1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinException.h" 18 #include "CodeViewDebug.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GCMetadataPrinter.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBundle.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Mangler.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCExpr.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/MCValue.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Target/TargetFrameLowering.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetLoweringObjectFile.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 static const char *const DWARFGroupName = "DWARF Emission"; 60 static const char *const DbgTimerName = "Debug Info Emission"; 61 static const char *const EHTimerName = "DWARF Exception Writer"; 62 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 63 64 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 65 66 char AsmPrinter::ID = 0; 67 68 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 69 static gcp_map_type &getGCMap(void *&P) { 70 if (!P) 71 P = new gcp_map_type(); 72 return *(gcp_map_type*)P; 73 } 74 75 76 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 77 /// value in log2 form. This rounds up to the preferred alignment if possible 78 /// and legal. 79 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 80 unsigned InBits = 0) { 81 unsigned NumBits = 0; 82 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 83 NumBits = DL.getPreferredAlignmentLog(GVar); 84 85 // If InBits is specified, round it to it. 86 if (InBits > NumBits) 87 NumBits = InBits; 88 89 // If the GV has a specified alignment, take it into account. 90 if (GV->getAlignment() == 0) 91 return NumBits; 92 93 unsigned GVAlign = Log2_32(GV->getAlignment()); 94 95 // If the GVAlign is larger than NumBits, or if we are required to obey 96 // NumBits because the GV has an assigned section, obey it. 97 if (GVAlign > NumBits || GV->hasSection()) 98 NumBits = GVAlign; 99 return NumBits; 100 } 101 102 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 103 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 104 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 105 LastMI(nullptr), LastFn(0), Counter(~0U) { 106 DD = nullptr; 107 MMI = nullptr; 108 LI = nullptr; 109 MF = nullptr; 110 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 111 CurrentFnBegin = nullptr; 112 CurrentFnEnd = nullptr; 113 GCMetadataPrinters = nullptr; 114 VerboseAsm = OutStreamer->isVerboseAsm(); 115 } 116 117 AsmPrinter::~AsmPrinter() { 118 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 119 120 if (GCMetadataPrinters) { 121 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 122 123 delete &GCMap; 124 GCMetadataPrinters = nullptr; 125 } 126 } 127 128 /// getFunctionNumber - Return a unique ID for the current function. 129 /// 130 unsigned AsmPrinter::getFunctionNumber() const { 131 return MF->getFunctionNumber(); 132 } 133 134 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 135 return *TM.getObjFileLowering(); 136 } 137 138 const DataLayout &AsmPrinter::getDataLayout() const { 139 return MMI->getModule()->getDataLayout(); 140 } 141 142 // Do not use the cached DataLayout because some client use it without a Module 143 // (llmv-dsymutil, llvm-dwarfdump). 144 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 145 146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 148 return MF->getSubtarget<MCSubtargetInfo>(); 149 } 150 151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 152 S.EmitInstruction(Inst, getSubtargetInfo()); 153 } 154 155 StringRef AsmPrinter::getTargetTriple() const { 156 return TM.getTargetTriple().str(); 157 } 158 159 /// getCurrentSection() - Return the current section we are emitting to. 160 const MCSection *AsmPrinter::getCurrentSection() const { 161 return OutStreamer->getCurrentSection().first; 162 } 163 164 165 166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesAll(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 AU.addRequired<MachineModuleInfo>(); 170 AU.addRequired<GCModuleInfo>(); 171 if (isVerbose()) 172 AU.addRequired<MachineLoopInfo>(); 173 } 174 175 bool AsmPrinter::doInitialization(Module &M) { 176 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 177 178 // Initialize TargetLoweringObjectFile. 179 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 180 .Initialize(OutContext, TM); 181 182 OutStreamer->InitSections(false); 183 184 Mang = new Mangler(); 185 186 // Emit the version-min deplyment target directive if needed. 187 // 188 // FIXME: If we end up with a collection of these sorts of Darwin-specific 189 // or ELF-specific things, it may make sense to have a platform helper class 190 // that will work with the target helper class. For now keep it here, as the 191 // alternative is duplicated code in each of the target asm printers that 192 // use the directive, where it would need the same conditionalization 193 // anyway. 194 Triple TT(getTargetTriple()); 195 // If there is a version specified, Major will be non-zero. 196 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 197 unsigned Major, Minor, Update; 198 MCVersionMinType VersionType; 199 if (TT.isWatchOS()) { 200 VersionType = MCVM_WatchOSVersionMin; 201 TT.getWatchOSVersion(Major, Minor, Update); 202 } else if (TT.isTvOS()) { 203 VersionType = MCVM_TvOSVersionMin; 204 TT.getiOSVersion(Major, Minor, Update); 205 } else if (TT.isMacOSX()) { 206 VersionType = MCVM_OSXVersionMin; 207 if (!TT.getMacOSXVersion(Major, Minor, Update)) 208 Major = 0; 209 } else { 210 VersionType = MCVM_IOSVersionMin; 211 TT.getiOSVersion(Major, Minor, Update); 212 } 213 if (Major != 0) 214 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 215 } 216 217 // Allow the target to emit any magic that it wants at the start of the file. 218 EmitStartOfAsmFile(M); 219 220 // Very minimal debug info. It is ignored if we emit actual debug info. If we 221 // don't, this at least helps the user find where a global came from. 222 if (MAI->hasSingleParameterDotFile()) { 223 // .file "foo.c" 224 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 225 } 226 227 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 228 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 229 for (auto &I : *MI) 230 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 231 MP->beginAssembly(M, *MI, *this); 232 233 // Emit module-level inline asm if it exists. 234 if (!M.getModuleInlineAsm().empty()) { 235 // We're at the module level. Construct MCSubtarget from the default CPU 236 // and target triple. 237 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 238 TM.getTargetTriple().str(), TM.getTargetCPU(), 239 TM.getTargetFeatureString())); 240 OutStreamer->AddComment("Start of file scope inline assembly"); 241 OutStreamer->AddBlankLine(); 242 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 243 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 244 OutStreamer->AddComment("End of file scope inline assembly"); 245 OutStreamer->AddBlankLine(); 246 } 247 248 if (MAI->doesSupportDebugInformation()) { 249 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 250 if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 251 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 252 DbgTimerName, 253 CodeViewLineTablesGroupName)); 254 } 255 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 256 DD = new DwarfDebug(this, &M); 257 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 258 } 259 } 260 261 EHStreamer *ES = nullptr; 262 switch (MAI->getExceptionHandlingType()) { 263 case ExceptionHandling::None: 264 break; 265 case ExceptionHandling::SjLj: 266 case ExceptionHandling::DwarfCFI: 267 ES = new DwarfCFIException(this); 268 break; 269 case ExceptionHandling::ARM: 270 ES = new ARMException(this); 271 break; 272 case ExceptionHandling::WinEH: 273 switch (MAI->getWinEHEncodingType()) { 274 default: llvm_unreachable("unsupported unwinding information encoding"); 275 case WinEH::EncodingType::Invalid: 276 break; 277 case WinEH::EncodingType::X86: 278 case WinEH::EncodingType::Itanium: 279 ES = new WinException(this); 280 break; 281 } 282 break; 283 } 284 if (ES) 285 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 286 return false; 287 } 288 289 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 290 if (!MAI.hasWeakDefCanBeHiddenDirective()) 291 return false; 292 293 return canBeOmittedFromSymbolTable(GV); 294 } 295 296 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 297 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 298 switch (Linkage) { 299 case GlobalValue::CommonLinkage: 300 case GlobalValue::LinkOnceAnyLinkage: 301 case GlobalValue::LinkOnceODRLinkage: 302 case GlobalValue::WeakAnyLinkage: 303 case GlobalValue::WeakODRLinkage: 304 if (MAI->hasWeakDefDirective()) { 305 // .globl _foo 306 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 307 308 if (!canBeHidden(GV, *MAI)) 309 // .weak_definition _foo 310 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 311 else 312 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 313 } else if (MAI->hasLinkOnceDirective()) { 314 // .globl _foo 315 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 316 //NOTE: linkonce is handled by the section the symbol was assigned to. 317 } else { 318 // .weak _foo 319 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 320 } 321 return; 322 case GlobalValue::AppendingLinkage: 323 // FIXME: appending linkage variables should go into a section of 324 // their name or something. For now, just emit them as external. 325 case GlobalValue::ExternalLinkage: 326 // If external or appending, declare as a global symbol. 327 // .globl _foo 328 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 329 return; 330 case GlobalValue::PrivateLinkage: 331 case GlobalValue::InternalLinkage: 332 return; 333 case GlobalValue::AvailableExternallyLinkage: 334 llvm_unreachable("Should never emit this"); 335 case GlobalValue::ExternalWeakLinkage: 336 llvm_unreachable("Don't know how to emit these"); 337 } 338 llvm_unreachable("Unknown linkage type!"); 339 } 340 341 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 342 const GlobalValue *GV) const { 343 TM.getNameWithPrefix(Name, GV, *Mang); 344 } 345 346 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 347 return TM.getSymbol(GV, *Mang); 348 } 349 350 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 351 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 352 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 353 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 354 "No emulated TLS variables in the common section"); 355 356 // Never emit TLS variable xyz in emulated TLS model. 357 // The initialization value is in __emutls_t.xyz instead of xyz. 358 if (IsEmuTLSVar) 359 return; 360 361 if (GV->hasInitializer()) { 362 // Check to see if this is a special global used by LLVM, if so, emit it. 363 if (EmitSpecialLLVMGlobal(GV)) 364 return; 365 366 // Skip the emission of global equivalents. The symbol can be emitted later 367 // on by emitGlobalGOTEquivs in case it turns out to be needed. 368 if (GlobalGOTEquivs.count(getSymbol(GV))) 369 return; 370 371 if (isVerbose()) { 372 // When printing the control variable __emutls_v.