1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCContext.h" 84 #include "llvm/MC/MCDirectives.h" 85 #include "llvm/MC/MCDwarf.h" 86 #include "llvm/MC/MCExpr.h" 87 #include "llvm/MC/MCInst.h" 88 #include "llvm/MC/MCSection.h" 89 #include "llvm/MC/MCSectionCOFF.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCSectionXCOFF.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCSymbolXCOFF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Remarks/RemarkFormat.h" 104 #include "llvm/Remarks/RemarkStreamer.h" 105 #include "llvm/Remarks/RemarkStringTable.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/Format.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/Path.h" 113 #include "llvm/Support/TargetRegistry.h" 114 #include "llvm/Support/Timer.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include "llvm/Target/TargetLoweringObjectFile.h" 117 #include "llvm/Target/TargetMachine.h" 118 #include "llvm/Target/TargetOptions.h" 119 #include <algorithm> 120 #include <cassert> 121 #include <cinttypes> 122 #include <cstdint> 123 #include <iterator> 124 #include <limits> 125 #include <memory> 126 #include <string> 127 #include <utility> 128 #include <vector> 129 130 using namespace llvm; 131 132 #define DEBUG_TYPE "asm-printer" 133 134 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 135 static cl::opt<bool> 136 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 137 cl::desc("Disable debug info printing")); 138 139 const char DWARFGroupName[] = "dwarf"; 140 const char DWARFGroupDescription[] = "DWARF Emission"; 141 const char DbgTimerName[] = "emit"; 142 const char DbgTimerDescription[] = "Debug Info Emission"; 143 const char EHTimerName[] = "write_exception"; 144 const char EHTimerDescription[] = "DWARF Exception Writer"; 145 const char CFGuardName[] = "Control Flow Guard"; 146 const char CFGuardDescription[] = "Control Flow Guard"; 147 const char CodeViewLineTablesGroupName[] = "linetables"; 148 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 149 150 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 151 152 char AsmPrinter::ID = 0; 153 154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 155 156 static gcp_map_type &getGCMap(void *&P) { 157 if (!P) 158 P = new gcp_map_type(); 159 return *(gcp_map_type*)P; 160 } 161 162 /// getGVAlignment - Return the alignment to use for the specified global 163 /// value. This rounds up to the preferred alignment if possible and legal. 164 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 165 Align InAlign) { 166 Align Alignment; 167 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 168 Alignment = DL.getPreferredAlign(GVar); 169 170 // If InAlign is specified, round it to it. 171 if (InAlign > Alignment) 172 Alignment = InAlign; 173 174 // If the GV has a specified alignment, take it into account. 175 const MaybeAlign GVAlign(GV->getAlignment()); 176 if (!GVAlign) 177 return Alignment; 178 179 assert(GVAlign && "GVAlign must be set"); 180 181 // If the GVAlign is larger than NumBits, or if we are required to obey 182 // NumBits because the GV has an assigned section, obey it. 183 if (*GVAlign > Alignment || GV->hasSection()) 184 Alignment = *GVAlign; 185 return Alignment; 186 } 187 188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 189 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 190 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 191 VerboseAsm = OutStreamer->isVerboseAsm(); 192 } 193 194 AsmPrinter::~AsmPrinter() { 195 assert(!DD && Handlers.size() == NumUserHandlers && 196 "Debug/EH info didn't get finalized"); 197 198 if (GCMetadataPrinters) { 199 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 200 201 delete &GCMap; 202 GCMetadataPrinters = nullptr; 203 } 204 } 205 206 bool AsmPrinter::isPositionIndependent() const { 207 return TM.isPositionIndependent(); 208 } 209 210 /// getFunctionNumber - Return a unique ID for the current function. 211 unsigned AsmPrinter::getFunctionNumber() const { 212 return MF->getFunctionNumber(); 213 } 214 215 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 216 return *TM.getObjFileLowering(); 217 } 218 219 const DataLayout &AsmPrinter::getDataLayout() const { 220 return MMI->getModule()->getDataLayout(); 221 } 222 223 // Do not use the cached DataLayout because some client use it without a Module 224 // (dsymutil, llvm-dwarfdump). 225 unsigned AsmPrinter::getPointerSize() const { 226 return TM.getPointerSize(0); // FIXME: Default address space 227 } 228 229 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 230 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 231 return MF->getSubtarget<MCSubtargetInfo>(); 232 } 233 234 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 235 S.emitInstruction(Inst, getSubtargetInfo()); 236 } 237 238 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 239 if (DD) { 240 assert(OutStreamer->hasRawTextSupport() && 241 "Expected assembly output mode."); 242 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 243 } 244 } 245 246 /// getCurrentSection() - Return the current section we are emitting to. 247 const MCSection *AsmPrinter::getCurrentSection() const { 248 return OutStreamer->getCurrentSectionOnly(); 249 } 250 251 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 252 AU.setPreservesAll(); 253 MachineFunctionPass::getAnalysisUsage(AU); 254 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 255 AU.addRequired<GCModuleInfo>(); 256 } 257 258 bool AsmPrinter::doInitialization(Module &M) { 259 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 260 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 261 262 // Initialize TargetLoweringObjectFile. 263 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 264 .Initialize(OutContext, TM); 265 266 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 267 .getModuleMetadata(M); 268 269 OutStreamer->InitSections(false); 270 271 if (DisableDebugInfoPrinting) 272 MMI->setDebugInfoAvailability(false); 273 274 // Emit the version-min deployment target directive if needed. 275 // 276 // FIXME: If we end up with a collection of these sorts of Darwin-specific 277 // or ELF-specific things, it may make sense to have a platform helper class 278 // that will work with the target helper class. For now keep it here, as the 279 // alternative is duplicated code in each of the target asm printers that 280 // use the directive, where it would need the same conditionalization 281 // anyway. 282 const Triple &Target = TM.getTargetTriple(); 283 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 284 285 // Allow the target to emit any magic that it wants at the start of the file. 286 emitStartOfAsmFile(M); 287 288 // Very minimal debug info. It is ignored if we emit actual debug info. If we 289 // don't, this at least helps the user find where a global came from. 290 if (MAI->hasSingleParameterDotFile()) { 291 // .file "foo.c" 292 OutStreamer->emitFileDirective( 293 llvm::sys::path::filename(M.getSourceFileName())); 294 } 295 296 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 297 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 298 for (auto &I : *MI) 299 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 300 MP->beginAssembly(M, *MI, *this); 301 302 // Emit module-level inline asm if it exists. 303 if (!M.getModuleInlineAsm().empty()) { 304 // We're at the module level. Construct MCSubtarget from the default CPU 305 // and target triple. 306 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 307 TM.getTargetTriple().str(), TM.getTargetCPU(), 308 TM.getTargetFeatureString())); 309 assert(STI && "Unable to create subtarget info"); 310 OutStreamer->AddComment("Start of file scope inline assembly"); 311 OutStreamer->AddBlankLine(); 312 emitInlineAsm(M.getModuleInlineAsm() + "\n", 313 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 314 OutStreamer->AddComment("End of file scope inline assembly"); 315 OutStreamer->AddBlankLine(); 316 } 317 318 if (MAI->doesSupportDebugInformation()) { 319 bool EmitCodeView = M.getCodeViewFlag(); 320 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 321 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 322 DbgTimerName, DbgTimerDescription, 323 CodeViewLineTablesGroupName, 324 CodeViewLineTablesGroupDescription); 325 } 326 if (!EmitCodeView || M.getDwarfVersion()) { 327 if (!DisableDebugInfoPrinting) { 328 DD = new DwarfDebug(this); 329 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 330 DbgTimerDescription, DWARFGroupName, 331 DWARFGroupDescription); 332 } 333 } 334 } 335 336 switch (MAI->getExceptionHandlingType()) { 337 case ExceptionHandling::SjLj: 338 case ExceptionHandling::DwarfCFI: 339 case ExceptionHandling::ARM: 340 isCFIMoveForDebugging = true; 341 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 342 break; 343 for (auto &F: M.getFunctionList()) { 344 // If the module contains any function with unwind data, 345 // .eh_frame has to be emitted. 346 // Ignore functions that won't get emitted. 347 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 348 isCFIMoveForDebugging = false; 349 break; 350 } 351 } 352 break; 353 default: 354 isCFIMoveForDebugging = false; 355 break; 356 } 357 358 EHStreamer *ES = nullptr; 359 switch (MAI->getExceptionHandlingType()) { 360 case ExceptionHandling::None: 361 break; 362 case ExceptionHandling::SjLj: 363 case ExceptionHandling::DwarfCFI: 364 ES = new DwarfCFIException(this); 365 break; 366 case ExceptionHandling::ARM: 367 ES = new ARMException(this); 368 break; 369 case ExceptionHandling::WinEH: 370 switch (MAI->getWinEHEncodingType()) { 371 default: llvm_unreachable("unsupported unwinding information encoding"); 372 case WinEH::EncodingType::Invalid: 373 break; 374 case WinEH::EncodingType::X86: 375 case WinEH::EncodingType::Itanium: 376 ES = new WinException(this); 377 break; 378 } 379 break; 380 case ExceptionHandling::Wasm: 381 ES = new WasmException(this); 382 break; 383 case ExceptionHandling::AIX: 384 ES = new AIXException(this); 385 break; 386 } 387 if (ES) 388 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 389 EHTimerDescription, DWARFGroupName, 390 DWARFGroupDescription); 391 392 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 393 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 394 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 395 CFGuardDescription, DWARFGroupName, 396 DWARFGroupDescription); 397 398 for (const HandlerInfo &HI : Handlers) { 399 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 400 HI.TimerGroupDescription, TimePassesIsEnabled); 401 HI.Handler->beginModule(&M); 402 } 403 404 return false; 405 } 406 407 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 408 if (!MAI.hasWeakDefCanBeHiddenDirective()) 409 return false; 410 411 return GV->canBeOmittedFromSymbolTable(); 412 } 413 414 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 415 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 416 switch (Linkage) { 417 case GlobalValue::CommonLinkage: 418 case GlobalValue::LinkOnceAnyLinkage: 419 case GlobalValue::LinkOnceODRLinkage: 420 case GlobalValue::WeakAnyLinkage: 421 case GlobalValue::WeakODRLinkage: 422 if (MAI->hasWeakDefDirective()) { 423 // .globl _foo 424 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 425 426 if (!canBeHidden(GV, *MAI)) 427 // .weak_definition _foo 428 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 429 else 430 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 431 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 432 // .globl _foo 433 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 434 //NOTE: linkonce is handled by the section the symbol was assigned to. 435 } else { 436 // .weak _foo 437 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 438 } 439 return; 440 case GlobalValue::ExternalLinkage: 441 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 442 return; 443 case GlobalValue::PrivateLinkage: 444 case GlobalValue::InternalLinkage: 445 return; 446 case GlobalValue::ExternalWeakLinkage: 447 case GlobalValue::AvailableExternallyLinkage: 448 case GlobalValue::AppendingLinkage: 449 llvm_unreachable("Should never emit this"); 450 } 451 llvm_unreachable("Unknown linkage type!"); 452 } 453 454 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 455 const GlobalValue *GV) const { 456 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 457 } 458 459 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 460 return TM.getSymbol(GV); 461 } 462 463 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 464 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 465 // exact definion (intersection of GlobalValue::hasExactDefinition() and 466 // !isInterposable()). These linkages include: external, appending, internal, 467 // private. It may be profitable to use a local alias for external. The 468 // assembler would otherwise be conservative and assume a global default 469 // visibility symbol can be interposable, even if the code generator already 470 // assumed it. 471 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 472 const Module &M = *GV.getParent(); 473 if (TM.getRelocationModel() != Reloc::Static && 474 M.getPIELevel() == PIELevel::Default) 475 if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() && 476 GV.getParent()->noSemanticInterposition())) 477 return getSymbolWithGlobalValueBase(&GV, "$local"); 478 } 479 return TM.getSymbol(&GV); 480 } 481 482 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 483 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 484 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 485 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 486 "No emulated TLS variables in the common section"); 487 488 // Never emit TLS variable xyz in emulated TLS model. 489 // The initialization value is in __emutls_t.xyz instead of xyz. 490 if (IsEmuTLSVar) 491 return; 492 493 if (GV->hasInitializer()) { 494 // Check to see if this is a special global used by LLVM, if so, emit it. 495 if (emitSpecialLLVMGlobal(GV)) 496 return; 497 498 // Skip the emission of global equivalents. The symbol can be emitted later 499 // on by emitGlobalGOTEquivs in case it turns out to be needed. 500 if (GlobalGOTEquivs.count(getSymbol(GV))) 501 return; 502 503 if (isVerbose()) { 504 // When printing the control variable __emutls_v.*, 505 // we don't need to print the original TLS variable name. 506 GV->printAsOperand(OutStreamer->GetCommentOS(), 507 /*PrintType=*/false, GV->getParent()); 508 OutStreamer->GetCommentOS() << '\n'; 509 } 510 } 511 512 MCSymbol *GVSym = getSymbol(GV); 513 MCSymbol *EmittedSym = GVSym; 514 515 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 516 // attributes. 517 // GV's or GVSym's attributes will be used for the EmittedSym. 518 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 519 520 if (!GV->hasInitializer()) // External globals require no extra code. 521 return; 522 523 GVSym->redefineIfPossible(); 524 if (GVSym->isDefined() || GVSym->isVariable()) 525 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 526 "' is already defined"); 527 528 if (MAI->hasDotTypeDotSizeDirective()) 529 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 530 531 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 532 533 const DataLayout &DL = GV->getParent()->getDataLayout(); 534 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 535 536 // If the alignment is specified, we *must* obey it. Overaligning a global 537 // with a specified alignment is a prompt way to break globals emitted to 538 // sections and expected to be contiguous (e.g. ObjC metadata). 