1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/RemarkStreamer.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCStreamer.h"
95 #include "llvm/MC/MCSubtargetInfo.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/MC/MCSymbolELF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Remarks/RemarkFormat.h"
104 #include "llvm/Remarks/RemarkStringTable.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/ErrorHandling.h"
109 #include "llvm/Support/Format.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/Path.h"
112 #include "llvm/Support/TargetRegistry.h"
113 #include "llvm/Support/Timer.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include "llvm/Target/TargetLoweringObjectFile.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Target/TargetOptions.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cinttypes>
121 #include <cstdint>
122 #include <iterator>
123 #include <limits>
124 #include <memory>
125 #include <string>
126 #include <utility>
127 #include <vector>
128 
129 using namespace llvm;
130 
131 #define DEBUG_TYPE "asm-printer"
132 
133 static const char *const DWARFGroupName = "dwarf";
134 static const char *const DWARFGroupDescription = "DWARF Emission";
135 static const char *const DbgTimerName = "emit";
136 static const char *const DbgTimerDescription = "Debug Info Emission";
137 static const char *const EHTimerName = "write_exception";
138 static const char *const EHTimerDescription = "DWARF Exception Writer";
139 static const char *const CFGuardName = "Control Flow Guard";
140 static const char *const CFGuardDescription = "Control Flow Guard Tables";
141 static const char *const CodeViewLineTablesGroupName = "linetables";
142 static const char *const CodeViewLineTablesGroupDescription =
143   "CodeView Line Tables";
144 
145 STATISTIC(EmittedInsts, "Number of machine instrs printed");
146 
147 static cl::opt<bool> EnableRemarksSection(
148     "remarks-section",
149     cl::desc("Emit a section containing remark diagnostics metadata"),
150     cl::init(false));
151 
152 char AsmPrinter::ID = 0;
153 
154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
155 
156 static gcp_map_type &getGCMap(void *&P) {
157   if (!P)
158     P = new gcp_map_type();
159   return *(gcp_map_type*)P;
160 }
161 
162 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
163 /// value in log2 form.  This rounds up to the preferred alignment if possible
164 /// and legal.
165 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
166                                    unsigned InBits = 0) {
167   unsigned NumBits = 0;
168   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
169     NumBits = DL.getPreferredAlignmentLog(GVar);
170 
171   // If InBits is specified, round it to it.
172   if (InBits > NumBits)
173     NumBits = InBits;
174 
175   // If the GV has a specified alignment, take it into account.
176   if (GV->getAlignment() == 0)
177     return NumBits;
178 
179   unsigned GVAlign = Log2_32(GV->getAlignment());
180 
181   // If the GVAlign is larger than NumBits, or if we are required to obey
182   // NumBits because the GV has an assigned section, obey it.
183   if (GVAlign > NumBits || GV->hasSection())
184     NumBits = GVAlign;
185   return NumBits;
186 }
187 
188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
189     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
190       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
191   VerboseAsm = OutStreamer->isVerboseAsm();
192 }
193 
194 AsmPrinter::~AsmPrinter() {
195   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
196 
197   if (GCMetadataPrinters) {
198     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
199 
200     delete &GCMap;
201     GCMetadataPrinters = nullptr;
202   }
203 }
204 
205 bool AsmPrinter::isPositionIndependent() const {
206   return TM.isPositionIndependent();
207 }
208 
209 /// getFunctionNumber - Return a unique ID for the current function.
210 unsigned AsmPrinter::getFunctionNumber() const {
211   return MF->getFunctionNumber();
212 }
213 
214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
215   return *TM.getObjFileLowering();
216 }
217 
218 const DataLayout &AsmPrinter::getDataLayout() const {
219   return MMI->getModule()->getDataLayout();
220 }
221 
222 // Do not use the cached DataLayout because some client use it without a Module
223 // (dsymutil, llvm-dwarfdump).
224 unsigned AsmPrinter::getPointerSize() const {
225   return TM.getPointerSize(0); // FIXME: Default address space
226 }
227 
228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
229   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
230   return MF->getSubtarget<MCSubtargetInfo>();
231 }
232 
233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
234   S.EmitInstruction(Inst, getSubtargetInfo());
235 }
236 
237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
238   assert(DD && "Dwarf debug file is not defined.");
239   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
240   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
241 }
242 
243 /// getCurrentSection() - Return the current section we are emitting to.
244 const MCSection *AsmPrinter::getCurrentSection() const {
245   return OutStreamer->getCurrentSectionOnly();
246 }
247 
248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
249   AU.setPreservesAll();
250   MachineFunctionPass::getAnalysisUsage(AU);
251   AU.addRequired<MachineModuleInfo>();
252   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
253   AU.addRequired<GCModuleInfo>();
254 }
255 
256 bool AsmPrinter::doInitialization(Module &M) {
257   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
258 
259   // Initialize TargetLoweringObjectFile.
260   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
261     .Initialize(OutContext, TM);
262 
263   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
264       .getModuleMetadata(M);
265 
266   OutStreamer->InitSections(false);
267 
268   // Emit the version-min deployment target directive if needed.
269   //
270   // FIXME: If we end up with a collection of these sorts of Darwin-specific
271   // or ELF-specific things, it may make sense to have a platform helper class
272   // that will work with the target helper class. For now keep it here, as the
273   // alternative is duplicated code in each of the target asm printers that
274   // use the directive, where it would need the same conditionalization
275   // anyway.
276   const Triple &Target = TM.getTargetTriple();
277   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
278 
279   // Allow the target to emit any magic that it wants at the start of the file.
280   EmitStartOfAsmFile(M);
281 
282   // Very minimal debug info. It is ignored if we emit actual debug info. If we
283   // don't, this at least helps the user find where a global came from.
284   if (MAI->hasSingleParameterDotFile()) {
285     // .file "foo.c"
286     OutStreamer->EmitFileDirective(
287         llvm::sys::path::filename(M.getSourceFileName()));
288   }
289 
290   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
291   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
292   for (auto &I : *MI)
293     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
294       MP->beginAssembly(M, *MI, *this);
295 
296   // Emit module-level inline asm if it exists.
297   if (!M.getModuleInlineAsm().empty()) {
298     // We're at the module level. Construct MCSubtarget from the default CPU
299     // and target triple.
300     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
301         TM.getTargetTriple().str(), TM.getTargetCPU(),
302         TM.getTargetFeatureString()));
303     OutStreamer->AddComment("Start of file scope inline assembly");
304     OutStreamer->AddBlankLine();
305     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
306                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
307     OutStreamer->AddComment("End of file scope inline assembly");
308     OutStreamer->AddBlankLine();
309   }
310 
311   if (MAI->doesSupportDebugInformation()) {
312     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
313     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
314       Handlers.emplace_back(llvm::make_unique<CodeViewDebug>(this),
315                             DbgTimerName, DbgTimerDescription,
316                             CodeViewLineTablesGroupName,
317                             CodeViewLineTablesGroupDescription);
318     }
319     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
320       DD = new DwarfDebug(this, &M);
321       DD->beginModule();
322       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
323                             DbgTimerDescription, DWARFGroupName,
324                             DWARFGroupDescription);
325     }
326   }
327 
328   switch (MAI->getExceptionHandlingType()) {
329   case ExceptionHandling::SjLj:
330   case ExceptionHandling::DwarfCFI:
331   case ExceptionHandling::ARM:
332     isCFIMoveForDebugging = true;
333     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
334       break;
335     for (auto &F: M.getFunctionList()) {
336       // If the module contains any function with unwind data,
337       // .eh_frame has to be emitted.
338       // Ignore functions that won't get emitted.
339       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
340         isCFIMoveForDebugging = false;
341         break;
342       }
343     }
344     break;
345   default:
346     isCFIMoveForDebugging = false;
347     break;
348   }
349 
350   EHStreamer *ES = nullptr;
351   switch (MAI->getExceptionHandlingType()) {
352   case ExceptionHandling::None:
353     break;
354   case ExceptionHandling::SjLj:
355   case ExceptionHandling::DwarfCFI:
356     ES = new DwarfCFIException(this);
357     break;
358   case ExceptionHandling::ARM:
359     ES = new ARMException(this);
360     break;
361   case ExceptionHandling::WinEH:
362     switch (MAI->getWinEHEncodingType()) {
363     default: llvm_unreachable("unsupported unwinding information encoding");
364     case WinEH::EncodingType::Invalid:
365       break;
366     case WinEH::EncodingType::X86:
367     case WinEH::EncodingType::Itanium:
368       ES = new WinException(this);
369       break;
370     }
371     break;
372   case ExceptionHandling::Wasm:
373     ES = new WasmException(this);
374     break;
375   }
376   if (ES)
377     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
378                           EHTimerDescription, DWARFGroupName,
379                           DWARFGroupDescription);
380 
381   if (mdconst::extract_or_null<ConstantInt>(
382           MMI->getModule()->getModuleFlag("cfguardtable")))
383     Handlers.emplace_back(llvm::make_unique<WinCFGuard>(this), CFGuardName,
384                           CFGuardDescription, DWARFGroupName,
385                           DWARFGroupDescription);
386 
387   return false;
388 }
389 
390 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
391   if (!MAI.hasWeakDefCanBeHiddenDirective())
392     return false;
393 
394   return GV->canBeOmittedFromSymbolTable();
395 }
396 
397 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
398   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
399   switch (Linkage) {
400   case GlobalValue::CommonLinkage:
401   case GlobalValue::LinkOnceAnyLinkage:
402   case GlobalValue::LinkOnceODRLinkage:
403   case GlobalValue::WeakAnyLinkage:
404   case GlobalValue::WeakODRLinkage:
405     if (MAI->hasWeakDefDirective()) {
406       // .globl _foo
407       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
408 
409       if (!canBeHidden(GV, *MAI))
410         // .weak_definition _foo
411         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
412       else
413         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
414     } else if (MAI->hasLinkOnceDirective()) {
415       // .globl _foo
416       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
417       //NOTE: linkonce is handled by the section the symbol was assigned to.
418     } else {
419       // .weak _foo
420       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
421     }
422     return;
423   case GlobalValue::ExternalLinkage:
424     // If external, declare as a global symbol: .globl _foo
425     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
426     return;
427   case GlobalValue::PrivateLinkage:
428   case GlobalValue::InternalLinkage:
429     return;
430   case GlobalValue::AppendingLinkage:
431   case GlobalValue::AvailableExternallyLinkage:
432   case GlobalValue::ExternalWeakLinkage:
433     llvm_unreachable("Should never emit this");
434   }
435   llvm_unreachable("Unknown linkage type!");
436 }
437 
438 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
439                                    const GlobalValue *GV) const {
440   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
441 }
442 
443 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
444   return TM.getSymbol(GV);
445 }
446 
447 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
448 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
449   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
450   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
451          "No emulated TLS variables in the common section");
452 
453   // Never emit TLS variable xyz in emulated TLS model.
454   // The initialization value is in __emutls_t.xyz instead of xyz.
455   if (IsEmuTLSVar)
456     return;
457 
458   if (GV->hasInitializer()) {
459     // Check to see if this is a special global used by LLVM, if so, emit it.
460     if (EmitSpecialLLVMGlobal(GV))
461       return;
462 
463     // Skip the emission of global equivalents. The symbol can be emitted later
464     // on by emitGlobalGOTEquivs in case it turns out to be needed.
465     if (GlobalGOTEquivs.count(getSymbol(GV)))
466       return;
467 
468     if (isVerbose()) {
469       // When printing the control variable __emutls_v.*,
470       // we don't need to print the original TLS variable name.
471       GV->printAsOperand(OutStreamer->GetCommentOS(),
472                      /*PrintType=*/false, GV->getParent());
473       OutStreamer->GetCommentOS() << '\n';
474     }
475   }
476 
477   MCSymbol *GVSym = getSymbol(GV);
478   MCSymbol *EmittedSym = GVSym;
479 
480   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
481   // attributes.
482   // GV's or GVSym's attributes will be used for the EmittedSym.
483   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
484 
485   if (!GV->hasInitializer())   // External globals require no extra code.
