1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/RemarkStreamer.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCStreamer.h" 95 #include "llvm/MC/MCSubtargetInfo.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/MC/MCSymbolELF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Remarks/RemarkFormat.h" 104 #include "llvm/Remarks/RemarkStringTable.h" 105 #include "llvm/Support/Casting.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/Format.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/Path.h" 112 #include "llvm/Support/TargetRegistry.h" 113 #include "llvm/Support/Timer.h" 114 #include "llvm/Support/raw_ostream.h" 115 #include "llvm/Target/TargetLoweringObjectFile.h" 116 #include "llvm/Target/TargetMachine.h" 117 #include "llvm/Target/TargetOptions.h" 118 #include <algorithm> 119 #include <cassert> 120 #include <cinttypes> 121 #include <cstdint> 122 #include <iterator> 123 #include <limits> 124 #include <memory> 125 #include <string> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 131 #define DEBUG_TYPE "asm-printer" 132 133 static const char *const DWARFGroupName = "dwarf"; 134 static const char *const DWARFGroupDescription = "DWARF Emission"; 135 static const char *const DbgTimerName = "emit"; 136 static const char *const DbgTimerDescription = "Debug Info Emission"; 137 static const char *const EHTimerName = "write_exception"; 138 static const char *const EHTimerDescription = "DWARF Exception Writer"; 139 static const char *const CFGuardName = "Control Flow Guard"; 140 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 141 static const char *const CodeViewLineTablesGroupName = "linetables"; 142 static const char *const CodeViewLineTablesGroupDescription = 143 "CodeView Line Tables"; 144 145 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 146 147 static cl::opt<bool> EnableRemarksSection( 148 "remarks-section", 149 cl::desc("Emit a section containing remark diagnostics metadata"), 150 cl::init(false)); 151 152 char AsmPrinter::ID = 0; 153 154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 155 156 static gcp_map_type &getGCMap(void *&P) { 157 if (!P) 158 P = new gcp_map_type(); 159 return *(gcp_map_type*)P; 160 } 161 162 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 163 /// value in log2 form. This rounds up to the preferred alignment if possible 164 /// and legal. 165 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 166 unsigned InBits = 0) { 167 unsigned NumBits = 0; 168 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 169 NumBits = DL.getPreferredAlignmentLog(GVar); 170 171 // If InBits is specified, round it to it. 172 if (InBits > NumBits) 173 NumBits = InBits; 174 175 // If the GV has a specified alignment, take it into account. 176 if (GV->getAlignment() == 0) 177 return NumBits; 178 179 unsigned GVAlign = Log2_32(GV->getAlignment()); 180 181 // If the GVAlign is larger than NumBits, or if we are required to obey 182 // NumBits because the GV has an assigned section, obey it. 183 if (GVAlign > NumBits || GV->hasSection()) 184 NumBits = GVAlign; 185 return NumBits; 186 } 187 188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 189 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 190 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 191 VerboseAsm = OutStreamer->isVerboseAsm(); 192 } 193 194 AsmPrinter::~AsmPrinter() { 195 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 196 197 if (GCMetadataPrinters) { 198 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 199 200 delete &GCMap; 201 GCMetadataPrinters = nullptr; 202 } 203 } 204 205 bool AsmPrinter::isPositionIndependent() const { 206 return TM.isPositionIndependent(); 207 } 208 209 /// getFunctionNumber - Return a unique ID for the current function. 210 unsigned AsmPrinter::getFunctionNumber() const { 211 return MF->getFunctionNumber(); 212 } 213 214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 215 return *TM.getObjFileLowering(); 216 } 217 218 const DataLayout &AsmPrinter::getDataLayout() const { 219 return MMI->getModule()->getDataLayout(); 220 } 221 222 // Do not use the cached DataLayout because some client use it without a Module 223 // (dsymutil, llvm-dwarfdump). 224 unsigned AsmPrinter::getPointerSize() const { 225 return TM.getPointerSize(0); // FIXME: Default address space 226 } 227 228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 229 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 230 return MF->getSubtarget<MCSubtargetInfo>(); 231 } 232 233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 234 S.EmitInstruction(Inst, getSubtargetInfo()); 235 } 236 237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 238 assert(DD && "Dwarf debug file is not defined."); 239 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 240 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 241 } 242 243 /// getCurrentSection() - Return the current section we are emitting to. 244 const MCSection *AsmPrinter::getCurrentSection() const { 245 return OutStreamer->getCurrentSectionOnly(); 246 } 247 248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 249 AU.setPreservesAll(); 250 MachineFunctionPass::getAnalysisUsage(AU); 251 AU.addRequired<MachineModuleInfo>(); 252 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 253 AU.addRequired<GCModuleInfo>(); 254 } 255 256 bool AsmPrinter::doInitialization(Module &M) { 257 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 258 259 // Initialize TargetLoweringObjectFile. 260 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 261 .Initialize(OutContext, TM); 262 263 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 264 .getModuleMetadata(M); 265 266 OutStreamer->InitSections(false); 267 268 // Emit the version-min deployment target directive if needed. 269 // 270 // FIXME: If we end up with a collection of these sorts of Darwin-specific 271 // or ELF-specific things, it may make sense to have a platform helper class 272 // that will work with the target helper class. For now keep it here, as the 273 // alternative is duplicated code in each of the target asm printers that 274 // use the directive, where it would need the same conditionalization 275 // anyway. 276 const Triple &Target = TM.getTargetTriple(); 277 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 278 279 // Allow the target to emit any magic that it wants at the start of the file. 280 EmitStartOfAsmFile(M); 281 282 // Very minimal debug info. It is ignored if we emit actual debug info. If we 283 // don't, this at least helps the user find where a global came from. 284 if (MAI->hasSingleParameterDotFile()) { 285 // .file "foo.c" 286 OutStreamer->EmitFileDirective( 287 llvm::sys::path::filename(M.getSourceFileName())); 288 } 289 290 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 291 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 292 for (auto &I : *MI) 293 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 294 MP->beginAssembly(M, *MI, *this); 295 296 // Emit module-level inline asm if it exists. 297 if (!M.getModuleInlineAsm().empty()) { 298 // We're at the module level. Construct MCSubtarget from the default CPU 299 // and target triple. 300 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 301 TM.getTargetTriple().str(), TM.getTargetCPU(), 302 TM.getTargetFeatureString())); 303 OutStreamer->AddComment("Start of file scope inline assembly"); 304 OutStreamer->AddBlankLine(); 305 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 306 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 307 OutStreamer->AddComment("End of file scope inline assembly"); 308 OutStreamer->AddBlankLine(); 309 } 310 311 if (MAI->doesSupportDebugInformation()) { 312 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 313 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 314 Handlers.emplace_back(llvm::make_unique<CodeViewDebug>(this), 315 DbgTimerName, DbgTimerDescription, 316 CodeViewLineTablesGroupName, 317 CodeViewLineTablesGroupDescription); 318 } 319 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 320 DD = new DwarfDebug(this, &M); 321 DD->beginModule(); 322 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 323 DbgTimerDescription, DWARFGroupName, 324 DWARFGroupDescription); 325 } 326 } 327 328 switch (MAI->getExceptionHandlingType()) { 329 case ExceptionHandling::SjLj: 330 case ExceptionHandling::DwarfCFI: 331 case ExceptionHandling::ARM: 332 isCFIMoveForDebugging = true; 333 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 334 break; 335 for (auto &F: M.getFunctionList()) { 336 // If the module contains any function with unwind data, 337 // .eh_frame has to be emitted. 338 // Ignore functions that won't get emitted. 339 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 340 isCFIMoveForDebugging = false; 341 break; 342 } 343 } 344 break; 345 default: 346 isCFIMoveForDebugging = false; 347 break; 348 } 349 350 EHStreamer *ES = nullptr; 351 switch (MAI->getExceptionHandlingType()) { 352 case ExceptionHandling::None: 353 break; 354 case ExceptionHandling::SjLj: 355 case ExceptionHandling::DwarfCFI: 356 ES = new DwarfCFIException(this); 357 break; 358 case ExceptionHandling::ARM: 359 ES = new ARMException(this); 360 break; 361 case ExceptionHandling::WinEH: 362 switch (MAI->getWinEHEncodingType()) { 363 default: llvm_unreachable("unsupported unwinding information encoding"); 364 case WinEH::EncodingType::Invalid: 365 break; 366 case WinEH::EncodingType::X86: 367 case WinEH::EncodingType::Itanium: 368 ES = new WinException(this); 369 break; 370 } 371 break; 372 case ExceptionHandling::Wasm: 373 ES = new WasmException(this); 374 break; 375 } 376 if (ES) 377 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 378 EHTimerDescription, DWARFGroupName, 379 DWARFGroupDescription); 380 381 if (mdconst::extract_or_null<ConstantInt>( 382 MMI->getModule()->getModuleFlag("cfguardtable"))) 383 Handlers.emplace_back(llvm::make_unique<WinCFGuard>(this), CFGuardName, 384 CFGuardDescription, DWARFGroupName, 385 DWARFGroupDescription); 386 387 return false; 388 } 389 390 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 391 if (!MAI.hasWeakDefCanBeHiddenDirective()) 392 return false; 393 394 return GV->canBeOmittedFromSymbolTable(); 395 } 396 397 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 398 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 399 switch (Linkage) { 400 case GlobalValue::CommonLinkage: 401 case GlobalValue::LinkOnceAnyLinkage: 402 case GlobalValue::LinkOnceODRLinkage: 403 case GlobalValue::WeakAnyLinkage: 404 case GlobalValue::WeakODRLinkage: 405 if (MAI->hasWeakDefDirective()) { 406 // .globl _foo 407 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 408 409 if (!canBeHidden(GV, *MAI)) 410 // .weak_definition _foo 411 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 412 else 413 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 414 } else if (MAI->hasLinkOnceDirective()) { 415 // .globl _foo 416 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 417 //NOTE: linkonce is handled by the section the symbol was assigned to. 418 } else { 419 // .weak _foo 420 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 421 } 422 return; 423 case GlobalValue::ExternalLinkage: 424 // If external, declare as a global symbol: .globl _foo 425 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 426 return; 427 case GlobalValue::PrivateLinkage: 428 case GlobalValue::InternalLinkage: 429 return; 430 case GlobalValue::AppendingLinkage: 431 case GlobalValue::AvailableExternallyLinkage: 432 case GlobalValue::ExternalWeakLinkage: 433 llvm_unreachable("Should never emit this"); 434 } 435 llvm_unreachable("Unknown linkage type!"); 436 } 437 438 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 439 const GlobalValue *GV) const { 440 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 441 } 442 443 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 444 return TM.getSymbol(GV); 445 } 446 447 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 448 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 449 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 450 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 451 "No emulated TLS variables in the common section"); 452 453 // Never emit TLS variable xyz in emulated TLS model. 454 // The initialization value is in __emutls_t.xyz instead of xyz. 455 if (IsEmuTLSVar) 456 return; 457 458 if (GV->hasInitializer()) { 459 // Check to see if this is a special global used by LLVM, if so, emit it. 460 if (EmitSpecialLLVMGlobal(GV)) 461 return; 462 463 // Skip the emission of global equivalents. The symbol can be emitted later 464 // on by emitGlobalGOTEquivs in case it turns out to be needed. 465 if (GlobalGOTEquivs.count(getSymbol(GV))) 466 return; 467 468 if (isVerbose()) { 469 // When printing the control variable __emutls_v.*, 470 // we don't need to print the original TLS variable name. 471 GV->printAsOperand(OutStreamer->GetCommentOS(), 472 /*PrintType=*/false, GV->getParent()); 473 OutStreamer->GetCommentOS() << '\n'; 474 } 475 } 476 477 MCSymbol *GVSym = getSymbol(GV); 478 MCSymbol *EmittedSym = GVSym; 479 480 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 481 // attributes. 482 // GV's or GVSym's attributes will be used for the EmittedSym. 483 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 484 485 if (!GV->hasInitializer()) // External globals require no extra code. 486 return; 487 488 GVSym->redefineIfPossible(); 489 if (GVSym->isDefined() || GVSym->isVariable()) 490 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 491 "' is already defined"); 492 493 if (MAI->hasDotTypeDotSizeDirective()) 494 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 495 496 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 497 498 const DataLayout &DL = GV->getParent()->getDataLayout(); 499 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 500 501 // If the alignment is specified, we *must* obey it. Overaligning a global 502 // with a specified alignment is a prompt way to break globals emitted to 503 // sections and expected to be contiguous (e.g. ObjC metadata). 