1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/GCStrategy.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineJumpTableInfo.h"
51 #include "llvm/CodeGen/MachineLoopInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
55 #include "llvm/CodeGen/MachineOperand.h"
56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalIndirectSymbol.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/MC/MCAsmInfo.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCSectionXCOFF.h"
96 #include "llvm/MC/MCStreamer.h"
97 #include "llvm/MC/MCSubtargetInfo.h"
98 #include "llvm/MC/MCSymbol.h"
99 #include "llvm/MC/MCSymbolELF.h"
100 #include "llvm/MC/MCSymbolXCOFF.h"
101 #include "llvm/MC/MCTargetOptions.h"
102 #include "llvm/MC/MCValue.h"
103 #include "llvm/MC/SectionKind.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Remarks/Remark.h"
106 #include "llvm/Remarks/RemarkFormat.h"
107 #include "llvm/Remarks/RemarkStreamer.h"
108 #include "llvm/Remarks/RemarkStringTable.h"
109 #include "llvm/Support/Casting.h"
110 #include "llvm/Support/CommandLine.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/ErrorHandling.h"
113 #include "llvm/Support/FileSystem.h"
114 #include "llvm/Support/Format.h"
115 #include "llvm/Support/MathExtras.h"
116 #include "llvm/Support/Path.h"
117 #include "llvm/Support/TargetRegistry.h"
118 #include "llvm/Support/Timer.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cinttypes>
126 #include <cstdint>
127 #include <iterator>
128 #include <limits>
129 #include <memory>
130 #include <string>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "asm-printer"
137 
138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
139 static cl::opt<bool>
140     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
141                              cl::desc("Disable debug info printing"));
142 
143 const char DWARFGroupName[] = "dwarf";
144 const char DWARFGroupDescription[] = "DWARF Emission";
145 const char DbgTimerName[] = "emit";
146 const char DbgTimerDescription[] = "Debug Info Emission";
147 const char EHTimerName[] = "write_exception";
148 const char EHTimerDescription[] = "DWARF Exception Writer";
149 const char CFGuardName[] = "Control Flow Guard";
150 const char CFGuardDescription[] = "Control Flow Guard";
151 const char CodeViewLineTablesGroupName[] = "linetables";
152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
153 const char PPTimerName[] = "emit";
154 const char PPTimerDescription[] = "Pseudo Probe Emission";
155 const char PPGroupName[] = "pseudo probe";
156 const char PPGroupDescription[] = "Pseudo Probe Emission";
157 
158 STATISTIC(EmittedInsts, "Number of machine instrs printed");
159 
160 char AsmPrinter::ID = 0;
161 
162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
163 
164 static gcp_map_type &getGCMap(void *&P) {
165   if (!P)
166     P = new gcp_map_type();
167   return *(gcp_map_type*)P;
168 }
169 
170 /// getGVAlignment - Return the alignment to use for the specified global
171 /// value.  This rounds up to the preferred alignment if possible and legal.
172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
173                                  Align InAlign) {
174   Align Alignment;
175   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
176     Alignment = DL.getPreferredAlign(GVar);
177 
178   // If InAlign is specified, round it to it.
179   if (InAlign > Alignment)
180     Alignment = InAlign;
181 
182   // If the GV has a specified alignment, take it into account.
183   const MaybeAlign GVAlign(GV->getAlignment());
184   if (!GVAlign)
185     return Alignment;
186 
187   assert(GVAlign && "GVAlign must be set");
188 
189   // If the GVAlign is larger than NumBits, or if we are required to obey
190   // NumBits because the GV has an assigned section, obey it.
191   if (*GVAlign > Alignment || GV->hasSection())
192     Alignment = *GVAlign;
193   return Alignment;
194 }
195 
196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
197     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
198       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
199   VerboseAsm = OutStreamer->isVerboseAsm();
200 }
201 
202 AsmPrinter::~AsmPrinter() {
203   assert(!DD && Handlers.size() == NumUserHandlers &&
204          "Debug/EH info didn't get finalized");
205 
206   if (GCMetadataPrinters) {
207     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
208 
209     delete &GCMap;
210     GCMetadataPrinters = nullptr;
211   }
212 }
213 
214 bool AsmPrinter::isPositionIndependent() const {
215   return TM.isPositionIndependent();
216 }
217 
218 /// getFunctionNumber - Return a unique ID for the current function.
219 unsigned AsmPrinter::getFunctionNumber() const {
220   return MF->getFunctionNumber();
221 }
222 
223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
224   return *TM.getObjFileLowering();
225 }
226 
227 const DataLayout &AsmPrinter::getDataLayout() const {
228   return MMI->getModule()->getDataLayout();
229 }
230 
231 // Do not use the cached DataLayout because some client use it without a Module
232 // (dsymutil, llvm-dwarfdump).
233 unsigned AsmPrinter::getPointerSize() const {
234   return TM.getPointerSize(0); // FIXME: Default address space
235 }
236 
237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
238   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
239   return MF->getSubtarget<MCSubtargetInfo>();
240 }
241 
242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
243   S.emitInstruction(Inst, getSubtargetInfo());
244 }
245 
246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
247   if (DD) {
248     assert(OutStreamer->hasRawTextSupport() &&
249            "Expected assembly output mode.");
250     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
251   }
252 }
253 
254 /// getCurrentSection() - Return the current section we are emitting to.
255 const MCSection *AsmPrinter::getCurrentSection() const {
256   return OutStreamer->getCurrentSectionOnly();
257 }
258 
259 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
260   AU.setPreservesAll();
261   MachineFunctionPass::getAnalysisUsage(AU);
262   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
263   AU.addRequired<GCModuleInfo>();
264 }
265 
266 bool AsmPrinter::doInitialization(Module &M) {
267   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
268   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
269 
270   // Initialize TargetLoweringObjectFile.
271   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
272     .Initialize(OutContext, TM);
273 
274   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
275       .getModuleMetadata(M);
276 
277   OutStreamer->InitSections(false);
278 
279   if (DisableDebugInfoPrinting)
280     MMI->setDebugInfoAvailability(false);
281 
282   // Emit the version-min deployment target directive if needed.