*, 373 // we don't need to print the original TLS variable name. 374 GV->printAsOperand(OutStreamer->GetCommentOS(), 375 /*PrintType=*/false, GV->getParent()); 376 OutStreamer->GetCommentOS() << '\n'; 377 } 378 } 379 380 MCSymbol *GVSym = getSymbol(GV); 381 MCSymbol *EmittedSym = GVSym; 382 // getOrCreateEmuTLSControlSym only creates the symbol with name and default attributes. 383 // GV's or GVSym's attributes will be used for the EmittedSym. 384 385 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 386 387 if (!GV->hasInitializer()) // External globals require no extra code. 388 return; 389 390 GVSym->redefineIfPossible(); 391 if (GVSym->isDefined() || GVSym->isVariable()) 392 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 393 "' is already defined"); 394 395 if (MAI->hasDotTypeDotSizeDirective()) 396 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 397 398 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 399 400 const DataLayout &DL = GV->getParent()->getDataLayout(); 401 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 402 403 // If the alignment is specified, we *must* obey it. Overaligning a global 404 // with a specified alignment is a prompt way to break globals emitted to 405 // sections and expected to be contiguous (e.g. ObjC metadata). 406 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 407 408 for (const HandlerInfo &HI : Handlers) { 409 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 410 HI.Handler->setSymbolSize(GVSym, Size); 411 } 412 413 // Handle common and BSS local symbols (.lcomm). 414 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 415 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 416 unsigned Align = 1 << AlignLog; 417 418 // Handle common symbols. 419 if (GVKind.isCommon()) { 420 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 421 Align = 0; 422 423 // .comm _foo, 42, 4 424 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 425 return; 426 } 427 428 // Handle local BSS symbols. 429 if (MAI->hasMachoZeroFillDirective()) { 430 MCSection *TheSection = 431 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 432 // .zerofill __DATA, __bss, _foo, 400, 5 433 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 434 return; 435 } 436 437 // Use .lcomm only if it supports user-specified alignment. 438 // Otherwise, while it would still be correct to use .lcomm in some 439 // cases (e.g. when Align == 1), the external assembler might enfore 440 // some -unknown- default alignment behavior, which could cause 441 // spurious differences between external and integrated assembler. 442 // Prefer to simply fall back to .local / .comm in this case. 443 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 444 // .lcomm _foo, 42 445 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 446 return; 447 } 448 449 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 450 Align = 0; 451 452 // .local _foo 453 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 454 // .comm _foo, 42, 4 455 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 456 return; 457 } 458 459 MCSymbol *EmittedInitSym = GVSym; 460 461 MCSection *TheSection = 462 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 463 464 // Handle the zerofill directive on darwin, which is a special form of BSS 465 // emission. 466 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 467 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 468 469 // .globl _foo 470 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 471 // .zerofill __DATA, __common, _foo, 400, 5 472 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 473 return; 474 } 475 476 // Handle thread local data for mach-o which requires us to output an 477 // additional structure of data and mangle the original symbol so that we 478 // can reference it later. 479 // 480 // TODO: This should become an "emit thread local global" method on TLOF. 481 // All of this macho specific stuff should be sunk down into TLOFMachO and 482 // stuff like "TLSExtraDataSection" should no longer be part of the parent 483 // TLOF class. This will also make it more obvious that stuff like 484 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 485 // specific code. 486 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 487 // Emit the .tbss symbol 488 MCSymbol *MangSym = 489 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 490 491 if (GVKind.isThreadBSS()) { 492 TheSection = getObjFileLowering().getTLSBSSSection(); 493 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 494 } else if (GVKind.isThreadData()) { 495 OutStreamer->SwitchSection(TheSection); 496 497 EmitAlignment(AlignLog, GV); 498 OutStreamer->EmitLabel(MangSym); 499 500 EmitGlobalConstant(GV->getParent()->getDataLayout(), 501 GV->getInitializer()); 502 } 503 504 OutStreamer->AddBlankLine(); 505 506 // Emit the variable struct for the runtime. 507 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 508 509 OutStreamer->SwitchSection(TLVSect); 510 // Emit the linkage here. 511 EmitLinkage(GV, GVSym); 512 OutStreamer->EmitLabel(GVSym); 513 514 // Three pointers in size: 515 // - __tlv_bootstrap - used to make sure support exists 516 // - spare pointer, used when mapped by the runtime 517 // - pointer to mangled symbol above with initializer 518 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 519 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 520 PtrSize); 521 OutStreamer->EmitIntValue(0, PtrSize); 522 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 523 524 OutStreamer->AddBlankLine(); 525 return; 526 } 527 528 OutStreamer->SwitchSection(TheSection); 529 530 EmitLinkage(GV, EmittedInitSym); 531 EmitAlignment(AlignLog, GV); 532 533 OutStreamer->EmitLabel(EmittedInitSym); 534 535 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 536 537 if (MAI->hasDotTypeDotSizeDirective()) 538 // .size foo, 42 539 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym), 540 MCConstantExpr::create(Size, OutContext)); 541 542 OutStreamer->AddBlankLine(); 543 } 544 545 /// EmitFunctionHeader - This method emits the header for the current 546 /// function. 547 void AsmPrinter::EmitFunctionHeader() { 548 // Print out constants referenced by the function 549 EmitConstantPool(); 550 551 // Print the 'header' of function. 552 const Function *F = MF->getFunction(); 553 554 OutStreamer->SwitchSection( 555 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 556 EmitVisibility(CurrentFnSym, F->getVisibility()); 557 558 EmitLinkage(F, CurrentFnSym); 559 if (MAI->hasFunctionAlignment()) 560 EmitAlignment(MF->getAlignment(), F); 561 562 if (MAI->hasDotTypeDotSizeDirective()) 563 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 564 565 if (isVerbose()) { 566 F->printAsOperand(OutStreamer->GetCommentOS(), 567 /*PrintType=*/false, F->getParent()); 568 OutStreamer->GetCommentOS() << '\n'; 569 } 570 571 // Emit the prefix data. 572 if (F->hasPrefixData()) 573 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 574 575 // Emit the CurrentFnSym. This is a virtual function to allow targets to 576 // do their wild and crazy things as required. 577 EmitFunctionEntryLabel(); 578 579 // If the function had address-taken blocks that got deleted, then we have 580 // references to the dangling symbols. Emit them at the start of the function 581 // so that we don't get references to undefined symbols. 582 std::vector<MCSymbol*> DeadBlockSyms; 583 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 584 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 585 OutStreamer->AddComment("Address taken block that was later removed"); 586 OutStreamer->EmitLabel(DeadBlockSyms[i]); 587 } 588 589 if (CurrentFnBegin) { 590 if (MAI->useAssignmentForEHBegin()) { 591 MCSymbol *CurPos = OutContext.createTempSymbol(); 592 OutStreamer->EmitLabel(CurPos); 593 OutStreamer->EmitAssignment(CurrentFnBegin, 594 MCSymbolRefExpr::create(CurPos, OutContext)); 595 } else { 596 OutStreamer->EmitLabel(CurrentFnBegin); 597 } 598 } 599 600 // Emit pre-function debug and/or EH information. 601 for (const HandlerInfo &HI : Handlers) { 602 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 603 HI.Handler->beginFunction(MF); 604 } 605 606 // Emit the prologue data. 607 if (F->hasPrologueData()) 608 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 609 } 610 611 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 612 /// function. This can be overridden by targets as required to do custom stuff. 613 void AsmPrinter::EmitFunctionEntryLabel() { 614 CurrentFnSym->redefineIfPossible(); 615 616 // The function label could have already been emitted if two symbols end up 617 // conflicting due to asm renaming. Detect this and emit an error. 618 if (CurrentFnSym->isVariable()) 619 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 620 "' is a protected alias"); 621 if (CurrentFnSym->isDefined()) 622 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 623 "' label emitted multiple times to assembly file"); 624 625 return OutStreamer->EmitLabel(CurrentFnSym); 626 } 627 628 /// emitComments - Pretty-print comments for instructions. 629 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 630 const MachineFunction *MF = MI.getParent()->getParent(); 631 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 632 633 // Check for spills and reloads 634 int FI; 635 636 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 637 638 // We assume a single instruction only has a spill or reload, not 639 // both. 640 const MachineMemOperand *MMO; 641 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 642 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 643 MMO = *MI.memoperands_begin(); 644 CommentOS << MMO->getSize() << "-byte Reload\n"; 645 } 646 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 647 if (FrameInfo->isSpillSlotObjectIndex(FI)) 648 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 649 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 650 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 651 MMO = *MI.memoperands_begin(); 652 CommentOS << MMO->getSize() << "-byte Spill\n"; 653 } 654 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 655 if (FrameInfo->isSpillSlotObjectIndex(FI)) 656 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 657 } 658 659 // Check for spill-induced copies 660 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 661 CommentOS << " Reload Reuse\n"; 662 } 663 664 /// emitImplicitDef - This method emits the specified machine instruction 665 /// that is an implicit def. 666 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 667 unsigned RegNo = MI->getOperand(0).getReg(); 668 669 SmallString<128> Str; 670 raw_svector_ostream OS(Str); 671 OS << "implicit-def: " 672 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 673 674 OutStreamer->AddComment(OS.str()); 675 OutStreamer->AddBlankLine(); 676 } 677 678 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 679 std::string Str; 680 raw_string_ostream OS(Str); 681 OS << "kill:"; 682 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 683 const MachineOperand &Op = MI->getOperand(i); 684 assert(Op.isReg() && "KILL instruction must have only register operands"); 685 OS << ' ' 686 << PrintReg(Op.getReg(), 687 AP.MF->getSubtarget().getRegisterInfo()) 688 << (Op.isDef() ? "<def>" : "<kill>"); 689 } 690 AP.OutStreamer->AddComment(Str); 691 AP.OutStreamer->AddBlankLine(); 692 } 693 694 /// emitDebugValueComment - This method handles the target-independent form 695 /// of DBG_VALUE, returning true if it was able to do so. A false return 696 /// means the target will need to handle MI in EmitInstruction. 