1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AsmPrinterHandler.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WinException.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/ConstantFolding.h" 31 #include "llvm/Analysis/ObjectUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AsmPrinter.h" 34 #include "llvm/CodeGen/GCMetadata.h" 35 #include "llvm/CodeGen/GCMetadataPrinter.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineConstantPool.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBundle.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugInfoMetadata.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GlobalAlias.h" 58 #include "llvm/IR/GlobalIFunc.h" 59 #include "llvm/IR/GlobalIndirectSymbol.h" 60 #include "llvm/IR/GlobalObject.h" 61 #include "llvm/IR/GlobalValue.h" 62 #include "llvm/IR/GlobalVariable.h" 63 #include "llvm/IR/Mangler.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/MC/MCAsmInfo.h" 69 #include "llvm/MC/MCContext.h" 70 #include "llvm/MC/MCDirectives.h" 71 #include "llvm/MC/MCExpr.h" 72 #include "llvm/MC/MCInst.h" 73 #include "llvm/MC/MCSection.h" 74 #include "llvm/MC/MCSectionELF.h" 75 #include "llvm/MC/MCSectionMachO.h" 76 #include "llvm/MC/MCStreamer.h" 77 #include "llvm/MC/MCSubtargetInfo.h" 78 #include "llvm/MC/MCSymbol.h" 79 #include "llvm/MC/MCTargetOptions.h" 80 #include "llvm/MC/MCValue.h" 81 #include "llvm/MC/SectionKind.h" 82 #include "llvm/Pass.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Dwarf.h" 86 #include "llvm/Support/ELF.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/Format.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/TargetRegistry.h" 92 #include "llvm/Support/Timer.h" 93 #include "llvm/Target/TargetFrameLowering.h" 94 #include "llvm/Target/TargetInstrInfo.h" 95 #include "llvm/Target/TargetLowering.h" 96 #include "llvm/Target/TargetLoweringObjectFile.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetRegisterInfo.h" 99 #include "llvm/Target/TargetSubtargetInfo.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cinttypes> 103 #include <cstdint> 104 #include <limits> 105 #include <memory> 106 #include <string> 107 #include <utility> 108 #include <vector> 109 110 using namespace llvm; 111 112 #define DEBUG_TYPE "asm-printer" 113 114 static const char *const DWARFGroupName = "dwarf"; 115 static const char *const DWARFGroupDescription = "DWARF Emission"; 116 static const char *const DbgTimerName = "emit"; 117 static const char *const DbgTimerDescription = "Debug Info Emission"; 118 static const char *const EHTimerName = "write_exception"; 119 static const char *const EHTimerDescription = "DWARF Exception Writer"; 120 static const char *const CodeViewLineTablesGroupName = "linetables"; 121 static const char *const CodeViewLineTablesGroupDescription = 122 "CodeView Line Tables"; 123 124 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 125 126 char AsmPrinter::ID = 0; 127 128 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 129 static gcp_map_type &getGCMap(void *&P) { 130 if (!P) 131 P = new gcp_map_type(); 132 return *(gcp_map_type*)P; 133 } 134 135 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 136 /// value in log2 form. This rounds up to the preferred alignment if possible 137 /// and legal. 138 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 139 unsigned InBits = 0) { 140 unsigned NumBits = 0; 141 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 142 NumBits = DL.getPreferredAlignmentLog(GVar); 143 144 // If InBits is specified, round it to it. 145 if (InBits > NumBits) 146 NumBits = InBits; 147 148 // If the GV has a specified alignment, take it into account. 149 if (GV->getAlignment() == 0) 150 return NumBits; 151 152 unsigned GVAlign = Log2_32(GV->getAlignment()); 153 154 // If the GVAlign is larger than NumBits, or if we are required to obey 155 // NumBits because the GV has an assigned section, obey it. 156 if (GVAlign > NumBits || GV->hasSection()) 157 NumBits = GVAlign; 158 return NumBits; 159 } 160 161 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 162 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 163 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 164 VerboseAsm = OutStreamer->isVerboseAsm(); 165 } 166 167 AsmPrinter::~AsmPrinter() { 168 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 169 170 if (GCMetadataPrinters) { 171 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 172 173 delete &GCMap; 174 GCMetadataPrinters = nullptr; 175 } 176 } 177 178 bool AsmPrinter::isPositionIndependent() const { 179 return TM.isPositionIndependent(); 180 } 181 182 /// getFunctionNumber - Return a unique ID for the current function. 183 /// 184 unsigned AsmPrinter::getFunctionNumber() const { 185 return MF->getFunctionNumber(); 186 } 187 188 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 189 return *TM.getObjFileLowering(); 190 } 191 192 const DataLayout &AsmPrinter::getDataLayout() const { 193 return MMI->getModule()->getDataLayout(); 194 } 195 196 // Do not use the cached DataLayout because some client use it without a Module 197 // (llvm-dsymutil, llvm-dwarfdump). 198 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 199 200 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 201 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 202 return MF->getSubtarget<MCSubtargetInfo>(); 203 } 204 205 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 206 S.EmitInstruction(Inst, getSubtargetInfo()); 207 } 208 209 /// getCurrentSection() - Return the current section we are emitting to. 210 const MCSection *AsmPrinter::getCurrentSection() const { 211 return OutStreamer->getCurrentSectionOnly(); 212 } 213 214 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 215 AU.setPreservesAll(); 216 MachineFunctionPass::getAnalysisUsage(AU); 217 AU.addRequired<MachineModuleInfo>(); 218 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 219 AU.addRequired<GCModuleInfo>(); 220 if (isVerbose()) 221 AU.addRequired<MachineLoopInfo>(); 222 } 223 224 bool AsmPrinter::doInitialization(Module &M) { 225 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 226 227 // Initialize TargetLoweringObjectFile. 228 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 229 .Initialize(OutContext, TM); 230 231 OutStreamer->InitSections(false); 232 233 // Emit the version-min deplyment target directive if needed. 234 // 235 // FIXME: If we end up with a collection of these sorts of Darwin-specific 236 // or ELF-specific things, it may make sense to have a platform helper class 237 // that will work with the target helper class. For now keep it here, as the 238 // alternative is duplicated code in each of the target asm printers that 239 // use the directive, where it would need the same conditionalization 240 // anyway. 241 const Triple &TT = TM.getTargetTriple(); 242 // If there is a version specified, Major will be non-zero. 243 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 244 unsigned Major, Minor, Update; 245 MCVersionMinType VersionType; 246 if (TT.isWatchOS()) { 247 VersionType = MCVM_WatchOSVersionMin; 248 TT.getWatchOSVersion(Major, Minor, Update); 249 } else if (TT.isTvOS()) { 250 VersionType = MCVM_TvOSVersionMin; 251 TT.getiOSVersion(Major, Minor, Update); 252 } else if (TT.isMacOSX()) { 253 VersionType = MCVM_OSXVersionMin; 254 if (!TT.getMacOSXVersion(Major, Minor, Update)) 255 Major = 0; 256 } else { 257 VersionType = MCVM_IOSVersionMin; 258 TT.getiOSVersion(Major, Minor, Update); 259 } 260 if (Major != 0) 261 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 262 } 263 264 // Allow the target to emit any magic that it wants at the start of the file. 265 EmitStartOfAsmFile(M); 266 267 // Very minimal debug info. It is ignored if we emit actual debug info. If we 268 // don't, this at least helps the user find where a global came from. 269 if (MAI->hasSingleParameterDotFile()) { 270 // .file "foo.c" 271 OutStreamer->EmitFileDirective(M.getSourceFileName()); 272 } 273 274 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 275 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 276 for (auto &I : *MI) 277 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 278 MP->beginAssembly(M, *MI, *this); 279 280 // Emit module-level inline asm if it exists. 281 if (!M.getModuleInlineAsm().empty()) { 282 // We're at the module level. Construct MCSubtarget from the default CPU 283 // and target triple. 284 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 285 TM.getTargetTriple().str(), TM.getTargetCPU(), 286 TM.getTargetFeatureString())); 287 OutStreamer->AddComment("Start of file scope inline assembly"); 288 OutStreamer->AddBlankLine(); 289 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 290 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 291 OutStreamer->AddComment("End of file scope inline assembly"); 292 OutStreamer->AddBlankLine(); 293 } 294 295 if (MAI->doesSupportDebugInformation()) { 296 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 297 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 298 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 299 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 300 DbgTimerName, DbgTimerDescription, 301 CodeViewLineTablesGroupName, 302 CodeViewLineTablesGroupDescription)); 303 } 304 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 305 DD = new DwarfDebug(this, &M); 306 DD->beginModule(); 307 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 308 DWARFGroupName, DWARFGroupDescription)); 309 } 310 } 311 312 switch (MAI->getExceptionHandlingType()) { 313 case ExceptionHandling::SjLj: 314 case ExceptionHandling::DwarfCFI: 315 case ExceptionHandling::ARM: 316 isCFIMoveForDebugging = true; 317 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 318 break; 319 for (auto &F: M.getFunctionList()) { 320 // If the module contains any function with unwind data, 321 // .eh_frame has to be emitted. 322 // Ignore functions that won't get emitted. 323 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 324 isCFIMoveForDebugging = false; 325 break; 326 } 327 } 328 break; 329 default: 330 isCFIMoveForDebugging = false; 331 break; 332 } 333 334 EHStreamer *ES = nullptr; 335 switch (MAI->getExceptionHandlingType()) { 336 case ExceptionHandling::None: 337 break; 338 case ExceptionHandling::SjLj: 339 case ExceptionHandling::DwarfCFI: 340 ES = new DwarfCFIException(this); 341 break; 342 case ExceptionHandling::ARM: 343 ES = new ARMException(this); 344 break; 345 case ExceptionHandling::WinEH: 346 switch (MAI->getWinEHEncodingType()) { 347 default: llvm_unreachable("unsupported unwinding information encoding"); 348 case WinEH::EncodingType::Invalid: 349 break; 350 case WinEH::EncodingType::X86: 351 case WinEH::EncodingType::Itanium: 352 ES = new WinException(this); 353 break; 354 } 355 break; 356 } 357 if (ES) 358 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 359 DWARFGroupName, DWARFGroupDescription)); 360 return false; 361 } 362 363 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 364 if (!MAI.hasWeakDefCanBeHiddenDirective()) 365 return false; 366 367 return canBeOmittedFromSymbolTable(GV); 368 } 369 370 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 371 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 372 switch (Linkage) { 373 case GlobalValue::CommonLinkage: 374 case GlobalValue::LinkOnceAnyLinkage: 375 case GlobalValue::LinkOnceODRLinkage: 376 case GlobalValue::WeakAnyLinkage: 377 case GlobalValue::WeakODRLinkage: 378 if (MAI->hasWeakDefDirective()) { 379 // .globl _foo 380 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 381 382 if (!canBeHidden(GV, *MAI)) 383 // .weak_definition _foo 384 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 385 else 386 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 387 } else if (MAI->hasLinkOnceDirective()) { 388 // .globl _foo 389 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 390 //NOTE: linkonce is handled by the section the symbol was assigned to. 391 } else { 392 // .weak _foo 393 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 394 } 395 return; 396 case GlobalValue::ExternalLinkage: 397 // If external, declare as a global symbol: .globl _foo 398 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 399 return; 400 case GlobalValue::PrivateLinkage: 401 case GlobalValue::InternalLinkage: 402 return; 403 case GlobalValue::AppendingLinkage: 404 case GlobalValue::AvailableExternallyLinkage: 405 case GlobalValue::ExternalWeakLinkage: 406 llvm_unreachable("Should never emit this"); 407 } 408 llvm_unreachable("Unknown linkage type!"); 409 } 410 411 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 412 const GlobalValue *GV) const { 413 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 414 } 415 416 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 417 return TM.getSymbol(GV); 418 } 419 420 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 421 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 422 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 423 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 424 "No emulated TLS variables in the common section"); 425 426 // Never emit TLS variable xyz in emulated TLS model. 