1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinException.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GCMetadataPrinter.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBundle.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Mangler.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCExpr.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/MCValue.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Target/TargetFrameLowering.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetLoweringObjectFile.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 static const char *const DWARFGroupName = "DWARF Emission"; 60 static const char *const DbgTimerName = "Debug Info Emission"; 61 static const char *const EHTimerName = "DWARF Exception Writer"; 62 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 63 64 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 65 66 char AsmPrinter::ID = 0; 67 68 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 69 static gcp_map_type &getGCMap(void *&P) { 70 if (!P) 71 P = new gcp_map_type(); 72 return *(gcp_map_type*)P; 73 } 74 75 76 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 77 /// value in log2 form. This rounds up to the preferred alignment if possible 78 /// and legal. 79 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 80 unsigned InBits = 0) { 81 unsigned NumBits = 0; 82 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 83 NumBits = DL.getPreferredAlignmentLog(GVar); 84 85 // If InBits is specified, round it to it. 86 if (InBits > NumBits) 87 NumBits = InBits; 88 89 // If the GV has a specified alignment, take it into account. 90 if (GV->getAlignment() == 0) 91 return NumBits; 92 93 unsigned GVAlign = Log2_32(GV->getAlignment()); 94 95 // If the GVAlign is larger than NumBits, or if we are required to obey 96 // NumBits because the GV has an assigned section, obey it. 97 if (GVAlign > NumBits || GV->hasSection()) 98 NumBits = GVAlign; 99 return NumBits; 100 } 101 102 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 103 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 104 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 105 LastMI(nullptr), LastFn(0), Counter(~0U) { 106 DD = nullptr; 107 MMI = nullptr; 108 LI = nullptr; 109 MF = nullptr; 110 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 111 CurrentFnBegin = nullptr; 112 CurrentFnEnd = nullptr; 113 GCMetadataPrinters = nullptr; 114 VerboseAsm = OutStreamer->isVerboseAsm(); 115 } 116 117 AsmPrinter::~AsmPrinter() { 118 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 119 120 if (GCMetadataPrinters) { 121 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 122 123 delete &GCMap; 124 GCMetadataPrinters = nullptr; 125 } 126 } 127 128 /// getFunctionNumber - Return a unique ID for the current function. 129 /// 130 unsigned AsmPrinter::getFunctionNumber() const { 131 return MF->getFunctionNumber(); 132 } 133 134 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 135 return *TM.getObjFileLowering(); 136 } 137 138 const DataLayout &AsmPrinter::getDataLayout() const { 139 return MMI->getModule()->getDataLayout(); 140 } 141 142 // Do not use the cached DataLayout because some client use it without a Module 143 // (llmv-dsymutil, llvm-dwarfdump). 144 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 145 146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 148 return MF->getSubtarget<MCSubtargetInfo>(); 149 } 150 151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 152 S.EmitInstruction(Inst, getSubtargetInfo()); 153 } 154 155 StringRef AsmPrinter::getTargetTriple() const { 156 return TM.getTargetTriple().str(); 157 } 158 159 /// getCurrentSection() - Return the current section we are emitting to. 160 const MCSection *AsmPrinter::getCurrentSection() const { 161 return OutStreamer->getCurrentSection().first; 162 } 163 164 165 166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesAll(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 AU.addRequired<MachineModuleInfo>(); 170 AU.addRequired<GCModuleInfo>(); 171 if (isVerbose()) 172 AU.addRequired<MachineLoopInfo>(); 173 } 174 175 bool AsmPrinter::doInitialization(Module &M) { 176 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 177 178 // Initialize TargetLoweringObjectFile. 179 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 180 .Initialize(OutContext, TM); 181 182 OutStreamer->InitSections(false); 183 184 Mang = new Mangler(); 185 186 // Emit the version-min deplyment target directive if needed. 187 // 188 // FIXME: If we end up with a collection of these sorts of Darwin-specific 189 // or ELF-specific things, it may make sense to have a platform helper class 190 // that will work with the target helper class. For now keep it here, as the 191 // alternative is duplicated code in each of the target asm printers that 192 // use the directive, where it would need the same conditionalization 193 // anyway. 194 Triple TT(getTargetTriple()); 195 if (TT.isOSDarwin()) { 196 unsigned Major, Minor, Update; 197 TT.getOSVersion(Major, Minor, Update); 198 // If there is a version specified, Major will be non-zero. 199 if (Major) { 200 MCVersionMinType VersionType; 201 if (TT.isWatchOS()) 202 VersionType = MCVM_WatchOSVersionMin; 203 else if (TT.isTvOS()) 204 VersionType = MCVM_TvOSVersionMin; 205 else if (TT.isMacOSX()) 206 VersionType = MCVM_OSXVersionMin; 207 else 208 VersionType = MCVM_IOSVersionMin; 209 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 210 } 211 } 212 213 // Allow the target to emit any magic that it wants at the start of the file. 214 EmitStartOfAsmFile(M); 215 216 // Very minimal debug info. It is ignored if we emit actual debug info. If we 217 // don't, this at least helps the user find where a global came from. 218 if (MAI->hasSingleParameterDotFile()) { 219 // .file "foo.c" 220 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 221 } 222 223 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 224 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 225 for (auto &I : *MI) 226 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 227 MP->beginAssembly(M, *MI, *this); 228 229 // Emit module-level inline asm if it exists. 230 if (!M.getModuleInlineAsm().empty()) { 231 // We're at the module level. Construct MCSubtarget from the default CPU 232 // and target triple. 233 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 234 TM.getTargetTriple().str(), TM.getTargetCPU(), 235 TM.getTargetFeatureString())); 236 OutStreamer->AddComment("Start of file scope inline assembly"); 237 OutStreamer->AddBlankLine(); 238 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 239 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 240 OutStreamer->AddComment("End of file scope inline assembly"); 241 OutStreamer->AddBlankLine(); 242 } 243 244 if (MAI->doesSupportDebugInformation()) { 245 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 246 if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 247 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 248 DbgTimerName, 249 CodeViewLineTablesGroupName)); 250 } 251 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 252 DD = new DwarfDebug(this, &M); 253 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 254 } 255 } 256 257 EHStreamer *ES = nullptr; 258 switch (MAI->getExceptionHandlingType()) { 259 case ExceptionHandling::None: 260 break; 261 case ExceptionHandling::SjLj: 262 case ExceptionHandling::DwarfCFI: 263 ES = new DwarfCFIException(this); 264 break; 265 case ExceptionHandling::ARM: 266 ES = new ARMException(this); 267 break; 268 case ExceptionHandling::WinEH: 269 switch (MAI->getWinEHEncodingType()) { 270 default: llvm_unreachable("unsupported unwinding information encoding"); 271 case WinEH::EncodingType::Invalid: 272 break; 273 case WinEH::EncodingType::X86: 274 case WinEH::EncodingType::Itanium: 275 ES = new WinException(this); 276 break; 277 } 278 break; 279 } 280 if (ES) 281 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 282 return false; 283 } 284 285 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 286 if (!MAI.hasWeakDefCanBeHiddenDirective()) 287 return false; 288 289 return canBeOmittedFromSymbolTable(GV); 290 } 291 292 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 293 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 294 switch (Linkage) { 295 case GlobalValue::CommonLinkage: 296 case GlobalValue::LinkOnceAnyLinkage: 297 case GlobalValue::LinkOnceODRLinkage: 298 case GlobalValue::WeakAnyLinkage: 299 case GlobalValue::WeakODRLinkage: 300 if (MAI->hasWeakDefDirective()) { 301 // .globl _foo 302 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 303 304 if (!canBeHidden(GV, *MAI)) 305 // .weak_definition _foo 306 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 307 else 308 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 309 } else if (MAI->hasLinkOnceDirective()) { 310 // .globl _foo 311 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 312 //NOTE: linkonce is handled by the section the symbol was assigned to. 313 } else { 314 // .weak _foo 315 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 316 } 317 return; 318 case GlobalValue::AppendingLinkage: 319 // FIXME: appending linkage variables should go into a section of 320 // their name or something. For now, just emit them as external. 321 case GlobalValue::ExternalLinkage: 322 // If external or appending, declare as a global symbol. 323 // .globl _foo 324 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 325 return; 326 case GlobalValue::PrivateLinkage: 327 case GlobalValue::InternalLinkage: 328 return; 329 case GlobalValue::AvailableExternallyLinkage: 330 llvm_unreachable("Should never emit this"); 331 case GlobalValue::ExternalWeakLinkage: 332 llvm_unreachable("Don't know how to emit these"); 333 } 334 llvm_unreachable("Unknown linkage type!"); 335 } 336 337 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 338 const GlobalValue *GV) const { 339 TM.getNameWithPrefix(Name, GV, *Mang); 340 } 341 342 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 343 return TM.getSymbol(GV, *Mang); 344 } 345 346 static MCSymbol *getOrCreateEmuTLSControlSym(MCSymbol *GVSym, MCContext &C) { 347 return C.getOrCreateSymbol(Twine("__emutls_v.") + GVSym->getName()); 348 } 349 350 static MCSymbol *getOrCreateEmuTLSInitSym(MCSymbol *GVSym, MCContext &C) { 351 return C.getOrCreateSymbol(Twine("__emutls_t.") + GVSym->getName()); 352 } 353 354 /// EmitEmulatedTLSControlVariable - Emit the control variable for an emulated TLS variable. 355 void AsmPrinter::EmitEmulatedTLSControlVariable(const GlobalVariable *GV, 356 MCSymbol *EmittedSym, 357 bool AllZeroInitValue) { 358 // If there is init value, use .data.rel.local section; 359 // otherwise use the .data section. 360 MCSection *TLSVarSection = 361 const_cast<MCSection *>((GV->hasInitializer() && !AllZeroInitValue) 362 ? getObjFileLowering().getDataRelSection() 363 : getObjFileLowering().getDataSection()); 364 OutStreamer->SwitchSection(TLSVarSection); 365 MCSymbol *GVSym = getSymbol(GV); 366 EmitLinkage(GV, EmittedSym); // same linkage as GV 367 const DataLayout &DL = GV->getParent()->getDataLayout(); 368 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 369 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 370 unsigned WordSize = DL.getPointerSize(); 371 unsigned Alignment = DL.getPointerABIAlignment(); 372 EmitAlignment(Log2_32(Alignment)); 373 OutStreamer->EmitLabel(EmittedSym); 374 OutStreamer->EmitIntValue(Size, WordSize); 375 OutStreamer->EmitIntValue((1 << AlignLog), WordSize); 376 OutStreamer->EmitIntValue(0, WordSize); 377 if (GV->hasInitializer() && !AllZeroInitValue) { 378 OutStreamer->EmitSymbolValue( 379 getOrCreateEmuTLSInitSym(GVSym, OutContext), WordSize); 380 } else 381 OutStreamer->EmitIntValue(0, WordSize); 382 if (MAI->hasDotTypeDotSizeDirective()) 383 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedSym), 384 MCConstantExpr::create(4 * WordSize, OutContext)); 385 OutStreamer->AddBlankLine(); // End of the __emutls_v.