504 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 505 506 for (const HandlerInfo &HI : Handlers) { 507 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 508 HI.TimerGroupName, HI.TimerGroupDescription, 509 TimePassesIsEnabled); 510 HI.Handler->setSymbolSize(GVSym, Size); 511 } 512 513 // Handle common symbols 514 if (GVKind.isCommon()) { 515 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 516 unsigned Align = 1 << AlignLog; 517 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 518 Align = 0; 519 520 // .comm _foo, 42, 4 521 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 522 return; 523 } 524 525 // Determine to which section this global should be emitted. 526 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 527 528 // If we have a bss global going to a section that supports the 529 // zerofill directive, do so here. 530 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 531 TheSection->isVirtualSection()) { 532 if (Size == 0) 533 Size = 1; // zerofill of 0 bytes is undefined. 534 unsigned Align = 1 << AlignLog; 535 EmitLinkage(GV, GVSym); 536 // .zerofill __DATA, __bss, _foo, 400, 5 537 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 538 return; 539 } 540 541 // If this is a BSS local symbol and we are emitting in the BSS 542 // section use .lcomm/.comm directive. 543 if (GVKind.isBSSLocal() && 544 getObjFileLowering().getBSSSection() == TheSection) { 545 if (Size == 0) 546 Size = 1; // .comm Foo, 0 is undefined, avoid it. 547 unsigned Align = 1 << AlignLog; 548 549 // Use .lcomm only if it supports user-specified alignment. 550 // Otherwise, while it would still be correct to use .lcomm in some 551 // cases (e.g. when Align == 1), the external assembler might enfore 552 // some -unknown- default alignment behavior, which could cause 553 // spurious differences between external and integrated assembler. 554 // Prefer to simply fall back to .local / .comm in this case. 555 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 556 // .lcomm _foo, 42 557 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 558 return; 559 } 560 561 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 562 Align = 0; 563 564 // .local _foo 565 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 566 // .comm _foo, 42, 4 567 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 568 return; 569 } 570 571 // Handle thread local data for mach-o which requires us to output an 572 // additional structure of data and mangle the original symbol so that we 573 // can reference it later. 574 // 575 // TODO: This should become an "emit thread local global" method on TLOF. 576 // All of this macho specific stuff should be sunk down into TLOFMachO and 577 // stuff like "TLSExtraDataSection" should no longer be part of the parent 578 // TLOF class. This will also make it more obvious that stuff like 579 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 580 // specific code. 581 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 582 // Emit the .tbss symbol 583 MCSymbol *MangSym = 584 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 585 586 if (GVKind.isThreadBSS()) { 587 TheSection = getObjFileLowering().getTLSBSSSection(); 588 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 589 } else if (GVKind.isThreadData()) { 590 OutStreamer->SwitchSection(TheSection); 591 592 EmitAlignment(AlignLog, GV); 593 OutStreamer->EmitLabel(MangSym); 594 595 EmitGlobalConstant(GV->getParent()->getDataLayout(), 596 GV->getInitializer()); 597 } 598 599 OutStreamer->AddBlankLine(); 600 601 // Emit the variable struct for the runtime. 602 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 603 604 OutStreamer->SwitchSection(TLVSect); 605 // Emit the linkage here. 606 EmitLinkage(GV, GVSym); 607 OutStreamer->EmitLabel(GVSym); 608 609 // Three pointers in size: 610 // - __tlv_bootstrap - used to make sure support exists 611 // - spare pointer, used when mapped by the runtime 612 // - pointer to mangled symbol above with initializer 613 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 614 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 615 PtrSize); 616 OutStreamer->EmitIntValue(0, PtrSize); 617 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 618 619 OutStreamer->AddBlankLine(); 620 return; 621 } 622 623 MCSymbol *EmittedInitSym = GVSym; 624 625 OutStreamer->SwitchSection(TheSection); 626 627 EmitLinkage(GV, EmittedInitSym); 628 EmitAlignment(AlignLog, GV); 629 630 OutStreamer->EmitLabel(EmittedInitSym); 631 632 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 633 634 if (MAI->hasDotTypeDotSizeDirective()) 635 // .size foo, 42 636 OutStreamer->emitELFSize(EmittedInitSym, 637 MCConstantExpr::create(Size, OutContext)); 638 639 OutStreamer->AddBlankLine(); 640 } 641 642 /// Emit the directive and value for debug thread local expression 643 /// 644 /// \p Value - The value to emit. 645 /// \p Size - The size of the integer (in bytes) to emit. 646 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 647 OutStreamer->EmitValue(Value, Size); 648 } 649 650 /// EmitFunctionHeader - This method emits the header for the current 651 /// function. 652 void AsmPrinter::EmitFunctionHeader() { 653 const Function &F = MF->getFunction(); 654 655 if (isVerbose()) 656 OutStreamer->GetCommentOS() 657 << "-- Begin function " 658 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 659 660 // Print out constants referenced by the function 661 EmitConstantPool(); 662 663 // Print the 'header' of function. 664 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 665 EmitVisibility(CurrentFnSym, F.getVisibility()); 666 667 EmitLinkage(&F, CurrentFnSym); 668 if (MAI->hasFunctionAlignment()) 669 EmitAlignment(MF->getAlignment(), &F); 670 671 if (MAI->hasDotTypeDotSizeDirective()) 672 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 673 674 if (F.hasFnAttribute(Attribute::Cold)) 675 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 676 677 if (isVerbose()) { 678 F.printAsOperand(OutStreamer->GetCommentOS(), 679 /*PrintType=*/false, F.getParent()); 680 OutStreamer->GetCommentOS() << '\n'; 681 } 682 683 // Emit the prefix data. 684 if (F.hasPrefixData()) { 685 if (MAI->hasSubsectionsViaSymbols()) { 686 // Preserving prefix data on platforms which use subsections-via-symbols 687 // is a bit tricky. Here we introduce a symbol for the prefix data 688 // and use the .alt_entry attribute to mark the function's real entry point 689 // as an alternative entry point to the prefix-data symbol. 690 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 691 OutStreamer->EmitLabel(PrefixSym); 692 693 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 694 695 // Emit an .alt_entry directive for the actual function symbol. 696 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 697 } else { 698 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 699 } 700 } 701 702 // Emit the CurrentFnSym. This is a virtual function to allow targets to 703 // do their wild and crazy things as required. 704 EmitFunctionEntryLabel(); 705 706 // If the function had address-taken blocks that got deleted, then we have 707 // references to the dangling symbols. Emit them at the start of the function 708 // so that we don't get references to undefined symbols. 709 std::vector<MCSymbol*> DeadBlockSyms; 710 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 711 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 712 OutStreamer->AddComment("Address taken block that was later removed"); 713 OutStreamer->EmitLabel(DeadBlockSyms[i]); 714 } 715 716 if (CurrentFnBegin) { 717 if (MAI->useAssignmentForEHBegin()) { 718 MCSymbol *CurPos = OutContext.createTempSymbol(); 719 OutStreamer->EmitLabel(CurPos); 720 OutStreamer->EmitAssignment(CurrentFnBegin, 721 MCSymbolRefExpr::create(CurPos, OutContext)); 722 } else { 723 OutStreamer->EmitLabel(CurrentFnBegin); 724 } 725 } 726 727 // Emit pre-function debug and/or EH information. 728 for (const HandlerInfo &HI : Handlers) { 729 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 730 HI.TimerGroupDescription, TimePassesIsEnabled); 731 HI.Handler->beginFunction(MF); 732 } 733 734 // Emit the prologue data. 735 if (F.hasPrologueData()) 736 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 737 } 738 739 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 740 /// function. This can be overridden by targets as required to do custom stuff. 741 void AsmPrinter::EmitFunctionEntryLabel() { 742 CurrentFnSym->redefineIfPossible(); 743 744 // The function label could have already been emitted if two symbols end up 745 // conflicting due to asm renaming. Detect this and emit an error. 746 if (CurrentFnSym->isVariable()) 747 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 748 "' is a protected alias"); 749 if (CurrentFnSym->isDefined()) 750 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 751 "' label emitted multiple times to assembly file"); 752 753 return OutStreamer->EmitLabel(CurrentFnSym); 754 } 755 756 /// emitComments - Pretty-print comments for instructions. 757 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 758 const MachineFunction *MF = MI.getMF(); 759 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 760 761 // Check for spills and reloads 762 763 // We assume a single instruction only has a spill or reload, not 764 // both. 765 Optional<unsigned> Size; 766 if ((Size = MI.getRestoreSize(TII))) { 767 CommentOS << *Size << "-byte Reload\n"; 768 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 769 if (*Size) 770 CommentOS << *Size << "-byte Folded Reload\n"; 771 } else if ((Size = MI.getSpillSize(TII))) { 772 CommentOS << *Size << "-byte Spill\n"; 773 } else if ((Size = MI.getFoldedSpillSize(TII))) { 774 if (*Size) 775 CommentOS << *Size << "-byte Folded Spill\n"; 776 } 777 778 // Check for spill-induced copies 779 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 780 CommentOS << " Reload Reuse\n"; 781 } 782 783 /// emitImplicitDef - This method emits the specified machine instruction 784 /// that is an implicit def. 785 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 786 unsigned RegNo = MI->getOperand(0).getReg(); 787 788 SmallString<128> Str; 789 raw_svector_ostream OS(Str); 790 OS << "implicit-def: " 791 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 792 793 OutStreamer->AddComment(OS.str()); 794 OutStreamer->AddBlankLine(); 795 } 796 797 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 798 std::string Str; 799 raw_string_ostream OS(Str); 800 OS << "kill:"; 801 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 802 const MachineOperand &Op = MI->getOperand(i); 803 assert(Op.isReg() && "KILL instruction must have only register operands"); 804 OS << ' ' << (Op.isDef() ? "def " : "killed ") 805 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 806 } 807 AP.OutStreamer->AddComment(OS.str()); 808 AP.OutStreamer->AddBlankLine(); 809 } 810 811 /// emitDebugValueComment - This method handles the target-independent form 812 /// of DBG_VALUE, returning true if it was able to do so. A false return 813 /// means the target will need to handle MI in EmitInstruction. 814 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 815 // This code handles only the 4-operand target-independent form. 816 if (MI->getNumOperands() != 4) 817 return false; 818 819 SmallString<128> Str; 820 raw_svector_ostream OS(Str); 821 OS << "DEBUG_VALUE: "; 822 823 const DILocalVariable *V = MI->getDebugVariable(); 824 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 825 StringRef Name = SP->getName(); 826 if (!Name.empty()) 827 OS << Name << ":"; 828 } 829 OS << V->getName(); 830 OS << " <- "; 831 832 // The second operand is only an offset if it's an immediate. 833 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 834 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 835 const DIExpression *Expr = MI->getDebugExpression(); 836 if (Expr->getNumElements()) { 837 OS << '['; 838 bool NeedSep = false; 839 for (auto Op : Expr->expr_ops()) { 840 if (NeedSep) 841 OS << ", "; 842 else 843 NeedSep = true; 844 OS << dwarf::OperationEncodingString(Op.getOp()); 845 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 846 OS << ' ' << Op.getArg(I); 847 } 848 OS << "] "; 849 } 850 851 // Register or immediate value. Register 0 means undef. 852 if (MI->getOperand(0).isFPImm()) { 853 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 854 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 855 OS << (double)APF.convertToFloat(); 856 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 857 OS << APF.convertToDouble(); 858 } else { 859 // There is no good way to print long double. Convert a copy to 860 // double. Ah well, it's only a comment. 861 bool ignored; 862 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 863 &ignored); 864 OS << "(long double) " << APF.convertToDouble(); 865 } 866 } else if (MI->getOperand(0).isImm()) { 867 OS << MI->getOperand(0).getImm(); 868 } else if (MI->getOperand(0).isCImm()) { 869 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 870 } else { 871 unsigned Reg; 872 if (MI->getOperand(0).isReg()) { 873 Reg = MI->getOperand(0).getReg(); 874 } else { 875 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 876 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 877 Offset += TFI->getFrameIndexReference(*AP.MF, 878 MI->getOperand(0).getIndex(), Reg); 879 MemLoc = true; 880 } 881 if (Reg == 0) { 882 // Suppress offset, it is not meaningful here. 883 OS << "undef"; 884 // NOTE: Want this comment at start of line, don't emit with AddComment. 