283   //
284   // FIXME: If we end up with a collection of these sorts of Darwin-specific
285   // or ELF-specific things, it may make sense to have a platform helper class
286   // that will work with the target helper class. For now keep it here, as the
287   // alternative is duplicated code in each of the target asm printers that
288   // use the directive, where it would need the same conditionalization
289   // anyway.
290   const Triple &Target = TM.getTargetTriple();
291   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
292 
293   // Allow the target to emit any magic that it wants at the start of the file.
294   emitStartOfAsmFile(M);
295 
296   // Very minimal debug info. It is ignored if we emit actual debug info. If we
297   // don't, this at least helps the user find where a global came from.
298   if (MAI->hasSingleParameterDotFile()) {
299     // .file "foo.c"
300     OutStreamer->emitFileDirective(
301         llvm::sys::path::filename(M.getSourceFileName()));
302   }
303 
304   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
305   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
306   for (auto &I : *MI)
307     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
308       MP->beginAssembly(M, *MI, *this);
309 
310   // Emit module-level inline asm if it exists.
311   if (!M.getModuleInlineAsm().empty()) {
312     // We're at the module level. Construct MCSubtarget from the default CPU
313     // and target triple.
314     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
315         TM.getTargetTriple().str(), TM.getTargetCPU(),
316         TM.getTargetFeatureString()));
317     assert(STI && "Unable to create subtarget info");
318     OutStreamer->AddComment("Start of file scope inline assembly");
319     OutStreamer->AddBlankLine();
320     emitInlineAsm(M.getModuleInlineAsm() + "\n",
321                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
322     OutStreamer->AddComment("End of file scope inline assembly");
323     OutStreamer->AddBlankLine();
324   }
325 
326   if (MAI->doesSupportDebugInformation()) {
327     bool EmitCodeView = M.getCodeViewFlag();
328     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
329       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
330                             DbgTimerName, DbgTimerDescription,
331                             CodeViewLineTablesGroupName,
332                             CodeViewLineTablesGroupDescription);
333     }
334     if (!EmitCodeView || M.getDwarfVersion()) {
335       if (!DisableDebugInfoPrinting) {
336         DD = new DwarfDebug(this);
337         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
338                               DbgTimerDescription, DWARFGroupName,
339                               DWARFGroupDescription);
340       }
341     }
342   }
343 
344   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
345     PP = new PseudoProbeHandler(this, &M);
346     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
347                           PPTimerDescription, PPGroupName, PPGroupDescription);
348   }
349 
350   switch (MAI->getExceptionHandlingType()) {
351   case ExceptionHandling::SjLj:
352   case ExceptionHandling::DwarfCFI:
353   case ExceptionHandling::ARM:
354     for (auto &F : M.getFunctionList()) {
355       // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
356       // the module needs .eh_frame. If we have found that case, we are done.
357       if (ModuleCFISection == AsmPrinter::CFISection::EH)
358         break;
359       if (ModuleCFISection == AsmPrinter::CFISection::None)
360         ModuleCFISection = getFunctionCFISectionType(F);
361     }
362     assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
363            ModuleCFISection != AsmPrinter::CFISection::EH);
364     break;
365   default:
366     break;
367   }
368 
369   EHStreamer *ES = nullptr;
370   switch (MAI->getExceptionHandlingType()) {
371   case ExceptionHandling::None:
372     break;
373   case ExceptionHandling::SjLj:
374   case ExceptionHandling::DwarfCFI:
375     ES = new DwarfCFIException(this);
376     break;
377   case ExceptionHandling::ARM:
378     ES = new ARMException(this);
379     break;
380   case ExceptionHandling::WinEH:
381     switch (MAI->getWinEHEncodingType()) {
382     default: llvm_unreachable("unsupported unwinding information encoding");
383     case WinEH::EncodingType::Invalid:
384       break;
385     case WinEH::EncodingType::X86:
386     case WinEH::EncodingType::Itanium:
387       ES = new WinException(this);
388       break;
389     }
390     break;
391   case ExceptionHandling::Wasm:
392     ES = new WasmException(this);
393     break;
394   case ExceptionHandling::AIX:
395     ES = new AIXException(this);
396     break;
397   }
398   if (ES)
399     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
400                           EHTimerDescription, DWARFGroupName,
401                           DWARFGroupDescription);
402 
403   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
404   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
405     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
406                           CFGuardDescription, DWARFGroupName,
407                           DWARFGroupDescription);
408 
409   for (const HandlerInfo &HI : Handlers) {
410     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
411                        HI.TimerGroupDescription, TimePassesIsEnabled);
412     HI.Handler->beginModule(&M);
413   }
414 
415   return false;
416 }
417 
418 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
419   if (!MAI.hasWeakDefCanBeHiddenDirective())
420     return false;
421 
422   return GV->canBeOmittedFromSymbolTable();
423 }
424 
425 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
426   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
427   switch (Linkage) {
428   case GlobalValue::CommonLinkage:
429   case GlobalValue::LinkOnceAnyLinkage:
430   case GlobalValue::LinkOnceODRLinkage:
431   case GlobalValue::WeakAnyLinkage:
432   case GlobalValue::WeakODRLinkage:
433     if (MAI->hasWeakDefDirective()) {
434       // .globl _foo
435       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
436 
437       if (!canBeHidden(GV, *MAI))
438         // .weak_definition _foo
439         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
440       else
441         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
442     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
443       // .globl _foo
444       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
445       //NOTE: linkonce is handled by the section the symbol was assigned to.