* variable. 386 } 387 388 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 389 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 390 bool IsEmuTLSVar = 391 GV->getThreadLocalMode() != llvm::GlobalVariable::NotThreadLocal && 392 TM.Options.EmulatedTLS; 393 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 394 "No emulated TLS variables in the common section"); 395 396 if (GV->hasInitializer()) { 397 // Check to see if this is a special global used by LLVM, if so, emit it. 398 if (EmitSpecialLLVMGlobal(GV)) 399 return; 400 401 // Skip the emission of global equivalents. The symbol can be emitted later 402 // on by emitGlobalGOTEquivs in case it turns out to be needed. 403 if (GlobalGOTEquivs.count(getSymbol(GV))) 404 return; 405 406 if (isVerbose() && !IsEmuTLSVar) { 407 // When printing the control variable __emutls_v.*, 408 // we don't need to print the original TLS variable name. 409 GV->printAsOperand(OutStreamer->GetCommentOS(), 410 /*PrintType=*/false, GV->getParent()); 411 OutStreamer->GetCommentOS() << '\n'; 412 } 413 } 414 415 MCSymbol *GVSym = getSymbol(GV); 416 MCSymbol *EmittedSym = IsEmuTLSVar ? 417 getOrCreateEmuTLSControlSym(GVSym, OutContext) : GVSym; 418 // getOrCreateEmuTLSControlSym only creates the symbol with name and default attributes. 419 // GV's or GVSym's attributes will be used for the EmittedSym. 420 421 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 422 423 if (!GV->hasInitializer()) // External globals require no extra code. 424 return; 425 426 GVSym->redefineIfPossible(); 427 if (GVSym->isDefined() || GVSym->isVariable()) 428 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 429 "' is already defined"); 430 431 if (MAI->hasDotTypeDotSizeDirective()) 432 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 433 434 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 435 436 const DataLayout &DL = GV->getParent()->getDataLayout(); 437 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 438 439 // If the alignment is specified, we *must* obey it. Overaligning a global 440 // with a specified alignment is a prompt way to break globals emitted to 441 // sections and expected to be contiguous (e.g. ObjC metadata). 442 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 443 444 bool AllZeroInitValue = false; 445 const Constant *InitValue = GV->getInitializer(); 446 if (isa<ConstantAggregateZero>(InitValue)) 447 AllZeroInitValue = true; 448 else { 449 const ConstantInt *InitIntValue = dyn_cast<ConstantInt>(InitValue); 450 if (InitIntValue && InitIntValue->isZero()) 451 AllZeroInitValue = true; 452 } 453 if (IsEmuTLSVar) 454 EmitEmulatedTLSControlVariable(GV, EmittedSym, AllZeroInitValue); 455 456 for (const HandlerInfo &HI : Handlers) { 457 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 458 HI.Handler->setSymbolSize(GVSym, Size); 459 } 460 461 // Handle common and BSS local symbols (.lcomm). 462 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 463 assert(!(IsEmuTLSVar && GVKind.isCommon()) && 464 "No emulated TLS variables in the common section"); 465 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 466 unsigned Align = 1 << AlignLog; 467 468 // Handle common symbols. 469 if (GVKind.isCommon()) { 470 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 471 Align = 0; 472 473 // .comm _foo, 42, 4 474 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 475 return; 476 } 477 478 // Handle local BSS symbols. 479 if (MAI->hasMachoZeroFillDirective()) { 480 MCSection *TheSection = 481 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 482 // .zerofill __DATA, __bss, _foo, 400, 5 483 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 484 return; 485 } 486 487 // Use .lcomm only if it supports user-specified alignment. 488 // Otherwise, while it would still be correct to use .lcomm in some 489 // cases (e.g. when Align == 1), the external assembler might enfore 490 // some -unknown- default alignment behavior, which could cause 491 // spurious differences between external and integrated assembler. 492 // Prefer to simply fall back to .local / .comm in this case. 493 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 494 // .lcomm _foo, 42 495 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 496 return; 497 } 498 499 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 500 Align = 0; 501 502 // .local _foo 503 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 504 // .comm _foo, 42, 4 505 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 506 return; 507 } 508 509 if (IsEmuTLSVar && AllZeroInitValue) 510 return; // No need of initialization values. 511 512 MCSymbol *EmittedInitSym = IsEmuTLSVar ? 513 getOrCreateEmuTLSInitSym(GVSym, OutContext) : GVSym; 514 // getOrCreateEmuTLSInitSym only creates the symbol with name and default attributes. 515 // GV's or GVSym's attributes will be used for the EmittedInitSym. 516 517 MCSection *TheSection = IsEmuTLSVar ? 518 getObjFileLowering().getReadOnlySection() : 519 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 520 521 // Handle the zerofill directive on darwin, which is a special form of BSS 522 // emission. 523 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective() && !IsEmuTLSVar) { 524 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 525 526 // .globl _foo 527 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 528 // .zerofill __DATA, __common, _foo, 400, 5 529 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 530 return; 531 } 532 533 // Handle thread local data for mach-o which requires us to output an 534 // additional structure of data and mangle the original symbol so that we 535 // can reference it later. 536 // 537 // TODO: This should become an "emit thread local global" method on TLOF. 538 // All of this macho specific stuff should be sunk down into TLOFMachO and 539 // stuff like "TLSExtraDataSection" should no longer be part of the parent 540 // TLOF class. This will also make it more obvious that stuff like 541 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 542 // specific code. 543 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective() && !IsEmuTLSVar) { 544 // Emit the .tbss symbol 545 MCSymbol *MangSym = 546 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 547 548 if (GVKind.isThreadBSS()) { 549 TheSection = getObjFileLowering().getTLSBSSSection(); 550 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 551 } else if (GVKind.isThreadData()) { 552 OutStreamer->SwitchSection(TheSection); 553 554 EmitAlignment(AlignLog, GV); 555 OutStreamer->EmitLabel(MangSym); 556 557 EmitGlobalConstant(GV->getParent()->getDataLayout(), 558 GV->getInitializer()); 559 } 560 561 OutStreamer->AddBlankLine(); 562 563 // Emit the variable struct for the runtime. 564 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 565 566 OutStreamer->SwitchSection(TLVSect); 567 // Emit the linkage here. 568 EmitLinkage(GV, GVSym); 569 OutStreamer->EmitLabel(GVSym); 570 571 // Three pointers in size: 572 // - __tlv_bootstrap - used to make sure support exists 573 // - spare pointer, used when mapped by the runtime 574 // - pointer to mangled symbol above with initializer 575 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 576 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 577 PtrSize); 578 OutStreamer->EmitIntValue(0, PtrSize); 579 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 580 581 OutStreamer->AddBlankLine(); 582 return; 583 } 584 585 OutStreamer->SwitchSection(TheSection); 586 587 // emutls_t.* symbols are only used in the current compilation unit. 588 if (!IsEmuTLSVar) 589 EmitLinkage(GV, EmittedInitSym); 590 EmitAlignment(AlignLog, GV); 591 592 OutStreamer->EmitLabel(EmittedInitSym); 593 594 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 595 596 if (MAI->hasDotTypeDotSizeDirective()) 597 // .size foo, 42 598 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym), 599 MCConstantExpr::create(Size, OutContext)); 600 601 OutStreamer->AddBlankLine(); 602 } 603 604 /// EmitFunctionHeader - This method emits the header for the current 605 /// function. 606 void AsmPrinter::EmitFunctionHeader() { 607 // Print out constants referenced by the function 608 EmitConstantPool(); 609 610 // Print the 'header' of function. 611 const Function *F = MF->getFunction(); 612 613 OutStreamer->SwitchSection( 614 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 615 EmitVisibility(CurrentFnSym, F->getVisibility()); 616 617 EmitLinkage(F, CurrentFnSym); 618 if (MAI->hasFunctionAlignment()) 619 EmitAlignment(MF->getAlignment(), F); 620 621 if (MAI->hasDotTypeDotSizeDirective()) 622 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 623 624 if (isVerbose()) { 625 F->printAsOperand(OutStreamer->GetCommentOS(), 626 /*PrintType=*/false, F->getParent()); 627 OutStreamer->GetCommentOS() << '\n'; 628 } 629 630 // Emit the prefix data. 631 if (F->hasPrefixData()) 632 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 633 634 // Emit the CurrentFnSym. This is a virtual function to allow targets to 635 // do their wild and crazy things as required. 636 EmitFunctionEntryLabel(); 637 638 // If the function had address-taken blocks that got deleted, then we have 639 // references to the dangling symbols. Emit them at the start of the function 640 // so that we don't get references to undefined symbols. 641 std::vector<MCSymbol*> DeadBlockSyms; 642 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 643 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 644 OutStreamer->AddComment("Address taken block that was later removed"); 645 OutStreamer->EmitLabel(DeadBlockSyms[i]); 646 } 647 648 if (CurrentFnBegin) { 649 if (MAI->useAssignmentForEHBegin()) { 650 MCSymbol *CurPos = OutContext.createTempSymbol(); 651 OutStreamer->EmitLabel(CurPos); 652 OutStreamer->EmitAssignment(CurrentFnBegin, 653 MCSymbolRefExpr::create(CurPos, OutContext)); 654 } else { 655 OutStreamer->EmitLabel(CurrentFnBegin); 656 } 657 } 658 659 // Emit pre-function debug and/or EH information. 660 for (const HandlerInfo &HI : Handlers) { 661 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 662 HI.Handler->beginFunction(MF); 663 } 664 665 // Emit the prologue data. 666 if (F->hasPrologueData()) 667 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 668 } 669 670 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 671 /// function. This can be overridden by targets as required to do custom stuff. 672 void AsmPrinter::EmitFunctionEntryLabel() { 673 CurrentFnSym->redefineIfPossible(); 674 675 // The function label could have already been emitted if two symbols end up 676 // conflicting due to asm renaming. Detect this and emit an error. 677 if (CurrentFnSym->isVariable()) 678 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 679 "' is a protected alias"); 680 if (CurrentFnSym->isDefined()) 681 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 682 "' label emitted multiple times to assembly file"); 683 684 return OutStreamer->EmitLabel(CurrentFnSym); 685 } 686 687 /// emitComments - Pretty-print comments for instructions. 