885 AP.OutStreamer->emitRawComment(OS.str()); 886 return true; 887 } 888 if (MemLoc) 889 OS << '['; 890 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 891 } 892 893 if (MemLoc) 894 OS << '+' << Offset << ']'; 895 896 // NOTE: Want this comment at start of line, don't emit with AddComment. 897 AP.OutStreamer->emitRawComment(OS.str()); 898 return true; 899 } 900 901 /// This method handles the target-independent form of DBG_LABEL, returning 902 /// true if it was able to do so. A false return means the target will need 903 /// to handle MI in EmitInstruction. 904 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 905 if (MI->getNumOperands() != 1) 906 return false; 907 908 SmallString<128> Str; 909 raw_svector_ostream OS(Str); 910 OS << "DEBUG_LABEL: "; 911 912 const DILabel *V = MI->getDebugLabel(); 913 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 914 StringRef Name = SP->getName(); 915 if (!Name.empty()) 916 OS << Name << ":"; 917 } 918 OS << V->getName(); 919 920 // NOTE: Want this comment at start of line, don't emit with AddComment. 921 AP.OutStreamer->emitRawComment(OS.str()); 922 return true; 923 } 924 925 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 926 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 927 MF->getFunction().needsUnwindTableEntry()) 928 return CFI_M_EH; 929 930 if (MMI->hasDebugInfo()) 931 return CFI_M_Debug; 932 933 return CFI_M_None; 934 } 935 936 bool AsmPrinter::needsSEHMoves() { 937 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 938 } 939 940 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 941 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 942 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 943 ExceptionHandlingType != ExceptionHandling::ARM) 944 return; 945 946 if (needsCFIMoves() == CFI_M_None) 947 return; 948 949 // If there is no "real" instruction following this CFI instruction, skip 950 // emitting it; it would be beyond the end of the function's FDE range. 951 auto *MBB = MI.getParent(); 952 auto I = std::next(MI.getIterator()); 953 while (I != MBB->end() && I->isTransient()) 954 ++I; 955 if (I == MBB->instr_end() && 956 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 957 return; 958 959 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 960 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 961 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 962 emitCFIInstruction(CFI); 963 } 964 965 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 966 // The operands are the MCSymbol and the frame offset of the allocation. 967 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 968 int FrameOffset = MI.getOperand(1).getImm(); 969 970 // Emit a symbol assignment. 971 OutStreamer->EmitAssignment(FrameAllocSym, 972 MCConstantExpr::create(FrameOffset, OutContext)); 973 } 974 975 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 976 if (!MF.getTarget().Options.EmitStackSizeSection) 977 return; 978 979 MCSection *StackSizeSection = 980 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 981 if (!StackSizeSection) 982 return; 983 984 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 985 // Don't emit functions with dynamic stack allocations. 986 if (FrameInfo.hasVarSizedObjects()) 987 return; 988 989 OutStreamer->PushSection(); 990 OutStreamer->SwitchSection(StackSizeSection); 991 992 const MCSymbol *FunctionSymbol = getFunctionBegin(); 993 uint64_t StackSize = FrameInfo.getStackSize(); 994 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 995 OutStreamer->EmitULEB128IntValue(StackSize); 996 997 OutStreamer->PopSection(); 998 } 999 1000 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1001 MachineModuleInfo *MMI) { 1002 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1003 return true; 1004 1005 // We might emit an EH table that uses function begin and end labels even if 1006 // we don't have any landingpads. 1007 if (!MF.getFunction().hasPersonalityFn()) 1008 return false; 1009 return !isNoOpWithoutInvoke( 1010 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1011 } 1012 1013 /// EmitFunctionBody - This method emits the body and trailer for a 1014 /// function. 1015 void AsmPrinter::EmitFunctionBody() { 1016 EmitFunctionHeader(); 1017 1018 // Emit target-specific gunk before the function body. 1019 EmitFunctionBodyStart(); 1020 1021 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1022 1023 if (isVerbose()) { 1024 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1025 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1026 if (!MDT) { 1027 OwnedMDT = make_unique<MachineDominatorTree>(); 1028 OwnedMDT->getBase().recalculate(*MF); 1029 MDT = OwnedMDT.get(); 1030 } 1031 1032 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1033 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1034 if (!MLI) { 1035 OwnedMLI = make_unique<MachineLoopInfo>(); 1036 OwnedMLI->getBase().analyze(MDT->getBase()); 1037 MLI = OwnedMLI.get(); 1038 } 1039 } 1040 1041 // Print out code for the function. 1042 bool HasAnyRealCode = false; 1043 int NumInstsInFunction = 0; 1044 for (auto &MBB : *MF) { 1045 // Print a label for the basic block. 1046 EmitBasicBlockStart(MBB); 1047 for (auto &MI : MBB) { 1048 // Print the assembly for the instruction. 1049 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1050 !MI.isDebugInstr()) { 1051 HasAnyRealCode = true; 1052 ++NumInstsInFunction; 1053 } 1054 1055 // If there is a pre-instruction symbol, emit a label for it here. 1056 if (MCSymbol *S = MI.getPreInstrSymbol()) 1057 OutStreamer->EmitLabel(S); 1058 1059 if (ShouldPrintDebugScopes) { 1060 for (const HandlerInfo &HI : Handlers) { 1061 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1062 HI.TimerGroupName, HI.TimerGroupDescription, 1063 TimePassesIsEnabled); 1064 HI.Handler->beginInstruction(&MI); 1065 } 1066 } 1067 1068 if (isVerbose()) 1069 emitComments(MI, OutStreamer->GetCommentOS()); 1070 1071 switch (MI.getOpcode()) { 1072 case TargetOpcode::CFI_INSTRUCTION: 1073 emitCFIInstruction(MI); 1074 break; 1075 case TargetOpcode::LOCAL_ESCAPE: 1076 emitFrameAlloc(MI); 1077 break; 1078 case TargetOpcode::ANNOTATION_LABEL: 1079 case TargetOpcode::EH_LABEL: 1080 case TargetOpcode::GC_LABEL: 1081 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1082 break; 1083 case TargetOpcode::INLINEASM: 1084 case TargetOpcode::INLINEASM_BR: 1085 EmitInlineAsm(&MI); 1086 break; 1087 case TargetOpcode::DBG_VALUE: 1088 if (isVerbose()) { 1089 if (!emitDebugValueComment(&MI, *this)) 1090 EmitInstruction(&MI); 1091 } 1092 break; 1093 case TargetOpcode::DBG_LABEL: 1094 if (isVerbose()) { 1095 if (!emitDebugLabelComment(&MI, *this)) 1096 EmitInstruction(&MI); 1097 } 1098 break; 1099 case TargetOpcode::IMPLICIT_DEF: 1100 if (isVerbose()) emitImplicitDef(&MI); 1101 break; 1102 case TargetOpcode::KILL: 1103 if (isVerbose()) emitKill(&MI, *this); 1104 break; 1105 default: 1106 EmitInstruction(&MI); 1107 break; 1108 } 1109 1110 // If there is a post-instruction symbol, emit a label for it here. 1111 if (MCSymbol *S = MI.getPostInstrSymbol()) 1112 OutStreamer->EmitLabel(S); 1113 1114 if (ShouldPrintDebugScopes) { 1115 for (const HandlerInfo &HI : Handlers) { 1116 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1117 HI.TimerGroupName, HI.TimerGroupDescription, 1118 TimePassesIsEnabled); 1119 HI.Handler->endInstruction(); 1120 } 1121 } 1122 } 1123 1124 EmitBasicBlockEnd(MBB); 1125 } 1126 1127 EmittedInsts += NumInstsInFunction; 1128 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1129 MF->getFunction().getSubprogram(), 1130 &MF->front()); 1131 R << ore::NV("NumInstructions", NumInstsInFunction) 1132 << " instructions in function"; 1133 ORE->emit(R); 1134 1135 // If the function is empty and the object file uses .subsections_via_symbols, 1136 // then we need to emit *something* to the function body to prevent the 1137 // labels from collapsing together. Just emit a noop. 1138 // Similarly, don't emit empty functions on Windows either. It can lead to 1139 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1140 // after linking, causing the kernel not to load the binary: 1141 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1142 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1143 const Triple &TT = TM.getTargetTriple(); 1144 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1145 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1146 MCInst Noop; 1147 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1148 1149 // Targets can opt-out of emitting the noop here by leaving the opcode 1150 // unspecified. 1151 if (Noop.getOpcode()) { 1152 OutStreamer->AddComment("avoids zero-length function"); 1153 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1154 } 1155 } 1156 1157 const Function &F = MF->getFunction(); 1158 for (const auto &BB : F) { 1159 if (!BB.hasAddressTaken()) 1160 continue; 1161 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1162 if (Sym->isDefined()) 1163 continue; 1164 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1165 OutStreamer->EmitLabel(Sym); 1166 } 1167 1168 // Emit target-specific gunk after the function body. 1169 EmitFunctionBodyEnd(); 1170 1171 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1172 MAI->hasDotTypeDotSizeDirective()) { 1173 // Create a symbol for the end of function. 1174 CurrentFnEnd = createTempSymbol("func_end"); 1175 OutStreamer->EmitLabel(CurrentFnEnd); 1176 } 1177 1178 // If the target wants a .size directive for the size of the function, emit 1179 // it. 1180 if (MAI->hasDotTypeDotSizeDirective()) { 1181 // We can get the size as difference between the function label and the 1182 // temp label. 1183 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1184 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1185 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1186 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1187 } 1188 1189 for (const HandlerInfo &HI : Handlers) { 1190 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1191 HI.TimerGroupDescription, TimePassesIsEnabled); 1192 HI.Handler->markFunctionEnd(); 1193 } 1194 1195 // Print out jump tables referenced by the function. 1196 EmitJumpTableInfo(); 1197 1198 // Emit post-function debug and/or EH information. 1199 for (const HandlerInfo &HI : Handlers) { 1200 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1201 HI.TimerGroupDescription, TimePassesIsEnabled); 1202 HI.Handler->endFunction(MF); 1203 } 1204 1205 // Emit section containing stack size metadata. 1206 emitStackSizeSection(*MF); 1207 1208 if (isVerbose()) 1209 OutStreamer->GetCommentOS() << "-- End function\n"; 1210 1211 OutStreamer->AddBlankLine(); 1212 } 1213 1214 /// Compute the number of Global Variables that uses a Constant. 1215 static unsigned getNumGlobalVariableUses(const Constant *C) { 1216 if (!C) 1217 return 0; 1218 1219 if (isa<GlobalVariable>(C)) 1220 return 1; 1221 1222 unsigned NumUses = 0; 1223 for (auto *CU : C->users()) 1224 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1225 1226 return NumUses; 1227 } 1228 1229 /// Only consider global GOT equivalents if at least one user is a 1230 /// cstexpr inside an initializer of another global variables. Also, don't 1231 /// handle cstexpr inside instructions. During global variable emission, 1232 /// candidates are skipped and are emitted later in case at least one cstexpr 1233 /// isn't replaced by a PC relative GOT entry access. 1234 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1235 unsigned &NumGOTEquivUsers) { 1236 // Global GOT equivalents are unnamed private globals with a constant 1237 // pointer initializer to another global symbol. They must point to a 1238 // GlobalVariable or Function, i.e., as GlobalValue. 1239 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1240 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1241 !isa<GlobalValue>(GV->getOperand(0))) 1242 return false; 1243 1244 // To be a got equivalent, at least one of its users need to be a constant 1245 // expression used by another global variable. 1246 for (auto *U : GV->users()) 1247 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1248 1249 return NumGOTEquivUsers > 0; 1250 } 1251 1252 /// Unnamed constant global variables solely contaning a pointer to 1253 /// another globals variable is equivalent to a GOT table entry; it contains the 1254 /// the address of another symbol. Optimize it and replace accesses to these 1255 /// "GOT equivalents" by using the GOT entry for the final global instead. 1256 /// Compute GOT equivalent candidates among all global variables to avoid 1257 /// emitting them if possible later on, after it use is replaced by a GOT entry 1258 /// access. 1259 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1260 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1261 return; 1262 1263 for (const auto &G : M.globals()) { 1264 unsigned NumGOTEquivUsers = 0; 1265 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1266 continue; 1267 1268 const MCSymbol *GOTEquivSym = getSymbol(&G); 1269 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1270 } 1271 } 1272 1273 /// Constant expressions using GOT equivalent globals may not be eligible 1274 /// for PC relative GOT entry conversion, in such cases we need to emit such 1275 /// globals we previously omitted in EmitGlobalVariable. 