     OutStreamer->EmitIntValue(0, PtrSize);
597     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
598 
599     OutStreamer->AddBlankLine();
600     return;
601   }
602 
603   MCSymbol *EmittedInitSym = GVSym;
604 
605   OutStreamer->SwitchSection(TheSection);
606 
607   EmitLinkage(GV, EmittedInitSym);
608   EmitAlignment(AlignLog, GV);
609 
610   OutStreamer->EmitLabel(EmittedInitSym);
611 
612   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
613 
614   if (MAI->hasDotTypeDotSizeDirective())
615     // .size foo, 42
616     OutStreamer->emitELFSize(EmittedInitSym,
617                              MCConstantExpr::create(Size, OutContext));
618 
619   OutStreamer->AddBlankLine();
620 }
621 
622 /// Emit the directive and value for debug thread local expression
623 ///
624 /// \p Value - The value to emit.
625 /// \p Size - The size of the integer (in bytes) to emit.
626 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
627                                       unsigned Size) const {
628   OutStreamer->EmitValue(Value, Size);
629 }
630 
631 /// EmitFunctionHeader - This method emits the header for the current
632 /// function.
633 void AsmPrinter::EmitFunctionHeader() {
634   const Function &F = MF->getFunction();
635 
636   if (isVerbose())
637     OutStreamer->GetCommentOS()
638         << "-- Begin function "
639         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
640 
641   // Print out constants referenced by the function
642   EmitConstantPool();
643 
644   // Print the 'header' of function.
645   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
646   EmitVisibility(CurrentFnSym, F.getVisibility());
647 
648   EmitLinkage(&F, CurrentFnSym);
649   if (MAI->hasFunctionAlignment())
650     EmitAlignment(MF->getAlignment(), &F);
651 
652   if (MAI->hasDotTypeDotSizeDirective())
653     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
654 
655   if (isVerbose()) {
656     F.printAsOperand(OutStreamer->GetCommentOS(),
657                    /*PrintType=*/false, F.getParent());
658     OutStreamer->GetCommentOS() << '\n';
659   }
660 
661   // Emit the prefix data.
662   if (F.hasPrefixData()) {
663     if (MAI->hasSubsectionsViaSymbols()) {
664       // Preserving prefix data on platforms which use subsections-via-symbols
665       // is a bit tricky. Here we introduce a symbol for the prefix data
666       // and use the .alt_entry attribute to mark the function's real entry point
667       // as an alternative entry point to the prefix-data symbol.
668       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
669       OutStreamer->EmitLabel(PrefixSym);
670 
671       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
672 
673       // Emit an .alt_entry directive for the actual function symbol.
674       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
675     } else {
676       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
677     }
678   }
679 
680   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
681   // do their wild and crazy things as required.
682   EmitFunctionEntryLabel();
683 
684   // If the function had address-taken blocks that got deleted, then we have
685   // references to the dangling symbols.  Emit them at the start of the function
686   // so that we don't get references to undefined symbols.
687   std::vector<MCSymbol*> DeadBlockSyms;
688   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
689   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
690     OutStreamer->AddComment("Address taken block that was later removed");
691     OutStreamer->EmitLabel(DeadBlockSyms[i]);
692   }
693 
694   if (CurrentFnBegin) {
695     if (MAI->useAssignmentForEHBegin()) {
696       MCSymbol *CurPos = OutContext.createTempSymbol();
697       OutStreamer->EmitLabel(CurPos);
698       OutStreamer->EmitAssignment(CurrentFnBegin,
699                                  MCSymbolRefExpr::create(CurPos, OutContext));
700     } else {
701       OutStreamer->EmitLabel(CurrentFnBegin);
702     }
703   }
704 
705   // Emit pre-function debug and/or EH information.
706   for (const HandlerInfo &HI : Handlers) {
707     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
708                        HI.TimerGroupDescription, TimePassesIsEnabled);
709     HI.Handler->beginFunction(MF);
710   }
711 
712   // Emit the prologue data.
713   if (F.hasPrologueData())
714     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
715 }
716 
717 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
718 /// function.  This can be overridden by targets as required to do custom stuff.
719 void AsmPrinter::EmitFunctionEntryLabel() {
720   CurrentFnSym->redefineIfPossible();
721 
722   // The function label could have already been emitted if two symbols end up
723   // conflicting due to asm renaming.  Detect this and emit an error.
724   if (CurrentFnSym->isVariable())
725     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
726                        "' is a protected alias");
727   if (CurrentFnSym->isDefined())
728     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
729                        "' label emitted multiple times to assembly file");
730 
731   return OutStreamer->EmitLabel(CurrentFnSym);
732 }
733 
734 /// emitComments - Pretty-print comments for instructions.
735 /// It returns true iff the sched comment was emitted.
736 ///   Otherwise it returns false.
737 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
738                          AsmPrinter *AP) {
739   const MachineFunction *MF = MI.getMF();
740   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
741 
742   // Check for spills and reloads
743   int FI;
744 
745   const MachineFrameInfo &MFI = MF->getFrameInfo();
746   bool Commented = false;
747 
748   // We assume a single instruction only has a spill or reload, not
749   // both.
750   const MachineMemOperand *MMO;
751   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
752     if (MFI.isSpillSlotObjectIndex(FI)) {
753       MMO = *MI.memoperands_begin();
754       CommentOS << MMO->getSize() << "-byte Reload";
755       Commented = true;
756     }
757   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
758     if (MFI.isSpillSlotObjectIndex(FI)) {
759       CommentOS << MMO->getSize() << "-byte Folded Reload";
760       Commented = true;
761     }
762   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
763     if (MFI.isSpillSlotObjectIndex(FI)) {
764       MMO = *MI.memoperands_begin();
765       CommentOS << MMO->getSize() << "-byte Spill";
766       Commented = true;
767     }
768   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
769     if (MFI.isSpillSlotObjectIndex(FI)) {
770       CommentOS << MMO->getSize() << "-byte Folded Spill";
771       Commented = true;
772     }
773   }
774 
775   // Check for spill-induced copies
776   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
777     Commented = true;
778     CommentOS << " Reload Reuse";
779   }
780 
781   if (Commented) {
782     if (AP->EnablePrintSchedInfo) {
783       // If any comment was added above and we need sched info comment then add
784       // this new comment just after the above comment w/o "\n" between them.
785       CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
786       return true;
787     }
788     CommentOS << "\n";
789   }
790   return false;
791 }
792 
793 /// emitImplicitDef - This method emits the specified machine instruction
794 /// that is an implicit def.
795 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
796   unsigned RegNo = MI->getOperand(0).getReg();
797 
798   SmallString<128> Str;
799   raw_svector_ostream OS(Str);
800   OS << "implicit-def: "
801      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
802 
803   OutStreamer->AddComment(OS.str());
804   OutStreamer->AddBlankLine();
805 }
806 
807 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
808   std::string Str;
809   raw_string_ostream OS(Str);
810   OS << "kill:";
811   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
812     const MachineOperand &Op = MI->getOperand(i);
813     assert(Op.isReg() && "KILL instruction must have only register operands");
814     OS << ' ' << (Op.isDef() ? "def " : "killed ")
815        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
816   }
817   AP.OutStreamer->AddComment(OS.str());
818   AP.OutStreamer->AddBlankLine();
819 }
820 
821 /// emitDebugValueComment - This method handles the target-independent form
822 /// of DBG_VALUE, returning true if it was able to do so.  A false return
823 /// means the target will need to handle MI in EmitInstruction.
824 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
825   // This code handles only the 4-operand target-independent form.
826   if (MI->getNumOperands() != 4)
827     return false;
828 
829   SmallString<128> Str;
830   raw_svector_ostream OS(Str);
831   OS << "DEBUG_VALUE: ";
832 
833   const DILocalVariable *V = MI->getDebugVariable();
834   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
835     StringRef Name = SP->getName();
836     if (!Name.empty())
837       OS << Name << ":";
838   }
839   OS << V->getName();
840   OS << " <- ";
841 
842   // The second operand is only an offset if it's an immediate.
843   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
844   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
845   const DIExpression *Expr = MI->getDebugExpression();
846   if (Expr->getNumElements()) {
847     OS << '[';
848     bool NeedSep = false;
849     for (auto Op : Expr->expr_ops()) {
850       if (NeedSep)
851         OS << ", ";
852       else
853         NeedSep = true;
854       OS << dwarf::OperationEncodingString(Op.getOp());
855       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
856         OS << ' ' << Op.getArg(I);
857     }
858     OS << "] ";
859   }
860 
861   // Register or immediate value. Register 0 means undef.
862   if (MI->getOperand(0).isFPImm()) {
863     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
864     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
865       OS << (double)APF.convertToFloat();
866     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
867       OS << APF.convertToDouble();
868     } else {
869       // There is no good way to print long double.  Convert a copy to
870       // double.  Ah well, it's only a comment.
871       bool ignored;
872       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
873                   &ignored);
874       OS << "(long double) " << APF.convertToDouble();
875     }
876   } else if (MI->getOperand(0).isImm()) {
877     OS << MI->getOperand(0).getImm();
878   } else if (MI->getOperand(0).isCImm()) {
879     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
880   } else {
881     unsigned Reg;
882     if (MI->getOperand(0).isReg()) {
883       Reg = MI->getOperand(0).getReg();
884     } else {
885       assert(MI->getOperand(0).isFI() && "Unknown operand type");
886       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
887       Offset += TFI->getFrameIndexReference(*AP.MF,
888                                             MI->getOperand(0).getIndex(), Reg);
889       MemLoc = true;
890     }
891     if (Reg == 0) {
892       // Suppress offset, it is not meaningful here.