446     } else {
447       // .weak _foo
448       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
449     }
450     return;
451   case GlobalValue::ExternalLinkage:
452     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
453     return;
454   case GlobalValue::PrivateLinkage:
455   case GlobalValue::InternalLinkage:
456     return;
457   case GlobalValue::ExternalWeakLinkage:
458   case GlobalValue::AvailableExternallyLinkage:
459   case GlobalValue::AppendingLinkage:
460     llvm_unreachable("Should never emit this");
461   }
462   llvm_unreachable("Unknown linkage type!");
463 }
464 
465 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
466                                    const GlobalValue *GV) const {
467   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
468 }
469 
470 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
471   return TM.getSymbol(GV);
472 }
473 
474 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
475   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
476   // exact definion (intersection of GlobalValue::hasExactDefinition() and
477   // !isInterposable()). These linkages include: external, appending, internal,
478   // private. It may be profitable to use a local alias for external. The
479   // assembler would otherwise be conservative and assume a global default
480   // visibility symbol can be interposable, even if the code generator already
481   // assumed it.
482   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
483     const Module &M = *GV.getParent();
484     if (TM.getRelocationModel() != Reloc::Static &&
485         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
486       return getSymbolWithGlobalValueBase(&GV, "$local");
487   }
488   return TM.getSymbol(&GV);
489 }
490 
491 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
492 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
493   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
494   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
495          "No emulated TLS variables in the common section");
496 
497   // Never emit TLS variable xyz in emulated TLS model.
498   // The initialization value is in __emutls_t.xyz instead of xyz.
499   if (IsEmuTLSVar)
500     return;
501 
502   if (GV->hasInitializer()) {
503     // Check to see if this is a special global used by LLVM, if so, emit it.
504     if (emitSpecialLLVMGlobal(GV))
505       return;
506 
507     // Skip the emission of global equivalents. The symbol can be emitted later
508     // on by emitGlobalGOTEquivs in case it turns out to be needed.
509     if (GlobalGOTEquivs.count(getSymbol(GV)))
510       return;
511 
512     if (isVerbose()) {
513       // When printing the control variable __emutls_v.*,
514       // we don't need to print the original TLS variable name.
515       GV->printAsOperand(OutStreamer->GetCommentOS(),
516                      /*PrintType=*/false, GV->getParent());
517       OutStreamer->GetCommentOS() << '\n';
518     }
519   }
520 
521   MCSymbol *GVSym = getSymbol(GV);
522   MCSymbol *EmittedSym = GVSym;
523 
524   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
525   // attributes.
526   // GV's or GVSym's attributes will be used for the EmittedSym.
527   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
528 
529   if (!GV->hasInitializer())   // External globals require no extra code.
530     return;
531 
532   GVSym->redefineIfPossible();
533   if (GVSym->isDefined() || GVSym->isVariable())
534     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
535                                         "' is already defined");
536 
537   if (MAI->hasDotTypeDotSizeDirective())
538     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
539 
540   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
541 
542   const DataLayout &DL = GV->getParent()->getDataLayout();
543   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
544 
545   // If the alignment is specified, we *must* obey it.  Overaligning a global
546   // with a specified alignment is a prompt way to break globals emitted to
547   // sections and expected to be contiguous (e.g. ObjC metadata).
548   const Align Alignment = getGVAlignment(GV, DL);
549 
550   for (const HandlerInfo &HI : Handlers) {
551     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
552                        HI.TimerGroupName, HI.TimerGroupDescription,
553                        TimePassesIsEnabled);
554     HI.Handler->setSymbolSize(GVSym, Size);
555   }
556 
557   // Handle common symbols
558   if (GVKind.isCommon()) {
559     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
560     // .comm _foo, 42, 4
561     const bool SupportsAlignment =
562         getObjFileLowering().getCommDirectiveSupportsAlignment();
563     OutStreamer->emitCommonSymbol(GVSym, Size,
564                                   SupportsAlignment ? Alignment.value() : 0);
565     return;
566   }
567 
568   // Determine to which section this global should be emitted.
569   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
570 
571   // If we have a bss global going to a section that supports the
572   // zerofill directive, do so here.
573   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
574       TheSection->isVirtualSection()) {
575     if (Size == 0)
576       Size = 1; // zerofill of 0 bytes is undefined.
577     emitLinkage(GV, GVSym);
578     // .zerofill __DATA, __bss, _foo, 400, 5
579     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
580     return;
581   }
582 
583   // If this is a BSS local symbol and we are emitting in the BSS
584   // section use .lcomm/.comm directive.
585   if (GVKind.isBSSLocal() &&
586       getObjFileLowering().getBSSSection() == TheSection) {
587     if (Size == 0)
588       Size = 1; // .comm Foo, 0 is undefined, avoid it.
589 
590     // Use .lcomm only if it supports user-specified alignment.
591     // Otherwise, while it would still be correct to use .lcomm in some
592     // cases (e.g. when Align == 1), the external assembler might enfore
593     // some -unknown- default alignment behavior, which could cause
594     // spurious differences between external and integrated assembler.
595     // Prefer to simply fall back to .local / .comm in this case.
596     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
597       // .lcomm _foo, 42
598       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
599       return;
600     }
601 
602     // .local _foo
603     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
604     // .comm _foo, 42, 4
605     const bool SupportsAlignment =
606         getObjFileLowering().getCommDirectiveSupportsAlignment();
607     OutStreamer->emitCommonSymbol(GVSym, Size,
608                                   SupportsAlignment ? Alignment.value() : 0);
609     return;
610   }
611 
612   // Handle thread local data for mach-o which requires us to output an
613   // additional structure of data and mangle the original symbol so that we
614   // can reference it later.
615   //
616   // TODO: This should become an "emit thread local global" method on TLOF.
617   // All of this macho specific stuff should be sunk down into TLOFMachO and
618   // stuff like "TLSExtraDataSection" should no longer be part of the parent
619   // TLOF class.  This will also make it more obvious that stuff like
620   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
621   // specific code.
622   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
623     // Emit the .tbss symbol
624     MCSymbol *MangSym =
625         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
626 
627     if (GVKind.isThreadBSS()) {
628       TheSection = getObjFileLowering().getTLSBSSSection();
629       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
630     } else if (GVKind.isThreadData()) {
631       OutStreamer->SwitchSection(TheSection);
632 
633       emitAlignment(Alignment, GV);
634       OutStreamer->emitLabel(MangSym);
635 
636       emitGlobalConstant(GV->getParent()->getDataLayout(),
637                          GV->getInitializer());
638     }
639 
640     OutStreamer->AddBlankLine();
641 
642     // Emit the variable struct for the runtime.