1276 void AsmPrinter::emitGlobalGOTEquivs() { 1277 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1278 return; 1279 1280 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1281 for (auto &I : GlobalGOTEquivs) { 1282 const GlobalVariable *GV = I.second.first; 1283 unsigned Cnt = I.second.second; 1284 if (Cnt) 1285 FailedCandidates.push_back(GV); 1286 } 1287 GlobalGOTEquivs.clear(); 1288 1289 for (auto *GV : FailedCandidates) 1290 EmitGlobalVariable(GV); 1291 } 1292 1293 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1294 const GlobalIndirectSymbol& GIS) { 1295 MCSymbol *Name = getSymbol(&GIS); 1296 1297 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1298 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1299 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1300 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1301 else 1302 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1303 1304 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1305 1306 // Treat bitcasts of functions as functions also. This is important at least 1307 // on WebAssembly where object and function addresses can't alias each other. 1308 if (!IsFunction) 1309 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1310 if (CE->getOpcode() == Instruction::BitCast) 1311 IsFunction = 1312 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1313 1314 // Set the symbol type to function if the alias has a function type. 1315 // This affects codegen when the aliasee is not a function. 1316 if (IsFunction) { 1317 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1318 if (isa<GlobalIFunc>(GIS)) 1319 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1320 } 1321 1322 EmitVisibility(Name, GIS.getVisibility()); 1323 1324 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1325 1326 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1327 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1328 1329 // Emit the directives as assignments aka .set: 1330 OutStreamer->EmitAssignment(Name, Expr); 1331 1332 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1333 // If the aliasee does not correspond to a symbol in the output, i.e. the 1334 // alias is not of an object or the aliased object is private, then set the 1335 // size of the alias symbol from the type of the alias. We don't do this in 1336 // other situations as the alias and aliasee having differing types but same 1337 // size may be intentional. 1338 const GlobalObject *BaseObject = GA->getBaseObject(); 1339 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1340 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1341 const DataLayout &DL = M.getDataLayout(); 1342 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1343 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1344 } 1345 } 1346 } 1347 1348 void AsmPrinter::emitRemarksSection(Module &M) { 1349 RemarkStreamer *RS = M.getContext().getRemarkStreamer(); 1350 if (!RS) 1351 return; 1352 remarks::RemarkSerializer &RemarkSerializer = RS->getSerializer(); 1353 1354 StringRef FilenameRef = RS->getFilename(); 1355 SmallString<128> Filename = FilenameRef; 1356 sys::fs::make_absolute(Filename); 1357 assert(!Filename.empty() && "The filename can't be empty."); 1358 1359 std::string Buf; 1360 raw_string_ostream OS(Buf); 1361 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1362 RemarkSerializer.metaSerializer(OS, StringRef(Filename)); 1363 MetaSerializer->emit(); 1364 1365 // Switch to the right section: .remarks/__remarks. 1366 MCSection *RemarksSection = 1367 OutContext.getObjectFileInfo()->getRemarksSection(); 1368 OutStreamer->SwitchSection(RemarksSection); 1369 1370 OutStreamer->EmitBinaryData(OS.str()); 1371 } 1372 1373 bool AsmPrinter::doFinalization(Module &M) { 1374 // Set the MachineFunction to nullptr so that we can catch attempted 1375 // accesses to MF specific features at the module level and so that 1376 // we can conditionalize accesses based on whether or not it is nullptr. 1377 MF = nullptr; 1378 1379 // Gather all GOT equivalent globals in the module. We really need two 1380 // passes over the globals: one to compute and another to avoid its emission 1381 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1382 // where the got equivalent shows up before its use. 1383 computeGlobalGOTEquivs(M); 1384 1385 // Emit global variables. 1386 for (const auto &G : M.globals()) 1387 EmitGlobalVariable(&G); 1388 1389 // Emit remaining GOT equivalent globals. 1390 emitGlobalGOTEquivs(); 1391 1392 // Emit visibility info for declarations 1393 for (const Function &F : M) { 1394 if (!F.isDeclarationForLinker()) 1395 continue; 1396 GlobalValue::VisibilityTypes V = F.getVisibility(); 1397 if (V == GlobalValue::DefaultVisibility) 1398 continue; 1399 1400 MCSymbol *Name = getSymbol(&F); 1401 EmitVisibility(Name, V, false); 1402 } 1403 1404 // Emit the remarks section contents. 1405 // FIXME: Figure out when is the safest time to emit this section. It should 1406 // not come after debug info. 1407 if (EnableRemarksSection) 1408 emitRemarksSection(M); 1409 1410 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1411 1412 TLOF.emitModuleMetadata(*OutStreamer, M); 1413 1414 if (TM.getTargetTriple().isOSBinFormatELF()) { 1415 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1416 1417 // Output stubs for external and common global variables. 1418 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1419 if (!Stubs.empty()) { 1420 OutStreamer->SwitchSection(TLOF.getDataSection()); 1421 const DataLayout &DL = M.getDataLayout(); 1422 1423 EmitAlignment(Log2_32(DL.getPointerSize())); 1424 for (const auto &Stub : Stubs) { 1425 OutStreamer->EmitLabel(Stub.first); 1426 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1427 DL.getPointerSize()); 1428 } 1429 } 1430 } 1431 1432 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1433 MachineModuleInfoCOFF &MMICOFF = 1434 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1435 1436 // Output stubs for external and common global variables. 1437 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1438 if (!Stubs.empty()) { 1439 const DataLayout &DL = M.getDataLayout(); 1440 1441 for (const auto &Stub : Stubs) { 1442 SmallString<256> SectionName = StringRef(".rdata$"); 1443 SectionName += Stub.first->getName(); 1444 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1445 SectionName, 1446 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1447 COFF::IMAGE_SCN_LNK_COMDAT, 1448 SectionKind::getReadOnly(), Stub.first->getName(), 1449 COFF::IMAGE_COMDAT_SELECT_ANY)); 1450 EmitAlignment(Log2_32(DL.getPointerSize())); 1451 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1452 OutStreamer->EmitLabel(Stub.first); 1453 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1454 DL.getPointerSize()); 1455 } 1456 } 1457 } 1458 1459 // Finalize debug and EH information. 1460 for (const HandlerInfo &HI : Handlers) { 1461 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1462 HI.TimerGroupDescription, TimePassesIsEnabled); 1463 HI.Handler->endModule(); 1464 } 1465 Handlers.clear(); 1466 DD = nullptr; 1467 1468 // If the target wants to know about weak references, print them all. 1469 if (MAI->getWeakRefDirective()) { 1470 // FIXME: This is not lazy, it would be nice to only print weak references 1471 // to stuff that is actually used. Note that doing so would require targets 1472 // to notice uses in operands (due to constant exprs etc). This should 1473 // happen with the MC stuff eventually. 1474 1475 // Print out module-level global objects here. 1476 for (const auto &GO : M.global_objects()) { 1477 if (!GO.hasExternalWeakLinkage()) 1478 continue; 1479 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1480 } 1481 } 1482 1483 OutStreamer->AddBlankLine(); 1484 1485 // Print aliases in topological order, that is, for each alias a = b, 1486 // b must be printed before a. 1487 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1488 // such an order to generate correct TOC information. 1489 SmallVector<const GlobalAlias *, 16> AliasStack; 1490 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1491 for (const auto &Alias : M.aliases()) { 1492 for (const GlobalAlias *Cur = &Alias; Cur; 1493 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1494 if (!AliasVisited.insert(Cur).second) 1495 break; 1496 AliasStack.push_back(Cur); 1497 } 1498 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1499 emitGlobalIndirectSymbol(M, *AncestorAlias); 1500 AliasStack.clear(); 1501 } 1502 for (const auto &IFunc : M.ifuncs()) 1503 emitGlobalIndirectSymbol(M, IFunc); 1504 1505 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1506 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1507 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1508 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1509 MP->finishAssembly(M, *MI, *this); 1510 1511 // Emit llvm.ident metadata in an '.ident' directive. 1512 EmitModuleIdents(M); 1513 1514 // Emit bytes for llvm.commandline metadata. 1515 EmitModuleCommandLines(M); 1516 1517 // Emit __morestack address if needed for indirect calls. 1518 if (MMI->usesMorestackAddr()) { 1519 unsigned Align = 1; 1520 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1521 getDataLayout(), SectionKind::getReadOnly(), 1522 /*C=*/nullptr, Align); 1523 OutStreamer->SwitchSection(ReadOnlySection); 1524 1525 MCSymbol *AddrSymbol = 1526 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1527 OutStreamer->EmitLabel(AddrSymbol); 1528 1529 unsigned PtrSize = MAI->getCodePointerSize(); 1530 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1531 PtrSize); 1532 } 1533 1534 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1535 // split-stack is used. 1536 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1537 OutStreamer->SwitchSection( 1538 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1539 if (MMI->hasNosplitStack()) 1540 OutStreamer->SwitchSection( 1541 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1542 } 1543 1544 // If we don't have any trampolines, then we don't require stack memory 1545 // to be executable. Some targets have a directive to declare this. 1546 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1547 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1548 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1549 OutStreamer->SwitchSection(S); 1550 1551 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1552 // Emit /EXPORT: flags for each exported global as necessary. 1553 const auto &TLOF = getObjFileLowering(); 1554 std::string Flags; 1555 1556 for (const GlobalValue &GV : M.global_values()) { 1557 raw_string_ostream OS(Flags); 1558 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1559 OS.flush(); 1560 if (!Flags.empty()) { 1561 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1562 OutStreamer->EmitBytes(Flags); 1563 } 1564 Flags.clear(); 1565 } 1566 1567 // Emit /INCLUDE: flags for each used global as necessary. 1568 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1569 assert(LU->hasInitializer() && 1570 "expected llvm.used to have an initializer"); 1571 assert(isa<ArrayType>(LU->getValueType()) && 1572 "expected llvm.used to be an array type"); 1573 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1574 for (const Value *Op : A->operands()) { 1575 const auto *GV = 1576 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1577 // Global symbols with internal or private linkage are not visible to 1578 // the linker, and thus would cause an error when the linker tried to 1579 // preserve the symbol due to the `/include:` directive. 1580 if (GV->hasLocalLinkage()) 1581 continue; 1582 1583 raw_string_ostream OS(Flags); 1584 TLOF.emitLinkerFlagsForUsed(OS, GV); 1585 OS.flush(); 1586 1587 if (!Flags.empty()) { 1588 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1589 OutStreamer->EmitBytes(Flags); 1590 } 1591 Flags.clear(); 1592 } 1593 } 1594 } 1595 } 1596 1597 if (TM.Options.EmitAddrsig) { 1598 // Emit address-significance attributes for all globals. 1599 OutStreamer->EmitAddrsig(); 1600 for (const GlobalValue &GV : M.global_values()) 1601 if (!GV.use_empty() && !GV.isThreadLocal() && 1602 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1603 !GV.hasAtLeastLocalUnnamedAddr()) 1604 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1605 } 1606 1607 // Emit symbol partition specifications (ELF only). 1608 if (TM.getTargetTriple().isOSBinFormatELF()) { 1609 unsigned UniqueID = 0; 1610 for (const GlobalValue &GV : M.global_values()) { 1611 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1612 GV.getVisibility() != GlobalValue::DefaultVisibility) 1613 continue; 1614 1615 OutStreamer->SwitchSection(OutContext.getELFSection( 1616 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID)); 1617 OutStreamer->EmitBytes(GV.getPartition()); 1618 OutStreamer->EmitZeros(1); 1619 OutStreamer->EmitValue( 1620 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1621 MAI->getCodePointerSize()); 1622 } 1623 } 1624 1625 // Allow the target to emit any magic that it wants at the end of the file, 1626 // after everything else has gone out. 1627 EmitEndOfAsmFile(M); 1628 1629 MMI = nullptr; 1630 1631 OutStreamer->Finish(); 1632 OutStreamer->reset(); 1633 OwnedMLI.reset(); 1634 OwnedMDT.reset(); 1635 1636 return false; 1637 } 1638 1639 MCSymbol *AsmPrinter::getCurExceptionSym() { 1640 if (!CurExceptionSym) 1641 CurExceptionSym = createTempSymbol("exception"); 1642 return CurExceptionSym; 1643 } 1644 1645 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1646 this->MF = &MF; 1647 // Get the function symbol. 1648 CurrentFnSym = getSymbol(&MF.getFunction()); 1649 CurrentFnSymForSize = CurrentFnSym; 1650 CurrentFnBegin = nullptr; 1651 CurExceptionSym = nullptr; 1652 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1653 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1654 MF.getTarget().Options.EmitStackSizeSection) { 1655 CurrentFnBegin = createTempSymbol("func_begin"); 1656 if (NeedsLocalForSize) 1657 CurrentFnSymForSize = CurrentFnBegin; 1658 } 1659 1660 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1661 } 1662 1663 namespace { 1664 1665 // Keep track the alignment, constpool entries per Section. 