893       OS << "undef";
894       // NOTE: Want this comment at start of line, don't emit with AddComment.
895       AP.OutStreamer->emitRawComment(OS.str());
896       return true;
897     }
898     if (MemLoc)
899       OS << '[';
900     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
901   }
902 
903   if (MemLoc)
904     OS << '+' << Offset << ']';
905 
906   // NOTE: Want this comment at start of line, don't emit with AddComment.
907   AP.OutStreamer->emitRawComment(OS.str());
908   return true;
909 }
910 
911 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
912   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
913       MF->getFunction().needsUnwindTableEntry())
914     return CFI_M_EH;
915 
916   if (MMI->hasDebugInfo())
917     return CFI_M_Debug;
918 
919   return CFI_M_None;
920 }
921 
922 bool AsmPrinter::needsSEHMoves() {
923   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
924 }
925 
926 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
927   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
928   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
929       ExceptionHandlingType != ExceptionHandling::ARM)
930     return;
931 
932   if (needsCFIMoves() == CFI_M_None)
933     return;
934 
935   // If there is no "real" instruction following this CFI instruction, skip
936   // emitting it; it would be beyond the end of the function's FDE range.
937   auto *MBB = MI.getParent();
938   auto I = std::next(MI.getIterator());
939   while (I != MBB->end() && I->isTransient())
940     ++I;
941   if (I == MBB->instr_end() &&
942       MBB->getReverseIterator() == MBB->getParent()->rbegin())
943     return;
944 
945   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
946   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
947   const MCCFIInstruction &CFI = Instrs[CFIIndex];
948   emitCFIInstruction(CFI);
949 }
950 
951 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
952   // The operands are the MCSymbol and the frame offset of the allocation.
953   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
954   int FrameOffset = MI.getOperand(1).getImm();
955 
956   // Emit a symbol assignment.
957   OutStreamer->EmitAssignment(FrameAllocSym,
958                              MCConstantExpr::create(FrameOffset, OutContext));
959 }
960 
961 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
962   if (!MF.getTarget().Options.EmitStackSizeSection)
963     return;
964 
965   MCSection *StackSizeSection = getObjFileLowering().getStackSizesSection();
966   if (!StackSizeSection)
967     return;
968 
969   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
970   // Don't emit functions with dynamic stack allocations.
971   if (FrameInfo.hasVarSizedObjects())
972     return;
973 
974   OutStreamer->PushSection();
975   OutStreamer->SwitchSection(StackSizeSection);
976 
977   const MCSymbol *FunctionSymbol = getSymbol(&MF.getFunction());
978   uint64_t StackSize = FrameInfo.getStackSize();
979   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getPointerSize());
980   OutStreamer->EmitULEB128IntValue(StackSize);
981 
982   OutStreamer->PopSection();
983 }
984 
985 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
986                                            MachineModuleInfo *MMI) {
987   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
988     return true;
989 
990   // We might emit an EH table that uses function begin and end labels even if
991   // we don't have any landingpads.
992   if (!MF.getFunction().hasPersonalityFn())
993     return false;
994   return !isNoOpWithoutInvoke(
995       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
996 }
997 
998 /// EmitFunctionBody - This method emits the body and trailer for a
999 /// function.
1000 void AsmPrinter::EmitFunctionBody() {
1001   EmitFunctionHeader();
1002 
1003   // Emit target-specific gunk before the function body.
1004   EmitFunctionBodyStart();
1005 
1006   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1007 
1008   // Print out code for the function.
1009   bool HasAnyRealCode = false;
1010   int NumInstsInFunction = 0;
1011   for (auto &MBB : *MF) {
1012     // Print a label for the basic block.
1013     EmitBasicBlockStart(MBB);
1014     for (auto &MI : MBB) {
1015       // Print the assembly for the instruction.
1016       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1017           !MI.isDebugValue()) {
1018         HasAnyRealCode = true;
1019         ++NumInstsInFunction;
1020       }
1021 
1022       if (ShouldPrintDebugScopes) {
1023         for (const HandlerInfo &HI : Handlers) {
1024           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1025                              HI.TimerGroupName, HI.TimerGroupDescription,
1026                              TimePassesIsEnabled);
1027           HI.Handler->beginInstruction(&MI);
1028         }
1029       }
1030 
1031       if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) {
1032         MachineInstr *MIP = const_cast<MachineInstr *>(&MI);
1033         MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment);
1034       }
1035 
1036       switch (MI.getOpcode()) {
1037       case TargetOpcode::CFI_INSTRUCTION:
1038         emitCFIInstruction(MI);
1039         break;
1040       case TargetOpcode::LOCAL_ESCAPE:
1041         emitFrameAlloc(MI);
1042         break;
1043       case TargetOpcode::EH_LABEL:
1044       case TargetOpcode::GC_LABEL:
1045         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1046         break;
1047       case TargetOpcode::INLINEASM:
1048         EmitInlineAsm(&MI);
1049         break;
1050       case TargetOpcode::DBG_VALUE:
1051         if (isVerbose()) {
1052           if (!emitDebugValueComment(&MI, *this))
1053             EmitInstruction(&MI);
1054         }
1055         break;
1056       case TargetOpcode::IMPLICIT_DEF:
1057         if (isVerbose()) emitImplicitDef(&MI);
1058         break;
1059       case TargetOpcode::KILL:
1060         if (isVerbose()) emitKill(&MI, *this);
1061         break;
1062       default:
1063         EmitInstruction(&MI);
1064         break;
1065       }
1066 
1067       if (ShouldPrintDebugScopes) {
1068         for (const HandlerInfo &HI : Handlers) {
1069           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1070                              HI.TimerGroupName, HI.TimerGroupDescription,
1071                              TimePassesIsEnabled);
1072           HI.Handler->endInstruction();
1073         }
1074       }
1075     }
1076 
1077     EmitBasicBlockEnd(MBB);
1078   }
1079 
1080   EmittedInsts += NumInstsInFunction;
1081   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1082                                       MF->getFunction().getSubprogram(),
1083                                       &MF->front());
1084   R << ore::NV("NumInstructions", NumInstsInFunction)
1085     << " instructions in function";
1086   ORE->emit(R);
1087 
1088   // If the function is empty and the object file uses .subsections_via_symbols,
1089   // then we need to emit *something* to the function body to prevent the
1090   // labels from collapsing together.  Just emit a noop.
1091   // Similarly, don't emit empty functions on Windows either. It can lead to
1092   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1093   // after linking, causing the kernel not to load the binary:
1094   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1095   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1096   const Triple &TT = TM.getTargetTriple();
1097   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1098                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1099     MCInst Noop;
1100     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1101 
1102     // Targets can opt-out of emitting the noop here by leaving the opcode
1103     // unspecified.
1104     if (Noop.getOpcode()) {
1105       OutStreamer->AddComment("avoids zero-length function");
1106       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1107     }
1108   }
1109 
1110   const Function &F = MF->getFunction();
1111   for (const auto &BB : F) {
1112     if (!BB.hasAddressTaken())
1113       continue;
1114     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1115     if (Sym->isDefined())
1116       continue;
1117     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1118     OutStreamer->EmitLabel(Sym);
1119   }
1120 
1121   // Emit target-specific gunk after the function body.
1122   EmitFunctionBodyEnd();
1123 
1124   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1125       MAI->hasDotTypeDotSizeDirective()) {
1126     // Create a symbol for the end of function.
1127     CurrentFnEnd = createTempSymbol("func_end");
1128     OutStreamer->EmitLabel(CurrentFnEnd);
1129   }
1130 
1131   // If the target wants a .size directive for the size of the function, emit
1132   // it.
1133   if (MAI->hasDotTypeDotSizeDirective()) {
1134     // We can get the size as difference between the function label and the
1135     // temp label.
1136     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1137         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1138         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1139     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1140   }
1141 
1142   for (const HandlerInfo &HI : Handlers) {
1143     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1144                        HI.TimerGroupDescription, TimePassesIsEnabled);
1145     HI.Handler->markFunctionEnd();
1146   }
1147 
1148   // Print out jump tables referenced by the function.
1149   EmitJumpTableInfo();
1150 
1151   // Emit post-function debug and/or EH information.
1152   for (const HandlerInfo &HI : Handlers) {
1153     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1154                        HI.TimerGroupDescription, TimePassesIsEnabled);
1155     HI.Handler->endFunction(MF);
1156   }
1157 
1158   // Emit section containing stack size metadata.
1159   emitStackSizeSection(*MF);
1160 
1161   if (isVerbose())
1162     OutStreamer->GetCommentOS() << "-- End function\n";
1163 
1164   OutStreamer->AddBlankLine();
1165 }
1166 
1167 /// \brief Compute the number of Global Variables that uses a Constant.