688 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 689 const MachineFunction *MF = MI.getParent()->getParent(); 690 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 691 692 // Check for spills and reloads 693 int FI; 694 695 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 696 697 // We assume a single instruction only has a spill or reload, not 698 // both. 699 const MachineMemOperand *MMO; 700 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 701 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 702 MMO = *MI.memoperands_begin(); 703 CommentOS << MMO->getSize() << "-byte Reload\n"; 704 } 705 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 706 if (FrameInfo->isSpillSlotObjectIndex(FI)) 707 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 708 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 709 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 710 MMO = *MI.memoperands_begin(); 711 CommentOS << MMO->getSize() << "-byte Spill\n"; 712 } 713 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 714 if (FrameInfo->isSpillSlotObjectIndex(FI)) 715 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 716 } 717 718 // Check for spill-induced copies 719 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 720 CommentOS << " Reload Reuse\n"; 721 } 722 723 /// emitImplicitDef - This method emits the specified machine instruction 724 /// that is an implicit def. 725 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 726 unsigned RegNo = MI->getOperand(0).getReg(); 727 728 SmallString<128> Str; 729 raw_svector_ostream OS(Str); 730 OS << "implicit-def: " 731 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 732 733 OutStreamer->AddComment(OS.str()); 734 OutStreamer->AddBlankLine(); 735 } 736 737 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 738 std::string Str; 739 raw_string_ostream OS(Str); 740 OS << "kill:"; 741 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 742 const MachineOperand &Op = MI->getOperand(i); 743 assert(Op.isReg() && "KILL instruction must have only register operands"); 744 OS << ' ' 745 << PrintReg(Op.getReg(), 746 AP.MF->getSubtarget().getRegisterInfo()) 747 << (Op.isDef() ? "<def>" : "<kill>"); 748 } 749 AP.OutStreamer->AddComment(Str); 750 AP.OutStreamer->AddBlankLine(); 751 } 752 753 /// emitDebugValueComment - This method handles the target-independent form 754 /// of DBG_VALUE, returning true if it was able to do so. A false return 755 /// means the target will need to handle MI in EmitInstruction. 756 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 757 // This code handles only the 4-operand target-independent form. 758 if (MI->getNumOperands() != 4) 759 return false; 760 761 SmallString<128> Str; 762 raw_svector_ostream OS(Str); 763 OS << "DEBUG_VALUE: "; 764 765 const DILocalVariable *V = MI->getDebugVariable(); 766 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 767 StringRef Name = SP->getDisplayName(); 768 if (!Name.empty()) 769 OS << Name << ":"; 770 } 771 OS << V->getName(); 772 773 const DIExpression *Expr = MI->getDebugExpression(); 774 if (Expr->isBitPiece()) 775 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 776 << " size=" << Expr->getBitPieceSize() << "]"; 777 OS << " <- "; 778 779 // The second operand is only an offset if it's an immediate. 780 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 781 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 782 783 // Register or immediate value. Register 0 means undef. 784 if (MI->getOperand(0).isFPImm()) { 785 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 786 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 787 OS << (double)APF.convertToFloat(); 788 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 789 OS << APF.convertToDouble(); 790 } else { 791 // There is no good way to print long double. Convert a copy to 792 // double. Ah well, it's only a comment. 793 bool ignored; 794 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 795 &ignored); 796 OS << "(long double) " << APF.convertToDouble(); 797 } 798 } else if (MI->getOperand(0).isImm()) { 799 OS << MI->getOperand(0).getImm(); 800 } else if (MI->getOperand(0).isCImm()) { 801 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 802 } else { 803 unsigned Reg; 804 if (MI->getOperand(0).isReg()) { 805 Reg = MI->getOperand(0).getReg(); 806 } else { 807 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 808 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 809 Offset += TFI->getFrameIndexReference(*AP.MF, 810 MI->getOperand(0).getIndex(), Reg); 811 Deref = true; 812 } 813 if (Reg == 0) { 814 // Suppress offset, it is not meaningful here. 815 OS << "undef"; 816 // NOTE: Want this comment at start of line, don't emit with AddComment. 817 AP.OutStreamer->emitRawComment(OS.str()); 818 return true; 819 } 820 if (Deref) 821 OS << '['; 822 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 823 } 824 825 if (Deref) 826 OS << '+' << Offset << ']'; 827 828 // NOTE: Want this comment at start of line, don't emit with AddComment. 829 AP.OutStreamer->emitRawComment(OS.str()); 830 return true; 831 } 832 833 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 834 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 835 MF->getFunction()->needsUnwindTableEntry()) 836 return CFI_M_EH; 837 838 if (MMI->hasDebugInfo()) 839 return CFI_M_Debug; 840 841 return CFI_M_None; 842 } 843 844 bool AsmPrinter::needsSEHMoves() { 845 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 846 } 847 848 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 849 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 850 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 851 ExceptionHandlingType != ExceptionHandling::ARM) 852 return; 853 854 if (needsCFIMoves() == CFI_M_None) 855 return; 856 857 const MachineModuleInfo &MMI = MF->getMMI(); 858 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 859 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 860 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 861 emitCFIInstruction(CFI); 862 } 863 864 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 865 // The operands are the MCSymbol and the frame offset of the allocation. 866 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 867 int FrameOffset = MI.getOperand(1).getImm(); 868 869 // Emit a symbol assignment. 870 OutStreamer->EmitAssignment(FrameAllocSym, 871 MCConstantExpr::create(FrameOffset, OutContext)); 872 } 873 874 /// EmitFunctionBody - This method emits the body and trailer for a 875 /// function. 876 void AsmPrinter::EmitFunctionBody() { 877 EmitFunctionHeader(); 878 879 // Emit target-specific gunk before the function body. 880 EmitFunctionBodyStart(); 881 882 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 883 884 // Print out code for the function. 885 bool HasAnyRealCode = false; 886 for (auto &MBB : *MF) { 887 // Print a label for the basic block. 888 EmitBasicBlockStart(MBB); 889 for (auto &MI : MBB) { 890 891 // Print the assembly for the instruction. 892 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 893 !MI.isDebugValue()) { 894 HasAnyRealCode = true; 895 ++EmittedInsts; 896 } 897 898 if (ShouldPrintDebugScopes) { 899 for (const HandlerInfo &HI : Handlers) { 900 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 901 TimePassesIsEnabled); 902 HI.Handler->beginInstruction(&MI); 903 } 904 } 905 906 if (isVerbose()) 907 emitComments(MI, OutStreamer->GetCommentOS()); 908 909 switch (MI.getOpcode()) { 910 case TargetOpcode::CFI_INSTRUCTION: 911 emitCFIInstruction(MI); 912 break; 913 914 case TargetOpcode::LOCAL_ESCAPE: 915 emitFrameAlloc(MI); 916 break; 917 918 case TargetOpcode::EH_LABEL: 919 case TargetOpcode::GC_LABEL: 920 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 921 break; 922 case TargetOpcode::INLINEASM: 923 EmitInlineAsm(&MI); 924 break; 925 case TargetOpcode::DBG_VALUE: 926 if (isVerbose()) { 927 if (!emitDebugValueComment(&MI, *this)) 928 EmitInstruction(&MI); 929 } 930 break; 931 case TargetOpcode::IMPLICIT_DEF: 932 if (isVerbose()) emitImplicitDef(&MI); 933 break; 934 case TargetOpcode::KILL: 935 if (isVerbose()) emitKill(&MI, *this); 936 break; 937 default: 938 EmitInstruction(&MI); 939 break; 940 } 941 942 if (ShouldPrintDebugScopes) { 943 for (const HandlerInfo &HI : Handlers) { 944 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 945 TimePassesIsEnabled); 946 HI.Handler->endInstruction(); 947 } 948 } 949 } 950 951 EmitBasicBlockEnd(MBB); 952 } 953 954 // If the function is empty and the object file uses .subsections_via_symbols, 955 // then we need to emit *something* to the function body to prevent the 956 // labels from collapsing together. Just emit a noop. 957 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 958 MCInst Noop; 959 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 960 OutStreamer->AddComment("avoids zero-length function"); 961 962 // Targets can opt-out of emitting the noop here by leaving the opcode 963 // unspecified. 964 if (Noop.getOpcode()) 965 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 966 } 967 968 const Function *F = MF->getFunction(); 969 for (const auto &BB : *F) { 970 if (!BB.hasAddressTaken()) 971 continue; 972 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 973 if (Sym->isDefined()) 974 continue; 975 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 976 OutStreamer->EmitLabel(Sym); 977 } 978 979 // Emit target-specific gunk after the function body. 980 EmitFunctionBodyEnd(); 981 982 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 983 MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 984 // Create a symbol for the end of function. 985 CurrentFnEnd = createTempSymbol("func_end"); 986 OutStreamer->EmitLabel(CurrentFnEnd); 987 } 988 989 // If the target wants a .size directive for the size of the function, emit 990 // it. 991 if (MAI->hasDotTypeDotSizeDirective()) { 992 // We can get the size as difference between the function label and the 993 // temp label. 994 const MCExpr *SizeExp = MCBinaryExpr::createSub( 995 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 996 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 997 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 998 OutStreamer->emitELFSize(Sym, SizeExp); 999 } 1000 1001 for (const HandlerInfo &HI : Handlers) { 1002 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 1003 HI.Handler->markFunctionEnd(); 1004 } 1005 1006 // Print out jump tables referenced by the function. 1007 EmitJumpTableInfo(); 1008 1009 // Emit post-function debug and/or EH information. 1010 for (const HandlerInfo &HI : Handlers) { 1011 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 1012 HI.Handler->endFunction(MF); 1013 } 1014 MMI->EndFunction(); 1015 1016 OutStreamer->AddBlankLine(); 1017 } 1018 1019 /// \brief Compute the number of Global Variables that uses a Constant. 1020 static unsigned getNumGlobalVariableUses(const Constant *C) { 1021 if (!C) 1022 return 0; 1023 1024 if (isa<GlobalVariable>(C)) 1025 return 1; 1026 1027 unsigned NumUses = 0; 1028 for (auto *CU : C->users()) 1029 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1030 1031 return NumUses; 1032 } 1033 1034 /// \brief Only consider global GOT equivalents if at least one user is a 1035 /// cstexpr inside an initializer of another global variables. Also, don't 1036 /// handle cstexpr inside instructions. During global variable emission, 1037 /// candidates are skipped and are emitted later in case at least one cstexpr 1038 /// isn't replaced by a PC relative GOT entry access. 