1666 struct SectionCPs { 1667 MCSection *S; 1668 unsigned Alignment; 1669 SmallVector<unsigned, 4> CPEs; 1670 1671 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1672 }; 1673 1674 } // end anonymous namespace 1675 1676 /// EmitConstantPool - Print to the current output stream assembly 1677 /// representations of the constants in the constant pool MCP. This is 1678 /// used to print out constants which have been "spilled to memory" by 1679 /// the code generator. 1680 void AsmPrinter::EmitConstantPool() { 1681 const MachineConstantPool *MCP = MF->getConstantPool(); 1682 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1683 if (CP.empty()) return; 1684 1685 // Calculate sections for constant pool entries. We collect entries to go into 1686 // the same section together to reduce amount of section switch statements. 1687 SmallVector<SectionCPs, 4> CPSections; 1688 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1689 const MachineConstantPoolEntry &CPE = CP[i]; 1690 unsigned Align = CPE.getAlignment(); 1691 1692 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1693 1694 const Constant *C = nullptr; 1695 if (!CPE.isMachineConstantPoolEntry()) 1696 C = CPE.Val.ConstVal; 1697 1698 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1699 Kind, C, Align); 1700 1701 // The number of sections are small, just do a linear search from the 1702 // last section to the first. 1703 bool Found = false; 1704 unsigned SecIdx = CPSections.size(); 1705 while (SecIdx != 0) { 1706 if (CPSections[--SecIdx].S == S) { 1707 Found = true; 1708 break; 1709 } 1710 } 1711 if (!Found) { 1712 SecIdx = CPSections.size(); 1713 CPSections.push_back(SectionCPs(S, Align)); 1714 } 1715 1716 if (Align > CPSections[SecIdx].Alignment) 1717 CPSections[SecIdx].Alignment = Align; 1718 CPSections[SecIdx].CPEs.push_back(i); 1719 } 1720 1721 // Now print stuff into the calculated sections. 1722 const MCSection *CurSection = nullptr; 1723 unsigned Offset = 0; 1724 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1725 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1726 unsigned CPI = CPSections[i].CPEs[j]; 1727 MCSymbol *Sym = GetCPISymbol(CPI); 1728 if (!Sym->isUndefined()) 1729 continue; 1730 1731 if (CurSection != CPSections[i].S) { 1732 OutStreamer->SwitchSection(CPSections[i].S); 1733 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1734 CurSection = CPSections[i].S; 1735 Offset = 0; 1736 } 1737 1738 MachineConstantPoolEntry CPE = CP[CPI]; 1739 1740 // Emit inter-object padding for alignment. 1741 unsigned AlignMask = CPE.getAlignment() - 1; 1742 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1743 OutStreamer->EmitZeros(NewOffset - Offset); 1744 1745 Type *Ty = CPE.getType(); 1746 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1747 1748 OutStreamer->EmitLabel(Sym); 1749 if (CPE.isMachineConstantPoolEntry()) 1750 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1751 else 1752 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1753 } 1754 } 1755 } 1756 1757 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1758 /// by the current function to the current output stream. 1759 void AsmPrinter::EmitJumpTableInfo() { 1760 const DataLayout &DL = MF->getDataLayout(); 1761 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1762 if (!MJTI) return; 1763 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1764 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1765 if (JT.empty()) return; 1766 1767 // Pick the directive to use to print the jump table entries, and switch to 1768 // the appropriate section. 1769 const Function &F = MF->getFunction(); 1770 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1771 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1772 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1773 F); 1774 if (JTInDiffSection) { 1775 // Drop it in the readonly section. 1776 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1777 OutStreamer->SwitchSection(ReadOnlySection); 1778 } 1779 1780 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1781 1782 // Jump tables in code sections are marked with a data_region directive 1783 // where that's supported. 1784 if (!JTInDiffSection) 1785 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1786 1787 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1788 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1789 1790 // If this jump table was deleted, ignore it. 1791 if (JTBBs.empty()) continue; 1792 1793 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1794 /// emit a .set directive for each unique entry. 1795 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1796 MAI->doesSetDirectiveSuppressReloc()) { 1797 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1798 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1799 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1800 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1801 const MachineBasicBlock *MBB = JTBBs[ii]; 1802 if (!EmittedSets.insert(MBB).second) 1803 continue; 1804 1805 // .set LJTSet, LBB32-base 1806 const MCExpr *LHS = 1807 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1808 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1809 MCBinaryExpr::createSub(LHS, Base, 1810 OutContext)); 1811 } 1812 } 1813 1814 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1815 // before each jump table. The first label is never referenced, but tells 1816 // the assembler and linker the extents of the jump table object. The 1817 // second label is actually referenced by the code. 1818 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1819 // FIXME: This doesn't have to have any specific name, just any randomly 1820 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1821 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1822 1823 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1824 1825 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1826 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1827 } 1828 if (!JTInDiffSection) 1829 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1830 } 1831 1832 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1833 /// current stream. 1834 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1835 const MachineBasicBlock *MBB, 1836 unsigned UID) const { 1837 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1838 const MCExpr *Value = nullptr; 1839 switch (MJTI->getEntryKind()) { 1840 case MachineJumpTableInfo::EK_Inline: 1841 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1842 case MachineJumpTableInfo::EK_Custom32: 1843 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1844 MJTI, MBB, UID, OutContext); 1845 break; 1846 case MachineJumpTableInfo::EK_BlockAddress: 1847 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1848 // .word LBB123 1849 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1850 break; 1851 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1852 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1853 // with a relocation as gp-relative, e.g.: 1854 // .gprel32 LBB123 1855 MCSymbol *MBBSym = MBB->getSymbol(); 1856 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1857 return; 1858 } 1859 1860 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1861 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1862 // with a relocation as gp-relative, e.g.: 1863 // .gpdword LBB123 1864 MCSymbol *MBBSym = MBB->getSymbol(); 1865 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1866 return; 1867 } 1868 1869 case MachineJumpTableInfo::EK_LabelDifference32: { 1870 // Each entry is the address of the block minus the address of the jump 1871 // table. This is used for PIC jump tables where gprel32 is not supported. 1872 // e.g.: 1873 // .word LBB123 - LJTI1_2 1874 // If the .set directive avoids relocations, this is emitted as: 1875 // .set L4_5_set_123, LBB123 - LJTI1_2 1876 // .word L4_5_set_123 1877 if (MAI->doesSetDirectiveSuppressReloc()) { 1878 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1879 OutContext); 1880 break; 1881 } 1882 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1883 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1884 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1885 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1886 break; 1887 } 1888 } 1889 1890 assert(Value && "Unknown entry kind!"); 1891 1892 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1893 OutStreamer->EmitValue(Value, EntrySize); 1894 } 1895 1896 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1897 /// special global used by LLVM. If so, emit it and return true, otherwise 1898 /// do nothing and return false. 1899 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1900 if (GV->getName() == "llvm.used") { 1901 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1902 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1903 return true; 1904 } 1905 1906 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1907 if (GV->getSection() == "llvm.metadata" || 1908 GV->hasAvailableExternallyLinkage()) 1909 return true; 1910 1911 if (!GV->hasAppendingLinkage()) return false; 1912 1913 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1914 1915 if (GV->getName() == "llvm.global_ctors") { 1916 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1917 /* isCtor */ true); 1918 1919 return true; 1920 } 1921 1922 if (GV->getName() == "llvm.global_dtors") { 1923 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1924 /* isCtor */ false); 1925 1926 return true; 1927 } 1928 1929 report_fatal_error("unknown special variable"); 1930 } 1931 1932 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1933 /// global in the specified llvm.used list. 1934 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1935 // Should be an array of 'i8*'. 1936 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1937 const GlobalValue *GV = 1938 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1939 if (GV) 1940 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1941 } 1942 } 1943 1944 namespace { 1945 1946 struct Structor { 1947 int Priority = 0; 1948 Constant *Func = nullptr; 1949 GlobalValue *ComdatKey = nullptr; 1950 1951 Structor() = default; 1952 }; 1953 1954 } // end anonymous namespace 1955 1956 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1957 /// priority. 1958 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1959 bool isCtor) { 1960 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 1961 // init priority. 1962 if (!isa<ConstantArray>(List)) return; 1963 1964 // Sanity check the structors list. 1965 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1966 if (!InitList) return; // Not an array! 1967 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1968 if (!ETy || ETy->getNumElements() != 3 || 1969 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1970 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 1971 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1972 return; // Not (int, ptr, ptr). 1973 1974 // Gather the structors in a form that's convenient for sorting by priority. 1975 SmallVector<Structor, 8> Structors; 1976 for (Value *O : InitList->operands()) { 1977 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1978 if (!CS) continue; // Malformed. 1979 if (CS->getOperand(1)->isNullValue()) 1980 break; // Found a null terminator, skip the rest. 1981 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1982 if (!Priority) continue; // Malformed. 1983 Structors.push_back(Structor()); 1984 Structor &S = Structors.back(); 1985 S.Priority = Priority->getLimitedValue(65535); 1986 S.Func = CS->getOperand(1); 1987 if (!CS->getOperand(2)->isNullValue()) 1988 S.ComdatKey = 1989 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1990 } 1991 1992 // Emit the function pointers in the target-specific order 1993 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1994 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 1995 return L.Priority < R.Priority; 1996 }); 1997 for (Structor &S : Structors) { 1998 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1999 const MCSymbol *KeySym = nullptr; 2000 if (GlobalValue *GV = S.ComdatKey) { 2001 if (GV->isDeclarationForLinker()) 2002 // If the associated variable is not defined in this module 2003 // (it might be available_externally, or have been an 2004 // available_externally definition that was dropped by the 2005 // EliminateAvailableExternally pass), some other TU 2006 // will provide its dynamic initializer. 2007 continue; 2008 2009 KeySym = getSymbol(GV); 2010 } 2011 MCSection *OutputSection = 2012 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2013 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2014 OutStreamer->SwitchSection(OutputSection); 2015 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2016 EmitAlignment(Align); 2017 EmitXXStructor(DL, S.Func); 2018 } 2019 } 2020 2021 void AsmPrinter::EmitModuleIdents(Module &M) { 2022 if (!MAI->hasIdentDirective()) 2023 return; 2024 2025 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2026 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2027 const MDNode *N = NMD->getOperand(i); 2028 assert(N->getNumOperands() == 1 && 2029 "llvm.ident metadata entry can have only one operand"); 2030 const MDString *S = cast<MDString>(N->getOperand(0)); 2031 OutStreamer->EmitIdent(S->getString()); 2032 } 2033 } 2034 } 2035 2036 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2037 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2038 if (!CommandLine) 2039 return; 2040 2041 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2042 if (!NMD || !NMD->getNumOperands()) 2043 return; 2044 2045 OutStreamer->PushSection(); 2046 OutStreamer->SwitchSection(CommandLine); 2047 OutStreamer->EmitZeros(1); 2048 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2049 const MDNode *N = NMD->getOperand(i); 2050 assert(N->getNumOperands() == 1 && 2051 "llvm.commandline metadata entry can have only one operand"); 2052 const MDString *S = cast<MDString>(N->getOperand(0)); 2053 OutStreamer->EmitBytes(S->getString()); 2054 OutStreamer->EmitZeros(1); 2055 } 2056 OutStreamer->PopSection(); 2057 } 2058 2059 //===--------------------------------------------------------------------===// 2060 // Emission and print routines 2061 // 2062 2063 /// Emit a byte directive and value. 