1168 static unsigned getNumGlobalVariableUses(const Constant *C) {
1169   if (!C)
1170     return 0;
1171 
1172   if (isa<GlobalVariable>(C))
1173     return 1;
1174 
1175   unsigned NumUses = 0;
1176   for (auto *CU : C->users())
1177     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1178 
1179   return NumUses;
1180 }
1181 
1182 /// \brief Only consider global GOT equivalents if at least one user is a
1183 /// cstexpr inside an initializer of another global variables. Also, don't
1184 /// handle cstexpr inside instructions. During global variable emission,
1185 /// candidates are skipped and are emitted later in case at least one cstexpr
1186 /// isn't replaced by a PC relative GOT entry access.
1187 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1188                                      unsigned &NumGOTEquivUsers) {
1189   // Global GOT equivalents are unnamed private globals with a constant
1190   // pointer initializer to another global symbol. They must point to a
1191   // GlobalVariable or Function, i.e., as GlobalValue.
1192   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1193       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1194       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1195     return false;
1196 
1197   // To be a got equivalent, at least one of its users need to be a constant
1198   // expression used by another global variable.
1199   for (auto *U : GV->users())
1200     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1201 
1202   return NumGOTEquivUsers > 0;
1203 }
1204 
1205 /// \brief Unnamed constant global variables solely contaning a pointer to
1206 /// another globals variable is equivalent to a GOT table entry; it contains the
1207 /// the address of another symbol. Optimize it and replace accesses to these
1208 /// "GOT equivalents" by using the GOT entry for the final global instead.
1209 /// Compute GOT equivalent candidates among all global variables to avoid
1210 /// emitting them if possible later on, after it use is replaced by a GOT entry
1211 /// access.
1212 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1213   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1214     return;
1215 
1216   for (const auto &G : M.globals()) {
1217     unsigned NumGOTEquivUsers = 0;
1218     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1219       continue;
1220 
1221     const MCSymbol *GOTEquivSym = getSymbol(&G);
1222     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1223   }
1224 }
1225 
1226 /// \brief Constant expressions using GOT equivalent globals may not be eligible
1227 /// for PC relative GOT entry conversion, in such cases we need to emit such
1228 /// globals we previously omitted in EmitGlobalVariable.
1229 void AsmPrinter::emitGlobalGOTEquivs() {
1230   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1231     return;
1232 
1233   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1234   for (auto &I : GlobalGOTEquivs) {
1235     const GlobalVariable *GV = I.second.first;
1236     unsigned Cnt = I.second.second;
1237     if (Cnt)
1238       FailedCandidates.push_back(GV);
1239   }
1240   GlobalGOTEquivs.clear();
1241 
1242   for (auto *GV : FailedCandidates)
1243     EmitGlobalVariable(GV);
1244 }
1245 
1246 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1247                                           const GlobalIndirectSymbol& GIS) {
1248   MCSymbol *Name = getSymbol(&GIS);
1249 
1250   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1251     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1252   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1253     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1254   else
1255     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1256 
1257   // Set the symbol type to function if the alias has a function type.
1258   // This affects codegen when the aliasee is not a function.
1259   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1260     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1261     if (isa<GlobalIFunc>(GIS))
1262       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1263   }
1264 
1265   EmitVisibility(Name, GIS.getVisibility());
1266 
1267   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1268 
1269   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1270     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1271 
1272   // Emit the directives as assignments aka .set:
1273   OutStreamer->EmitAssignment(Name, Expr);
1274 
1275   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1276     // If the aliasee does not correspond to a symbol in the output, i.e. the
1277     // alias is not of an object or the aliased object is private, then set the
1278     // size of the alias symbol from the type of the alias. We don't do this in
1279     // other situations as the alias and aliasee having differing types but same
1280     // size may be intentional.
1281     const GlobalObject *BaseObject = GA->getBaseObject();
1282     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1283         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1284       const DataLayout &DL = M.getDataLayout();
1285       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1286       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1287     }
1288   }
1289 }
1290 
1291 bool AsmPrinter::doFinalization(Module &M) {
1292   // Set the MachineFunction to nullptr so that we can catch attempted
1293   // accesses to MF specific features at the module level and so that
1294   // we can conditionalize accesses based on whether or not it is nullptr.
1295   MF = nullptr;
1296 
1297   // Gather all GOT equivalent globals in the module. We really need two
1298   // passes over the globals: one to compute and another to avoid its emission
1299   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1300   // where the got equivalent shows up before its use.
1301   computeGlobalGOTEquivs(M);
1302 
1303   // Emit global variables.
1304   for (const auto &G : M.globals())
1305     EmitGlobalVariable(&G);
1306 
1307   // Emit remaining GOT equivalent globals.
1308   emitGlobalGOTEquivs();
1309 
1310   // Emit visibility info for declarations
1311   for (const Function &F : M) {
1312     if (!F.isDeclarationForLinker())
1313       continue;
1314     GlobalValue::VisibilityTypes V = F.getVisibility();
1315     if (V == GlobalValue::DefaultVisibility)
1316       continue;
1317 
1318     MCSymbol *Name = getSymbol(&F);
1319     EmitVisibility(Name, V, false);
1320   }
1321 
1322   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1323 
1324   TLOF.emitModuleMetadata(*OutStreamer, M, TM);
1325 
1326   if (TM.getTargetTriple().isOSBinFormatELF()) {
1327     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1328 
1329     // Output stubs for external and common global variables.
1330     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1331     if (!Stubs.empty()) {
1332       OutStreamer->SwitchSection(TLOF.getDataSection());
1333       const DataLayout &DL = M.getDataLayout();
1334 
1335       for (const auto &Stub : Stubs) {
1336         OutStreamer->EmitLabel(Stub.first);
1337         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1338                                      DL.getPointerSize());
1339       }
1340     }
1341   }
1342 
1343   // Finalize debug and EH information.
1344   for (const HandlerInfo &HI : Handlers) {
1345     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1346                        HI.TimerGroupDescription, TimePassesIsEnabled);
1347     HI.Handler->endModule();
1348     delete HI.Handler;
1349   }
1350   Handlers.clear();
1351   DD = nullptr;
1352 
1353   // If the target wants to know about weak references, print them all.
1354   if (MAI->getWeakRefDirective()) {
1355     // FIXME: This is not lazy, it would be nice to only print weak references
1356     // to stuff that is actually used.  Note that doing so would require targets
1357     // to notice uses in operands (due to constant exprs etc).  This should
1358     // happen with the MC stuff eventually.
1359 
1360     // Print out module-level global objects here.
1361     for (const auto &GO : M.global_objects()) {
1362       if (!GO.hasExternalWeakLinkage())
1363         continue;
1364       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1365     }
1366   }
1367 
1368   OutStreamer->AddBlankLine();
1369 
1370   // Print aliases in topological order, that is, for each alias a = b,
1371   // b must be printed before a.
1372   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1373   // such an order to generate correct TOC information.
1374   SmallVector<const GlobalAlias *, 16> AliasStack;
1375   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1376   for (const auto &Alias : M.aliases()) {
1377     for (const GlobalAlias *Cur = &Alias; Cur;
1378          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1379       if (!AliasVisited.insert(Cur).second)
1380         break;
1381       AliasStack.push_back(Cur);
1382     }
1383     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1384       emitGlobalIndirectSymbol(M, *AncestorAlias);
1385     AliasStack.clear();
1386   }
1387   for (const auto &IFunc : M.ifuncs())
1388     emitGlobalIndirectSymbol(M, IFunc);
1389 
1390   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1391   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1392   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1393     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1394       MP->finishAssembly(M, *MI, *this);
1395 
1396   // Emit llvm.ident metadata in an '.ident' directive.
1397   EmitModuleIdents(M);
1398 
1399   // Emit __morestack address if needed for indirect calls.
1400   if (MMI->usesMorestackAddr()) {
1401     unsigned Align = 1;
1402     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1403         getDataLayout(), SectionKind::getReadOnly(),
1404         /*C=*/nullptr, Align);
1405     OutStreamer->SwitchSection(ReadOnlySection);
1406 
1407     MCSymbol *AddrSymbol =
1408         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1409     OutStreamer->EmitLabel(AddrSymbol);
1410 
1411     unsigned PtrSize = MAI->getCodePointerSize();
1412     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1413                                  PtrSize);
1414   }
1415 
1416   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1417   // split-stack is used.
1418   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1419     OutStreamer->SwitchSection(
1420         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1421     if (MMI->hasNosplitStack())
1422       OutStreamer->SwitchSection(
1423           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1424   }
1425 
1426   // If we don't have any trampolines, then we don't require stack memory
1427   // to be executable. Some targets have a directive to declare this.
1428   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1429   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1430     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1431       OutStreamer->SwitchSection(S);
1432 
1433   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1434     // Emit /EXPORT: flags for each exported global as necessary.
1435     const auto &TLOF = getObjFileLowering();
1436     std::string Flags;
1437 
1438     for (const GlobalValue &GV : M.global_values()) {
1439       raw_string_ostream OS(Flags);
1440       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1441       OS.flush();
1442       if (!Flags.empty()) {
1443         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1444         OutStreamer->EmitBytes(Flags);
1445       }
1446       Flags.clear();
1447     }
1448 
1449     // Emit /INCLUDE: flags for each used global as necessary.
1450     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1451       assert(LU->hasInitializer() &&
1452              "expected llvm.used to have an initializer");
1453       assert(isa<ArrayType>(LU->getValueType()) &&
1454              "expected llvm.used to be an array type");
1455       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1456         for (const Value *Op : A->operands()) {
1457           const auto *GV =
1458               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1459           // Global symbols with internal linkage are not visible to the linker,
1460           // and thus would cause an error when the linker tried to preserve the
1461           // symbol due to the `/include:` directive.