1039 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1040 unsigned &NumGOTEquivUsers) { 1041 // Global GOT equivalents are unnamed private globals with a constant 1042 // pointer initializer to another global symbol. They must point to a 1043 // GlobalVariable or Function, i.e., as GlobalValue. 1044 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 1045 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 1046 return false; 1047 1048 // To be a got equivalent, at least one of its users need to be a constant 1049 // expression used by another global variable. 1050 for (auto *U : GV->users()) 1051 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1052 1053 return NumGOTEquivUsers > 0; 1054 } 1055 1056 /// \brief Unnamed constant global variables solely contaning a pointer to 1057 /// another globals variable is equivalent to a GOT table entry; it contains the 1058 /// the address of another symbol. Optimize it and replace accesses to these 1059 /// "GOT equivalents" by using the GOT entry for the final global instead. 1060 /// Compute GOT equivalent candidates among all global variables to avoid 1061 /// emitting them if possible later on, after it use is replaced by a GOT entry 1062 /// access. 1063 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1064 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1065 return; 1066 1067 for (const auto &G : M.globals()) { 1068 unsigned NumGOTEquivUsers = 0; 1069 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1070 continue; 1071 1072 const MCSymbol *GOTEquivSym = getSymbol(&G); 1073 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1074 } 1075 } 1076 1077 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1078 /// for PC relative GOT entry conversion, in such cases we need to emit such 1079 /// globals we previously omitted in EmitGlobalVariable. 1080 void AsmPrinter::emitGlobalGOTEquivs() { 1081 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1082 return; 1083 1084 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1085 for (auto &I : GlobalGOTEquivs) { 1086 const GlobalVariable *GV = I.second.first; 1087 unsigned Cnt = I.second.second; 1088 if (Cnt) 1089 FailedCandidates.push_back(GV); 1090 } 1091 GlobalGOTEquivs.clear(); 1092 1093 for (auto *GV : FailedCandidates) 1094 EmitGlobalVariable(GV); 1095 } 1096 1097 bool AsmPrinter::doFinalization(Module &M) { 1098 // Set the MachineFunction to nullptr so that we can catch attempted 1099 // accesses to MF specific features at the module level and so that 1100 // we can conditionalize accesses based on whether or not it is nullptr. 1101 MF = nullptr; 1102 1103 // Gather all GOT equivalent globals in the module. We really need two 1104 // passes over the globals: one to compute and another to avoid its emission 1105 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1106 // where the got equivalent shows up before its use. 1107 computeGlobalGOTEquivs(M); 1108 1109 // Emit global variables. 1110 for (const auto &G : M.globals()) 1111 EmitGlobalVariable(&G); 1112 1113 // Emit remaining GOT equivalent globals. 1114 emitGlobalGOTEquivs(); 1115 1116 // Emit visibility info for declarations 1117 for (const Function &F : M) { 1118 if (!F.isDeclarationForLinker()) 1119 continue; 1120 GlobalValue::VisibilityTypes V = F.getVisibility(); 1121 if (V == GlobalValue::DefaultVisibility) 1122 continue; 1123 1124 MCSymbol *Name = getSymbol(&F); 1125 EmitVisibility(Name, V, false); 1126 } 1127 1128 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1129 1130 // Emit module flags. 1131 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1132 M.getModuleFlagsMetadata(ModuleFlags); 1133 if (!ModuleFlags.empty()) 1134 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1135 1136 if (TM.getTargetTriple().isOSBinFormatELF()) { 1137 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1138 1139 // Output stubs for external and common global variables. 1140 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1141 if (!Stubs.empty()) { 1142 OutStreamer->SwitchSection(TLOF.getDataRelSection()); 1143 const DataLayout &DL = M.getDataLayout(); 1144 1145 for (const auto &Stub : Stubs) { 1146 OutStreamer->EmitLabel(Stub.first); 1147 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1148 DL.getPointerSize()); 1149 } 1150 } 1151 } 1152 1153 // Finalize debug and EH information. 1154 for (const HandlerInfo &HI : Handlers) { 1155 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1156 TimePassesIsEnabled); 1157 HI.Handler->endModule(); 1158 delete HI.Handler; 1159 } 1160 Handlers.clear(); 1161 DD = nullptr; 1162 1163 // If the target wants to know about weak references, print them all. 1164 if (MAI->getWeakRefDirective()) { 1165 // FIXME: This is not lazy, it would be nice to only print weak references 1166 // to stuff that is actually used. Note that doing so would require targets 1167 // to notice uses in operands (due to constant exprs etc). This should 1168 // happen with the MC stuff eventually. 1169 1170 // Print out module-level global variables here. 1171 for (const auto &G : M.globals()) { 1172 if (!G.hasExternalWeakLinkage()) 1173 continue; 1174 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1175 } 1176 1177 for (const auto &F : M) { 1178 if (!F.hasExternalWeakLinkage()) 1179 continue; 1180 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1181 } 1182 } 1183 1184 OutStreamer->AddBlankLine(); 1185 for (const auto &Alias : M.aliases()) { 1186 MCSymbol *Name = getSymbol(&Alias); 1187 1188 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1189 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1190 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1191 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1192 else 1193 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1194 1195 EmitVisibility(Name, Alias.getVisibility()); 1196 1197 // Emit the directives as assignments aka .set: 1198 OutStreamer->EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1199 1200 // If the aliasee does not correspond to a symbol in the output, i.e. the 1201 // alias is not of an object or the aliased object is private, then set the 1202 // size of the alias symbol from the type of the alias. We don't do this in 1203 // other situations as the alias and aliasee having differing types but same 1204 // size may be intentional. 1205 const GlobalObject *BaseObject = Alias.getBaseObject(); 1206 if (MAI->hasDotTypeDotSizeDirective() && Alias.getValueType()->isSized() && 1207 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1208 const DataLayout &DL = M.getDataLayout(); 1209 uint64_t Size = DL.getTypeAllocSize(Alias.getValueType()); 1210 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name), 1211 MCConstantExpr::create(Size, OutContext)); 1212 } 1213 } 1214 1215 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1216 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1217 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1218 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1219 MP->finishAssembly(M, *MI, *this); 1220 1221 // Emit llvm.ident metadata in an '.ident' directive. 1222 EmitModuleIdents(M); 1223 1224 // Emit __morestack address if needed for indirect calls. 1225 if (MMI->usesMorestackAddr()) { 1226 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1227 getDataLayout(), SectionKind::getReadOnly(), 1228 /*C=*/nullptr); 1229 OutStreamer->SwitchSection(ReadOnlySection); 1230 1231 MCSymbol *AddrSymbol = 1232 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1233 OutStreamer->EmitLabel(AddrSymbol); 1234 1235 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1236 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1237 PtrSize); 1238 } 1239 1240 // If we don't have any trampolines, then we don't require stack memory 1241 // to be executable. Some targets have a directive to declare this. 1242 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1243 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1244 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1245 OutStreamer->SwitchSection(S); 1246 1247 // Allow the target to emit any magic that it wants at the end of the file, 1248 // after everything else has gone out. 1249 EmitEndOfAsmFile(M); 1250 1251 delete Mang; Mang = nullptr; 1252 MMI = nullptr; 1253 1254 OutStreamer->Finish(); 1255 OutStreamer->reset(); 1256 1257 return false; 1258 } 1259 1260 MCSymbol *AsmPrinter::getCurExceptionSym() { 1261 if (!CurExceptionSym) 1262 CurExceptionSym = createTempSymbol("exception"); 1263 return CurExceptionSym; 1264 } 1265 1266 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1267 this->MF = &MF; 1268 // Get the function symbol. 1269 CurrentFnSym = getSymbol(MF.getFunction()); 1270 CurrentFnSymForSize = CurrentFnSym; 1271 CurrentFnBegin = nullptr; 1272 CurExceptionSym = nullptr; 1273 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1274 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1275 MMI->hasEHFunclets() || NeedsLocalForSize) { 1276 CurrentFnBegin = createTempSymbol("func_begin"); 1277 if (NeedsLocalForSize) 1278 CurrentFnSymForSize = CurrentFnBegin; 1279 } 1280 1281 if (isVerbose()) 1282 LI = &getAnalysis<MachineLoopInfo>(); 1283 } 1284 1285 namespace { 1286 // Keep track the alignment, constpool entries per Section. 1287 struct SectionCPs { 1288 MCSection *S; 1289 unsigned Alignment; 1290 SmallVector<unsigned, 4> CPEs; 1291 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1292 }; 1293 } 1294 1295 /// EmitConstantPool - Print to the current output stream assembly 1296 /// representations of the constants in the constant pool MCP. This is 1297 /// used to print out constants which have been "spilled to memory" by 1298 /// the code generator. 1299 /// 1300 void AsmPrinter::EmitConstantPool() { 1301 const MachineConstantPool *MCP = MF->getConstantPool(); 1302 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1303 if (CP.empty()) return; 1304 1305 // Calculate sections for constant pool entries. We collect entries to go into 1306 // the same section together to reduce amount of section switch statements. 1307 SmallVector<SectionCPs, 4> CPSections; 1308 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1309 const MachineConstantPoolEntry &CPE = CP[i]; 1310 unsigned Align = CPE.getAlignment(); 1311 1312 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1313 1314 const Constant *C = nullptr; 1315 if (!CPE.isMachineConstantPoolEntry()) 1316 C = CPE.Val.ConstVal; 1317 1318 MCSection *S = 1319 getObjFileLowering().getSectionForConstant(getDataLayout(), Kind, C); 1320 1321 // The number of sections are small, just do a linear search from the 1322 // last section to the first. 1323 bool Found = false; 1324 unsigned SecIdx = CPSections.size(); 1325 while (SecIdx != 0) { 1326 if (CPSections[--SecIdx].S == S) { 1327 Found = true; 1328 break; 1329 } 1330 } 1331 if (!Found) { 1332 SecIdx = CPSections.size(); 1333 CPSections.push_back(SectionCPs(S, Align)); 1334 } 1335 1336 if (Align > CPSections[SecIdx].Alignment) 1337 CPSections[SecIdx].Alignment = Align; 1338 CPSections[SecIdx].CPEs.push_back(i); 1339 } 1340 1341 // Now print stuff into the calculated sections. 