1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "CodeViewDebug.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "WinException.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/GCMetadataPrinter.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCContext.h"
37 #include "llvm/MC/MCExpr.h"
38 #include "llvm/MC/MCInst.h"
39 #include "llvm/MC/MCSection.h"
40 #include "llvm/MC/MCStreamer.h"
41 #include "llvm/MC/MCSymbolELF.h"
42 #include "llvm/MC/MCValue.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/Format.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Support/Timer.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetLoweringObjectFile.h"
52 #include "llvm/Target/TargetRegisterInfo.h"
53 #include "llvm/Target/TargetSubtargetInfo.h"
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "asm-printer"
57 
58 static const char *const DWARFGroupName = "DWARF Emission";
59 static const char *const DbgTimerName = "Debug Info Emission";
60 static const char *const EHTimerName = "DWARF Exception Writer";
61 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
62 
63 STATISTIC(EmittedInsts, "Number of machine instrs printed");
64 
65 char AsmPrinter::ID = 0;
66 
67 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
68 static gcp_map_type &getGCMap(void *&P) {
69   if (!P)
70     P = new gcp_map_type();
71   return *(gcp_map_type*)P;
72 }
73 
74 
75 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
76 /// value in log2 form.  This rounds up to the preferred alignment if possible
77 /// and legal.
78 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
79                                    unsigned InBits = 0) {
80   unsigned NumBits = 0;
81   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
82     NumBits = DL.getPreferredAlignmentLog(GVar);
83 
84   // If InBits is specified, round it to it.
85   if (InBits > NumBits)
86     NumBits = InBits;
87 
88   // If the GV has a specified alignment, take it into account.
89   if (GV->getAlignment() == 0)
90     return NumBits;
91 
92   unsigned GVAlign = Log2_32(GV->getAlignment());
93 
94   // If the GVAlign is larger than NumBits, or if we are required to obey
95   // NumBits because the GV has an assigned section, obey it.
96   if (GVAlign > NumBits || GV->hasSection())
97     NumBits = GVAlign;
98   return NumBits;
99 }
100 
101 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
102     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
103       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
104       LastMI(nullptr), LastFn(0), Counter(~0U) {
105   DD = nullptr;
106   MMI = nullptr;
107   LI = nullptr;
108   MF = nullptr;
109   CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr;
110   CurrentFnBegin = nullptr;
111   CurrentFnEnd = nullptr;
112   GCMetadataPrinters = nullptr;
113   VerboseAsm = OutStreamer->isVerboseAsm();
114 }
115 
116 AsmPrinter::~AsmPrinter() {
117   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
118 
119   if (GCMetadataPrinters) {
120     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
121 
122     delete &GCMap;
123     GCMetadataPrinters = nullptr;
124   }
125 }
126 
127 bool AsmPrinter::isPositionIndependent() const {
128   return TM.isPositionIndependent();
129 }
130 
131 /// getFunctionNumber - Return a unique ID for the current function.
132 ///
133 unsigned AsmPrinter::getFunctionNumber() const {
134   return MF->getFunctionNumber();
135 }
136 
137 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
138   return *TM.getObjFileLowering();
139 }
140 
141 const DataLayout &AsmPrinter::getDataLayout() const {
142   return MMI->getModule()->getDataLayout();
143 }
144 
145 // Do not use the cached DataLayout because some client use it without a Module
146 // (llmv-dsymutil, llvm-dwarfdump).
147 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
148 
149 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
150   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
151   return MF->getSubtarget<MCSubtargetInfo>();
152 }
153 
154 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
155   S.EmitInstruction(Inst, getSubtargetInfo());
156 }
157 
158 StringRef AsmPrinter::getTargetTriple() const {
159   return TM.getTargetTriple().str();
160 }
161 
162 /// getCurrentSection() - Return the current section we are emitting to.
163 const MCSection *AsmPrinter::getCurrentSection() const {
164   return OutStreamer->getCurrentSection().first;
165 }
166 
167 
168 
169 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
170   AU.setPreservesAll();
171   MachineFunctionPass::getAnalysisUsage(AU);
172   AU.addRequired<MachineModuleInfo>();
173   AU.addRequired<GCModuleInfo>();
174   if (isVerbose())
175     AU.addRequired<MachineLoopInfo>();
176 }
177 
178 bool AsmPrinter::doInitialization(Module &M) {
179   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
180 
181   // Initialize TargetLoweringObjectFile.
182   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
183     .Initialize(OutContext, TM);
184 
185   OutStreamer->InitSections(false);
186 
187   Mang = new Mangler();
188 
189   // Emit the version-min deplyment target directive if needed.
190   //
191   // FIXME: If we end up with a collection of these sorts of Darwin-specific
192   // or ELF-specific things, it may make sense to have a platform helper class
193   // that will work with the target helper class. For now keep it here, as the
194   // alternative is duplicated code in each of the target asm printers that
195   // use the directive, where it would need the same conditionalization
196   // anyway.
197   Triple TT(getTargetTriple());
198   // If there is a version specified, Major will be non-zero.
199   if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) {
200     unsigned Major, Minor, Update;
201     MCVersionMinType VersionType;
202     if (TT.isWatchOS()) {
203       VersionType = MCVM_WatchOSVersionMin;
204       TT.getWatchOSVersion(Major, Minor, Update);
205     } else if (TT.isTvOS()) {
206       VersionType = MCVM_TvOSVersionMin;
207       TT.getiOSVersion(Major, Minor, Update);
208     } else if (TT.isMacOSX()) {
209       VersionType = MCVM_OSXVersionMin;
210       if (!TT.getMacOSXVersion(Major, Minor, Update))
211         Major = 0;
212     } else {
213       VersionType = MCVM_IOSVersionMin;
214       TT.getiOSVersion(Major, Minor, Update);
215     }
216     if (Major != 0)
217       OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
218   }
219 
220   // Allow the target to emit any magic that it wants at the start of the file.
221   EmitStartOfAsmFile(M);
222 
223   // Very minimal debug info. It is ignored if we emit actual debug info. If we
224   // don't, this at least helps the user find where a global came from.
225   if (MAI->hasSingleParameterDotFile()) {
226     // .file "foo.c"
227     OutStreamer->EmitFileDirective(M.getModuleIdentifier());
228   }
229 
230   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
231   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
232   for (auto &I : *MI)
233     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
234       MP->beginAssembly(M, *MI, *this);
235 
236   // Emit module-level inline asm if it exists.
237   if (!M.getModuleInlineAsm().empty()) {
238     // We're at the module level. Construct MCSubtarget from the default CPU
239     // and target triple.
240     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
241         TM.getTargetTriple().str(), TM.getTargetCPU(),
242         TM.getTargetFeatureString()));
243     OutStreamer->AddComment("Start of file scope inline assembly");
244     OutStreamer->AddBlankLine();
245     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
246                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
247     OutStreamer->AddComment("End of file scope inline assembly");
248     OutStreamer->AddBlankLine();
249   }
250 
251   if (MAI->doesSupportDebugInformation()) {
252     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
253     if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) {
254       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
255                                      DbgTimerName,
256                                      CodeViewLineTablesGroupName));
257     }
258     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
259       DD = new DwarfDebug(this, &M);
260       DD->beginModule();
261       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
262     }
263   }
264 
265   EHStreamer *ES = nullptr;
266   switch (MAI->getExceptionHandlingType()) {
267   case ExceptionHandling::None:
268     break;
269   case ExceptionHandling::SjLj:
270   case ExceptionHandling::DwarfCFI:
271     ES = new DwarfCFIException(this);
272     break;
273   case ExceptionHandling::ARM:
274     ES = new ARMException(this);
275     break;
276   case ExceptionHandling::WinEH:
277     switch (MAI->getWinEHEncodingType()) {
278     default: llvm_unreachable("unsupported unwinding information encoding");
279     case WinEH::EncodingType::Invalid:
280       break;
281     case WinEH::EncodingType::X86:
282     case WinEH::EncodingType::Itanium:
283       ES = new WinException(this);
284       break;
285     }
286     break;
287   }
288   if (ES)
289     Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
290   return false;
291 }
292 
293 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
294   if (!MAI.hasWeakDefCanBeHiddenDirective())
295     return false;
296 
297   return canBeOmittedFromSymbolTable(GV);
298 }
299 
300 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
301   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
302   switch (Linkage) {
303   case GlobalValue::CommonLinkage:
304   case GlobalValue::LinkOnceAnyLinkage:
305   case GlobalValue::LinkOnceODRLinkage:
306   case GlobalValue::WeakAnyLinkage:
307   case GlobalValue::WeakODRLinkage:
308     if (MAI->hasWeakDefDirective()) {
309       // .globl _foo
310       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
311 
312       if (!canBeHidden(GV, *MAI))
313         // .weak_definition _foo
314         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
315       else
316         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
317     } else if (MAI->hasLinkOnceDirective()) {
318       // .globl _foo
319       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
320       //NOTE: linkonce is handled by the section the symbol was assigned to.
321     } else {
322       // .weak _foo
323       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
324     }
325     return;
326   case GlobalValue::ExternalLinkage:
327     // If external, declare as a global symbol: .globl _foo
328     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
329     return;
330   case GlobalValue::PrivateLinkage:
331   case GlobalValue::InternalLinkage:
332     return;
333   case GlobalValue::AppendingLinkage:
334   case GlobalValue::AvailableExternallyLinkage:
335   case GlobalValue::ExternalWeakLinkage:
336     llvm_unreachable("Should never emit this");
337   }
338   llvm_unreachable("Unknown linkage type!");
339 }
340 
341 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
342                                    const GlobalValue *GV) const {
343   TM.getNameWithPrefix(Name, GV, *Mang);
344 }
345 
346 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
347   return TM.getSymbol(GV, *Mang);
348 }
349 
350 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
351 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
352   bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
353   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
354          "No emulated TLS variables in the common section");
355 
356   // Never emit TLS variable xyz in emulated TLS model.
357   // The initialization value is in __emutls_t.xyz instead of xyz.
358   if (IsEmuTLSVar)
359     return;
360 
361   if (GV->hasInitializer()) {
362     // Check to see if this is a special global used by LLVM, if so, emit it.