486     return;
487 
488   GVSym->redefineIfPossible();
489   if (GVSym->isDefined() || GVSym->isVariable())
490     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
491                        "' is already defined");
492 
493   if (MAI->hasDotTypeDotSizeDirective())
494     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
495 
496   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
497 
498   const DataLayout &DL = GV->getParent()->getDataLayout();
499   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
500 
501   // If the alignment is specified, we *must* obey it.  Overaligning a global
502   // with a specified alignment is a prompt way to break globals emitted to
503   // sections and expected to be contiguous (e.g. ObjC metadata).
504   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
505 
506   for (const HandlerInfo &HI : Handlers) {
507     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
508                        HI.TimerGroupName, HI.TimerGroupDescription,
509                        TimePassesIsEnabled);
510     HI.Handler->setSymbolSize(GVSym, Size);
511   }
512 
513   // Handle common symbols
514   if (GVKind.isCommon()) {
515     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
516     unsigned Align = 1 << AlignLog;
517     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
518       Align = 0;
519 
520     // .comm _foo, 42, 4
521     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
522     return;
523   }
524 
525   // Determine to which section this global should be emitted.
526   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
527 
528   // If we have a bss global going to a section that supports the
529   // zerofill directive, do so here.
530   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
531       TheSection->isVirtualSection()) {
532     if (Size == 0)
533       Size = 1; // zerofill of 0 bytes is undefined.
534     unsigned Align = 1 << AlignLog;
535     EmitLinkage(GV, GVSym);
536     // .zerofill __DATA, __bss, _foo, 400, 5
537     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
538     return;
539   }
540 
541   // If this is a BSS local symbol and we are emitting in the BSS
542   // section use .lcomm/.comm directive.
543   if (GVKind.isBSSLocal() &&
544       getObjFileLowering().getBSSSection() == TheSection) {
545     if (Size == 0)
546       Size = 1; // .comm Foo, 0 is undefined, avoid it.
547     unsigned Align = 1 << AlignLog;
548 
549     // Use .lcomm only if it supports user-specified alignment.
550     // Otherwise, while it would still be correct to use .lcomm in some
551     // cases (e.g. when Align == 1), the external assembler might enfore
552     // some -unknown- default alignment behavior, which could cause
553     // spurious differences between external and integrated assembler.
554     // Prefer to simply fall back to .local / .comm in this case.
555     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
556       // .lcomm _foo, 42
557       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
558       return;
559     }
560 
561     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
562       Align = 0;
563 
564     // .local _foo
565     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
566     // .comm _foo, 42, 4
567     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
568     return;
569   }
570 
571   // Handle thread local data for mach-o which requires us to output an
572   // additional structure of data and mangle the original symbol so that we
573   // can reference it later.
574   //
575   // TODO: This should become an "emit thread local global" method on TLOF.
576   // All of this macho specific stuff should be sunk down into TLOFMachO and
577   // stuff like "TLSExtraDataSection" should no longer be part of the parent
578   // TLOF class.  This will also make it more obvious that stuff like
579   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
580   // specific code.
581   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
582     // Emit the .tbss symbol
583     MCSymbol *MangSym =
584         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
585 
586     if (GVKind.isThreadBSS()) {
587       TheSection = getObjFileLowering().getTLSBSSSection();
588       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
589     } else if (GVKind.isThreadData()) {
590       OutStreamer->SwitchSection(TheSection);
591 
592       EmitAlignment(AlignLog, GV);
593       OutStreamer->EmitLabel(MangSym);
594 
595       EmitGlobalConstant(GV->getParent()->getDataLayout(),
596                          GV->getInitializer());
597     }
598 
599     OutStreamer->AddBlankLine();
600 
601     // Emit the variable struct for the runtime.
602     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
603 
604     OutStreamer->SwitchSection(TLVSect);
605     // Emit the linkage here.
606     EmitLinkage(GV, GVSym);
607     OutStreamer->EmitLabel(GVSym);
608 
609     // Three pointers in size:
610     //   - __tlv_bootstrap - used to make sure support exists
611     //   - spare pointer, used when mapped by the runtime
612     //   - pointer to mangled symbol above with initializer
613     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
614     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
615                                 PtrSize);
616     OutStreamer->EmitIntValue(0, PtrSize);
617     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
618 
619     OutStreamer->AddBlankLine();
620     return;
621   }
622 
623   MCSymbol *EmittedInitSym = GVSym;
624 
625   OutStreamer->SwitchSection(TheSection);
626 
627   EmitLinkage(GV, EmittedInitSym);
628   EmitAlignment(AlignLog, GV);
629 
630   OutStreamer->EmitLabel(EmittedInitSym);
631 
632   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
633 
634   if (MAI->hasDotTypeDotSizeDirective())
635     // .size foo, 42
636     OutStreamer->emitELFSize(EmittedInitSym,
637                              MCConstantExpr::create(Size, OutContext));
638 
639   OutStreamer->AddBlankLine();
640 }
641 
642 /// Emit the directive and value for debug thread local expression
643 ///
644 /// \p Value - The value to emit.
645 /// \p Size - The size of the integer (in bytes) to emit.
646 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
647   OutStreamer->EmitValue(Value, Size);
648 }
649 
650 /// EmitFunctionHeader - This method emits the header for the current
651 /// function.
652 void AsmPrinter::EmitFunctionHeader() {
653   const Function &F = MF->getFunction();
654 
655   if (isVerbose())
656     OutStreamer->GetCommentOS()
657         << "-- Begin function "
658         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
659 
660   // Print out constants referenced by the function
661   EmitConstantPool();
662 
663   // Print the 'header' of function.
664   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
665   EmitVisibility(CurrentFnSym, F.getVisibility());
666 
667   EmitLinkage(&F, CurrentFnSym);
668   if (MAI->hasFunctionAlignment())
669     EmitAlignment(MF->getAlignment(), &F);
670 
671   if (MAI->hasDotTypeDotSizeDirective())
672     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
673 
674   if (F.hasFnAttribute(Attribute::Cold))
675     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
676 
677   if (isVerbose()) {
678     F.printAsOperand(OutStreamer->GetCommentOS(),
679                    /*PrintType=*/false, F.getParent());
680     OutStreamer->GetCommentOS() << '\n';
681   }
682 
683   // Emit the prefix data.
684   if (F.hasPrefixData()) {
685     if (MAI->hasSubsectionsViaSymbols()) {
686       // Preserving prefix data on platforms which use subsections-via-symbols
687       // is a bit tricky. Here we introduce a symbol for the prefix data
688       // and use the .alt_entry attribute to mark the function's real entry point
689       // as an alternative entry point to the prefix-data symbol.
690       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
691       OutStreamer->EmitLabel(PrefixSym);
692 
693       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
694 
695       // Emit an .alt_entry directive for the actual function symbol.
696       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
697     } else {
698       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
699     }
700   }
701 
702   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
703   // do their wild and crazy things as required.
704   EmitFunctionEntryLabel();
705 
706   // If the function had address-taken blocks that got deleted, then we have
707   // references to the dangling symbols.  Emit them at the start of the function
708   // so that we don't get references to undefined symbols.
709   std::vector<MCSymbol*> DeadBlockSyms;
710   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
711   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
712     OutStreamer->AddComment("Address taken block that was later removed");
713     OutStreamer->EmitLabel(DeadBlockSyms[i]);
714   }
715 
716   if (CurrentFnBegin) {
717     if (MAI->useAssignmentForEHBegin()) {
718       MCSymbol *CurPos = OutContext.createTempSymbol();
719       OutStreamer->EmitLabel(CurPos);
720       OutStreamer->EmitAssignment(CurrentFnBegin,
721                                  MCSymbolRefExpr::create(CurPos, OutContext));
722     } else {
723       OutStreamer->EmitLabel(CurrentFnBegin);
724     }
725   }
726 
727   // Emit pre-function debug and/or EH information.
728   for (const HandlerInfo &HI : Handlers) {
729     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
730                        HI.TimerGroupDescription, TimePassesIsEnabled);
731     HI.Handler->beginFunction(MF);
732   }
733 
734   // Emit the prologue data.
735   if (F.hasPrologueData())
736     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
737 }
738 
739 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
740 /// function.  This can be overridden by targets as required to do custom stuff.
741 void AsmPrinter::EmitFunctionEntryLabel() {
742   CurrentFnSym->redefineIfPossible();
743 
744   // The function label could have already been emitted if two symbols end up
745   // conflicting due to asm renaming.  Detect this and emit an error.
746   if (CurrentFnSym->isVariable())
747     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
748                        "' is a protected alias");
749   if (CurrentFnSym->isDefined())
750     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
751                        "' label emitted multiple times to assembly file");
752 
753   return OutStreamer->EmitLabel(CurrentFnSym);
754 }
755 
756 /// emitComments - Pretty-print comments for instructions.
757 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
758   const MachineFunction *MF = MI.getMF();
759   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
760 
761   // Check for spills and reloads
762 
763   // We assume a single instruction only has a spill or reload, not
764   // both.
765   Optional<unsigned> Size;
766   if ((Size = MI.getRestoreSize(TII))) {
767     CommentOS << *Size << "-byte Reload\n";
768   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
769     if (*Size)
770       CommentOS << *Size << "-byte Folded Reload\n";
771   } else if ((Size = MI.getSpillSize(TII))) {
772     CommentOS << *Size << "-byte Spill\n";
773   } else if ((Size = MI.getFoldedSpillSize(TII))) {
774     if (*Size)
775       CommentOS << *Size << "-byte Folded Spill\n";
776   }
777 
778   // Check for spill-induced copies
779   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
780     CommentOS << " Reload Reuse\n";
781 }
782 
783 /// emitImplicitDef - This method emits the specified machine instruction
784 /// that is an implicit def.
785 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
786   unsigned RegNo = MI->getOperand(0).getReg();
787 
788   SmallString<128> Str;
789   raw_svector_ostream OS(Str);
790   OS << "implicit-def: "
791      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
792 
793   OutStreamer->AddComment(OS.str());
794   OutStreamer->AddBlankLine();
795 }
796 
797 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
798   std::string Str;
799   raw_string_ostream OS(Str);
800   OS << "kill:";
801   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
802     const MachineOperand &Op = MI->getOperand(i);
803     assert(Op.isReg() && "KILL instruction must have only register operands");
804     OS << ' ' << (Op.isDef() ? "def " : "killed ")
805        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
806   }
807   AP.OutStreamer->AddComment(OS.str());
808   AP.OutStreamer->AddBlankLine();
809 }
810 
811 /// emitDebugValueComment - This method handles the target-independent form
812 /// of DBG_VALUE, returning true if it was able to do so.  A false return
813 /// means the target will need to handle MI in EmitInstruction.
814 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
815   // This code handles only the 4-operand target-independent form.
816   if (MI->getNumOperands() != 4)
817     return false;
818 
819   SmallString<128> Str;
820   raw_svector_ostream OS(Str);
821   OS << "DEBUG_VALUE: ";
822 
823   const DILocalVariable *V = MI->getDebugVariable();
824   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
825     StringRef Name = SP->getName();
826     if (!Name.empty())
827       OS << Name << ":";
828   }
829   OS << V->getName();
830   OS << " <- ";
831 
832   // The second operand is only an offset if it's an immediate.
833   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
834   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
835   const DIExpression *Expr = MI->getDebugExpression();
836   if (Expr->getNumElements()) {
837     OS << '[';
838     bool NeedSep = false;
839     for (auto Op : Expr->expr_ops()) {
840       if (NeedSep)
841         OS << ", ";
842       else
843         NeedSep = true;
844       OS << dwarf::OperationEncodingString(Op.getOp());
845       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
846         OS << ' ' << Op.getArg(I);
847     }
848     OS << "] ";
849   }
850 
851   // Register or immediate value. Register 0 means undef.
852   if (MI->getOperand(0).isFPImm()) {
853     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
854     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
855       OS << (double)APF.convertToFloat();
856     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
857       OS << APF.convertToDouble();
858     } else {
859       // There is no good way to print long double.  Convert a copy to
860       // double.  Ah well, it's only a comment.