697 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 698 // This code handles only the 4-operand target-independent form. 699 if (MI->getNumOperands() != 4) 700 return false; 701 702 SmallString<128> Str; 703 raw_svector_ostream OS(Str); 704 OS << "DEBUG_VALUE: "; 705 706 const DILocalVariable *V = MI->getDebugVariable(); 707 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 708 StringRef Name = SP->getDisplayName(); 709 if (!Name.empty()) 710 OS << Name << ":"; 711 } 712 OS << V->getName(); 713 714 const DIExpression *Expr = MI->getDebugExpression(); 715 if (Expr->isBitPiece()) 716 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 717 << " size=" << Expr->getBitPieceSize() << "]"; 718 OS << " <- "; 719 720 // The second operand is only an offset if it's an immediate. 721 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 722 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 723 724 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 725 if (Deref) { 726 // We currently don't support extra Offsets or derefs after the first 727 // one. Bail out early instead of emitting an incorrect comment 728 OS << " [complex expression]"; 729 AP.OutStreamer->emitRawComment(OS.str()); 730 return true; 731 } 732 uint64_t Op = Expr->getElement(i); 733 if (Op == dwarf::DW_OP_deref) { 734 Deref = true; 735 continue; 736 } else if (Op == dwarf::DW_OP_bit_piece) { 737 // There can't be any operands after this in a valid expression 738 break; 739 } 740 uint64_t ExtraOffset = Expr->getElement(i++); 741 if (Op == dwarf::DW_OP_plus) 742 Offset += ExtraOffset; 743 else { 744 assert(Op == dwarf::DW_OP_minus); 745 Offset -= ExtraOffset; 746 } 747 } 748 749 // Register or immediate value. Register 0 means undef. 750 if (MI->getOperand(0).isFPImm()) { 751 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 752 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 753 OS << (double)APF.convertToFloat(); 754 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 755 OS << APF.convertToDouble(); 756 } else { 757 // There is no good way to print long double. Convert a copy to 758 // double. Ah well, it's only a comment. 759 bool ignored; 760 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 761 &ignored); 762 OS << "(long double) " << APF.convertToDouble(); 763 } 764 } else if (MI->getOperand(0).isImm()) { 765 OS << MI->getOperand(0).getImm(); 766 } else if (MI->getOperand(0).isCImm()) { 767 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 768 } else { 769 unsigned Reg; 770 if (MI->getOperand(0).isReg()) { 771 Reg = MI->getOperand(0).getReg(); 772 } else { 773 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 774 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 775 Offset += TFI->getFrameIndexReference(*AP.MF, 776 MI->getOperand(0).getIndex(), Reg); 777 Deref = true; 778 } 779 if (Reg == 0) { 780 // Suppress offset, it is not meaningful here. 781 OS << "undef"; 782 // NOTE: Want this comment at start of line, don't emit with AddComment. 783 AP.OutStreamer->emitRawComment(OS.str()); 784 return true; 785 } 786 if (Deref) 787 OS << '['; 788 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 789 } 790 791 if (Deref) 792 OS << '+' << Offset << ']'; 793 794 // NOTE: Want this comment at start of line, don't emit with AddComment. 795 AP.OutStreamer->emitRawComment(OS.str()); 796 return true; 797 } 798 799 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 800 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 801 MF->getFunction()->needsUnwindTableEntry()) 802 return CFI_M_EH; 803 804 if (MMI->hasDebugInfo()) 805 return CFI_M_Debug; 806 807 return CFI_M_None; 808 } 809 810 bool AsmPrinter::needsSEHMoves() { 811 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 812 } 813 814 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 815 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 816 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 817 ExceptionHandlingType != ExceptionHandling::ARM) 818 return; 819 820 if (needsCFIMoves() == CFI_M_None) 821 return; 822 823 const MachineModuleInfo &MMI = MF->getMMI(); 824 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 825 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 826 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 827 emitCFIInstruction(CFI); 828 } 829 830 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 831 // The operands are the MCSymbol and the frame offset of the allocation. 832 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 833 int FrameOffset = MI.getOperand(1).getImm(); 834 835 // Emit a symbol assignment. 836 OutStreamer->EmitAssignment(FrameAllocSym, 837 MCConstantExpr::create(FrameOffset, OutContext)); 838 } 839 840 /// EmitFunctionBody - This method emits the body and trailer for a 841 /// function. 842 void AsmPrinter::EmitFunctionBody() { 843 EmitFunctionHeader(); 844 845 // Emit target-specific gunk before the function body. 846 EmitFunctionBodyStart(); 847 848 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 849 850 // Print out code for the function. 851 bool HasAnyRealCode = false; 852 for (auto &MBB : *MF) { 853 // Print a label for the basic block. 854 EmitBasicBlockStart(MBB); 855 for (auto &MI : MBB) { 856 857 // Print the assembly for the instruction. 858 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 859 !MI.isDebugValue()) { 860 HasAnyRealCode = true; 861 ++EmittedInsts; 862 } 863 864 if (ShouldPrintDebugScopes) { 865 for (const HandlerInfo &HI : Handlers) { 866 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 867 TimePassesIsEnabled); 868 HI.Handler->beginInstruction(&MI); 869 } 870 } 871 872 if (isVerbose()) 873 emitComments(MI, OutStreamer->GetCommentOS()); 874 875 switch (MI.getOpcode()) { 876 case TargetOpcode::CFI_INSTRUCTION: 877 emitCFIInstruction(MI); 878 break; 879 880 case TargetOpcode::LOCAL_ESCAPE: 881 emitFrameAlloc(MI); 882 break; 883 884 case TargetOpcode::EH_LABEL: 885 case TargetOpcode::GC_LABEL: 886 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 887 break; 888 case TargetOpcode::INLINEASM: 889 EmitInlineAsm(&MI); 890 break; 891 case TargetOpcode::DBG_VALUE: 892 if (isVerbose()) { 893 if (!emitDebugValueComment(&MI, *this)) 894 EmitInstruction(&MI); 895 } 896 break; 897 case TargetOpcode::IMPLICIT_DEF: 898 if (isVerbose()) emitImplicitDef(&MI); 899 break; 900 case TargetOpcode::KILL: 901 if (isVerbose()) emitKill(&MI, *this); 902 break; 903 default: 904 EmitInstruction(&MI); 905 break; 906 } 907 908 if (ShouldPrintDebugScopes) { 909 for (const HandlerInfo &HI : Handlers) { 910 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 911 TimePassesIsEnabled); 912 HI.Handler->endInstruction(); 913 } 914 } 915 } 916 917 EmitBasicBlockEnd(MBB); 918 } 919 920 // If the function is empty and the object file uses .subsections_via_symbols, 921 // then we need to emit *something* to the function body to prevent the 922 // labels from collapsing together. Just emit a noop. 923 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 924 MCInst Noop; 925 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 926 OutStreamer->AddComment("avoids zero-length function"); 927 928 // Targets can opt-out of emitting the noop here by leaving the opcode 929 // unspecified. 930 if (Noop.getOpcode()) 931 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 932 } 933 934 const Function *F = MF->getFunction(); 935 for (const auto &BB : *F) { 936 if (!BB.hasAddressTaken()) 937 continue; 938 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 939 if (Sym->isDefined()) 940 continue; 941 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 942 OutStreamer->EmitLabel(Sym); 943 } 944 945 // Emit target-specific gunk after the function body. 946 EmitFunctionBodyEnd(); 947 948 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 949 MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 950 // Create a symbol for the end of function. 951 CurrentFnEnd = createTempSymbol("func_end"); 952 OutStreamer->EmitLabel(CurrentFnEnd); 953 } 954 955 // If the target wants a .size directive for the size of the function, emit 956 // it. 957 if (MAI->hasDotTypeDotSizeDirective()) { 958 // We can get the size as difference between the function label and the 959 // temp label. 960 const MCExpr *SizeExp = MCBinaryExpr::createSub( 961 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 962 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 963 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 964 OutStreamer->emitELFSize(Sym, SizeExp); 965 } 966 967 for (const HandlerInfo &HI : Handlers) { 968 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 969 HI.Handler->markFunctionEnd(); 970 } 971 972 // Print out jump tables referenced by the function. 973 EmitJumpTableInfo(); 974 975 // Emit post-function debug and/or EH information. 976 for (const HandlerInfo &HI : Handlers) { 977 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 978 HI.Handler->endFunction(MF); 979 } 980 MMI->EndFunction(); 981 982 OutStreamer->AddBlankLine(); 983 } 984 985 /// \brief Compute the number of Global Variables that uses a Constant. 986 static unsigned getNumGlobalVariableUses(const Constant *C) { 987 if (!C) 988 return 0; 989 990 if (isa<GlobalVariable>(C)) 991 return 1; 992 993 unsigned NumUses = 0; 994 for (auto *CU : C->users()) 995 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 996 997 return NumUses; 998 } 999 1000 /// \brief Only consider global GOT equivalents if at least one user is a 1001 /// cstexpr inside an initializer of another global variables. Also, don't 1002 /// handle cstexpr inside instructions. During global variable emission, 1003 /// candidates are skipped and are emitted later in case at least one cstexpr 1004 /// isn't replaced by a PC relative GOT entry access. 1005 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1006 unsigned &NumGOTEquivUsers) { 1007 // Global GOT equivalents are unnamed private globals with a constant 1008 // pointer initializer to another global symbol. They must point to a 1009 // GlobalVariable or Function, i.e., as GlobalValue. 1010 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 1011 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 1012 return false; 1013 1014 // To be a got equivalent, at least one of its users need to be a constant 1015 // expression used by another global variable. 1016 for (auto *U : GV->users()) 1017 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1018 1019 return NumGOTEquivUsers > 0; 1020 } 1021 1022 /// \brief Unnamed constant global variables solely contaning a pointer to 1023 /// another globals variable is equivalent to a GOT table entry; it contains the 1024 /// the address of another symbol. Optimize it and replace accesses to these 1025 /// "GOT equivalents" by using the GOT entry for the final global instead. 