363     if (EmitSpecialLLVMGlobal(GV))
364       return;
365 
366     // Skip the emission of global equivalents. The symbol can be emitted later
367     // on by emitGlobalGOTEquivs in case it turns out to be needed.
368     if (GlobalGOTEquivs.count(getSymbol(GV)))
369       return;
370 
371     if (isVerbose()) {
372       // When printing the control variable __emutls_v.*,
373       // we don't need to print the original TLS variable name.
374       GV->printAsOperand(OutStreamer->GetCommentOS(),
375                      /*PrintType=*/false, GV->getParent());
376       OutStreamer->GetCommentOS() << '\n';
377     }
378   }
379 
380   MCSymbol *GVSym = getSymbol(GV);
381   MCSymbol *EmittedSym = GVSym;
382   // getOrCreateEmuTLSControlSym only creates the symbol with name and default attributes.
383   // GV's or GVSym's attributes will be used for the EmittedSym.
384 
385   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
386 
387   if (!GV->hasInitializer())   // External globals require no extra code.
388     return;
389 
390   GVSym->redefineIfPossible();
391   if (GVSym->isDefined() || GVSym->isVariable())
392     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
393                        "' is already defined");
394 
395   if (MAI->hasDotTypeDotSizeDirective())
396     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
397 
398   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
399 
400   const DataLayout &DL = GV->getParent()->getDataLayout();
401   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
402 
403   // If the alignment is specified, we *must* obey it.  Overaligning a global
404   // with a specified alignment is a prompt way to break globals emitted to
405   // sections and expected to be contiguous (e.g. ObjC metadata).
406   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
407 
408   for (const HandlerInfo &HI : Handlers) {
409     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
410     HI.Handler->setSymbolSize(GVSym, Size);
411   }
412 
413   // Handle common symbols
414   if (GVKind.isCommon()) {
415     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
416     unsigned Align = 1 << AlignLog;
417     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
418       Align = 0;
419 
420     // .comm _foo, 42, 4
421     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
422     return;
423   }
424 
425   // Determine to which section this global should be emitted.
426   MCSection *TheSection =
427       getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
428 
429   // If we have a bss global going to a section that supports the
430   // zerofill directive, do so here.
431   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
432       TheSection->isVirtualSection()) {
433     if (Size == 0)
434       Size = 1; // zerofill of 0 bytes is undefined.
435     unsigned Align = 1 << AlignLog;
436     EmitLinkage(GV, GVSym);
437     // .zerofill __DATA, __bss, _foo, 400, 5
438     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
439     return;
440   }
441 
442   // If this is a BSS local symbol and we are emitting in the BSS
443   // section use .lcomm/.comm directive.
444   if (GVKind.isBSSLocal() &&
445       getObjFileLowering().getBSSSection() == TheSection) {
446     if (Size == 0)
447       Size = 1; // .comm Foo, 0 is undefined, avoid it.
448     unsigned Align = 1 << AlignLog;
449 
450     // Use .lcomm only if it supports user-specified alignment.
451     // Otherwise, while it would still be correct to use .lcomm in some
452     // cases (e.g. when Align == 1), the external assembler might enfore
453     // some -unknown- default alignment behavior, which could cause
454     // spurious differences between external and integrated assembler.
455     // Prefer to simply fall back to .local / .comm in this case.
456     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
457       // .lcomm _foo, 42
458       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
459       return;
460     }
461 
462     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
463       Align = 0;
464 
465     // .local _foo
466     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
467     // .comm _foo, 42, 4
468     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
469     return;
470   }
471 
472   // Handle thread local data for mach-o which requires us to output an
473   // additional structure of data and mangle the original symbol so that we
474   // can reference it later.
475   //
476   // TODO: This should become an "emit thread local global" method on TLOF.
477   // All of this macho specific stuff should be sunk down into TLOFMachO and
478   // stuff like "TLSExtraDataSection" should no longer be part of the parent
479   // TLOF class.  This will also make it more obvious that stuff like
480   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
481   // specific code.
482   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
483     // Emit the .tbss symbol
484     MCSymbol *MangSym =
485       OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
486 
487     if (GVKind.isThreadBSS()) {
488       TheSection = getObjFileLowering().getTLSBSSSection();
489       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
490     } else if (GVKind.isThreadData()) {
491       OutStreamer->SwitchSection(TheSection);
492 
493       EmitAlignment(AlignLog, GV);
494       OutStreamer->EmitLabel(MangSym);
495 
496       EmitGlobalConstant(GV->getParent()->getDataLayout(),
497                          GV->getInitializer());
498     }
499 
500     OutStreamer->AddBlankLine();
501 
502     // Emit the variable struct for the runtime.
503     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
504 
505     OutStreamer->SwitchSection(TLVSect);
506     // Emit the linkage here.
507     EmitLinkage(GV, GVSym);
508     OutStreamer->EmitLabel(GVSym);
509 
510     // Three pointers in size:
511     //   - __tlv_bootstrap - used to make sure support exists
512     //   - spare pointer, used when mapped by the runtime
513     //   - pointer to mangled symbol above with initializer
514     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
515     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
516                                 PtrSize);
517     OutStreamer->EmitIntValue(0, PtrSize);
518     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
519 
520     OutStreamer->AddBlankLine();
521     return;
522   }
523 
524   MCSymbol *EmittedInitSym = GVSym;
525 
526   OutStreamer->SwitchSection(TheSection);
527 
528   EmitLinkage(GV, EmittedInitSym);
529   EmitAlignment(AlignLog, GV);
530 
531   OutStreamer->EmitLabel(EmittedInitSym);
532 
533   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
534 
535   if (MAI->hasDotTypeDotSizeDirective())
536     // .size foo, 42
537     OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym),
538                              MCConstantExpr::create(Size, OutContext));
539 
540   OutStreamer->AddBlankLine();
541 }
542 
543 /// EmitFunctionHeader - This method emits the header for the current
544 /// function.
545 void AsmPrinter::EmitFunctionHeader() {
546   // Print out constants referenced by the function
547   EmitConstantPool();
548 
549   // Print the 'header' of function.
550   const Function *F = MF->getFunction();
551 
552   OutStreamer->SwitchSection(
553       getObjFileLowering().SectionForGlobal(F, *Mang, TM));
554   EmitVisibility(CurrentFnSym, F->getVisibility());
555 
556   EmitLinkage(F, CurrentFnSym);
557   if (MAI->hasFunctionAlignment())
558     EmitAlignment(MF->getAlignment(), F);
559 
560   if (MAI->hasDotTypeDotSizeDirective())
561     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
562 
563   if (isVerbose()) {
564     F->printAsOperand(OutStreamer->GetCommentOS(),
565                    /*PrintType=*/false, F->getParent());
566     OutStreamer->GetCommentOS() << '\n';
567   }
568 
569   // Emit the prefix data.
570   if (F->hasPrefixData())
571     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
572 
573   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
574   // do their wild and crazy things as required.
575   EmitFunctionEntryLabel();
576 
577   // If the function had address-taken blocks that got deleted, then we have
578   // references to the dangling symbols.  Emit them at the start of the function
579   // so that we don't get references to undefined symbols.
580   std::vector<MCSymbol*> DeadBlockSyms;
581   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
582   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
583     OutStreamer->AddComment("Address taken block that was later removed");
584     OutStreamer->EmitLabel(DeadBlockSyms[i]);
585   }
586 
587   if (CurrentFnBegin) {
588     if (MAI->useAssignmentForEHBegin()) {
589       MCSymbol *CurPos = OutContext.createTempSymbol();
590       OutStreamer->EmitLabel(CurPos);
591       OutStreamer->EmitAssignment(CurrentFnBegin,
592                                  MCSymbolRefExpr::create(CurPos, OutContext));
593     } else {
594       OutStreamer->EmitLabel(CurrentFnBegin);
595     }
596   }
597 
598   // Emit pre-function debug and/or EH information.
599   for (const HandlerInfo &HI : Handlers) {
600     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
601     HI.Handler->beginFunction(MF);
602   }
603 
604   // Emit the prologue data.
605   if (F->hasPrologueData())
606     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
607 }
608 
609 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
610 /// function.  This can be overridden by targets as required to do custom stuff.
611 void AsmPrinter::EmitFunctionEntryLabel() {
612   CurrentFnSym->redefineIfPossible();
613 
614   // The function label could have already been emitted if two symbols end up
615   // conflicting due to asm renaming.  Detect this and emit an error.
616   if (CurrentFnSym->isVariable())
617     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
618                        "' is a protected alias");
619   if (CurrentFnSym->isDefined())
620     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
621                        "' label emitted multiple times to assembly file");
622 
623   return OutStreamer->EmitLabel(CurrentFnSym);
624 }
625 
626 /// emitComments - Pretty-print comments for instructions.
627 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
628   const MachineFunction *MF = MI.getParent()->getParent();
629   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
630 
631   // Check for spills and reloads
632   int FI;
633 
634   const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
635 
636   // We assume a single instruction only has a spill or reload, not
637   // both.
638   const MachineMemOperand *MMO;
639   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
640     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
641       MMO = *MI.memoperands_begin();
642       CommentOS << MMO->getSize() << "-byte Reload\n";
643     }
644   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
645     if (FrameInfo->isSpillSlotObjectIndex(FI))
646       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
647   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
648     if (FrameInfo->isSpillSlotObjectIndex(FI)) {
649       MMO = *MI.memoperands_begin();
650       CommentOS << MMO->getSize() << "-byte Spill\n";
651     }
652   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
653     if (FrameInfo->isSpillSlotObjectIndex(FI))
654       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
655   }
656 
657   // Check for spill-induced copies
658   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
659     CommentOS << " Reload Reuse\n";
660 }
661 
662 /// emitImplicitDef - This method emits the specified machine instruction
663 /// that is an implicit def.