539 const Align Alignment = getGVAlignment(GV, DL); 540 541 for (const HandlerInfo &HI : Handlers) { 542 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 543 HI.TimerGroupName, HI.TimerGroupDescription, 544 TimePassesIsEnabled); 545 HI.Handler->setSymbolSize(GVSym, Size); 546 } 547 548 // Handle common symbols 549 if (GVKind.isCommon()) { 550 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 551 // .comm _foo, 42, 4 552 const bool SupportsAlignment = 553 getObjFileLowering().getCommDirectiveSupportsAlignment(); 554 OutStreamer->emitCommonSymbol(GVSym, Size, 555 SupportsAlignment ? Alignment.value() : 0); 556 return; 557 } 558 559 // Determine to which section this global should be emitted. 560 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 561 562 // If we have a bss global going to a section that supports the 563 // zerofill directive, do so here. 564 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 565 TheSection->isVirtualSection()) { 566 if (Size == 0) 567 Size = 1; // zerofill of 0 bytes is undefined. 568 emitLinkage(GV, GVSym); 569 // .zerofill __DATA, __bss, _foo, 400, 5 570 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 571 return; 572 } 573 574 // If this is a BSS local symbol and we are emitting in the BSS 575 // section use .lcomm/.comm directive. 576 if (GVKind.isBSSLocal() && 577 getObjFileLowering().getBSSSection() == TheSection) { 578 if (Size == 0) 579 Size = 1; // .comm Foo, 0 is undefined, avoid it. 580 581 // Use .lcomm only if it supports user-specified alignment. 582 // Otherwise, while it would still be correct to use .lcomm in some 583 // cases (e.g. when Align == 1), the external assembler might enfore 584 // some -unknown- default alignment behavior, which could cause 585 // spurious differences between external and integrated assembler. 586 // Prefer to simply fall back to .local / .comm in this case. 587 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 588 // .lcomm _foo, 42 589 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 590 return; 591 } 592 593 // .local _foo 594 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 595 // .comm _foo, 42, 4 596 const bool SupportsAlignment = 597 getObjFileLowering().getCommDirectiveSupportsAlignment(); 598 OutStreamer->emitCommonSymbol(GVSym, Size, 599 SupportsAlignment ? Alignment.value() : 0); 600 return; 601 } 602 603 // Handle thread local data for mach-o which requires us to output an 604 // additional structure of data and mangle the original symbol so that we 605 // can reference it later. 606 // 607 // TODO: This should become an "emit thread local global" method on TLOF. 608 // All of this macho specific stuff should be sunk down into TLOFMachO and 609 // stuff like "TLSExtraDataSection" should no longer be part of the parent 610 // TLOF class. This will also make it more obvious that stuff like 611 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 612 // specific code. 613 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 614 // Emit the .tbss symbol 615 MCSymbol *MangSym = 616 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 617 618 if (GVKind.isThreadBSS()) { 619 TheSection = getObjFileLowering().getTLSBSSSection(); 620 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 621 } else if (GVKind.isThreadData()) { 622 OutStreamer->SwitchSection(TheSection); 623 624 emitAlignment(Alignment, GV); 625 OutStreamer->emitLabel(MangSym); 626 627 emitGlobalConstant(GV->getParent()->getDataLayout(), 628 GV->getInitializer()); 629 } 630 631 OutStreamer->AddBlankLine(); 632 633 // Emit the variable struct for the runtime. 634 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 635 636 OutStreamer->SwitchSection(TLVSect); 637 // Emit the linkage here. 638 emitLinkage(GV, GVSym); 639 OutStreamer->emitLabel(GVSym); 640 641 // Three pointers in size: 642 // - __tlv_bootstrap - used to make sure support exists 643 // - spare pointer, used when mapped by the runtime 644 // - pointer to mangled symbol above with initializer 645 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 646 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 647 PtrSize); 648 OutStreamer->emitIntValue(0, PtrSize); 649 OutStreamer->emitSymbolValue(MangSym, PtrSize); 650 651 OutStreamer->AddBlankLine(); 652 return; 653 } 654 655 MCSymbol *EmittedInitSym = GVSym; 656 657 OutStreamer->SwitchSection(TheSection); 658 659 emitLinkage(GV, EmittedInitSym); 660 emitAlignment(Alignment, GV); 661 662 OutStreamer->emitLabel(EmittedInitSym); 663 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 664 if (LocalAlias != EmittedInitSym) 665 OutStreamer->emitLabel(LocalAlias); 666 667 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 668 669 if (MAI->hasDotTypeDotSizeDirective()) 670 // .size foo, 42 671 OutStreamer->emitELFSize(EmittedInitSym, 672 MCConstantExpr::create(Size, OutContext)); 673 674 OutStreamer->AddBlankLine(); 675 } 676 677 /// Emit the directive and value for debug thread local expression 678 /// 679 /// \p Value - The value to emit. 680 /// \p Size - The size of the integer (in bytes) to emit. 681 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 682 OutStreamer->emitValue(Value, Size); 683 } 684 685 void AsmPrinter::emitFunctionHeaderComment() {} 686 687 /// EmitFunctionHeader - This method emits the header for the current 688 /// function. 689 void AsmPrinter::emitFunctionHeader() { 690 const Function &F = MF->getFunction(); 691 692 if (isVerbose()) 693 OutStreamer->GetCommentOS() 694 << "-- Begin function " 695 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 696 697 // Print out constants referenced by the function 698 emitConstantPool(); 699 700 // Print the 'header' of function. 701 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 702 OutStreamer->SwitchSection(MF->getSection()); 703 704 if (!MAI->hasVisibilityOnlyWithLinkage()) 705 emitVisibility(CurrentFnSym, F.getVisibility()); 706 707 if (MAI->needsFunctionDescriptors()) 708 emitLinkage(&F, CurrentFnDescSym); 709 710 emitLinkage(&F, CurrentFnSym); 711 if (MAI->hasFunctionAlignment()) 712 emitAlignment(MF->getAlignment(), &F); 713 714 if (MAI->hasDotTypeDotSizeDirective()) 715 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 716 717 if (F.hasFnAttribute(Attribute::Cold)) 718 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 719 720 if (isVerbose()) { 721 F.printAsOperand(OutStreamer->GetCommentOS(), 722 /*PrintType=*/false, F.getParent()); 723 emitFunctionHeaderComment(); 724 OutStreamer->GetCommentOS() << '\n'; 725 } 726 727 // Emit the prefix data. 728 if (F.hasPrefixData()) { 729 if (MAI->hasSubsectionsViaSymbols()) { 730 // Preserving prefix data on platforms which use subsections-via-symbols 731 // is a bit tricky. Here we introduce a symbol for the prefix data 732 // and use the .alt_entry attribute to mark the function's real entry point 733 // as an alternative entry point to the prefix-data symbol. 734 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 735 OutStreamer->emitLabel(PrefixSym); 736 737 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 738 739 // Emit an .alt_entry directive for the actual function symbol. 740 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 741 } else { 742 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 743 } 744 } 745 746 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 747 // place prefix data before NOPs. 748 unsigned PatchableFunctionPrefix = 0; 749 unsigned PatchableFunctionEntry = 0; 750 (void)F.getFnAttribute("patchable-function-prefix") 751 .getValueAsString() 752 .getAsInteger(10, PatchableFunctionPrefix); 753 (void)F.getFnAttribute("patchable-function-entry") 754 .getValueAsString() 755 .getAsInteger(10, PatchableFunctionEntry); 756 if (PatchableFunctionPrefix) { 757 CurrentPatchableFunctionEntrySym = 758 OutContext.createLinkerPrivateTempSymbol(); 759 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 760 emitNops(PatchableFunctionPrefix); 761 } else if (PatchableFunctionEntry) { 762 // May be reassigned when emitting the body, to reference the label after 763 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 764 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 765 } 766 767 // Emit the function descriptor. This is a virtual function to allow targets 768 // to emit their specific function descriptor. Right now it is only used by 769 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 770 // descriptors and should be converted to use this hook as well. 771 if (MAI->needsFunctionDescriptors()) 772 emitFunctionDescriptor(); 773 774 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 775 // their wild and crazy things as required. 776 emitFunctionEntryLabel(); 777 778 if (CurrentFnBegin) { 779 if (MAI->useAssignmentForEHBegin()) { 780 MCSymbol *CurPos = OutContext.createTempSymbol(); 781 OutStreamer->emitLabel(CurPos); 782 OutStreamer->emitAssignment(CurrentFnBegin, 783 MCSymbolRefExpr::create(CurPos, OutContext)); 784 } else { 785 OutStreamer->emitLabel(CurrentFnBegin); 786 } 787 } 788 789 // Emit pre-function debug and/or EH information. 790 for (const HandlerInfo &HI : Handlers) { 791 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 792 HI.TimerGroupDescription, TimePassesIsEnabled); 793 HI.Handler->beginFunction(MF); 794 } 795 796 // Emit the prologue data. 797 if (F.hasPrologueData()) 798 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 799 } 800 801 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 802 /// function. This can be overridden by targets as required to do custom stuff. 803 void AsmPrinter::emitFunctionEntryLabel() { 804 CurrentFnSym->redefineIfPossible(); 805 806 // The function label could have already been emitted if two symbols end up 807 // conflicting due to asm renaming. Detect this and emit an error. 808 if (CurrentFnSym->isVariable()) 809 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 810 "' is a protected alias"); 811 if (CurrentFnSym->isDefined()) 812 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 813 "' label emitted multiple times to assembly file"); 814 815 OutStreamer->emitLabel(CurrentFnSym); 816 817 if (TM.getTargetTriple().isOSBinFormatELF()) { 818 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 819 if (Sym != CurrentFnSym) 820 OutStreamer->emitLabel(Sym); 821 } 822 } 823 824 /// emitComments - Pretty-print comments for instructions. 825 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 826 const MachineFunction *MF = MI.getMF(); 827 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 828 829 // Check for spills and reloads 830 831 // We assume a single instruction only has a spill or reload, not 832 // both. 833 Optional<unsigned> Size; 834 if ((Size = MI.getRestoreSize(TII))) { 835 CommentOS << *Size << "-byte Reload\n"; 836 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 837 if (*Size) 838 CommentOS << *Size << "-byte Folded Reload\n"; 839 } else if ((Size = MI.getSpillSize(TII))) { 840 CommentOS << *Size << "-byte Spill\n"; 841 } else if ((Size = MI.getFoldedSpillSize(TII))) { 842 if (*Size) 843 CommentOS << *Size << "-byte Folded Spill\n"; 844 } 845 846 // Check for spill-induced copies 847 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 848 CommentOS << " Reload Reuse\n"; 849 } 850 851 /// emitImplicitDef - This method emits the specified machine instruction 852 /// that is an implicit def. 853 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 854 Register RegNo = MI->getOperand(0).getReg(); 855 856 SmallString<128> Str; 857 raw_svector_ostream OS(Str); 858 OS << "implicit-def: " 859 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 860 861 OutStreamer->AddComment(OS.str()); 862 OutStreamer->AddBlankLine(); 863 } 864 865 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 866 std::string Str; 867 raw_string_ostream OS(Str); 868 OS << "kill:"; 869 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 870 const MachineOperand &Op = MI->getOperand(i); 871 assert(Op.isReg() && "KILL instruction must have only register operands"); 872 OS << ' ' << (Op.isDef() ? "def " : "killed ") 873 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 874 } 875 AP.OutStreamer->AddComment(OS.str()); 876 AP.OutStreamer->AddBlankLine(); 877 } 878 879 /// emitDebugValueComment - This method handles the target-independent form 880 /// of DBG_VALUE, returning true if it was able to do so. A false return 881 /// means the target will need to handle MI in EmitInstruction. 882 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 883 // This code handles only the 4-operand target-independent form. 884 if (MI->getNumOperands() != 4) 885 return false; 886 887 SmallString<128> Str; 888 raw_svector_ostream OS(Str); 889 OS << "DEBUG_VALUE: "; 890 891 const DILocalVariable *V = MI->getDebugVariable(); 892 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 893 StringRef Name = SP->getName(); 894 if (!Name.empty()) 895 OS << Name << ":"; 896 } 897 OS << V->getName(); 898 OS << " <- "; 899 900 // The second operand is only an offset if it's an immediate. 901 bool MemLoc = MI->isIndirectDebugValue(); 902 auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0); 903 const DIExpression *Expr = MI->getDebugExpression(); 904 if (Expr->getNumElements()) { 905 OS << '['; 906 bool NeedSep = false; 907 for (auto Op : Expr->expr_ops()) { 908 if (NeedSep) 909 OS << ", "; 910 else 911 NeedSep = true; 912 OS << dwarf::OperationEncodingString(Op.getOp()); 913 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 914 OS << ' ' << Op.getArg(I); 915 } 916 OS << "] "; 917 } 918 919 // Register or immediate value. Register 0 means undef. 920 if (MI->getDebugOperand(0).isFPImm()) { 921 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF()); 922 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) { 923 OS << (double)APF.convertToFloat(); 924 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) { 925 OS << APF.convertToDouble(); 926 } else { 927 // There is no good way to print long double. Convert a copy to 928 // double. Ah well, it's only a comment. 929 bool ignored; 930 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 931 &ignored); 932 OS << "(long double) " << APF.convertToDouble(); 933 } 934 } else if (MI->getDebugOperand(0).isImm()) { 935 OS << MI->getDebugOperand(0).getImm(); 936 } else if (MI->getDebugOperand(0).isCImm()) { 937 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 938 } else if (MI->getDebugOperand(0).isTargetIndex()) { 939 auto Op = MI->getDebugOperand(0); 940 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 941 return true; 942 } else { 943 Register Reg; 944 if (MI->getDebugOperand(0).isReg()) { 945 Reg = MI->getDebugOperand(0).getReg(); 946 } else { 947 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type"); 948 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 949 Offset += TFI->getFrameIndexReference( 950 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg); 951 MemLoc = true; 952 } 953 if (Reg == 0) { 954 // Suppress offset, it is not meaningful here. 955 OS << "undef"; 956 // NOTE: Want this comment at start of line, don't emit with AddComment. 