643     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
644 
645     OutStreamer->SwitchSection(TLVSect);
646     // Emit the linkage here.
647     emitLinkage(GV, GVSym);
648     OutStreamer->emitLabel(GVSym);
649 
650     // Three pointers in size:
651     //   - __tlv_bootstrap - used to make sure support exists
652     //   - spare pointer, used when mapped by the runtime
653     //   - pointer to mangled symbol above with initializer
654     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
655     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
656                                 PtrSize);
657     OutStreamer->emitIntValue(0, PtrSize);
658     OutStreamer->emitSymbolValue(MangSym, PtrSize);
659 
660     OutStreamer->AddBlankLine();
661     return;
662   }
663 
664   MCSymbol *EmittedInitSym = GVSym;
665 
666   OutStreamer->SwitchSection(TheSection);
667 
668   emitLinkage(GV, EmittedInitSym);
669   emitAlignment(Alignment, GV);
670 
671   OutStreamer->emitLabel(EmittedInitSym);
672   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
673   if (LocalAlias != EmittedInitSym)
674     OutStreamer->emitLabel(LocalAlias);
675 
676   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
677 
678   if (MAI->hasDotTypeDotSizeDirective())
679     // .size foo, 42
680     OutStreamer->emitELFSize(EmittedInitSym,
681                              MCConstantExpr::create(Size, OutContext));
682 
683   OutStreamer->AddBlankLine();
684 }
685 
686 /// Emit the directive and value for debug thread local expression
687 ///
688 /// \p Value - The value to emit.
689 /// \p Size - The size of the integer (in bytes) to emit.
690 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
691   OutStreamer->emitValue(Value, Size);
692 }
693 
694 void AsmPrinter::emitFunctionHeaderComment() {}
695 
696 /// EmitFunctionHeader - This method emits the header for the current
697 /// function.
698 void AsmPrinter::emitFunctionHeader() {
699   const Function &F = MF->getFunction();
700 
701   if (isVerbose())
702     OutStreamer->GetCommentOS()
703         << "-- Begin function "
704         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
705 
706   // Print out constants referenced by the function
707   emitConstantPool();
708 
709   // Print the 'header' of function.
710   // If basic block sections is desired and function sections is off,
711   // explicitly request a unique section for this function.
712   if (MF->front().isBeginSection() && !TM.getFunctionSections())
713     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
714   else
715     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
716   OutStreamer->SwitchSection(MF->getSection());
717 
718   if (!MAI->hasVisibilityOnlyWithLinkage())
719     emitVisibility(CurrentFnSym, F.getVisibility());
720 
721   if (MAI->needsFunctionDescriptors())
722     emitLinkage(&F, CurrentFnDescSym);
723 
724   emitLinkage(&F, CurrentFnSym);
725   if (MAI->hasFunctionAlignment())
726     emitAlignment(MF->getAlignment(), &F);
727 
728   if (MAI->hasDotTypeDotSizeDirective())
729     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
730 
731   if (F.hasFnAttribute(Attribute::Cold))
732     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
733 
734   if (isVerbose()) {
735     F.printAsOperand(OutStreamer->GetCommentOS(),
736                    /*PrintType=*/false, F.getParent());
737     emitFunctionHeaderComment();
738     OutStreamer->GetCommentOS() << '\n';
739   }
740 
741   // Emit the prefix data.
742   if (F.hasPrefixData()) {
743     if (MAI->hasSubsectionsViaSymbols()) {
744       // Preserving prefix data on platforms which use subsections-via-symbols
745       // is a bit tricky. Here we introduce a symbol for the prefix data
746       // and use the .alt_entry attribute to mark the function's real entry point
747       // as an alternative entry point to the prefix-data symbol.
748       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
749       OutStreamer->emitLabel(PrefixSym);
750 
751       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
752 
753       // Emit an .alt_entry directive for the actual function symbol.
754       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
755     } else {
756       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
757     }
758   }
759 
760   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
761   // place prefix data before NOPs.
762   unsigned PatchableFunctionPrefix = 0;
763   unsigned PatchableFunctionEntry = 0;
764   (void)F.getFnAttribute("patchable-function-prefix")
765       .getValueAsString()
766       .getAsInteger(10, PatchableFunctionPrefix);
767   (void)F.getFnAttribute("patchable-function-entry")
768       .getValueAsString()
769       .getAsInteger(10, PatchableFunctionEntry);
770   if (PatchableFunctionPrefix) {
771     CurrentPatchableFunctionEntrySym =
772         OutContext.createLinkerPrivateTempSymbol();
773     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
774     emitNops(PatchableFunctionPrefix);
775   } else if (PatchableFunctionEntry) {
776     // May be reassigned when emitting the body, to reference the label after
777     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
778     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
779   }
780 
781   // Emit the function descriptor. This is a virtual function to allow targets
782   // to emit their specific function descriptor. Right now it is only used by
783   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
784   // descriptors and should be converted to use this hook as well.
785   if (MAI->needsFunctionDescriptors())
786     emitFunctionDescriptor();
787 
788   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
789   // their wild and crazy things as required.
790   emitFunctionEntryLabel();
791 
792   // If the function had address-taken blocks that got deleted, then we have
793   // references to the dangling symbols.  Emit them at the start of the function
794   // so that we don't get references to undefined symbols.
795   std::vector<MCSymbol*> DeadBlockSyms;
796   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
797   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
798     OutStreamer->AddComment("Address taken block that was later removed");
799     OutStreamer->emitLabel(DeadBlockSyms[i]);
800   }
801 
802   if (CurrentFnBegin) {
803     if (MAI->useAssignmentForEHBegin()) {
804       MCSymbol *CurPos = OutContext.createTempSymbol();
805       OutStreamer->emitLabel(CurPos);
806       OutStreamer->emitAssignment(CurrentFnBegin,
807                                  MCSymbolRefExpr::create(CurPos, OutContext));
808     } else {
809       OutStreamer->emitLabel(CurrentFnBegin);
810     }
811   }
812 
813   // Emit pre-function debug and/or EH information.