664 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
665   unsigned RegNo = MI->getOperand(0).getReg();
666 
667   SmallString<128> Str;
668   raw_svector_ostream OS(Str);
669   OS << "implicit-def: "
670      << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo());
671 
672   OutStreamer->AddComment(OS.str());
673   OutStreamer->AddBlankLine();
674 }
675 
676 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
677   std::string Str;
678   raw_string_ostream OS(Str);
679   OS << "kill:";
680   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
681     const MachineOperand &Op = MI->getOperand(i);
682     assert(Op.isReg() && "KILL instruction must have only register operands");
683     OS << ' '
684        << PrintReg(Op.getReg(),
685                    AP.MF->getSubtarget().getRegisterInfo())
686        << (Op.isDef() ? "<def>" : "<kill>");
687   }
688   AP.OutStreamer->AddComment(Str);
689   AP.OutStreamer->AddBlankLine();
690 }
691 
692 /// emitDebugValueComment - This method handles the target-independent form
693 /// of DBG_VALUE, returning true if it was able to do so.  A false return
694 /// means the target will need to handle MI in EmitInstruction.
695 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
696   // This code handles only the 4-operand target-independent form.
697   if (MI->getNumOperands() != 4)
698     return false;
699 
700   SmallString<128> Str;
701   raw_svector_ostream OS(Str);
702   OS << "DEBUG_VALUE: ";
703 
704   const DILocalVariable *V = MI->getDebugVariable();
705   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
706     StringRef Name = SP->getDisplayName();
707     if (!Name.empty())
708       OS << Name << ":";
709   }
710   OS << V->getName();
711 
712   const DIExpression *Expr = MI->getDebugExpression();
713   if (Expr->isBitPiece())
714     OS << " [bit_piece offset=" << Expr->getBitPieceOffset()
715        << " size=" << Expr->getBitPieceSize() << "]";
716   OS << " <- ";
717 
718   // The second operand is only an offset if it's an immediate.
719   bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
720   int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
721 
722   for (unsigned i = 0; i < Expr->getNumElements(); ++i) {
723     if (Deref) {
724       // We currently don't support extra Offsets or derefs after the first
725       // one. Bail out early instead of emitting an incorrect comment
726       OS << " [complex expression]";
727       AP.OutStreamer->emitRawComment(OS.str());
728       return true;
729     }
730     uint64_t Op = Expr->getElement(i);
731     if (Op == dwarf::DW_OP_deref) {
732       Deref = true;
733       continue;
734     } else if (Op == dwarf::DW_OP_bit_piece) {
735       // There can't be any operands after this in a valid expression
736       break;
737     }
738     uint64_t ExtraOffset = Expr->getElement(i++);
739     if (Op == dwarf::DW_OP_plus)
740       Offset += ExtraOffset;
741     else {
742       assert(Op == dwarf::DW_OP_minus);
743       Offset -= ExtraOffset;
744     }
745   }
746 
747   // Register or immediate value. Register 0 means undef.
748   if (MI->getOperand(0).isFPImm()) {
749     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
750     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
751       OS << (double)APF.convertToFloat();
752     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
753       OS << APF.convertToDouble();
754     } else {
755       // There is no good way to print long double.  Convert a copy to
756       // double.  Ah well, it's only a comment.
757       bool ignored;
758       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
759                   &ignored);
760       OS << "(long double) " << APF.convertToDouble();
761     }
762   } else if (MI->getOperand(0).isImm()) {
763     OS << MI->getOperand(0).getImm();
764   } else if (MI->getOperand(0).isCImm()) {
765     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
766   } else {
767     unsigned Reg;
768     if (MI->getOperand(0).isReg()) {
769       Reg = MI->getOperand(0).getReg();
770     } else {
771       assert(MI->getOperand(0).isFI() && "Unknown operand type");
772       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
773       Offset += TFI->getFrameIndexReference(*AP.MF,
774                                             MI->getOperand(0).getIndex(), Reg);
775       Deref = true;
776     }
777     if (Reg == 0) {
778       // Suppress offset, it is not meaningful here.
779       OS << "undef";
780       // NOTE: Want this comment at start of line, don't emit with AddComment.
781       AP.OutStreamer->emitRawComment(OS.str());
782       return true;
783     }
784     if (Deref)
785       OS << '[';
786     OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
787   }
788 
789   if (Deref)
790     OS << '+' << Offset << ']';
791 
792   // NOTE: Want this comment at start of line, don't emit with AddComment.
793   AP.OutStreamer->emitRawComment(OS.str());
794   return true;
795 }
796 
797 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
798   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
799       MF->getFunction()->needsUnwindTableEntry())
800     return CFI_M_EH;
801 
802   if (MMI->hasDebugInfo())
803     return CFI_M_Debug;
804 
805   return CFI_M_None;
806 }
807 
808 bool AsmPrinter::needsSEHMoves() {
809   return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
810 }
811 
812 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
813   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
814   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
815       ExceptionHandlingType != ExceptionHandling::ARM)
816     return;
817 
818   if (needsCFIMoves() == CFI_M_None)
819     return;
820 
821   const MachineModuleInfo &MMI = MF->getMMI();
822   const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
823   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
824   const MCCFIInstruction &CFI = Instrs[CFIIndex];
825   emitCFIInstruction(CFI);
826 }
827 
828 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
829   // The operands are the MCSymbol and the frame offset of the allocation.
830   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
831   int FrameOffset = MI.getOperand(1).getImm();
832 
833   // Emit a symbol assignment.
834   OutStreamer->EmitAssignment(FrameAllocSym,
835                              MCConstantExpr::create(FrameOffset, OutContext));
836 }
837 
838 /// EmitFunctionBody - This method emits the body and trailer for a
839 /// function.
840 void AsmPrinter::EmitFunctionBody() {
841   EmitFunctionHeader();
842 
843   // Emit target-specific gunk before the function body.
844   EmitFunctionBodyStart();
845 
846   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
847 
848   // Print out code for the function.
849   bool HasAnyRealCode = false;
850   for (auto &MBB : *MF) {
851     // Print a label for the basic block.
852     EmitBasicBlockStart(MBB);
853     for (auto &MI : MBB) {
854 
855       // Print the assembly for the instruction.
856       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
857           !MI.isDebugValue()) {
858         HasAnyRealCode = true;
859         ++EmittedInsts;
860       }
861 
862       if (ShouldPrintDebugScopes) {
863         for (const HandlerInfo &HI : Handlers) {
864           NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
865                              TimePassesIsEnabled);
866           HI.Handler->beginInstruction(&MI);
867         }
868       }
869 
870       if (isVerbose())
871         emitComments(MI, OutStreamer->GetCommentOS());
872 
873       switch (MI.getOpcode()) {
874       case TargetOpcode::CFI_INSTRUCTION:
875         emitCFIInstruction(MI);
876         break;
877 
878       case TargetOpcode::LOCAL_ESCAPE:
879         emitFrameAlloc(MI);
880         break;
881 
882       case TargetOpcode::EH_LABEL:
883       case TargetOpcode::GC_LABEL:
884         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
885         break;
886       case TargetOpcode::INLINEASM:
887         EmitInlineAsm(&MI);
888         break;
889       case TargetOpcode::DBG_VALUE:
890         if (isVerbose()) {
891           if (!emitDebugValueComment(&MI, *this))
892             EmitInstruction(&MI);
893         }
894         break;
895       case TargetOpcode::IMPLICIT_DEF:
896         if (isVerbose()) emitImplicitDef(&MI);
897         break;
898       case TargetOpcode::KILL:
899         if (isVerbose()) emitKill(&MI, *this);
900         break;
901       default:
902         EmitInstruction(&MI);
903         break;
904       }
905 
906       if (ShouldPrintDebugScopes) {
907         for (const HandlerInfo &HI : Handlers) {
908           NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
909                              TimePassesIsEnabled);
910           HI.Handler->endInstruction();
911         }
912       }
913     }
914 
915     EmitBasicBlockEnd(MBB);
916   }
917 
918   // If the function is empty and the object file uses .subsections_via_symbols,
919   // then we need to emit *something* to the function body to prevent the
920   // labels from collapsing together.  Just emit a noop.
921   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
922     MCInst Noop;
923     MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop);
924     OutStreamer->AddComment("avoids zero-length function");
925 
926     // Targets can opt-out of emitting the noop here by leaving the opcode
927     // unspecified.
928     if (Noop.getOpcode())
929       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
930   }
931 
932   const Function *F = MF->getFunction();
933   for (const auto &BB : *F) {
934     if (!BB.hasAddressTaken())
935       continue;
936     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
937     if (Sym->isDefined())
938       continue;
939     OutStreamer->AddComment("Address of block that was removed by CodeGen");
940     OutStreamer->EmitLabel(Sym);
941   }
942 
943   // Emit target-specific gunk after the function body.
944   EmitFunctionBodyEnd();
945 
946   if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
947       MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) {
948     // Create a symbol for the end of function.
949     CurrentFnEnd = createTempSymbol("func_end");
950     OutStreamer->EmitLabel(CurrentFnEnd);
951   }
952 
953   // If the target wants a .size directive for the size of the function, emit
954   // it.
955   if (MAI->hasDotTypeDotSizeDirective()) {
956     // We can get the size as difference between the function label and the
957     // temp label.
958     const MCExpr *SizeExp = MCBinaryExpr::createSub(
959         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
960         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
961     if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym))
962       OutStreamer->emitELFSize(Sym, SizeExp);
963   }
964 
965   for (const HandlerInfo &HI : Handlers) {
966     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
967     HI.Handler->markFunctionEnd();
968   }
969 
970   // Print out jump tables referenced by the function.
971   EmitJumpTableInfo();
972 
973   // Emit post-function debug and/or EH information.
974   for (const HandlerInfo &HI : Handlers) {
975     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
976     HI.Handler->endFunction(MF);
977   }
978   MMI->EndFunction();
979 
980   OutStreamer->AddBlankLine();
981 }
982 
983 /// \brief Compute the number of Global Variables that uses a Constant.
984 static unsigned getNumGlobalVariableUses(const Constant *C) {
985   if (!C)
986     return 0;
987 
988   if (isa<GlobalVariable>(C))
989     return 1;
990 
991   unsigned NumUses = 0;
992   for (auto *CU : C->users())
993     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
994 
995   return NumUses;
996 }
997 
998 /// \brief Only consider global GOT equivalents if at least one user is a
999 /// cstexpr inside an initializer of another global variables. Also, don't
1000 /// handle cstexpr inside instructions. During global variable emission,
1001 /// candidates are skipped and are emitted later in case at least one cstexpr
1002 /// isn't replaced by a PC relative GOT entry access.