1342 const MCSection *CurSection = nullptr; 1343 unsigned Offset = 0; 1344 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1345 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1346 unsigned CPI = CPSections[i].CPEs[j]; 1347 MCSymbol *Sym = GetCPISymbol(CPI); 1348 if (!Sym->isUndefined()) 1349 continue; 1350 1351 if (CurSection != CPSections[i].S) { 1352 OutStreamer->SwitchSection(CPSections[i].S); 1353 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1354 CurSection = CPSections[i].S; 1355 Offset = 0; 1356 } 1357 1358 MachineConstantPoolEntry CPE = CP[CPI]; 1359 1360 // Emit inter-object padding for alignment. 1361 unsigned AlignMask = CPE.getAlignment() - 1; 1362 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1363 OutStreamer->EmitZeros(NewOffset - Offset); 1364 1365 Type *Ty = CPE.getType(); 1366 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1367 1368 OutStreamer->EmitLabel(Sym); 1369 if (CPE.isMachineConstantPoolEntry()) 1370 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1371 else 1372 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1373 } 1374 } 1375 } 1376 1377 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1378 /// by the current function to the current output stream. 1379 /// 1380 void AsmPrinter::EmitJumpTableInfo() { 1381 const DataLayout &DL = MF->getDataLayout(); 1382 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1383 if (!MJTI) return; 1384 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1385 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1386 if (JT.empty()) return; 1387 1388 // Pick the directive to use to print the jump table entries, and switch to 1389 // the appropriate section. 1390 const Function *F = MF->getFunction(); 1391 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1392 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1393 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1394 *F); 1395 if (JTInDiffSection) { 1396 // Drop it in the readonly section. 1397 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1398 OutStreamer->SwitchSection(ReadOnlySection); 1399 } 1400 1401 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1402 1403 // Jump tables in code sections are marked with a data_region directive 1404 // where that's supported. 1405 if (!JTInDiffSection) 1406 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1407 1408 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1409 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1410 1411 // If this jump table was deleted, ignore it. 1412 if (JTBBs.empty()) continue; 1413 1414 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1415 /// emit a .set directive for each unique entry. 1416 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1417 MAI->doesSetDirectiveSuppressesReloc()) { 1418 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1419 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1420 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1421 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1422 const MachineBasicBlock *MBB = JTBBs[ii]; 1423 if (!EmittedSets.insert(MBB).second) 1424 continue; 1425 1426 // .set LJTSet, LBB32-base 1427 const MCExpr *LHS = 1428 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1429 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1430 MCBinaryExpr::createSub(LHS, Base, 1431 OutContext)); 1432 } 1433 } 1434 1435 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1436 // before each jump table. The first label is never referenced, but tells 1437 // the assembler and linker the extents of the jump table object. The 1438 // second label is actually referenced by the code. 1439 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1440 // FIXME: This doesn't have to have any specific name, just any randomly 1441 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1442 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1443 1444 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1445 1446 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1447 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1448 } 1449 if (!JTInDiffSection) 1450 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1451 } 1452 1453 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1454 /// current stream. 1455 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1456 const MachineBasicBlock *MBB, 1457 unsigned UID) const { 1458 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1459 const MCExpr *Value = nullptr; 1460 switch (MJTI->getEntryKind()) { 1461 case MachineJumpTableInfo::EK_Inline: 1462 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1463 case MachineJumpTableInfo::EK_Custom32: 1464 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1465 MJTI, MBB, UID, OutContext); 1466 break; 1467 case MachineJumpTableInfo::EK_BlockAddress: 1468 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1469 // .word LBB123 1470 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1471 break; 1472 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1473 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1474 // with a relocation as gp-relative, e.g.: 1475 // .gprel32 LBB123 1476 MCSymbol *MBBSym = MBB->getSymbol(); 1477 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1478 return; 1479 } 1480 1481 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1482 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1483 // with a relocation as gp-relative, e.g.: 1484 // .gpdword LBB123 1485 MCSymbol *MBBSym = MBB->getSymbol(); 1486 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1487 return; 1488 } 1489 1490 case MachineJumpTableInfo::EK_LabelDifference32: { 1491 // Each entry is the address of the block minus the address of the jump 1492 // table. This is used for PIC jump tables where gprel32 is not supported. 1493 // e.g.: 1494 // .word LBB123 - LJTI1_2 1495 // If the .set directive avoids relocations, this is emitted as: 1496 // .set L4_5_set_123, LBB123 - LJTI1_2 1497 // .word L4_5_set_123 1498 if (MAI->doesSetDirectiveSuppressesReloc()) { 1499 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1500 OutContext); 1501 break; 1502 } 1503 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1504 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1505 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1506 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1507 break; 1508 } 1509 } 1510 1511 assert(Value && "Unknown entry kind!"); 1512 1513 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1514 OutStreamer->EmitValue(Value, EntrySize); 1515 } 1516 1517 1518 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1519 /// special global used by LLVM. If so, emit it and return true, otherwise 1520 /// do nothing and return false. 1521 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1522 if (GV->getName() == "llvm.used") { 1523 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1524 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1525 return true; 1526 } 1527 1528 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1529 if (StringRef(GV->getSection()) == "llvm.metadata" || 1530 GV->hasAvailableExternallyLinkage()) 1531 return true; 1532 1533 if (!GV->hasAppendingLinkage()) return false; 1534 1535 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1536 1537 if (GV->getName() == "llvm.global_ctors") { 1538 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1539 /* isCtor */ true); 1540 1541 if (TM.getRelocationModel() == Reloc::Static && 1542 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1543 StringRef Sym(".constructors_used"); 1544 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1545 MCSA_Reference); 1546 } 1547 return true; 1548 } 1549 1550 if (GV->getName() == "llvm.global_dtors") { 1551 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1552 /* isCtor */ false); 1553 1554 if (TM.getRelocationModel() == Reloc::Static && 1555 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1556 StringRef Sym(".destructors_used"); 1557 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1558 MCSA_Reference); 1559 } 1560 return true; 1561 } 1562 1563 return false; 1564 } 1565 1566 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1567 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1568 /// is true, as being used with this directive. 1569 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1570 // Should be an array of 'i8*'. 1571 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1572 const GlobalValue *GV = 1573 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1574 if (GV) 1575 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1576 } 1577 } 1578 1579 namespace { 1580 struct Structor { 1581 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1582 int Priority; 1583 llvm::Constant *Func; 1584 llvm::GlobalValue *ComdatKey; 1585 }; 1586 } // end namespace 1587 1588 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1589 /// priority. 1590 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1591 bool isCtor) { 1592 // Should be an array of '{ int, void ()* }' structs. The first value is the 1593 // init priority. 1594 if (!isa<ConstantArray>(List)) return; 1595 1596 // Sanity check the structors list. 1597 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1598 if (!InitList) return; // Not an array! 1599 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1600 // FIXME: Only allow the 3-field form in LLVM 4.0. 1601 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1602 return; // Not an array of two or three elements! 1603 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1604 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1605 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1606 return; // Not (int, ptr, ptr). 1607 1608 // Gather the structors in a form that's convenient for sorting by priority. 1609 SmallVector<Structor, 8> Structors; 1610 for (Value *O : InitList->operands()) { 1611 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1612 if (!CS) continue; // Malformed. 1613 if (CS->getOperand(1)->isNullValue()) 1614 break; // Found a null terminator, skip the rest. 1615 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1616 if (!Priority) continue; // Malformed. 1617 Structors.push_back(Structor()); 1618 Structor &S = Structors.back(); 1619 S.Priority = Priority->getLimitedValue(65535); 1620 S.Func = CS->getOperand(1); 1621 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1622 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1623 } 1624 1625 // Emit the function pointers in the target-specific order 1626 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1627 std::stable_sort(Structors.begin(), Structors.end(), 1628 [](const Structor &L, 1629 const Structor &R) { return L.Priority < R.Priority; }); 1630 for (Structor &S : Structors) { 1631 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1632 const MCSymbol *KeySym = nullptr; 1633 if (GlobalValue *GV = S.ComdatKey) { 1634 if (GV->hasAvailableExternallyLinkage()) 1635 // If the associated variable is available_externally, some other TU 1636 // will provide its dynamic initializer. 1637 continue; 1638 1639 KeySym = getSymbol(GV); 1640 } 1641 MCSection *OutputSection = 1642 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1643 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1644 OutStreamer->SwitchSection(OutputSection); 1645 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1646 EmitAlignment(Align); 1647 EmitXXStructor(DL, S.Func); 1648 } 1649 } 1650 1651 void AsmPrinter::EmitModuleIdents(Module &M) { 1652 if (!MAI->hasIdentDirective()) 1653 return; 1654 1655 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1656 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1657 const MDNode *N = NMD->getOperand(i); 1658 assert(N->getNumOperands() == 1 && 1659 "llvm.ident metadata entry can have only one operand"); 1660 const MDString *S = cast<MDString>(N->getOperand(0)); 1661 OutStreamer->EmitIdent(S->getString()); 1662 } 1663 } 1664 } 1665 1666 //===--------------------------------------------------------------------===// 1667 // Emission and print routines 1668 // 1669 1670 /// EmitInt8 - Emit a byte directive and value. 