861       bool ignored;
862       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
863                   &ignored);
864       OS << "(long double) " << APF.convertToDouble();
865     }
866   } else if (MI->getOperand(0).isImm()) {
867     OS << MI->getOperand(0).getImm();
868   } else if (MI->getOperand(0).isCImm()) {
869     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
870   } else {
871     unsigned Reg;
872     if (MI->getOperand(0).isReg()) {
873       Reg = MI->getOperand(0).getReg();
874     } else {
875       assert(MI->getOperand(0).isFI() && "Unknown operand type");
876       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
877       Offset += TFI->getFrameIndexReference(*AP.MF,
878                                             MI->getOperand(0).getIndex(), Reg);
879       MemLoc = true;
880     }
881     if (Reg == 0) {
882       // Suppress offset, it is not meaningful here.
883       OS << "undef";
884       // NOTE: Want this comment at start of line, don't emit with AddComment.
885       AP.OutStreamer->emitRawComment(OS.str());
886       return true;
887     }
888     if (MemLoc)
889       OS << '[';
890     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
891   }
892 
893   if (MemLoc)
894     OS << '+' << Offset << ']';
895 
896   // NOTE: Want this comment at start of line, don't emit with AddComment.
897   AP.OutStreamer->emitRawComment(OS.str());
898   return true;
899 }
900 
901 /// This method handles the target-independent form of DBG_LABEL, returning
902 /// true if it was able to do so.  A false return means the target will need
903 /// to handle MI in EmitInstruction.
904 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
905   if (MI->getNumOperands() != 1)
906     return false;
907 
908   SmallString<128> Str;
909   raw_svector_ostream OS(Str);
910   OS << "DEBUG_LABEL: ";
911 
912   const DILabel *V = MI->getDebugLabel();
913   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
914     StringRef Name = SP->getName();
915     if (!Name.empty())
916       OS << Name << ":";
917   }
918   OS << V->getName();
919 
920   // NOTE: Want this comment at start of line, don't emit with AddComment.
921   AP.OutStreamer->emitRawComment(OS.str());
922   return true;
923 }
924 
925 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
926   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
927       MF->getFunction().needsUnwindTableEntry())
928     return CFI_M_EH;
929 
930   if (MMI->hasDebugInfo())
931     return CFI_M_Debug;
932 
933   return CFI_M_None;
934 }
935 
936 bool AsmPrinter::needsSEHMoves() {
937   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
938 }
939 
940 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
941   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
942   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
943       ExceptionHandlingType != ExceptionHandling::ARM)
944     return;
945 
946   if (needsCFIMoves() == CFI_M_None)
947     return;
948 
949   // If there is no "real" instruction following this CFI instruction, skip
950   // emitting it; it would be beyond the end of the function's FDE range.
951   auto *MBB = MI.getParent();
952   auto I = std::next(MI.getIterator());
953   while (I != MBB->end() && I->isTransient())
954     ++I;
955   if (I == MBB->instr_end() &&
956       MBB->getReverseIterator() == MBB->getParent()->rbegin())
957     return;
958 
959   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
960   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
961   const MCCFIInstruction &CFI = Instrs[CFIIndex];
962   emitCFIInstruction(CFI);
963 }
964 
965 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
966   // The operands are the MCSymbol and the frame offset of the allocation.
967   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
968   int FrameOffset = MI.getOperand(1).getImm();
969 
970   // Emit a symbol assignment.
971   OutStreamer->EmitAssignment(FrameAllocSym,
972                              MCConstantExpr::create(FrameOffset, OutContext));
973 }
974 
975 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
976   if (!MF.getTarget().Options.EmitStackSizeSection)
977     return;
978 
979   MCSection *StackSizeSection =
980       getObjFileLowering().getStackSizesSection(*getCurrentSection());
981   if (!StackSizeSection)
982     return;
983 
984   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
985   // Don't emit functions with dynamic stack allocations.
986   if (FrameInfo.hasVarSizedObjects())
987     return;
988 
989   OutStreamer->PushSection();
990   OutStreamer->SwitchSection(StackSizeSection);
991 
992   const MCSymbol *FunctionSymbol = getFunctionBegin();
993   uint64_t StackSize = FrameInfo.getStackSize();
994   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
995   OutStreamer->EmitULEB128IntValue(StackSize);
996 
997   OutStreamer->PopSection();
998 }
999 
1000 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1001                                            MachineModuleInfo *MMI) {
1002   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1003     return true;
1004 
1005   // We might emit an EH table that uses function begin and end labels even if
1006   // we don't have any landingpads.
1007   if (!MF.getFunction().hasPersonalityFn())
1008     return false;
1009   return !isNoOpWithoutInvoke(
1010       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1011 }
1012 
1013 /// EmitFunctionBody - This method emits the body and trailer for a
1014 /// function.
1015 void AsmPrinter::EmitFunctionBody() {
1016   EmitFunctionHeader();
1017 
1018   // Emit target-specific gunk before the function body.
1019   EmitFunctionBodyStart();
1020 
1021   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1022 
1023   if (isVerbose()) {
1024     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1025     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1026     if (!MDT) {
1027       OwnedMDT = make_unique<MachineDominatorTree>();
1028       OwnedMDT->getBase().recalculate(*MF);
1029       MDT = OwnedMDT.get();
1030     }
1031 
1032     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1033     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1034     if (!MLI) {
1035       OwnedMLI = make_unique<MachineLoopInfo>();
1036       OwnedMLI->getBase().analyze(MDT->getBase());
1037       MLI = OwnedMLI.get();
1038     }
1039   }
1040 
1041   // Print out code for the function.
1042   bool HasAnyRealCode = false;
1043   int NumInstsInFunction = 0;
1044   for (auto &MBB : *MF) {
1045     // Print a label for the basic block.
1046     EmitBasicBlockStart(MBB);
1047     for (auto &MI : MBB) {
1048       // Print the assembly for the instruction.
1049       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1050           !MI.isDebugInstr()) {
1051         HasAnyRealCode = true;
1052         ++NumInstsInFunction;
1053       }
1054 
1055       // If there is a pre-instruction symbol, emit a label for it here.
1056       if (MCSymbol *S = MI.getPreInstrSymbol())
1057         OutStreamer->EmitLabel(S);
1058 
1059       if (ShouldPrintDebugScopes) {
1060         for (const HandlerInfo &HI : Handlers) {
1061           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1062                              HI.TimerGroupName, HI.TimerGroupDescription,
1063                              TimePassesIsEnabled);
1064           HI.Handler->beginInstruction(&MI);
1065         }
1066       }
1067 
1068       if (isVerbose())
1069         emitComments(MI, OutStreamer->GetCommentOS());
1070 
1071       switch (MI.getOpcode()) {
1072       case TargetOpcode::CFI_INSTRUCTION:
1073         emitCFIInstruction(MI);
1074         break;
1075       case TargetOpcode::LOCAL_ESCAPE:
1076         emitFrameAlloc(MI);
1077         break;
1078       case TargetOpcode::ANNOTATION_LABEL:
1079       case TargetOpcode::EH_LABEL:
1080       case TargetOpcode::GC_LABEL:
1081         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1082         break;
1083       case TargetOpcode::INLINEASM:
1084       case TargetOpcode::INLINEASM_BR:
1085         EmitInlineAsm(&MI);
1086         break;
1087       case TargetOpcode::DBG_VALUE:
1088         if (isVerbose()) {
1089           if (!emitDebugValueComment(&MI, *this))
1090             EmitInstruction(&MI);
1091         }
1092         break;
1093       case TargetOpcode::DBG_LABEL:
1094         if (isVerbose()) {
1095           if (!emitDebugLabelComment(&MI, *this))
1096             EmitInstruction(&MI);
1097         }
1098         break;
1099       case TargetOpcode::IMPLICIT_DEF:
1100         if (isVerbose()) emitImplicitDef(&MI);
1101         break;
1102       case TargetOpcode::KILL:
1103         if (isVerbose()) emitKill(&MI, *this);
1104         break;
1105       default:
1106         EmitInstruction(&MI);
1107         break;
1108       }
1109 
1110       // If there is a post-instruction symbol, emit a label for it here.
1111       if (MCSymbol *S = MI.getPostInstrSymbol())
1112         OutStreamer->EmitLabel(S);
1113 
1114       if (ShouldPrintDebugScopes) {
1115         for (const HandlerInfo &HI : Handlers) {
1116           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1117                              HI.TimerGroupName, HI.TimerGroupDescription,
1118                              TimePassesIsEnabled);
1119           HI.Handler->endInstruction();
1120         }
1121       }
1122     }
1123 
1124     EmitBasicBlockEnd(MBB);
1125   }
1126 
1127   EmittedInsts += NumInstsInFunction;
1128   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1129                                       MF->getFunction().getSubprogram(),
1130                                       &MF->front());
1131   R << ore::NV("NumInstructions", NumInstsInFunction)
1132     << " instructions in function";
1133   ORE->emit(R);
1134 
1135   // If the function is empty and the object file uses .subsections_via_symbols,
1136   // then we need to emit *something* to the function body to prevent the
1137   // labels from collapsing together.  Just emit a noop.
1138   // Similarly, don't emit empty functions on Windows either. It can lead to
1139   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1140   // after linking, causing the kernel not to load the binary:
1141   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1142   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1143   const Triple &TT = TM.getTargetTriple();
1144   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1145                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1146     MCInst Noop;
1147     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1148 
1149     // Targets can opt-out of emitting the noop here by leaving the opcode
1150     // unspecified.
1151     if (Noop.getOpcode()) {
1152       OutStreamer->AddComment("avoids zero-length function");
1153       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1154     }
1155   }
1156 
1157   const Function &F = MF->getFunction();
1158   for (const auto &BB : F) {
1159     if (!BB.hasAddressTaken())
1160       continue;
1161     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1162     if (Sym->isDefined())
1163       continue;
1164     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1165     OutStreamer->EmitLabel(Sym);
1166   }
1167 
1168   // Emit target-specific gunk after the function body.
1169   EmitFunctionBodyEnd();
1170 
1171   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1172       MAI->hasDotTypeDotSizeDirective()) {
1173     // Create a symbol for the end of function.
1174     CurrentFnEnd = createTempSymbol("func_end");
1175     OutStreamer->EmitLabel(CurrentFnEnd);
1176   }
1177 
1178   // If the target wants a .size directive for the size of the function, emit
1179   // it.
1180   if (MAI->hasDotTypeDotSizeDirective()) {
1181     // We can get the size as difference between the function label and the
1182     // temp label.
1183     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1184         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1185         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1186     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1187   }
1188 
1189   for (const HandlerInfo &HI : Handlers) {
1190     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1191                        HI.TimerGroupDescription, TimePassesIsEnabled);
1192     HI.Handler->markFunctionEnd();
1193   }
1194 
1195   // Print out jump tables referenced by the function.
1196   EmitJumpTableInfo();
1197 
1198   // Emit post-function debug and/or EH information.
1199   for (const HandlerInfo &HI : Handlers) {
1200     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1201                        HI.TimerGroupDescription, TimePassesIsEnabled);
1202     HI.Handler->endFunction(MF);
1203   }
1204 
1205   // Emit section containing stack size metadata.
1206   emitStackSizeSection(*MF);
1207 
1208   if (isVerbose())
1209     OutStreamer->GetCommentOS() << "-- End function\n";
1210 
1211   OutStreamer->AddBlankLine();
1212 }
1213 
1214 /// Compute the number of Global Variables that uses a Constant.
1215 static unsigned getNumGlobalVariableUses(const Constant *C) {
1216   if (!C)
1217     return 0;
1218 
1219   if (isa<GlobalVariable>(C))
1220     return 1;
1221 
1222   unsigned NumUses = 0;
1223   for (auto *CU : C->users())
1224     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1225 
1226   return NumUses;
1227 }
1228 
1229 /// Only consider global GOT equivalents if at least one user is a
1230 /// cstexpr inside an initializer of another global variables. Also, don't
1231 /// handle cstexpr inside instructions. During global variable emission,
1232 /// candidates are skipped and are emitted later in case at least one cstexpr
1233 /// isn't replaced by a PC relative GOT entry access.