1003 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1004                                      unsigned &NumGOTEquivUsers) {
1005   // Global GOT equivalents are unnamed private globals with a constant
1006   // pointer initializer to another global symbol. They must point to a
1007   // GlobalVariable or Function, i.e., as GlobalValue.
1008   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() ||
1009       !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0)))
1010     return false;
1011 
1012   // To be a got equivalent, at least one of its users need to be a constant
1013   // expression used by another global variable.
1014   for (auto *U : GV->users())
1015     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1016 
1017   return NumGOTEquivUsers > 0;
1018 }
1019 
1020 /// \brief Unnamed constant global variables solely contaning a pointer to
1021 /// another globals variable is equivalent to a GOT table entry; it contains the
1022 /// the address of another symbol. Optimize it and replace accesses to these
1023 /// "GOT equivalents" by using the GOT entry for the final global instead.
1024 /// Compute GOT equivalent candidates among all global variables to avoid
1025 /// emitting them if possible later on, after it use is replaced by a GOT entry
1026 /// access.
1027 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1028   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1029     return;
1030 
1031   for (const auto &G : M.globals()) {
1032     unsigned NumGOTEquivUsers = 0;
1033     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1034       continue;
1035 
1036     const MCSymbol *GOTEquivSym = getSymbol(&G);
1037     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1038   }
1039 }
1040 
1041 /// \brief Constant expressions using GOT equivalent globals may not be eligible
1042 /// for PC relative GOT entry conversion, in such cases we need to emit such
1043 /// globals we previously omitted in EmitGlobalVariable.
1044 void AsmPrinter::emitGlobalGOTEquivs() {
1045   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1046     return;
1047 
1048   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1049   for (auto &I : GlobalGOTEquivs) {
1050     const GlobalVariable *GV = I.second.first;
1051     unsigned Cnt = I.second.second;
1052     if (Cnt)
1053       FailedCandidates.push_back(GV);
1054   }
1055   GlobalGOTEquivs.clear();
1056 
1057   for (auto *GV : FailedCandidates)
1058     EmitGlobalVariable(GV);
1059 }
1060 
1061 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1062                                           const GlobalIndirectSymbol& GIS) {
1063   MCSymbol *Name = getSymbol(&GIS);
1064 
1065   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1066     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1067   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1068     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1069   else
1070     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1071 
1072   // Set the symbol type to function if the alias has a function type.
1073   // This affects codegen when the aliasee is not a function.
1074   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1075     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1076     if (isa<GlobalIFunc>(GIS))
1077       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1078   }
1079 
1080   EmitVisibility(Name, GIS.getVisibility());
1081 
1082   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1083 
1084   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1085     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1086 
1087   // Emit the directives as assignments aka .set:
1088   OutStreamer->EmitAssignment(Name, Expr);
1089 
1090   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1091     // If the aliasee does not correspond to a symbol in the output, i.e. the
1092     // alias is not of an object or the aliased object is private, then set the
1093     // size of the alias symbol from the type of the alias. We don't do this in
1094     // other situations as the alias and aliasee having differing types but same
1095     // size may be intentional.
1096     const GlobalObject *BaseObject = GA->getBaseObject();
1097     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1098         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1099       const DataLayout &DL = M.getDataLayout();
1100       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1101       OutStreamer->emitELFSize(cast<MCSymbolELF>(Name),
1102                                MCConstantExpr::create(Size, OutContext));
1103     }
1104   }
1105 }
1106 
1107 bool AsmPrinter::doFinalization(Module &M) {
1108   // Set the MachineFunction to nullptr so that we can catch attempted
1109   // accesses to MF specific features at the module level and so that
1110   // we can conditionalize accesses based on whether or not it is nullptr.
1111   MF = nullptr;
1112 
1113   // Gather all GOT equivalent globals in the module. We really need two
1114   // passes over the globals: one to compute and another to avoid its emission
1115   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1116   // where the got equivalent shows up before its use.
1117   computeGlobalGOTEquivs(M);
1118 
1119   // Emit global variables.
1120   for (const auto &G : M.globals())
1121     EmitGlobalVariable(&G);
1122 
1123   // Emit remaining GOT equivalent globals.
1124   emitGlobalGOTEquivs();
1125 
1126   // Emit visibility info for declarations
1127   for (const Function &F : M) {
1128     if (!F.isDeclarationForLinker())
1129       continue;
1130     GlobalValue::VisibilityTypes V = F.getVisibility();
1131     if (V == GlobalValue::DefaultVisibility)
1132       continue;
1133 
1134     MCSymbol *Name = getSymbol(&F);
1135     EmitVisibility(Name, V, false);
1136   }
1137 
1138   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1139 
1140   // Emit module flags.
1141   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
1142   M.getModuleFlagsMetadata(ModuleFlags);
1143   if (!ModuleFlags.empty())
1144     TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM);
1145 
1146   if (TM.getTargetTriple().isOSBinFormatELF()) {
1147     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1148 
1149     // Output stubs for external and common global variables.
1150     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1151     if (!Stubs.empty()) {
1152       OutStreamer->SwitchSection(TLOF.getDataSection());
1153       const DataLayout &DL = M.getDataLayout();
1154 
1155       for (const auto &Stub : Stubs) {
1156         OutStreamer->EmitLabel(Stub.first);
1157         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1158                                      DL.getPointerSize());
1159       }
1160     }
1161   }
1162 
1163   // Finalize debug and EH information.
1164   for (const HandlerInfo &HI : Handlers) {
1165     NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
1166                        TimePassesIsEnabled);
1167     HI.Handler->endModule();
1168     delete HI.Handler;
1169   }
1170   Handlers.clear();
1171   DD = nullptr;
1172 
1173   // If the target wants to know about weak references, print them all.
1174   if (MAI->getWeakRefDirective()) {
1175     // FIXME: This is not lazy, it would be nice to only print weak references
1176     // to stuff that is actually used.  Note that doing so would require targets
1177     // to notice uses in operands (due to constant exprs etc).  This should
1178     // happen with the MC stuff eventually.
1179 
1180     // Print out module-level global objects here.
1181     for (const auto &GO : M.global_objects()) {
1182       if (!GO.hasExternalWeakLinkage())
1183         continue;
1184       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1185     }
1186   }
1187 
1188   OutStreamer->AddBlankLine();
1189 
1190   // Print aliases in topological order, that is, for each alias a = b,
1191   // b must be printed before a.
1192   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1193   // such an order to generate correct TOC information.
1194   SmallVector<const GlobalAlias *, 16> AliasStack;
1195   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1196   for (const auto &Alias : M.aliases()) {
1197     for (const GlobalAlias *Cur = &Alias; Cur;
1198          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1199       if (!AliasVisited.insert(Cur).second)
1200         break;
1201       AliasStack.push_back(Cur);
1202     }
1203     for (const GlobalAlias *AncestorAlias : reverse(AliasStack))
1204       emitGlobalIndirectSymbol(M, *AncestorAlias);
1205     AliasStack.clear();
1206   }
1207   for (const auto &IFunc : M.ifuncs())
1208     emitGlobalIndirectSymbol(M, IFunc);
1209 
1210   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1211   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1212   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1213     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1214       MP->finishAssembly(M, *MI, *this);
1215 
1216   // Emit llvm.ident metadata in an '.ident' directive.
1217   EmitModuleIdents(M);
1218 
1219   // Emit __morestack address if needed for indirect calls.
1220   if (MMI->usesMorestackAddr()) {
1221     unsigned Align = 1;
1222     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1223         getDataLayout(), SectionKind::getReadOnly(),
1224         /*C=*/nullptr, Align);
1225     OutStreamer->SwitchSection(ReadOnlySection);
1226 
1227     MCSymbol *AddrSymbol =
1228         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1229     OutStreamer->EmitLabel(AddrSymbol);
1230 
1231     unsigned PtrSize = M.getDataLayout().getPointerSize(0);
1232     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1233                                  PtrSize);
1234   }
1235 
1236   // If we don't have any trampolines, then we don't require stack memory
1237   // to be executable. Some targets have a directive to declare this.
1238   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1239   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1240     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1241       OutStreamer->SwitchSection(S);
1242 
1243   // Allow the target to emit any magic that it wants at the end of the file,
1244   // after everything else has gone out.
1245   EmitEndOfAsmFile(M);
1246 
1247   delete Mang; Mang = nullptr;
1248   MMI = nullptr;
1249 
1250   OutStreamer->Finish();
1251   OutStreamer->reset();
1252 
1253   return false;
1254 }
1255 
1256 MCSymbol *AsmPrinter::getCurExceptionSym() {
1257   if (!CurExceptionSym)
1258     CurExceptionSym = createTempSymbol("exception");
1259   return CurExceptionSym;
1260 }
1261 
1262 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1263   this->MF = &MF;
1264   // Get the function symbol.
1265   CurrentFnSym = getSymbol(MF.getFunction());
1266   CurrentFnSymForSize = CurrentFnSym;
1267   CurrentFnBegin = nullptr;
1268   CurExceptionSym = nullptr;
1269   bool NeedsLocalForSize = MAI->needsLocalForSize();
1270   if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
1271       MMI->hasEHFunclets() || NeedsLocalForSize) {
1272     CurrentFnBegin = createTempSymbol("func_begin");
1273     if (NeedsLocalForSize)
1274       CurrentFnSymForSize = CurrentFnBegin;
1275   }
1276 
1277   if (isVerbose())
1278     LI = &getAnalysis<MachineLoopInfo>();
1279 }
1280 
1281 namespace {
1282 // Keep track the alignment, constpool entries per Section.
1283   struct SectionCPs {
1284     MCSection *S;
1285     unsigned Alignment;
1286     SmallVector<unsigned, 4> CPEs;
1287     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1288   };
1289 }
1290 
1291 /// EmitConstantPool - Print to the current output stream assembly
1292 /// representations of the constants in the constant pool MCP. This is
1293 /// used to print out constants which have been "spilled to memory" by
1294 /// the code generator.