814   for (const HandlerInfo &HI : Handlers) {
815     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
816                        HI.TimerGroupDescription, TimePassesIsEnabled);
817     HI.Handler->beginFunction(MF);
818   }
819 
820   // Emit the prologue data.
821   if (F.hasPrologueData())
822     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
823 }
824 
825 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
826 /// function.  This can be overridden by targets as required to do custom stuff.
827 void AsmPrinter::emitFunctionEntryLabel() {
828   CurrentFnSym->redefineIfPossible();
829 
830   // The function label could have already been emitted if two symbols end up
831   // conflicting due to asm renaming.  Detect this and emit an error.
832   if (CurrentFnSym->isVariable())
833     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
834                        "' is a protected alias");
835 
836   OutStreamer->emitLabel(CurrentFnSym);
837 
838   if (TM.getTargetTriple().isOSBinFormatELF()) {
839     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
840     if (Sym != CurrentFnSym)
841       OutStreamer->emitLabel(Sym);
842   }
843 }
844 
845 /// emitComments - Pretty-print comments for instructions.
846 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
847   const MachineFunction *MF = MI.getMF();
848   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
849 
850   // Check for spills and reloads
851 
852   // We assume a single instruction only has a spill or reload, not
853   // both.
854   Optional<unsigned> Size;
855   if ((Size = MI.getRestoreSize(TII))) {
856     CommentOS << *Size << "-byte Reload\n";
857   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
858     if (*Size) {
859       if (*Size == unsigned(MemoryLocation::UnknownSize))
860         CommentOS << "Unknown-size Folded Reload\n";
861       else
862         CommentOS << *Size << "-byte Folded Reload\n";
863     }
864   } else if ((Size = MI.getSpillSize(TII))) {
865     CommentOS << *Size << "-byte Spill\n";
866   } else if ((Size = MI.getFoldedSpillSize(TII))) {
867     if (*Size) {
868       if (*Size == unsigned(MemoryLocation::UnknownSize))
869         CommentOS << "Unknown-size Folded Spill\n";
870       else
871         CommentOS << *Size << "-byte Folded Spill\n";
872     }
873   }
874 
875   // Check for spill-induced copies
876   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
877     CommentOS << " Reload Reuse\n";
878 }
879 
880 /// emitImplicitDef - This method emits the specified machine instruction
881 /// that is an implicit def.
882 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
883   Register RegNo = MI->getOperand(0).getReg();
884 
885   SmallString<128> Str;
886   raw_svector_ostream OS(Str);
887   OS << "implicit-def: "
888      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
889 
890   OutStreamer->AddComment(OS.str());
891   OutStreamer->AddBlankLine();
892 }
893 
894 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
895   std::string Str;
896   raw_string_ostream OS(Str);
897   OS << "kill:";
898   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
899     const MachineOperand &Op = MI->getOperand(i);
900     assert(Op.isReg() && "KILL instruction must have only register operands");
901     OS << ' ' << (Op.isDef() ? "def " : "killed ")
902        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
903   }
904   AP.OutStreamer->AddComment(OS.str());
905   AP.OutStreamer->AddBlankLine();
906 }
907 
908 /// emitDebugValueComment - This method handles the target-independent form
909 /// of DBG_VALUE, returning true if it was able to do so.  A false return
910 /// means the target will need to handle MI in EmitInstruction.
911 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
912   // This code handles only the 4-operand target-independent form.
913   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
914     return false;
915 
916   SmallString<128> Str;
917   raw_svector_ostream OS(Str);
918   OS << "DEBUG_VALUE: ";
919 
920   const DILocalVariable *V = MI->getDebugVariable();
921   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
922     StringRef Name = SP->getName();
923     if (!Name.empty())
924       OS << Name << ":";
925   }
926   OS << V->getName();
927   OS << " <- ";
928 
929   const DIExpression *Expr = MI->getDebugExpression();
930   if (Expr->getNumElements()) {
931     OS << '[';
932     ListSeparator LS;
933     for (auto Op : Expr->expr_ops()) {
934       OS << LS << dwarf::OperationEncodingString(Op.getOp());
935       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
936         OS << ' ' << Op.getArg(I);
937     }
938     OS << "] ";
939   }
940 
941   // Register or immediate value. Register 0 means undef.
942   for (const MachineOperand &Op : MI->debug_operands()) {
943     if (&Op != MI->debug_operands().begin())
944       OS << ", ";
945     switch (Op.getType()) {
946     case MachineOperand::MO_FPImmediate: {
947       APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
948       if (Op.getFPImm()->getType()->isFloatTy()) {
949         OS << (double)APF.convertToFloat();
950       } else if (Op.getFPImm()->getType()->isDoubleTy()) {
951         OS << APF.convertToDouble();
952       } else {
953         // There is no good way to print long double.  Convert a copy to
954         // double.  Ah well, it's only a comment.
955         bool ignored;
956         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
957                     &ignored);
958         OS << "(long double) " << APF.convertToDouble();
959       }
960       break;
961     }
962     case MachineOperand::MO_Immediate: {
963       OS << Op.getImm();
964       break;
965     }
966     case MachineOperand::MO_CImmediate: {
967       Op.getCImm()->getValue().print(OS, false /*isSigned*/);
968       break;
969     }
970     case MachineOperand::MO_TargetIndex: {
971       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
972       // NOTE: Want this comment at start of line, don't emit with AddComment.
973       AP.OutStreamer->emitRawComment(OS.str());
974       break;
975     }
976     case MachineOperand::MO_Register:
977     case MachineOperand::MO_FrameIndex: {
978       Register Reg;
979       Optional<StackOffset> Offset;
980       if (Op.isReg()) {
981         Reg = Op.getReg();
982       } else {
983         const TargetFrameLowering *TFI =
984             AP.MF->getSubtarget().getFrameLowering();
985         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
986       }
987       if (!Reg) {
988         // Suppress offset, it is not meaningful here.
989         OS << "undef";
990         break;
991       }
992       // The second operand is only an offset if it's an immediate.