2064 /// 2065 void AsmPrinter::emitInt8(int Value) const { 2066 OutStreamer->EmitIntValue(Value, 1); 2067 } 2068 2069 /// Emit a short directive and value. 2070 void AsmPrinter::emitInt16(int Value) const { 2071 OutStreamer->EmitIntValue(Value, 2); 2072 } 2073 2074 /// Emit a long directive and value. 2075 void AsmPrinter::emitInt32(int Value) const { 2076 OutStreamer->EmitIntValue(Value, 4); 2077 } 2078 2079 /// Emit a long long directive and value. 2080 void AsmPrinter::emitInt64(uint64_t Value) const { 2081 OutStreamer->EmitIntValue(Value, 8); 2082 } 2083 2084 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2085 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2086 /// .set if it avoids relocations. 2087 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2088 unsigned Size) const { 2089 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2090 } 2091 2092 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2093 /// where the size in bytes of the directive is specified by Size and Label 2094 /// specifies the label. This implicitly uses .set if it is available. 2095 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2096 unsigned Size, 2097 bool IsSectionRelative) const { 2098 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2099 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2100 if (Size > 4) 2101 OutStreamer->EmitZeros(Size - 4); 2102 return; 2103 } 2104 2105 // Emit Label+Offset (or just Label if Offset is zero) 2106 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2107 if (Offset) 2108 Expr = MCBinaryExpr::createAdd( 2109 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2110 2111 OutStreamer->EmitValue(Expr, Size); 2112 } 2113 2114 //===----------------------------------------------------------------------===// 2115 2116 // EmitAlignment - Emit an alignment directive to the specified power of 2117 // two boundary. For example, if you pass in 3 here, you will get an 8 2118 // byte alignment. If a global value is specified, and if that global has 2119 // an explicit alignment requested, it will override the alignment request 2120 // if required for correctness. 2121 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2122 if (GV) 2123 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2124 2125 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2126 2127 assert(NumBits < 2128 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2129 "undefined behavior"); 2130 if (getCurrentSection()->getKind().isText()) 2131 OutStreamer->EmitCodeAlignment(1u << NumBits); 2132 else 2133 OutStreamer->EmitValueToAlignment(1u << NumBits); 2134 } 2135 2136 //===----------------------------------------------------------------------===// 2137 // Constant emission. 2138 //===----------------------------------------------------------------------===// 2139 2140 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2141 MCContext &Ctx = OutContext; 2142 2143 if (CV->isNullValue() || isa<UndefValue>(CV)) 2144 return MCConstantExpr::create(0, Ctx); 2145 2146 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2147 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2148 2149 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2150 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2151 2152 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2153 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2154 2155 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2156 if (!CE) { 2157 llvm_unreachable("Unknown constant value to lower!"); 2158 } 2159 2160 switch (CE->getOpcode()) { 2161 default: 2162 // If the code isn't optimized, there may be outstanding folding 2163 // opportunities. Attempt to fold the expression using DataLayout as a 2164 // last resort before giving up. 2165 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2166 if (C != CE) 2167 return lowerConstant(C); 2168 2169 // Otherwise report the problem to the user. 2170 { 2171 std::string S; 2172 raw_string_ostream OS(S); 2173 OS << "Unsupported expression in static initializer: "; 2174 CE->printAsOperand(OS, /*PrintType=*/false, 2175 !MF ? nullptr : MF->getFunction().getParent()); 2176 report_fatal_error(OS.str()); 2177 } 2178 case Instruction::GetElementPtr: { 2179 // Generate a symbolic expression for the byte address 2180 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2181 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2182 2183 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2184 if (!OffsetAI) 2185 return Base; 2186 2187 int64_t Offset = OffsetAI.getSExtValue(); 2188 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2189 Ctx); 2190 } 2191 2192 case Instruction::Trunc: 2193 // We emit the value and depend on the assembler to truncate the generated 2194 // expression properly. This is important for differences between 2195 // blockaddress labels. Since the two labels are in the same function, it 2196 // is reasonable to treat their delta as a 32-bit value. 2197 LLVM_FALLTHROUGH; 2198 case Instruction::BitCast: 2199 return lowerConstant(CE->getOperand(0)); 2200 2201 case Instruction::IntToPtr: { 2202 const DataLayout &DL = getDataLayout(); 2203 2204 // Handle casts to pointers by changing them into casts to the appropriate 2205 // integer type. This promotes constant folding and simplifies this code. 2206 Constant *Op = CE->getOperand(0); 2207 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2208 false/*ZExt*/); 2209 return lowerConstant(Op); 2210 } 2211 2212 case Instruction::PtrToInt: { 2213 const DataLayout &DL = getDataLayout(); 2214 2215 // Support only foldable casts to/from pointers that can be eliminated by 2216 // changing the pointer to the appropriately sized integer type. 2217 Constant *Op = CE->getOperand(0); 2218 Type *Ty = CE->getType(); 2219 2220 const MCExpr *OpExpr = lowerConstant(Op); 2221 2222 // We can emit the pointer value into this slot if the slot is an 2223 // integer slot equal to the size of the pointer. 2224 // 2225 // If the pointer is larger than the resultant integer, then 2226 // as with Trunc just depend on the assembler to truncate it. 2227 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2228 return OpExpr; 2229 2230 // Otherwise the pointer is smaller than the resultant integer, mask off 2231 // the high bits so we are sure to get a proper truncation if the input is 2232 // a constant expr. 2233 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2234 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2235 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2236 } 2237 2238 case Instruction::Sub: { 2239 GlobalValue *LHSGV; 2240 APInt LHSOffset; 2241 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2242 getDataLayout())) { 2243 GlobalValue *RHSGV; 2244 APInt RHSOffset; 2245 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2246 getDataLayout())) { 2247 const MCExpr *RelocExpr = 2248 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2249 if (!RelocExpr) 2250 RelocExpr = MCBinaryExpr::createSub( 2251 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2252 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2253 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2254 if (Addend != 0) 2255 RelocExpr = MCBinaryExpr::createAdd( 2256 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2257 return RelocExpr; 2258 } 2259 } 2260 } 2261 // else fallthrough 2262 LLVM_FALLTHROUGH; 2263 2264 // The MC library also has a right-shift operator, but it isn't consistently 2265 // signed or unsigned between different targets. 2266 case Instruction::Add: 2267 case Instruction::Mul: 2268 case Instruction::SDiv: 2269 case Instruction::SRem: 2270 case Instruction::Shl: 2271 case Instruction::And: 2272 case Instruction::Or: 2273 case Instruction::Xor: { 2274 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2275 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2276 switch (CE->getOpcode()) { 2277 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2278 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2279 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2280 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2281 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2282 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2283 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2284 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2285 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2286 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2287 } 2288 } 2289 } 2290 } 2291 2292 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2293 AsmPrinter &AP, 2294 const Constant *BaseCV = nullptr, 2295 uint64_t Offset = 0); 2296 2297 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2298 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2299 2300 /// isRepeatedByteSequence - Determine whether the given value is 2301 /// composed of a repeated sequence of identical bytes and return the 2302 /// byte value. If it is not a repeated sequence, return -1. 2303 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2304 StringRef Data = V->getRawDataValues(); 2305 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2306 char C = Data[0]; 2307 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2308 if (Data[i] != C) return -1; 2309 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2310 } 2311 2312 /// isRepeatedByteSequence - Determine whether the given value is 2313 /// composed of a repeated sequence of identical bytes and return the 2314 /// byte value. If it is not a repeated sequence, return -1. 2315 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2316 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2317 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2318 assert(Size % 8 == 0); 2319 2320 // Extend the element to take zero padding into account. 2321 APInt Value = CI->getValue().zextOrSelf(Size); 2322 if (!Value.isSplat(8)) 2323 return -1; 2324 2325 return Value.zextOrTrunc(8).getZExtValue(); 2326 } 2327 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2328 // Make sure all array elements are sequences of the same repeated 2329 // byte. 2330 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2331 Constant *Op0 = CA->getOperand(0); 2332 int Byte = isRepeatedByteSequence(Op0, DL); 2333 if (Byte == -1) 2334 return -1; 2335 2336 // All array elements must be equal. 2337 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2338 if (CA->getOperand(i) != Op0) 2339 return -1; 2340 return Byte; 2341 } 2342 2343 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2344 return isRepeatedByteSequence(CDS); 2345 2346 return -1; 2347 } 2348 2349 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2350 const ConstantDataSequential *CDS, 2351 AsmPrinter &AP) { 2352 // See if we can aggregate this into a .fill, if so, emit it as such. 2353 int Value = isRepeatedByteSequence(CDS, DL); 2354 if (Value != -1) { 2355 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2356 // Don't emit a 1-byte object as a .fill. 2357 if (Bytes > 1) 2358 return AP.OutStreamer->emitFill(Bytes, Value); 2359 } 2360 2361 // If this can be emitted with .ascii/.asciz, emit it as such. 2362 if (CDS->isString()) 2363 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2364 2365 // Otherwise, emit the values in successive locations. 2366 unsigned ElementByteSize = CDS->getElementByteSize(); 2367 if (isa<IntegerType>(CDS->getElementType())) { 2368 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2369 if (AP.isVerbose()) 2370 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2371 CDS->getElementAsInteger(i)); 2372 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2373 ElementByteSize); 2374 } 2375 } else { 2376 Type *ET = CDS->getElementType(); 2377 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2378 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2379 } 2380 2381 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2382 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2383 CDS->getNumElements(); 2384 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2385 if (unsigned Padding = Size - EmittedSize) 2386 AP.OutStreamer->EmitZeros(Padding); 2387 } 2388 2389 static void emitGlobalConstantArray(const DataLayout &DL, 2390 const ConstantArray *CA, AsmPrinter &AP, 2391 const Constant *BaseCV, uint64_t Offset) { 2392 // See if we can aggregate some values. Make sure it can be 2393 // represented as a series of bytes of the constant value. 2394 int Value = isRepeatedByteSequence(CA, DL); 2395 2396 if (Value != -1) { 2397 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2398 AP.OutStreamer->emitFill(Bytes, Value); 2399 } 2400 else { 2401 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2402 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2403 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2404 } 2405 } 2406 } 2407 2408 static void emitGlobalConstantVector(const DataLayout &DL, 2409 const ConstantVector *CV, AsmPrinter &AP) { 2410 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2411 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2412 2413 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2414 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2415 CV->getType()->getNumElements(); 2416 if (unsigned Padding = Size - EmittedSize) 2417 AP.OutStreamer->EmitZeros(Padding); 2418 } 2419 2420 static void emitGlobalConstantStruct(const DataLayout &DL, 2421 const ConstantStruct *CS, AsmPrinter &AP, 2422 const Constant *BaseCV, uint64_t Offset) { 2423 // Print the fields in successive locations. Pad to align if needed! 