427 // The initialization value is in __emutls_t.xyz instead of xyz. 428 if (IsEmuTLSVar) 429 return; 430 431 if (GV->hasInitializer()) { 432 // Check to see if this is a special global used by LLVM, if so, emit it. 433 if (EmitSpecialLLVMGlobal(GV)) 434 return; 435 436 // Skip the emission of global equivalents. The symbol can be emitted later 437 // on by emitGlobalGOTEquivs in case it turns out to be needed. 438 if (GlobalGOTEquivs.count(getSymbol(GV))) 439 return; 440 441 if (isVerbose()) { 442 // When printing the control variable __emutls_v.*, 443 // we don't need to print the original TLS variable name. 444 GV->printAsOperand(OutStreamer->GetCommentOS(), 445 /*PrintType=*/false, GV->getParent()); 446 OutStreamer->GetCommentOS() << '\n'; 447 } 448 } 449 450 MCSymbol *GVSym = getSymbol(GV); 451 MCSymbol *EmittedSym = GVSym; 452 453 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 454 // attributes. 455 // GV's or GVSym's attributes will be used for the EmittedSym. 456 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 457 458 if (!GV->hasInitializer()) // External globals require no extra code. 459 return; 460 461 GVSym->redefineIfPossible(); 462 if (GVSym->isDefined() || GVSym->isVariable()) 463 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 464 "' is already defined"); 465 466 if (MAI->hasDotTypeDotSizeDirective()) 467 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 468 469 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 470 471 const DataLayout &DL = GV->getParent()->getDataLayout(); 472 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 473 474 // If the alignment is specified, we *must* obey it. Overaligning a global 475 // with a specified alignment is a prompt way to break globals emitted to 476 // sections and expected to be contiguous (e.g. ObjC metadata). 477 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 478 479 for (const HandlerInfo &HI : Handlers) { 480 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 481 HI.TimerGroupName, HI.TimerGroupDescription, 482 TimePassesIsEnabled); 483 HI.Handler->setSymbolSize(GVSym, Size); 484 } 485 486 // Handle common symbols 487 if (GVKind.isCommon()) { 488 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 489 unsigned Align = 1 << AlignLog; 490 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 491 Align = 0; 492 493 // .comm _foo, 42, 4 494 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 495 return; 496 } 497 498 // Determine to which section this global should be emitted. 499 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 500 501 // If we have a bss global going to a section that supports the 502 // zerofill directive, do so here. 503 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 504 TheSection->isVirtualSection()) { 505 if (Size == 0) 506 Size = 1; // zerofill of 0 bytes is undefined. 507 unsigned Align = 1 << AlignLog; 508 EmitLinkage(GV, GVSym); 509 // .zerofill __DATA, __bss, _foo, 400, 5 510 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 511 return; 512 } 513 514 // If this is a BSS local symbol and we are emitting in the BSS 515 // section use .lcomm/.comm directive. 516 if (GVKind.isBSSLocal() && 517 getObjFileLowering().getBSSSection() == TheSection) { 518 if (Size == 0) 519 Size = 1; // .comm Foo, 0 is undefined, avoid it. 520 unsigned Align = 1 << AlignLog; 521 522 // Use .lcomm only if it supports user-specified alignment. 523 // Otherwise, while it would still be correct to use .lcomm in some 524 // cases (e.g. when Align == 1), the external assembler might enfore 525 // some -unknown- default alignment behavior, which could cause 526 // spurious differences between external and integrated assembler. 527 // Prefer to simply fall back to .local / .comm in this case. 528 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 529 // .lcomm _foo, 42 530 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 531 return; 532 } 533 534 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 535 Align = 0; 536 537 // .local _foo 538 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 539 // .comm _foo, 42, 4 540 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 541 return; 542 } 543 544 // Handle thread local data for mach-o which requires us to output an 545 // additional structure of data and mangle the original symbol so that we 546 // can reference it later. 547 // 548 // TODO: This should become an "emit thread local global" method on TLOF. 549 // All of this macho specific stuff should be sunk down into TLOFMachO and 550 // stuff like "TLSExtraDataSection" should no longer be part of the parent 551 // TLOF class. This will also make it more obvious that stuff like 552 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 553 // specific code. 554 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 555 // Emit the .tbss symbol 556 MCSymbol *MangSym = 557 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 558 559 if (GVKind.isThreadBSS()) { 560 TheSection = getObjFileLowering().getTLSBSSSection(); 561 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 562 } else if (GVKind.isThreadData()) { 563 OutStreamer->SwitchSection(TheSection); 564 565 EmitAlignment(AlignLog, GV); 566 OutStreamer->EmitLabel(MangSym); 567 568 EmitGlobalConstant(GV->getParent()->getDataLayout(), 569 GV->getInitializer()); 570 } 571 572 OutStreamer->AddBlankLine(); 573 574 // Emit the variable struct for the runtime. 575 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 576 577 OutStreamer->SwitchSection(TLVSect); 578 // Emit the linkage here. 579 EmitLinkage(GV, GVSym); 580 OutStreamer->EmitLabel(GVSym); 581 582 // Three pointers in size: 583 // - __tlv_bootstrap - used to make sure support exists 584 // - spare pointer, used when mapped by the runtime 585 // - pointer to mangled symbol above with initializer 586 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 587 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 588 PtrSize); 589 OutStreamer->EmitIntValue(0, PtrSize); 590 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 591 592 OutStreamer->AddBlankLine(); 593 return; 594 } 595 596 MCSymbol *EmittedInitSym = GVSym; 597 598 OutStreamer->SwitchSection(TheSection); 599 600 EmitLinkage(GV, EmittedInitSym); 601 EmitAlignment(AlignLog, GV); 602 603 OutStreamer->EmitLabel(EmittedInitSym); 604 605 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 606 607 if (MAI->hasDotTypeDotSizeDirective()) 608 // .size foo, 42 609 OutStreamer->emitELFSize(EmittedInitSym, 610 MCConstantExpr::create(Size, OutContext)); 611 612 OutStreamer->AddBlankLine(); 613 } 614 615 /// Emit the directive and value for debug thread local expression 616 /// 617 /// \p Value - The value to emit. 618 /// \p Size - The size of the integer (in bytes) to emit. 619 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 620 unsigned Size) const { 621 OutStreamer->EmitValue(Value, Size); 622 } 623 624 /// EmitFunctionHeader - This method emits the header for the current 625 /// function. 626 void AsmPrinter::EmitFunctionHeader() { 627 // Print out constants referenced by the function 628 EmitConstantPool(); 629 630 // Print the 'header' of function. 631 const Function *F = MF->getFunction(); 632 633 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 634 EmitVisibility(CurrentFnSym, F->getVisibility()); 635 636 EmitLinkage(F, CurrentFnSym); 637 if (MAI->hasFunctionAlignment()) 638 EmitAlignment(MF->getAlignment(), F); 639 640 if (MAI->hasDotTypeDotSizeDirective()) 641 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 642 643 if (isVerbose()) { 644 F->printAsOperand(OutStreamer->GetCommentOS(), 645 /*PrintType=*/false, F->getParent()); 646 OutStreamer->GetCommentOS() << '\n'; 647 } 648 649 // Emit the prefix data. 650 if (F->hasPrefixData()) { 651 if (MAI->hasSubsectionsViaSymbols()) { 652 // Preserving prefix data on platforms which use subsections-via-symbols 653 // is a bit tricky. Here we introduce a symbol for the prefix data 654 // and use the .alt_entry attribute to mark the function's real entry point 655 // as an alternative entry point to the prefix-data symbol. 656 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 657 OutStreamer->EmitLabel(PrefixSym); 658 659 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 660 661 // Emit an .alt_entry directive for the actual function symbol. 662 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 663 } else { 664 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 665 } 666 } 667 668 // Emit the CurrentFnSym. This is a virtual function to allow targets to 669 // do their wild and crazy things as required. 670 EmitFunctionEntryLabel(); 671 672 // If the function had address-taken blocks that got deleted, then we have 673 // references to the dangling symbols. Emit them at the start of the function 674 // so that we don't get references to undefined symbols. 675 std::vector<MCSymbol*> DeadBlockSyms; 676 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 677 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 678 OutStreamer->AddComment("Address taken block that was later removed"); 679 OutStreamer->EmitLabel(DeadBlockSyms[i]); 680 } 681 682 if (CurrentFnBegin) { 683 if (MAI->useAssignmentForEHBegin()) { 684 MCSymbol *CurPos = OutContext.createTempSymbol(); 685 OutStreamer->EmitLabel(CurPos); 686 OutStreamer->EmitAssignment(CurrentFnBegin, 687 MCSymbolRefExpr::create(CurPos, OutContext)); 688 } else { 689 OutStreamer->EmitLabel(CurrentFnBegin); 690 } 691 } 692 693 // Emit pre-function debug and/or EH information. 694 for (const HandlerInfo &HI : Handlers) { 695 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 696 HI.TimerGroupDescription, TimePassesIsEnabled); 697 HI.Handler->beginFunction(MF); 698 } 699 700 // Emit the prologue data. 701 if (F->hasPrologueData()) 702 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 703 } 704 705 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 706 /// function. This can be overridden by targets as required to do custom stuff. 707 void AsmPrinter::EmitFunctionEntryLabel() { 708 CurrentFnSym->redefineIfPossible(); 709 710 // The function label could have already been emitted if two symbols end up 711 // conflicting due to asm renaming. Detect this and emit an error. 712 if (CurrentFnSym->isVariable()) 713 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 714 "' is a protected alias"); 715 if (CurrentFnSym->isDefined()) 716 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 717 "' label emitted multiple times to assembly file"); 718 719 return OutStreamer->EmitLabel(CurrentFnSym); 720 } 721 722 /// emitComments - Pretty-print comments for instructions. 