1671 /// 1672 void AsmPrinter::EmitInt8(int Value) const { 1673 OutStreamer->EmitIntValue(Value, 1); 1674 } 1675 1676 /// EmitInt16 - Emit a short directive and value. 1677 /// 1678 void AsmPrinter::EmitInt16(int Value) const { 1679 OutStreamer->EmitIntValue(Value, 2); 1680 } 1681 1682 /// EmitInt32 - Emit a long directive and value. 1683 /// 1684 void AsmPrinter::EmitInt32(int Value) const { 1685 OutStreamer->EmitIntValue(Value, 4); 1686 } 1687 1688 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1689 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1690 /// .set if it avoids relocations. 1691 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1692 unsigned Size) const { 1693 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1694 } 1695 1696 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1697 /// where the size in bytes of the directive is specified by Size and Label 1698 /// specifies the label. This implicitly uses .set if it is available. 1699 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1700 unsigned Size, 1701 bool IsSectionRelative) const { 1702 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1703 OutStreamer->EmitCOFFSecRel32(Label); 1704 return; 1705 } 1706 1707 // Emit Label+Offset (or just Label if Offset is zero) 1708 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1709 if (Offset) 1710 Expr = MCBinaryExpr::createAdd( 1711 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1712 1713 OutStreamer->EmitValue(Expr, Size); 1714 } 1715 1716 //===----------------------------------------------------------------------===// 1717 1718 // EmitAlignment - Emit an alignment directive to the specified power of 1719 // two boundary. For example, if you pass in 3 here, you will get an 8 1720 // byte alignment. If a global value is specified, and if that global has 1721 // an explicit alignment requested, it will override the alignment request 1722 // if required for correctness. 1723 // 1724 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1725 if (GV) 1726 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1727 1728 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1729 1730 assert(NumBits < 1731 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1732 "undefined behavior"); 1733 if (getCurrentSection()->getKind().isText()) 1734 OutStreamer->EmitCodeAlignment(1u << NumBits); 1735 else 1736 OutStreamer->EmitValueToAlignment(1u << NumBits); 1737 } 1738 1739 //===----------------------------------------------------------------------===// 1740 // Constant emission. 1741 //===----------------------------------------------------------------------===// 1742 1743 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1744 MCContext &Ctx = OutContext; 1745 1746 if (CV->isNullValue() || isa<UndefValue>(CV)) 1747 return MCConstantExpr::create(0, Ctx); 1748 1749 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1750 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1751 1752 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1753 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1754 1755 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1756 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1757 1758 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1759 if (!CE) { 1760 llvm_unreachable("Unknown constant value to lower!"); 1761 } 1762 1763 if (const MCExpr *RelocExpr 1764 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1765 return RelocExpr; 1766 1767 switch (CE->getOpcode()) { 1768 default: 1769 // If the code isn't optimized, there may be outstanding folding 1770 // opportunities. Attempt to fold the expression using DataLayout as a 1771 // last resort before giving up. 1772 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout())) 1773 if (C != CE) 1774 return lowerConstant(C); 1775 1776 // Otherwise report the problem to the user. 1777 { 1778 std::string S; 1779 raw_string_ostream OS(S); 1780 OS << "Unsupported expression in static initializer: "; 1781 CE->printAsOperand(OS, /*PrintType=*/false, 1782 !MF ? nullptr : MF->getFunction()->getParent()); 1783 report_fatal_error(OS.str()); 1784 } 1785 case Instruction::GetElementPtr: { 1786 // Generate a symbolic expression for the byte address 1787 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1788 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1789 1790 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1791 if (!OffsetAI) 1792 return Base; 1793 1794 int64_t Offset = OffsetAI.getSExtValue(); 1795 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1796 Ctx); 1797 } 1798 1799 case Instruction::Trunc: 1800 // We emit the value and depend on the assembler to truncate the generated 1801 // expression properly. This is important for differences between 1802 // blockaddress labels. Since the two labels are in the same function, it 1803 // is reasonable to treat their delta as a 32-bit value. 1804 // FALL THROUGH. 1805 case Instruction::BitCast: 1806 return lowerConstant(CE->getOperand(0)); 1807 1808 case Instruction::IntToPtr: { 1809 const DataLayout &DL = getDataLayout(); 1810 1811 // Handle casts to pointers by changing them into casts to the appropriate 1812 // integer type. This promotes constant folding and simplifies this code. 1813 Constant *Op = CE->getOperand(0); 1814 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1815 false/*ZExt*/); 1816 return lowerConstant(Op); 1817 } 1818 1819 case Instruction::PtrToInt: { 1820 const DataLayout &DL = getDataLayout(); 1821 1822 // Support only foldable casts to/from pointers that can be eliminated by 1823 // changing the pointer to the appropriately sized integer type. 1824 Constant *Op = CE->getOperand(0); 1825 Type *Ty = CE->getType(); 1826 1827 const MCExpr *OpExpr = lowerConstant(Op); 1828 1829 // We can emit the pointer value into this slot if the slot is an 1830 // integer slot equal to the size of the pointer. 1831 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1832 return OpExpr; 1833 1834 // Otherwise the pointer is smaller than the resultant integer, mask off 1835 // the high bits so we are sure to get a proper truncation if the input is 1836 // a constant expr. 1837 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1838 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1839 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1840 } 1841 1842 // The MC library also has a right-shift operator, but it isn't consistently 1843 // signed or unsigned between different targets. 1844 case Instruction::Add: 1845 case Instruction::Sub: 1846 case Instruction::Mul: 1847 case Instruction::SDiv: 1848 case Instruction::SRem: 1849 case Instruction::Shl: 1850 case Instruction::And: 1851 case Instruction::Or: 1852 case Instruction::Xor: { 1853 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1854 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1855 switch (CE->getOpcode()) { 1856 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1857 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1858 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1859 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1860 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1861 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1862 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1863 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1864 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1865 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1866 } 1867 } 1868 } 1869 } 1870 1871 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1872 AsmPrinter &AP, 1873 const Constant *BaseCV = nullptr, 1874 uint64_t Offset = 0); 1875 1876 /// isRepeatedByteSequence - Determine whether the given value is 1877 /// composed of a repeated sequence of identical bytes and return the 1878 /// byte value. If it is not a repeated sequence, return -1. 1879 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1880 StringRef Data = V->getRawDataValues(); 1881 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1882 char C = Data[0]; 1883 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1884 if (Data[i] != C) return -1; 1885 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1886 } 1887 1888 1889 /// isRepeatedByteSequence - Determine whether the given value is 1890 /// composed of a repeated sequence of identical bytes and return the 1891 /// byte value. If it is not a repeated sequence, return -1. 1892 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1893 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1894 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1895 assert(Size % 8 == 0); 1896 1897 // Extend the element to take zero padding into account. 1898 APInt Value = CI->getValue().zextOrSelf(Size); 1899 if (!Value.isSplat(8)) 1900 return -1; 1901 1902 return Value.zextOrTrunc(8).getZExtValue(); 1903 } 1904 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1905 // Make sure all array elements are sequences of the same repeated 1906 // byte. 1907 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1908 Constant *Op0 = CA->getOperand(0); 1909 int Byte = isRepeatedByteSequence(Op0, DL); 1910 if (Byte == -1) 1911 return -1; 1912 1913 // All array elements must be equal. 1914 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1915 if (CA->getOperand(i) != Op0) 1916 return -1; 1917 return Byte; 1918 } 1919 1920 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1921 return isRepeatedByteSequence(CDS); 1922 1923 return -1; 1924 } 1925 1926 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1927 const ConstantDataSequential *CDS, 1928 AsmPrinter &AP) { 1929 1930 // See if we can aggregate this into a .fill, if so, emit it as such. 1931 int Value = isRepeatedByteSequence(CDS, DL); 1932 if (Value != -1) { 1933 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1934 // Don't emit a 1-byte object as a .fill. 1935 if (Bytes > 1) 1936 return AP.OutStreamer->EmitFill(Bytes, Value); 1937 } 1938 1939 // If this can be emitted with .ascii/.asciz, emit it as such. 1940 if (CDS->isString()) 1941 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1942 1943 // Otherwise, emit the values in successive locations. 1944 unsigned ElementByteSize = CDS->getElementByteSize(); 1945 if (isa<IntegerType>(CDS->getElementType())) { 1946 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1947 if (AP.isVerbose()) 1948 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1949 CDS->getElementAsInteger(i)); 1950 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1951 ElementByteSize); 1952 } 1953 } else if (ElementByteSize == 4) { 1954 // FP Constants are printed as integer constants to avoid losing 1955 // precision. 