1462           if (GV->hasInternalLinkage())
1463             continue;
1464 
1465           raw_string_ostream OS(Flags);
1466           TLOF.emitLinkerFlagsForUsed(OS, GV);
1467           OS.flush();
1468 
1469           if (!Flags.empty()) {
1470             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1471             OutStreamer->EmitBytes(Flags);
1472           }
1473           Flags.clear();
1474         }
1475       }
1476     }
1477   }
1478 
1479   // Allow the target to emit any magic that it wants at the end of the file,
1480   // after everything else has gone out.
1481   EmitEndOfAsmFile(M);
1482 
1483   MMI = nullptr;
1484 
1485   OutStreamer->Finish();
1486   OutStreamer->reset();
1487 
1488   return false;
1489 }
1490 
1491 MCSymbol *AsmPrinter::getCurExceptionSym() {
1492   if (!CurExceptionSym)
1493     CurExceptionSym = createTempSymbol("exception");
1494   return CurExceptionSym;
1495 }
1496 
1497 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1498   this->MF = &MF;
1499   // Get the function symbol.
1500   CurrentFnSym = getSymbol(&MF.getFunction());
1501   CurrentFnSymForSize = CurrentFnSym;
1502   CurrentFnBegin = nullptr;
1503   CurExceptionSym = nullptr;
1504   bool NeedsLocalForSize = MAI->needsLocalForSize();
1505   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) {
1506     CurrentFnBegin = createTempSymbol("func_begin");
1507     if (NeedsLocalForSize)
1508       CurrentFnSymForSize = CurrentFnBegin;
1509   }
1510 
1511   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1512   LI = &getAnalysis<MachineLoopInfo>();
1513 
1514   const TargetSubtargetInfo &STI = MF.getSubtarget();
1515   EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1516                              ? PrintSchedule
1517                              : STI.supportPrintSchedInfo();
1518 }
1519 
1520 namespace {
1521 
1522 // Keep track the alignment, constpool entries per Section.
1523   struct SectionCPs {
1524     MCSection *S;
1525     unsigned Alignment;
1526     SmallVector<unsigned, 4> CPEs;
1527 
1528     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1529   };
1530 
1531 } // end anonymous namespace
1532 
1533 /// EmitConstantPool - Print to the current output stream assembly
1534 /// representations of the constants in the constant pool MCP. This is
1535 /// used to print out constants which have been "spilled to memory" by
1536 /// the code generator.
1537 void AsmPrinter::EmitConstantPool() {
1538   const MachineConstantPool *MCP = MF->getConstantPool();
1539   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1540   if (CP.empty()) return;
1541 
1542   // Calculate sections for constant pool entries. We collect entries to go into
1543   // the same section together to reduce amount of section switch statements.
1544   SmallVector<SectionCPs, 4> CPSections;
1545   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1546     const MachineConstantPoolEntry &CPE = CP[i];
1547     unsigned Align = CPE.getAlignment();
1548 
1549     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1550 
1551     const Constant *C = nullptr;
1552     if (!CPE.isMachineConstantPoolEntry())
1553       C = CPE.Val.ConstVal;
1554 
1555     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1556                                                               Kind, C, Align);
1557 
1558     // The number of sections are small, just do a linear search from the
1559     // last section to the first.
1560     bool Found = false;
1561     unsigned SecIdx = CPSections.size();
1562     while (SecIdx != 0) {
1563       if (CPSections[--SecIdx].S == S) {
1564         Found = true;
1565         break;
1566       }
1567     }
1568     if (!Found) {
1569       SecIdx = CPSections.size();
1570       CPSections.push_back(SectionCPs(S, Align));
1571     }
1572 
1573     if (Align > CPSections[SecIdx].Alignment)
1574       CPSections[SecIdx].Alignment = Align;
1575     CPSections[SecIdx].CPEs.push_back(i);
1576   }
1577 
1578   // Now print stuff into the calculated sections.
1579   const MCSection *CurSection = nullptr;
1580   unsigned Offset = 0;
1581   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1582     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1583       unsigned CPI = CPSections[i].CPEs[j];
1584       MCSymbol *Sym = GetCPISymbol(CPI);
1585       if (!Sym->isUndefined())
1586         continue;
1587 
1588       if (CurSection != CPSections[i].S) {
1589         OutStreamer->SwitchSection(CPSections[i].S);
1590         EmitAlignment(Log2_32(CPSections[i].Alignment));
1591         CurSection = CPSections[i].S;
1592         Offset = 0;
1593       }
1594 
1595       MachineConstantPoolEntry CPE = CP[CPI];
1596 
1597       // Emit inter-object padding for alignment.
1598       unsigned AlignMask = CPE.getAlignment() - 1;
1599       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1600       OutStreamer->EmitZeros(NewOffset - Offset);
1601 
1602       Type *Ty = CPE.getType();
1603       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1604 
1605       OutStreamer->EmitLabel(Sym);
1606       if (CPE.isMachineConstantPoolEntry())
1607         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1608       else
1609         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1610     }
1611   }
1612 }
1613 
1614 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1615 /// by the current function to the current output stream.
1616 void AsmPrinter::EmitJumpTableInfo() {
1617   const DataLayout &DL = MF->getDataLayout();
1618   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1619   if (!MJTI) return;
1620   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1621   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1622   if (JT.empty()) return;
1623 
1624   // Pick the directive to use to print the jump table entries, and switch to
1625   // the appropriate section.
1626   const Function &F = MF->getFunction();
1627   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1628   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1629       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1630       F);
1631   if (JTInDiffSection) {
1632     // Drop it in the readonly section.
1633     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1634     OutStreamer->SwitchSection(ReadOnlySection);
1635   }
1636 
1637   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1638 
1639   // Jump tables in code sections are marked with a data_region directive
1640   // where that's supported.
1641   if (!JTInDiffSection)
1642     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1643 
1644   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1645     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1646 
1647     // If this jump table was deleted, ignore it.
1648     if (JTBBs.empty()) continue;
1649 
1650     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1651     /// emit a .set directive for each unique entry.
1652     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1653         MAI->doesSetDirectiveSuppressReloc()) {
1654       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1655       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1656       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1657       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1658         const MachineBasicBlock *MBB = JTBBs[ii];
1659         if (!EmittedSets.insert(MBB).second)
1660           continue;
1661 
1662         // .set LJTSet, LBB32-base
1663         const MCExpr *LHS =
1664           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1665         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1666                                     MCBinaryExpr::createSub(LHS, Base,
1667                                                             OutContext));
1668       }
1669     }
1670 
1671     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1672     // before each jump table.  The first label is never referenced, but tells
1673     // the assembler and linker the extents of the jump table object.  The
1674     // second label is actually referenced by the code.
1675     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1676       // FIXME: This doesn't have to have any specific name, just any randomly
1677       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1678       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1679 
1680     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1681 
1682     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1683       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1684   }
1685   if (!JTInDiffSection)
1686     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1687 }
1688 
1689 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1690 /// current stream.
1691 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1692                                     const MachineBasicBlock *MBB,
1693                                     unsigned UID) const {
1694   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1695   const MCExpr *Value = nullptr;
1696   switch (MJTI->getEntryKind()) {
1697   case MachineJumpTableInfo::EK_Inline:
1698     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1699   case MachineJumpTableInfo::EK_Custom32:
1700     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1701         MJTI, MBB, UID, OutContext);
1702     break;
1703   case MachineJumpTableInfo::EK_BlockAddress:
1704     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1705     //     .word LBB123
1706     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1707     break;
1708   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1709     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1710     // with a relocation as gp-relative, e.g.:
1711     //     .gprel32 LBB123
1712     MCSymbol *MBBSym = MBB->getSymbol();
1713     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1714     return;
1715   }
1716 
1717   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1718     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1719     // with a relocation as gp-relative, e.g.:
1720     //     .gpdword LBB123
1721     MCSymbol *MBBSym = MBB->getSymbol();
1722     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1723     return;
1724   }
1725 
1726   case MachineJumpTableInfo::EK_LabelDifference32: {
1727     // Each entry is the address of the block minus the address of the jump
1728     // table. This is used for PIC jump tables where gprel32 is not supported.
1729     // e.g.:
1730     //      .word LBB123 - LJTI1_2
1731     // If the .set directive avoids relocations, this is emitted as:
1732     //      .set L4_5_set_123, LBB123 - LJTI1_2
1733     //      .word L4_5_set_123
1734     if (MAI->doesSetDirectiveSuppressReloc()) {
1735       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1736                                       OutContext);
1737       break;
1738     }
1739     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1740     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1741     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1742     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1743     break;
1744   }
1745   }
1746 
1747   assert(Value && "Unknown entry kind!");
1748 
1749   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1750   OutStreamer->EmitValue(Value, EntrySize);
1751 }
1752 
1753 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1754 /// special global used by LLVM.  If so, emit it and return true, otherwise
1755 /// do nothing and return false.