723 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 724 const MachineFunction *MF = MI.getParent()->getParent(); 725 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 726 727 // Check for spills and reloads 728 int FI; 729 730 const MachineFrameInfo &MFI = MF->getFrameInfo(); 731 732 // We assume a single instruction only has a spill or reload, not 733 // both. 734 const MachineMemOperand *MMO; 735 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 736 if (MFI.isSpillSlotObjectIndex(FI)) { 737 MMO = *MI.memoperands_begin(); 738 CommentOS << MMO->getSize() << "-byte Reload\n"; 739 } 740 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 741 if (MFI.isSpillSlotObjectIndex(FI)) 742 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 743 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 744 if (MFI.isSpillSlotObjectIndex(FI)) { 745 MMO = *MI.memoperands_begin(); 746 CommentOS << MMO->getSize() << "-byte Spill\n"; 747 } 748 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 749 if (MFI.isSpillSlotObjectIndex(FI)) 750 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 751 } 752 753 // Check for spill-induced copies 754 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 755 CommentOS << " Reload Reuse\n"; 756 } 757 758 /// emitImplicitDef - This method emits the specified machine instruction 759 /// that is an implicit def. 760 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 761 unsigned RegNo = MI->getOperand(0).getReg(); 762 763 SmallString<128> Str; 764 raw_svector_ostream OS(Str); 765 OS << "implicit-def: " 766 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 767 768 OutStreamer->AddComment(OS.str()); 769 OutStreamer->AddBlankLine(); 770 } 771 772 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 773 std::string Str; 774 raw_string_ostream OS(Str); 775 OS << "kill:"; 776 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 777 const MachineOperand &Op = MI->getOperand(i); 778 assert(Op.isReg() && "KILL instruction must have only register operands"); 779 OS << ' ' 780 << PrintReg(Op.getReg(), 781 AP.MF->getSubtarget().getRegisterInfo()) 782 << (Op.isDef() ? "<def>" : "<kill>"); 783 } 784 AP.OutStreamer->AddComment(OS.str()); 785 AP.OutStreamer->AddBlankLine(); 786 } 787 788 /// emitDebugValueComment - This method handles the target-independent form 789 /// of DBG_VALUE, returning true if it was able to do so. A false return 790 /// means the target will need to handle MI in EmitInstruction. 791 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 792 // This code handles only the 4-operand target-independent form. 793 if (MI->getNumOperands() != 4) 794 return false; 795 796 SmallString<128> Str; 797 raw_svector_ostream OS(Str); 798 OS << "DEBUG_VALUE: "; 799 800 const DILocalVariable *V = MI->getDebugVariable(); 801 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 802 StringRef Name = SP->getDisplayName(); 803 if (!Name.empty()) 804 OS << Name << ":"; 805 } 806 OS << V->getName(); 807 808 const DIExpression *Expr = MI->getDebugExpression(); 809 auto Fragment = Expr->getFragmentInfo(); 810 if (Fragment) 811 OS << " [fragment offset=" << Fragment->OffsetInBits 812 << " size=" << Fragment->SizeInBits << "]"; 813 OS << " <- "; 814 815 // The second operand is only an offset if it's an immediate. 816 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 817 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 818 819 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 820 uint64_t Op = Expr->getElement(i); 821 if (Op == dwarf::DW_OP_LLVM_fragment) { 822 // There can't be any operands after this in a valid expression 823 break; 824 } else if (Deref) { 825 // We currently don't support extra Offsets or derefs after the first 826 // one. Bail out early instead of emitting an incorrect comment 827 OS << " [complex expression]"; 828 AP.OutStreamer->emitRawComment(OS.str()); 829 return true; 830 } else if (Op == dwarf::DW_OP_deref) { 831 Deref = true; 832 continue; 833 } 834 835 uint64_t ExtraOffset = Expr->getElement(i++); 836 if (Op == dwarf::DW_OP_plus) 837 Offset += ExtraOffset; 838 else { 839 assert(Op == dwarf::DW_OP_minus); 840 Offset -= ExtraOffset; 841 } 842 } 843 844 // Register or immediate value. Register 0 means undef. 845 if (MI->getOperand(0).isFPImm()) { 846 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 847 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 848 OS << (double)APF.convertToFloat(); 849 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 850 OS << APF.convertToDouble(); 851 } else { 852 // There is no good way to print long double. Convert a copy to 853 // double. Ah well, it's only a comment. 854 bool ignored; 855 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 856 &ignored); 857 OS << "(long double) " << APF.convertToDouble(); 858 } 859 } else if (MI->getOperand(0).isImm()) { 860 OS << MI->getOperand(0).getImm(); 861 } else if (MI->getOperand(0).isCImm()) { 862 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 863 } else { 864 unsigned Reg; 865 if (MI->getOperand(0).isReg()) { 866 Reg = MI->getOperand(0).getReg(); 867 } else { 868 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 869 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 870 Offset += TFI->getFrameIndexReference(*AP.MF, 871 MI->getOperand(0).getIndex(), Reg); 872 Deref = true; 873 } 874 if (Reg == 0) { 875 // Suppress offset, it is not meaningful here. 876 OS << "undef"; 877 // NOTE: Want this comment at start of line, don't emit with AddComment. 878 AP.OutStreamer->emitRawComment(OS.str()); 879 return true; 880 } 881 if (Deref) 882 OS << '['; 883 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 884 } 885 886 if (Deref) 887 OS << '+' << Offset << ']'; 888 889 // NOTE: Want this comment at start of line, don't emit with AddComment. 890 AP.OutStreamer->emitRawComment(OS.str()); 891 return true; 892 } 893 894 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 895 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 896 MF->getFunction()->needsUnwindTableEntry()) 897 return CFI_M_EH; 898 899 if (MMI->hasDebugInfo()) 900 return CFI_M_Debug; 901 902 return CFI_M_None; 903 } 904 905 bool AsmPrinter::needsSEHMoves() { 906 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 907 } 908 909 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 910 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 911 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 912 ExceptionHandlingType != ExceptionHandling::ARM) 913 return; 914 915 if (needsCFIMoves() == CFI_M_None) 916 return; 917 918 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 919 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 920 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 921 emitCFIInstruction(CFI); 922 } 923 924 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 925 // The operands are the MCSymbol and the frame offset of the allocation. 926 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 927 int FrameOffset = MI.getOperand(1).getImm(); 928 929 // Emit a symbol assignment. 930 OutStreamer->EmitAssignment(FrameAllocSym, 931 MCConstantExpr::create(FrameOffset, OutContext)); 932 } 933 934 /// EmitFunctionBody - This method emits the body and trailer for a 935 /// function. 936 void AsmPrinter::EmitFunctionBody() { 937 EmitFunctionHeader(); 938 939 // Emit target-specific gunk before the function body. 940 EmitFunctionBodyStart(); 941 942 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 943 944 // Print out code for the function. 945 bool HasAnyRealCode = false; 946 int NumInstsInFunction = 0; 947 for (auto &MBB : *MF) { 948 // Print a label for the basic block. 949 EmitBasicBlockStart(MBB); 950 for (auto &MI : MBB) { 951 952 // Print the assembly for the instruction. 953 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 954 !MI.isDebugValue()) { 955 HasAnyRealCode = true; 956 ++NumInstsInFunction; 957 } 958 959 if (ShouldPrintDebugScopes) { 960 for (const HandlerInfo &HI : Handlers) { 961 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 962 HI.TimerGroupName, HI.TimerGroupDescription, 963 TimePassesIsEnabled); 964 HI.Handler->beginInstruction(&MI); 965 } 966 } 967 968 if (isVerbose()) 969 emitComments(MI, OutStreamer->GetCommentOS()); 970 971 switch (MI.getOpcode()) { 972 case TargetOpcode::CFI_INSTRUCTION: 973 emitCFIInstruction(MI); 974 break; 975 976 case TargetOpcode::LOCAL_ESCAPE: 977 emitFrameAlloc(MI); 978 break; 979 980 case TargetOpcode::EH_LABEL: 981 case TargetOpcode::GC_LABEL: 982 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 983 break; 984 case TargetOpcode::INLINEASM: 985 EmitInlineAsm(&MI); 986 break; 987 case TargetOpcode::DBG_VALUE: 988 if (isVerbose()) { 989 if (!emitDebugValueComment(&MI, *this)) 990 EmitInstruction(&MI); 991 } 992 break; 993 case TargetOpcode::IMPLICIT_DEF: 994 if (isVerbose()) emitImplicitDef(&MI); 995 break; 996 case TargetOpcode::KILL: 997 if (isVerbose()) emitKill(&MI, *this); 998 break; 999 default: 1000 EmitInstruction(&MI); 1001 break; 1002 } 1003 1004 if (ShouldPrintDebugScopes) { 1005 for (const HandlerInfo &HI : Handlers) { 1006 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1007 HI.TimerGroupName, HI.TimerGroupDescription, 1008 TimePassesIsEnabled); 1009 HI.Handler->endInstruction(); 1010 } 1011 } 1012 } 1013 1014 EmitBasicBlockEnd(MBB); 1015 } 1016 1017 EmittedInsts += NumInstsInFunction; 1018 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1019 MF->getFunction()->getSubprogram(), 1020 &MF->front()); 1021 R << ore::NV("NumInstructions", NumInstsInFunction) 1022 << " instructions in function"; 1023 ORE->emit(R); 1024 1025 // If the function is empty and the object file uses .subsections_via_symbols, 1026 // then we need to emit *something* to the function body to prevent the 1027 // labels from collapsing together. Just emit a noop. 1028 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 1029 MCInst Noop; 1030 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 1031 OutStreamer->AddComment("avoids zero-length function"); 1032 1033 // Targets can opt-out of emitting the noop here by leaving the opcode 1034 // unspecified. 1035 if (Noop.getOpcode()) 1036 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1037 } 1038 1039 const Function *F = MF->getFunction(); 1040 for (const auto &BB : *F) { 1041 if (!BB.hasAddressTaken()) 1042 continue; 1043 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1044 if (Sym->isDefined()) 1045 continue; 1046 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1047 OutStreamer->EmitLabel(Sym); 1048 } 1049 1050 // Emit target-specific gunk after the function body. 1051 EmitFunctionBodyEnd(); 1052 1053 if (!MF->getLandingPads().empty() || MMI->hasDebugInfo() || 1054 MF->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 1055 // Create a symbol for the end of function. 1056 CurrentFnEnd = createTempSymbol("func_end"); 1057 OutStreamer->EmitLabel(CurrentFnEnd); 1058 } 1059 1060 // If the target wants a .size directive for the size of the function, emit 1061 // it. 1062 if (MAI->hasDotTypeDotSizeDirective()) { 1063 // We can get the size as difference between the function label and the 1064 // temp label. 1065 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1066 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1067 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1068 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1069 } 1070 1071 for (const HandlerInfo &HI : Handlers) { 1072 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1073 HI.TimerGroupDescription, TimePassesIsEnabled); 1074 HI.Handler->markFunctionEnd(); 1075 } 1076 1077 // Print out jump tables referenced by the function. 1078 EmitJumpTableInfo(); 1079 1080 // Emit post-function debug and/or EH information. 1081 for (const HandlerInfo &HI : Handlers) { 1082 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1083 HI.TimerGroupDescription, TimePassesIsEnabled); 1084 HI.Handler->endFunction(MF); 1085 } 1086 1087 OutStreamer->AddBlankLine(); 1088 } 1089 1090 /// \brief Compute the number of Global Variables that uses a Constant. 1091 static unsigned getNumGlobalVariableUses(const Constant *C) { 1092 if (!C) 1093 return 0; 1094 1095 if (isa<GlobalVariable>(C)) 1096 return 1; 1097 1098 unsigned NumUses = 0; 1099 for (auto *CU : C->users()) 1100 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1101 1102 return NumUses; 1103 } 1104 1105 /// \brief Only consider global GOT equivalents if at least one user is a 1106 /// cstexpr inside an initializer of another global variables. Also, don't 1107 /// handle cstexpr inside instructions. During global variable emission, 1108 /// candidates are skipped and are emitted later in case at least one cstexpr 1109 /// isn't replaced by a PC relative GOT entry access. 1110 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1111 unsigned &NumGOTEquivUsers) { 1112 // Global GOT equivalents are unnamed private globals with a constant 1113 // pointer initializer to another global symbol. They must point to a 1114 // GlobalVariable or Function, i.e., as GlobalValue. 