993       if (MI->isIndirectDebugValue())
994         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
995       if (Offset)
996         OS << '[';
997       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
998       if (Offset)
999         OS << '+' << Offset->getFixed() << ']';
1000       break;
1001     }
1002     default:
1003       llvm_unreachable("Unknown operand type");
1004     }
1005   }
1006 
1007   // NOTE: Want this comment at start of line, don't emit with AddComment.
1008   AP.OutStreamer->emitRawComment(OS.str());
1009   return true;
1010 }
1011 
1012 /// This method handles the target-independent form of DBG_LABEL, returning
1013 /// true if it was able to do so.  A false return means the target will need
1014 /// to handle MI in EmitInstruction.
1015 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1016   if (MI->getNumOperands() != 1)
1017     return false;
1018 
1019   SmallString<128> Str;
1020   raw_svector_ostream OS(Str);
1021   OS << "DEBUG_LABEL: ";
1022 
1023   const DILabel *V = MI->getDebugLabel();
1024   if (auto *SP = dyn_cast<DISubprogram>(
1025           V->getScope()->getNonLexicalBlockFileScope())) {
1026     StringRef Name = SP->getName();
1027     if (!Name.empty())
1028       OS << Name << ":";
1029   }
1030   OS << V->getName();
1031 
1032   // NOTE: Want this comment at start of line, don't emit with AddComment.
1033   AP.OutStreamer->emitRawComment(OS.str());
1034   return true;
1035 }
1036 
1037 AsmPrinter::CFISection
1038 AsmPrinter::getFunctionCFISectionType(const Function &F) const {
1039   // Ignore functions that won't get emitted.
1040   if (F.isDeclarationForLinker())
1041     return CFISection::None;
1042 
1043   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1044       F.needsUnwindTableEntry())
1045     return CFISection::EH;
1046 
1047   if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1048     return CFISection::Debug;
1049 
1050   return CFISection::None;
1051 }
1052 
1053 AsmPrinter::CFISection
1054 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
1055   return getFunctionCFISectionType(MF.getFunction());
1056 }
1057 
1058 bool AsmPrinter::needsSEHMoves() {
1059   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1060 }
1061 
1062 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1063   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1064   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1065       ExceptionHandlingType != ExceptionHandling::ARM)
1066     return;
1067 
1068   if (getFunctionCFISectionType(*MF) == AsmPrinter::CFISection::None)
1069     return;
1070 
1071   // If there is no "real" instruction following this CFI instruction, skip
1072   // emitting it; it would be beyond the end of the function's FDE range.
1073   auto *MBB = MI.getParent();
1074   auto I = std::next(MI.getIterator());
1075   while (I != MBB->end() && I->isTransient())
1076     ++I;
1077   if (I == MBB->instr_end() &&
1078       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1079     return;
1080 
1081   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1082   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1083   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1084   emitCFIInstruction(CFI);
1085 }
1086 
1087 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1088   // The operands are the MCSymbol and the frame offset of the allocation.
1089   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1090   int FrameOffset = MI.getOperand(1).getImm();
1091 
1092   // Emit a symbol assignment.
1093   OutStreamer->emitAssignment(FrameAllocSym,
1094                              MCConstantExpr::create(FrameOffset, OutContext));
1095 }
1096 
1097 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1098 /// given basic block. This can be used to capture more precise profile
1099 /// information. We use the last 4 bits (LSBs) to encode the following
1100 /// information:
1101 ///  * (1): set if return block (ret or tail call).
1102 ///  * (2): set if ends with a tail call.
1103 ///  * (3): set if exception handling (EH) landing pad.
1104 ///  * (4): set if the block can fall through to its next.
1105 /// The remaining bits are zero.
1106 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1107   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1108   return ((unsigned)MBB.isReturnBlock()) |
1109          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1110          (MBB.isEHPad() << 2) |
1111          (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3);
1112 }
1113 
1114 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1115   MCSection *BBAddrMapSection =
1116       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1117   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1118 
1119   const MCSymbol *FunctionSymbol = getFunctionBegin();
1120 
1121   OutStreamer->PushSection();
1122   OutStreamer->SwitchSection(BBAddrMapSection);
1123   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1124   // Emit the total number of basic blocks in this function.
1125   OutStreamer->emitULEB128IntValue(MF.size());
1126   // Emit BB Information for each basic block in the funciton.
1127   for (const MachineBasicBlock &MBB : MF) {
1128     const MCSymbol *MBBSymbol =
1129         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1130     // Emit the basic block offset.
1131     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1132     // Emit the basic block size. When BBs have alignments, their size cannot
1133     // always be computed from their offsets.
1134     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1135     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1136   }
1137   OutStreamer->PopSection();
1138 }
1139 
1140 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1141   auto GUID = MI.getOperand(0).getImm();
1142   auto Index = MI.getOperand(1).getImm();
1143   auto Type = MI.getOperand(2).getImm();
1144   auto Attr = MI.getOperand(3).getImm();
1145   DILocation *DebugLoc = MI.getDebugLoc();
1146   PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1147 }
1148 
1149 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1150   if (!MF.getTarget().Options.EmitStackSizeSection)
1151     return;
1152 
1153   MCSection *StackSizeSection =
1154       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1155   if (!StackSizeSection)
1156     return;
1157 
1158   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1159   // Don't emit functions with dynamic stack allocations.
1160   if (FrameInfo.hasVarSizedObjects())
1161     return;
1162 
1163   OutStreamer->PushSection();
1164   OutStreamer->SwitchSection(StackSizeSection);
1165 
1166   const MCSymbol *FunctionSymbol = getFunctionBegin();
1167   uint64_t StackSize = FrameInfo.getStackSize();
1168   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1169   OutStreamer->emitULEB128IntValue(StackSize);
1170 
1171   OutStreamer->PopSection();
1172 }
1173 
1174 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1175   MachineModuleInfo &MMI = MF.getMMI();
1176   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1177     return true;
1178 
1179   // We might emit an EH table that uses function begin and end labels even if
1180   // we don't have any landingpads.