1234 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1235                                      unsigned &NumGOTEquivUsers) {
1236   // Global GOT equivalents are unnamed private globals with a constant
1237   // pointer initializer to another global symbol. They must point to a
1238   // GlobalVariable or Function, i.e., as GlobalValue.
1239   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1240       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1241       !isa<GlobalValue>(GV->getOperand(0)))
1242     return false;
1243 
1244   // To be a got equivalent, at least one of its users need to be a constant
1245   // expression used by another global variable.
1246   for (auto *U : GV->users())
1247     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1248 
1249   return NumGOTEquivUsers > 0;
1250 }
1251 
1252 /// Unnamed constant global variables solely contaning a pointer to
1253 /// another globals variable is equivalent to a GOT table entry; it contains the
1254 /// the address of another symbol. Optimize it and replace accesses to these
1255 /// "GOT equivalents" by using the GOT entry for the final global instead.
1256 /// Compute GOT equivalent candidates among all global variables to avoid
1257 /// emitting them if possible later on, after it use is replaced by a GOT entry
1258 /// access.
1259 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1260   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1261     return;
1262 
1263   for (const auto &G : M.globals()) {
1264     unsigned NumGOTEquivUsers = 0;
1265     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1266       continue;
1267 
1268     const MCSymbol *GOTEquivSym = getSymbol(&G);
1269     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1270   }
1271 }
1272 
1273 /// Constant expressions using GOT equivalent globals may not be eligible
1274 /// for PC relative GOT entry conversion, in such cases we need to emit such
1275 /// globals we previously omitted in EmitGlobalVariable.
1276 void AsmPrinter::emitGlobalGOTEquivs() {
1277   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1278     return;
1279 
1280   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1281   for (auto &I : GlobalGOTEquivs) {
1282     const GlobalVariable *GV = I.second.first;
1283     unsigned Cnt = I.second.second;
1284     if (Cnt)
1285       FailedCandidates.push_back(GV);
1286   }
1287   GlobalGOTEquivs.clear();
1288 
1289   for (auto *GV : FailedCandidates)
1290     EmitGlobalVariable(GV);
1291 }
1292 
1293 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1294                                           const GlobalIndirectSymbol& GIS) {
1295   MCSymbol *Name = getSymbol(&GIS);
1296 
1297   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1298     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1299   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1300     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1301   else
1302     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1303 
1304   bool IsFunction = GIS.getValueType()->isFunctionTy();
1305 
1306   // Treat bitcasts of functions as functions also. This is important at least
1307   // on WebAssembly where object and function addresses can't alias each other.
1308   if (!IsFunction)
1309     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1310       if (CE->getOpcode() == Instruction::BitCast)
1311         IsFunction =
1312           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1313 
1314   // Set the symbol type to function if the alias has a function type.
1315   // This affects codegen when the aliasee is not a function.
1316   if (IsFunction) {
1317     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1318     if (isa<GlobalIFunc>(GIS))
1319       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1320   }
1321 
1322   EmitVisibility(Name, GIS.getVisibility());
1323 
1324   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1325 
1326   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1327     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1328 
1329   // Emit the directives as assignments aka .set:
1330   OutStreamer->EmitAssignment(Name, Expr);
1331 
1332   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1333     // If the aliasee does not correspond to a symbol in the output, i.e. the
1334     // alias is not of an object or the aliased object is private, then set the
1335     // size of the alias symbol from the type of the alias. We don't do this in
1336     // other situations as the alias and aliasee having differing types but same
1337     // size may be intentional.
1338     const GlobalObject *BaseObject = GA->getBaseObject();
1339     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1340         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1341       const DataLayout &DL = M.getDataLayout();
1342       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1343       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1344     }
1345   }
1346 }
1347 
1348 void AsmPrinter::emitRemarksSection(Module &M) {
1349   RemarkStreamer *RS = M.getContext().getRemarkStreamer();
1350   if (!RS)
1351     return;
1352   remarks::RemarkSerializer &RemarkSerializer = RS->getSerializer();
1353 
1354   StringRef FilenameRef = RS->getFilename();
1355   SmallString<128> Filename = FilenameRef;
1356   sys::fs::make_absolute(Filename);
1357   assert(!Filename.empty() && "The filename can't be empty.");
1358 
1359   std::string Buf;
1360   raw_string_ostream OS(Buf);
1361   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1362       RemarkSerializer.metaSerializer(OS, StringRef(Filename));
1363   MetaSerializer->emit();
1364 
1365   // Switch to the right section: .remarks/__remarks.
1366   MCSection *RemarksSection =
1367       OutContext.getObjectFileInfo()->getRemarksSection();
1368   OutStreamer->SwitchSection(RemarksSection);
1369 
1370   OutStreamer->EmitBinaryData(OS.str());
1371 }
1372 
1373 bool AsmPrinter::doFinalization(Module &M) {
1374   // Set the MachineFunction to nullptr so that we can catch attempted
1375   // accesses to MF specific features at the module level and so that
1376   // we can conditionalize accesses based on whether or not it is nullptr.
1377   MF = nullptr;
1378 
1379   // Gather all GOT equivalent globals in the module. We really need two
1380   // passes over the globals: one to compute and another to avoid its emission
1381   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1382   // where the got equivalent shows up before its use.
1383   computeGlobalGOTEquivs(M);
1384 
1385   // Emit global variables.
1386   for (const auto &G : M.globals())
1387     EmitGlobalVariable(&G);
1388 
1389   // Emit remaining GOT equivalent globals.
1390   emitGlobalGOTEquivs();
1391 
1392   // Emit visibility info for declarations
1393   for (const Function &F : M) {
1394     if (!F.isDeclarationForLinker())
1395       continue;
1396     GlobalValue::VisibilityTypes V = F.getVisibility();
1397     if (V == GlobalValue::DefaultVisibility)
1398       continue;
1399 
1400     MCSymbol *Name = getSymbol(&F);
1401     EmitVisibility(Name, V, false);
1402   }
1403 
1404   // Emit the remarks section contents.
1405   // FIXME: Figure out when is the safest time to emit this section. It should
1406   // not come after debug info.
1407   if (EnableRemarksSection)
1408     emitRemarksSection(M);
1409 
1410   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1411 
1412   TLOF.emitModuleMetadata(*OutStreamer, M);
1413 
1414   if (TM.getTargetTriple().isOSBinFormatELF()) {
1415     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1416 
1417     // Output stubs for external and common global variables.
1418     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1419     if (!Stubs.empty()) {
1420       OutStreamer->SwitchSection(TLOF.getDataSection());
1421       const DataLayout &DL = M.getDataLayout();
1422 
1423       EmitAlignment(Log2_32(DL.getPointerSize()));
1424       for (const auto &Stub : Stubs) {
1425         OutStreamer->EmitLabel(Stub.first);
1426         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1427                                      DL.getPointerSize());
1428       }
1429     }
1430   }
1431 
1432   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1433     MachineModuleInfoCOFF &MMICOFF =
1434         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1435 
1436     // Output stubs for external and common global variables.
1437     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1438     if (!Stubs.empty()) {
1439       const DataLayout &DL = M.getDataLayout();
1440 
1441       for (const auto &Stub : Stubs) {
1442         SmallString<256> SectionName = StringRef(".rdata$");
1443         SectionName += Stub.first->getName();
1444         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1445             SectionName,
1446             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1447                 COFF::IMAGE_SCN_LNK_COMDAT,
1448             SectionKind::getReadOnly(), Stub.first->getName(),
1449             COFF::IMAGE_COMDAT_SELECT_ANY));
1450         EmitAlignment(Log2_32(DL.getPointerSize()));
1451         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1452         OutStreamer->EmitLabel(Stub.first);
1453         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1454                                      DL.getPointerSize());
1455       }
1456     }
1457   }
1458 
1459   // Finalize debug and EH information.
1460   for (const HandlerInfo &HI : Handlers) {
1461     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1462                        HI.TimerGroupDescription, TimePassesIsEnabled);
1463     HI.Handler->endModule();
1464   }
1465   Handlers.clear();
1466   DD = nullptr;
1467 
1468   // If the target wants to know about weak references, print them all.
1469   if (MAI->getWeakRefDirective()) {
1470     // FIXME: This is not lazy, it would be nice to only print weak references
1471     // to stuff that is actually used.  Note that doing so would require targets
1472     // to notice uses in operands (due to constant exprs etc).  This should
1473     // happen with the MC stuff eventually.
1474 
1475     // Print out module-level global objects here.
1476     for (const auto &GO : M.global_objects()) {
1477       if (!GO.hasExternalWeakLinkage())
1478         continue;
1479       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1480     }
1481   }
1482 
1483   OutStreamer->AddBlankLine();
1484 
1485   // Print aliases in topological order, that is, for each alias a = b,
1486   // b must be printed before a.
1487   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1488   // such an order to generate correct TOC information.
1489   SmallVector<const GlobalAlias *, 16> AliasStack;
1490   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1491   for (const auto &Alias : M.aliases()) {
1492     for (const GlobalAlias *Cur = &Alias; Cur;
1493          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1494       if (!AliasVisited.insert(Cur).second)
1495         break;
1496       AliasStack.push_back(Cur);
1497     }
1498     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1499       emitGlobalIndirectSymbol(M, *AncestorAlias);
1500     AliasStack.clear();
1501   }
1502   for (const auto &IFunc : M.ifuncs())
1503     emitGlobalIndirectSymbol(M, IFunc);
1504 
1505   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1506   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1507   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1508     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1509       MP->finishAssembly(M, *MI, *this);
1510 
1511   // Emit llvm.ident metadata in an '.ident' directive.
1512   EmitModuleIdents(M);
1513 
1514   // Emit bytes for llvm.commandline metadata.
1515   EmitModuleCommandLines(M);
1516 
1517   // Emit __morestack address if needed for indirect calls.
1518   if (MMI->usesMorestackAddr()) {
1519     unsigned Align = 1;
1520     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1521         getDataLayout(), SectionKind::getReadOnly(),
1522         /*C=*/nullptr, Align);
1523     OutStreamer->SwitchSection(ReadOnlySection);
1524 
1525     MCSymbol *AddrSymbol =
1526         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1527     OutStreamer->EmitLabel(AddrSymbol);
1528 
1529     unsigned PtrSize = MAI->getCodePointerSize();
1530     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1531                                  PtrSize);
1532   }
1533 
1534   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1535   // split-stack is used.
1536   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1537     OutStreamer->SwitchSection(
1538         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1539     if (MMI->hasNosplitStack())
1540       OutStreamer->SwitchSection(
1541           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1542   }
1543 
1544   // If we don't have any trampolines, then we don't require stack memory
1545   // to be executable. Some targets have a directive to declare this.
1546   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1547   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1548     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1549       OutStreamer->SwitchSection(S);
1550 
1551   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1552     // Emit /EXPORT: flags for each exported global as necessary.
1553     const auto &TLOF = getObjFileLowering();
1554     std::string Flags;
1555 
1556     for (const GlobalValue &GV : M.global_values()) {
1557       raw_string_ostream OS(Flags);
1558       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1559       OS.flush();
1560       if (!Flags.empty()) {
1561         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1562         OutStreamer->EmitBytes(Flags);
1563       }
1564       Flags.clear();
1565     }
1566 
1567     // Emit /INCLUDE: flags for each used global as necessary.
1568     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1569       assert(LU->hasInitializer() &&
1570              "expected llvm.used to have an initializer");
1571       assert(isa<ArrayType>(LU->getValueType()) &&
1572              "expected llvm.used to be an array type");
1573       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1574         for (const Value *Op : A->operands()) {
1575           const auto *GV =
1576               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1577           // Global symbols with internal or private linkage are not visible to
1578           // the linker, and thus would cause an error when the linker tried to
1579           // preserve the symbol due to the `/include:` directive.
1580           if (GV->hasLocalLinkage())
1581             continue;
1582 
1583           raw_string_ostream OS(Flags);
1584           TLOF.emitLinkerFlagsForUsed(OS, GV);
1585           OS.flush();
1586 
1587           if (!Flags.empty()) {
1588             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1589             OutStreamer->EmitBytes(Flags);
1590           }
1591           Flags.clear();
1592         }
1593       }
1594     }
1595   }
1596 
1597   if (TM.Options.EmitAddrsig) {
1598     // Emit address-significance attributes for all globals.