1115 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1116 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1117 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1118 return false; 1119 1120 // To be a got equivalent, at least one of its users need to be a constant 1121 // expression used by another global variable. 1122 for (auto *U : GV->users()) 1123 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1124 1125 return NumGOTEquivUsers > 0; 1126 } 1127 1128 /// \brief Unnamed constant global variables solely contaning a pointer to 1129 /// another globals variable is equivalent to a GOT table entry; it contains the 1130 /// the address of another symbol. Optimize it and replace accesses to these 1131 /// "GOT equivalents" by using the GOT entry for the final global instead. 1132 /// Compute GOT equivalent candidates among all global variables to avoid 1133 /// emitting them if possible later on, after it use is replaced by a GOT entry 1134 /// access. 1135 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1136 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1137 return; 1138 1139 for (const auto &G : M.globals()) { 1140 unsigned NumGOTEquivUsers = 0; 1141 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1142 continue; 1143 1144 const MCSymbol *GOTEquivSym = getSymbol(&G); 1145 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1146 } 1147 } 1148 1149 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1150 /// for PC relative GOT entry conversion, in such cases we need to emit such 1151 /// globals we previously omitted in EmitGlobalVariable. 1152 void AsmPrinter::emitGlobalGOTEquivs() { 1153 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1154 return; 1155 1156 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1157 for (auto &I : GlobalGOTEquivs) { 1158 const GlobalVariable *GV = I.second.first; 1159 unsigned Cnt = I.second.second; 1160 if (Cnt) 1161 FailedCandidates.push_back(GV); 1162 } 1163 GlobalGOTEquivs.clear(); 1164 1165 for (auto *GV : FailedCandidates) 1166 EmitGlobalVariable(GV); 1167 } 1168 1169 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1170 const GlobalIndirectSymbol& GIS) { 1171 MCSymbol *Name = getSymbol(&GIS); 1172 1173 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1174 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1175 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1176 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1177 else 1178 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1179 1180 // Set the symbol type to function if the alias has a function type. 1181 // This affects codegen when the aliasee is not a function. 1182 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1183 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1184 if (isa<GlobalIFunc>(GIS)) 1185 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1186 } 1187 1188 EmitVisibility(Name, GIS.getVisibility()); 1189 1190 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1191 1192 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1193 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1194 1195 // Emit the directives as assignments aka .set: 1196 OutStreamer->EmitAssignment(Name, Expr); 1197 1198 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1199 // If the aliasee does not correspond to a symbol in the output, i.e. the 1200 // alias is not of an object or the aliased object is private, then set the 1201 // size of the alias symbol from the type of the alias. We don't do this in 1202 // other situations as the alias and aliasee having differing types but same 1203 // size may be intentional. 1204 const GlobalObject *BaseObject = GA->getBaseObject(); 1205 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1206 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1207 const DataLayout &DL = M.getDataLayout(); 1208 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1209 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1210 } 1211 } 1212 } 1213 1214 bool AsmPrinter::doFinalization(Module &M) { 1215 // Set the MachineFunction to nullptr so that we can catch attempted 1216 // accesses to MF specific features at the module level and so that 1217 // we can conditionalize accesses based on whether or not it is nullptr. 1218 MF = nullptr; 1219 1220 // Gather all GOT equivalent globals in the module. We really need two 1221 // passes over the globals: one to compute and another to avoid its emission 1222 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1223 // where the got equivalent shows up before its use. 1224 computeGlobalGOTEquivs(M); 1225 1226 // Emit global variables. 1227 for (const auto &G : M.globals()) 1228 EmitGlobalVariable(&G); 1229 1230 // Emit remaining GOT equivalent globals. 1231 emitGlobalGOTEquivs(); 1232 1233 // Emit visibility info for declarations 1234 for (const Function &F : M) { 1235 if (!F.isDeclarationForLinker()) 1236 continue; 1237 GlobalValue::VisibilityTypes V = F.getVisibility(); 1238 if (V == GlobalValue::DefaultVisibility) 1239 continue; 1240 1241 MCSymbol *Name = getSymbol(&F); 1242 EmitVisibility(Name, V, false); 1243 } 1244 1245 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1246 1247 // Emit module flags. 1248 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1249 M.getModuleFlagsMetadata(ModuleFlags); 1250 if (!ModuleFlags.empty()) 1251 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM); 1252 1253 if (TM.getTargetTriple().isOSBinFormatELF()) { 1254 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1255 1256 // Output stubs for external and common global variables. 1257 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1258 if (!Stubs.empty()) { 1259 OutStreamer->SwitchSection(TLOF.getDataSection()); 1260 const DataLayout &DL = M.getDataLayout(); 1261 1262 for (const auto &Stub : Stubs) { 1263 OutStreamer->EmitLabel(Stub.first); 1264 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1265 DL.getPointerSize()); 1266 } 1267 } 1268 } 1269 1270 // Finalize debug and EH information. 1271 for (const HandlerInfo &HI : Handlers) { 1272 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1273 HI.TimerGroupDescription, TimePassesIsEnabled); 1274 HI.Handler->endModule(); 1275 delete HI.Handler; 1276 } 1277 Handlers.clear(); 1278 DD = nullptr; 1279 1280 // If the target wants to know about weak references, print them all. 1281 if (MAI->getWeakRefDirective()) { 1282 // FIXME: This is not lazy, it would be nice to only print weak references 1283 // to stuff that is actually used. Note that doing so would require targets 1284 // to notice uses in operands (due to constant exprs etc). This should 1285 // happen with the MC stuff eventually. 1286 1287 // Print out module-level global objects here. 1288 for (const auto &GO : M.global_objects()) { 1289 if (!GO.hasExternalWeakLinkage()) 1290 continue; 1291 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1292 } 1293 } 1294 1295 OutStreamer->AddBlankLine(); 1296 1297 // Print aliases in topological order, that is, for each alias a = b, 1298 // b must be printed before a. 1299 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1300 // such an order to generate correct TOC information. 1301 SmallVector<const GlobalAlias *, 16> AliasStack; 1302 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1303 for (const auto &Alias : M.aliases()) { 1304 for (const GlobalAlias *Cur = &Alias; Cur; 1305 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1306 if (!AliasVisited.insert(Cur).second) 1307 break; 1308 AliasStack.push_back(Cur); 1309 } 1310 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1311 emitGlobalIndirectSymbol(M, *AncestorAlias); 1312 AliasStack.clear(); 1313 } 1314 for (const auto &IFunc : M.ifuncs()) 1315 emitGlobalIndirectSymbol(M, IFunc); 1316 1317 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1318 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1319 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1320 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1321 MP->finishAssembly(M, *MI, *this); 1322 1323 // Emit llvm.ident metadata in an '.ident' directive. 1324 EmitModuleIdents(M); 1325 1326 // Emit __morestack address if needed for indirect calls. 1327 if (MMI->usesMorestackAddr()) { 1328 unsigned Align = 1; 1329 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1330 getDataLayout(), SectionKind::getReadOnly(), 1331 /*C=*/nullptr, Align); 1332 OutStreamer->SwitchSection(ReadOnlySection); 1333 1334 MCSymbol *AddrSymbol = 1335 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1336 OutStreamer->EmitLabel(AddrSymbol); 1337 1338 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1339 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1340 PtrSize); 1341 } 1342 1343 // If we don't have any trampolines, then we don't require stack memory 1344 // to be executable. Some targets have a directive to declare this. 1345 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1346 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1347 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1348 OutStreamer->SwitchSection(S); 1349 1350 // Allow the target to emit any magic that it wants at the end of the file, 1351 // after everything else has gone out. 1352 EmitEndOfAsmFile(M); 1353 1354 MMI = nullptr; 1355 1356 OutStreamer->Finish(); 1357 OutStreamer->reset(); 1358 1359 return false; 1360 } 1361 1362 MCSymbol *AsmPrinter::getCurExceptionSym() { 1363 if (!CurExceptionSym) 1364 CurExceptionSym = createTempSymbol("exception"); 1365 return CurExceptionSym; 1366 } 1367 1368 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1369 this->MF = &MF; 1370 // Get the function symbol. 1371 CurrentFnSym = getSymbol(MF.getFunction()); 1372 CurrentFnSymForSize = CurrentFnSym; 1373 CurrentFnBegin = nullptr; 1374 CurExceptionSym = nullptr; 1375 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1376 if (!MF.getLandingPads().empty() || MMI->hasDebugInfo() || 1377 MF.hasEHFunclets() || NeedsLocalForSize) { 1378 CurrentFnBegin = createTempSymbol("func_begin"); 1379 if (NeedsLocalForSize) 1380 CurrentFnSymForSize = CurrentFnBegin; 1381 } 1382 1383 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1384 if (isVerbose()) 1385 LI = &getAnalysis<MachineLoopInfo>(); 1386 } 1387 1388 namespace { 1389 1390 // Keep track the alignment, constpool entries per Section. 1391 struct SectionCPs { 1392 MCSection *S; 1393 unsigned Alignment; 1394 SmallVector<unsigned, 4> CPEs; 1395 1396 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1397 }; 1398 1399 } // end anonymous namespace 1400 1401 /// EmitConstantPool - Print to the current output stream assembly 1402 /// representations of the constants in the constant pool MCP. This is 1403 /// used to print out constants which have been "spilled to memory" by 1404 /// the code generator. 1405 /// 1406 void AsmPrinter::EmitConstantPool() { 1407 const MachineConstantPool *MCP = MF->getConstantPool(); 1408 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1409 if (CP.empty()) return; 1410 1411 // Calculate sections for constant pool entries. We collect entries to go into 1412 // the same section together to reduce amount of section switch statements. 1413 SmallVector<SectionCPs, 4> CPSections; 1414 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1415 const MachineConstantPoolEntry &CPE = CP[i]; 1416 unsigned Align = CPE.getAlignment(); 1417 1418 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1419 1420 const Constant *C = nullptr; 1421 if (!CPE.isMachineConstantPoolEntry()) 1422 C = CPE.Val.ConstVal; 1423 1424 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1425 Kind, C, Align); 1426 1427 // The number of sections are small, just do a linear search from the 1428 // last section to the first. 1429 bool Found = false; 1430 unsigned SecIdx = CPSections.size(); 1431 while (SecIdx != 0) { 1432 if (CPSections[--SecIdx].S == S) { 1433 Found = true; 1434 break; 1435 } 1436 } 1437 if (!Found) { 1438 SecIdx = CPSections.size(); 1439 CPSections.push_back(SectionCPs(S, Align)); 1440 } 1441 1442 if (Align > CPSections[SecIdx].Alignment) 1443 CPSections[SecIdx].Alignment = Align; 1444 CPSections[SecIdx].CPEs.push_back(i); 1445 } 1446 1447 // Now print stuff into the calculated sections. 