1756 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1757   if (GV->getName() == "llvm.used") {
1758     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1759       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1760     return true;
1761   }
1762 
1763   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1764   if (GV->getSection() == "llvm.metadata" ||
1765       GV->hasAvailableExternallyLinkage())
1766     return true;
1767 
1768   if (!GV->hasAppendingLinkage()) return false;
1769 
1770   assert(GV->hasInitializer() && "Not a special LLVM global!");
1771 
1772   if (GV->getName() == "llvm.global_ctors") {
1773     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1774                        /* isCtor */ true);
1775 
1776     return true;
1777   }
1778 
1779   if (GV->getName() == "llvm.global_dtors") {
1780     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1781                        /* isCtor */ false);
1782 
1783     return true;
1784   }
1785 
1786   report_fatal_error("unknown special variable");
1787 }
1788 
1789 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1790 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1791 /// is true, as being used with this directive.
1792 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1793   // Should be an array of 'i8*'.
1794   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1795     const GlobalValue *GV =
1796       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1797     if (GV)
1798       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1799   }
1800 }
1801 
1802 namespace {
1803 
1804 struct Structor {
1805   int Priority = 0;
1806   Constant *Func = nullptr;
1807   GlobalValue *ComdatKey = nullptr;
1808 
1809   Structor() = default;
1810 };
1811 
1812 } // end anonymous namespace
1813 
1814 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1815 /// priority.
1816 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1817                                     bool isCtor) {
1818   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1819   // init priority.
1820   if (!isa<ConstantArray>(List)) return;
1821 
1822   // Sanity check the structors list.
1823   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1824   if (!InitList) return; // Not an array!
1825   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1826   // FIXME: Only allow the 3-field form in LLVM 4.0.
1827   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1828     return; // Not an array of two or three elements!
1829   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1830       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1831   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1832     return; // Not (int, ptr, ptr).
1833 
1834   // Gather the structors in a form that's convenient for sorting by priority.
1835   SmallVector<Structor, 8> Structors;
1836   for (Value *O : InitList->operands()) {
1837     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1838     if (!CS) continue; // Malformed.
1839     if (CS->getOperand(1)->isNullValue())
1840       break;  // Found a null terminator, skip the rest.
1841     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1842     if (!Priority) continue; // Malformed.
1843     Structors.push_back(Structor());
1844     Structor &S = Structors.back();
1845     S.Priority = Priority->getLimitedValue(65535);
1846     S.Func = CS->getOperand(1);
1847     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1848       S.ComdatKey =
1849           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1850   }
1851 
1852   // Emit the function pointers in the target-specific order
1853   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1854   std::stable_sort(Structors.begin(), Structors.end(),
1855                    [](const Structor &L,
1856                       const Structor &R) { return L.Priority < R.Priority; });
1857   for (Structor &S : Structors) {
1858     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1859     const MCSymbol *KeySym = nullptr;
1860     if (GlobalValue *GV = S.ComdatKey) {
1861       if (GV->isDeclarationForLinker())
1862         // If the associated variable is not defined in this module
1863         // (it might be available_externally, or have been an
1864         // available_externally definition that was dropped by the
1865         // EliminateAvailableExternally pass), some other TU
1866         // will provide its dynamic initializer.
1867         continue;
1868 
1869       KeySym = getSymbol(GV);
1870     }
1871     MCSection *OutputSection =
1872         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1873                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1874     OutStreamer->SwitchSection(OutputSection);
1875     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1876       EmitAlignment(Align);
1877     EmitXXStructor(DL, S.Func);
1878   }
1879 }
1880 
1881 void AsmPrinter::EmitModuleIdents(Module &M) {
1882   if (!MAI->hasIdentDirective())
1883     return;
1884 
1885   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1886     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1887       const MDNode *N = NMD->getOperand(i);
1888       assert(N->getNumOperands() == 1 &&
1889              "llvm.ident metadata entry can have only one operand");
1890       const MDString *S = cast<MDString>(N->getOperand(0));
1891       OutStreamer->EmitIdent(S->getString());
1892     }
1893   }
1894 }
1895 
1896 //===--------------------------------------------------------------------===//
1897 // Emission and print routines
1898 //
1899 
1900 /// EmitInt8 - Emit a byte directive and value.
1901 ///
1902 void AsmPrinter::EmitInt8(int Value) const {
1903   OutStreamer->EmitIntValue(Value, 1);
1904 }
1905 
1906 /// EmitInt16 - Emit a short directive and value.
1907 void AsmPrinter::EmitInt16(int Value) const {
1908   OutStreamer->EmitIntValue(Value, 2);
1909 }
1910 
1911 /// EmitInt32 - Emit a long directive and value.
1912 void AsmPrinter::EmitInt32(int Value) const {
1913   OutStreamer->EmitIntValue(Value, 4);
1914 }
1915 
1916 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1917 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1918 /// .set if it avoids relocations.
1919 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1920                                      unsigned Size) const {
1921   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1922 }
1923 
1924 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1925 /// where the size in bytes of the directive is specified by Size and Label
1926 /// specifies the label.  This implicitly uses .set if it is available.
1927 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1928                                      unsigned Size,
1929                                      bool IsSectionRelative) const {
1930   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1931     OutStreamer->EmitCOFFSecRel32(Label, Offset);
1932     if (Size > 4)
1933       OutStreamer->EmitZeros(Size - 4);
1934     return;
1935   }
1936 
1937   // Emit Label+Offset (or just Label if Offset is zero)
1938   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1939   if (Offset)
1940     Expr = MCBinaryExpr::createAdd(
1941         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1942 
1943   OutStreamer->EmitValue(Expr, Size);
1944 }
1945 
1946 //===----------------------------------------------------------------------===//
1947 
1948 // EmitAlignment - Emit an alignment directive to the specified power of
1949 // two boundary.  For example, if you pass in 3 here, you will get an 8
1950 // byte alignment.  If a global value is specified, and if that global has
1951 // an explicit alignment requested, it will override the alignment request
1952 // if required for correctness.
1953 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1954   if (GV)
1955     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1956 
1957   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1958 
1959   assert(NumBits <
1960              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1961          "undefined behavior");
1962   if (getCurrentSection()->getKind().isText())
1963     OutStreamer->EmitCodeAlignment(1u << NumBits);
1964   else
1965     OutStreamer->EmitValueToAlignment(1u << NumBits);
1966 }
1967 
1968 //===----------------------------------------------------------------------===//
1969 // Constant emission.
1970 //===----------------------------------------------------------------------===//
1971 
1972 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1973   MCContext &Ctx = OutContext;
1974 
1975   if (CV->isNullValue() || isa<UndefValue>(CV))
1976     return MCConstantExpr::create(0, Ctx);
1977 
1978   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1979     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1980 
1981   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1982     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1983 
1984   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1985     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1986 
1987   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1988   if (!CE) {
1989     llvm_unreachable("Unknown constant value to lower!");
1990   }
1991 
1992   switch (CE->getOpcode()) {
1993   default:
1994     // If the code isn't optimized, there may be outstanding folding
1995     // opportunities. Attempt to fold the expression using DataLayout as a
1996     // last resort before giving up.
1997     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
1998       if (C != CE)
1999         return lowerConstant(C);
2000 
2001     // Otherwise report the problem to the user.
2002     {
2003       std::string S;
2004       raw_string_ostream OS(S);
2005       OS << "Unsupported expression in static initializer: ";
2006       CE->printAsOperand(OS, /*PrintType=*/false,
2007                      !MF ? nullptr : MF->getFunction().getParent());
2008       report_fatal_error(OS.str());
2009     }
2010   case Instruction::GetElementPtr: {
2011     // Generate a symbolic expression for the byte address
2012     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2013     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2014 
2015     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2016     if (!OffsetAI)
2017       return Base;
2018 
2019     int64_t Offset = OffsetAI.getSExtValue();
2020     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2021                                    Ctx);
2022   }
2023 
2024   case Instruction::Trunc:
2025     // We emit the value and depend on the assembler to truncate the generated
2026     // expression properly.  This is important for differences between
2027     // blockaddress labels.  Since the two labels are in the same function, it
2028     // is reasonable to treat their delta as a 32-bit value.
2029     LLVM_FALLTHROUGH;
2030   case Instruction::BitCast:
2031     return lowerConstant(CE->getOperand(0));
2032 
2033   case Instruction::IntToPtr: {
2034     const DataLayout &DL = getDataLayout();
2035 
2036     // Handle casts to pointers by changing them into casts to the appropriate
2037     // integer type.  This promotes constant folding and simplifies this code.
2038     Constant *Op = CE->getOperand(0);
2039     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2040                                       false/*ZExt*/);
2041     return lowerConstant(Op);
2042   }
2043 
2044   case Instruction::PtrToInt: {
2045     const DataLayout &DL = getDataLayout();
2046 
2047     // Support only foldable casts to/from pointers that can be eliminated by
2048     // changing the pointer to the appropriately sized integer type.
2049     Constant *Op = CE->getOperand(0);
2050     Type *Ty = CE->getType();
2051 
2052     const MCExpr *OpExpr = lowerConstant(Op);
2053 
2054     // We can emit the pointer value into this slot if the slot is an
2055     // integer slot equal to the size of the pointer.
2056     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2057       return OpExpr;
2058 
2059     // Otherwise the pointer is smaller than the resultant integer, mask off
2060     // the high bits so we are sure to get a proper truncation if the input is
2061     // a constant expr.