1181   if (!MF.getFunction().hasPersonalityFn())
1182     return false;
1183   return !isNoOpWithoutInvoke(
1184       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1185 }
1186 
1187 /// EmitFunctionBody - This method emits the body and trailer for a
1188 /// function.
1189 void AsmPrinter::emitFunctionBody() {
1190   emitFunctionHeader();
1191 
1192   // Emit target-specific gunk before the function body.
1193   emitFunctionBodyStart();
1194 
1195   if (isVerbose()) {
1196     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1197     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1198     if (!MDT) {
1199       OwnedMDT = std::make_unique<MachineDominatorTree>();
1200       OwnedMDT->getBase().recalculate(*MF);
1201       MDT = OwnedMDT.get();
1202     }
1203 
1204     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1205     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1206     if (!MLI) {
1207       OwnedMLI = std::make_unique<MachineLoopInfo>();
1208       OwnedMLI->getBase().analyze(MDT->getBase());
1209       MLI = OwnedMLI.get();
1210     }
1211   }
1212 
1213   // Print out code for the function.
1214   bool HasAnyRealCode = false;
1215   int NumInstsInFunction = 0;
1216 
1217   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1218   for (auto &MBB : *MF) {
1219     // Print a label for the basic block.
1220     emitBasicBlockStart(MBB);
1221     DenseMap<StringRef, unsigned> MnemonicCounts;
1222     for (auto &MI : MBB) {
1223       // Print the assembly for the instruction.
1224       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1225           !MI.isDebugInstr()) {
1226         HasAnyRealCode = true;
1227         ++NumInstsInFunction;
1228       }
1229 
1230       // If there is a pre-instruction symbol, emit a label for it here.
1231       if (MCSymbol *S = MI.getPreInstrSymbol())
1232         OutStreamer->emitLabel(S);
1233 
1234       for (const HandlerInfo &HI : Handlers) {
1235         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1236                            HI.TimerGroupDescription, TimePassesIsEnabled);
1237         HI.Handler->beginInstruction(&MI);
1238       }
1239 
1240       if (isVerbose())
1241         emitComments(MI, OutStreamer->GetCommentOS());
1242 
1243       switch (MI.getOpcode()) {
1244       case TargetOpcode::CFI_INSTRUCTION:
1245         emitCFIInstruction(MI);
1246         break;
1247       case TargetOpcode::LOCAL_ESCAPE:
1248         emitFrameAlloc(MI);
1249         break;
1250       case TargetOpcode::ANNOTATION_LABEL:
1251       case TargetOpcode::EH_LABEL:
1252       case TargetOpcode::GC_LABEL:
1253         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1254         break;
1255       case TargetOpcode::INLINEASM:
1256       case TargetOpcode::INLINEASM_BR:
1257         emitInlineAsm(&MI);
1258         break;
1259       case TargetOpcode::DBG_VALUE:
1260       case TargetOpcode::DBG_VALUE_LIST:
1261         if (isVerbose()) {
1262           if (!emitDebugValueComment(&MI, *this))
1263             emitInstruction(&MI);
1264         }
1265         break;
1266       case TargetOpcode::DBG_INSTR_REF:
1267         // This instruction reference will have been resolved to a machine
1268         // location, and a nearby DBG_VALUE created. We can safely ignore
1269         // the instruction reference.
1270         break;
1271       case TargetOpcode::DBG_LABEL:
1272         if (isVerbose()) {
1273           if (!emitDebugLabelComment(&MI, *this))
1274             emitInstruction(&MI);
1275         }
1276         break;
1277       case TargetOpcode::IMPLICIT_DEF:
1278         if (isVerbose()) emitImplicitDef(&MI);
1279         break;
1280       case TargetOpcode::KILL:
1281         if (isVerbose()) emitKill(&MI, *this);
1282         break;
1283       case TargetOpcode::PSEUDO_PROBE:
1284         emitPseudoProbe(MI);
1285         break;
1286       default:
1287         emitInstruction(&MI);
1288         if (CanDoExtraAnalysis) {
1289           MCInst MCI;
1290           MCI.setOpcode(MI.getOpcode());
1291           auto Name = OutStreamer->getMnemonic(MCI);
1292           auto I = MnemonicCounts.insert({Name, 0u});
1293           I.first->second++;
1294         }
1295         break;
1296       }
1297 
1298       // If there is a post-instruction symbol, emit a label for it here.
1299       if (MCSymbol *S = MI.getPostInstrSymbol())
1300         OutStreamer->emitLabel(S);
1301 
1302       for (const HandlerInfo &HI : Handlers) {
1303         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1304                            HI.TimerGroupDescription, TimePassesIsEnabled);
1305         HI.Handler->endInstruction();
1306       }
1307     }
1308 
1309     // We must emit temporary symbol for the end of this basic block, if either
1310     // we have BBLabels enabled or if this basic blocks marks the end of a
1311     // section (except the section containing the entry basic block as the end
1312     // symbol for that section is CurrentFnEnd).
1313     if (MF->hasBBLabels() ||
1314         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1315          !MBB.sameSection(&MF->front())))
1316       OutStreamer->emitLabel(MBB.getEndSymbol());
1317 
1318     if (MBB.isEndSection()) {
1319       // The size directive for the section containing the entry block is
1320       // handled separately by the function section.
1321       if (!MBB.sameSection(&MF->front())) {
1322         if (MAI->hasDotTypeDotSizeDirective()) {
1323           // Emit the size directive for the basic block section.
1324           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1325               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1326               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1327               OutContext);
1328           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1329         }
1330         MBBSectionRanges[MBB.getSectionIDNum()] =
1331             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1332       }
1333     }
1334     emitBasicBlockEnd(MBB);
1335 
1336     if (CanDoExtraAnalysis) {
1337       // Skip empty blocks.
1338       if (MBB.empty())
1339         continue;
1340 
1341       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1342                                           MBB.begin()->getDebugLoc(), &MBB);
1343 
1344       // Generate instruction mix remark. First, sort counts in descending order
1345       // by count and name.