1295 ///
1296 void AsmPrinter::EmitConstantPool() {
1297   const MachineConstantPool *MCP = MF->getConstantPool();
1298   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1299   if (CP.empty()) return;
1300 
1301   // Calculate sections for constant pool entries. We collect entries to go into
1302   // the same section together to reduce amount of section switch statements.
1303   SmallVector<SectionCPs, 4> CPSections;
1304   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1305     const MachineConstantPoolEntry &CPE = CP[i];
1306     unsigned Align = CPE.getAlignment();
1307 
1308     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1309 
1310     const Constant *C = nullptr;
1311     if (!CPE.isMachineConstantPoolEntry())
1312       C = CPE.Val.ConstVal;
1313 
1314     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1315                                                               Kind, C, Align);
1316 
1317     // The number of sections are small, just do a linear search from the
1318     // last section to the first.
1319     bool Found = false;
1320     unsigned SecIdx = CPSections.size();
1321     while (SecIdx != 0) {
1322       if (CPSections[--SecIdx].S == S) {
1323         Found = true;
1324         break;
1325       }
1326     }
1327     if (!Found) {
1328       SecIdx = CPSections.size();
1329       CPSections.push_back(SectionCPs(S, Align));
1330     }
1331 
1332     if (Align > CPSections[SecIdx].Alignment)
1333       CPSections[SecIdx].Alignment = Align;
1334     CPSections[SecIdx].CPEs.push_back(i);
1335   }
1336 
1337   // Now print stuff into the calculated sections.
1338   const MCSection *CurSection = nullptr;
1339   unsigned Offset = 0;
1340   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1341     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1342       unsigned CPI = CPSections[i].CPEs[j];
1343       MCSymbol *Sym = GetCPISymbol(CPI);
1344       if (!Sym->isUndefined())
1345         continue;
1346 
1347       if (CurSection != CPSections[i].S) {
1348         OutStreamer->SwitchSection(CPSections[i].S);
1349         EmitAlignment(Log2_32(CPSections[i].Alignment));
1350         CurSection = CPSections[i].S;
1351         Offset = 0;
1352       }
1353 
1354       MachineConstantPoolEntry CPE = CP[CPI];
1355 
1356       // Emit inter-object padding for alignment.
1357       unsigned AlignMask = CPE.getAlignment() - 1;
1358       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1359       OutStreamer->EmitZeros(NewOffset - Offset);
1360 
1361       Type *Ty = CPE.getType();
1362       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1363 
1364       OutStreamer->EmitLabel(Sym);
1365       if (CPE.isMachineConstantPoolEntry())
1366         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1367       else
1368         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1369     }
1370   }
1371 }
1372 
1373 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1374 /// by the current function to the current output stream.
1375 ///
1376 void AsmPrinter::EmitJumpTableInfo() {
1377   const DataLayout &DL = MF->getDataLayout();
1378   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1379   if (!MJTI) return;
1380   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1381   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1382   if (JT.empty()) return;
1383 
1384   // Pick the directive to use to print the jump table entries, and switch to
1385   // the appropriate section.
1386   const Function *F = MF->getFunction();
1387   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1388   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1389       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1390       *F);
1391   if (JTInDiffSection) {
1392     // Drop it in the readonly section.
1393     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM);
1394     OutStreamer->SwitchSection(ReadOnlySection);
1395   }
1396 
1397   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1398 
1399   // Jump tables in code sections are marked with a data_region directive
1400   // where that's supported.
1401   if (!JTInDiffSection)
1402     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1403 
1404   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1405     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1406 
1407     // If this jump table was deleted, ignore it.
1408     if (JTBBs.empty()) continue;
1409 
1410     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1411     /// emit a .set directive for each unique entry.
1412     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1413         MAI->doesSetDirectiveSuppressReloc()) {
1414       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1415       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1416       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1417       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1418         const MachineBasicBlock *MBB = JTBBs[ii];
1419         if (!EmittedSets.insert(MBB).second)
1420           continue;
1421 
1422         // .set LJTSet, LBB32-base
1423         const MCExpr *LHS =
1424           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1425         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1426                                     MCBinaryExpr::createSub(LHS, Base,
1427                                                             OutContext));
1428       }
1429     }
1430 
1431     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1432     // before each jump table.  The first label is never referenced, but tells
1433     // the assembler and linker the extents of the jump table object.  The
1434     // second label is actually referenced by the code.
1435     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1436       // FIXME: This doesn't have to have any specific name, just any randomly
1437       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1438       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1439 
1440     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1441 
1442     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1443       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1444   }
1445   if (!JTInDiffSection)
1446     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1447 }
1448 
1449 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1450 /// current stream.
1451 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1452                                     const MachineBasicBlock *MBB,
1453                                     unsigned UID) const {
1454   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1455   const MCExpr *Value = nullptr;
1456   switch (MJTI->getEntryKind()) {
1457   case MachineJumpTableInfo::EK_Inline:
1458     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1459   case MachineJumpTableInfo::EK_Custom32:
1460     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1461         MJTI, MBB, UID, OutContext);
1462     break;
1463   case MachineJumpTableInfo::EK_BlockAddress:
1464     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1465     //     .word LBB123
1466     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1467     break;
1468   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1469     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1470     // with a relocation as gp-relative, e.g.:
1471     //     .gprel32 LBB123
1472     MCSymbol *MBBSym = MBB->getSymbol();
1473     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1474     return;
1475   }
1476 
1477   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1478     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1479     // with a relocation as gp-relative, e.g.:
1480     //     .gpdword LBB123
1481     MCSymbol *MBBSym = MBB->getSymbol();
1482     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1483     return;
1484   }
1485 
1486   case MachineJumpTableInfo::EK_LabelDifference32: {
1487     // Each entry is the address of the block minus the address of the jump
1488     // table. This is used for PIC jump tables where gprel32 is not supported.
1489     // e.g.:
1490     //      .word LBB123 - LJTI1_2
1491     // If the .set directive avoids relocations, this is emitted as:
1492     //      .set L4_5_set_123, LBB123 - LJTI1_2
1493     //      .word L4_5_set_123
1494     if (MAI->doesSetDirectiveSuppressReloc()) {
1495       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1496                                       OutContext);
1497       break;
1498     }
1499     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1500     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1501     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1502     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1503     break;
1504   }
1505   }
1506 
1507   assert(Value && "Unknown entry kind!");
1508 
1509   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1510   OutStreamer->EmitValue(Value, EntrySize);
1511 }
1512 
1513 
1514 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1515 /// special global used by LLVM.  If so, emit it and return true, otherwise
1516 /// do nothing and return false.
1517 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1518   if (GV->getName() == "llvm.used") {
1519     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1520       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1521     return true;
1522   }
1523 
1524   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1525   if (GV->getSection() == "llvm.metadata" ||
1526       GV->hasAvailableExternallyLinkage())
1527     return true;
1528 
1529   if (!GV->hasAppendingLinkage()) return false;
1530 
1531   assert(GV->hasInitializer() && "Not a special LLVM global!");
1532 
1533   if (GV->getName() == "llvm.global_ctors") {
1534     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1535                        /* isCtor */ true);
1536 
1537     if (TM.getRelocationModel() == Reloc::Static &&
1538         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1539       StringRef Sym(".constructors_used");
1540       OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym),
1541                                        MCSA_Reference);
1542     }
1543     return true;
1544   }
1545 
1546   if (GV->getName() == "llvm.global_dtors") {
1547     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1548                        /* isCtor */ false);
1549 
1550     if (TM.getRelocationModel() == Reloc::Static &&
1551         MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1552       StringRef Sym(".destructors_used");
1553       OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym),
1554                                        MCSA_Reference);
1555     }
1556     return true;
1557   }
1558 
1559   report_fatal_error("unknown special variable");
1560 }
1561 
1562 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1563 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1564 /// is true, as being used with this directive.
1565 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1566   // Should be an array of 'i8*'.
1567   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1568     const GlobalValue *GV =
1569       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1570     if (GV)
1571       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1572   }
1573 }
1574 
1575 namespace {
1576 struct Structor {
1577   Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
1578   int Priority;
1579   llvm::Constant *Func;
1580   llvm::GlobalValue *ComdatKey;
1581 };
1582 } // end namespace
1583 
1584 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1585 /// priority.
1586 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1587                                     bool isCtor) {
1588   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1589   // init priority.
1590   if (!isa<ConstantArray>(List)) return;
1591 
1592   // Sanity check the structors list.
1593   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1594   if (!InitList) return; // Not an array!
1595   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1596   // FIXME: Only allow the 3-field form in LLVM 4.0.
1597   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1598     return; // Not an array of two or three elements!
1599   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1600       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1601   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1602     return; // Not (int, ptr, ptr).
1603 
1604   // Gather the structors in a form that's convenient for sorting by priority.
1605   SmallVector<Structor, 8> Structors;
1606   for (Value *O : InitList->operands()) {
1607     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1608     if (!CS) continue; // Malformed.
1609     if (CS->getOperand(1)->isNullValue())
1610       break;  // Found a null terminator, skip the rest.
1611     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1612     if (!Priority) continue; // Malformed.
1613     Structors.push_back(Structor());
1614     Structor &S = Structors.back();
1615     S.Priority = Priority->getLimitedValue(65535);
1616     S.Func = CS->getOperand(1);
1617     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1618       S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1619   }
1620 
1621   // Emit the function pointers in the target-specific order
1622   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1623   std::stable_sort(Structors.begin(), Structors.end(),
1624                    [](const Structor &L,
1625                       const Structor &R) { return L.Priority < R.Priority; });
1626   for (Structor &S : Structors) {
1627     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1628     const MCSymbol *KeySym = nullptr;
1629     if (GlobalValue *GV = S.ComdatKey) {
1630       if (GV->hasAvailableExternallyLinkage())
1631         // If the associated variable is available_externally, some other TU
1632         // will provide its dynamic initializer.