2062     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2063     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2064     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2065   }
2066 
2067   case Instruction::Sub: {
2068     GlobalValue *LHSGV;
2069     APInt LHSOffset;
2070     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2071                                    getDataLayout())) {
2072       GlobalValue *RHSGV;
2073       APInt RHSOffset;
2074       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2075                                      getDataLayout())) {
2076         const MCExpr *RelocExpr =
2077             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2078         if (!RelocExpr)
2079           RelocExpr = MCBinaryExpr::createSub(
2080               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2081               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2082         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2083         if (Addend != 0)
2084           RelocExpr = MCBinaryExpr::createAdd(
2085               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2086         return RelocExpr;
2087       }
2088     }
2089   }
2090   // else fallthrough
2091   LLVM_FALLTHROUGH;
2092 
2093   // The MC library also has a right-shift operator, but it isn't consistently
2094   // signed or unsigned between different targets.
2095   case Instruction::Add:
2096   case Instruction::Mul:
2097   case Instruction::SDiv:
2098   case Instruction::SRem:
2099   case Instruction::Shl:
2100   case Instruction::And:
2101   case Instruction::Or:
2102   case Instruction::Xor: {
2103     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2104     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2105     switch (CE->getOpcode()) {
2106     default: llvm_unreachable("Unknown binary operator constant cast expr");
2107     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2108     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2109     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2110     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2111     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2112     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2113     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2114     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2115     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2116     }
2117   }
2118   }
2119 }
2120 
2121 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2122                                    AsmPrinter &AP,
2123                                    const Constant *BaseCV = nullptr,
2124                                    uint64_t Offset = 0);
2125 
2126 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2127 
2128 /// isRepeatedByteSequence - Determine whether the given value is
2129 /// composed of a repeated sequence of identical bytes and return the
2130 /// byte value.  If it is not a repeated sequence, return -1.
2131 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2132   StringRef Data = V->getRawDataValues();
2133   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2134   char C = Data[0];
2135   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2136     if (Data[i] != C) return -1;
2137   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2138 }
2139 
2140 /// isRepeatedByteSequence - Determine whether the given value is
2141 /// composed of a repeated sequence of identical bytes and return the
2142 /// byte value.  If it is not a repeated sequence, return -1.
2143 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2144   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2145     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2146     assert(Size % 8 == 0);
2147 
2148     // Extend the element to take zero padding into account.
2149     APInt Value = CI->getValue().zextOrSelf(Size);
2150     if (!Value.isSplat(8))
2151       return -1;
2152 
2153     return Value.zextOrTrunc(8).getZExtValue();
2154   }
2155   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2156     // Make sure all array elements are sequences of the same repeated
2157     // byte.
2158     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2159     Constant *Op0 = CA->getOperand(0);
2160     int Byte = isRepeatedByteSequence(Op0, DL);
2161     if (Byte == -1)
2162       return -1;
2163 
2164     // All array elements must be equal.
2165     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2166       if (CA->getOperand(i) != Op0)
2167         return -1;
2168     return Byte;
2169   }
2170 
2171   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2172     return isRepeatedByteSequence(CDS);
2173 
2174   return -1;
2175 }
2176 
2177 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2178                                              const ConstantDataSequential *CDS,
2179                                              AsmPrinter &AP) {
2180   // See if we can aggregate this into a .fill, if so, emit it as such.
2181   int Value = isRepeatedByteSequence(CDS, DL);
2182   if (Value != -1) {
2183     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2184     // Don't emit a 1-byte object as a .fill.
2185     if (Bytes > 1)
2186       return AP.OutStreamer->emitFill(Bytes, Value);
2187   }
2188 
2189   // If this can be emitted with .ascii/.asciz, emit it as such.
2190   if (CDS->isString())
2191     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2192 
2193   // Otherwise, emit the values in successive locations.
2194   unsigned ElementByteSize = CDS->getElementByteSize();
2195   if (isa<IntegerType>(CDS->getElementType())) {
2196     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2197       if (AP.isVerbose())
2198         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2199                                                  CDS->getElementAsInteger(i));
2200       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2201                                    ElementByteSize);
2202     }
2203   } else {
2204     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2205       emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
2206   }
2207 
2208   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2209   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2210                         CDS->getNumElements();
2211   if (unsigned Padding = Size - EmittedSize)
2212     AP.OutStreamer->EmitZeros(Padding);
2213 }
2214 
2215 static void emitGlobalConstantArray(const DataLayout &DL,
2216                                     const ConstantArray *CA, AsmPrinter &AP,
2217                                     const Constant *BaseCV, uint64_t Offset) {
2218   // See if we can aggregate some values.  Make sure it can be
2219   // represented as a series of bytes of the constant value.
2220   int Value = isRepeatedByteSequence(CA, DL);
2221 
2222   if (Value != -1) {
2223     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2224     AP.OutStreamer->emitFill(Bytes, Value);
2225   }
2226   else {
2227     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2228       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2229       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2230     }
2231   }
2232 }
2233 
2234 static void emitGlobalConstantVector(const DataLayout &DL,
2235                                      const ConstantVector *CV, AsmPrinter &AP) {
2236   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2237     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2238 
2239   unsigned Size = DL.getTypeAllocSize(CV->getType());
2240   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2241                          CV->getType()->getNumElements();
2242   if (unsigned Padding = Size - EmittedSize)
2243     AP.OutStreamer->EmitZeros(Padding);
2244 }
2245 
2246 static void emitGlobalConstantStruct(const DataLayout &DL,
2247                                      const ConstantStruct *CS, AsmPrinter &AP,
2248                                      const Constant *BaseCV, uint64_t Offset) {
2249   // Print the fields in successive locations. Pad to align if needed!
2250   unsigned Size = DL.getTypeAllocSize(CS->getType());
2251   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2252   uint64_t SizeSoFar = 0;
2253   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2254     const Constant *Field = CS->getOperand(i);
2255 
2256     // Print the actual field value.
2257     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2258 
2259     // Check if padding is needed and insert one or more 0s.
2260     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2261     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2262                         - Layout->getElementOffset(i)) - FieldSize;
2263     SizeSoFar += FieldSize + PadSize;
2264 
2265     // Insert padding - this may include padding to increase the size of the
2266     // current field up to the ABI size (if the struct is not packed) as well
2267     // as padding to ensure that the next field starts at the right offset.
2268     AP.OutStreamer->EmitZeros(PadSize);
2269   }
2270   assert(SizeSoFar == Layout->getSizeInBytes() &&
2271          "Layout of constant struct may be incorrect!");
2272 }
2273 
2274 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2275   APInt API = CFP->getValueAPF().bitcastToAPInt();
2276 
2277   // First print a comment with what we think the original floating-point value
2278   // should have been.
2279   if (AP.isVerbose()) {
2280     SmallString<8> StrVal;
2281     CFP->getValueAPF().toString(StrVal);
2282 
2283     if (CFP->getType())
2284       CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2285     else
2286       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2287     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2288   }
2289 
2290   // Now iterate through the APInt chunks, emitting them in endian-correct
2291   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2292   // floats).
2293   unsigned NumBytes = API.getBitWidth() / 8;
2294   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2295   const uint64_t *p = API.getRawData();
2296 
2297   // PPC's long double has odd notions of endianness compared to how LLVM
2298   // handles it: p[0] goes first for *big* endian on PPC.
2299   if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2300     int Chunk = API.getNumWords() - 1;
2301 
2302     if (TrailingBytes)
2303       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2304 
2305     for (; Chunk >= 0; --Chunk)
2306       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2307   } else {
2308     unsigned Chunk;
2309     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2310       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2311 
2312     if (TrailingBytes)
2313       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2314   }
2315 
2316   // Emit the tail padding for the long double.
2317   const DataLayout &DL = AP.getDataLayout();
2318   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2319                             DL.getTypeStoreSize(CFP->getType()));
2320 }
2321 
2322 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2323   const DataLayout &DL = AP.getDataLayout();
2324   unsigned BitWidth = CI->getBitWidth();
2325 
2326   // Copy the value as we may massage the layout for constants whose bit width
2327   // is not a multiple of 64-bits.
2328   APInt Realigned(CI->getValue());
2329   uint64_t ExtraBits = 0;
2330   unsigned ExtraBitsSize = BitWidth & 63;
2331 
2332   if (ExtraBitsSize) {
2333     // The bit width of the data is not a multiple of 64-bits.
2334     // The extra bits are expected to be at the end of the chunk of the memory.
2335     // Little endian:
2336     // * Nothing to be done, just record the extra bits to emit.
2337     // Big endian:
2338     // * Record the extra bits to emit.
2339     // * Realign the raw data to emit the chunks of 64-bits.
2340     if (DL.isBigEndian()) {
2341       // Basically the structure of the raw data is a chunk of 64-bits cells:
2342       //    0        1         BitWidth / 64
2343       // [chunk1][chunk2] ... [chunkN].
2344       // The most significant chunk is chunkN and it should be emitted first.
2345       // However, due to the alignment issue chunkN contains useless bits.
2346       // Realign the chunks so that they contain only useless information:
2347       // ExtraBits     0       1       (BitWidth / 64) - 1
2348       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2349       ExtraBits = Realigned.getRawData()[0] &
2350         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2351       Realigned.lshrInPlace(ExtraBitsSize);
2352     } else
2353       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2354   }
2355 
2356   // We don't expect assemblers to support integer data directives
2357   // for more than 64 bits, so we emit the data in at most 64-bit
2358   // quantities at a time.