957 AP.OutStreamer->emitRawComment(OS.str()); 958 return true; 959 } 960 if (MemLoc) 961 OS << '['; 962 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 963 } 964 965 if (MemLoc) 966 OS << '+' << Offset.getFixed() << ']'; 967 968 // NOTE: Want this comment at start of line, don't emit with AddComment. 969 AP.OutStreamer->emitRawComment(OS.str()); 970 return true; 971 } 972 973 /// This method handles the target-independent form of DBG_LABEL, returning 974 /// true if it was able to do so. A false return means the target will need 975 /// to handle MI in EmitInstruction. 976 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 977 if (MI->getNumOperands() != 1) 978 return false; 979 980 SmallString<128> Str; 981 raw_svector_ostream OS(Str); 982 OS << "DEBUG_LABEL: "; 983 984 const DILabel *V = MI->getDebugLabel(); 985 if (auto *SP = dyn_cast<DISubprogram>( 986 V->getScope()->getNonLexicalBlockFileScope())) { 987 StringRef Name = SP->getName(); 988 if (!Name.empty()) 989 OS << Name << ":"; 990 } 991 OS << V->getName(); 992 993 // NOTE: Want this comment at start of line, don't emit with AddComment. 994 AP.OutStreamer->emitRawComment(OS.str()); 995 return true; 996 } 997 998 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 999 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1000 MF->getFunction().needsUnwindTableEntry()) 1001 return CFI_M_EH; 1002 1003 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1004 return CFI_M_Debug; 1005 1006 return CFI_M_None; 1007 } 1008 1009 bool AsmPrinter::needsSEHMoves() { 1010 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1011 } 1012 1013 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1014 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1015 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1016 ExceptionHandlingType != ExceptionHandling::ARM) 1017 return; 1018 1019 if (needsCFIMoves() == CFI_M_None) 1020 return; 1021 1022 // If there is no "real" instruction following this CFI instruction, skip 1023 // emitting it; it would be beyond the end of the function's FDE range. 1024 auto *MBB = MI.getParent(); 1025 auto I = std::next(MI.getIterator()); 1026 while (I != MBB->end() && I->isTransient()) 1027 ++I; 1028 if (I == MBB->instr_end() && 1029 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1030 return; 1031 1032 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1033 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1034 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1035 emitCFIInstruction(CFI); 1036 } 1037 1038 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1039 // The operands are the MCSymbol and the frame offset of the allocation. 1040 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1041 int FrameOffset = MI.getOperand(1).getImm(); 1042 1043 // Emit a symbol assignment. 1044 OutStreamer->emitAssignment(FrameAllocSym, 1045 MCConstantExpr::create(FrameOffset, OutContext)); 1046 } 1047 1048 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1049 /// given basic block. This can be used to capture more precise profile 1050 /// information. We use the last 3 bits (LSBs) to ecnode the following 1051 /// information: 1052 /// * (1): set if return block (ret or tail call). 1053 /// * (2): set if ends with a tail call. 1054 /// * (3): set if exception handling (EH) landing pad. 1055 /// The remaining bits are zero. 1056 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1057 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1058 return ((unsigned)MBB.isReturnBlock()) | 1059 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1060 (MBB.isEHPad() << 2); 1061 } 1062 1063 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1064 MCSection *BBAddrMapSection = 1065 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1066 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1067 1068 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1069 1070 OutStreamer->PushSection(); 1071 OutStreamer->SwitchSection(BBAddrMapSection); 1072 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1073 // Emit the total number of basic blocks in this function. 1074 OutStreamer->emitULEB128IntValue(MF.size()); 1075 // Emit BB Information for each basic block in the funciton. 1076 for (const MachineBasicBlock &MBB : MF) { 1077 const MCSymbol *MBBSymbol = 1078 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1079 // Emit the basic block offset. 1080 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1081 // Emit the basic block size. When BBs have alignments, their size cannot 1082 // always be computed from their offsets. 1083 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1084 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1085 } 1086 OutStreamer->PopSection(); 1087 } 1088 1089 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1090 if (!MF.getTarget().Options.EmitStackSizeSection) 1091 return; 1092 1093 MCSection *StackSizeSection = 1094 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1095 if (!StackSizeSection) 1096 return; 1097 1098 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1099 // Don't emit functions with dynamic stack allocations. 1100 if (FrameInfo.hasVarSizedObjects()) 1101 return; 1102 1103 OutStreamer->PushSection(); 1104 OutStreamer->SwitchSection(StackSizeSection); 1105 1106 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1107 uint64_t StackSize = FrameInfo.getStackSize(); 1108 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1109 OutStreamer->emitULEB128IntValue(StackSize); 1110 1111 OutStreamer->PopSection(); 1112 } 1113 1114 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1115 MachineModuleInfo &MMI = MF.getMMI(); 1116 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1117 return true; 1118 1119 // We might emit an EH table that uses function begin and end labels even if 1120 // we don't have any landingpads. 1121 if (!MF.getFunction().hasPersonalityFn()) 1122 return false; 1123 return !isNoOpWithoutInvoke( 1124 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1125 } 1126 1127 /// EmitFunctionBody - This method emits the body and trailer for a 1128 /// function. 1129 void AsmPrinter::emitFunctionBody() { 1130 emitFunctionHeader(); 1131 1132 // Emit target-specific gunk before the function body. 1133 emitFunctionBodyStart(); 1134 1135 if (isVerbose()) { 1136 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1137 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1138 if (!MDT) { 1139 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1140 OwnedMDT->getBase().recalculate(*MF); 1141 MDT = OwnedMDT.get(); 1142 } 1143 1144 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1145 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1146 if (!MLI) { 1147 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1148 OwnedMLI->getBase().analyze(MDT->getBase()); 1149 MLI = OwnedMLI.get(); 1150 } 1151 } 1152 1153 // Print out code for the function. 1154 bool HasAnyRealCode = false; 1155 int NumInstsInFunction = 0; 1156 1157 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1158 for (auto &MBB : *MF) { 1159 // Print a label for the basic block. 1160 emitBasicBlockStart(MBB); 1161 DenseMap<StringRef, unsigned> MnemonicCounts; 1162 for (auto &MI : MBB) { 1163 // Print the assembly for the instruction. 1164 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1165 !MI.isDebugInstr()) { 1166 HasAnyRealCode = true; 1167 ++NumInstsInFunction; 1168 } 1169 1170 // If there is a pre-instruction symbol, emit a label for it here. 1171 if (MCSymbol *S = MI.getPreInstrSymbol()) 1172 OutStreamer->emitLabel(S); 1173 1174 for (const HandlerInfo &HI : Handlers) { 1175 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1176 HI.TimerGroupDescription, TimePassesIsEnabled); 1177 HI.Handler->beginInstruction(&MI); 1178 } 1179 1180 if (isVerbose()) 1181 emitComments(MI, OutStreamer->GetCommentOS()); 1182 1183 switch (MI.getOpcode()) { 1184 case TargetOpcode::CFI_INSTRUCTION: 1185 emitCFIInstruction(MI); 1186 break; 1187 case TargetOpcode::LOCAL_ESCAPE: 1188 emitFrameAlloc(MI); 1189 break; 1190 case TargetOpcode::ANNOTATION_LABEL: 1191 case TargetOpcode::EH_LABEL: 1192 case TargetOpcode::GC_LABEL: 1193 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1194 break; 1195 case TargetOpcode::INLINEASM: 1196 case TargetOpcode::INLINEASM_BR: 1197 emitInlineAsm(&MI); 1198 break; 1199 case TargetOpcode::DBG_VALUE: 1200 if (isVerbose()) { 1201 if (!emitDebugValueComment(&MI, *this)) 1202 emitInstruction(&MI); 1203 } 1204 break; 1205 case TargetOpcode::DBG_INSTR_REF: 1206 // This instruction reference will have been resolved to a machine 1207 // location, and a nearby DBG_VALUE created. We can safely ignore 1208 // the instruction reference. 1209 break; 1210 case TargetOpcode::DBG_LABEL: 1211 if (isVerbose()) { 1212 if (!emitDebugLabelComment(&MI, *this)) 1213 emitInstruction(&MI); 1214 } 1215 break; 1216 case TargetOpcode::IMPLICIT_DEF: 1217 if (isVerbose()) emitImplicitDef(&MI); 1218 break; 1219 case TargetOpcode::KILL: 1220 if (isVerbose()) emitKill(&MI, *this); 1221 break; 1222 default: 1223 emitInstruction(&MI); 1224 if (CanDoExtraAnalysis) { 1225 MCInst MCI; 1226 MCI.setOpcode(MI.getOpcode()); 1227 auto Name = OutStreamer->getMnemonic(MCI); 1228 auto I = MnemonicCounts.insert({Name, 0u}); 1229 I.first->second++; 1230 } 1231 break; 1232 } 1233 1234 // If there is a post-instruction symbol, emit a label for it here. 1235 if (MCSymbol *S = MI.getPostInstrSymbol()) 1236 OutStreamer->emitLabel(S); 1237 1238 for (const HandlerInfo &HI : Handlers) { 1239 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1240 HI.TimerGroupDescription, TimePassesIsEnabled); 1241 HI.Handler->endInstruction(); 1242 } 1243 } 1244 1245 // We must emit temporary symbol for the end of this basic block, if either 1246 // we have BBLabels enabled or if this basic blocks marks the end of a 1247 // section (except the section containing the entry basic block as the end 1248 // symbol for that section is CurrentFnEnd). 1249 if (MF->hasBBLabels() || 1250 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1251 !MBB.sameSection(&MF->front()))) 1252 OutStreamer->emitLabel(MBB.getEndSymbol()); 1253 1254 if (MBB.isEndSection()) { 1255 // The size directive for the section containing the entry block is 1256 // handled separately by the function section. 1257 if (!MBB.sameSection(&MF->front())) { 1258 if (MAI->hasDotTypeDotSizeDirective()) { 1259 // Emit the size directive for the basic block section. 1260 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1261 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1262 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1263 OutContext); 1264 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1265 } 1266 MBBSectionRanges[MBB.getSectionIDNum()] = 1267 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1268 } 1269 } 1270 emitBasicBlockEnd(MBB); 1271 1272 if (CanDoExtraAnalysis) { 1273 // Skip empty blocks. 1274 if (MBB.empty()) 1275 continue; 1276 1277 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1278 MBB.begin()->getDebugLoc(), &MBB); 1279 1280 // Generate instruction mix remark. First, sort counts in descending order 1281 // by count and name. 1282 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1283 for (auto &KV : MnemonicCounts) 1284 MnemonicVec.emplace_back(KV.first, KV.second); 1285 1286 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1287 const std::pair<StringRef, unsigned> &B) { 1288 if (A.second > B.second) 1289 return true; 1290 if (A.second == B.second) 1291 return StringRef(A.first) < StringRef(B.first); 1292 return false; 1293 }); 1294 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1295 for (auto &KV : MnemonicVec) { 1296 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1297 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1298 } 1299 ORE->emit(R); 1300 } 1301 } 1302 1303 EmittedInsts += NumInstsInFunction; 1304 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1305 MF->getFunction().getSubprogram(), 1306 &MF->front()); 1307 R << ore::NV("NumInstructions", NumInstsInFunction) 1308 << " instructions in function"; 1309 ORE->emit(R); 1310 1311 // If the function is empty and the object file uses .subsections_via_symbols, 1312 // then we need to emit *something* to the function body to prevent the 1313 // labels from collapsing together. Just emit a noop. 1314 // Similarly, don't emit empty functions on Windows either. It can lead to 1315 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1316 // after linking, causing the kernel not to load the binary: 1317 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1318 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1319 const Triple &TT = TM.getTargetTriple(); 1320 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1321 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1322 MCInst Noop; 1323 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1324 1325 // Targets can opt-out of emitting the noop here by leaving the opcode 1326 // unspecified. 1327 if (Noop.getOpcode()) { 1328 OutStreamer->AddComment("avoids zero-length function"); 1329 emitNops(1); 1330 } 1331 } 1332 1333 // Switch to the original section in case basic block sections was used. 1334 OutStreamer->SwitchSection(MF->getSection()); 1335 1336 const Function &F = MF->getFunction(); 1337 for (const auto &BB : F) { 1338 if (!BB.hasAddressTaken()) 1339 continue; 1340 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1341 if (Sym->isDefined()) 1342 continue; 1343 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1344 OutStreamer->emitLabel(Sym); 1345 } 1346 1347 // Emit target-specific gunk after the function body. 1348 emitFunctionBodyEnd(); 1349 1350 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1351 MAI->hasDotTypeDotSizeDirective()) { 1352 // Create a symbol for the end of function. 1353 CurrentFnEnd = createTempSymbol("func_end"); 1354 OutStreamer->emitLabel(CurrentFnEnd); 1355 } 1356 1357 // If the target wants a .size directive for the size of the function, emit 1358 // it. 1359 if (MAI->hasDotTypeDotSizeDirective()) { 1360 // We can get the size as difference between the function label and the 1361 // temp label. 1362 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1363 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1364 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1365 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1366 } 1367 1368 for (const HandlerInfo &HI : Handlers) { 1369 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1370 HI.TimerGroupDescription, TimePassesIsEnabled); 1371 HI.Handler->markFunctionEnd(); 1372 } 1373 1374 MBBSectionRanges[MF->front().getSectionIDNum()] = 1375 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1376 1377 // Print out jump tables referenced by the function. 1378 emitJumpTableInfo(); 1379 1380 // Emit post-function debug and/or EH information. 1381 for (const HandlerInfo &HI : Handlers) { 1382 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1383 HI.TimerGroupDescription, TimePassesIsEnabled); 1384 HI.Handler->endFunction(MF); 1385 } 1386 1387 // Emit section containing BB address offsets and their metadata, when 1388 // BB labels are requested for this function. 1389 if (MF->hasBBLabels()) 1390 emitBBAddrMapSection(*MF); 1391 1392 // Emit section containing stack size metadata. 