1956 assert(CDS->getElementType()->isFloatTy()); 1957 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1958 union { 1959 float F; 1960 uint32_t I; 1961 }; 1962 1963 F = CDS->getElementAsFloat(i); 1964 if (AP.isVerbose()) 1965 AP.OutStreamer->GetCommentOS() << "float " << F << '\n'; 1966 AP.OutStreamer->EmitIntValue(I, 4); 1967 } 1968 } else { 1969 assert(CDS->getElementType()->isDoubleTy()); 1970 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1971 union { 1972 double F; 1973 uint64_t I; 1974 }; 1975 1976 F = CDS->getElementAsDouble(i); 1977 if (AP.isVerbose()) 1978 AP.OutStreamer->GetCommentOS() << "double " << F << '\n'; 1979 AP.OutStreamer->EmitIntValue(I, 8); 1980 } 1981 } 1982 1983 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1984 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1985 CDS->getNumElements(); 1986 if (unsigned Padding = Size - EmittedSize) 1987 AP.OutStreamer->EmitZeros(Padding); 1988 1989 } 1990 1991 static void emitGlobalConstantArray(const DataLayout &DL, 1992 const ConstantArray *CA, AsmPrinter &AP, 1993 const Constant *BaseCV, uint64_t Offset) { 1994 // See if we can aggregate some values. Make sure it can be 1995 // represented as a series of bytes of the constant value. 1996 int Value = isRepeatedByteSequence(CA, DL); 1997 1998 if (Value != -1) { 1999 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2000 AP.OutStreamer->EmitFill(Bytes, Value); 2001 } 2002 else { 2003 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2004 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2005 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2006 } 2007 } 2008 } 2009 2010 static void emitGlobalConstantVector(const DataLayout &DL, 2011 const ConstantVector *CV, AsmPrinter &AP) { 2012 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2013 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2014 2015 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2016 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2017 CV->getType()->getNumElements(); 2018 if (unsigned Padding = Size - EmittedSize) 2019 AP.OutStreamer->EmitZeros(Padding); 2020 } 2021 2022 static void emitGlobalConstantStruct(const DataLayout &DL, 2023 const ConstantStruct *CS, AsmPrinter &AP, 2024 const Constant *BaseCV, uint64_t Offset) { 2025 // Print the fields in successive locations. Pad to align if needed! 2026 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2027 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2028 uint64_t SizeSoFar = 0; 2029 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2030 const Constant *Field = CS->getOperand(i); 2031 2032 // Print the actual field value. 2033 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2034 2035 // Check if padding is needed and insert one or more 0s. 2036 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2037 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2038 - Layout->getElementOffset(i)) - FieldSize; 2039 SizeSoFar += FieldSize + PadSize; 2040 2041 // Insert padding - this may include padding to increase the size of the 2042 // current field up to the ABI size (if the struct is not packed) as well 2043 // as padding to ensure that the next field starts at the right offset. 2044 AP.OutStreamer->EmitZeros(PadSize); 2045 } 2046 assert(SizeSoFar == Layout->getSizeInBytes() && 2047 "Layout of constant struct may be incorrect!"); 2048 } 2049 2050 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2051 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2052 2053 // First print a comment with what we think the original floating-point value 2054 // should have been. 2055 if (AP.isVerbose()) { 2056 SmallString<8> StrVal; 2057 CFP->getValueAPF().toString(StrVal); 2058 2059 if (CFP->getType()) 2060 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2061 else 2062 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2063 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2064 } 2065 2066 // Now iterate through the APInt chunks, emitting them in endian-correct 2067 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2068 // floats). 2069 unsigned NumBytes = API.getBitWidth() / 8; 2070 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2071 const uint64_t *p = API.getRawData(); 2072 2073 // PPC's long double has odd notions of endianness compared to how LLVM 2074 // handles it: p[0] goes first for *big* endian on PPC. 2075 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2076 int Chunk = API.getNumWords() - 1; 2077 2078 if (TrailingBytes) 2079 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2080 2081 for (; Chunk >= 0; --Chunk) 2082 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2083 } else { 2084 unsigned Chunk; 2085 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2086 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2087 2088 if (TrailingBytes) 2089 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2090 } 2091 2092 // Emit the tail padding for the long double. 2093 const DataLayout &DL = AP.getDataLayout(); 2094 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2095 DL.getTypeStoreSize(CFP->getType())); 2096 } 2097 2098 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2099 const DataLayout &DL = AP.getDataLayout(); 2100 unsigned BitWidth = CI->getBitWidth(); 2101 2102 // Copy the value as we may massage the layout for constants whose bit width 2103 // is not a multiple of 64-bits. 2104 APInt Realigned(CI->getValue()); 2105 uint64_t ExtraBits = 0; 2106 unsigned ExtraBitsSize = BitWidth & 63; 2107 2108 if (ExtraBitsSize) { 2109 // The bit width of the data is not a multiple of 64-bits. 2110 // The extra bits are expected to be at the end of the chunk of the memory. 2111 // Little endian: 2112 // * Nothing to be done, just record the extra bits to emit. 2113 // Big endian: 2114 // * Record the extra bits to emit. 2115 // * Realign the raw data to emit the chunks of 64-bits. 2116 if (DL.isBigEndian()) { 2117 // Basically the structure of the raw data is a chunk of 64-bits cells: 2118 // 0 1 BitWidth / 64 2119 // [chunk1][chunk2] ... [chunkN]. 2120 // The most significant chunk is chunkN and it should be emitted first. 2121 // However, due to the alignment issue chunkN contains useless bits. 2122 // Realign the chunks so that they contain only useless information: 2123 // ExtraBits 0 1 (BitWidth / 64) - 1 2124 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2125 ExtraBits = Realigned.getRawData()[0] & 2126 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2127 Realigned = Realigned.lshr(ExtraBitsSize); 2128 } else 2129 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2130 } 2131 2132 // We don't expect assemblers to support integer data directives 2133 // for more than 64 bits, so we emit the data in at most 64-bit 2134 // quantities at a time. 2135 const uint64_t *RawData = Realigned.getRawData(); 2136 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2137 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2138 AP.OutStreamer->EmitIntValue(Val, 8); 2139 } 2140 2141 if (ExtraBitsSize) { 2142 // Emit the extra bits after the 64-bits chunks. 2143 2144 // Emit a directive that fills the expected size. 2145 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2146 Size -= (BitWidth / 64) * 8; 2147 assert(Size && Size * 8 >= ExtraBitsSize && 2148 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2149 == ExtraBits && "Directive too small for extra bits."); 2150 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2151 } 2152 } 2153 2154 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2155 /// equivalent global, by a target specific GOT pc relative access to the 2156 /// final symbol. 2157 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2158 const Constant *BaseCst, 2159 uint64_t Offset) { 2160 // The global @foo below illustrates a global that uses a got equivalent. 2161 // 2162 // @bar = global i32 42 2163 // @gotequiv = private unnamed_addr constant i32* @bar 2164 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2165 // i64 ptrtoint (i32* @foo to i64)) 2166 // to i32) 2167 // 2168 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2169 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2170 // form: 2171 // 2172 // foo = cstexpr, where 2173 // cstexpr := <gotequiv> - "." + <cst> 2174 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2175 // 2176 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2177 // 2178 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2179 // gotpcrelcst := <offset from @foo base> + <cst> 2180 // 2181 MCValue MV; 2182 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2183 return; 2184 const MCSymbolRefExpr *SymA = MV.getSymA(); 2185 if (!SymA) 2186 return; 2187 2188 // Check that GOT equivalent symbol is cached. 2189 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2190 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2191 return; 2192 2193 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2194 if (!BaseGV) 2195 return; 2196 2197 // Check for a valid base symbol 2198 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2199 const MCSymbolRefExpr *SymB = MV.getSymB(); 2200 2201 if (!SymB || BaseSym != &SymB->getSymbol()) 2202 return; 2203 2204 // Make sure to match: 2205 // 2206 // gotpcrelcst := <offset from @foo base> + <cst> 2207 // 2208 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2209 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2210 // if the target knows how to encode it. 2211 // 2212 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2213 if (GOTPCRelCst < 0) 2214 return; 2215 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2216 return; 2217 2218 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2219 // 2220 // bar: 2221 // .long 42 2222 // gotequiv: 2223 // .quad bar 2224 // foo: 2225 // .long gotequiv - "." + <cst> 2226 // 2227 // is replaced by the target specific equivalent to: 2228 // 2229 // bar: 2230 // .long 42 2231 // foo: 2232 // .long bar@GOTPCREL+<gotpcrelcst> 2233 // 2234 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2235 const GlobalVariable *GV = Result.first; 2236 int NumUses = (int)Result.second; 2237 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2238 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2239 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2240 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2241 2242 // Update GOT equivalent usage information 2243 --NumUses; 2244 if (NumUses >= 0) 2245 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2246 } 2247 2248 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2249 AsmPrinter &AP, const Constant *BaseCV, 2250 uint64_t Offset) { 2251 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2252 2253 // Globals with sub-elements such as combinations of arrays and structs 2254 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2255 // constant symbol base and the current position with BaseCV and Offset. 2256 if (!BaseCV && CV->hasOneUse()) 2257 BaseCV = dyn_cast<Constant>(CV->user_back()); 2258 2259 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2260 return AP.OutStreamer->EmitZeros(Size); 2261 2262 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2263 switch (Size) { 2264 case 1: 2265 case 2: 2266 case 4: 2267 case 8: 2268 if (AP.isVerbose()) 2269 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2270 CI->getZExtValue()); 2271 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2272 return; 2273 default: 2274 emitGlobalConstantLargeInt(CI, AP); 2275 return; 2276 } 2277 } 2278 2279 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2280 return emitGlobalConstantFP(CFP, AP); 2281 2282 if (isa<ConstantPointerNull>(CV)) { 2283 AP.OutStreamer->EmitIntValue(0, Size); 2284 return; 2285 } 2286 2287 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2288 return emitGlobalConstantDataSequential(DL, CDS, AP); 2289 2290 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2291 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2292 2293 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2294 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2295 2296 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2297 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2298 // vectors). 