1448 const MCSection *CurSection = nullptr; 1449 unsigned Offset = 0; 1450 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1451 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1452 unsigned CPI = CPSections[i].CPEs[j]; 1453 MCSymbol *Sym = GetCPISymbol(CPI); 1454 if (!Sym->isUndefined()) 1455 continue; 1456 1457 if (CurSection != CPSections[i].S) { 1458 OutStreamer->SwitchSection(CPSections[i].S); 1459 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1460 CurSection = CPSections[i].S; 1461 Offset = 0; 1462 } 1463 1464 MachineConstantPoolEntry CPE = CP[CPI]; 1465 1466 // Emit inter-object padding for alignment. 1467 unsigned AlignMask = CPE.getAlignment() - 1; 1468 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1469 OutStreamer->EmitZeros(NewOffset - Offset); 1470 1471 Type *Ty = CPE.getType(); 1472 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1473 1474 OutStreamer->EmitLabel(Sym); 1475 if (CPE.isMachineConstantPoolEntry()) 1476 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1477 else 1478 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1479 } 1480 } 1481 } 1482 1483 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1484 /// by the current function to the current output stream. 1485 /// 1486 void AsmPrinter::EmitJumpTableInfo() { 1487 const DataLayout &DL = MF->getDataLayout(); 1488 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1489 if (!MJTI) return; 1490 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1491 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1492 if (JT.empty()) return; 1493 1494 // Pick the directive to use to print the jump table entries, and switch to 1495 // the appropriate section. 1496 const Function *F = MF->getFunction(); 1497 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1498 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1499 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1500 *F); 1501 if (JTInDiffSection) { 1502 // Drop it in the readonly section. 1503 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1504 OutStreamer->SwitchSection(ReadOnlySection); 1505 } 1506 1507 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1508 1509 // Jump tables in code sections are marked with a data_region directive 1510 // where that's supported. 1511 if (!JTInDiffSection) 1512 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1513 1514 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1515 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1516 1517 // If this jump table was deleted, ignore it. 1518 if (JTBBs.empty()) continue; 1519 1520 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1521 /// emit a .set directive for each unique entry. 1522 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1523 MAI->doesSetDirectiveSuppressReloc()) { 1524 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1525 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1526 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1527 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1528 const MachineBasicBlock *MBB = JTBBs[ii]; 1529 if (!EmittedSets.insert(MBB).second) 1530 continue; 1531 1532 // .set LJTSet, LBB32-base 1533 const MCExpr *LHS = 1534 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1535 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1536 MCBinaryExpr::createSub(LHS, Base, 1537 OutContext)); 1538 } 1539 } 1540 1541 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1542 // before each jump table. The first label is never referenced, but tells 1543 // the assembler and linker the extents of the jump table object. The 1544 // second label is actually referenced by the code. 1545 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1546 // FIXME: This doesn't have to have any specific name, just any randomly 1547 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1548 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1549 1550 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1551 1552 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1553 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1554 } 1555 if (!JTInDiffSection) 1556 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1557 } 1558 1559 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1560 /// current stream. 1561 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1562 const MachineBasicBlock *MBB, 1563 unsigned UID) const { 1564 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1565 const MCExpr *Value = nullptr; 1566 switch (MJTI->getEntryKind()) { 1567 case MachineJumpTableInfo::EK_Inline: 1568 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1569 case MachineJumpTableInfo::EK_Custom32: 1570 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1571 MJTI, MBB, UID, OutContext); 1572 break; 1573 case MachineJumpTableInfo::EK_BlockAddress: 1574 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1575 // .word LBB123 1576 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1577 break; 1578 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1579 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1580 // with a relocation as gp-relative, e.g.: 1581 // .gprel32 LBB123 1582 MCSymbol *MBBSym = MBB->getSymbol(); 1583 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1584 return; 1585 } 1586 1587 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1588 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1589 // with a relocation as gp-relative, e.g.: 1590 // .gpdword LBB123 1591 MCSymbol *MBBSym = MBB->getSymbol(); 1592 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1593 return; 1594 } 1595 1596 case MachineJumpTableInfo::EK_LabelDifference32: { 1597 // Each entry is the address of the block minus the address of the jump 1598 // table. This is used for PIC jump tables where gprel32 is not supported. 1599 // e.g.: 1600 // .word LBB123 - LJTI1_2 1601 // If the .set directive avoids relocations, this is emitted as: 1602 // .set L4_5_set_123, LBB123 - LJTI1_2 1603 // .word L4_5_set_123 1604 if (MAI->doesSetDirectiveSuppressReloc()) { 1605 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1606 OutContext); 1607 break; 1608 } 1609 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1610 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1611 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1612 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1613 break; 1614 } 1615 } 1616 1617 assert(Value && "Unknown entry kind!"); 1618 1619 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1620 OutStreamer->EmitValue(Value, EntrySize); 1621 } 1622 1623 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1624 /// special global used by LLVM. If so, emit it and return true, otherwise 1625 /// do nothing and return false. 1626 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1627 if (GV->getName() == "llvm.used") { 1628 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1629 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1630 return true; 1631 } 1632 1633 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1634 if (GV->getSection() == "llvm.metadata" || 1635 GV->hasAvailableExternallyLinkage()) 1636 return true; 1637 1638 if (!GV->hasAppendingLinkage()) return false; 1639 1640 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1641 1642 if (GV->getName() == "llvm.global_ctors") { 1643 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1644 /* isCtor */ true); 1645 1646 return true; 1647 } 1648 1649 if (GV->getName() == "llvm.global_dtors") { 1650 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1651 /* isCtor */ false); 1652 1653 return true; 1654 } 1655 1656 report_fatal_error("unknown special variable"); 1657 } 1658 1659 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1660 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1661 /// is true, as being used with this directive. 1662 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1663 // Should be an array of 'i8*'. 1664 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1665 const GlobalValue *GV = 1666 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1667 if (GV) 1668 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1669 } 1670 } 1671 1672 namespace { 1673 1674 struct Structor { 1675 int Priority = 0; 1676 Constant *Func = nullptr; 1677 GlobalValue *ComdatKey = nullptr; 1678 1679 Structor() = default; 1680 }; 1681 1682 } // end anonymous namespace 1683 1684 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1685 /// priority. 1686 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1687 bool isCtor) { 1688 // Should be an array of '{ int, void ()* }' structs. The first value is the 1689 // init priority. 1690 if (!isa<ConstantArray>(List)) return; 1691 1692 // Sanity check the structors list. 1693 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1694 if (!InitList) return; // Not an array! 1695 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1696 // FIXME: Only allow the 3-field form in LLVM 4.0. 1697 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1698 return; // Not an array of two or three elements! 1699 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1700 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1701 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1702 return; // Not (int, ptr, ptr). 1703 1704 // Gather the structors in a form that's convenient for sorting by priority. 1705 SmallVector<Structor, 8> Structors; 1706 for (Value *O : InitList->operands()) { 1707 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1708 if (!CS) continue; // Malformed. 1709 if (CS->getOperand(1)->isNullValue()) 1710 break; // Found a null terminator, skip the rest. 1711 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1712 if (!Priority) continue; // Malformed. 1713 Structors.push_back(Structor()); 1714 Structor &S = Structors.back(); 1715 S.Priority = Priority->getLimitedValue(65535); 1716 S.Func = CS->getOperand(1); 1717 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1718 S.ComdatKey = 1719 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1720 } 1721 1722 // Emit the function pointers in the target-specific order 1723 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1724 std::stable_sort(Structors.begin(), Structors.end(), 1725 [](const Structor &L, 1726 const Structor &R) { return L.Priority < R.Priority; }); 1727 for (Structor &S : Structors) { 1728 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1729 const MCSymbol *KeySym = nullptr; 1730 if (GlobalValue *GV = S.ComdatKey) { 1731 if (GV->isDeclarationForLinker()) 1732 // If the associated variable is not defined in this module 1733 // (it might be available_externally, or have been an 1734 // available_externally definition that was dropped by the 1735 // EliminateAvailableExternally pass), some other TU 1736 // will provide its dynamic initializer. 1737 continue; 1738 1739 KeySym = getSymbol(GV); 1740 } 1741 MCSection *OutputSection = 1742 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1743 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1744 OutStreamer->SwitchSection(OutputSection); 1745 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1746 EmitAlignment(Align); 1747 EmitXXStructor(DL, S.Func); 1748 } 1749 } 1750 1751 void AsmPrinter::EmitModuleIdents(Module &M) { 1752 if (!MAI->hasIdentDirective()) 1753 return; 1754 1755 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1756 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1757 const MDNode *N = NMD->getOperand(i); 1758 assert(N->getNumOperands() == 1 && 1759 "llvm.ident metadata entry can have only one operand"); 1760 const MDString *S = cast<MDString>(N->getOperand(0)); 1761 OutStreamer->EmitIdent(S->getString()); 1762 } 1763 } 1764 } 1765 1766 //===--------------------------------------------------------------------===// 1767 // Emission and print routines 1768 // 1769 1770 /// EmitInt8 - Emit a byte directive and value. 1771 /// 1772 void AsmPrinter::EmitInt8(int Value) const { 1773 OutStreamer->EmitIntValue(Value, 1); 1774 } 1775 1776 /// EmitInt16 - Emit a short directive and value. 1777 /// 1778 void AsmPrinter::EmitInt16(int Value) const { 1779 OutStreamer->EmitIntValue(Value, 2); 1780 } 1781 1782 /// EmitInt32 - Emit a long directive and value. 