1026 /// Compute GOT equivalent candidates among all global variables to avoid 1027 /// emitting them if possible later on, after it use is replaced by a GOT entry 1028 /// access. 1029 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1030 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1031 return; 1032 1033 for (const auto &G : M.globals()) { 1034 unsigned NumGOTEquivUsers = 0; 1035 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1036 continue; 1037 1038 const MCSymbol *GOTEquivSym = getSymbol(&G); 1039 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1040 } 1041 } 1042 1043 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1044 /// for PC relative GOT entry conversion, in such cases we need to emit such 1045 /// globals we previously omitted in EmitGlobalVariable. 1046 void AsmPrinter::emitGlobalGOTEquivs() { 1047 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1048 return; 1049 1050 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1051 for (auto &I : GlobalGOTEquivs) { 1052 const GlobalVariable *GV = I.second.first; 1053 unsigned Cnt = I.second.second; 1054 if (Cnt) 1055 FailedCandidates.push_back(GV); 1056 } 1057 GlobalGOTEquivs.clear(); 1058 1059 for (auto *GV : FailedCandidates) 1060 EmitGlobalVariable(GV); 1061 } 1062 1063 bool AsmPrinter::doFinalization(Module &M) { 1064 // Set the MachineFunction to nullptr so that we can catch attempted 1065 // accesses to MF specific features at the module level and so that 1066 // we can conditionalize accesses based on whether or not it is nullptr. 1067 MF = nullptr; 1068 1069 // Gather all GOT equivalent globals in the module. We really need two 1070 // passes over the globals: one to compute and another to avoid its emission 1071 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1072 // where the got equivalent shows up before its use. 1073 computeGlobalGOTEquivs(M); 1074 1075 // Emit global variables. 1076 for (const auto &G : M.globals()) 1077 EmitGlobalVariable(&G); 1078 1079 // Emit remaining GOT equivalent globals. 1080 emitGlobalGOTEquivs(); 1081 1082 // Emit visibility info for declarations 1083 for (const Function &F : M) { 1084 if (!F.isDeclarationForLinker()) 1085 continue; 1086 GlobalValue::VisibilityTypes V = F.getVisibility(); 1087 if (V == GlobalValue::DefaultVisibility) 1088 continue; 1089 1090 MCSymbol *Name = getSymbol(&F); 1091 EmitVisibility(Name, V, false); 1092 } 1093 1094 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1095 1096 // Emit module flags. 1097 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1098 M.getModuleFlagsMetadata(ModuleFlags); 1099 if (!ModuleFlags.empty()) 1100 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1101 1102 if (TM.getTargetTriple().isOSBinFormatELF()) { 1103 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1104 1105 // Output stubs for external and common global variables. 1106 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1107 if (!Stubs.empty()) { 1108 OutStreamer->SwitchSection(TLOF.getDataSection()); 1109 const DataLayout &DL = M.getDataLayout(); 1110 1111 for (const auto &Stub : Stubs) { 1112 OutStreamer->EmitLabel(Stub.first); 1113 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1114 DL.getPointerSize()); 1115 } 1116 } 1117 } 1118 1119 // Finalize debug and EH information. 1120 for (const HandlerInfo &HI : Handlers) { 1121 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1122 TimePassesIsEnabled); 1123 HI.Handler->endModule(); 1124 delete HI.Handler; 1125 } 1126 Handlers.clear(); 1127 DD = nullptr; 1128 1129 // If the target wants to know about weak references, print them all. 1130 if (MAI->getWeakRefDirective()) { 1131 // FIXME: This is not lazy, it would be nice to only print weak references 1132 // to stuff that is actually used. Note that doing so would require targets 1133 // to notice uses in operands (due to constant exprs etc). This should 1134 // happen with the MC stuff eventually. 1135 1136 // Print out module-level global variables here. 1137 for (const auto &G : M.globals()) { 1138 if (!G.hasExternalWeakLinkage()) 1139 continue; 1140 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1141 } 1142 1143 for (const auto &F : M) { 1144 if (!F.hasExternalWeakLinkage()) 1145 continue; 1146 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1147 } 1148 } 1149 1150 OutStreamer->AddBlankLine(); 1151 for (const auto &Alias : M.aliases()) { 1152 MCSymbol *Name = getSymbol(&Alias); 1153 1154 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1155 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1156 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1157 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1158 else 1159 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1160 1161 // Set the symbol type to function if the alias has a function type. 1162 // This affects codegen when the aliasee is not a function. 1163 if (Alias.getType()->getPointerElementType()->isFunctionTy()) 1164 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1165 1166 EmitVisibility(Name, Alias.getVisibility()); 1167 1168 // Emit the directives as assignments aka .set: 1169 OutStreamer->EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1170 1171 // If the aliasee does not correspond to a symbol in the output, i.e. the 1172 // alias is not of an object or the aliased object is private, then set the 1173 // size of the alias symbol from the type of the alias. We don't do this in 1174 // other situations as the alias and aliasee having differing types but same 1175 // size may be intentional. 1176 const GlobalObject *BaseObject = Alias.getBaseObject(); 1177 if (MAI->hasDotTypeDotSizeDirective() && Alias.getValueType()->isSized() && 1178 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1179 const DataLayout &DL = M.getDataLayout(); 1180 uint64_t Size = DL.getTypeAllocSize(Alias.getValueType()); 1181 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name), 1182 MCConstantExpr::create(Size, OutContext)); 1183 } 1184 } 1185 1186 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1187 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1188 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1189 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1190 MP->finishAssembly(M, *MI, *this); 1191 1192 // Emit llvm.ident metadata in an '.ident' directive. 1193 EmitModuleIdents(M); 1194 1195 // Emit __morestack address if needed for indirect calls. 1196 if (MMI->usesMorestackAddr()) { 1197 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1198 getDataLayout(), SectionKind::getReadOnly(), 1199 /*C=*/nullptr); 1200 OutStreamer->SwitchSection(ReadOnlySection); 1201 1202 MCSymbol *AddrSymbol = 1203 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1204 OutStreamer->EmitLabel(AddrSymbol); 1205 1206 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1207 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1208 PtrSize); 1209 } 1210 1211 // If we don't have any trampolines, then we don't require stack memory 1212 // to be executable. Some targets have a directive to declare this. 1213 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1214 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1215 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1216 OutStreamer->SwitchSection(S); 1217 1218 // Allow the target to emit any magic that it wants at the end of the file, 1219 // after everything else has gone out. 1220 EmitEndOfAsmFile(M); 1221 1222 delete Mang; Mang = nullptr; 1223 MMI = nullptr; 1224 1225 OutStreamer->Finish(); 1226 OutStreamer->reset(); 1227 1228 return false; 1229 } 1230 1231 MCSymbol *AsmPrinter::getCurExceptionSym() { 1232 if (!CurExceptionSym) 1233 CurExceptionSym = createTempSymbol("exception"); 1234 return CurExceptionSym; 1235 } 1236 1237 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1238 this->MF = &MF; 1239 // Get the function symbol. 1240 CurrentFnSym = getSymbol(MF.getFunction()); 1241 CurrentFnSymForSize = CurrentFnSym; 1242 CurrentFnBegin = nullptr; 1243 CurExceptionSym = nullptr; 1244 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1245 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1246 MMI->hasEHFunclets() || NeedsLocalForSize) { 1247 CurrentFnBegin = createTempSymbol("func_begin"); 1248 if (NeedsLocalForSize) 1249 CurrentFnSymForSize = CurrentFnBegin; 1250 } 1251 1252 if (isVerbose()) 1253 LI = &getAnalysis<MachineLoopInfo>(); 1254 } 1255 1256 namespace { 1257 // Keep track the alignment, constpool entries per Section. 1258 struct SectionCPs { 1259 MCSection *S; 1260 unsigned Alignment; 1261 SmallVector<unsigned, 4> CPEs; 1262 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1263 }; 1264 } 1265 1266 /// EmitConstantPool - Print to the current output stream assembly 1267 /// representations of the constants in the constant pool MCP. This is 1268 /// used to print out constants which have been "spilled to memory" by 1269 /// the code generator. 1270 /// 1271 void AsmPrinter::EmitConstantPool() { 1272 const MachineConstantPool *MCP = MF->getConstantPool(); 1273 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1274 if (CP.empty()) return; 1275 1276 // Calculate sections for constant pool entries. We collect entries to go into 1277 // the same section together to reduce amount of section switch statements. 1278 SmallVector<SectionCPs, 4> CPSections; 1279 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1280 const MachineConstantPoolEntry &CPE = CP[i]; 1281 unsigned Align = CPE.getAlignment(); 1282 1283 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1284 1285 const Constant *C = nullptr; 1286 if (!CPE.isMachineConstantPoolEntry()) 1287 C = CPE.Val.ConstVal; 1288 1289 MCSection *S = 1290 getObjFileLowering().getSectionForConstant(getDataLayout(), Kind, C); 1291 1292 // The number of sections are small, just do a linear search from the 1293 // last section to the first. 1294 bool Found = false; 1295 unsigned SecIdx = CPSections.size(); 1296 while (SecIdx != 0) { 1297 if (CPSections[--SecIdx].S == S) { 1298 Found = true; 1299 break; 1300 } 1301 } 1302 if (!Found) { 1303 SecIdx = CPSections.size(); 1304 CPSections.push_back(SectionCPs(S, Align)); 1305 } 1306 1307 if (Align > CPSections[SecIdx].Alignment) 1308 CPSections[SecIdx].Alignment = Align; 1309 CPSections[SecIdx].CPEs.push_back(i); 1310 } 1311 1312 // Now print stuff into the calculated sections. 1313 const MCSection *CurSection = nullptr; 1314 unsigned Offset = 0; 1315 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1316 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1317 unsigned CPI = CPSections[i].CPEs[j]; 1318 MCSymbol *Sym = GetCPISymbol(CPI); 1319 if (!Sym->isUndefined()) 1320 continue; 1321 1322 if (CurSection != CPSections[i].S) { 1323 OutStreamer->SwitchSection(CPSections[i].S); 1324 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1325 CurSection = CPSections[i].S; 1326 Offset = 0; 1327 } 1328 1329 MachineConstantPoolEntry CPE = CP[CPI]; 1330 1331 // Emit inter-object padding for alignment. 