1633         continue;
1634 
1635       KeySym = getSymbol(GV);
1636     }
1637     MCSection *OutputSection =
1638         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1639                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1640     OutStreamer->SwitchSection(OutputSection);
1641     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1642       EmitAlignment(Align);
1643     EmitXXStructor(DL, S.Func);
1644   }
1645 }
1646 
1647 void AsmPrinter::EmitModuleIdents(Module &M) {
1648   if (!MAI->hasIdentDirective())
1649     return;
1650 
1651   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1652     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1653       const MDNode *N = NMD->getOperand(i);
1654       assert(N->getNumOperands() == 1 &&
1655              "llvm.ident metadata entry can have only one operand");
1656       const MDString *S = cast<MDString>(N->getOperand(0));
1657       OutStreamer->EmitIdent(S->getString());
1658     }
1659   }
1660 }
1661 
1662 //===--------------------------------------------------------------------===//
1663 // Emission and print routines
1664 //
1665 
1666 /// EmitInt8 - Emit a byte directive and value.
1667 ///
1668 void AsmPrinter::EmitInt8(int Value) const {
1669   OutStreamer->EmitIntValue(Value, 1);
1670 }
1671 
1672 /// EmitInt16 - Emit a short directive and value.
1673 ///
1674 void AsmPrinter::EmitInt16(int Value) const {
1675   OutStreamer->EmitIntValue(Value, 2);
1676 }
1677 
1678 /// EmitInt32 - Emit a long directive and value.
1679 ///
1680 void AsmPrinter::EmitInt32(int Value) const {
1681   OutStreamer->EmitIntValue(Value, 4);
1682 }
1683 
1684 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1685 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1686 /// .set if it avoids relocations.
1687 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1688                                      unsigned Size) const {
1689   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1690 }
1691 
1692 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1693 /// where the size in bytes of the directive is specified by Size and Label
1694 /// specifies the label.  This implicitly uses .set if it is available.
1695 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1696                                      unsigned Size,
1697                                      bool IsSectionRelative) const {
1698   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1699     OutStreamer->EmitCOFFSecRel32(Label);
1700     return;
1701   }
1702 
1703   // Emit Label+Offset (or just Label if Offset is zero)
1704   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1705   if (Offset)
1706     Expr = MCBinaryExpr::createAdd(
1707         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1708 
1709   OutStreamer->EmitValue(Expr, Size);
1710 }
1711 
1712 //===----------------------------------------------------------------------===//
1713 
1714 // EmitAlignment - Emit an alignment directive to the specified power of
1715 // two boundary.  For example, if you pass in 3 here, you will get an 8
1716 // byte alignment.  If a global value is specified, and if that global has
1717 // an explicit alignment requested, it will override the alignment request
1718 // if required for correctness.
1719 //
1720 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1721   if (GV)
1722     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1723 
1724   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1725 
1726   assert(NumBits <
1727              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1728          "undefined behavior");
1729   if (getCurrentSection()->getKind().isText())
1730     OutStreamer->EmitCodeAlignment(1u << NumBits);
1731   else
1732     OutStreamer->EmitValueToAlignment(1u << NumBits);
1733 }
1734 
1735 //===----------------------------------------------------------------------===//
1736 // Constant emission.
1737 //===----------------------------------------------------------------------===//
1738 
1739 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1740   MCContext &Ctx = OutContext;
1741 
1742   if (CV->isNullValue() || isa<UndefValue>(CV))
1743     return MCConstantExpr::create(0, Ctx);
1744 
1745   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1746     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1747 
1748   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1749     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1750 
1751   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1752     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1753 
1754   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1755   if (!CE) {
1756     llvm_unreachable("Unknown constant value to lower!");
1757   }
1758 
1759   switch (CE->getOpcode()) {
1760   default:
1761     // If the code isn't optimized, there may be outstanding folding
1762     // opportunities. Attempt to fold the expression using DataLayout as a
1763     // last resort before giving up.
1764     if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout()))
1765       if (C != CE)
1766         return lowerConstant(C);
1767 
1768     // Otherwise report the problem to the user.
1769     {
1770       std::string S;
1771       raw_string_ostream OS(S);
1772       OS << "Unsupported expression in static initializer: ";
1773       CE->printAsOperand(OS, /*PrintType=*/false,
1774                      !MF ? nullptr : MF->getFunction()->getParent());
1775       report_fatal_error(OS.str());
1776     }
1777   case Instruction::GetElementPtr: {
1778     // Generate a symbolic expression for the byte address
1779     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
1780     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
1781 
1782     const MCExpr *Base = lowerConstant(CE->getOperand(0));
1783     if (!OffsetAI)
1784       return Base;
1785 
1786     int64_t Offset = OffsetAI.getSExtValue();
1787     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
1788                                    Ctx);
1789   }
1790 
1791   case Instruction::Trunc:
1792     // We emit the value and depend on the assembler to truncate the generated
1793     // expression properly.  This is important for differences between
1794     // blockaddress labels.  Since the two labels are in the same function, it
1795     // is reasonable to treat their delta as a 32-bit value.
1796     // FALL THROUGH.
1797   case Instruction::BitCast:
1798     return lowerConstant(CE->getOperand(0));
1799 
1800   case Instruction::IntToPtr: {
1801     const DataLayout &DL = getDataLayout();
1802 
1803     // Handle casts to pointers by changing them into casts to the appropriate
1804     // integer type.  This promotes constant folding and simplifies this code.
1805     Constant *Op = CE->getOperand(0);
1806     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1807                                       false/*ZExt*/);
1808     return lowerConstant(Op);
1809   }
1810 
1811   case Instruction::PtrToInt: {
1812     const DataLayout &DL = getDataLayout();
1813 
1814     // Support only foldable casts to/from pointers that can be eliminated by
1815     // changing the pointer to the appropriately sized integer type.
1816     Constant *Op = CE->getOperand(0);
1817     Type *Ty = CE->getType();
1818 
1819     const MCExpr *OpExpr = lowerConstant(Op);
1820 
1821     // We can emit the pointer value into this slot if the slot is an
1822     // integer slot equal to the size of the pointer.
1823     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1824       return OpExpr;
1825 
1826     // Otherwise the pointer is smaller than the resultant integer, mask off
1827     // the high bits so we are sure to get a proper truncation if the input is
1828     // a constant expr.
1829     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1830     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
1831     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
1832   }
1833 
1834   case Instruction::Sub: {
1835     GlobalValue *LHSGV;
1836     APInt LHSOffset;
1837     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
1838                                    getDataLayout())) {
1839       GlobalValue *RHSGV;
1840       APInt RHSOffset;
1841       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
1842                                      getDataLayout())) {
1843         const MCExpr *RelocExpr = getObjFileLowering().lowerRelativeReference(
1844             LHSGV, RHSGV, *Mang, TM);
1845         if (!RelocExpr)
1846           RelocExpr = MCBinaryExpr::createSub(
1847               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
1848               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
1849         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
1850         if (Addend != 0)
1851           RelocExpr = MCBinaryExpr::createAdd(
1852               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
1853         return RelocExpr;
1854       }
1855     }
1856   }
1857   // else fallthrough
1858 
1859   // The MC library also has a right-shift operator, but it isn't consistently
1860   // signed or unsigned between different targets.
1861   case Instruction::Add:
1862   case Instruction::Mul:
1863   case Instruction::SDiv:
1864   case Instruction::SRem:
1865   case Instruction::Shl:
1866   case Instruction::And:
1867   case Instruction::Or:
1868   case Instruction::Xor: {
1869     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
1870     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
1871     switch (CE->getOpcode()) {
1872     default: llvm_unreachable("Unknown binary operator constant cast expr");
1873     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
1874     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1875     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
1876     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
1877     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
1878     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
1879     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
1880     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
1881     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
1882     }
1883   }
1884   }
1885 }
1886 
1887 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
1888                                    AsmPrinter &AP,
1889                                    const Constant *BaseCV = nullptr,
1890                                    uint64_t Offset = 0);
1891 
1892 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
1893 
1894 /// isRepeatedByteSequence - Determine whether the given value is
1895 /// composed of a repeated sequence of identical bytes and return the
1896 /// byte value.  If it is not a repeated sequence, return -1.
1897 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1898   StringRef Data = V->getRawDataValues();
1899   assert(!Data.empty() && "Empty aggregates should be CAZ node");
1900   char C = Data[0];
1901   for (unsigned i = 1, e = Data.size(); i != e; ++i)
1902     if (Data[i] != C) return -1;
1903   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1904 }
1905 
1906 
1907 /// isRepeatedByteSequence - Determine whether the given value is
1908 /// composed of a repeated sequence of identical bytes and return the
1909 /// byte value.  If it is not a repeated sequence, return -1.
1910 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
1911   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1912     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
1913     assert(Size % 8 == 0);
1914 
1915     // Extend the element to take zero padding into account.
1916     APInt Value = CI->getValue().zextOrSelf(Size);
1917     if (!Value.isSplat(8))
1918       return -1;
1919 
1920     return Value.zextOrTrunc(8).getZExtValue();
1921   }
1922   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1923     // Make sure all array elements are sequences of the same repeated
1924     // byte.
1925     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1926     Constant *Op0 = CA->getOperand(0);
1927     int Byte = isRepeatedByteSequence(Op0, DL);
1928     if (Byte == -1)
1929       return -1;
1930 
1931     // All array elements must be equal.
1932     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
1933       if (CA->getOperand(i) != Op0)
1934         return -1;
1935     return Byte;
1936   }
1937 
1938   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1939     return isRepeatedByteSequence(CDS);
1940 
1941   return -1;
1942 }
1943 
1944 static void emitGlobalConstantDataSequential(const DataLayout &DL,
1945                                              const ConstantDataSequential *CDS,
1946                                              AsmPrinter &AP) {
1947 
1948   // See if we can aggregate this into a .fill, if so, emit it as such.
1949   int Value = isRepeatedByteSequence(CDS, DL);
1950   if (Value != -1) {
1951     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
1952     // Don't emit a 1-byte object as a .fill.
1953     if (Bytes > 1)
1954       return AP.OutStreamer->emitFill(Bytes, Value);
1955   }
1956 
1957   // If this can be emitted with .ascii/.asciz, emit it as such.