1393 emitStackSizeSection(*MF); 1394 1395 emitPatchableFunctionEntries(); 1396 1397 if (isVerbose()) 1398 OutStreamer->GetCommentOS() << "-- End function\n"; 1399 1400 OutStreamer->AddBlankLine(); 1401 } 1402 1403 /// Compute the number of Global Variables that uses a Constant. 1404 static unsigned getNumGlobalVariableUses(const Constant *C) { 1405 if (!C) 1406 return 0; 1407 1408 if (isa<GlobalVariable>(C)) 1409 return 1; 1410 1411 unsigned NumUses = 0; 1412 for (auto *CU : C->users()) 1413 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1414 1415 return NumUses; 1416 } 1417 1418 /// Only consider global GOT equivalents if at least one user is a 1419 /// cstexpr inside an initializer of another global variables. Also, don't 1420 /// handle cstexpr inside instructions. During global variable emission, 1421 /// candidates are skipped and are emitted later in case at least one cstexpr 1422 /// isn't replaced by a PC relative GOT entry access. 1423 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1424 unsigned &NumGOTEquivUsers) { 1425 // Global GOT equivalents are unnamed private globals with a constant 1426 // pointer initializer to another global symbol. They must point to a 1427 // GlobalVariable or Function, i.e., as GlobalValue. 1428 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1429 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1430 !isa<GlobalValue>(GV->getOperand(0))) 1431 return false; 1432 1433 // To be a got equivalent, at least one of its users need to be a constant 1434 // expression used by another global variable. 1435 for (auto *U : GV->users()) 1436 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1437 1438 return NumGOTEquivUsers > 0; 1439 } 1440 1441 /// Unnamed constant global variables solely contaning a pointer to 1442 /// another globals variable is equivalent to a GOT table entry; it contains the 1443 /// the address of another symbol. Optimize it and replace accesses to these 1444 /// "GOT equivalents" by using the GOT entry for the final global instead. 1445 /// Compute GOT equivalent candidates among all global variables to avoid 1446 /// emitting them if possible later on, after it use is replaced by a GOT entry 1447 /// access. 1448 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1449 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1450 return; 1451 1452 for (const auto &G : M.globals()) { 1453 unsigned NumGOTEquivUsers = 0; 1454 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1455 continue; 1456 1457 const MCSymbol *GOTEquivSym = getSymbol(&G); 1458 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1459 } 1460 } 1461 1462 /// Constant expressions using GOT equivalent globals may not be eligible 1463 /// for PC relative GOT entry conversion, in such cases we need to emit such 1464 /// globals we previously omitted in EmitGlobalVariable. 1465 void AsmPrinter::emitGlobalGOTEquivs() { 1466 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1467 return; 1468 1469 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1470 for (auto &I : GlobalGOTEquivs) { 1471 const GlobalVariable *GV = I.second.first; 1472 unsigned Cnt = I.second.second; 1473 if (Cnt) 1474 FailedCandidates.push_back(GV); 1475 } 1476 GlobalGOTEquivs.clear(); 1477 1478 for (auto *GV : FailedCandidates) 1479 emitGlobalVariable(GV); 1480 } 1481 1482 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1483 const GlobalIndirectSymbol& GIS) { 1484 MCSymbol *Name = getSymbol(&GIS); 1485 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1486 // Treat bitcasts of functions as functions also. This is important at least 1487 // on WebAssembly where object and function addresses can't alias each other. 1488 if (!IsFunction) 1489 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1490 if (CE->getOpcode() == Instruction::BitCast) 1491 IsFunction = 1492 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1493 1494 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1495 // so AIX has to use the extra-label-at-definition strategy. At this 1496 // point, all the extra label is emitted, we just have to emit linkage for 1497 // those labels. 1498 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1499 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1500 assert(MAI->hasVisibilityOnlyWithLinkage() && 1501 "Visibility should be handled with emitLinkage() on AIX."); 1502 emitLinkage(&GIS, Name); 1503 // If it's a function, also emit linkage for aliases of function entry 1504 // point. 1505 if (IsFunction) 1506 emitLinkage(&GIS, 1507 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1508 return; 1509 } 1510 1511 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1512 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1513 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1514 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1515 else 1516 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1517 1518 // Set the symbol type to function if the alias has a function type. 1519 // This affects codegen when the aliasee is not a function. 1520 if (IsFunction) 1521 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1522 ? MCSA_ELF_TypeIndFunction 1523 : MCSA_ELF_TypeFunction); 1524 1525 emitVisibility(Name, GIS.getVisibility()); 1526 1527 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1528 1529 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1530 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1531 1532 // Emit the directives as assignments aka .set: 1533 OutStreamer->emitAssignment(Name, Expr); 1534 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1535 if (LocalAlias != Name) 1536 OutStreamer->emitAssignment(LocalAlias, Expr); 1537 1538 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1539 // If the aliasee does not correspond to a symbol in the output, i.e. the 1540 // alias is not of an object or the aliased object is private, then set the 1541 // size of the alias symbol from the type of the alias. We don't do this in 1542 // other situations as the alias and aliasee having differing types but same 1543 // size may be intentional. 1544 const GlobalObject *BaseObject = GA->getBaseObject(); 1545 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1546 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1547 const DataLayout &DL = M.getDataLayout(); 1548 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1549 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1550 } 1551 } 1552 } 1553 1554 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1555 if (!RS.needsSection()) 1556 return; 1557 1558 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1559 1560 Optional<SmallString<128>> Filename; 1561 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1562 Filename = *FilenameRef; 1563 sys::fs::make_absolute(*Filename); 1564 assert(!Filename->empty() && "The filename can't be empty."); 1565 } 1566 1567 std::string Buf; 1568 raw_string_ostream OS(Buf); 1569 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1570 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1571 : RemarkSerializer.metaSerializer(OS); 1572 MetaSerializer->emit(); 1573 1574 // Switch to the remarks section. 1575 MCSection *RemarksSection = 1576 OutContext.getObjectFileInfo()->getRemarksSection(); 1577 OutStreamer->SwitchSection(RemarksSection); 1578 1579 OutStreamer->emitBinaryData(OS.str()); 1580 } 1581 1582 bool AsmPrinter::doFinalization(Module &M) { 1583 // Set the MachineFunction to nullptr so that we can catch attempted 1584 // accesses to MF specific features at the module level and so that 1585 // we can conditionalize accesses based on whether or not it is nullptr. 1586 MF = nullptr; 1587 1588 // Gather all GOT equivalent globals in the module. We really need two 1589 // passes over the globals: one to compute and another to avoid its emission 1590 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1591 // where the got equivalent shows up before its use. 1592 computeGlobalGOTEquivs(M); 1593 1594 // Emit global variables. 1595 for (const auto &G : M.globals()) 1596 emitGlobalVariable(&G); 1597 1598 // Emit remaining GOT equivalent globals. 1599 emitGlobalGOTEquivs(); 1600 1601 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1602 1603 // Emit linkage(XCOFF) and visibility info for declarations 1604 for (const Function &F : M) { 1605 if (!F.isDeclarationForLinker()) 1606 continue; 1607 1608 MCSymbol *Name = getSymbol(&F); 1609 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1610 1611 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1612 GlobalValue::VisibilityTypes V = F.getVisibility(); 1613 if (V == GlobalValue::DefaultVisibility) 1614 continue; 1615 1616 emitVisibility(Name, V, false); 1617 continue; 1618 } 1619 1620 if (F.isIntrinsic()) 1621 continue; 1622 1623 // Handle the XCOFF case. 1624 // Variable `Name` is the function descriptor symbol (see above). Get the 1625 // function entry point symbol. 1626 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1627 // Emit linkage for the function entry point. 1628 emitLinkage(&F, FnEntryPointSym); 1629 1630 // Emit linkage for the function descriptor. 1631 emitLinkage(&F, Name); 1632 } 1633 1634 // Emit the remarks section contents. 1635 // FIXME: Figure out when is the safest time to emit this section. It should 1636 // not come after debug info. 1637 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1638 emitRemarksSection(*RS); 1639 1640 TLOF.emitModuleMetadata(*OutStreamer, M); 1641 1642 if (TM.getTargetTriple().isOSBinFormatELF()) { 1643 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1644 1645 // Output stubs for external and common global variables. 1646 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1647 if (!Stubs.empty()) { 1648 OutStreamer->SwitchSection(TLOF.getDataSection()); 1649 const DataLayout &DL = M.getDataLayout(); 1650 1651 emitAlignment(Align(DL.getPointerSize())); 1652 for (const auto &Stub : Stubs) { 1653 OutStreamer->emitLabel(Stub.first); 1654 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1655 DL.getPointerSize()); 1656 } 1657 } 1658 } 1659 1660 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1661 MachineModuleInfoCOFF &MMICOFF = 1662 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1663 1664 // Output stubs for external and common global variables. 1665 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1666 if (!Stubs.empty()) { 1667 const DataLayout &DL = M.getDataLayout(); 1668 1669 for (const auto &Stub : Stubs) { 1670 SmallString<256> SectionName = StringRef(".rdata$"); 1671 SectionName += Stub.first->getName(); 1672 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1673 SectionName, 1674 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1675 COFF::IMAGE_SCN_LNK_COMDAT, 1676 SectionKind::getReadOnly(), Stub.first->getName(), 1677 COFF::IMAGE_COMDAT_SELECT_ANY)); 1678 emitAlignment(Align(DL.getPointerSize())); 1679 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1680 OutStreamer->emitLabel(Stub.first); 1681 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1682 DL.getPointerSize()); 1683 } 1684 } 1685 } 1686 1687 // Finalize debug and EH information. 1688 for (const HandlerInfo &HI : Handlers) { 1689 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1690 HI.TimerGroupDescription, TimePassesIsEnabled); 1691 HI.Handler->endModule(); 1692 } 1693 1694 // This deletes all the ephemeral handlers that AsmPrinter added, while 1695 // keeping all the user-added handlers alive until the AsmPrinter is 1696 // destroyed. 1697 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1698 DD = nullptr; 1699 1700 // If the target wants to know about weak references, print them all. 1701 if (MAI->getWeakRefDirective()) { 1702 // FIXME: This is not lazy, it would be nice to only print weak references 1703 // to stuff that is actually used. Note that doing so would require targets 1704 // to notice uses in operands (due to constant exprs etc). This should 1705 // happen with the MC stuff eventually. 1706 1707 // Print out module-level global objects here. 1708 for (const auto &GO : M.global_objects()) { 1709 if (!GO.hasExternalWeakLinkage()) 1710 continue; 1711 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1712 } 1713 } 1714 1715 // Print aliases in topological order, that is, for each alias a = b, 1716 // b must be printed before a. 1717 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1718 // such an order to generate correct TOC information. 1719 SmallVector<const GlobalAlias *, 16> AliasStack; 1720 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1721 for (const auto &Alias : M.aliases()) { 1722 for (const GlobalAlias *Cur = &Alias; Cur; 1723 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1724 if (!AliasVisited.insert(Cur).second) 1725 break; 1726 AliasStack.push_back(Cur); 1727 } 1728 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1729 emitGlobalIndirectSymbol(M, *AncestorAlias); 1730 AliasStack.clear(); 1731 } 1732 for (const auto &IFunc : M.ifuncs()) 1733 emitGlobalIndirectSymbol(M, IFunc); 1734 1735 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1736 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1737 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1738 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1739 MP->finishAssembly(M, *MI, *this); 1740 1741 // Emit llvm.ident metadata in an '.ident' directive. 1742 emitModuleIdents(M); 1743 1744 // Emit bytes for llvm.commandline metadata. 1745 emitModuleCommandLines(M); 1746 1747 // Emit __morestack address if needed for indirect calls. 1748 if (MMI->usesMorestackAddr()) { 1749 Align Alignment(1); 1750 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1751 getDataLayout(), SectionKind::getReadOnly(), 1752 /*C=*/nullptr, Alignment); 1753 OutStreamer->SwitchSection(ReadOnlySection); 1754 1755 MCSymbol *AddrSymbol = 1756 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1757 OutStreamer->emitLabel(AddrSymbol); 1758 1759 unsigned PtrSize = MAI->getCodePointerSize(); 1760 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1761 PtrSize); 1762 } 1763 1764 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1765 // split-stack is used. 1766 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1767 OutStreamer->SwitchSection( 1768 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1769 if (MMI->hasNosplitStack()) 1770 OutStreamer->SwitchSection( 1771 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1772 } 1773 1774 // If we don't have any trampolines, then we don't require stack memory 1775 // to be executable. Some targets have a directive to declare this. 1776 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1777 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1778 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1779 OutStreamer->SwitchSection(S); 1780 1781 if (TM.Options.EmitAddrsig) { 1782 // Emit address-significance attributes for all globals. 1783 OutStreamer->emitAddrsig(); 1784 for (const GlobalValue &GV : M.global_values()) 1785 if (!GV.use_empty() && !GV.isThreadLocal() && 1786 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1787 !GV.hasAtLeastLocalUnnamedAddr()) 1788 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1789 } 1790 1791 // Emit symbol partition specifications (ELF only). 