1783 /// 1784 void AsmPrinter::EmitInt32(int Value) const { 1785 OutStreamer->EmitIntValue(Value, 4); 1786 } 1787 1788 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1789 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1790 /// .set if it avoids relocations. 1791 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1792 unsigned Size) const { 1793 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1794 } 1795 1796 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1797 /// where the size in bytes of the directive is specified by Size and Label 1798 /// specifies the label. This implicitly uses .set if it is available. 1799 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1800 unsigned Size, 1801 bool IsSectionRelative) const { 1802 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1803 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1804 if (Size > 4) 1805 OutStreamer->EmitZeros(Size - 4); 1806 return; 1807 } 1808 1809 // Emit Label+Offset (or just Label if Offset is zero) 1810 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1811 if (Offset) 1812 Expr = MCBinaryExpr::createAdd( 1813 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1814 1815 OutStreamer->EmitValue(Expr, Size); 1816 } 1817 1818 //===----------------------------------------------------------------------===// 1819 1820 // EmitAlignment - Emit an alignment directive to the specified power of 1821 // two boundary. For example, if you pass in 3 here, you will get an 8 1822 // byte alignment. If a global value is specified, and if that global has 1823 // an explicit alignment requested, it will override the alignment request 1824 // if required for correctness. 1825 // 1826 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1827 if (GV) 1828 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1829 1830 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1831 1832 assert(NumBits < 1833 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1834 "undefined behavior"); 1835 if (getCurrentSection()->getKind().isText()) 1836 OutStreamer->EmitCodeAlignment(1u << NumBits); 1837 else 1838 OutStreamer->EmitValueToAlignment(1u << NumBits); 1839 } 1840 1841 //===----------------------------------------------------------------------===// 1842 // Constant emission. 1843 //===----------------------------------------------------------------------===// 1844 1845 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1846 MCContext &Ctx = OutContext; 1847 1848 if (CV->isNullValue() || isa<UndefValue>(CV)) 1849 return MCConstantExpr::create(0, Ctx); 1850 1851 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1852 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1853 1854 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1855 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1856 1857 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1858 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1859 1860 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1861 if (!CE) { 1862 llvm_unreachable("Unknown constant value to lower!"); 1863 } 1864 1865 switch (CE->getOpcode()) { 1866 default: 1867 // If the code isn't optimized, there may be outstanding folding 1868 // opportunities. Attempt to fold the expression using DataLayout as a 1869 // last resort before giving up. 1870 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1871 if (C != CE) 1872 return lowerConstant(C); 1873 1874 // Otherwise report the problem to the user. 1875 { 1876 std::string S; 1877 raw_string_ostream OS(S); 1878 OS << "Unsupported expression in static initializer: "; 1879 CE->printAsOperand(OS, /*PrintType=*/false, 1880 !MF ? nullptr : MF->getFunction()->getParent()); 1881 report_fatal_error(OS.str()); 1882 } 1883 case Instruction::GetElementPtr: { 1884 // Generate a symbolic expression for the byte address 1885 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1886 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1887 1888 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1889 if (!OffsetAI) 1890 return Base; 1891 1892 int64_t Offset = OffsetAI.getSExtValue(); 1893 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1894 Ctx); 1895 } 1896 1897 case Instruction::Trunc: 1898 // We emit the value and depend on the assembler to truncate the generated 1899 // expression properly. This is important for differences between 1900 // blockaddress labels. Since the two labels are in the same function, it 1901 // is reasonable to treat their delta as a 32-bit value. 1902 LLVM_FALLTHROUGH; 1903 case Instruction::BitCast: 1904 return lowerConstant(CE->getOperand(0)); 1905 1906 case Instruction::IntToPtr: { 1907 const DataLayout &DL = getDataLayout(); 1908 1909 // Handle casts to pointers by changing them into casts to the appropriate 1910 // integer type. This promotes constant folding and simplifies this code. 1911 Constant *Op = CE->getOperand(0); 1912 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1913 false/*ZExt*/); 1914 return lowerConstant(Op); 1915 } 1916 1917 case Instruction::PtrToInt: { 1918 const DataLayout &DL = getDataLayout(); 1919 1920 // Support only foldable casts to/from pointers that can be eliminated by 1921 // changing the pointer to the appropriately sized integer type. 1922 Constant *Op = CE->getOperand(0); 1923 Type *Ty = CE->getType(); 1924 1925 const MCExpr *OpExpr = lowerConstant(Op); 1926 1927 // We can emit the pointer value into this slot if the slot is an 1928 // integer slot equal to the size of the pointer. 1929 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1930 return OpExpr; 1931 1932 // Otherwise the pointer is smaller than the resultant integer, mask off 1933 // the high bits so we are sure to get a proper truncation if the input is 1934 // a constant expr. 1935 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1936 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1937 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1938 } 1939 1940 case Instruction::Sub: { 1941 GlobalValue *LHSGV; 1942 APInt LHSOffset; 1943 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1944 getDataLayout())) { 1945 GlobalValue *RHSGV; 1946 APInt RHSOffset; 1947 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1948 getDataLayout())) { 1949 const MCExpr *RelocExpr = 1950 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 1951 if (!RelocExpr) 1952 RelocExpr = MCBinaryExpr::createSub( 1953 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 1954 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 1955 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 1956 if (Addend != 0) 1957 RelocExpr = MCBinaryExpr::createAdd( 1958 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 1959 return RelocExpr; 1960 } 1961 } 1962 } 1963 // else fallthrough 1964 1965 // The MC library also has a right-shift operator, but it isn't consistently 1966 // signed or unsigned between different targets. 1967 case Instruction::Add: 1968 case Instruction::Mul: 1969 case Instruction::SDiv: 1970 case Instruction::SRem: 1971 case Instruction::Shl: 1972 case Instruction::And: 1973 case Instruction::Or: 1974 case Instruction::Xor: { 1975 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1976 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1977 switch (CE->getOpcode()) { 1978 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1979 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1980 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1981 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1982 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1983 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1984 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1985 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1986 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1987 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1988 } 1989 } 1990 } 1991 } 1992 1993 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1994 AsmPrinter &AP, 1995 const Constant *BaseCV = nullptr, 1996 uint64_t Offset = 0); 1997 1998 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1999 2000 /// isRepeatedByteSequence - Determine whether the given value is 2001 /// composed of a repeated sequence of identical bytes and return the 2002 /// byte value. If it is not a repeated sequence, return -1. 2003 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2004 StringRef Data = V->getRawDataValues(); 2005 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2006 char C = Data[0]; 2007 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2008 if (Data[i] != C) return -1; 2009 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2010 } 2011 2012 /// isRepeatedByteSequence - Determine whether the given value is 2013 /// composed of a repeated sequence of identical bytes and return the 2014 /// byte value. If it is not a repeated sequence, return -1. 2015 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2016 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2017 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2018 assert(Size % 8 == 0); 2019 2020 // Extend the element to take zero padding into account. 2021 APInt Value = CI->getValue().zextOrSelf(Size); 2022 if (!Value.isSplat(8)) 2023 return -1; 2024 2025 return Value.zextOrTrunc(8).getZExtValue(); 2026 } 2027 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2028 // Make sure all array elements are sequences of the same repeated 2029 // byte. 2030 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2031 Constant *Op0 = CA->getOperand(0); 2032 int Byte = isRepeatedByteSequence(Op0, DL); 2033 if (Byte == -1) 2034 return -1; 2035 2036 // All array elements must be equal. 2037 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2038 if (CA->getOperand(i) != Op0) 2039 return -1; 2040 return Byte; 2041 } 2042 2043 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2044 return isRepeatedByteSequence(CDS); 2045 2046 return -1; 2047 } 2048 2049 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2050 const ConstantDataSequential *CDS, 2051 AsmPrinter &AP) { 2052 // See if we can aggregate this into a .fill, if so, emit it as such. 2053 int Value = isRepeatedByteSequence(CDS, DL); 2054 if (Value != -1) { 2055 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2056 // Don't emit a 1-byte object as a .fill. 2057 if (Bytes > 1) 2058 return AP.OutStreamer->emitFill(Bytes, Value); 2059 } 2060 2061 // If this can be emitted with .ascii/.asciz, emit it as such. 2062 if (CDS->isString()) 2063 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2064 2065 // Otherwise, emit the values in successive locations. 2066 unsigned ElementByteSize = CDS->getElementByteSize(); 2067 if (isa<IntegerType>(CDS->getElementType())) { 2068 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2069 if (AP.isVerbose()) 2070 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2071 CDS->getElementAsInteger(i)); 2072 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2073 ElementByteSize); 2074 } 2075 } else { 2076 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2077 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2078 } 2079 2080 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2081 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2082 CDS->getNumElements(); 2083 if (unsigned Padding = Size - EmittedSize) 2084 AP.OutStreamer->EmitZeros(Padding); 2085 } 2086 2087 static void emitGlobalConstantArray(const DataLayout &DL, 2088 const ConstantArray *CA, AsmPrinter &AP, 2089 const Constant *BaseCV, uint64_t Offset) { 2090 // See if we can aggregate some values. Make sure it can be 2091 // represented as a series of bytes of the constant value. 2092 int Value = isRepeatedByteSequence(CA, DL); 2093 2094 if (Value != -1) { 2095 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2096 AP.OutStreamer->emitFill(Bytes, Value); 2097 } 2098 else { 2099 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2100 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2101 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2102 } 2103 } 2104 } 2105 2106 static void emitGlobalConstantVector(const DataLayout &DL, 2107 const ConstantVector *CV, AsmPrinter &AP) { 2108 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2109 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2110 2111 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2112 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2113 CV->getType()->getNumElements(); 2114 if (unsigned Padding = Size - EmittedSize) 2115 AP.OutStreamer->EmitZeros(Padding); 2116 } 2117 2118 static void emitGlobalConstantStruct(const DataLayout &DL, 2119 const ConstantStruct *CS, AsmPrinter &AP, 2120 const Constant *BaseCV, uint64_t Offset) { 2121 // Print the fields in successive locations. Pad to align if needed! 