1599     OutStreamer->EmitAddrsig();
1600     for (const GlobalValue &GV : M.global_values())
1601       if (!GV.use_empty() && !GV.isThreadLocal() &&
1602           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1603           !GV.hasAtLeastLocalUnnamedAddr())
1604         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1605   }
1606 
1607   // Emit symbol partition specifications (ELF only).
1608   if (TM.getTargetTriple().isOSBinFormatELF()) {
1609     unsigned UniqueID = 0;
1610     for (const GlobalValue &GV : M.global_values()) {
1611       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1612           GV.getVisibility() != GlobalValue::DefaultVisibility)
1613         continue;
1614 
1615       OutStreamer->SwitchSection(OutContext.getELFSection(
1616           ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID));
1617       OutStreamer->EmitBytes(GV.getPartition());
1618       OutStreamer->EmitZeros(1);
1619       OutStreamer->EmitValue(
1620           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1621           MAI->getCodePointerSize());
1622     }
1623   }
1624 
1625   // Allow the target to emit any magic that it wants at the end of the file,
1626   // after everything else has gone out.
1627   EmitEndOfAsmFile(M);
1628 
1629   MMI = nullptr;
1630 
1631   OutStreamer->Finish();
1632   OutStreamer->reset();
1633   OwnedMLI.reset();
1634   OwnedMDT.reset();
1635 
1636   return false;
1637 }
1638 
1639 MCSymbol *AsmPrinter::getCurExceptionSym() {
1640   if (!CurExceptionSym)
1641     CurExceptionSym = createTempSymbol("exception");
1642   return CurExceptionSym;
1643 }
1644 
1645 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1646   this->MF = &MF;
1647   // Get the function symbol.
1648   CurrentFnSym = getSymbol(&MF.getFunction());
1649   CurrentFnSymForSize = CurrentFnSym;
1650   CurrentFnBegin = nullptr;
1651   CurExceptionSym = nullptr;
1652   bool NeedsLocalForSize = MAI->needsLocalForSize();
1653   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1654       MF.getTarget().Options.EmitStackSizeSection) {
1655     CurrentFnBegin = createTempSymbol("func_begin");
1656     if (NeedsLocalForSize)
1657       CurrentFnSymForSize = CurrentFnBegin;
1658   }
1659 
1660   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1661 }
1662 
1663 namespace {
1664 
1665 // Keep track the alignment, constpool entries per Section.
1666   struct SectionCPs {
1667     MCSection *S;
1668     unsigned Alignment;
1669     SmallVector<unsigned, 4> CPEs;
1670 
1671     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1672   };
1673 
1674 } // end anonymous namespace
1675 
1676 /// EmitConstantPool - Print to the current output stream assembly
1677 /// representations of the constants in the constant pool MCP. This is
1678 /// used to print out constants which have been "spilled to memory" by
1679 /// the code generator.
1680 void AsmPrinter::EmitConstantPool() {
1681   const MachineConstantPool *MCP = MF->getConstantPool();
1682   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1683   if (CP.empty()) return;
1684 
1685   // Calculate sections for constant pool entries. We collect entries to go into
1686   // the same section together to reduce amount of section switch statements.
1687   SmallVector<SectionCPs, 4> CPSections;
1688   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1689     const MachineConstantPoolEntry &CPE = CP[i];
1690     unsigned Align = CPE.getAlignment();
1691 
1692     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1693 
1694     const Constant *C = nullptr;
1695     if (!CPE.isMachineConstantPoolEntry())
1696       C = CPE.Val.ConstVal;
1697 
1698     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1699                                                               Kind, C, Align);
1700 
1701     // The number of sections are small, just do a linear search from the
1702     // last section to the first.
1703     bool Found = false;
1704     unsigned SecIdx = CPSections.size();
1705     while (SecIdx != 0) {
1706       if (CPSections[--SecIdx].S == S) {
1707         Found = true;
1708         break;
1709       }
1710     }
1711     if (!Found) {
1712       SecIdx = CPSections.size();
1713       CPSections.push_back(SectionCPs(S, Align));
1714     }
1715 
1716     if (Align > CPSections[SecIdx].Alignment)
1717       CPSections[SecIdx].Alignment = Align;
1718     CPSections[SecIdx].CPEs.push_back(i);
1719   }
1720 
1721   // Now print stuff into the calculated sections.
1722   const MCSection *CurSection = nullptr;
1723   unsigned Offset = 0;
1724   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1725     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1726       unsigned CPI = CPSections[i].CPEs[j];
1727       MCSymbol *Sym = GetCPISymbol(CPI);
1728       if (!Sym->isUndefined())
1729         continue;
1730 
1731       if (CurSection != CPSections[i].S) {
1732         OutStreamer->SwitchSection(CPSections[i].S);
1733         EmitAlignment(Log2_32(CPSections[i].Alignment));
1734         CurSection = CPSections[i].S;
1735         Offset = 0;
1736       }
1737 
1738       MachineConstantPoolEntry CPE = CP[CPI];
1739 
1740       // Emit inter-object padding for alignment.
1741       unsigned AlignMask = CPE.getAlignment() - 1;
1742       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1743       OutStreamer->EmitZeros(NewOffset - Offset);
1744 
1745       Type *Ty = CPE.getType();
1746       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1747 
1748       OutStreamer->EmitLabel(Sym);
1749       if (CPE.isMachineConstantPoolEntry())
1750         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1751       else
1752         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1753     }
1754   }
1755 }
1756 
1757 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1758 /// by the current function to the current output stream.
1759 void AsmPrinter::EmitJumpTableInfo() {
1760   const DataLayout &DL = MF->getDataLayout();
1761   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1762   if (!MJTI) return;
1763   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1764   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1765   if (JT.empty()) return;
1766 
1767   // Pick the directive to use to print the jump table entries, and switch to
1768   // the appropriate section.
1769   const Function &F = MF->getFunction();
1770   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1771   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1772       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1773       F);
1774   if (JTInDiffSection) {
1775     // Drop it in the readonly section.
1776     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1777     OutStreamer->SwitchSection(ReadOnlySection);
1778   }
1779 
1780   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1781 
1782   // Jump tables in code sections are marked with a data_region directive
1783   // where that's supported.
1784   if (!JTInDiffSection)
1785     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1786 
1787   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1788     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1789 
1790     // If this jump table was deleted, ignore it.
1791     if (JTBBs.empty()) continue;
1792 
1793     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1794     /// emit a .set directive for each unique entry.
1795     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1796         MAI->doesSetDirectiveSuppressReloc()) {
1797       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1798       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1799       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1800       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1801         const MachineBasicBlock *MBB = JTBBs[ii];
1802         if (!EmittedSets.insert(MBB).second)
1803           continue;
1804 
1805         // .set LJTSet, LBB32-base
1806         const MCExpr *LHS =
1807           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1808         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1809                                     MCBinaryExpr::createSub(LHS, Base,
1810                                                             OutContext));
1811       }
1812     }
1813 
1814     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1815     // before each jump table.  The first label is never referenced, but tells
1816     // the assembler and linker the extents of the jump table object.  The
1817     // second label is actually referenced by the code.
1818     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1819       // FIXME: This doesn't have to have any specific name, just any randomly
1820       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1821       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1822 
1823     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1824 
1825     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1826       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1827   }
1828   if (!JTInDiffSection)
1829     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1830 }
1831 
1832 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1833 /// current stream.
1834 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1835                                     const MachineBasicBlock *MBB,
1836                                     unsigned UID) const {
1837   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1838   const MCExpr *Value = nullptr;
1839   switch (MJTI->getEntryKind()) {
1840   case MachineJumpTableInfo::EK_Inline:
1841     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1842   case MachineJumpTableInfo::EK_Custom32:
1843     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1844         MJTI, MBB, UID, OutContext);
1845     break;
1846   case MachineJumpTableInfo::EK_BlockAddress:
1847     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1848     //     .word LBB123
1849     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1850     break;
1851   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1852     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1853     // with a relocation as gp-relative, e.g.:
1854     //     .gprel32 LBB123
1855     MCSymbol *MBBSym = MBB->getSymbol();
1856     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1857     return;
1858   }
1859 
1860   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1861     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1862     // with a relocation as gp-relative, e.g.:
1863     //     .gpdword LBB123
1864     MCSymbol *MBBSym = MBB->getSymbol();
1865     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1866     return;
1867   }
1868 
1869   case MachineJumpTableInfo::EK_LabelDifference32: {
1870     // Each entry is the address of the block minus the address of the jump
1871     // table. This is used for PIC jump tables where gprel32 is not supported.
1872     // e.g.:
1873     //      .word LBB123 - LJTI1_2
1874     // If the .set directive avoids relocations, this is emitted as:
1875     //      .set L4_5_set_123, LBB123 - LJTI1_2
1876     //      .word L4_5_set_123
1877     if (MAI->doesSetDirectiveSuppressReloc()) {
1878       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1879                                       OutContext);
1880       break;
1881     }
1882     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1883     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1884     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1885     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1886     break;
1887   }
1888   }
1889 
1890   assert(Value && "Unknown entry kind!");
1891 
1892   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1893   OutStreamer->EmitValue(Value, EntrySize);
1894 }
1895 
1896 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1897 /// special global used by LLVM.  If so, emit it and return true, otherwise
1898 /// do nothing and return false.
1899 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1900   if (GV->getName() == "llvm.used") {
1901     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1902       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1903     return true;
1904   }
1905 
1906   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1907   if (GV->getSection() == "llvm.metadata" ||
1908       GV->hasAvailableExternallyLinkage())
1909     return true;
1910 
1911   if (!GV->hasAppendingLinkage()) return false;
1912 
1913   assert(GV->hasInitializer() && "Not a special LLVM global!");
1914 
1915   if (GV->getName() == "llvm.global_ctors") {
1916     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1917                        /* isCtor */ true);
1918 
1919     return true;
1920   }
1921 
1922   if (GV->getName() == "llvm.global_dtors") {
1923     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1924                        /* isCtor */ false);
1925 
1926     return true;
1927   }
1928 
1929   report_fatal_error("unknown special variable");
1930 }
1931 
1932 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1933 /// global in the specified llvm.used list.
1934 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1935   // Should be an array of 'i8*'.
1936   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1937     const GlobalValue *GV =
1938       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1939     if (GV)
1940       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1941   }
1942 }
1943 
1944 namespace {
1945 
1946 struct Structor {
1947   int Priority = 0;
1948   Constant *Func = nullptr;
1949   GlobalValue *ComdatKey = nullptr;
1950 
1951   Structor() = default;
1952 };
1953 
1954 } // end anonymous namespace
1955 
1956 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1957 /// priority.
1958 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1959                                     bool isCtor) {
1960   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
1961   // init priority.
1962   if (!isa<ConstantArray>(List)) return;
1963 
1964   // Sanity check the structors list.
1965   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1966   if (!InitList) return; // Not an array!
1967   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1968   if (!ETy || ETy->getNumElements() != 3 ||
1969       !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1970       !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
1971       !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1972     return; // Not (int, ptr, ptr).
1973 
1974   // Gather the structors in a form that's convenient for sorting by priority.
1975   SmallVector<Structor, 8> Structors;
1976   for (Value *O : InitList->operands()) {
1977     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1978     if (!CS) continue; // Malformed.
1979     if (CS->getOperand(1)->isNullValue())
1980       break;  // Found a null terminator, skip the rest.
1981     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1982     if (!Priority) continue; // Malformed.