1792 if (TM.getTargetTriple().isOSBinFormatELF()) { 1793 unsigned UniqueID = 0; 1794 for (const GlobalValue &GV : M.global_values()) { 1795 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1796 GV.getVisibility() != GlobalValue::DefaultVisibility) 1797 continue; 1798 1799 OutStreamer->SwitchSection( 1800 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1801 "", ++UniqueID, nullptr)); 1802 OutStreamer->emitBytes(GV.getPartition()); 1803 OutStreamer->emitZeros(1); 1804 OutStreamer->emitValue( 1805 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1806 MAI->getCodePointerSize()); 1807 } 1808 } 1809 1810 // Allow the target to emit any magic that it wants at the end of the file, 1811 // after everything else has gone out. 1812 emitEndOfAsmFile(M); 1813 1814 MMI = nullptr; 1815 1816 OutStreamer->Finish(); 1817 OutStreamer->reset(); 1818 OwnedMLI.reset(); 1819 OwnedMDT.reset(); 1820 1821 return false; 1822 } 1823 1824 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1825 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1826 if (Res.second) 1827 Res.first->second = createTempSymbol("exception"); 1828 return Res.first->second; 1829 } 1830 1831 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1832 this->MF = &MF; 1833 const Function &F = MF.getFunction(); 1834 1835 // Get the function symbol. 1836 if (!MAI->needsFunctionDescriptors()) { 1837 CurrentFnSym = getSymbol(&MF.getFunction()); 1838 } else { 1839 assert(TM.getTargetTriple().isOSAIX() && 1840 "Only AIX uses the function descriptor hooks."); 1841 // AIX is unique here in that the name of the symbol emitted for the 1842 // function body does not have the same name as the source function's 1843 // C-linkage name. 1844 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1845 " initalized first."); 1846 1847 // Get the function entry point symbol. 1848 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1849 } 1850 1851 CurrentFnSymForSize = CurrentFnSym; 1852 CurrentFnBegin = nullptr; 1853 CurrentSectionBeginSym = nullptr; 1854 MBBSectionRanges.clear(); 1855 MBBSectionExceptionSyms.clear(); 1856 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1857 if (F.hasFnAttribute("patchable-function-entry") || 1858 F.hasFnAttribute("function-instrument") || 1859 F.hasFnAttribute("xray-instruction-threshold") || 1860 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1861 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1862 CurrentFnBegin = createTempSymbol("func_begin"); 1863 if (NeedsLocalForSize) 1864 CurrentFnSymForSize = CurrentFnBegin; 1865 } 1866 1867 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1868 } 1869 1870 namespace { 1871 1872 // Keep track the alignment, constpool entries per Section. 1873 struct SectionCPs { 1874 MCSection *S; 1875 Align Alignment; 1876 SmallVector<unsigned, 4> CPEs; 1877 1878 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1879 }; 1880 1881 } // end anonymous namespace 1882 1883 /// EmitConstantPool - Print to the current output stream assembly 1884 /// representations of the constants in the constant pool MCP. This is 1885 /// used to print out constants which have been "spilled to memory" by 1886 /// the code generator. 1887 void AsmPrinter::emitConstantPool() { 1888 const MachineConstantPool *MCP = MF->getConstantPool(); 1889 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1890 if (CP.empty()) return; 1891 1892 // Calculate sections for constant pool entries. We collect entries to go into 1893 // the same section together to reduce amount of section switch statements. 1894 SmallVector<SectionCPs, 4> CPSections; 1895 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1896 const MachineConstantPoolEntry &CPE = CP[i]; 1897 Align Alignment = CPE.getAlign(); 1898 1899 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1900 1901 const Constant *C = nullptr; 1902 if (!CPE.isMachineConstantPoolEntry()) 1903 C = CPE.Val.ConstVal; 1904 1905 MCSection *S = getObjFileLowering().getSectionForConstant( 1906 getDataLayout(), Kind, C, Alignment); 1907 1908 // The number of sections are small, just do a linear search from the 1909 // last section to the first. 1910 bool Found = false; 1911 unsigned SecIdx = CPSections.size(); 1912 while (SecIdx != 0) { 1913 if (CPSections[--SecIdx].S == S) { 1914 Found = true; 1915 break; 1916 } 1917 } 1918 if (!Found) { 1919 SecIdx = CPSections.size(); 1920 CPSections.push_back(SectionCPs(S, Alignment)); 1921 } 1922 1923 if (Alignment > CPSections[SecIdx].Alignment) 1924 CPSections[SecIdx].Alignment = Alignment; 1925 CPSections[SecIdx].CPEs.push_back(i); 1926 } 1927 1928 // Now print stuff into the calculated sections. 1929 const MCSection *CurSection = nullptr; 1930 unsigned Offset = 0; 1931 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1932 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1933 unsigned CPI = CPSections[i].CPEs[j]; 1934 MCSymbol *Sym = GetCPISymbol(CPI); 1935 if (!Sym->isUndefined()) 1936 continue; 1937 1938 if (CurSection != CPSections[i].S) { 1939 OutStreamer->SwitchSection(CPSections[i].S); 1940 emitAlignment(Align(CPSections[i].Alignment)); 1941 CurSection = CPSections[i].S; 1942 Offset = 0; 1943 } 1944 1945 MachineConstantPoolEntry CPE = CP[CPI]; 1946 1947 // Emit inter-object padding for alignment. 1948 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1949 OutStreamer->emitZeros(NewOffset - Offset); 1950 1951 Type *Ty = CPE.getType(); 1952 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1953 1954 OutStreamer->emitLabel(Sym); 1955 if (CPE.isMachineConstantPoolEntry()) 1956 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1957 else 1958 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1959 } 1960 } 1961 } 1962 1963 // Print assembly representations of the jump tables used by the current 1964 // function. 1965 void AsmPrinter::emitJumpTableInfo() { 1966 const DataLayout &DL = MF->getDataLayout(); 1967 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1968 if (!MJTI) return; 1969 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1970 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1971 if (JT.empty()) return; 1972 1973 // Pick the directive to use to print the jump table entries, and switch to 1974 // the appropriate section. 1975 const Function &F = MF->getFunction(); 1976 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1977 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1978 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1979 F); 1980 if (JTInDiffSection) { 1981 // Drop it in the readonly section. 1982 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1983 OutStreamer->SwitchSection(ReadOnlySection); 1984 } 1985 1986 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 1987 1988 // Jump tables in code sections are marked with a data_region directive 1989 // where that's supported. 1990 if (!JTInDiffSection) 1991 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 1992 1993 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1994 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1995 1996 // If this jump table was deleted, ignore it. 1997 if (JTBBs.empty()) continue; 1998 1999 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2000 /// emit a .set directive for each unique entry. 2001 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2002 MAI->doesSetDirectiveSuppressReloc()) { 2003 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2004 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2005 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2006 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2007 const MachineBasicBlock *MBB = JTBBs[ii]; 2008 if (!EmittedSets.insert(MBB).second) 2009 continue; 2010 2011 // .set LJTSet, LBB32-base 2012 const MCExpr *LHS = 2013 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2014 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2015 MCBinaryExpr::createSub(LHS, Base, 2016 OutContext)); 2017 } 2018 } 2019 2020 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2021 // before each jump table. The first label is never referenced, but tells 2022 // the assembler and linker the extents of the jump table object. The 2023 // second label is actually referenced by the code. 2024 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2025 // FIXME: This doesn't have to have any specific name, just any randomly 2026 // named and numbered local label started with 'l' would work. Simplify 2027 // GetJTISymbol. 2028 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2029 2030 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2031 OutStreamer->emitLabel(JTISymbol); 2032 2033 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2034 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2035 } 2036 if (!JTInDiffSection) 2037 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2038 } 2039 2040 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2041 /// current stream. 2042 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2043 const MachineBasicBlock *MBB, 2044 unsigned UID) const { 2045 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2046 const MCExpr *Value = nullptr; 2047 switch (MJTI->getEntryKind()) { 2048 case MachineJumpTableInfo::EK_Inline: 2049 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2050 case MachineJumpTableInfo::EK_Custom32: 2051 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2052 MJTI, MBB, UID, OutContext); 2053 break; 2054 case MachineJumpTableInfo::EK_BlockAddress: 2055 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2056 // .word LBB123 2057 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2058 break; 2059 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2060 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2061 // with a relocation as gp-relative, e.g.: 2062 // .gprel32 LBB123 2063 MCSymbol *MBBSym = MBB->getSymbol(); 2064 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2065 return; 2066 } 2067 2068 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2069 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2070 // with a relocation as gp-relative, e.g.: 2071 // .gpdword LBB123 2072 MCSymbol *MBBSym = MBB->getSymbol(); 2073 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2074 return; 2075 } 2076 2077 case MachineJumpTableInfo::EK_LabelDifference32: { 2078 // Each entry is the address of the block minus the address of the jump 2079 // table. This is used for PIC jump tables where gprel32 is not supported. 2080 // e.g.: 2081 // .word LBB123 - LJTI1_2 2082 // If the .set directive avoids relocations, this is emitted as: 2083 // .set L4_5_set_123, LBB123 - LJTI1_2 2084 // .word L4_5_set_123 2085 if (MAI->doesSetDirectiveSuppressReloc()) { 2086 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2087 OutContext); 2088 break; 2089 } 2090 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2091 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2092 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2093 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2094 break; 2095 } 2096 } 2097 2098 assert(Value && "Unknown entry kind!"); 2099 2100 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2101 OutStreamer->emitValue(Value, EntrySize); 2102 } 2103 2104 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2105 /// special global used by LLVM. If so, emit it and return true, otherwise 2106 /// do nothing and return false. 2107 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2108 if (GV->getName() == "llvm.used") { 2109 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2110 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2111 return true; 2112 } 2113 2114 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2115 if (GV->getSection() == "llvm.metadata" || 2116 GV->hasAvailableExternallyLinkage()) 2117 return true; 2118 2119 if (!GV->hasAppendingLinkage()) return false; 2120 2121 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2122 2123 if (GV->getName() == "llvm.global_ctors") { 2124 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2125 /* isCtor */ true); 2126 2127 return true; 2128 } 2129 2130 if (GV->getName() == "llvm.global_dtors") { 2131 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2132 /* isCtor */ false); 2133 2134 return true; 2135 } 2136 2137 report_fatal_error("unknown special variable"); 2138 } 2139 2140 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2141 /// global in the specified llvm.used list. 2142 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2143 // Should be an array of 'i8*'. 2144 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2145 const GlobalValue *GV = 2146 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2147 if (GV) 2148 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2149 } 2150 } 2151 2152 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2153 const Constant *List, 2154 SmallVector<Structor, 8> &Structors) { 2155 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2156 // the init priority. 2157 if (!isa<ConstantArray>(List)) 2158 return; 2159 2160 // Gather the structors in a form that's convenient for sorting by priority. 2161 for (Value *O : cast<ConstantArray>(List)->operands()) { 2162 auto *CS = cast<ConstantStruct>(O); 2163 if (CS->getOperand(1)->isNullValue()) 2164 break; // Found a null terminator, skip the rest. 2165 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2166 if (!Priority) 2167 continue; // Malformed. 2168 Structors.push_back(Structor()); 2169 Structor &S = Structors.back(); 2170 S.Priority = Priority->getLimitedValue(65535); 2171 S.Func = CS->getOperand(1); 2172 if (!CS->getOperand(2)->isNullValue()) { 2173 if (TM.getTargetTriple().isOSAIX()) 2174 llvm::report_fatal_error( 2175 "associated data of XXStructor list is not yet supported on AIX"); 2176 S.ComdatKey = 2177 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2178 } 2179 } 2180 2181 // Emit the function pointers in the target-specific order 2182 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2183 return L.Priority < R.Priority; 2184 }); 2185 } 2186 2187 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2188 /// priority. 2189 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2190 bool IsCtor) { 2191 SmallVector<Structor, 8> Structors; 2192 preprocessXXStructorList(DL, List, Structors); 2193 if (Structors.empty()) 2194 return; 2195 2196 const Align Align = DL.getPointerPrefAlignment(); 2197 for (Structor &S : Structors) { 2198 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2199 const MCSymbol *KeySym = nullptr; 2200 if (GlobalValue *GV = S.ComdatKey) { 2201 if (GV->isDeclarationForLinker()) 2202 // If the associated variable is not defined in this module 2203 // (it might be available_externally, or have been an 2204 // available_externally definition that was dropped by the 2205 // EliminateAvailableExternally pass), some other TU 2206 // will provide its dynamic initializer. 