2122 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2123 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2124 uint64_t SizeSoFar = 0; 2125 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2126 const Constant *Field = CS->getOperand(i); 2127 2128 // Print the actual field value. 2129 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2130 2131 // Check if padding is needed and insert one or more 0s. 2132 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2133 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2134 - Layout->getElementOffset(i)) - FieldSize; 2135 SizeSoFar += FieldSize + PadSize; 2136 2137 // Insert padding - this may include padding to increase the size of the 2138 // current field up to the ABI size (if the struct is not packed) as well 2139 // as padding to ensure that the next field starts at the right offset. 2140 AP.OutStreamer->EmitZeros(PadSize); 2141 } 2142 assert(SizeSoFar == Layout->getSizeInBytes() && 2143 "Layout of constant struct may be incorrect!"); 2144 } 2145 2146 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2147 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2148 2149 // First print a comment with what we think the original floating-point value 2150 // should have been. 2151 if (AP.isVerbose()) { 2152 SmallString<8> StrVal; 2153 CFP->getValueAPF().toString(StrVal); 2154 2155 if (CFP->getType()) 2156 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2157 else 2158 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2159 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2160 } 2161 2162 // Now iterate through the APInt chunks, emitting them in endian-correct 2163 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2164 // floats). 2165 unsigned NumBytes = API.getBitWidth() / 8; 2166 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2167 const uint64_t *p = API.getRawData(); 2168 2169 // PPC's long double has odd notions of endianness compared to how LLVM 2170 // handles it: p[0] goes first for *big* endian on PPC. 2171 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2172 int Chunk = API.getNumWords() - 1; 2173 2174 if (TrailingBytes) 2175 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2176 2177 for (; Chunk >= 0; --Chunk) 2178 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2179 } else { 2180 unsigned Chunk; 2181 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2182 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2183 2184 if (TrailingBytes) 2185 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2186 } 2187 2188 // Emit the tail padding for the long double. 2189 const DataLayout &DL = AP.getDataLayout(); 2190 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2191 DL.getTypeStoreSize(CFP->getType())); 2192 } 2193 2194 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2195 const DataLayout &DL = AP.getDataLayout(); 2196 unsigned BitWidth = CI->getBitWidth(); 2197 2198 // Copy the value as we may massage the layout for constants whose bit width 2199 // is not a multiple of 64-bits. 2200 APInt Realigned(CI->getValue()); 2201 uint64_t ExtraBits = 0; 2202 unsigned ExtraBitsSize = BitWidth & 63; 2203 2204 if (ExtraBitsSize) { 2205 // The bit width of the data is not a multiple of 64-bits. 2206 // The extra bits are expected to be at the end of the chunk of the memory. 2207 // Little endian: 2208 // * Nothing to be done, just record the extra bits to emit. 2209 // Big endian: 2210 // * Record the extra bits to emit. 2211 // * Realign the raw data to emit the chunks of 64-bits. 2212 if (DL.isBigEndian()) { 2213 // Basically the structure of the raw data is a chunk of 64-bits cells: 2214 // 0 1 BitWidth / 64 2215 // [chunk1][chunk2] ... [chunkN]. 2216 // The most significant chunk is chunkN and it should be emitted first. 2217 // However, due to the alignment issue chunkN contains useless bits. 2218 // Realign the chunks so that they contain only useless information: 2219 // ExtraBits 0 1 (BitWidth / 64) - 1 2220 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2221 ExtraBits = Realigned.getRawData()[0] & 2222 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2223 Realigned = Realigned.lshr(ExtraBitsSize); 2224 } else 2225 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2226 } 2227 2228 // We don't expect assemblers to support integer data directives 2229 // for more than 64 bits, so we emit the data in at most 64-bit 2230 // quantities at a time. 2231 const uint64_t *RawData = Realigned.getRawData(); 2232 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2233 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2234 AP.OutStreamer->EmitIntValue(Val, 8); 2235 } 2236 2237 if (ExtraBitsSize) { 2238 // Emit the extra bits after the 64-bits chunks. 2239 2240 // Emit a directive that fills the expected size. 2241 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2242 Size -= (BitWidth / 64) * 8; 2243 assert(Size && Size * 8 >= ExtraBitsSize && 2244 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2245 == ExtraBits && "Directive too small for extra bits."); 2246 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2247 } 2248 } 2249 2250 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2251 /// equivalent global, by a target specific GOT pc relative access to the 2252 /// final symbol. 2253 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2254 const Constant *BaseCst, 2255 uint64_t Offset) { 2256 // The global @foo below illustrates a global that uses a got equivalent. 2257 // 2258 // @bar = global i32 42 2259 // @gotequiv = private unnamed_addr constant i32* @bar 2260 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2261 // i64 ptrtoint (i32* @foo to i64)) 2262 // to i32) 2263 // 2264 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2265 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2266 // form: 2267 // 2268 // foo = cstexpr, where 2269 // cstexpr := <gotequiv> - "." + <cst> 2270 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2271 // 2272 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2273 // 2274 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2275 // gotpcrelcst := <offset from @foo base> + <cst> 2276 // 2277 MCValue MV; 2278 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2279 return; 2280 const MCSymbolRefExpr *SymA = MV.getSymA(); 2281 if (!SymA) 2282 return; 2283 2284 // Check that GOT equivalent symbol is cached. 2285 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2286 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2287 return; 2288 2289 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2290 if (!BaseGV) 2291 return; 2292 2293 // Check for a valid base symbol 2294 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2295 const MCSymbolRefExpr *SymB = MV.getSymB(); 2296 2297 if (!SymB || BaseSym != &SymB->getSymbol()) 2298 return; 2299 2300 // Make sure to match: 2301 // 2302 // gotpcrelcst := <offset from @foo base> + <cst> 2303 // 2304 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2305 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2306 // if the target knows how to encode it. 2307 // 2308 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2309 if (GOTPCRelCst < 0) 2310 return; 2311 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2312 return; 2313 2314 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2315 // 2316 // bar: 2317 // .long 42 2318 // gotequiv: 2319 // .quad bar 2320 // foo: 2321 // .long gotequiv - "." + <cst> 2322 // 2323 // is replaced by the target specific equivalent to: 2324 // 2325 // bar: 2326 // .long 42 2327 // foo: 2328 // .long bar@GOTPCREL+<gotpcrelcst> 2329 // 2330 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2331 const GlobalVariable *GV = Result.first; 2332 int NumUses = (int)Result.second; 2333 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2334 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2335 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2336 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2337 2338 // Update GOT equivalent usage information 2339 --NumUses; 2340 if (NumUses >= 0) 2341 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2342 } 2343 2344 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2345 AsmPrinter &AP, const Constant *BaseCV, 2346 uint64_t Offset) { 2347 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2348 2349 // Globals with sub-elements such as combinations of arrays and structs 2350 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2351 // constant symbol base and the current position with BaseCV and Offset. 2352 if (!BaseCV && CV->hasOneUse()) 2353 BaseCV = dyn_cast<Constant>(CV->user_back()); 2354 2355 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2356 return AP.OutStreamer->EmitZeros(Size); 2357 2358 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2359 switch (Size) { 2360 case 1: 2361 case 2: 2362 case 4: 2363 case 8: 2364 if (AP.isVerbose()) 2365 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2366 CI->getZExtValue()); 2367 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2368 return; 2369 default: 2370 emitGlobalConstantLargeInt(CI, AP); 2371 return; 2372 } 2373 } 2374 2375 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2376 return emitGlobalConstantFP(CFP, AP); 2377 2378 if (isa<ConstantPointerNull>(CV)) { 2379 AP.OutStreamer->EmitIntValue(0, Size); 2380 return; 2381 } 2382 2383 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2384 return emitGlobalConstantDataSequential(DL, CDS, AP); 2385 2386 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2387 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2388 2389 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2390 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2391 2392 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2393 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2394 // vectors). 2395 if (CE->getOpcode() == Instruction::BitCast) 2396 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2397 2398 if (Size > 8) { 2399 // If the constant expression's size is greater than 64-bits, then we have 2400 // to emit the value in chunks. Try to constant fold the value and emit it 2401 // that way. 2402 Constant *New = ConstantFoldConstant(CE, DL); 2403 if (New && New != CE) 2404 return emitGlobalConstantImpl(DL, New, AP); 2405 } 2406 } 2407 2408 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2409 return emitGlobalConstantVector(DL, V, AP); 2410 2411 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2412 // thread the streamer with EmitValue. 2413 const MCExpr *ME = AP.lowerConstant(CV); 2414 2415 // Since lowerConstant already folded and got rid of all IR pointer and 2416 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2417 // directly. 2418 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2419 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2420 2421 AP.OutStreamer->EmitValue(ME, Size); 2422 } 2423 2424 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2425 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2426 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2427 if (Size) 2428 emitGlobalConstantImpl(DL, CV, *this); 2429 else if (MAI->hasSubsectionsViaSymbols()) { 2430 // If the global has zero size, emit a single byte so that two labels don't 2431 // look like they are at the same location. 2432 OutStreamer->EmitIntValue(0, 1); 2433 } 2434 } 2435 2436 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2437 // Target doesn't support this yet! 2438 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2439 } 2440 2441 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2442 if (Offset > 0) 2443 OS << '+' << Offset; 2444 else if (Offset < 0) 2445 OS << Offset; 2446 } 2447 2448 //===----------------------------------------------------------------------===// 2449 // Symbol Lowering Routines. 