2424 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2425 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2426 uint64_t SizeSoFar = 0; 2427 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2428 const Constant *Field = CS->getOperand(i); 2429 2430 // Print the actual field value. 2431 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2432 2433 // Check if padding is needed and insert one or more 0s. 2434 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2435 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2436 - Layout->getElementOffset(i)) - FieldSize; 2437 SizeSoFar += FieldSize + PadSize; 2438 2439 // Insert padding - this may include padding to increase the size of the 2440 // current field up to the ABI size (if the struct is not packed) as well 2441 // as padding to ensure that the next field starts at the right offset. 2442 AP.OutStreamer->EmitZeros(PadSize); 2443 } 2444 assert(SizeSoFar == Layout->getSizeInBytes() && 2445 "Layout of constant struct may be incorrect!"); 2446 } 2447 2448 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2449 APInt API = APF.bitcastToAPInt(); 2450 2451 // First print a comment with what we think the original floating-point value 2452 // should have been. 2453 if (AP.isVerbose()) { 2454 SmallString<8> StrVal; 2455 APF.toString(StrVal); 2456 2457 if (ET) 2458 ET->print(AP.OutStreamer->GetCommentOS()); 2459 else 2460 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2461 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2462 } 2463 2464 // Now iterate through the APInt chunks, emitting them in endian-correct 2465 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2466 // floats). 2467 unsigned NumBytes = API.getBitWidth() / 8; 2468 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2469 const uint64_t *p = API.getRawData(); 2470 2471 // PPC's long double has odd notions of endianness compared to how LLVM 2472 // handles it: p[0] goes first for *big* endian on PPC. 2473 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2474 int Chunk = API.getNumWords() - 1; 2475 2476 if (TrailingBytes) 2477 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2478 2479 for (; Chunk >= 0; --Chunk) 2480 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2481 } else { 2482 unsigned Chunk; 2483 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2484 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2485 2486 if (TrailingBytes) 2487 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2488 } 2489 2490 // Emit the tail padding for the long double. 2491 const DataLayout &DL = AP.getDataLayout(); 2492 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2493 } 2494 2495 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2496 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2497 } 2498 2499 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2500 const DataLayout &DL = AP.getDataLayout(); 2501 unsigned BitWidth = CI->getBitWidth(); 2502 2503 // Copy the value as we may massage the layout for constants whose bit width 2504 // is not a multiple of 64-bits. 2505 APInt Realigned(CI->getValue()); 2506 uint64_t ExtraBits = 0; 2507 unsigned ExtraBitsSize = BitWidth & 63; 2508 2509 if (ExtraBitsSize) { 2510 // The bit width of the data is not a multiple of 64-bits. 2511 // The extra bits are expected to be at the end of the chunk of the memory. 2512 // Little endian: 2513 // * Nothing to be done, just record the extra bits to emit. 2514 // Big endian: 2515 // * Record the extra bits to emit. 2516 // * Realign the raw data to emit the chunks of 64-bits. 2517 if (DL.isBigEndian()) { 2518 // Basically the structure of the raw data is a chunk of 64-bits cells: 2519 // 0 1 BitWidth / 64 2520 // [chunk1][chunk2] ... [chunkN]. 2521 // The most significant chunk is chunkN and it should be emitted first. 2522 // However, due to the alignment issue chunkN contains useless bits. 2523 // Realign the chunks so that they contain only useless information: 2524 // ExtraBits 0 1 (BitWidth / 64) - 1 2525 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2526 ExtraBits = Realigned.getRawData()[0] & 2527 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2528 Realigned.lshrInPlace(ExtraBitsSize); 2529 } else 2530 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2531 } 2532 2533 // We don't expect assemblers to support integer data directives 2534 // for more than 64 bits, so we emit the data in at most 64-bit 2535 // quantities at a time. 2536 const uint64_t *RawData = Realigned.getRawData(); 2537 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2538 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2539 AP.OutStreamer->EmitIntValue(Val, 8); 2540 } 2541 2542 if (ExtraBitsSize) { 2543 // Emit the extra bits after the 64-bits chunks. 2544 2545 // Emit a directive that fills the expected size. 2546 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2547 Size -= (BitWidth / 64) * 8; 2548 assert(Size && Size * 8 >= ExtraBitsSize && 2549 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2550 == ExtraBits && "Directive too small for extra bits."); 2551 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2552 } 2553 } 2554 2555 /// Transform a not absolute MCExpr containing a reference to a GOT 2556 /// equivalent global, by a target specific GOT pc relative access to the 2557 /// final symbol. 2558 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2559 const Constant *BaseCst, 2560 uint64_t Offset) { 2561 // The global @foo below illustrates a global that uses a got equivalent. 2562 // 2563 // @bar = global i32 42 2564 // @gotequiv = private unnamed_addr constant i32* @bar 2565 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2566 // i64 ptrtoint (i32* @foo to i64)) 2567 // to i32) 2568 // 2569 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2570 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2571 // form: 2572 // 2573 // foo = cstexpr, where 2574 // cstexpr := <gotequiv> - "." + <cst> 2575 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2576 // 2577 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2578 // 2579 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2580 // gotpcrelcst := <offset from @foo base> + <cst> 2581 MCValue MV; 2582 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2583 return; 2584 const MCSymbolRefExpr *SymA = MV.getSymA(); 2585 if (!SymA) 2586 return; 2587 2588 // Check that GOT equivalent symbol is cached. 2589 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2590 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2591 return; 2592 2593 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2594 if (!BaseGV) 2595 return; 2596 2597 // Check for a valid base symbol 2598 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2599 const MCSymbolRefExpr *SymB = MV.getSymB(); 2600 2601 if (!SymB || BaseSym != &SymB->getSymbol()) 2602 return; 2603 2604 // Make sure to match: 2605 // 2606 // gotpcrelcst := <offset from @foo base> + <cst> 2607 // 2608 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2609 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2610 // if the target knows how to encode it. 2611 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2612 if (GOTPCRelCst < 0) 2613 return; 2614 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2615 return; 2616 2617 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2618 // 2619 // bar: 2620 // .long 42 2621 // gotequiv: 2622 // .quad bar 2623 // foo: 2624 // .long gotequiv - "." + <cst> 2625 // 2626 // is replaced by the target specific equivalent to: 2627 // 2628 // bar: 2629 // .long 42 2630 // foo: 2631 // .long bar@GOTPCREL+<gotpcrelcst> 2632 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2633 const GlobalVariable *GV = Result.first; 2634 int NumUses = (int)Result.second; 2635 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2636 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2637 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2638 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2639 2640 // Update GOT equivalent usage information 2641 --NumUses; 2642 if (NumUses >= 0) 2643 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2644 } 2645 2646 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2647 AsmPrinter &AP, const Constant *BaseCV, 2648 uint64_t Offset) { 2649 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2650 2651 // Globals with sub-elements such as combinations of arrays and structs 2652 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2653 // constant symbol base and the current position with BaseCV and Offset. 2654 if (!BaseCV && CV->hasOneUse()) 2655 BaseCV = dyn_cast<Constant>(CV->user_back()); 2656 2657 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2658 return AP.OutStreamer->EmitZeros(Size); 2659 2660 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2661 switch (Size) { 2662 case 1: 2663 case 2: 2664 case 4: 2665 case 8: 2666 if (AP.isVerbose()) 2667 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2668 CI->getZExtValue()); 2669 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2670 return; 2671 default: 2672 emitGlobalConstantLargeInt(CI, AP); 2673 return; 2674 } 2675 } 2676 2677 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2678 return emitGlobalConstantFP(CFP, AP); 2679 2680 if (isa<ConstantPointerNull>(CV)) { 2681 AP.OutStreamer->EmitIntValue(0, Size); 2682 return; 2683 } 2684 2685 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2686 return emitGlobalConstantDataSequential(DL, CDS, AP); 2687 2688 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2689 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2690 2691 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2692 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2693 2694 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2695 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2696 // vectors). 2697 if (CE->getOpcode() == Instruction::BitCast) 2698 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2699 2700 if (Size > 8) { 2701 // If the constant expression's size is greater than 64-bits, then we have 2702 // to emit the value in chunks. Try to constant fold the value and emit it 2703 // that way. 2704 Constant *New = ConstantFoldConstant(CE, DL); 2705 if (New && New != CE) 2706 return emitGlobalConstantImpl(DL, New, AP); 2707 } 2708 } 2709 2710 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2711 return emitGlobalConstantVector(DL, V, AP); 2712 2713 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2714 // thread the streamer with EmitValue. 2715 const MCExpr *ME = AP.lowerConstant(CV); 2716 2717 // Since lowerConstant already folded and got rid of all IR pointer and 2718 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2719 // directly. 2720 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2721 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2722 2723 AP.OutStreamer->EmitValue(ME, Size); 2724 } 2725 2726 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2727 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2728 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2729 if (Size) 2730 emitGlobalConstantImpl(DL, CV, *this); 2731 else if (MAI->hasSubsectionsViaSymbols()) { 2732 // If the global has zero size, emit a single byte so that two labels don't 2733 // look like they are at the same location. 2734 OutStreamer->EmitIntValue(0, 1); 2735 } 2736 } 2737 2738 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2739 // Target doesn't support this yet! 2740 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2741 } 2742 2743 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2744 if (Offset > 0) 2745 OS << '+' << Offset; 2746 else if (Offset < 0) 2747 OS << Offset; 2748 } 2749 2750 //===----------------------------------------------------------------------===// 2751 // Symbol Lowering Routines. 2752 //===----------------------------------------------------------------------===// 2753 2754 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2755 return OutContext.createTempSymbol(Name, true); 2756 } 2757 2758 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2759 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2760 } 2761 2762 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2763 return MMI->getAddrLabelSymbol(BB); 2764 } 2765 2766 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2767 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2768 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2769 const MachineConstantPoolEntry &CPE = 2770 MF->getConstantPool()->getConstants()[CPID]; 2771 if (!CPE.isMachineConstantPoolEntry()) { 2772 const DataLayout &DL = MF->getDataLayout(); 2773 SectionKind Kind = CPE.getSectionKind(&DL); 2774 const Constant *C = CPE.Val.ConstVal; 2775 unsigned Align = CPE.Alignment; 2776 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2777 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2778 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2779 if (Sym->isUndefined()) 2780 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2781 return Sym; 2782 } 2783 } 2784 } 2785 } 2786 2787 const DataLayout &DL = getDataLayout(); 2788 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2789 "CPI" + Twine(getFunctionNumber()) + "_" + 2790 Twine(CPID)); 2791 } 2792 2793 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2794 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2795 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2796 } 2797 2798 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2799 /// FIXME: privatize to AsmPrinter. 