2207 continue; 2208 2209 KeySym = getSymbol(GV); 2210 } 2211 2212 MCSection *OutputSection = 2213 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2214 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2215 OutStreamer->SwitchSection(OutputSection); 2216 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2217 emitAlignment(Align); 2218 emitXXStructor(DL, S.Func); 2219 } 2220 } 2221 2222 void AsmPrinter::emitModuleIdents(Module &M) { 2223 if (!MAI->hasIdentDirective()) 2224 return; 2225 2226 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2227 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2228 const MDNode *N = NMD->getOperand(i); 2229 assert(N->getNumOperands() == 1 && 2230 "llvm.ident metadata entry can have only one operand"); 2231 const MDString *S = cast<MDString>(N->getOperand(0)); 2232 OutStreamer->emitIdent(S->getString()); 2233 } 2234 } 2235 } 2236 2237 void AsmPrinter::emitModuleCommandLines(Module &M) { 2238 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2239 if (!CommandLine) 2240 return; 2241 2242 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2243 if (!NMD || !NMD->getNumOperands()) 2244 return; 2245 2246 OutStreamer->PushSection(); 2247 OutStreamer->SwitchSection(CommandLine); 2248 OutStreamer->emitZeros(1); 2249 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2250 const MDNode *N = NMD->getOperand(i); 2251 assert(N->getNumOperands() == 1 && 2252 "llvm.commandline metadata entry can have only one operand"); 2253 const MDString *S = cast<MDString>(N->getOperand(0)); 2254 OutStreamer->emitBytes(S->getString()); 2255 OutStreamer->emitZeros(1); 2256 } 2257 OutStreamer->PopSection(); 2258 } 2259 2260 //===--------------------------------------------------------------------===// 2261 // Emission and print routines 2262 // 2263 2264 /// Emit a byte directive and value. 2265 /// 2266 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2267 2268 /// Emit a short directive and value. 2269 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2270 2271 /// Emit a long directive and value. 2272 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2273 2274 /// Emit a long long directive and value. 2275 void AsmPrinter::emitInt64(uint64_t Value) const { 2276 OutStreamer->emitInt64(Value); 2277 } 2278 2279 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2280 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2281 /// .set if it avoids relocations. 2282 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2283 unsigned Size) const { 2284 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2285 } 2286 2287 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2288 /// where the size in bytes of the directive is specified by Size and Label 2289 /// specifies the label. This implicitly uses .set if it is available. 2290 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2291 unsigned Size, 2292 bool IsSectionRelative) const { 2293 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2294 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2295 if (Size > 4) 2296 OutStreamer->emitZeros(Size - 4); 2297 return; 2298 } 2299 2300 // Emit Label+Offset (or just Label if Offset is zero) 2301 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2302 if (Offset) 2303 Expr = MCBinaryExpr::createAdd( 2304 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2305 2306 OutStreamer->emitValue(Expr, Size); 2307 } 2308 2309 //===----------------------------------------------------------------------===// 2310 2311 // EmitAlignment - Emit an alignment directive to the specified power of 2312 // two boundary. If a global value is specified, and if that global has 2313 // an explicit alignment requested, it will override the alignment request 2314 // if required for correctness. 2315 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2316 if (GV) 2317 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2318 2319 if (Alignment == Align(1)) 2320 return; // 1-byte aligned: no need to emit alignment. 2321 2322 if (getCurrentSection()->getKind().isText()) 2323 OutStreamer->emitCodeAlignment(Alignment.value()); 2324 else 2325 OutStreamer->emitValueToAlignment(Alignment.value()); 2326 } 2327 2328 //===----------------------------------------------------------------------===// 2329 // Constant emission. 2330 //===----------------------------------------------------------------------===// 2331 2332 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2333 MCContext &Ctx = OutContext; 2334 2335 if (CV->isNullValue() || isa<UndefValue>(CV)) 2336 return MCConstantExpr::create(0, Ctx); 2337 2338 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2339 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2340 2341 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2342 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2343 2344 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2345 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2346 2347 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2348 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2349 2350 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2351 if (!CE) { 2352 llvm_unreachable("Unknown constant value to lower!"); 2353 } 2354 2355 switch (CE->getOpcode()) { 2356 case Instruction::AddrSpaceCast: { 2357 const Constant *Op = CE->getOperand(0); 2358 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2359 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2360 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2361 return lowerConstant(Op); 2362 2363 // Fallthrough to error. 2364 LLVM_FALLTHROUGH; 2365 } 2366 default: { 2367 // If the code isn't optimized, there may be outstanding folding 2368 // opportunities. Attempt to fold the expression using DataLayout as a 2369 // last resort before giving up. 2370 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2371 if (C != CE) 2372 return lowerConstant(C); 2373 2374 // Otherwise report the problem to the user. 2375 std::string S; 2376 raw_string_ostream OS(S); 2377 OS << "Unsupported expression in static initializer: "; 2378 CE->printAsOperand(OS, /*PrintType=*/false, 2379 !MF ? nullptr : MF->getFunction().getParent()); 2380 report_fatal_error(OS.str()); 2381 } 2382 case Instruction::GetElementPtr: { 2383 // Generate a symbolic expression for the byte address 2384 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2385 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2386 2387 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2388 if (!OffsetAI) 2389 return Base; 2390 2391 int64_t Offset = OffsetAI.getSExtValue(); 2392 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2393 Ctx); 2394 } 2395 2396 case Instruction::Trunc: 2397 // We emit the value and depend on the assembler to truncate the generated 2398 // expression properly. This is important for differences between 2399 // blockaddress labels. Since the two labels are in the same function, it 2400 // is reasonable to treat their delta as a 32-bit value. 2401 LLVM_FALLTHROUGH; 2402 case Instruction::BitCast: 2403 return lowerConstant(CE->getOperand(0)); 2404 2405 case Instruction::IntToPtr: { 2406 const DataLayout &DL = getDataLayout(); 2407 2408 // Handle casts to pointers by changing them into casts to the appropriate 2409 // integer type. This promotes constant folding and simplifies this code. 2410 Constant *Op = CE->getOperand(0); 2411 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2412 false/*ZExt*/); 2413 return lowerConstant(Op); 2414 } 2415 2416 case Instruction::PtrToInt: { 2417 const DataLayout &DL = getDataLayout(); 2418 2419 // Support only foldable casts to/from pointers that can be eliminated by 2420 // changing the pointer to the appropriately sized integer type. 2421 Constant *Op = CE->getOperand(0); 2422 Type *Ty = CE->getType(); 2423 2424 const MCExpr *OpExpr = lowerConstant(Op); 2425 2426 // We can emit the pointer value into this slot if the slot is an 2427 // integer slot equal to the size of the pointer. 2428 // 2429 // If the pointer is larger than the resultant integer, then 2430 // as with Trunc just depend on the assembler to truncate it. 2431 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2432 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2433 return OpExpr; 2434 2435 // Otherwise the pointer is smaller than the resultant integer, mask off 2436 // the high bits so we are sure to get a proper truncation if the input is 2437 // a constant expr. 2438 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2439 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2440 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2441 } 2442 2443 case Instruction::Sub: { 2444 GlobalValue *LHSGV; 2445 APInt LHSOffset; 2446 DSOLocalEquivalent *DSOEquiv; 2447 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2448 getDataLayout(), &DSOEquiv)) { 2449 GlobalValue *RHSGV; 2450 APInt RHSOffset; 2451 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2452 getDataLayout())) { 2453 const MCExpr *RelocExpr = 2454 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2455 if (!RelocExpr) { 2456 const MCExpr *LHSExpr = 2457 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2458 if (DSOEquiv && 2459 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2460 LHSExpr = 2461 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2462 RelocExpr = MCBinaryExpr::createSub( 2463 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2464 } 2465 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2466 if (Addend != 0) 2467 RelocExpr = MCBinaryExpr::createAdd( 2468 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2469 return RelocExpr; 2470 } 2471 } 2472 } 2473 // else fallthrough 2474 LLVM_FALLTHROUGH; 2475 2476 // The MC library also has a right-shift operator, but it isn't consistently 2477 // signed or unsigned between different targets. 2478 case Instruction::Add: 2479 case Instruction::Mul: 2480 case Instruction::SDiv: 2481 case Instruction::SRem: 2482 case Instruction::Shl: 2483 case Instruction::And: 2484 case Instruction::Or: 2485 case Instruction::Xor: { 2486 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2487 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2488 switch (CE->getOpcode()) { 2489 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2490 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2491 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2492 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2493 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2494 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2495 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2496 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2497 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2498 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2499 } 2500 } 2501 } 2502 } 2503 2504 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2505 AsmPrinter &AP, 2506 const Constant *BaseCV = nullptr, 2507 uint64_t Offset = 0); 2508 2509 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2510 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2511 2512 /// isRepeatedByteSequence - Determine whether the given value is 2513 /// composed of a repeated sequence of identical bytes and return the 2514 /// byte value. If it is not a repeated sequence, return -1. 2515 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2516 StringRef Data = V->getRawDataValues(); 2517 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2518 char C = Data[0]; 2519 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2520 if (Data[i] != C) return -1; 2521 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2522 } 2523 2524 /// isRepeatedByteSequence - Determine whether the given value is 2525 /// composed of a repeated sequence of identical bytes and return the 2526 /// byte value. If it is not a repeated sequence, return -1. 2527 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2528 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2529 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2530 assert(Size % 8 == 0); 2531 2532 // Extend the element to take zero padding into account. 2533 APInt Value = CI->getValue().zextOrSelf(Size); 2534 if (!Value.isSplat(8)) 2535 return -1; 2536 2537 return Value.zextOrTrunc(8).getZExtValue(); 2538 } 2539 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2540 // Make sure all array elements are sequences of the same repeated 2541 // byte. 2542 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2543 Constant *Op0 = CA->getOperand(0); 2544 int Byte = isRepeatedByteSequence(Op0, DL); 2545 if (Byte == -1) 2546 return -1; 2547 2548 // All array elements must be equal. 2549 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2550 if (CA->getOperand(i) != Op0) 2551 return -1; 2552 return Byte; 2553 } 2554 2555 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2556 return isRepeatedByteSequence(CDS); 2557 2558 return -1; 2559 } 2560 2561 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2562 const ConstantDataSequential *CDS, 2563 AsmPrinter &AP) { 2564 // See if we can aggregate this into a .fill, if so, emit it as such. 2565 int Value = isRepeatedByteSequence(CDS, DL); 2566 if (Value != -1) { 2567 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2568 // Don't emit a 1-byte object as a .fill. 2569 if (Bytes > 1) 2570 return AP.OutStreamer->emitFill(Bytes, Value); 2571 } 2572 2573 // If this can be emitted with .ascii/.asciz, emit it as such. 2574 if (CDS->isString()) 2575 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2576 2577 // Otherwise, emit the values in successive locations. 2578 unsigned ElementByteSize = CDS->getElementByteSize(); 2579 if (isa<IntegerType>(CDS->getElementType())) { 2580 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2581 if (AP.isVerbose()) 2582 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2583 CDS->getElementAsInteger(i)); 2584 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2585 ElementByteSize); 2586 } 2587 } else { 2588 Type *ET = CDS->getElementType(); 2589 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2590 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2591 } 2592 2593 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2594 unsigned EmittedSize = 2595 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2596 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2597 if (unsigned Padding = Size - EmittedSize) 2598 AP.OutStreamer->emitZeros(Padding); 2599 } 2600 2601 static void emitGlobalConstantArray(const DataLayout &DL, 2602 const ConstantArray *CA, AsmPrinter &AP, 2603 const Constant *BaseCV, uint64_t Offset) { 2604 // See if we can aggregate some values. Make sure it can be 2605 // represented as a series of bytes of the constant value. 2606 int Value = isRepeatedByteSequence(CA, DL); 2607 2608 if (Value != -1) { 2609 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2610 AP.OutStreamer->emitFill(Bytes, Value); 2611 } 2612 else { 2613 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2614 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2615 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2616 } 2617 } 2618 } 2619 2620 static void emitGlobalConstantVector(const DataLayout &DL, 2621 const ConstantVector *CV, AsmPrinter &AP) { 2622 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2623 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2624 2625 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2626 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2627 CV->getType()->getNumElements(); 2628 if (unsigned Padding = Size - EmittedSize) 2629 AP.OutStreamer->emitZeros(Padding); 2630 } 2631 2632 static void emitGlobalConstantStruct(const DataLayout &DL, 2633 const ConstantStruct *CS, AsmPrinter &AP, 2634 const Constant *BaseCV, uint64_t Offset) { 2635 // Print the fields in successive locations. Pad to align if needed! 2636 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2637 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2638 uint64_t SizeSoFar = 0; 2639 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2640 const Constant *Field = CS->getOperand(i); 2641 2642 // Print the actual field value. 