1983     Structors.push_back(Structor());
1984     Structor &S = Structors.back();
1985     S.Priority = Priority->getLimitedValue(65535);
1986     S.Func = CS->getOperand(1);
1987     if (!CS->getOperand(2)->isNullValue())
1988       S.ComdatKey =
1989           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1990   }
1991 
1992   // Emit the function pointers in the target-specific order
1993   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1994   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
1995     return L.Priority < R.Priority;
1996   });
1997   for (Structor &S : Structors) {
1998     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1999     const MCSymbol *KeySym = nullptr;
2000     if (GlobalValue *GV = S.ComdatKey) {
2001       if (GV->isDeclarationForLinker())
2002         // If the associated variable is not defined in this module
2003         // (it might be available_externally, or have been an
2004         // available_externally definition that was dropped by the
2005         // EliminateAvailableExternally pass), some other TU
2006         // will provide its dynamic initializer.
2007         continue;
2008 
2009       KeySym = getSymbol(GV);
2010     }
2011     MCSection *OutputSection =
2012         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2013                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2014     OutStreamer->SwitchSection(OutputSection);
2015     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2016       EmitAlignment(Align);
2017     EmitXXStructor(DL, S.Func);
2018   }
2019 }
2020 
2021 void AsmPrinter::EmitModuleIdents(Module &M) {
2022   if (!MAI->hasIdentDirective())
2023     return;
2024 
2025   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2026     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2027       const MDNode *N = NMD->getOperand(i);
2028       assert(N->getNumOperands() == 1 &&
2029              "llvm.ident metadata entry can have only one operand");
2030       const MDString *S = cast<MDString>(N->getOperand(0));
2031       OutStreamer->EmitIdent(S->getString());
2032     }
2033   }
2034 }
2035 
2036 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2037   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2038   if (!CommandLine)
2039     return;
2040 
2041   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2042   if (!NMD || !NMD->getNumOperands())
2043     return;
2044 
2045   OutStreamer->PushSection();
2046   OutStreamer->SwitchSection(CommandLine);
2047   OutStreamer->EmitZeros(1);
2048   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2049     const MDNode *N = NMD->getOperand(i);
2050     assert(N->getNumOperands() == 1 &&
2051            "llvm.commandline metadata entry can have only one operand");
2052     const MDString *S = cast<MDString>(N->getOperand(0));
2053     OutStreamer->EmitBytes(S->getString());
2054     OutStreamer->EmitZeros(1);
2055   }
2056   OutStreamer->PopSection();
2057 }
2058 
2059 //===--------------------------------------------------------------------===//
2060 // Emission and print routines
2061 //
2062 
2063 /// Emit a byte directive and value.
2064 ///
2065 void AsmPrinter::emitInt8(int Value) const {
2066   OutStreamer->EmitIntValue(Value, 1);
2067 }
2068 
2069 /// Emit a short directive and value.
2070 void AsmPrinter::emitInt16(int Value) const {
2071   OutStreamer->EmitIntValue(Value, 2);
2072 }
2073 
2074 /// Emit a long directive and value.
2075 void AsmPrinter::emitInt32(int Value) const {
2076   OutStreamer->EmitIntValue(Value, 4);
2077 }
2078 
2079 /// Emit a long long directive and value.
2080 void AsmPrinter::emitInt64(uint64_t Value) const {
2081   OutStreamer->EmitIntValue(Value, 8);
2082 }
2083 
2084 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2085 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2086 /// .set if it avoids relocations.
2087 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2088                                      unsigned Size) const {
2089   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2090 }
2091 
2092 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2093 /// where the size in bytes of the directive is specified by Size and Label
2094 /// specifies the label.  This implicitly uses .set if it is available.
2095 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2096                                      unsigned Size,
2097                                      bool IsSectionRelative) const {
2098   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2099     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2100     if (Size > 4)
2101       OutStreamer->EmitZeros(Size - 4);
2102     return;
2103   }
2104 
2105   // Emit Label+Offset (or just Label if Offset is zero)
2106   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2107   if (Offset)
2108     Expr = MCBinaryExpr::createAdd(
2109         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2110 
2111   OutStreamer->EmitValue(Expr, Size);
2112 }
2113 
2114 //===----------------------------------------------------------------------===//
2115 
2116 // EmitAlignment - Emit an alignment directive to the specified power of
2117 // two boundary.  For example, if you pass in 3 here, you will get an 8
2118 // byte alignment.  If a global value is specified, and if that global has
2119 // an explicit alignment requested, it will override the alignment request
2120 // if required for correctness.
2121 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2122   if (GV)
2123     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2124 
2125   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
2126 
2127   assert(NumBits <
2128              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2129          "undefined behavior");
2130   if (getCurrentSection()->getKind().isText())
2131     OutStreamer->EmitCodeAlignment(1u << NumBits);
2132   else
2133     OutStreamer->EmitValueToAlignment(1u << NumBits);
2134 }
2135 
2136 //===----------------------------------------------------------------------===//
2137 // Constant emission.
2138 //===----------------------------------------------------------------------===//
2139 
2140 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2141   MCContext &Ctx = OutContext;
2142 
2143   if (CV->isNullValue() || isa<UndefValue>(CV))
2144     return MCConstantExpr::create(0, Ctx);
2145 
2146   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2147     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2148 
2149   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2150     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2151 
2152   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2153     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2154 
2155   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2156   if (!CE) {
2157     llvm_unreachable("Unknown constant value to lower!");
2158   }
2159 
2160   switch (CE->getOpcode()) {
2161   default:
2162     // If the code isn't optimized, there may be outstanding folding
2163     // opportunities. Attempt to fold the expression using DataLayout as a
2164     // last resort before giving up.
2165     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2166       if (C != CE)
2167         return lowerConstant(C);
2168 
2169     // Otherwise report the problem to the user.
2170     {
2171       std::string S;
2172       raw_string_ostream OS(S);
2173       OS << "Unsupported expression in static initializer: ";
2174       CE->printAsOperand(OS, /*PrintType=*/false,
2175                      !MF ? nullptr : MF->getFunction().getParent());
2176       report_fatal_error(OS.str());
2177     }
2178   case Instruction::GetElementPtr: {
2179     // Generate a symbolic expression for the byte address
2180     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2181     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2182 
2183     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2184     if (!OffsetAI)
2185       return Base;
2186 
2187     int64_t Offset = OffsetAI.getSExtValue();
2188     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2189                                    Ctx);
2190   }
2191 
2192   case Instruction::Trunc:
2193     // We emit the value and depend on the assembler to truncate the generated
2194     // expression properly.  This is important for differences between
2195     // blockaddress labels.  Since the two labels are in the same function, it
2196     // is reasonable to treat their delta as a 32-bit value.
2197     LLVM_FALLTHROUGH;
2198   case Instruction::BitCast:
2199     return lowerConstant(CE->getOperand(0));
2200 
2201   case Instruction::IntToPtr: {
2202     const DataLayout &DL = getDataLayout();
2203 
2204     // Handle casts to pointers by changing them into casts to the appropriate
2205     // integer type.  This promotes constant folding and simplifies this code.
2206     Constant *Op = CE->getOperand(0);
2207     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2208                                       false/*ZExt*/);
2209     return lowerConstant(Op);
2210   }
2211 
2212   case Instruction::PtrToInt: {
2213     const DataLayout &DL = getDataLayout();
2214 
2215     // Support only foldable casts to/from pointers that can be eliminated by
2216     // changing the pointer to the appropriately sized integer type.
2217     Constant *Op = CE->getOperand(0);
2218     Type *Ty = CE->getType();
2219 
2220     const MCExpr *OpExpr = lowerConstant(Op);
2221 
2222     // We can emit the pointer value into this slot if the slot is an
2223     // integer slot equal to the size of the pointer.
2224     //
2225     // If the pointer is larger than the resultant integer, then
2226     // as with Trunc just depend on the assembler to truncate it.
2227     if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2228       return OpExpr;
2229 
2230     // Otherwise the pointer is smaller than the resultant integer, mask off
2231     // the high bits so we are sure to get a proper truncation if the input is
2232     // a constant expr.
2233     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2234     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2235     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2236   }
2237 
2238   case Instruction::Sub: {
2239     GlobalValue *LHSGV;
2240     APInt LHSOffset;
2241     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2242                                    getDataLayout())) {
2243       GlobalValue *RHSGV;
2244       APInt RHSOffset;
2245       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2246                                      getDataLayout())) {
2247         const MCExpr *RelocExpr =
2248             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2249         if (!RelocExpr)
2250           RelocExpr = MCBinaryExpr::createSub(
2251               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2252               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2253         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2254         if (Addend != 0)
2255           RelocExpr = MCBinaryExpr::createAdd(
2256               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2257         return RelocExpr;
2258       }
2259     }
2260   }
2261   // else fallthrough
2262   LLVM_FALLTHROUGH;
2263 
2264   // The MC library also has a right-shift operator, but it isn't consistently
2265   // signed or unsigned between different targets.
2266   case Instruction::Add:
2267   case Instruction::Mul:
2268   case Instruction::SDiv:
2269   case Instruction::SRem:
2270   case Instruction::Shl:
2271   case Instruction::And:
2272   case Instruction::Or:
2273   case Instruction::Xor: {
2274     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2275     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2276     switch (CE->getOpcode()) {
2277     default: llvm_unreachable("Unknown binary operator constant cast expr");
2278     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2279     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2280     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2281     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2282     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2283     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2284     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2285     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2286     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2287     }
2288   }
2289   }
2290 }
2291 
2292 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2293                                    AsmPrinter &AP,
2294                                    const Constant *BaseCV = nullptr,
2295                                    uint64_t Offset = 0);
2296 
2297 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2298 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2299 
2300 /// isRepeatedByteSequence - Determine whether the given value is
2301 /// composed of a repeated sequence of identical bytes and return the
2302 /// byte value.  If it is not a repeated sequence, return -1.
2303 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2304   StringRef Data = V->getRawDataValues();
2305   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2306   char C = Data[0];
2307   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2308     if (Data[i] != C) return -1;
2309   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2310 }
2311 
2312 /// isRepeatedByteSequence - Determine whether the given value is
2313 /// composed of a repeated sequence of identical bytes and return the
2314 /// byte value.  If it is not a repeated sequence, return -1.
2315 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2316   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2317     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2318     assert(Size % 8 == 0);
2319 
2320     // Extend the element to take zero padding into account.
2321     APInt Value = CI->getValue().zextOrSelf(Size);
2322     if (!Value.isSplat(8))
2323       return -1;
2324 
2325     return Value.zextOrTrunc(8).getZExtValue();
2326   }
2327   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2328     // Make sure all array elements are sequences of the same repeated
2329     // byte.
2330     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2331     Constant *Op0 = CA->getOperand(0);
2332     int Byte = isRepeatedByteSequence(Op0, DL);
2333     if (Byte == -1)
2334       return -1;
2335 
2336     // All array elements must be equal.
2337     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2338       if (CA->getOperand(i) != Op0)
2339         return -1;
2340     return Byte;
2341   }
2342 
2343   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2344     return isRepeatedByteSequence(CDS);
2345 
2346   return -1;
2347 }
2348 
2349 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2350                                              const ConstantDataSequential *CDS,
2351                                              AsmPrinter &AP) {
2352   // See if we can aggregate this into a .fill, if so, emit it as such.
2353   int Value = isRepeatedByteSequence(CDS, DL);
2354   if (Value != -1) {
2355     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2356     // Don't emit a 1-byte object as a .fill.
2357     if (Bytes > 1)
2358       return AP.OutStreamer->emitFill(Bytes, Value);
2359   }
2360 
2361   // If this can be emitted with .ascii/.asciz, emit it as such.
2362   if (CDS->isString())
2363     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2364 
2365   // Otherwise, emit the values in successive locations.
2366   unsigned ElementByteSize = CDS->getElementByteSize();
2367   if (isa<IntegerType>(CDS->getElementType())) {
2368     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2369       if (AP.isVerbose())
2370         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2371                                                  CDS->getElementAsInteger(i));
2372       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2373                                    ElementByteSize);
2374     }
2375   } else {
2376     Type *ET = CDS->getElementType();
2377     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2378       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2379   }
2380 
2381   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2382   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2383                         CDS->getNumElements();
2384   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2385   if (unsigned Padding = Size - EmittedSize)
2386     AP.OutStreamer->EmitZeros(Padding);
2387 }
2388 
2389 static void emitGlobalConstantArray(const DataLayout &DL,
2390                                     const ConstantArray *CA, AsmPrinter &AP,
2391                                     const Constant *BaseCV, uint64_t Offset) {
2392   // See if we can aggregate some values.  Make sure it can be
2393   // represented as a series of bytes of the constant value.