1958   if (CDS->isString())
1959     return AP.OutStreamer->EmitBytes(CDS->getAsString());
1960 
1961   // Otherwise, emit the values in successive locations.
1962   unsigned ElementByteSize = CDS->getElementByteSize();
1963   if (isa<IntegerType>(CDS->getElementType())) {
1964     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1965       if (AP.isVerbose())
1966         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
1967                                                  CDS->getElementAsInteger(i));
1968       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
1969                                    ElementByteSize);
1970     }
1971   } else {
1972     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
1973       emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
1974   }
1975 
1976   unsigned Size = DL.getTypeAllocSize(CDS->getType());
1977   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1978                         CDS->getNumElements();
1979   if (unsigned Padding = Size - EmittedSize)
1980     AP.OutStreamer->EmitZeros(Padding);
1981 
1982 }
1983 
1984 static void emitGlobalConstantArray(const DataLayout &DL,
1985                                     const ConstantArray *CA, AsmPrinter &AP,
1986                                     const Constant *BaseCV, uint64_t Offset) {
1987   // See if we can aggregate some values.  Make sure it can be
1988   // represented as a series of bytes of the constant value.
1989   int Value = isRepeatedByteSequence(CA, DL);
1990 
1991   if (Value != -1) {
1992     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
1993     AP.OutStreamer->emitFill(Bytes, Value);
1994   }
1995   else {
1996     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1997       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
1998       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
1999     }
2000   }
2001 }
2002 
2003 static void emitGlobalConstantVector(const DataLayout &DL,
2004                                      const ConstantVector *CV, AsmPrinter &AP) {
2005   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2006     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2007 
2008   unsigned Size = DL.getTypeAllocSize(CV->getType());
2009   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2010                          CV->getType()->getNumElements();
2011   if (unsigned Padding = Size - EmittedSize)
2012     AP.OutStreamer->EmitZeros(Padding);
2013 }
2014 
2015 static void emitGlobalConstantStruct(const DataLayout &DL,
2016                                      const ConstantStruct *CS, AsmPrinter &AP,
2017                                      const Constant *BaseCV, uint64_t Offset) {
2018   // Print the fields in successive locations. Pad to align if needed!
2019   unsigned Size = DL.getTypeAllocSize(CS->getType());
2020   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2021   uint64_t SizeSoFar = 0;
2022   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2023     const Constant *Field = CS->getOperand(i);
2024 
2025     // Print the actual field value.
2026     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2027 
2028     // Check if padding is needed and insert one or more 0s.
2029     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2030     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2031                         - Layout->getElementOffset(i)) - FieldSize;
2032     SizeSoFar += FieldSize + PadSize;
2033 
2034     // Insert padding - this may include padding to increase the size of the
2035     // current field up to the ABI size (if the struct is not packed) as well
2036     // as padding to ensure that the next field starts at the right offset.
2037     AP.OutStreamer->EmitZeros(PadSize);
2038   }
2039   assert(SizeSoFar == Layout->getSizeInBytes() &&
2040          "Layout of constant struct may be incorrect!");
2041 }
2042 
2043 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2044   APInt API = CFP->getValueAPF().bitcastToAPInt();
2045 
2046   // First print a comment with what we think the original floating-point value
2047   // should have been.
2048   if (AP.isVerbose()) {
2049     SmallString<8> StrVal;
2050     CFP->getValueAPF().toString(StrVal);
2051 
2052     if (CFP->getType())
2053       CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2054     else
2055       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2056     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2057   }
2058 
2059   // Now iterate through the APInt chunks, emitting them in endian-correct
2060   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2061   // floats).
2062   unsigned NumBytes = API.getBitWidth() / 8;
2063   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2064   const uint64_t *p = API.getRawData();
2065 
2066   // PPC's long double has odd notions of endianness compared to how LLVM
2067   // handles it: p[0] goes first for *big* endian on PPC.
2068   if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2069     int Chunk = API.getNumWords() - 1;
2070 
2071     if (TrailingBytes)
2072       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2073 
2074     for (; Chunk >= 0; --Chunk)
2075       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2076   } else {
2077     unsigned Chunk;
2078     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2079       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2080 
2081     if (TrailingBytes)
2082       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2083   }
2084 
2085   // Emit the tail padding for the long double.
2086   const DataLayout &DL = AP.getDataLayout();
2087   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2088                             DL.getTypeStoreSize(CFP->getType()));
2089 }
2090 
2091 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2092   const DataLayout &DL = AP.getDataLayout();
2093   unsigned BitWidth = CI->getBitWidth();
2094 
2095   // Copy the value as we may massage the layout for constants whose bit width
2096   // is not a multiple of 64-bits.
2097   APInt Realigned(CI->getValue());
2098   uint64_t ExtraBits = 0;
2099   unsigned ExtraBitsSize = BitWidth & 63;
2100 
2101   if (ExtraBitsSize) {
2102     // The bit width of the data is not a multiple of 64-bits.
2103     // The extra bits are expected to be at the end of the chunk of the memory.
2104     // Little endian:
2105     // * Nothing to be done, just record the extra bits to emit.
2106     // Big endian:
2107     // * Record the extra bits to emit.
2108     // * Realign the raw data to emit the chunks of 64-bits.
2109     if (DL.isBigEndian()) {
2110       // Basically the structure of the raw data is a chunk of 64-bits cells:
2111       //    0        1         BitWidth / 64
2112       // [chunk1][chunk2] ... [chunkN].
2113       // The most significant chunk is chunkN and it should be emitted first.
2114       // However, due to the alignment issue chunkN contains useless bits.
2115       // Realign the chunks so that they contain only useless information:
2116       // ExtraBits     0       1       (BitWidth / 64) - 1
2117       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2118       ExtraBits = Realigned.getRawData()[0] &
2119         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2120       Realigned = Realigned.lshr(ExtraBitsSize);
2121     } else
2122       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2123   }
2124 
2125   // We don't expect assemblers to support integer data directives
2126   // for more than 64 bits, so we emit the data in at most 64-bit
2127   // quantities at a time.
2128   const uint64_t *RawData = Realigned.getRawData();
2129   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2130     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2131     AP.OutStreamer->EmitIntValue(Val, 8);
2132   }
2133 
2134   if (ExtraBitsSize) {
2135     // Emit the extra bits after the 64-bits chunks.
2136 
2137     // Emit a directive that fills the expected size.
2138     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2139     Size -= (BitWidth / 64) * 8;
2140     assert(Size && Size * 8 >= ExtraBitsSize &&
2141            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2142            == ExtraBits && "Directive too small for extra bits.");
2143     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2144   }
2145 }
2146 
2147 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2148 /// equivalent global, by a target specific GOT pc relative access to the
2149 /// final symbol.
2150 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2151                                          const Constant *BaseCst,
2152                                          uint64_t Offset) {
2153   // The global @foo below illustrates a global that uses a got equivalent.
2154   //
2155   //  @bar = global i32 42
2156   //  @gotequiv = private unnamed_addr constant i32* @bar
2157   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2158   //                             i64 ptrtoint (i32* @foo to i64))
2159   //                        to i32)
2160   //
2161   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2162   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2163   // form:
2164   //
2165   //  foo = cstexpr, where
2166   //    cstexpr := <gotequiv> - "." + <cst>
2167   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2168   //
2169   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2170   //
2171   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2172   //    gotpcrelcst := <offset from @foo base> + <cst>
2173   //
2174   MCValue MV;
2175   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2176     return;
2177   const MCSymbolRefExpr *SymA = MV.getSymA();
2178   if (!SymA)
2179     return;
2180 
2181   // Check that GOT equivalent symbol is cached.
2182   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2183   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2184     return;
2185 
2186   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2187   if (!BaseGV)
2188     return;
2189 
2190   // Check for a valid base symbol
2191   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2192   const MCSymbolRefExpr *SymB = MV.getSymB();
2193 
2194   if (!SymB || BaseSym != &SymB->getSymbol())
2195     return;
2196 
2197   // Make sure to match:
2198   //
2199   //    gotpcrelcst := <offset from @foo base> + <cst>
2200   //
2201   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2202   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2203   // if the target knows how to encode it.
2204   //
2205   int64_t GOTPCRelCst = Offset + MV.getConstant();
2206   if (GOTPCRelCst < 0)
2207     return;
2208   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2209     return;
2210 
2211   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2212   //
2213   //  bar:
2214   //    .long 42
2215   //  gotequiv:
2216   //    .quad bar
2217   //  foo:
2218   //    .long gotequiv - "." + <cst>
2219   //
2220   // is replaced by the target specific equivalent to:
2221   //
2222   //  bar:
2223   //    .long 42
2224   //  foo:
2225   //    .long bar@GOTPCREL+<gotpcrelcst>
2226   //
2227   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2228   const GlobalVariable *GV = Result.first;
2229   int NumUses = (int)Result.second;
2230   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2231   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2232   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2233       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2234 
2235   // Update GOT equivalent usage information
2236   --NumUses;
2237   if (NumUses >= 0)
2238     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2239 }
2240 
2241 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2242                                    AsmPrinter &AP, const Constant *BaseCV,
2243                                    uint64_t Offset) {
2244   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2245 
2246   // Globals with sub-elements such as combinations of arrays and structs
2247   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2248   // constant symbol base and the current position with BaseCV and Offset.
2249   if (!BaseCV && CV->hasOneUse())
2250     BaseCV = dyn_cast<Constant>(CV->user_back());
2251 
2252   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2253     return AP.OutStreamer->EmitZeros(Size);
2254 
2255   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2256     switch (Size) {
2257     case 1:
2258     case 2:
2259     case 4:
2260     case 8:
2261       if (AP.isVerbose())
2262         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2263                                                  CI->getZExtValue());
2264       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2265       return;
2266     default:
2267       emitGlobalConstantLargeInt(CI, AP);
2268       return;
2269     }
2270   }
2271 
2272   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2273     return emitGlobalConstantFP(CFP, AP);
2274 
2275   if (isa<ConstantPointerNull>(CV)) {
2276     AP.OutStreamer->EmitIntValue(0, Size);
2277     return;
2278   }
2279 
2280   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2281     return emitGlobalConstantDataSequential(DL, CDS, AP);
2282 
2283   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2284     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2285 
2286   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2287     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2288 
2289   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2290     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2291     // vectors).