2643 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2644 2645 // Check if padding is needed and insert one or more 0s. 2646 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2647 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2648 - Layout->getElementOffset(i)) - FieldSize; 2649 SizeSoFar += FieldSize + PadSize; 2650 2651 // Insert padding - this may include padding to increase the size of the 2652 // current field up to the ABI size (if the struct is not packed) as well 2653 // as padding to ensure that the next field starts at the right offset. 2654 AP.OutStreamer->emitZeros(PadSize); 2655 } 2656 assert(SizeSoFar == Layout->getSizeInBytes() && 2657 "Layout of constant struct may be incorrect!"); 2658 } 2659 2660 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2661 assert(ET && "Unknown float type"); 2662 APInt API = APF.bitcastToAPInt(); 2663 2664 // First print a comment with what we think the original floating-point value 2665 // should have been. 2666 if (AP.isVerbose()) { 2667 SmallString<8> StrVal; 2668 APF.toString(StrVal); 2669 ET->print(AP.OutStreamer->GetCommentOS()); 2670 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2671 } 2672 2673 // Now iterate through the APInt chunks, emitting them in endian-correct 2674 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2675 // floats). 2676 unsigned NumBytes = API.getBitWidth() / 8; 2677 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2678 const uint64_t *p = API.getRawData(); 2679 2680 // PPC's long double has odd notions of endianness compared to how LLVM 2681 // handles it: p[0] goes first for *big* endian on PPC. 2682 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2683 int Chunk = API.getNumWords() - 1; 2684 2685 if (TrailingBytes) 2686 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2687 2688 for (; Chunk >= 0; --Chunk) 2689 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2690 } else { 2691 unsigned Chunk; 2692 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2693 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2694 2695 if (TrailingBytes) 2696 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2697 } 2698 2699 // Emit the tail padding for the long double. 2700 const DataLayout &DL = AP.getDataLayout(); 2701 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2702 } 2703 2704 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2705 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2706 } 2707 2708 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2709 const DataLayout &DL = AP.getDataLayout(); 2710 unsigned BitWidth = CI->getBitWidth(); 2711 2712 // Copy the value as we may massage the layout for constants whose bit width 2713 // is not a multiple of 64-bits. 2714 APInt Realigned(CI->getValue()); 2715 uint64_t ExtraBits = 0; 2716 unsigned ExtraBitsSize = BitWidth & 63; 2717 2718 if (ExtraBitsSize) { 2719 // The bit width of the data is not a multiple of 64-bits. 2720 // The extra bits are expected to be at the end of the chunk of the memory. 2721 // Little endian: 2722 // * Nothing to be done, just record the extra bits to emit. 2723 // Big endian: 2724 // * Record the extra bits to emit. 2725 // * Realign the raw data to emit the chunks of 64-bits. 2726 if (DL.isBigEndian()) { 2727 // Basically the structure of the raw data is a chunk of 64-bits cells: 2728 // 0 1 BitWidth / 64 2729 // [chunk1][chunk2] ... [chunkN]. 2730 // The most significant chunk is chunkN and it should be emitted first. 2731 // However, due to the alignment issue chunkN contains useless bits. 2732 // Realign the chunks so that they contain only useful information: 2733 // ExtraBits 0 1 (BitWidth / 64) - 1 2734 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2735 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2736 ExtraBits = Realigned.getRawData()[0] & 2737 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2738 Realigned.lshrInPlace(ExtraBitsSize); 2739 } else 2740 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2741 } 2742 2743 // We don't expect assemblers to support integer data directives 2744 // for more than 64 bits, so we emit the data in at most 64-bit 2745 // quantities at a time. 2746 const uint64_t *RawData = Realigned.getRawData(); 2747 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2748 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2749 AP.OutStreamer->emitIntValue(Val, 8); 2750 } 2751 2752 if (ExtraBitsSize) { 2753 // Emit the extra bits after the 64-bits chunks. 2754 2755 // Emit a directive that fills the expected size. 2756 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2757 Size -= (BitWidth / 64) * 8; 2758 assert(Size && Size * 8 >= ExtraBitsSize && 2759 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2760 == ExtraBits && "Directive too small for extra bits."); 2761 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2762 } 2763 } 2764 2765 /// Transform a not absolute MCExpr containing a reference to a GOT 2766 /// equivalent global, by a target specific GOT pc relative access to the 2767 /// final symbol. 2768 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2769 const Constant *BaseCst, 2770 uint64_t Offset) { 2771 // The global @foo below illustrates a global that uses a got equivalent. 2772 // 2773 // @bar = global i32 42 2774 // @gotequiv = private unnamed_addr constant i32* @bar 2775 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2776 // i64 ptrtoint (i32* @foo to i64)) 2777 // to i32) 2778 // 2779 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2780 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2781 // form: 2782 // 2783 // foo = cstexpr, where 2784 // cstexpr := <gotequiv> - "." + <cst> 2785 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2786 // 2787 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2788 // 2789 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2790 // gotpcrelcst := <offset from @foo base> + <cst> 2791 MCValue MV; 2792 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2793 return; 2794 const MCSymbolRefExpr *SymA = MV.getSymA(); 2795 if (!SymA) 2796 return; 2797 2798 // Check that GOT equivalent symbol is cached. 2799 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2800 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2801 return; 2802 2803 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2804 if (!BaseGV) 2805 return; 2806 2807 // Check for a valid base symbol 2808 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2809 const MCSymbolRefExpr *SymB = MV.getSymB(); 2810 2811 if (!SymB || BaseSym != &SymB->getSymbol()) 2812 return; 2813 2814 // Make sure to match: 2815 // 2816 // gotpcrelcst := <offset from @foo base> + <cst> 2817 // 2818 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2819 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2820 // if the target knows how to encode it. 2821 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2822 if (GOTPCRelCst < 0) 2823 return; 2824 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2825 return; 2826 2827 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2828 // 2829 // bar: 2830 // .long 42 2831 // gotequiv: 2832 // .quad bar 2833 // foo: 2834 // .long gotequiv - "." + <cst> 2835 // 2836 // is replaced by the target specific equivalent to: 2837 // 2838 // bar: 2839 // .long 42 2840 // foo: 2841 // .long bar@GOTPCREL+<gotpcrelcst> 2842 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2843 const GlobalVariable *GV = Result.first; 2844 int NumUses = (int)Result.second; 2845 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2846 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2847 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2848 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2849 2850 // Update GOT equivalent usage information 2851 --NumUses; 2852 if (NumUses >= 0) 2853 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2854 } 2855 2856 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2857 AsmPrinter &AP, const Constant *BaseCV, 2858 uint64_t Offset) { 2859 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2860 2861 // Globals with sub-elements such as combinations of arrays and structs 2862 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2863 // constant symbol base and the current position with BaseCV and Offset. 2864 if (!BaseCV && CV->hasOneUse()) 2865 BaseCV = dyn_cast<Constant>(CV->user_back()); 2866 2867 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2868 return AP.OutStreamer->emitZeros(Size); 2869 2870 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2871 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2872 2873 if (StoreSize <= 8) { 2874 if (AP.isVerbose()) 2875 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2876 CI->getZExtValue()); 2877 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2878 } else { 2879 emitGlobalConstantLargeInt(CI, AP); 2880 } 2881 2882 // Emit tail padding if needed 2883 if (Size != StoreSize) 2884 AP.OutStreamer->emitZeros(Size - StoreSize); 2885 2886 return; 2887 } 2888 2889 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2890 return emitGlobalConstantFP(CFP, AP); 2891 2892 if (isa<ConstantPointerNull>(CV)) { 2893 AP.OutStreamer->emitIntValue(0, Size); 2894 return; 2895 } 2896 2897 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2898 return emitGlobalConstantDataSequential(DL, CDS, AP); 2899 2900 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2901 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2902 2903 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2904 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2905 2906 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2907 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2908 // vectors). 2909 if (CE->getOpcode() == Instruction::BitCast) 2910 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2911 2912 if (Size > 8) { 2913 // If the constant expression's size is greater than 64-bits, then we have 2914 // to emit the value in chunks. Try to constant fold the value and emit it 2915 // that way. 2916 Constant *New = ConstantFoldConstant(CE, DL); 2917 if (New != CE) 2918 return emitGlobalConstantImpl(DL, New, AP); 2919 } 2920 } 2921 2922 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2923 return emitGlobalConstantVector(DL, V, AP); 2924 2925 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2926 // thread the streamer with EmitValue. 2927 const MCExpr *ME = AP.lowerConstant(CV); 2928 2929 // Since lowerConstant already folded and got rid of all IR pointer and 2930 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2931 // directly. 2932 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2933 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2934 2935 AP.OutStreamer->emitValue(ME, Size); 2936 } 2937 2938 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2939 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2940 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2941 if (Size) 2942 emitGlobalConstantImpl(DL, CV, *this); 2943 else if (MAI->hasSubsectionsViaSymbols()) { 2944 // If the global has zero size, emit a single byte so that two labels don't 2945 // look like they are at the same location. 2946 OutStreamer->emitIntValue(0, 1); 2947 } 2948 } 2949 2950 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2951 // Target doesn't support this yet! 2952 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2953 } 2954 2955 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2956 if (Offset > 0) 2957 OS << '+' << Offset; 2958 else if (Offset < 0) 2959 OS << Offset; 2960 } 2961 2962 void AsmPrinter::emitNops(unsigned N) { 2963 MCInst Nop; 2964 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2965 for (; N; --N) 2966 EmitToStreamer(*OutStreamer, Nop); 2967 } 2968 2969 //===----------------------------------------------------------------------===// 2970 // Symbol Lowering Routines. 2971 //===----------------------------------------------------------------------===// 2972 2973 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2974 return OutContext.createTempSymbol(Name, true); 2975 } 2976 2977 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2978 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2979 } 2980 2981 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2982 return MMI->getAddrLabelSymbol(BB); 2983 } 2984 2985 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2986 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2987 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2988 const MachineConstantPoolEntry &CPE = 2989 MF->getConstantPool()->getConstants()[CPID]; 2990 if (!CPE.isMachineConstantPoolEntry()) { 2991 const DataLayout &DL = MF->getDataLayout(); 2992 SectionKind Kind = CPE.getSectionKind(&DL); 2993 const Constant *C = CPE.Val.ConstVal; 2994 Align Alignment = CPE.Alignment; 2995 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2996 getObjFileLowering().getSectionForConstant(DL, Kind, C, 2997 Alignment))) { 2998 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2999 if (Sym->isUndefined()) 3000 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3001 return Sym; 3002 } 3003 } 3004 } 3005 } 3006 3007 const DataLayout &DL = getDataLayout(); 3008 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3009 "CPI" + Twine(getFunctionNumber()) + "_" + 3010 Twine(CPID)); 3011 } 3012 3013 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3014 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3015 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3016 } 3017 3018 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3019 /// FIXME: privatize to AsmPrinter. 3020 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3021 const DataLayout &DL = getDataLayout(); 3022 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3023 Twine(getFunctionNumber()) + "_" + 3024 Twine(UID) + "_set_" + Twine(MBBID)); 3025 } 3026 3027 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3028 StringRef Suffix) const { 3029 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3030 } 3031 3032 /// Return the MCSymbol for the specified ExternalSymbol. 3033 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3034 SmallString<60> NameStr; 3035 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3036 return OutContext.getOrCreateSymbol(NameStr); 3037 } 3038 3039 /// PrintParentLoopComment - Print comments about parent loops of this one. 3040 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3041 unsigned FunctionNumber) { 3042 if (!Loop) return; 3043 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3044 OS.indent(Loop->getLoopDepth()*2) 3045 << "Parent Loop BB" << FunctionNumber << "_" 3046 << Loop->getHeader()->getNumber() 3047 << " Depth=" << Loop->getLoopDepth() << '\n'; 3048 } 3049 3050 /// PrintChildLoopComment - Print comments about child loops within 3051 /// the loop for this basic block, with nesting. 