2299 if (CE->getOpcode() == Instruction::BitCast) 2300 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2301 2302 if (Size > 8) { 2303 // If the constant expression's size is greater than 64-bits, then we have 2304 // to emit the value in chunks. Try to constant fold the value and emit it 2305 // that way. 2306 Constant *New = ConstantFoldConstantExpression(CE, DL); 2307 if (New && New != CE) 2308 return emitGlobalConstantImpl(DL, New, AP); 2309 } 2310 } 2311 2312 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2313 return emitGlobalConstantVector(DL, V, AP); 2314 2315 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2316 // thread the streamer with EmitValue. 2317 const MCExpr *ME = AP.lowerConstant(CV); 2318 2319 // Since lowerConstant already folded and got rid of all IR pointer and 2320 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2321 // directly. 2322 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2323 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2324 2325 AP.OutStreamer->EmitValue(ME, Size); 2326 } 2327 2328 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2329 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2330 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2331 if (Size) 2332 emitGlobalConstantImpl(DL, CV, *this); 2333 else if (MAI->hasSubsectionsViaSymbols()) { 2334 // If the global has zero size, emit a single byte so that two labels don't 2335 // look like they are at the same location. 2336 OutStreamer->EmitIntValue(0, 1); 2337 } 2338 } 2339 2340 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2341 // Target doesn't support this yet! 2342 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2343 } 2344 2345 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2346 if (Offset > 0) 2347 OS << '+' << Offset; 2348 else if (Offset < 0) 2349 OS << Offset; 2350 } 2351 2352 //===----------------------------------------------------------------------===// 2353 // Symbol Lowering Routines. 2354 //===----------------------------------------------------------------------===// 2355 2356 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2357 return OutContext.createTempSymbol(Name, true); 2358 } 2359 2360 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2361 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2362 } 2363 2364 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2365 return MMI->getAddrLabelSymbol(BB); 2366 } 2367 2368 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2369 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2370 const DataLayout &DL = getDataLayout(); 2371 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2372 "CPI" + Twine(getFunctionNumber()) + "_" + 2373 Twine(CPID)); 2374 } 2375 2376 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2377 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2378 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2379 } 2380 2381 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2382 /// FIXME: privatize to AsmPrinter. 2383 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2384 const DataLayout &DL = getDataLayout(); 2385 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2386 Twine(getFunctionNumber()) + "_" + 2387 Twine(UID) + "_set_" + Twine(MBBID)); 2388 } 2389 2390 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2391 StringRef Suffix) const { 2392 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2393 TM); 2394 } 2395 2396 /// Return the MCSymbol for the specified ExternalSymbol. 2397 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2398 SmallString<60> NameStr; 2399 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2400 return OutContext.getOrCreateSymbol(NameStr); 2401 } 2402 2403 2404 2405 /// PrintParentLoopComment - Print comments about parent loops of this one. 2406 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2407 unsigned FunctionNumber) { 2408 if (!Loop) return; 2409 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2410 OS.indent(Loop->getLoopDepth()*2) 2411 << "Parent Loop BB" << FunctionNumber << "_" 2412 << Loop->getHeader()->getNumber() 2413 << " Depth=" << Loop->getLoopDepth() << '\n'; 2414 } 2415 2416 2417 /// PrintChildLoopComment - Print comments about child loops within 2418 /// the loop for this basic block, with nesting. 2419 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2420 unsigned FunctionNumber) { 2421 // Add child loop information 2422 for (const MachineLoop *CL : *Loop) { 2423 OS.indent(CL->getLoopDepth()*2) 2424 << "Child Loop BB" << FunctionNumber << "_" 2425 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2426 << '\n'; 2427 PrintChildLoopComment(OS, CL, FunctionNumber); 2428 } 2429 } 2430 2431 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2432 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2433 const MachineLoopInfo *LI, 2434 const AsmPrinter &AP) { 2435 // Add loop depth information 2436 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2437 if (!Loop) return; 2438 2439 MachineBasicBlock *Header = Loop->getHeader(); 2440 assert(Header && "No header for loop"); 2441 2442 // If this block is not a loop header, just print out what is the loop header 2443 // and return. 2444 if (Header != &MBB) { 2445 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2446 Twine(AP.getFunctionNumber())+"_" + 2447 Twine(Loop->getHeader()->getNumber())+ 2448 " Depth="+Twine(Loop->getLoopDepth())); 2449 return; 2450 } 2451 2452 // Otherwise, it is a loop header. Print out information about child and 2453 // parent loops. 2454 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2455 2456 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2457 2458 OS << "=>"; 2459 OS.indent(Loop->getLoopDepth()*2-2); 2460 2461 OS << "This "; 2462 if (Loop->empty()) 2463 OS << "Inner "; 2464 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2465 2466 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2467 } 2468 2469 2470 /// EmitBasicBlockStart - This method prints the label for the specified 2471 /// MachineBasicBlock, an alignment (if present) and a comment describing 2472 /// it if appropriate. 2473 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2474 // End the previous funclet and start a new one. 2475 if (MBB.isEHFuncletEntry()) { 2476 for (const HandlerInfo &HI : Handlers) { 2477 HI.Handler->endFunclet(); 2478 HI.Handler->beginFunclet(MBB); 2479 } 2480 } 2481 2482 // Emit an alignment directive for this block, if needed. 2483 if (unsigned Align = MBB.getAlignment()) 2484 EmitAlignment(Align); 2485 2486 // If the block has its address taken, emit any labels that were used to 2487 // reference the block. It is possible that there is more than one label 2488 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2489 // the references were generated. 2490 if (MBB.hasAddressTaken()) { 2491 const BasicBlock *BB = MBB.getBasicBlock(); 2492 if (isVerbose()) 2493 OutStreamer->AddComment("Block address taken"); 2494 2495 // MBBs can have their address taken as part of CodeGen without having 2496 // their corresponding BB's address taken in IR 2497 if (BB->hasAddressTaken()) 2498 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2499 OutStreamer->EmitLabel(Sym); 2500 } 2501 2502 // Print some verbose block comments. 2503 if (isVerbose()) { 2504 if (const BasicBlock *BB = MBB.getBasicBlock()) 2505 if (BB->hasName()) 2506 OutStreamer->AddComment("%" + BB->getName()); 2507 emitBasicBlockLoopComments(MBB, LI, *this); 2508 } 2509 2510 // Print the main label for the block. 2511 if (MBB.pred_empty() || 2512 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2513 if (isVerbose()) { 2514 // NOTE: Want this comment at start of line, don't emit with AddComment. 2515 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2516 } 2517 } else { 2518 OutStreamer->EmitLabel(MBB.getSymbol()); 2519 } 2520 } 2521 2522 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2523 bool IsDefinition) const { 2524 MCSymbolAttr Attr = MCSA_Invalid; 2525 2526 switch (Visibility) { 2527 default: break; 2528 case GlobalValue::HiddenVisibility: 2529 if (IsDefinition) 2530 Attr = MAI->getHiddenVisibilityAttr(); 2531 else 2532 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2533 break; 2534 case GlobalValue::ProtectedVisibility: 2535 Attr = MAI->getProtectedVisibilityAttr(); 2536 break; 2537 } 2538 2539 if (Attr != MCSA_Invalid) 2540 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2541 } 2542 2543 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2544 /// exactly one predecessor and the control transfer mechanism between 2545 /// the predecessor and this block is a fall-through. 2546 bool AsmPrinter:: 2547 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2548 // If this is a landing pad, it isn't a fall through. If it has no preds, 2549 // then nothing falls through to it. 2550 if (MBB->isEHPad() || MBB->pred_empty()) 2551 return false; 2552 2553 // If there isn't exactly one predecessor, it can't be a fall through. 2554 if (MBB->pred_size() > 1) 2555 return false; 2556 2557 // The predecessor has to be immediately before this block. 2558 MachineBasicBlock *Pred = *MBB->pred_begin(); 2559 if (!Pred->isLayoutSuccessor(MBB)) 2560 return false; 2561 2562 // If the block is completely empty, then it definitely does fall through. 2563 if (Pred->empty()) 2564 return true; 2565 2566 // Check the terminators in the previous blocks 2567 for (const auto &MI : Pred->terminators()) { 2568 // If it is not a simple branch, we are in a table somewhere. 2569 if (!MI.isBranch() || MI.isIndirectBranch()) 2570 return false; 2571 2572 // If we are the operands of one of the branches, this is not a fall 2573 // through. Note that targets with delay slots will usually bundle 2574 // terminators with the delay slot instruction. 2575 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2576 if (OP->isJTI()) 2577 return false; 2578 if (OP->isMBB() && OP->getMBB() == MBB) 2579 return false; 2580 } 2581 } 2582 2583 return true; 2584 } 2585 2586 2587 2588 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2589 if (!S.usesMetadata()) 2590 return nullptr; 2591 2592 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2593 " stackmap formats, please see the documentation for a description of" 2594 " the default format. If you really need a custom serialized format," 2595 " please file a bug"); 2596 2597 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2598 gcp_map_type::iterator GCPI = GCMap.find(&S); 2599 if (GCPI != GCMap.end()) 2600 return GCPI->second.get(); 2601 2602 const char *Name = S.getName().c_str(); 2603 2604 for (GCMetadataPrinterRegistry::iterator 2605 I = GCMetadataPrinterRegistry::begin(), 2606 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2607 if (strcmp(Name, I->getName()) == 0) { 2608 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2609 GMP->S = &S; 2610 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2611 return IterBool.first->second.get(); 2612 } 2613 2614 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2615 } 2616 2617 /// Pin vtable to this file. 2618 AsmPrinterHandler::~AsmPrinterHandler() {} 2619 2620 void AsmPrinterHandler::markFunctionEnd() {} 2621