2800 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2801 const DataLayout &DL = getDataLayout(); 2802 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2803 Twine(getFunctionNumber()) + "_" + 2804 Twine(UID) + "_set_" + Twine(MBBID)); 2805 } 2806 2807 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2808 StringRef Suffix) const { 2809 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2810 } 2811 2812 /// Return the MCSymbol for the specified ExternalSymbol. 2813 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2814 SmallString<60> NameStr; 2815 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2816 return OutContext.getOrCreateSymbol(NameStr); 2817 } 2818 2819 /// PrintParentLoopComment - Print comments about parent loops of this one. 2820 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2821 unsigned FunctionNumber) { 2822 if (!Loop) return; 2823 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2824 OS.indent(Loop->getLoopDepth()*2) 2825 << "Parent Loop BB" << FunctionNumber << "_" 2826 << Loop->getHeader()->getNumber() 2827 << " Depth=" << Loop->getLoopDepth() << '\n'; 2828 } 2829 2830 /// PrintChildLoopComment - Print comments about child loops within 2831 /// the loop for this basic block, with nesting. 2832 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2833 unsigned FunctionNumber) { 2834 // Add child loop information 2835 for (const MachineLoop *CL : *Loop) { 2836 OS.indent(CL->getLoopDepth()*2) 2837 << "Child Loop BB" << FunctionNumber << "_" 2838 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2839 << '\n'; 2840 PrintChildLoopComment(OS, CL, FunctionNumber); 2841 } 2842 } 2843 2844 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2845 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2846 const MachineLoopInfo *LI, 2847 const AsmPrinter &AP) { 2848 // Add loop depth information 2849 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2850 if (!Loop) return; 2851 2852 MachineBasicBlock *Header = Loop->getHeader(); 2853 assert(Header && "No header for loop"); 2854 2855 // If this block is not a loop header, just print out what is the loop header 2856 // and return. 2857 if (Header != &MBB) { 2858 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2859 Twine(AP.getFunctionNumber())+"_" + 2860 Twine(Loop->getHeader()->getNumber())+ 2861 " Depth="+Twine(Loop->getLoopDepth())); 2862 return; 2863 } 2864 2865 // Otherwise, it is a loop header. Print out information about child and 2866 // parent loops. 2867 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2868 2869 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2870 2871 OS << "=>"; 2872 OS.indent(Loop->getLoopDepth()*2-2); 2873 2874 OS << "This "; 2875 if (Loop->empty()) 2876 OS << "Inner "; 2877 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2878 2879 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2880 } 2881 2882 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2883 MCCodePaddingContext &Context) const { 2884 assert(MF != nullptr && "Machine function must be valid"); 2885 Context.IsPaddingActive = !MF->hasInlineAsm() && 2886 !MF->getFunction().hasOptSize() && 2887 TM.getOptLevel() != CodeGenOpt::None; 2888 Context.IsBasicBlockReachableViaFallthrough = 2889 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2890 MBB.pred_end(); 2891 Context.IsBasicBlockReachableViaBranch = 2892 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2893 } 2894 2895 /// EmitBasicBlockStart - This method prints the label for the specified 2896 /// MachineBasicBlock, an alignment (if present) and a comment describing 2897 /// it if appropriate. 2898 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2899 // End the previous funclet and start a new one. 2900 if (MBB.isEHFuncletEntry()) { 2901 for (const HandlerInfo &HI : Handlers) { 2902 HI.Handler->endFunclet(); 2903 HI.Handler->beginFunclet(MBB); 2904 } 2905 } 2906 2907 // Emit an alignment directive for this block, if needed. 2908 if (unsigned Align = MBB.getAlignment()) 2909 EmitAlignment(Align); 2910 MCCodePaddingContext Context; 2911 setupCodePaddingContext(MBB, Context); 2912 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2913 2914 // If the block has its address taken, emit any labels that were used to 2915 // reference the block. It is possible that there is more than one label 2916 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2917 // the references were generated. 2918 if (MBB.hasAddressTaken()) { 2919 const BasicBlock *BB = MBB.getBasicBlock(); 2920 if (isVerbose()) 2921 OutStreamer->AddComment("Block address taken"); 2922 2923 // MBBs can have their address taken as part of CodeGen without having 2924 // their corresponding BB's address taken in IR 2925 if (BB->hasAddressTaken()) 2926 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2927 OutStreamer->EmitLabel(Sym); 2928 } 2929 2930 // Print some verbose block comments. 2931 if (isVerbose()) { 2932 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2933 if (BB->hasName()) { 2934 BB->printAsOperand(OutStreamer->GetCommentOS(), 2935 /*PrintType=*/false, BB->getModule()); 2936 OutStreamer->GetCommentOS() << '\n'; 2937 } 2938 } 2939 2940 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2941 emitBasicBlockLoopComments(MBB, MLI, *this); 2942 } 2943 2944 // Print the main label for the block. 2945 if (MBB.pred_empty() || 2946 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2947 !MBB.hasLabelMustBeEmitted())) { 2948 if (isVerbose()) { 2949 // NOTE: Want this comment at start of line, don't emit with AddComment. 2950 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2951 false); 2952 } 2953 } else { 2954 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 2955 OutStreamer->AddComment("Label of block must be emitted"); 2956 OutStreamer->EmitLabel(MBB.getSymbol()); 2957 } 2958 } 2959 2960 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2961 MCCodePaddingContext Context; 2962 setupCodePaddingContext(MBB, Context); 2963 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2964 } 2965 2966 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2967 bool IsDefinition) const { 2968 MCSymbolAttr Attr = MCSA_Invalid; 2969 2970 switch (Visibility) { 2971 default: break; 2972 case GlobalValue::HiddenVisibility: 2973 if (IsDefinition) 2974 Attr = MAI->getHiddenVisibilityAttr(); 2975 else 2976 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2977 break; 2978 case GlobalValue::ProtectedVisibility: 2979 Attr = MAI->getProtectedVisibilityAttr(); 2980 break; 2981 } 2982 2983 if (Attr != MCSA_Invalid) 2984 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2985 } 2986 2987 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2988 /// exactly one predecessor and the control transfer mechanism between 2989 /// the predecessor and this block is a fall-through. 2990 bool AsmPrinter:: 2991 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2992 // If this is a landing pad, it isn't a fall through. If it has no preds, 2993 // then nothing falls through to it. 2994 if (MBB->isEHPad() || MBB->pred_empty()) 2995 return false; 2996 2997 // If there isn't exactly one predecessor, it can't be a fall through. 2998 if (MBB->pred_size() > 1) 2999 return false; 3000 3001 // The predecessor has to be immediately before this block. 3002 MachineBasicBlock *Pred = *MBB->pred_begin(); 3003 if (!Pred->isLayoutSuccessor(MBB)) 3004 return false; 3005 3006 // If the block is completely empty, then it definitely does fall through. 3007 if (Pred->empty()) 3008 return true; 3009 3010 // Check the terminators in the previous blocks 3011 for (const auto &MI : Pred->terminators()) { 3012 // If it is not a simple branch, we are in a table somewhere. 3013 if (!MI.isBranch() || MI.isIndirectBranch()) 3014 return false; 3015 3016 // If we are the operands of one of the branches, this is not a fall 3017 // through. Note that targets with delay slots will usually bundle 3018 // terminators with the delay slot instruction. 3019 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3020 if (OP->isJTI()) 3021 return false; 3022 if (OP->isMBB() && OP->getMBB() == MBB) 3023 return false; 3024 } 3025 } 3026 3027 return true; 3028 } 3029 3030 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3031 if (!S.usesMetadata()) 3032 return nullptr; 3033 3034 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3035 gcp_map_type::iterator GCPI = GCMap.find(&S); 3036 if (GCPI != GCMap.end()) 3037 return GCPI->second.get(); 3038 3039 auto Name = S.getName(); 3040 3041 for (GCMetadataPrinterRegistry::iterator 3042 I = GCMetadataPrinterRegistry::begin(), 3043 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3044 if (Name == I->getName()) { 3045 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3046 GMP->S = &S; 3047 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3048 return IterBool.first->second.get(); 3049 } 3050 3051 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3052 } 3053 3054 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3055 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3056 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3057 bool NeedsDefault = false; 3058 if (MI->begin() == MI->end()) 3059 // No GC strategy, use the default format. 3060 NeedsDefault = true; 3061 else 3062 for (auto &I : *MI) { 3063 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3064 if (MP->emitStackMaps(SM, *this)) 3065 continue; 3066 // The strategy doesn't have printer or doesn't emit custom stack maps. 3067 // Use the default format. 3068 NeedsDefault = true; 3069 } 3070 3071 if (NeedsDefault) 3072 SM.serializeToStackMapSection(); 3073 } 3074 3075 /// Pin vtable to this file. 3076 AsmPrinterHandler::~AsmPrinterHandler() = default; 3077 3078 void AsmPrinterHandler::markFunctionEnd() {} 3079 3080 // In the binary's "xray_instr_map" section, an array of these function entries 3081 // describes each instrumentation point. When XRay patches your code, the index 3082 // into this table will be given to your handler as a patch point identifier. 3083 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3084 const MCSymbol *CurrentFnSym) const { 3085 Out->EmitSymbolValue(Sled, Bytes); 3086 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3087 auto Kind8 = static_cast<uint8_t>(Kind); 3088 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3089 Out->EmitBinaryData( 3090 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3091 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3092 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3093 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3094 Out->EmitZeros(Padding); 3095 } 3096 3097 void AsmPrinter::emitXRayTable() { 3098 if (Sleds.empty()) 3099 return; 3100 3101 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3102 const Function &F = MF->getFunction(); 3103 MCSection *InstMap = nullptr; 3104 MCSection *FnSledIndex = nullptr; 3105 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3106 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3107 assert(Associated != nullptr); 3108 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3109 std::string GroupName; 3110 if (F.hasComdat()) { 3111 Flags |= ELF::SHF_GROUP; 3112 GroupName = F.getComdat()->getName(); 3113 } 3114 3115 auto UniqueID = ++XRayFnUniqueID; 3116 InstMap = 3117 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3118 GroupName, UniqueID, Associated); 3119 FnSledIndex = 3120 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3121 GroupName, UniqueID, Associated); 3122 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3123 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3124 SectionKind::getReadOnlyWithRel()); 3125 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3126 SectionKind::getReadOnlyWithRel()); 3127 } else { 3128 llvm_unreachable("Unsupported target"); 3129 } 3130 3131 auto WordSizeBytes = MAI->getCodePointerSize(); 3132 3133 // Now we switch to the instrumentation map section. Because this is done 3134 // per-function, we are able to create an index entry that will represent the 3135 // range of sleds associated with a function. 3136 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3137 OutStreamer->SwitchSection(InstMap); 3138 OutStreamer->EmitLabel(SledsStart); 3139 for (const auto &Sled : Sleds) 3140 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3141 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3142 OutStreamer->EmitLabel(SledsEnd); 3143 3144 // We then emit a single entry in the index per function. We use the symbols 3145 // that bound the instrumentation map as the range for a specific function. 3146 // Each entry here will be 2 * word size aligned, as we're writing down two 3147 // pointers. This should work for both 32-bit and 64-bit platforms. 3148 OutStreamer->SwitchSection(FnSledIndex); 3149 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3150 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3151 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3152 OutStreamer->SwitchSection(PrevSection); 3153 Sleds.clear(); 3154 } 3155 3156 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3157 SledKind Kind, uint8_t Version) { 3158 const Function &F = MI.getMF()->getFunction(); 3159 auto Attr = F.getFnAttribute("function-instrument"); 3160 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3161 bool AlwaysInstrument = 3162 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3163 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3164 Kind = SledKind::LOG_ARGS_ENTER; 3165 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3166 AlwaysInstrument, &F, Version}); 3167 } 3168 3169 uint16_t AsmPrinter::getDwarfVersion() const { 3170 return OutStreamer->getContext().getDwarfVersion(); 3171 } 3172 3173 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3174 OutStreamer->getContext().setDwarfVersion(Version); 3175 } 3176