1332 unsigned AlignMask = CPE.getAlignment() - 1; 1333 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1334 OutStreamer->EmitZeros(NewOffset - Offset); 1335 1336 Type *Ty = CPE.getType(); 1337 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1338 1339 OutStreamer->EmitLabel(Sym); 1340 if (CPE.isMachineConstantPoolEntry()) 1341 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1342 else 1343 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1344 } 1345 } 1346 } 1347 1348 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1349 /// by the current function to the current output stream. 1350 /// 1351 void AsmPrinter::EmitJumpTableInfo() { 1352 const DataLayout &DL = MF->getDataLayout(); 1353 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1354 if (!MJTI) return; 1355 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1356 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1357 if (JT.empty()) return; 1358 1359 // Pick the directive to use to print the jump table entries, and switch to 1360 // the appropriate section. 1361 const Function *F = MF->getFunction(); 1362 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1363 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1364 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1365 *F); 1366 if (JTInDiffSection) { 1367 // Drop it in the readonly section. 1368 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1369 OutStreamer->SwitchSection(ReadOnlySection); 1370 } 1371 1372 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1373 1374 // Jump tables in code sections are marked with a data_region directive 1375 // where that's supported. 1376 if (!JTInDiffSection) 1377 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1378 1379 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1380 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1381 1382 // If this jump table was deleted, ignore it. 1383 if (JTBBs.empty()) continue; 1384 1385 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1386 /// emit a .set directive for each unique entry. 1387 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1388 MAI->doesSetDirectiveSuppressesReloc()) { 1389 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1390 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1391 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1392 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1393 const MachineBasicBlock *MBB = JTBBs[ii]; 1394 if (!EmittedSets.insert(MBB).second) 1395 continue; 1396 1397 // .set LJTSet, LBB32-base 1398 const MCExpr *LHS = 1399 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1400 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1401 MCBinaryExpr::createSub(LHS, Base, 1402 OutContext)); 1403 } 1404 } 1405 1406 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1407 // before each jump table. The first label is never referenced, but tells 1408 // the assembler and linker the extents of the jump table object. The 1409 // second label is actually referenced by the code. 1410 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1411 // FIXME: This doesn't have to have any specific name, just any randomly 1412 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1413 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1414 1415 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1416 1417 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1418 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1419 } 1420 if (!JTInDiffSection) 1421 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1422 } 1423 1424 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1425 /// current stream. 1426 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1427 const MachineBasicBlock *MBB, 1428 unsigned UID) const { 1429 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1430 const MCExpr *Value = nullptr; 1431 switch (MJTI->getEntryKind()) { 1432 case MachineJumpTableInfo::EK_Inline: 1433 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1434 case MachineJumpTableInfo::EK_Custom32: 1435 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1436 MJTI, MBB, UID, OutContext); 1437 break; 1438 case MachineJumpTableInfo::EK_BlockAddress: 1439 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1440 // .word LBB123 1441 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1442 break; 1443 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1444 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1445 // with a relocation as gp-relative, e.g.: 1446 // .gprel32 LBB123 1447 MCSymbol *MBBSym = MBB->getSymbol(); 1448 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1449 return; 1450 } 1451 1452 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1453 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1454 // with a relocation as gp-relative, e.g.: 1455 // .gpdword LBB123 1456 MCSymbol *MBBSym = MBB->getSymbol(); 1457 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1458 return; 1459 } 1460 1461 case MachineJumpTableInfo::EK_LabelDifference32: { 1462 // Each entry is the address of the block minus the address of the jump 1463 // table. This is used for PIC jump tables where gprel32 is not supported. 1464 // e.g.: 1465 // .word LBB123 - LJTI1_2 1466 // If the .set directive avoids relocations, this is emitted as: 1467 // .set L4_5_set_123, LBB123 - LJTI1_2 1468 // .word L4_5_set_123 1469 if (MAI->doesSetDirectiveSuppressesReloc()) { 1470 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1471 OutContext); 1472 break; 1473 } 1474 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1475 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1476 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1477 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1478 break; 1479 } 1480 } 1481 1482 assert(Value && "Unknown entry kind!"); 1483 1484 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1485 OutStreamer->EmitValue(Value, EntrySize); 1486 } 1487 1488 1489 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1490 /// special global used by LLVM. If so, emit it and return true, otherwise 1491 /// do nothing and return false. 1492 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1493 if (GV->getName() == "llvm.used") { 1494 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1495 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1496 return true; 1497 } 1498 1499 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1500 if (StringRef(GV->getSection()) == "llvm.metadata" || 1501 GV->hasAvailableExternallyLinkage()) 1502 return true; 1503 1504 if (!GV->hasAppendingLinkage()) return false; 1505 1506 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1507 1508 if (GV->getName() == "llvm.global_ctors") { 1509 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1510 /* isCtor */ true); 1511 1512 if (TM.getRelocationModel() == Reloc::Static && 1513 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1514 StringRef Sym(".constructors_used"); 1515 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1516 MCSA_Reference); 1517 } 1518 return true; 1519 } 1520 1521 if (GV->getName() == "llvm.global_dtors") { 1522 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1523 /* isCtor */ false); 1524 1525 if (TM.getRelocationModel() == Reloc::Static && 1526 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1527 StringRef Sym(".destructors_used"); 1528 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1529 MCSA_Reference); 1530 } 1531 return true; 1532 } 1533 1534 return false; 1535 } 1536 1537 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1538 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1539 /// is true, as being used with this directive. 1540 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1541 // Should be an array of 'i8*'. 1542 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1543 const GlobalValue *GV = 1544 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1545 if (GV) 1546 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1547 } 1548 } 1549 1550 namespace { 1551 struct Structor { 1552 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1553 int Priority; 1554 llvm::Constant *Func; 1555 llvm::GlobalValue *ComdatKey; 1556 }; 1557 } // end namespace 1558 1559 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1560 /// priority. 1561 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1562 bool isCtor) { 1563 // Should be an array of '{ int, void ()* }' structs. The first value is the 1564 // init priority. 1565 if (!isa<ConstantArray>(List)) return; 1566 1567 // Sanity check the structors list. 1568 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1569 if (!InitList) return; // Not an array! 1570 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1571 // FIXME: Only allow the 3-field form in LLVM 4.0. 1572 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1573 return; // Not an array of two or three elements! 1574 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1575 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1576 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1577 return; // Not (int, ptr, ptr). 1578 1579 // Gather the structors in a form that's convenient for sorting by priority. 1580 SmallVector<Structor, 8> Structors; 1581 for (Value *O : InitList->operands()) { 1582 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1583 if (!CS) continue; // Malformed. 1584 if (CS->getOperand(1)->isNullValue()) 1585 break; // Found a null terminator, skip the rest. 1586 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1587 if (!Priority) continue; // Malformed. 1588 Structors.push_back(Structor()); 1589 Structor &S = Structors.back(); 1590 S.Priority = Priority->getLimitedValue(65535); 1591 S.Func = CS->getOperand(1); 1592 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1593 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1594 } 1595 1596 // Emit the function pointers in the target-specific order 1597 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1598 std::stable_sort(Structors.begin(), Structors.end(), 1599 [](const Structor &L, 1600 const Structor &R) { return L.Priority < R.Priority; }); 1601 for (Structor &S : Structors) { 1602 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1603 const MCSymbol *KeySym = nullptr; 1604 if (GlobalValue *GV = S.ComdatKey) { 1605 if (GV->hasAvailableExternallyLinkage()) 1606 // If the associated variable is available_externally, some other TU 1607 // will provide its dynamic initializer. 1608 continue; 1609 1610 KeySym = getSymbol(GV); 1611 } 1612 MCSection *OutputSection = 1613 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1614 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1615 OutStreamer->SwitchSection(OutputSection); 1616 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1617 EmitAlignment(Align); 1618 EmitXXStructor(DL, S.Func); 1619 } 1620 } 1621 1622 void AsmPrinter::EmitModuleIdents(Module &M) { 1623 if (!MAI->hasIdentDirective()) 1624 return; 1625 1626 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1627 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1628 const MDNode *N = NMD->getOperand(i); 1629 assert(N->getNumOperands() == 1 && 1630 "llvm.ident metadata entry can have only one operand"); 1631 const MDString *S = cast<MDString>(N->getOperand(0)); 1632 OutStreamer->EmitIdent(S->getString()); 1633 } 1634 } 1635 } 1636 1637 //===--------------------------------------------------------------------===// 1638 // Emission and print routines 1639 // 1640 1641 /// EmitInt8 - Emit a byte directive and value. 