3052 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3053 unsigned FunctionNumber) { 3054 // Add child loop information 3055 for (const MachineLoop *CL : *Loop) { 3056 OS.indent(CL->getLoopDepth()*2) 3057 << "Child Loop BB" << FunctionNumber << "_" 3058 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3059 << '\n'; 3060 PrintChildLoopComment(OS, CL, FunctionNumber); 3061 } 3062 } 3063 3064 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3065 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3066 const MachineLoopInfo *LI, 3067 const AsmPrinter &AP) { 3068 // Add loop depth information 3069 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3070 if (!Loop) return; 3071 3072 MachineBasicBlock *Header = Loop->getHeader(); 3073 assert(Header && "No header for loop"); 3074 3075 // If this block is not a loop header, just print out what is the loop header 3076 // and return. 3077 if (Header != &MBB) { 3078 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3079 Twine(AP.getFunctionNumber())+"_" + 3080 Twine(Loop->getHeader()->getNumber())+ 3081 " Depth="+Twine(Loop->getLoopDepth())); 3082 return; 3083 } 3084 3085 // Otherwise, it is a loop header. Print out information about child and 3086 // parent loops. 3087 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3088 3089 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3090 3091 OS << "=>"; 3092 OS.indent(Loop->getLoopDepth()*2-2); 3093 3094 OS << "This "; 3095 if (Loop->isInnermost()) 3096 OS << "Inner "; 3097 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3098 3099 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3100 } 3101 3102 /// emitBasicBlockStart - This method prints the label for the specified 3103 /// MachineBasicBlock, an alignment (if present) and a comment describing 3104 /// it if appropriate. 3105 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3106 // End the previous funclet and start a new one. 3107 if (MBB.isEHFuncletEntry()) { 3108 for (const HandlerInfo &HI : Handlers) { 3109 HI.Handler->endFunclet(); 3110 HI.Handler->beginFunclet(MBB); 3111 } 3112 } 3113 3114 // Emit an alignment directive for this block, if needed. 3115 const Align Alignment = MBB.getAlignment(); 3116 if (Alignment != Align(1)) 3117 emitAlignment(Alignment); 3118 3119 // Switch to a new section if this basic block must begin a section. The 3120 // entry block is always placed in the function section and is handled 3121 // separately. 3122 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3123 OutStreamer->SwitchSection( 3124 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3125 MBB, TM)); 3126 CurrentSectionBeginSym = MBB.getSymbol(); 3127 } 3128 3129 // If the block has its address taken, emit any labels that were used to 3130 // reference the block. It is possible that there is more than one label 3131 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3132 // the references were generated. 3133 if (MBB.hasAddressTaken()) { 3134 const BasicBlock *BB = MBB.getBasicBlock(); 3135 if (isVerbose()) 3136 OutStreamer->AddComment("Block address taken"); 3137 3138 // MBBs can have their address taken as part of CodeGen without having 3139 // their corresponding BB's address taken in IR 3140 if (BB->hasAddressTaken()) 3141 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3142 OutStreamer->emitLabel(Sym); 3143 } 3144 3145 // Print some verbose block comments. 3146 if (isVerbose()) { 3147 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3148 if (BB->hasName()) { 3149 BB->printAsOperand(OutStreamer->GetCommentOS(), 3150 /*PrintType=*/false, BB->getModule()); 3151 OutStreamer->GetCommentOS() << '\n'; 3152 } 3153 } 3154 3155 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3156 emitBasicBlockLoopComments(MBB, MLI, *this); 3157 } 3158 3159 // Print the main label for the block. 3160 if (shouldEmitLabelForBasicBlock(MBB)) { 3161 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3162 OutStreamer->AddComment("Label of block must be emitted"); 3163 OutStreamer->emitLabel(MBB.getSymbol()); 3164 } else { 3165 if (isVerbose()) { 3166 // NOTE: Want this comment at start of line, don't emit with AddComment. 3167 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3168 false); 3169 } 3170 } 3171 3172 // With BB sections, each basic block must handle CFI information on its own 3173 // if it begins a section (Entry block is handled separately by 3174 // AsmPrinterHandler::beginFunction). 3175 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3176 for (const HandlerInfo &HI : Handlers) 3177 HI.Handler->beginBasicBlock(MBB); 3178 } 3179 3180 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3181 // Check if CFI information needs to be updated for this MBB with basic block 3182 // sections. 3183 if (MBB.isEndSection()) 3184 for (const HandlerInfo &HI : Handlers) 3185 HI.Handler->endBasicBlock(MBB); 3186 } 3187 3188 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3189 bool IsDefinition) const { 3190 MCSymbolAttr Attr = MCSA_Invalid; 3191 3192 switch (Visibility) { 3193 default: break; 3194 case GlobalValue::HiddenVisibility: 3195 if (IsDefinition) 3196 Attr = MAI->getHiddenVisibilityAttr(); 3197 else 3198 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3199 break; 3200 case GlobalValue::ProtectedVisibility: 3201 Attr = MAI->getProtectedVisibilityAttr(); 3202 break; 3203 } 3204 3205 if (Attr != MCSA_Invalid) 3206 OutStreamer->emitSymbolAttribute(Sym, Attr); 3207 } 3208 3209 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3210 const MachineBasicBlock &MBB) const { 3211 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3212 // in the labels mode (option `=labels`) and every section beginning in the 3213 // sections mode (`=all` and `=list=`). 3214 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3215 return true; 3216 // A label is needed for any block with at least one predecessor (when that 3217 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3218 // entry, or if a label is forced). 3219 return !MBB.pred_empty() && 3220 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3221 MBB.hasLabelMustBeEmitted()); 3222 } 3223 3224 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3225 /// exactly one predecessor and the control transfer mechanism between 3226 /// the predecessor and this block is a fall-through. 3227 bool AsmPrinter:: 3228 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3229 // If this is a landing pad, it isn't a fall through. If it has no preds, 3230 // then nothing falls through to it. 3231 if (MBB->isEHPad() || MBB->pred_empty()) 3232 return false; 3233 3234 // If there isn't exactly one predecessor, it can't be a fall through. 3235 if (MBB->pred_size() > 1) 3236 return false; 3237 3238 // The predecessor has to be immediately before this block. 3239 MachineBasicBlock *Pred = *MBB->pred_begin(); 3240 if (!Pred->isLayoutSuccessor(MBB)) 3241 return false; 3242 3243 // If the block is completely empty, then it definitely does fall through. 3244 if (Pred->empty()) 3245 return true; 3246 3247 // Check the terminators in the previous blocks 3248 for (const auto &MI : Pred->terminators()) { 3249 // If it is not a simple branch, we are in a table somewhere. 3250 if (!MI.isBranch() || MI.isIndirectBranch()) 3251 return false; 3252 3253 // If we are the operands of one of the branches, this is not a fall 3254 // through. Note that targets with delay slots will usually bundle 3255 // terminators with the delay slot instruction. 3256 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3257 if (OP->isJTI()) 3258 return false; 3259 if (OP->isMBB() && OP->getMBB() == MBB) 3260 return false; 3261 } 3262 } 3263 3264 return true; 3265 } 3266 3267 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3268 if (!S.usesMetadata()) 3269 return nullptr; 3270 3271 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3272 gcp_map_type::iterator GCPI = GCMap.find(&S); 3273 if (GCPI != GCMap.end()) 3274 return GCPI->second.get(); 3275 3276 auto Name = S.getName(); 3277 3278 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3279 GCMetadataPrinterRegistry::entries()) 3280 if (Name == GCMetaPrinter.getName()) { 3281 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3282 GMP->S = &S; 3283 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3284 return IterBool.first->second.get(); 3285 } 3286 3287 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3288 } 3289 3290 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3291 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3292 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3293 bool NeedsDefault = false; 3294 if (MI->begin() == MI->end()) 3295 // No GC strategy, use the default format. 3296 NeedsDefault = true; 3297 else 3298 for (auto &I : *MI) { 3299 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3300 if (MP->emitStackMaps(SM, *this)) 3301 continue; 3302 // The strategy doesn't have printer or doesn't emit custom stack maps. 3303 // Use the default format. 3304 NeedsDefault = true; 3305 } 3306 3307 if (NeedsDefault) 3308 SM.serializeToStackMapSection(); 3309 } 3310 3311 /// Pin vtable to this file. 3312 AsmPrinterHandler::~AsmPrinterHandler() = default; 3313 3314 void AsmPrinterHandler::markFunctionEnd() {} 3315 3316 // In the binary's "xray_instr_map" section, an array of these function entries 3317 // describes each instrumentation point. When XRay patches your code, the index 3318 // into this table will be given to your handler as a patch point identifier. 3319 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3320 auto Kind8 = static_cast<uint8_t>(Kind); 3321 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3322 Out->emitBinaryData( 3323 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3324 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3325 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3326 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3327 Out->emitZeros(Padding); 3328 } 3329 3330 void AsmPrinter::emitXRayTable() { 3331 if (Sleds.empty()) 3332 return; 3333 3334 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3335 const Function &F = MF->getFunction(); 3336 MCSection *InstMap = nullptr; 3337 MCSection *FnSledIndex = nullptr; 3338 const Triple &TT = TM.getTargetTriple(); 3339 // Use PC-relative addresses on all targets. 3340 if (TT.isOSBinFormatELF()) { 3341 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3342 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3343 StringRef GroupName; 3344 if (F.hasComdat()) { 3345 Flags |= ELF::SHF_GROUP; 3346 GroupName = F.getComdat()->getName(); 3347 } 3348 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3349 Flags, 0, GroupName, 3350 MCSection::NonUniqueID, LinkedToSym); 3351 3352 if (!TM.Options.XRayOmitFunctionIndex) 3353 FnSledIndex = OutContext.getELFSection( 3354 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3355 GroupName, MCSection::NonUniqueID, LinkedToSym); 3356 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3357 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3358 SectionKind::getReadOnlyWithRel()); 3359 if (!TM.Options.XRayOmitFunctionIndex) 3360 FnSledIndex = OutContext.getMachOSection( 3361 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3362 } else { 3363 llvm_unreachable("Unsupported target"); 3364 } 3365 3366 auto WordSizeBytes = MAI->getCodePointerSize(); 3367 3368 // Now we switch to the instrumentation map section. Because this is done 3369 // per-function, we are able to create an index entry that will represent the 3370 // range of sleds associated with a function. 3371 auto &Ctx = OutContext; 3372 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3373 OutStreamer->SwitchSection(InstMap); 3374 OutStreamer->emitLabel(SledsStart); 3375 for (const auto &Sled : Sleds) { 3376 MCSymbol *Dot = Ctx.createTempSymbol(); 3377 OutStreamer->emitLabel(Dot); 3378 OutStreamer->emitValueImpl( 3379 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3380 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3381 WordSizeBytes); 3382 OutStreamer->emitValueImpl( 3383 MCBinaryExpr::createSub( 3384 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3385 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3386 MCConstantExpr::create(WordSizeBytes, Ctx), 3387 Ctx), 3388 Ctx), 3389 WordSizeBytes); 3390 Sled.emit(WordSizeBytes, OutStreamer.get()); 3391 } 3392 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3393 OutStreamer->emitLabel(SledsEnd); 3394 3395 // We then emit a single entry in the index per function. We use the symbols 3396 // that bound the instrumentation map as the range for a specific function. 3397 // Each entry here will be 2 * word size aligned, as we're writing down two 3398 // pointers. This should work for both 32-bit and 64-bit platforms. 3399 if (FnSledIndex) { 3400 OutStreamer->SwitchSection(FnSledIndex); 3401 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3402 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3403 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3404 OutStreamer->SwitchSection(PrevSection); 3405 } 3406 Sleds.clear(); 3407 } 3408 3409 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3410 SledKind Kind, uint8_t Version) { 3411 const Function &F = MI.getMF()->getFunction(); 3412 auto Attr = F.getFnAttribute("function-instrument"); 3413 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3414 bool AlwaysInstrument = 3415 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3416 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3417 Kind = SledKind::LOG_ARGS_ENTER; 3418 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3419 AlwaysInstrument, &F, Version}); 3420 } 3421 3422 void AsmPrinter::emitPatchableFunctionEntries() { 3423 const Function &F = MF->getFunction(); 3424 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3425 (void)F.getFnAttribute("patchable-function-prefix") 3426 .getValueAsString() 3427 .getAsInteger(10, PatchableFunctionPrefix); 3428 (void)F.getFnAttribute("patchable-function-entry") 3429 .getValueAsString() 3430 .getAsInteger(10, PatchableFunctionEntry); 3431 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3432 return; 3433 const unsigned PointerSize = getPointerSize(); 3434 if (TM.getTargetTriple().isOSBinFormatELF()) { 3435 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3436 const MCSymbolELF *LinkedToSym = nullptr; 3437 StringRef GroupName; 3438 3439 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3440 // if we are using the integrated assembler. 3441 if (MAI->useIntegratedAssembler()) { 3442 Flags |= ELF::SHF_LINK_ORDER; 3443 if (F.hasComdat()) { 3444 Flags |= ELF::SHF_GROUP; 3445 GroupName = F.getComdat()->getName(); 3446 } 3447 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3448 } 3449 OutStreamer->SwitchSection(OutContext.getELFSection( 3450 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3451 MCSection::NonUniqueID, LinkedToSym)); 3452 emitAlignment(Align(PointerSize)); 3453 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3454 } 3455 } 3456 3457 uint16_t AsmPrinter::getDwarfVersion() const { 3458 return OutStreamer->getContext().getDwarfVersion(); 3459 } 3460 3461 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3462 OutStreamer->getContext().setDwarfVersion(Version); 3463 } 3464 3465 bool AsmPrinter::isDwarf64() const { 3466 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3467 } 3468 3469 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3470 return dwarf::getDwarfOffsetByteSize( 3471 OutStreamer->getContext().getDwarfFormat()); 3472 } 3473 3474 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3475 return dwarf::getUnitLengthFieldByteSize( 3476 OutStreamer->getContext().getDwarfFormat()); 3477 } 3478