2359   const uint64_t *RawData = Realigned.getRawData();
2360   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2361     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2362     AP.OutStreamer->EmitIntValue(Val, 8);
2363   }
2364 
2365   if (ExtraBitsSize) {
2366     // Emit the extra bits after the 64-bits chunks.
2367 
2368     // Emit a directive that fills the expected size.
2369     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2370     Size -= (BitWidth / 64) * 8;
2371     assert(Size && Size * 8 >= ExtraBitsSize &&
2372            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2373            == ExtraBits && "Directive too small for extra bits.");
2374     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2375   }
2376 }
2377 
2378 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2379 /// equivalent global, by a target specific GOT pc relative access to the
2380 /// final symbol.
2381 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2382                                          const Constant *BaseCst,
2383                                          uint64_t Offset) {
2384   // The global @foo below illustrates a global that uses a got equivalent.
2385   //
2386   //  @bar = global i32 42
2387   //  @gotequiv = private unnamed_addr constant i32* @bar
2388   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2389   //                             i64 ptrtoint (i32* @foo to i64))
2390   //                        to i32)
2391   //
2392   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2393   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2394   // form:
2395   //
2396   //  foo = cstexpr, where
2397   //    cstexpr := <gotequiv> - "." + <cst>
2398   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2399   //
2400   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2401   //
2402   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2403   //    gotpcrelcst := <offset from @foo base> + <cst>
2404   MCValue MV;
2405   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2406     return;
2407   const MCSymbolRefExpr *SymA = MV.getSymA();
2408   if (!SymA)
2409     return;
2410 
2411   // Check that GOT equivalent symbol is cached.
2412   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2413   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2414     return;
2415 
2416   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2417   if (!BaseGV)
2418     return;
2419 
2420   // Check for a valid base symbol
2421   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2422   const MCSymbolRefExpr *SymB = MV.getSymB();
2423 
2424   if (!SymB || BaseSym != &SymB->getSymbol())
2425     return;
2426 
2427   // Make sure to match:
2428   //
2429   //    gotpcrelcst := <offset from @foo base> + <cst>
2430   //
2431   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2432   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2433   // if the target knows how to encode it.
2434   int64_t GOTPCRelCst = Offset + MV.getConstant();
2435   if (GOTPCRelCst < 0)
2436     return;
2437   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2438     return;
2439 
2440   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2441   //
2442   //  bar:
2443   //    .long 42
2444   //  gotequiv:
2445   //    .quad bar
2446   //  foo:
2447   //    .long gotequiv - "." + <cst>
2448   //
2449   // is replaced by the target specific equivalent to:
2450   //
2451   //  bar:
2452   //    .long 42
2453   //  foo:
2454   //    .long bar@GOTPCREL+<gotpcrelcst>
2455   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2456   const GlobalVariable *GV = Result.first;
2457   int NumUses = (int)Result.second;
2458   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2459   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2460   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2461       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2462 
2463   // Update GOT equivalent usage information
2464   --NumUses;
2465   if (NumUses >= 0)
2466     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2467 }
2468 
2469 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2470                                    AsmPrinter &AP, const Constant *BaseCV,
2471                                    uint64_t Offset) {
2472   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2473 
2474   // Globals with sub-elements such as combinations of arrays and structs
2475   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2476   // constant symbol base and the current position with BaseCV and Offset.
2477   if (!BaseCV && CV->hasOneUse())
2478     BaseCV = dyn_cast<Constant>(CV->user_back());
2479 
2480   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2481     return AP.OutStreamer->EmitZeros(Size);
2482 
2483   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2484     switch (Size) {
2485     case 1:
2486     case 2:
2487     case 4:
2488     case 8:
2489       if (AP.isVerbose())
2490         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2491                                                  CI->getZExtValue());
2492       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2493       return;
2494     default:
2495       emitGlobalConstantLargeInt(CI, AP);
2496       return;
2497     }
2498   }
2499 
2500   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2501     return emitGlobalConstantFP(CFP, AP);
2502 
2503   if (isa<ConstantPointerNull>(CV)) {
2504     AP.OutStreamer->EmitIntValue(0, Size);
2505     return;
2506   }
2507 
2508   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2509     return emitGlobalConstantDataSequential(DL, CDS, AP);
2510 
2511   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2512     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2513 
2514   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2515     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2516 
2517   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2518     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2519     // vectors).
2520     if (CE->getOpcode() == Instruction::BitCast)
2521       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2522 
2523     if (Size > 8) {
2524       // If the constant expression's size is greater than 64-bits, then we have
2525       // to emit the value in chunks. Try to constant fold the value and emit it
2526       // that way.
2527       Constant *New = ConstantFoldConstant(CE, DL);
2528       if (New && New != CE)
2529         return emitGlobalConstantImpl(DL, New, AP);
2530     }
2531   }
2532 
2533   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2534     return emitGlobalConstantVector(DL, V, AP);
2535 
2536   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2537   // thread the streamer with EmitValue.
2538   const MCExpr *ME = AP.lowerConstant(CV);
2539 
2540   // Since lowerConstant already folded and got rid of all IR pointer and
2541   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2542   // directly.
2543   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2544     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2545 
2546   AP.OutStreamer->EmitValue(ME, Size);
2547 }
2548 
2549 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2550 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2551   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2552   if (Size)
2553     emitGlobalConstantImpl(DL, CV, *this);
2554   else if (MAI->hasSubsectionsViaSymbols()) {
2555     // If the global has zero size, emit a single byte so that two labels don't
2556     // look like they are at the same location.
2557     OutStreamer->EmitIntValue(0, 1);
2558   }
2559 }
2560 
2561 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2562   // Target doesn't support this yet!
2563   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2564 }
2565 
2566 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2567   if (Offset > 0)
2568     OS << '+' << Offset;
2569   else if (Offset < 0)
2570     OS << Offset;
2571 }
2572 
2573 //===----------------------------------------------------------------------===//
2574 // Symbol Lowering Routines.
2575 //===----------------------------------------------------------------------===//
2576 
2577 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2578   return OutContext.createTempSymbol(Name, true);
2579 }
2580 
2581 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2582   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2583 }
2584 
2585 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2586   return MMI->getAddrLabelSymbol(BB);
2587 }
2588 
2589 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2590 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2591   const DataLayout &DL = getDataLayout();
2592   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2593                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2594                                       Twine(CPID));
2595 }
2596 
2597 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2598 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2599   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2600 }
2601 
2602 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2603 /// FIXME: privatize to AsmPrinter.
2604 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2605   const DataLayout &DL = getDataLayout();
2606   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2607                                       Twine(getFunctionNumber()) + "_" +
2608                                       Twine(UID) + "_set_" + Twine(MBBID));
2609 }
2610 
2611 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2612                                                    StringRef Suffix) const {
2613   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2614 }
2615 
2616 /// Return the MCSymbol for the specified ExternalSymbol.
2617 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2618   SmallString<60> NameStr;
2619   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2620   return OutContext.getOrCreateSymbol(NameStr);
2621 }
2622 
2623 /// PrintParentLoopComment - Print comments about parent loops of this one.
2624 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2625                                    unsigned FunctionNumber) {
2626   if (!Loop) return;
2627   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2628   OS.indent(Loop->getLoopDepth()*2)
2629     << "Parent Loop BB" << FunctionNumber << "_"
2630     << Loop->getHeader()->getNumber()
2631     << " Depth=" << Loop->getLoopDepth() << '\n';
2632 }
2633 
2634 /// PrintChildLoopComment - Print comments about child loops within
2635 /// the loop for this basic block, with nesting.
2636 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2637                                   unsigned FunctionNumber) {
2638   // Add child loop information
2639   for (const MachineLoop *CL : *Loop) {
2640     OS.indent(CL->getLoopDepth()*2)
2641       << "Child Loop BB" << FunctionNumber << "_"
2642       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2643       << '\n';
2644     PrintChildLoopComment(OS, CL, FunctionNumber);
2645   }
2646 }
2647 
2648 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2649 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2650                                        const MachineLoopInfo *LI,
2651                                        const AsmPrinter &AP) {
2652   // Add loop depth information
2653   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2654   if (!Loop) return;
2655 
2656   MachineBasicBlock *Header = Loop->getHeader();
2657   assert(Header && "No header for loop");
2658 
2659   // If this block is not a loop header, just print out what is the loop header
2660   // and return.
2661   if (Header != &MBB) {
2662     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2663                                Twine(AP.getFunctionNumber())+"_" +
2664                                Twine(Loop->getHeader()->getNumber())+
2665                                " Depth="+Twine(Loop->getLoopDepth()));
2666     return;
2667   }
2668 
2669   // Otherwise, it is a loop header.  Print out information about child and
2670   // parent loops.