1642 /// 1643 void AsmPrinter::EmitInt8(int Value) const { 1644 OutStreamer->EmitIntValue(Value, 1); 1645 } 1646 1647 /// EmitInt16 - Emit a short directive and value. 1648 /// 1649 void AsmPrinter::EmitInt16(int Value) const { 1650 OutStreamer->EmitIntValue(Value, 2); 1651 } 1652 1653 /// EmitInt32 - Emit a long directive and value. 1654 /// 1655 void AsmPrinter::EmitInt32(int Value) const { 1656 OutStreamer->EmitIntValue(Value, 4); 1657 } 1658 1659 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1660 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1661 /// .set if it avoids relocations. 1662 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1663 unsigned Size) const { 1664 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1665 } 1666 1667 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1668 /// where the size in bytes of the directive is specified by Size and Label 1669 /// specifies the label. This implicitly uses .set if it is available. 1670 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1671 unsigned Size, 1672 bool IsSectionRelative) const { 1673 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1674 OutStreamer->EmitCOFFSecRel32(Label); 1675 return; 1676 } 1677 1678 // Emit Label+Offset (or just Label if Offset is zero) 1679 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1680 if (Offset) 1681 Expr = MCBinaryExpr::createAdd( 1682 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1683 1684 OutStreamer->EmitValue(Expr, Size); 1685 } 1686 1687 //===----------------------------------------------------------------------===// 1688 1689 // EmitAlignment - Emit an alignment directive to the specified power of 1690 // two boundary. For example, if you pass in 3 here, you will get an 8 1691 // byte alignment. If a global value is specified, and if that global has 1692 // an explicit alignment requested, it will override the alignment request 1693 // if required for correctness. 1694 // 1695 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1696 if (GV) 1697 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1698 1699 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1700 1701 assert(NumBits < 1702 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1703 "undefined behavior"); 1704 if (getCurrentSection()->getKind().isText()) 1705 OutStreamer->EmitCodeAlignment(1u << NumBits); 1706 else 1707 OutStreamer->EmitValueToAlignment(1u << NumBits); 1708 } 1709 1710 //===----------------------------------------------------------------------===// 1711 // Constant emission. 1712 //===----------------------------------------------------------------------===// 1713 1714 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1715 MCContext &Ctx = OutContext; 1716 1717 if (CV->isNullValue() || isa<UndefValue>(CV)) 1718 return MCConstantExpr::create(0, Ctx); 1719 1720 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1721 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1722 1723 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1724 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1725 1726 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1727 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1728 1729 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1730 if (!CE) { 1731 llvm_unreachable("Unknown constant value to lower!"); 1732 } 1733 1734 if (const MCExpr *RelocExpr 1735 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1736 return RelocExpr; 1737 1738 switch (CE->getOpcode()) { 1739 default: 1740 // If the code isn't optimized, there may be outstanding folding 1741 // opportunities. Attempt to fold the expression using DataLayout as a 1742 // last resort before giving up. 1743 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout())) 1744 if (C != CE) 1745 return lowerConstant(C); 1746 1747 // Otherwise report the problem to the user. 1748 { 1749 std::string S; 1750 raw_string_ostream OS(S); 1751 OS << "Unsupported expression in static initializer: "; 1752 CE->printAsOperand(OS, /*PrintType=*/false, 1753 !MF ? nullptr : MF->getFunction()->getParent()); 1754 report_fatal_error(OS.str()); 1755 } 1756 case Instruction::GetElementPtr: { 1757 // Generate a symbolic expression for the byte address 1758 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1759 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1760 1761 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1762 if (!OffsetAI) 1763 return Base; 1764 1765 int64_t Offset = OffsetAI.getSExtValue(); 1766 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1767 Ctx); 1768 } 1769 1770 case Instruction::Trunc: 1771 // We emit the value and depend on the assembler to truncate the generated 1772 // expression properly. This is important for differences between 1773 // blockaddress labels. Since the two labels are in the same function, it 1774 // is reasonable to treat their delta as a 32-bit value. 1775 // FALL THROUGH. 1776 case Instruction::BitCast: 1777 return lowerConstant(CE->getOperand(0)); 1778 1779 case Instruction::IntToPtr: { 1780 const DataLayout &DL = getDataLayout(); 1781 1782 // Handle casts to pointers by changing them into casts to the appropriate 1783 // integer type. This promotes constant folding and simplifies this code. 1784 Constant *Op = CE->getOperand(0); 1785 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1786 false/*ZExt*/); 1787 return lowerConstant(Op); 1788 } 1789 1790 case Instruction::PtrToInt: { 1791 const DataLayout &DL = getDataLayout(); 1792 1793 // Support only foldable casts to/from pointers that can be eliminated by 1794 // changing the pointer to the appropriately sized integer type. 1795 Constant *Op = CE->getOperand(0); 1796 Type *Ty = CE->getType(); 1797 1798 const MCExpr *OpExpr = lowerConstant(Op); 1799 1800 // We can emit the pointer value into this slot if the slot is an 1801 // integer slot equal to the size of the pointer. 1802 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1803 return OpExpr; 1804 1805 // Otherwise the pointer is smaller than the resultant integer, mask off 1806 // the high bits so we are sure to get a proper truncation if the input is 1807 // a constant expr. 1808 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1809 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1810 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1811 } 1812 1813 // The MC library also has a right-shift operator, but it isn't consistently 1814 // signed or unsigned between different targets. 1815 case Instruction::Add: 1816 case Instruction::Sub: 1817 case Instruction::Mul: 1818 case Instruction::SDiv: 1819 case Instruction::SRem: 1820 case Instruction::Shl: 1821 case Instruction::And: 1822 case Instruction::Or: 1823 case Instruction::Xor: { 1824 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1825 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1826 switch (CE->getOpcode()) { 1827 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1828 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1829 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1830 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1831 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1832 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1833 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1834 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1835 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1836 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1837 } 1838 } 1839 } 1840 } 1841 1842 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1843 AsmPrinter &AP, 1844 const Constant *BaseCV = nullptr, 1845 uint64_t Offset = 0); 1846 1847 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1848 1849 /// isRepeatedByteSequence - Determine whether the given value is 1850 /// composed of a repeated sequence of identical bytes and return the 1851 /// byte value. If it is not a repeated sequence, return -1. 1852 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1853 StringRef Data = V->getRawDataValues(); 1854 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1855 char C = Data[0]; 1856 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1857 if (Data[i] != C) return -1; 1858 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1859 } 1860 1861 1862 /// isRepeatedByteSequence - Determine whether the given value is 1863 /// composed of a repeated sequence of identical bytes and return the 1864 /// byte value. If it is not a repeated sequence, return -1. 1865 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1866 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1867 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1868 assert(Size % 8 == 0); 1869 1870 // Extend the element to take zero padding into account. 1871 APInt Value = CI->getValue().zextOrSelf(Size); 1872 if (!Value.isSplat(8)) 1873 return -1; 1874 1875 return Value.zextOrTrunc(8).getZExtValue(); 1876 } 1877 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1878 // Make sure all array elements are sequences of the same repeated 1879 // byte. 1880 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1881 Constant *Op0 = CA->getOperand(0); 1882 int Byte = isRepeatedByteSequence(Op0, DL); 1883 if (Byte == -1) 1884 return -1; 1885 1886 // All array elements must be equal. 1887 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1888 if (CA->getOperand(i) != Op0) 1889 return -1; 1890 return Byte; 1891 } 1892 1893 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1894 return isRepeatedByteSequence(CDS); 1895 1896 return -1; 1897 } 1898 1899 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1900 const ConstantDataSequential *CDS, 1901 AsmPrinter &AP) { 1902 1903 // See if we can aggregate this into a .fill, if so, emit it as such. 1904 int Value = isRepeatedByteSequence(CDS, DL); 1905 if (Value != -1) { 1906 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1907 // Don't emit a 1-byte object as a .fill. 1908 if (Bytes > 1) 1909 return AP.OutStreamer->EmitFill(Bytes, Value); 1910 } 1911 1912 // If this can be emitted with .ascii/.asciz, emit it as such. 1913 if (CDS->isString()) 1914 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1915 1916 // Otherwise, emit the values in successive locations. 1917 unsigned ElementByteSize = CDS->getElementByteSize(); 1918 if (isa<IntegerType>(CDS->getElementType())) { 1919 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1920 if (AP.isVerbose()) 1921 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1922 CDS->getElementAsInteger(i)); 1923 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1924 ElementByteSize); 1925 } 1926 } else { 1927 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 1928 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 1929 } 1930 1931 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1932 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1933 CDS->getNumElements(); 1934 if (unsigned Padding = Size - EmittedSize) 1935 AP.OutStreamer->EmitZeros(Padding); 1936 1937 } 1938 1939 static void emitGlobalConstantArray(const DataLayout &DL, 1940 const ConstantArray *CA, AsmPrinter &AP, 1941 const Constant *BaseCV, uint64_t Offset) { 1942 // See if we can aggregate some values. Make sure it can be 1943 // represented as a series of bytes of the constant value. 