2394   int Value = isRepeatedByteSequence(CA, DL);
2395 
2396   if (Value != -1) {
2397     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2398     AP.OutStreamer->emitFill(Bytes, Value);
2399   }
2400   else {
2401     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2402       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2403       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2404     }
2405   }
2406 }
2407 
2408 static void emitGlobalConstantVector(const DataLayout &DL,
2409                                      const ConstantVector *CV, AsmPrinter &AP) {
2410   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2411     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2412 
2413   unsigned Size = DL.getTypeAllocSize(CV->getType());
2414   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2415                          CV->getType()->getNumElements();
2416   if (unsigned Padding = Size - EmittedSize)
2417     AP.OutStreamer->EmitZeros(Padding);
2418 }
2419 
2420 static void emitGlobalConstantStruct(const DataLayout &DL,
2421                                      const ConstantStruct *CS, AsmPrinter &AP,
2422                                      const Constant *BaseCV, uint64_t Offset) {
2423   // Print the fields in successive locations. Pad to align if needed!
2424   unsigned Size = DL.getTypeAllocSize(CS->getType());
2425   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2426   uint64_t SizeSoFar = 0;
2427   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2428     const Constant *Field = CS->getOperand(i);
2429 
2430     // Print the actual field value.
2431     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2432 
2433     // Check if padding is needed and insert one or more 0s.
2434     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2435     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2436                         - Layout->getElementOffset(i)) - FieldSize;
2437     SizeSoFar += FieldSize + PadSize;
2438 
2439     // Insert padding - this may include padding to increase the size of the
2440     // current field up to the ABI size (if the struct is not packed) as well
2441     // as padding to ensure that the next field starts at the right offset.
2442     AP.OutStreamer->EmitZeros(PadSize);
2443   }
2444   assert(SizeSoFar == Layout->getSizeInBytes() &&
2445          "Layout of constant struct may be incorrect!");
2446 }
2447 
2448 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2449   APInt API = APF.bitcastToAPInt();
2450 
2451   // First print a comment with what we think the original floating-point value
2452   // should have been.
2453   if (AP.isVerbose()) {
2454     SmallString<8> StrVal;
2455     APF.toString(StrVal);
2456 
2457     if (ET)
2458       ET->print(AP.OutStreamer->GetCommentOS());
2459     else
2460       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2461     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2462   }
2463 
2464   // Now iterate through the APInt chunks, emitting them in endian-correct
2465   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2466   // floats).
2467   unsigned NumBytes = API.getBitWidth() / 8;
2468   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2469   const uint64_t *p = API.getRawData();
2470 
2471   // PPC's long double has odd notions of endianness compared to how LLVM
2472   // handles it: p[0] goes first for *big* endian on PPC.
2473   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2474     int Chunk = API.getNumWords() - 1;
2475 
2476     if (TrailingBytes)
2477       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2478 
2479     for (; Chunk >= 0; --Chunk)
2480       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2481   } else {
2482     unsigned Chunk;
2483     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2484       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2485 
2486     if (TrailingBytes)
2487       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2488   }
2489 
2490   // Emit the tail padding for the long double.
2491   const DataLayout &DL = AP.getDataLayout();
2492   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2493 }
2494 
2495 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2496   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2497 }
2498 
2499 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2500   const DataLayout &DL = AP.getDataLayout();
2501   unsigned BitWidth = CI->getBitWidth();
2502 
2503   // Copy the value as we may massage the layout for constants whose bit width
2504   // is not a multiple of 64-bits.
2505   APInt Realigned(CI->getValue());
2506   uint64_t ExtraBits = 0;
2507   unsigned ExtraBitsSize = BitWidth & 63;
2508 
2509   if (ExtraBitsSize) {
2510     // The bit width of the data is not a multiple of 64-bits.
2511     // The extra bits are expected to be at the end of the chunk of the memory.
2512     // Little endian:
2513     // * Nothing to be done, just record the extra bits to emit.
2514     // Big endian:
2515     // * Record the extra bits to emit.
2516     // * Realign the raw data to emit the chunks of 64-bits.
2517     if (DL.isBigEndian()) {
2518       // Basically the structure of the raw data is a chunk of 64-bits cells:
2519       //    0        1         BitWidth / 64
2520       // [chunk1][chunk2] ... [chunkN].
2521       // The most significant chunk is chunkN and it should be emitted first.
2522       // However, due to the alignment issue chunkN contains useless bits.
2523       // Realign the chunks so that they contain only useless information:
2524       // ExtraBits     0       1       (BitWidth / 64) - 1
2525       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2526       ExtraBits = Realigned.getRawData()[0] &
2527         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2528       Realigned.lshrInPlace(ExtraBitsSize);
2529     } else
2530       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2531   }
2532 
2533   // We don't expect assemblers to support integer data directives
2534   // for more than 64 bits, so we emit the data in at most 64-bit
2535   // quantities at a time.
2536   const uint64_t *RawData = Realigned.getRawData();
2537   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2538     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2539     AP.OutStreamer->EmitIntValue(Val, 8);
2540   }
2541 
2542   if (ExtraBitsSize) {
2543     // Emit the extra bits after the 64-bits chunks.
2544 
2545     // Emit a directive that fills the expected size.
2546     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2547     Size -= (BitWidth / 64) * 8;
2548     assert(Size && Size * 8 >= ExtraBitsSize &&
2549            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2550            == ExtraBits && "Directive too small for extra bits.");
2551     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2552   }
2553 }
2554 
2555 /// Transform a not absolute MCExpr containing a reference to a GOT
2556 /// equivalent global, by a target specific GOT pc relative access to the
2557 /// final symbol.
2558 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2559                                          const Constant *BaseCst,
2560                                          uint64_t Offset) {
2561   // The global @foo below illustrates a global that uses a got equivalent.
2562   //
2563   //  @bar = global i32 42
2564   //  @gotequiv = private unnamed_addr constant i32* @bar
2565   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2566   //                             i64 ptrtoint (i32* @foo to i64))
2567   //                        to i32)
2568   //
2569   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2570   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2571   // form:
2572   //
2573   //  foo = cstexpr, where
2574   //    cstexpr := <gotequiv> - "." + <cst>
2575   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2576   //
2577   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2578   //
2579   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2580   //    gotpcrelcst := <offset from @foo base> + <cst>
2581   MCValue MV;
2582   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2583     return;
2584   const MCSymbolRefExpr *SymA = MV.getSymA();
2585   if (!SymA)
2586     return;
2587 
2588   // Check that GOT equivalent symbol is cached.
2589   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2590   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2591     return;
2592 
2593   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2594   if (!BaseGV)
2595     return;
2596 
2597   // Check for a valid base symbol
2598   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2599   const MCSymbolRefExpr *SymB = MV.getSymB();
2600 
2601   if (!SymB || BaseSym != &SymB->getSymbol())
2602     return;
2603 
2604   // Make sure to match:
2605   //
2606   //    gotpcrelcst := <offset from @foo base> + <cst>
2607   //
2608   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2609   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2610   // if the target knows how to encode it.
2611   int64_t GOTPCRelCst = Offset + MV.getConstant();
2612   if (GOTPCRelCst < 0)
2613     return;
2614   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2615     return;
2616 
2617   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2618   //
2619   //  bar:
2620   //    .long 42
2621   //  gotequiv:
2622   //    .quad bar
2623   //  foo:
2624   //    .long gotequiv - "." + <cst>
2625   //
2626   // is replaced by the target specific equivalent to:
2627   //
2628   //  bar:
2629   //    .long 42
2630   //  foo:
2631   //    .long bar@GOTPCREL+<gotpcrelcst>
2632   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2633   const GlobalVariable *GV = Result.first;
2634   int NumUses = (int)Result.second;
2635   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2636   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2637   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2638       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2639 
2640   // Update GOT equivalent usage information
2641   --NumUses;
2642   if (NumUses >= 0)
2643     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2644 }
2645 
2646 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2647                                    AsmPrinter &AP, const Constant *BaseCV,
2648                                    uint64_t Offset) {
2649   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2650 
2651   // Globals with sub-elements such as combinations of arrays and structs
2652   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2653   // constant symbol base and the current position with BaseCV and Offset.
2654   if (!BaseCV && CV->hasOneUse())
2655     BaseCV = dyn_cast<Constant>(CV->user_back());
2656 
2657   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2658     return AP.OutStreamer->EmitZeros(Size);
2659 
2660   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2661     switch (Size) {
2662     case 1:
2663     case 2:
2664     case 4:
2665     case 8:
2666       if (AP.isVerbose())
2667         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2668                                                  CI->getZExtValue());
2669       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2670       return;
2671     default:
2672       emitGlobalConstantLargeInt(CI, AP);
2673       return;
2674     }
2675   }
2676 
2677   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2678     return emitGlobalConstantFP(CFP, AP);
2679 
2680   if (isa<ConstantPointerNull>(CV)) {
2681     AP.OutStreamer->EmitIntValue(0, Size);
2682     return;
2683   }
2684 
2685   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2686     return emitGlobalConstantDataSequential(DL, CDS, AP);
2687 
2688   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2689     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2690 
2691   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2692     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2693 
2694   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2695     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2696     // vectors).
2697     if (CE->getOpcode() == Instruction::BitCast)
2698       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2699 
2700     if (Size > 8) {
2701       // If the constant expression's size is greater than 64-bits, then we have
2702       // to emit the value in chunks. Try to constant fold the value and emit it
2703       // that way.
2704       Constant *New = ConstantFoldConstant(CE, DL);
2705       if (New && New != CE)
2706         return emitGlobalConstantImpl(DL, New, AP);
2707     }
2708   }
2709 
2710   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2711     return emitGlobalConstantVector(DL, V, AP);
2712 
2713   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2714   // thread the streamer with EmitValue.
2715   const MCExpr *ME = AP.lowerConstant(CV);
2716 
2717   // Since lowerConstant already folded and got rid of all IR pointer and
2718   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2719   // directly.
2720   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2721     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2722 
2723   AP.OutStreamer->EmitValue(ME, Size);
2724 }
2725 
2726 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2727 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2728   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2729   if (Size)
2730     emitGlobalConstantImpl(DL, CV, *this);
2731   else if (MAI->hasSubsectionsViaSymbols()) {
2732     // If the global has zero size, emit a single byte so that two labels don't
2733     // look like they are at the same location.
2734     OutStreamer->EmitIntValue(0, 1);
2735   }
2736 }
2737 
2738 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2739   // Target doesn't support this yet!
2740   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2741 }
2742 
2743 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2744   if (Offset > 0)
2745     OS << '+' << Offset;
2746   else if (Offset < 0)
2747     OS << Offset;
2748 }
2749 
2750 //===----------------------------------------------------------------------===//
2751 // Symbol Lowering Routines.
2752 //===----------------------------------------------------------------------===//
2753 
2754 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2755   return OutContext.createTempSymbol(Name, true);
2756 }
2757 
2758 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2759   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2760 }
2761 
2762 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2763   return MMI->getAddrLabelSymbol(BB);
2764 }
2765 
2766 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2767 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2768   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2769     const MachineConstantPoolEntry &CPE =
2770         MF->getConstantPool()->getConstants()[CPID];
2771     if (!CPE.isMachineConstantPoolEntry()) {
2772       const DataLayout &DL = MF->getDataLayout();
2773       SectionKind Kind = CPE.getSectionKind(&DL);
2774       const Constant *C = CPE.Val.ConstVal;
2775       unsigned Align = CPE.Alignment;
2776       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2777               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2778         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2779           if (Sym->isUndefined())
2780             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2781           return Sym;
2782         }
2783       }
2784     }
2785   }
2786 
2787   const DataLayout &DL = getDataLayout();
2788   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2789                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2790                                       Twine(CPID));
2791 }
2792 
2793 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2794 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2795   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2796 }
2797 
2798 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2799 /// FIXME: privatize to AsmPrinter.