2292     if (CE->getOpcode() == Instruction::BitCast)
2293       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2294 
2295     if (Size > 8) {
2296       // If the constant expression's size is greater than 64-bits, then we have
2297       // to emit the value in chunks. Try to constant fold the value and emit it
2298       // that way.
2299       Constant *New = ConstantFoldConstantExpression(CE, DL);
2300       if (New && New != CE)
2301         return emitGlobalConstantImpl(DL, New, AP);
2302     }
2303   }
2304 
2305   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2306     return emitGlobalConstantVector(DL, V, AP);
2307 
2308   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2309   // thread the streamer with EmitValue.
2310   const MCExpr *ME = AP.lowerConstant(CV);
2311 
2312   // Since lowerConstant already folded and got rid of all IR pointer and
2313   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2314   // directly.
2315   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2316     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2317 
2318   AP.OutStreamer->EmitValue(ME, Size);
2319 }
2320 
2321 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2322 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2323   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2324   if (Size)
2325     emitGlobalConstantImpl(DL, CV, *this);
2326   else if (MAI->hasSubsectionsViaSymbols()) {
2327     // If the global has zero size, emit a single byte so that two labels don't
2328     // look like they are at the same location.
2329     OutStreamer->EmitIntValue(0, 1);
2330   }
2331 }
2332 
2333 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2334   // Target doesn't support this yet!
2335   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2336 }
2337 
2338 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2339   if (Offset > 0)
2340     OS << '+' << Offset;
2341   else if (Offset < 0)
2342     OS << Offset;
2343 }
2344 
2345 //===----------------------------------------------------------------------===//
2346 // Symbol Lowering Routines.
2347 //===----------------------------------------------------------------------===//
2348 
2349 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2350   return OutContext.createTempSymbol(Name, true);
2351 }
2352 
2353 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2354   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2355 }
2356 
2357 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2358   return MMI->getAddrLabelSymbol(BB);
2359 }
2360 
2361 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2362 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2363   const DataLayout &DL = getDataLayout();
2364   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2365                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2366                                       Twine(CPID));
2367 }
2368 
2369 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2370 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2371   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2372 }
2373 
2374 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2375 /// FIXME: privatize to AsmPrinter.
2376 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2377   const DataLayout &DL = getDataLayout();
2378   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2379                                       Twine(getFunctionNumber()) + "_" +
2380                                       Twine(UID) + "_set_" + Twine(MBBID));
2381 }
2382 
2383 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2384                                                    StringRef Suffix) const {
2385   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
2386                                                            TM);
2387 }
2388 
2389 /// Return the MCSymbol for the specified ExternalSymbol.
2390 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2391   SmallString<60> NameStr;
2392   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2393   return OutContext.getOrCreateSymbol(NameStr);
2394 }
2395 
2396 
2397 
2398 /// PrintParentLoopComment - Print comments about parent loops of this one.
2399 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2400                                    unsigned FunctionNumber) {
2401   if (!Loop) return;
2402   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2403   OS.indent(Loop->getLoopDepth()*2)
2404     << "Parent Loop BB" << FunctionNumber << "_"
2405     << Loop->getHeader()->getNumber()
2406     << " Depth=" << Loop->getLoopDepth() << '\n';
2407 }
2408 
2409 
2410 /// PrintChildLoopComment - Print comments about child loops within
2411 /// the loop for this basic block, with nesting.
2412 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2413                                   unsigned FunctionNumber) {
2414   // Add child loop information
2415   for (const MachineLoop *CL : *Loop) {
2416     OS.indent(CL->getLoopDepth()*2)
2417       << "Child Loop BB" << FunctionNumber << "_"
2418       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2419       << '\n';
2420     PrintChildLoopComment(OS, CL, FunctionNumber);
2421   }
2422 }
2423 
2424 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2425 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2426                                        const MachineLoopInfo *LI,
2427                                        const AsmPrinter &AP) {
2428   // Add loop depth information
2429   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2430   if (!Loop) return;
2431 
2432   MachineBasicBlock *Header = Loop->getHeader();
2433   assert(Header && "No header for loop");
2434 
2435   // If this block is not a loop header, just print out what is the loop header
2436   // and return.
2437   if (Header != &MBB) {
2438     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2439                                Twine(AP.getFunctionNumber())+"_" +
2440                                Twine(Loop->getHeader()->getNumber())+
2441                                " Depth="+Twine(Loop->getLoopDepth()));
2442     return;
2443   }
2444 
2445   // Otherwise, it is a loop header.  Print out information about child and
2446   // parent loops.
2447   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2448 
2449   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2450 
2451   OS << "=>";
2452   OS.indent(Loop->getLoopDepth()*2-2);
2453 
2454   OS << "This ";
2455   if (Loop->empty())
2456     OS << "Inner ";
2457   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2458 
2459   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2460 }
2461 
2462 
2463 /// EmitBasicBlockStart - This method prints the label for the specified
2464 /// MachineBasicBlock, an alignment (if present) and a comment describing
2465 /// it if appropriate.
2466 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2467   // End the previous funclet and start a new one.
2468   if (MBB.isEHFuncletEntry()) {
2469     for (const HandlerInfo &HI : Handlers) {
2470       HI.Handler->endFunclet();
2471       HI.Handler->beginFunclet(MBB);
2472     }
2473   }
2474 
2475   // Emit an alignment directive for this block, if needed.
2476   if (unsigned Align = MBB.getAlignment())
2477     EmitAlignment(Align);
2478 
2479   // If the block has its address taken, emit any labels that were used to
2480   // reference the block.  It is possible that there is more than one label
2481   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2482   // the references were generated.
2483   if (MBB.hasAddressTaken()) {
2484     const BasicBlock *BB = MBB.getBasicBlock();
2485     if (isVerbose())
2486       OutStreamer->AddComment("Block address taken");
2487 
2488     // MBBs can have their address taken as part of CodeGen without having
2489     // their corresponding BB's address taken in IR
2490     if (BB->hasAddressTaken())
2491       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2492         OutStreamer->EmitLabel(Sym);
2493   }
2494 
2495   // Print some verbose block comments.
2496   if (isVerbose()) {
2497     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2498       if (BB->hasName()) {
2499         BB->printAsOperand(OutStreamer->GetCommentOS(),
2500                            /*PrintType=*/false, BB->getModule());
2501         OutStreamer->GetCommentOS() << '\n';
2502       }
2503     }
2504     emitBasicBlockLoopComments(MBB, LI, *this);
2505   }
2506 
2507   // Print the main label for the block.
2508   if (MBB.pred_empty() ||
2509       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2510     if (isVerbose()) {
2511       // NOTE: Want this comment at start of line, don't emit with AddComment.
2512       OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2513     }
2514   } else {
2515     OutStreamer->EmitLabel(MBB.getSymbol());
2516   }
2517 }
2518 
2519 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2520                                 bool IsDefinition) const {
2521   MCSymbolAttr Attr = MCSA_Invalid;
2522 
2523   switch (Visibility) {
2524   default: break;
2525   case GlobalValue::HiddenVisibility:
2526     if (IsDefinition)
2527       Attr = MAI->getHiddenVisibilityAttr();
2528     else
2529       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2530     break;
2531   case GlobalValue::ProtectedVisibility:
2532     Attr = MAI->getProtectedVisibilityAttr();
2533     break;
2534   }
2535 
2536   if (Attr != MCSA_Invalid)
2537     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2538 }
2539 
2540 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2541 /// exactly one predecessor and the control transfer mechanism between
2542 /// the predecessor and this block is a fall-through.
2543 bool AsmPrinter::
2544 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2545   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2546   // then nothing falls through to it.
2547   if (MBB->isEHPad() || MBB->pred_empty())
2548     return false;
2549 
2550   // If there isn't exactly one predecessor, it can't be a fall through.
2551   if (MBB->pred_size() > 1)
2552     return false;
2553 
2554   // The predecessor has to be immediately before this block.
2555   MachineBasicBlock *Pred = *MBB->pred_begin();
2556   if (!Pred->isLayoutSuccessor(MBB))
2557     return false;
2558 
2559   // If the block is completely empty, then it definitely does fall through.
2560   if (Pred->empty())
2561     return true;
2562 
2563   // Check the terminators in the previous blocks
2564   for (const auto &MI : Pred->terminators()) {
2565     // If it is not a simple branch, we are in a table somewhere.
2566     if (!MI.isBranch() || MI.isIndirectBranch())
2567       return false;
2568 
2569     // If we are the operands of one of the branches, this is not a fall
2570     // through. Note that targets with delay slots will usually bundle
2571     // terminators with the delay slot instruction.
2572     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2573       if (OP->isJTI())
2574         return false;
2575       if (OP->isMBB() && OP->getMBB() == MBB)
2576         return false;
2577     }
2578   }
2579 
2580   return true;
2581 }
2582 
2583 
2584 
2585 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2586   if (!S.usesMetadata())
2587     return nullptr;
2588 
2589   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2590          " stackmap formats, please see the documentation for a description of"
2591          " the default format.  If you really need a custom serialized format,"
2592          " please file a bug");
2593 
2594   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2595   gcp_map_type::iterator GCPI = GCMap.find(&S);
2596   if (GCPI != GCMap.end())
2597     return GCPI->second.get();
2598 
2599   const char *Name = S.getName().c_str();
2600 
2601   for (GCMetadataPrinterRegistry::iterator
2602          I = GCMetadataPrinterRegistry::begin(),
2603          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2604     if (strcmp(Name, I->getName()) == 0) {
2605       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2606       GMP->S = &S;
2607       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2608       return IterBool.first->second.get();
2609     }
2610 
2611   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2612 }
2613 
2614 /// Pin vtable to this file.
2615 AsmPrinterHandler::~AsmPrinterHandler() {}
2616 
2617 void AsmPrinterHandler::markFunctionEnd() {}
2618