1944 int Value = isRepeatedByteSequence(CA, DL); 1945 1946 if (Value != -1) { 1947 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1948 AP.OutStreamer->EmitFill(Bytes, Value); 1949 } 1950 else { 1951 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1952 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 1953 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1954 } 1955 } 1956 } 1957 1958 static void emitGlobalConstantVector(const DataLayout &DL, 1959 const ConstantVector *CV, AsmPrinter &AP) { 1960 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1961 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 1962 1963 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1964 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1965 CV->getType()->getNumElements(); 1966 if (unsigned Padding = Size - EmittedSize) 1967 AP.OutStreamer->EmitZeros(Padding); 1968 } 1969 1970 static void emitGlobalConstantStruct(const DataLayout &DL, 1971 const ConstantStruct *CS, AsmPrinter &AP, 1972 const Constant *BaseCV, uint64_t Offset) { 1973 // Print the fields in successive locations. Pad to align if needed! 1974 unsigned Size = DL.getTypeAllocSize(CS->getType()); 1975 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 1976 uint64_t SizeSoFar = 0; 1977 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1978 const Constant *Field = CS->getOperand(i); 1979 1980 // Print the actual field value. 1981 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 1982 1983 // Check if padding is needed and insert one or more 0s. 1984 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 1985 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1986 - Layout->getElementOffset(i)) - FieldSize; 1987 SizeSoFar += FieldSize + PadSize; 1988 1989 // Insert padding - this may include padding to increase the size of the 1990 // current field up to the ABI size (if the struct is not packed) as well 1991 // as padding to ensure that the next field starts at the right offset. 1992 AP.OutStreamer->EmitZeros(PadSize); 1993 } 1994 assert(SizeSoFar == Layout->getSizeInBytes() && 1995 "Layout of constant struct may be incorrect!"); 1996 } 1997 1998 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1999 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2000 2001 // First print a comment with what we think the original floating-point value 2002 // should have been. 2003 if (AP.isVerbose()) { 2004 SmallString<8> StrVal; 2005 CFP->getValueAPF().toString(StrVal); 2006 2007 if (CFP->getType()) 2008 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2009 else 2010 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2011 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2012 } 2013 2014 // Now iterate through the APInt chunks, emitting them in endian-correct 2015 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2016 // floats). 2017 unsigned NumBytes = API.getBitWidth() / 8; 2018 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2019 const uint64_t *p = API.getRawData(); 2020 2021 // PPC's long double has odd notions of endianness compared to how LLVM 2022 // handles it: p[0] goes first for *big* endian on PPC. 2023 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2024 int Chunk = API.getNumWords() - 1; 2025 2026 if (TrailingBytes) 2027 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2028 2029 for (; Chunk >= 0; --Chunk) 2030 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2031 } else { 2032 unsigned Chunk; 2033 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2034 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2035 2036 if (TrailingBytes) 2037 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2038 } 2039 2040 // Emit the tail padding for the long double. 2041 const DataLayout &DL = AP.getDataLayout(); 2042 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2043 DL.getTypeStoreSize(CFP->getType())); 2044 } 2045 2046 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2047 const DataLayout &DL = AP.getDataLayout(); 2048 unsigned BitWidth = CI->getBitWidth(); 2049 2050 // Copy the value as we may massage the layout for constants whose bit width 2051 // is not a multiple of 64-bits. 2052 APInt Realigned(CI->getValue()); 2053 uint64_t ExtraBits = 0; 2054 unsigned ExtraBitsSize = BitWidth & 63; 2055 2056 if (ExtraBitsSize) { 2057 // The bit width of the data is not a multiple of 64-bits. 2058 // The extra bits are expected to be at the end of the chunk of the memory. 2059 // Little endian: 2060 // * Nothing to be done, just record the extra bits to emit. 2061 // Big endian: 2062 // * Record the extra bits to emit. 2063 // * Realign the raw data to emit the chunks of 64-bits. 2064 if (DL.isBigEndian()) { 2065 // Basically the structure of the raw data is a chunk of 64-bits cells: 2066 // 0 1 BitWidth / 64 2067 // [chunk1][chunk2] ... [chunkN]. 2068 // The most significant chunk is chunkN and it should be emitted first. 2069 // However, due to the alignment issue chunkN contains useless bits. 2070 // Realign the chunks so that they contain only useless information: 2071 // ExtraBits 0 1 (BitWidth / 64) - 1 2072 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2073 ExtraBits = Realigned.getRawData()[0] & 2074 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2075 Realigned = Realigned.lshr(ExtraBitsSize); 2076 } else 2077 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2078 } 2079 2080 // We don't expect assemblers to support integer data directives 2081 // for more than 64 bits, so we emit the data in at most 64-bit 2082 // quantities at a time. 2083 const uint64_t *RawData = Realigned.getRawData(); 2084 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2085 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2086 AP.OutStreamer->EmitIntValue(Val, 8); 2087 } 2088 2089 if (ExtraBitsSize) { 2090 // Emit the extra bits after the 64-bits chunks. 2091 2092 // Emit a directive that fills the expected size. 2093 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2094 Size -= (BitWidth / 64) * 8; 2095 assert(Size && Size * 8 >= ExtraBitsSize && 2096 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2097 == ExtraBits && "Directive too small for extra bits."); 2098 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2099 } 2100 } 2101 2102 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2103 /// equivalent global, by a target specific GOT pc relative access to the 2104 /// final symbol. 2105 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2106 const Constant *BaseCst, 2107 uint64_t Offset) { 2108 // The global @foo below illustrates a global that uses a got equivalent. 2109 // 2110 // @bar = global i32 42 2111 // @gotequiv = private unnamed_addr constant i32* @bar 2112 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2113 // i64 ptrtoint (i32* @foo to i64)) 2114 // to i32) 2115 // 2116 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2117 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2118 // form: 2119 // 2120 // foo = cstexpr, where 2121 // cstexpr := <gotequiv> - "." + <cst> 2122 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2123 // 2124 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2125 // 2126 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2127 // gotpcrelcst := <offset from @foo base> + <cst> 2128 // 2129 MCValue MV; 2130 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2131 return; 2132 const MCSymbolRefExpr *SymA = MV.getSymA(); 2133 if (!SymA) 2134 return; 2135 2136 // Check that GOT equivalent symbol is cached. 2137 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2138 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2139 return; 2140 2141 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2142 if (!BaseGV) 2143 return; 2144 2145 // Check for a valid base symbol 2146 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2147 const MCSymbolRefExpr *SymB = MV.getSymB(); 2148 2149 if (!SymB || BaseSym != &SymB->getSymbol()) 2150 return; 2151 2152 // Make sure to match: 2153 // 2154 // gotpcrelcst := <offset from @foo base> + <cst> 2155 // 2156 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2157 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2158 // if the target knows how to encode it. 2159 // 2160 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2161 if (GOTPCRelCst < 0) 2162 return; 2163 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2164 return; 2165 2166 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2167 // 2168 // bar: 2169 // .long 42 2170 // gotequiv: 2171 // .quad bar 2172 // foo: 2173 // .long gotequiv - "." + <cst> 2174 // 2175 // is replaced by the target specific equivalent to: 2176 // 2177 // bar: 2178 // .long 42 2179 // foo: 2180 // .long bar@GOTPCREL+<gotpcrelcst> 2181 // 2182 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2183 const GlobalVariable *GV = Result.first; 2184 int NumUses = (int)Result.second; 2185 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2186 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2187 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2188 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2189 2190 // Update GOT equivalent usage information 2191 --NumUses; 2192 if (NumUses >= 0) 2193 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2194 } 2195 2196 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2197 AsmPrinter &AP, const Constant *BaseCV, 2198 uint64_t Offset) { 2199 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2200 2201 // Globals with sub-elements such as combinations of arrays and structs 2202 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2203 // constant symbol base and the current position with BaseCV and Offset. 2204 if (!BaseCV && CV->hasOneUse()) 2205 BaseCV = dyn_cast<Constant>(CV->user_back()); 2206 2207 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2208 return AP.OutStreamer->EmitZeros(Size); 2209 2210 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2211 switch (Size) { 2212 case 1: 2213 case 2: 2214 case 4: 2215 case 8: 2216 if (AP.isVerbose()) 2217 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2218 CI->getZExtValue()); 2219 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2220 return; 2221 default: 2222 emitGlobalConstantLargeInt(CI, AP); 2223 return; 2224 } 2225 } 2226 2227 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2228 return emitGlobalConstantFP(CFP, AP); 2229 2230 if (isa<ConstantPointerNull>(CV)) { 2231 AP.OutStreamer->EmitIntValue(0, Size); 2232 return; 2233 } 2234 2235 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2236 return emitGlobalConstantDataSequential(DL, CDS, AP); 2237 2238 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2239 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2240 2241 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2242 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2243 2244 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2245 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2246 // vectors). 