2450 //===----------------------------------------------------------------------===// 2451 2452 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2453 return OutContext.createTempSymbol(Name, true); 2454 } 2455 2456 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2457 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2458 } 2459 2460 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2461 return MMI->getAddrLabelSymbol(BB); 2462 } 2463 2464 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2465 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2466 const DataLayout &DL = getDataLayout(); 2467 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2468 "CPI" + Twine(getFunctionNumber()) + "_" + 2469 Twine(CPID)); 2470 } 2471 2472 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2473 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2474 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2475 } 2476 2477 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2478 /// FIXME: privatize to AsmPrinter. 2479 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2480 const DataLayout &DL = getDataLayout(); 2481 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2482 Twine(getFunctionNumber()) + "_" + 2483 Twine(UID) + "_set_" + Twine(MBBID)); 2484 } 2485 2486 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2487 StringRef Suffix) const { 2488 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2489 } 2490 2491 /// Return the MCSymbol for the specified ExternalSymbol. 2492 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2493 SmallString<60> NameStr; 2494 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2495 return OutContext.getOrCreateSymbol(NameStr); 2496 } 2497 2498 /// PrintParentLoopComment - Print comments about parent loops of this one. 2499 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2500 unsigned FunctionNumber) { 2501 if (!Loop) return; 2502 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2503 OS.indent(Loop->getLoopDepth()*2) 2504 << "Parent Loop BB" << FunctionNumber << "_" 2505 << Loop->getHeader()->getNumber() 2506 << " Depth=" << Loop->getLoopDepth() << '\n'; 2507 } 2508 2509 2510 /// PrintChildLoopComment - Print comments about child loops within 2511 /// the loop for this basic block, with nesting. 2512 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2513 unsigned FunctionNumber) { 2514 // Add child loop information 2515 for (const MachineLoop *CL : *Loop) { 2516 OS.indent(CL->getLoopDepth()*2) 2517 << "Child Loop BB" << FunctionNumber << "_" 2518 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2519 << '\n'; 2520 PrintChildLoopComment(OS, CL, FunctionNumber); 2521 } 2522 } 2523 2524 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2525 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2526 const MachineLoopInfo *LI, 2527 const AsmPrinter &AP) { 2528 // Add loop depth information 2529 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2530 if (!Loop) return; 2531 2532 MachineBasicBlock *Header = Loop->getHeader(); 2533 assert(Header && "No header for loop"); 2534 2535 // If this block is not a loop header, just print out what is the loop header 2536 // and return. 2537 if (Header != &MBB) { 2538 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2539 Twine(AP.getFunctionNumber())+"_" + 2540 Twine(Loop->getHeader()->getNumber())+ 2541 " Depth="+Twine(Loop->getLoopDepth())); 2542 return; 2543 } 2544 2545 // Otherwise, it is a loop header. Print out information about child and 2546 // parent loops. 2547 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2548 2549 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2550 2551 OS << "=>"; 2552 OS.indent(Loop->getLoopDepth()*2-2); 2553 2554 OS << "This "; 2555 if (Loop->empty()) 2556 OS << "Inner "; 2557 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2558 2559 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2560 } 2561 2562 /// EmitBasicBlockStart - This method prints the label for the specified 2563 /// MachineBasicBlock, an alignment (if present) and a comment describing 2564 /// it if appropriate. 2565 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2566 // End the previous funclet and start a new one. 2567 if (MBB.isEHFuncletEntry()) { 2568 for (const HandlerInfo &HI : Handlers) { 2569 HI.Handler->endFunclet(); 2570 HI.Handler->beginFunclet(MBB); 2571 } 2572 } 2573 2574 // Emit an alignment directive for this block, if needed. 2575 if (unsigned Align = MBB.getAlignment()) 2576 EmitAlignment(Align); 2577 2578 // If the block has its address taken, emit any labels that were used to 2579 // reference the block. It is possible that there is more than one label 2580 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2581 // the references were generated. 2582 if (MBB.hasAddressTaken()) { 2583 const BasicBlock *BB = MBB.getBasicBlock(); 2584 if (isVerbose()) 2585 OutStreamer->AddComment("Block address taken"); 2586 2587 // MBBs can have their address taken as part of CodeGen without having 2588 // their corresponding BB's address taken in IR 2589 if (BB->hasAddressTaken()) 2590 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2591 OutStreamer->EmitLabel(Sym); 2592 } 2593 2594 // Print some verbose block comments. 2595 if (isVerbose()) { 2596 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2597 if (BB->hasName()) { 2598 BB->printAsOperand(OutStreamer->GetCommentOS(), 2599 /*PrintType=*/false, BB->getModule()); 2600 OutStreamer->GetCommentOS() << '\n'; 2601 } 2602 } 2603 emitBasicBlockLoopComments(MBB, LI, *this); 2604 } 2605 2606 // Print the main label for the block. 2607 if (MBB.pred_empty() || 2608 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2609 if (isVerbose()) { 2610 // NOTE: Want this comment at start of line, don't emit with AddComment. 2611 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2612 } 2613 } else { 2614 OutStreamer->EmitLabel(MBB.getSymbol()); 2615 } 2616 } 2617 2618 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2619 bool IsDefinition) const { 2620 MCSymbolAttr Attr = MCSA_Invalid; 2621 2622 switch (Visibility) { 2623 default: break; 2624 case GlobalValue::HiddenVisibility: 2625 if (IsDefinition) 2626 Attr = MAI->getHiddenVisibilityAttr(); 2627 else 2628 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2629 break; 2630 case GlobalValue::ProtectedVisibility: 2631 Attr = MAI->getProtectedVisibilityAttr(); 2632 break; 2633 } 2634 2635 if (Attr != MCSA_Invalid) 2636 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2637 } 2638 2639 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2640 /// exactly one predecessor and the control transfer mechanism between 2641 /// the predecessor and this block is a fall-through. 2642 bool AsmPrinter:: 2643 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2644 // If this is a landing pad, it isn't a fall through. If it has no preds, 2645 // then nothing falls through to it. 2646 if (MBB->isEHPad() || MBB->pred_empty()) 2647 return false; 2648 2649 // If there isn't exactly one predecessor, it can't be a fall through. 2650 if (MBB->pred_size() > 1) 2651 return false; 2652 2653 // The predecessor has to be immediately before this block. 2654 MachineBasicBlock *Pred = *MBB->pred_begin(); 2655 if (!Pred->isLayoutSuccessor(MBB)) 2656 return false; 2657 2658 // If the block is completely empty, then it definitely does fall through. 2659 if (Pred->empty()) 2660 return true; 2661 2662 // Check the terminators in the previous blocks 2663 for (const auto &MI : Pred->terminators()) { 2664 // If it is not a simple branch, we are in a table somewhere. 2665 if (!MI.isBranch() || MI.isIndirectBranch()) 2666 return false; 2667 2668 // If we are the operands of one of the branches, this is not a fall 2669 // through. Note that targets with delay slots will usually bundle 2670 // terminators with the delay slot instruction. 2671 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2672 if (OP->isJTI()) 2673 return false; 2674 if (OP->isMBB() && OP->getMBB() == MBB) 2675 return false; 2676 } 2677 } 2678 2679 return true; 2680 } 2681 2682 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2683 if (!S.usesMetadata()) 2684 return nullptr; 2685 2686 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2687 " stackmap formats, please see the documentation for a description of" 2688 " the default format. If you really need a custom serialized format," 2689 " please file a bug"); 2690 2691 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2692 gcp_map_type::iterator GCPI = GCMap.find(&S); 2693 if (GCPI != GCMap.end()) 2694 return GCPI->second.get(); 2695 2696 auto Name = S.getName(); 2697 2698 for (GCMetadataPrinterRegistry::iterator 2699 I = GCMetadataPrinterRegistry::begin(), 2700 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2701 if (Name == I->getName()) { 2702 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2703 GMP->S = &S; 2704 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2705 return IterBool.first->second.get(); 2706 } 2707 2708 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2709 } 2710 2711 /// Pin vtable to this file. 2712 AsmPrinterHandler::~AsmPrinterHandler() = default; 2713 2714 void AsmPrinterHandler::markFunctionEnd() {} 2715 2716 // In the binary's "xray_instr_map" section, an array of these function entries 2717 // describes each instrumentation point. When XRay patches your code, the index 2718 // into this table will be given to your handler as a patch point identifier. 2719 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2720 const MCSymbol *CurrentFnSym) const { 2721 Out->EmitSymbolValue(Sled, Bytes); 2722 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2723 auto Kind8 = static_cast<uint8_t>(Kind); 2724 Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2725 Out->EmitBytes( 2726 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2727 Out->EmitZeros(2 * Bytes - 2); // Pad the previous two entries 2728 } 2729 2730 void AsmPrinter::emitXRayTable() { 2731 if (Sleds.empty()) 2732 return; 2733 2734 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2735 auto Fn = MF->getFunction(); 2736 MCSection *Section = nullptr; 2737 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2738 if (Fn->hasComdat()) { 2739 Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2740 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 2741 Fn->getComdat()->getName()); 2742 } else { 2743 Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2744 ELF::SHF_ALLOC); 2745 } 2746 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2747 Section = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2748 SectionKind::getReadOnlyWithRel()); 2749 } else { 2750 llvm_unreachable("Unsupported target"); 2751 } 2752 2753 // Before we switch over, we force a reference to a label inside the 2754 // xray_instr_map section. Since this function is always called just 2755 // before the function's end, we assume that this is happening after 2756 // the last return instruction. 2757 2758 auto WordSizeBytes = TM.getPointerSize(); 2759 MCSymbol *Tmp = OutContext.createTempSymbol("xray_synthetic_", true); 2760 OutStreamer->EmitCodeAlignment(16); 2761 OutStreamer->EmitSymbolValue(Tmp, WordSizeBytes, false); 2762 OutStreamer->SwitchSection(Section); 2763 OutStreamer->EmitLabel(Tmp); 2764 for (const auto &Sled : Sleds) 2765 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2766 2767 OutStreamer->SwitchSection(PrevSection); 2768 Sleds.clear(); 2769 } 2770 2771 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2772 SledKind Kind) { 2773 auto Fn = MI.getParent()->getParent()->getFunction(); 2774 auto Attr = Fn->getFnAttribute("function-instrument"); 2775 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2776 bool AlwaysInstrument = 2777 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2778 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2779 Kind = SledKind::LOG_ARGS_ENTER; 2780 Sleds.emplace_back( 2781 XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn }); 2782 } 2783 2784 uint16_t AsmPrinter::getDwarfVersion() const { 2785 return OutStreamer->getContext().getDwarfVersion(); 2786 } 2787 2788 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2789 OutStreamer->getContext().setDwarfVersion(Version); 2790 } 2791