2671   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2672 
2673   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2674 
2675   OS << "=>";
2676   OS.indent(Loop->getLoopDepth()*2-2);
2677 
2678   OS << "This ";
2679   if (Loop->empty())
2680     OS << "Inner ";
2681   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2682 
2683   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2684 }
2685 
2686 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2687                                          MCCodePaddingContext &Context) const {
2688   assert(MF != nullptr && "Machine function must be valid");
2689   assert(LI != nullptr && "Loop info must be valid");
2690   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2691                             !MF->getFunction().optForSize() &&
2692                             TM.getOptLevel() != CodeGenOpt::None;
2693   const MachineLoop *CurrentLoop = LI->getLoopFor(&MBB);
2694   Context.IsBasicBlockInsideInnermostLoop =
2695       CurrentLoop != nullptr && CurrentLoop->getSubLoops().empty();
2696   Context.IsBasicBlockReachableViaFallthrough =
2697       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2698       MBB.pred_end();
2699   Context.IsBasicBlockReachableViaBranch =
2700       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2701 }
2702 
2703 /// EmitBasicBlockStart - This method prints the label for the specified
2704 /// MachineBasicBlock, an alignment (if present) and a comment describing
2705 /// it if appropriate.
2706 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2707   // End the previous funclet and start a new one.
2708   if (MBB.isEHFuncletEntry()) {
2709     for (const HandlerInfo &HI : Handlers) {
2710       HI.Handler->endFunclet();
2711       HI.Handler->beginFunclet(MBB);
2712     }
2713   }
2714 
2715   // Emit an alignment directive for this block, if needed.
2716   if (unsigned Align = MBB.getAlignment())
2717     EmitAlignment(Align);
2718   MCCodePaddingContext Context;
2719   setupCodePaddingContext(MBB, Context);
2720   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2721 
2722   // If the block has its address taken, emit any labels that were used to
2723   // reference the block.  It is possible that there is more than one label
2724   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2725   // the references were generated.
2726   if (MBB.hasAddressTaken()) {
2727     const BasicBlock *BB = MBB.getBasicBlock();
2728     if (isVerbose())
2729       OutStreamer->AddComment("Block address taken");
2730 
2731     // MBBs can have their address taken as part of CodeGen without having
2732     // their corresponding BB's address taken in IR
2733     if (BB->hasAddressTaken())
2734       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2735         OutStreamer->EmitLabel(Sym);
2736   }
2737 
2738   // Print some verbose block comments.
2739   if (isVerbose()) {
2740     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2741       if (BB->hasName()) {
2742         BB->printAsOperand(OutStreamer->GetCommentOS(),
2743                            /*PrintType=*/false, BB->getModule());
2744         OutStreamer->GetCommentOS() << '\n';
2745       }
2746     }
2747     emitBasicBlockLoopComments(MBB, LI, *this);
2748   }
2749 
2750   // Print the main label for the block.
2751   if (MBB.pred_empty() ||
2752       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2753     if (isVerbose()) {
2754       // NOTE: Want this comment at start of line, don't emit with AddComment.
2755       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2756                                   false);
2757     }
2758   } else {
2759     OutStreamer->EmitLabel(MBB.getSymbol());
2760   }
2761 }
2762 
2763 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2764   MCCodePaddingContext Context;
2765   setupCodePaddingContext(MBB, Context);
2766   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2767 }
2768 
2769 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2770                                 bool IsDefinition) const {
2771   MCSymbolAttr Attr = MCSA_Invalid;
2772 
2773   switch (Visibility) {
2774   default: break;
2775   case GlobalValue::HiddenVisibility:
2776     if (IsDefinition)
2777       Attr = MAI->getHiddenVisibilityAttr();
2778     else
2779       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2780     break;
2781   case GlobalValue::ProtectedVisibility:
2782     Attr = MAI->getProtectedVisibilityAttr();
2783     break;
2784   }
2785 
2786   if (Attr != MCSA_Invalid)
2787     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2788 }
2789 
2790 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2791 /// exactly one predecessor and the control transfer mechanism between
2792 /// the predecessor and this block is a fall-through.
2793 bool AsmPrinter::
2794 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2795   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2796   // then nothing falls through to it.
2797   if (MBB->isEHPad() || MBB->pred_empty())
2798     return false;
2799 
2800   // If there isn't exactly one predecessor, it can't be a fall through.
2801   if (MBB->pred_size() > 1)
2802     return false;
2803 
2804   // The predecessor has to be immediately before this block.
2805   MachineBasicBlock *Pred = *MBB->pred_begin();
2806   if (!Pred->isLayoutSuccessor(MBB))
2807     return false;
2808 
2809   // If the block is completely empty, then it definitely does fall through.
2810   if (Pred->empty())
2811     return true;
2812 
2813   // Check the terminators in the previous blocks
2814   for (const auto &MI : Pred->terminators()) {
2815     // If it is not a simple branch, we are in a table somewhere.
2816     if (!MI.isBranch() || MI.isIndirectBranch())
2817       return false;
2818 
2819     // If we are the operands of one of the branches, this is not a fall
2820     // through. Note that targets with delay slots will usually bundle
2821     // terminators with the delay slot instruction.
2822     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2823       if (OP->isJTI())
2824         return false;
2825       if (OP->isMBB() && OP->getMBB() == MBB)
2826         return false;
2827     }
2828   }
2829 
2830   return true;
2831 }
2832 
2833 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2834   if (!S.usesMetadata())
2835     return nullptr;
2836 
2837   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2838          " stackmap formats, please see the documentation for a description of"
2839          " the default format.  If you really need a custom serialized format,"
2840          " please file a bug");
2841 
2842   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2843   gcp_map_type::iterator GCPI = GCMap.find(&S);
2844   if (GCPI != GCMap.end())
2845     return GCPI->second.get();
2846 
2847   auto Name = S.getName();
2848 
2849   for (GCMetadataPrinterRegistry::iterator
2850          I = GCMetadataPrinterRegistry::begin(),
2851          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2852     if (Name == I->getName()) {
2853       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2854       GMP->S = &S;
2855       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2856       return IterBool.first->second.get();
2857     }
2858 
2859   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2860 }
2861 
2862 /// Pin vtable to this file.
2863 AsmPrinterHandler::~AsmPrinterHandler() = default;
2864 
2865 void AsmPrinterHandler::markFunctionEnd() {}
2866 
2867 // In the binary's "xray_instr_map" section, an array of these function entries
2868 // describes each instrumentation point.  When XRay patches your code, the index
2869 // into this table will be given to your handler as a patch point identifier.
2870 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
2871                                          const MCSymbol *CurrentFnSym) const {
2872   Out->EmitSymbolValue(Sled, Bytes);
2873   Out->EmitSymbolValue(CurrentFnSym, Bytes);
2874   auto Kind8 = static_cast<uint8_t>(Kind);
2875   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
2876   Out->EmitBinaryData(
2877       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
2878   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
2879   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
2880   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
2881   Out->EmitZeros(Padding);
2882 }
2883 
2884 void AsmPrinter::emitXRayTable() {
2885   if (Sleds.empty())
2886     return;
2887 
2888   auto PrevSection = OutStreamer->getCurrentSectionOnly();
2889   const Function &F = MF->getFunction();
2890   MCSection *InstMap = nullptr;
2891   MCSection *FnSledIndex = nullptr;
2892   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
2893     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
2894     assert(Associated != nullptr);
2895     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
2896     std::string GroupName;
2897     if (F.hasComdat()) {
2898       Flags |= ELF::SHF_GROUP;
2899       GroupName = F.getComdat()->getName();
2900     }
2901 
2902     auto UniqueID = ++XRayFnUniqueID;
2903     InstMap =
2904         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
2905                                  GroupName, UniqueID, Associated);
2906     FnSledIndex =
2907         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
2908                                  GroupName, UniqueID, Associated);
2909   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
2910     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
2911                                          SectionKind::getReadOnlyWithRel());
2912     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
2913                                              SectionKind::getReadOnlyWithRel());
2914   } else {
2915     llvm_unreachable("Unsupported target");
2916   }
2917 
2918   auto WordSizeBytes = MAI->getCodePointerSize();
2919 
2920   // Now we switch to the instrumentation map section. Because this is done
2921   // per-function, we are able to create an index entry that will represent the
2922   // range of sleds associated with a function.
2923   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
2924   OutStreamer->SwitchSection(InstMap);
2925   OutStreamer->EmitLabel(SledsStart);
2926   for (const auto &Sled : Sleds)
2927     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
2928   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
2929   OutStreamer->EmitLabel(SledsEnd);
2930 
2931   // We then emit a single entry in the index per function. We use the symbols
2932   // that bound the instrumentation map as the range for a specific function.
2933   // Each entry here will be 2 * word size aligned, as we're writing down two
2934   // pointers. This should work for both 32-bit and 64-bit platforms.
2935   OutStreamer->SwitchSection(FnSledIndex);
2936   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
2937   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
2938   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
2939   OutStreamer->SwitchSection(PrevSection);
2940   Sleds.clear();
2941 }
2942 
2943 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
2944                             SledKind Kind, uint8_t Version) {
2945   const Function &F = MI.getMF()->getFunction();
2946   auto Attr = F.getFnAttribute("function-instrument");
2947   bool LogArgs = F.hasFnAttribute("xray-log-args");
2948   bool AlwaysInstrument =
2949     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
2950   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
2951     Kind = SledKind::LOG_ARGS_ENTER;
2952   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
2953                                        AlwaysInstrument, &F, Version});
2954 }
2955 
2956 uint16_t AsmPrinter::getDwarfVersion() const {
2957   return OutStreamer->getContext().getDwarfVersion();
2958 }
2959 
2960 void AsmPrinter::setDwarfVersion(uint16_t Version) {
2961   OutStreamer->getContext().setDwarfVersion(Version);
2962 }
2963