2247 if (CE->getOpcode() == Instruction::BitCast) 2248 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2249 2250 if (Size > 8) { 2251 // If the constant expression's size is greater than 64-bits, then we have 2252 // to emit the value in chunks. Try to constant fold the value and emit it 2253 // that way. 2254 Constant *New = ConstantFoldConstantExpression(CE, DL); 2255 if (New && New != CE) 2256 return emitGlobalConstantImpl(DL, New, AP); 2257 } 2258 } 2259 2260 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2261 return emitGlobalConstantVector(DL, V, AP); 2262 2263 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2264 // thread the streamer with EmitValue. 2265 const MCExpr *ME = AP.lowerConstant(CV); 2266 2267 // Since lowerConstant already folded and got rid of all IR pointer and 2268 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2269 // directly. 2270 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2271 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2272 2273 AP.OutStreamer->EmitValue(ME, Size); 2274 } 2275 2276 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2277 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2278 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2279 if (Size) 2280 emitGlobalConstantImpl(DL, CV, *this); 2281 else if (MAI->hasSubsectionsViaSymbols()) { 2282 // If the global has zero size, emit a single byte so that two labels don't 2283 // look like they are at the same location. 2284 OutStreamer->EmitIntValue(0, 1); 2285 } 2286 } 2287 2288 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2289 // Target doesn't support this yet! 2290 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2291 } 2292 2293 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2294 if (Offset > 0) 2295 OS << '+' << Offset; 2296 else if (Offset < 0) 2297 OS << Offset; 2298 } 2299 2300 //===----------------------------------------------------------------------===// 2301 // Symbol Lowering Routines. 2302 //===----------------------------------------------------------------------===// 2303 2304 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2305 return OutContext.createTempSymbol(Name, true); 2306 } 2307 2308 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2309 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2310 } 2311 2312 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2313 return MMI->getAddrLabelSymbol(BB); 2314 } 2315 2316 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2317 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2318 const DataLayout &DL = getDataLayout(); 2319 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2320 "CPI" + Twine(getFunctionNumber()) + "_" + 2321 Twine(CPID)); 2322 } 2323 2324 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2325 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2326 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2327 } 2328 2329 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2330 /// FIXME: privatize to AsmPrinter. 2331 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2332 const DataLayout &DL = getDataLayout(); 2333 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2334 Twine(getFunctionNumber()) + "_" + 2335 Twine(UID) + "_set_" + Twine(MBBID)); 2336 } 2337 2338 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2339 StringRef Suffix) const { 2340 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2341 TM); 2342 } 2343 2344 /// Return the MCSymbol for the specified ExternalSymbol. 2345 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2346 SmallString<60> NameStr; 2347 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2348 return OutContext.getOrCreateSymbol(NameStr); 2349 } 2350 2351 2352 2353 /// PrintParentLoopComment - Print comments about parent loops of this one. 2354 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2355 unsigned FunctionNumber) { 2356 if (!Loop) return; 2357 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2358 OS.indent(Loop->getLoopDepth()*2) 2359 << "Parent Loop BB" << FunctionNumber << "_" 2360 << Loop->getHeader()->getNumber() 2361 << " Depth=" << Loop->getLoopDepth() << '\n'; 2362 } 2363 2364 2365 /// PrintChildLoopComment - Print comments about child loops within 2366 /// the loop for this basic block, with nesting. 2367 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2368 unsigned FunctionNumber) { 2369 // Add child loop information 2370 for (const MachineLoop *CL : *Loop) { 2371 OS.indent(CL->getLoopDepth()*2) 2372 << "Child Loop BB" << FunctionNumber << "_" 2373 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2374 << '\n'; 2375 PrintChildLoopComment(OS, CL, FunctionNumber); 2376 } 2377 } 2378 2379 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2380 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2381 const MachineLoopInfo *LI, 2382 const AsmPrinter &AP) { 2383 // Add loop depth information 2384 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2385 if (!Loop) return; 2386 2387 MachineBasicBlock *Header = Loop->getHeader(); 2388 assert(Header && "No header for loop"); 2389 2390 // If this block is not a loop header, just print out what is the loop header 2391 // and return. 2392 if (Header != &MBB) { 2393 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2394 Twine(AP.getFunctionNumber())+"_" + 2395 Twine(Loop->getHeader()->getNumber())+ 2396 " Depth="+Twine(Loop->getLoopDepth())); 2397 return; 2398 } 2399 2400 // Otherwise, it is a loop header. Print out information about child and 2401 // parent loops. 2402 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2403 2404 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2405 2406 OS << "=>"; 2407 OS.indent(Loop->getLoopDepth()*2-2); 2408 2409 OS << "This "; 2410 if (Loop->empty()) 2411 OS << "Inner "; 2412 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2413 2414 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2415 } 2416 2417 2418 /// EmitBasicBlockStart - This method prints the label for the specified 2419 /// MachineBasicBlock, an alignment (if present) and a comment describing 2420 /// it if appropriate. 2421 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2422 // End the previous funclet and start a new one. 2423 if (MBB.isEHFuncletEntry()) { 2424 for (const HandlerInfo &HI : Handlers) { 2425 HI.Handler->endFunclet(); 2426 HI.Handler->beginFunclet(MBB); 2427 } 2428 } 2429 2430 // Emit an alignment directive for this block, if needed. 2431 if (unsigned Align = MBB.getAlignment()) 2432 EmitAlignment(Align); 2433 2434 // If the block has its address taken, emit any labels that were used to 2435 // reference the block. It is possible that there is more than one label 2436 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2437 // the references were generated. 2438 if (MBB.hasAddressTaken()) { 2439 const BasicBlock *BB = MBB.getBasicBlock(); 2440 if (isVerbose()) 2441 OutStreamer->AddComment("Block address taken"); 2442 2443 // MBBs can have their address taken as part of CodeGen without having 2444 // their corresponding BB's address taken in IR 2445 if (BB->hasAddressTaken()) 2446 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2447 OutStreamer->EmitLabel(Sym); 2448 } 2449 2450 // Print some verbose block comments. 2451 if (isVerbose()) { 2452 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2453 if (BB->hasName()) { 2454 BB->printAsOperand(OutStreamer->GetCommentOS(), 2455 /*PrintType=*/false, BB->getModule()); 2456 OutStreamer->GetCommentOS() << '\n'; 2457 } 2458 } 2459 emitBasicBlockLoopComments(MBB, LI, *this); 2460 } 2461 2462 // Print the main label for the block. 2463 if (MBB.pred_empty() || 2464 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2465 if (isVerbose()) { 2466 // NOTE: Want this comment at start of line, don't emit with AddComment. 2467 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2468 } 2469 } else { 2470 OutStreamer->EmitLabel(MBB.getSymbol()); 2471 } 2472 } 2473 2474 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2475 bool IsDefinition) const { 2476 MCSymbolAttr Attr = MCSA_Invalid; 2477 2478 switch (Visibility) { 2479 default: break; 2480 case GlobalValue::HiddenVisibility: 2481 if (IsDefinition) 2482 Attr = MAI->getHiddenVisibilityAttr(); 2483 else 2484 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2485 break; 2486 case GlobalValue::ProtectedVisibility: 2487 Attr = MAI->getProtectedVisibilityAttr(); 2488 break; 2489 } 2490 2491 if (Attr != MCSA_Invalid) 2492 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2493 } 2494 2495 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2496 /// exactly one predecessor and the control transfer mechanism between 2497 /// the predecessor and this block is a fall-through. 2498 bool AsmPrinter:: 2499 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2500 // If this is a landing pad, it isn't a fall through. If it has no preds, 2501 // then nothing falls through to it. 2502 if (MBB->isEHPad() || MBB->pred_empty()) 2503 return false; 2504 2505 // If there isn't exactly one predecessor, it can't be a fall through. 2506 if (MBB->pred_size() > 1) 2507 return false; 2508 2509 // The predecessor has to be immediately before this block. 2510 MachineBasicBlock *Pred = *MBB->pred_begin(); 2511 if (!Pred->isLayoutSuccessor(MBB)) 2512 return false; 2513 2514 // If the block is completely empty, then it definitely does fall through. 2515 if (Pred->empty()) 2516 return true; 2517 2518 // Check the terminators in the previous blocks 2519 for (const auto &MI : Pred->terminators()) { 2520 // If it is not a simple branch, we are in a table somewhere. 2521 if (!MI.isBranch() || MI.isIndirectBranch()) 2522 return false; 2523 2524 // If we are the operands of one of the branches, this is not a fall 2525 // through. Note that targets with delay slots will usually bundle 2526 // terminators with the delay slot instruction. 2527 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2528 if (OP->isJTI()) 2529 return false; 2530 if (OP->isMBB() && OP->getMBB() == MBB) 2531 return false; 2532 } 2533 } 2534 2535 return true; 2536 } 2537 2538 2539 2540 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2541 if (!S.usesMetadata()) 2542 return nullptr; 2543 2544 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2545 " stackmap formats, please see the documentation for a description of" 2546 " the default format. If you really need a custom serialized format," 2547 " please file a bug"); 2548 2549 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2550 gcp_map_type::iterator GCPI = GCMap.find(&S); 2551 if (GCPI != GCMap.end()) 2552 return GCPI->second.get(); 2553 2554 const char *Name = S.getName().c_str(); 2555 2556 for (GCMetadataPrinterRegistry::iterator 2557 I = GCMetadataPrinterRegistry::begin(), 2558 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2559 if (strcmp(Name, I->getName()) == 0) { 2560 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2561 GMP->S = &S; 2562 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2563 return IterBool.first->second.get(); 2564 } 2565 2566 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2567 } 2568 2569 /// Pin vtable to this file. 2570 AsmPrinterHandler::~AsmPrinterHandler() {} 2571 2572 void AsmPrinterHandler::markFunctionEnd() {} 2573