2800 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2801   const DataLayout &DL = getDataLayout();
2802   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2803                                       Twine(getFunctionNumber()) + "_" +
2804                                       Twine(UID) + "_set_" + Twine(MBBID));
2805 }
2806 
2807 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2808                                                    StringRef Suffix) const {
2809   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2810 }
2811 
2812 /// Return the MCSymbol for the specified ExternalSymbol.
2813 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2814   SmallString<60> NameStr;
2815   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2816   return OutContext.getOrCreateSymbol(NameStr);
2817 }
2818 
2819 /// PrintParentLoopComment - Print comments about parent loops of this one.
2820 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2821                                    unsigned FunctionNumber) {
2822   if (!Loop) return;
2823   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2824   OS.indent(Loop->getLoopDepth()*2)
2825     << "Parent Loop BB" << FunctionNumber << "_"
2826     << Loop->getHeader()->getNumber()
2827     << " Depth=" << Loop->getLoopDepth() << '\n';
2828 }
2829 
2830 /// PrintChildLoopComment - Print comments about child loops within
2831 /// the loop for this basic block, with nesting.
2832 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2833                                   unsigned FunctionNumber) {
2834   // Add child loop information
2835   for (const MachineLoop *CL : *Loop) {
2836     OS.indent(CL->getLoopDepth()*2)
2837       << "Child Loop BB" << FunctionNumber << "_"
2838       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2839       << '\n';
2840     PrintChildLoopComment(OS, CL, FunctionNumber);
2841   }
2842 }
2843 
2844 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2845 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2846                                        const MachineLoopInfo *LI,
2847                                        const AsmPrinter &AP) {
2848   // Add loop depth information
2849   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2850   if (!Loop) return;
2851 
2852   MachineBasicBlock *Header = Loop->getHeader();
2853   assert(Header && "No header for loop");
2854 
2855   // If this block is not a loop header, just print out what is the loop header
2856   // and return.
2857   if (Header != &MBB) {
2858     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2859                                Twine(AP.getFunctionNumber())+"_" +
2860                                Twine(Loop->getHeader()->getNumber())+
2861                                " Depth="+Twine(Loop->getLoopDepth()));
2862     return;
2863   }
2864 
2865   // Otherwise, it is a loop header.  Print out information about child and
2866   // parent loops.
2867   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2868 
2869   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2870 
2871   OS << "=>";
2872   OS.indent(Loop->getLoopDepth()*2-2);
2873 
2874   OS << "This ";
2875   if (Loop->empty())
2876     OS << "Inner ";
2877   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2878 
2879   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2880 }
2881 
2882 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2883                                          MCCodePaddingContext &Context) const {
2884   assert(MF != nullptr && "Machine function must be valid");
2885   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2886                             !MF->getFunction().hasOptSize() &&
2887                             TM.getOptLevel() != CodeGenOpt::None;
2888   Context.IsBasicBlockReachableViaFallthrough =
2889       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2890       MBB.pred_end();
2891   Context.IsBasicBlockReachableViaBranch =
2892       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2893 }
2894 
2895 /// EmitBasicBlockStart - This method prints the label for the specified
2896 /// MachineBasicBlock, an alignment (if present) and a comment describing
2897 /// it if appropriate.
2898 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2899   // End the previous funclet and start a new one.
2900   if (MBB.isEHFuncletEntry()) {
2901     for (const HandlerInfo &HI : Handlers) {
2902       HI.Handler->endFunclet();
2903       HI.Handler->beginFunclet(MBB);
2904     }
2905   }
2906 
2907   // Emit an alignment directive for this block, if needed.
2908   if (unsigned Align = MBB.getAlignment())
2909     EmitAlignment(Align);
2910   MCCodePaddingContext Context;
2911   setupCodePaddingContext(MBB, Context);
2912   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2913 
2914   // If the block has its address taken, emit any labels that were used to
2915   // reference the block.  It is possible that there is more than one label
2916   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2917   // the references were generated.
2918   if (MBB.hasAddressTaken()) {
2919     const BasicBlock *BB = MBB.getBasicBlock();
2920     if (isVerbose())
2921       OutStreamer->AddComment("Block address taken");
2922 
2923     // MBBs can have their address taken as part of CodeGen without having
2924     // their corresponding BB's address taken in IR
2925     if (BB->hasAddressTaken())
2926       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2927         OutStreamer->EmitLabel(Sym);
2928   }
2929 
2930   // Print some verbose block comments.
2931   if (isVerbose()) {
2932     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2933       if (BB->hasName()) {
2934         BB->printAsOperand(OutStreamer->GetCommentOS(),
2935                            /*PrintType=*/false, BB->getModule());
2936         OutStreamer->GetCommentOS() << '\n';
2937       }
2938     }
2939 
2940     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2941     emitBasicBlockLoopComments(MBB, MLI, *this);
2942   }
2943 
2944   // Print the main label for the block.
2945   if (MBB.pred_empty() ||
2946       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
2947        !MBB.hasLabelMustBeEmitted())) {
2948     if (isVerbose()) {
2949       // NOTE: Want this comment at start of line, don't emit with AddComment.
2950       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2951                                   false);
2952     }
2953   } else {
2954     if (isVerbose() && MBB.hasLabelMustBeEmitted())
2955       OutStreamer->AddComment("Label of block must be emitted");
2956     OutStreamer->EmitLabel(MBB.getSymbol());
2957   }
2958 }
2959 
2960 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2961   MCCodePaddingContext Context;
2962   setupCodePaddingContext(MBB, Context);
2963   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2964 }
2965 
2966 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2967                                 bool IsDefinition) const {
2968   MCSymbolAttr Attr = MCSA_Invalid;
2969 
2970   switch (Visibility) {
2971   default: break;
2972   case GlobalValue::HiddenVisibility:
2973     if (IsDefinition)
2974       Attr = MAI->getHiddenVisibilityAttr();
2975     else
2976       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2977     break;
2978   case GlobalValue::ProtectedVisibility:
2979     Attr = MAI->getProtectedVisibilityAttr();
2980     break;
2981   }
2982 
2983   if (Attr != MCSA_Invalid)
2984     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2985 }
2986 
2987 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2988 /// exactly one predecessor and the control transfer mechanism between
2989 /// the predecessor and this block is a fall-through.
2990 bool AsmPrinter::
2991 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2992   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2993   // then nothing falls through to it.
2994   if (MBB->isEHPad() || MBB->pred_empty())
2995     return false;
2996 
2997   // If there isn't exactly one predecessor, it can't be a fall through.
2998   if (MBB->pred_size() > 1)
2999     return false;
3000 
3001   // The predecessor has to be immediately before this block.
3002   MachineBasicBlock *Pred = *MBB->pred_begin();
3003   if (!Pred->isLayoutSuccessor(MBB))
3004     return false;
3005 
3006   // If the block is completely empty, then it definitely does fall through.
3007   if (Pred->empty())
3008     return true;
3009 
3010   // Check the terminators in the previous blocks
3011   for (const auto &MI : Pred->terminators()) {
3012     // If it is not a simple branch, we are in a table somewhere.
3013     if (!MI.isBranch() || MI.isIndirectBranch())
3014       return false;
3015 
3016     // If we are the operands of one of the branches, this is not a fall
3017     // through. Note that targets with delay slots will usually bundle
3018     // terminators with the delay slot instruction.
3019     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3020       if (OP->isJTI())
3021         return false;
3022       if (OP->isMBB() && OP->getMBB() == MBB)
3023         return false;
3024     }
3025   }
3026 
3027   return true;
3028 }
3029 
3030 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3031   if (!S.usesMetadata())
3032     return nullptr;
3033 
3034   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3035   gcp_map_type::iterator GCPI = GCMap.find(&S);
3036   if (GCPI != GCMap.end())
3037     return GCPI->second.get();
3038 
3039   auto Name = S.getName();
3040 
3041   for (GCMetadataPrinterRegistry::iterator
3042          I = GCMetadataPrinterRegistry::begin(),
3043          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3044     if (Name == I->getName()) {
3045       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3046       GMP->S = &S;
3047       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3048       return IterBool.first->second.get();
3049     }
3050 
3051   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3052 }
3053 
3054 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3055   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3056   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3057   bool NeedsDefault = false;
3058   if (MI->begin() == MI->end())
3059     // No GC strategy, use the default format.
3060     NeedsDefault = true;
3061   else
3062     for (auto &I : *MI) {
3063       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3064         if (MP->emitStackMaps(SM, *this))
3065           continue;
3066       // The strategy doesn't have printer or doesn't emit custom stack maps.
3067       // Use the default format.
3068       NeedsDefault = true;
3069     }
3070 
3071   if (NeedsDefault)
3072     SM.serializeToStackMapSection();
3073 }
3074 
3075 /// Pin vtable to this file.
3076 AsmPrinterHandler::~AsmPrinterHandler() = default;
3077 
3078 void AsmPrinterHandler::markFunctionEnd() {}
3079 
3080 // In the binary's "xray_instr_map" section, an array of these function entries
3081 // describes each instrumentation point.  When XRay patches your code, the index
3082 // into this table will be given to your handler as a patch point identifier.
3083 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3084                                          const MCSymbol *CurrentFnSym) const {
3085   Out->EmitSymbolValue(Sled, Bytes);
3086   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3087   auto Kind8 = static_cast<uint8_t>(Kind);
3088   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3089   Out->EmitBinaryData(
3090       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3091   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3092   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3093   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3094   Out->EmitZeros(Padding);
3095 }
3096 
3097 void AsmPrinter::emitXRayTable() {
3098   if (Sleds.empty())
3099     return;
3100 
3101   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3102   const Function &F = MF->getFunction();
3103   MCSection *InstMap = nullptr;
3104   MCSection *FnSledIndex = nullptr;
3105   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3106     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3107     assert(Associated != nullptr);
3108     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3109     std::string GroupName;
3110     if (F.hasComdat()) {
3111       Flags |= ELF::SHF_GROUP;
3112       GroupName = F.getComdat()->getName();
3113     }
3114 
3115     auto UniqueID = ++XRayFnUniqueID;
3116     InstMap =
3117         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3118                                  GroupName, UniqueID, Associated);
3119     FnSledIndex =
3120         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3121                                  GroupName, UniqueID, Associated);
3122   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3123     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3124                                          SectionKind::getReadOnlyWithRel());
3125     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3126                                              SectionKind::getReadOnlyWithRel());
3127   } else {
3128     llvm_unreachable("Unsupported target");
3129   }
3130 
3131   auto WordSizeBytes = MAI->getCodePointerSize();
3132 
3133   // Now we switch to the instrumentation map section. Because this is done
3134   // per-function, we are able to create an index entry that will represent the
3135   // range of sleds associated with a function.
3136   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3137   OutStreamer->SwitchSection(InstMap);
3138   OutStreamer->EmitLabel(SledsStart);
3139   for (const auto &Sled : Sleds)
3140     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3141   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3142   OutStreamer->EmitLabel(SledsEnd);
3143 
3144   // We then emit a single entry in the index per function. We use the symbols
3145   // that bound the instrumentation map as the range for a specific function.
3146   // Each entry here will be 2 * word size aligned, as we're writing down two
3147   // pointers. This should work for both 32-bit and 64-bit platforms.
3148   OutStreamer->SwitchSection(FnSledIndex);
3149   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3150   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3151   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3152   OutStreamer->SwitchSection(PrevSection);
3153   Sleds.clear();
3154 }
3155 
3156 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3157                             SledKind Kind, uint8_t Version) {
3158   const Function &F = MI.getMF()->getFunction();
3159   auto Attr = F.getFnAttribute("function-instrument");
3160   bool LogArgs = F.hasFnAttribute("xray-log-args");
3161   bool AlwaysInstrument =
3162     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3163   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3164     Kind = SledKind::LOG_ARGS_ENTER;
3165   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3166                                        AlwaysInstrument, &F, Version});
3167 }
3168 
3169 uint16_t AsmPrinter::getDwarfVersion() const {
3170   return OutStreamer->getContext().getDwarfVersion();
3171 }
3172 
3173 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3174   OutStreamer->getContext().setDwarfVersion(Version);
3175 }
3176