1346       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1347       for (auto &KV : MnemonicCounts)
1348         MnemonicVec.emplace_back(KV.first, KV.second);
1349 
1350       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1351                            const std::pair<StringRef, unsigned> &B) {
1352         if (A.second > B.second)
1353           return true;
1354         if (A.second == B.second)
1355           return StringRef(A.first) < StringRef(B.first);
1356         return false;
1357       });
1358       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1359       for (auto &KV : MnemonicVec) {
1360         auto Name = (Twine("INST_") + KV.first.trim()).str();
1361         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1362       }
1363       ORE->emit(R);
1364     }
1365   }
1366 
1367   EmittedInsts += NumInstsInFunction;
1368   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1369                                       MF->getFunction().getSubprogram(),
1370                                       &MF->front());
1371   R << ore::NV("NumInstructions", NumInstsInFunction)
1372     << " instructions in function";
1373   ORE->emit(R);
1374 
1375   // If the function is empty and the object file uses .subsections_via_symbols,
1376   // then we need to emit *something* to the function body to prevent the
1377   // labels from collapsing together.  Just emit a noop.
1378   // Similarly, don't emit empty functions on Windows either. It can lead to
1379   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1380   // after linking, causing the kernel not to load the binary:
1381   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1382   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1383   const Triple &TT = TM.getTargetTriple();
1384   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1385                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1386     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
1387 
1388     // Targets can opt-out of emitting the noop here by leaving the opcode
1389     // unspecified.
1390     if (Noop.getOpcode()) {
1391       OutStreamer->AddComment("avoids zero-length function");
1392       emitNops(1);
1393     }
1394   }
1395 
1396   // Switch to the original section in case basic block sections was used.
1397   OutStreamer->SwitchSection(MF->getSection());
1398 
1399   const Function &F = MF->getFunction();
1400   for (const auto &BB : F) {
1401     if (!BB.hasAddressTaken())
1402       continue;
1403     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1404     if (Sym->isDefined())
1405       continue;
1406     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1407     OutStreamer->emitLabel(Sym);
1408   }
1409 
1410   // Emit target-specific gunk after the function body.
1411   emitFunctionBodyEnd();
1412 
1413   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1414       MAI->hasDotTypeDotSizeDirective()) {
1415     // Create a symbol for the end of function.
1416     CurrentFnEnd = createTempSymbol("func_end");
1417     OutStreamer->emitLabel(CurrentFnEnd);
1418   }
1419 
1420   // If the target wants a .size directive for the size of the function, emit
1421   // it.
1422   if (MAI->hasDotTypeDotSizeDirective()) {
1423     // We can get the size as difference between the function label and the
1424     // temp label.
1425     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1426         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1427         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1428     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1429   }
1430 
1431   for (const HandlerInfo &HI : Handlers) {
1432     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1433                        HI.TimerGroupDescription, TimePassesIsEnabled);
1434     HI.Handler->markFunctionEnd();
1435   }
1436 
1437   MBBSectionRanges[MF->front().getSectionIDNum()] =
1438       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1439 
1440   // Print out jump tables referenced by the function.
1441   emitJumpTableInfo();
1442 
1443   // Emit post-function debug and/or EH information.
1444   for (const HandlerInfo &HI : Handlers) {
1445     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1446                        HI.TimerGroupDescription, TimePassesIsEnabled);
1447     HI.Handler->endFunction(MF);
1448   }
1449 
1450   // Emit section containing BB address offsets and their metadata, when
1451   // BB labels are requested for this function. Skip empty functions.
1452   if (MF->hasBBLabels() && HasAnyRealCode)
1453     emitBBAddrMapSection(*MF);
1454 
1455   // Emit section containing stack size metadata.
1456   emitStackSizeSection(*MF);
1457 
1458   emitPatchableFunctionEntries();
1459 
1460   if (isVerbose())
1461     OutStreamer->GetCommentOS() << "-- End function\n";
1462 
1463   OutStreamer->AddBlankLine();
1464 }
1465 
1466 /// Compute the number of Global Variables that uses a Constant.
1467 static unsigned getNumGlobalVariableUses(const Constant *C) {
1468   if (!C)
1469     return 0;
1470 
1471   if (isa<GlobalVariable>(C))
1472     return 1;
1473 
1474   unsigned NumUses = 0;
1475   for (auto *CU : C->users())
1476     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1477 
1478   return NumUses;
1479 }
1480 
1481 /// Only consider global GOT equivalents if at least one user is a
1482 /// cstexpr inside an initializer of another global variables. Also, don't
1483 /// handle cstexpr inside instructions. During global variable emission,
1484 /// candidates are skipped and are emitted later in case at least one cstexpr
1485 /// isn't replaced by a PC relative GOT entry access.
1486 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1487                                      unsigned &NumGOTEquivUsers) {
1488   // Global GOT equivalents are unnamed private globals with a constant
1489   // pointer initializer to another global symbol. They must point to a
1490   // GlobalVariable or Function, i.e., as GlobalValue.
1491   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1492       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1493       !isa<GlobalValue>(GV->getOperand(0)))
1494     return false;
1495 
1496   // To be a got equivalent, at least one of its users need to be a constant
1497   // expression used by another global variable.
1498   for (auto *U : GV->users())
1499     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1500 
1501   return NumGOTEquivUsers > 0;
1502 }
1503 
1504 /// Unnamed constant global variables solely contaning a pointer to
1505 /// another globals variable is equivalent to a GOT table entry; it contains the
1506 /// the address of another symbol. Optimize it and replace accesses to these
1507 /// "GOT equivalents" by using the GOT entry for the final global instead.
1508 /// Compute GOT equivalent candidates among all global variables to avoid
1509 /// emitting them if possible later on, after it use is replaced by a GOT entry
1510 /// access.
1511 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1512   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1513     return;
1514 
1515   for (const auto &G : M.globals()) {
1516     unsigned NumGOTEquivUsers = 0;
1517     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1518       continue;
1519 
1520     const MCSymbol *GOTEquivSym = getSymbol(&G);
1521     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1522   }
1523 }
1524 
1525 /// Constant expressions using GOT equivalent globals may not be eligible
1526 /// for PC relative GOT entry conversion, in such cases we need to emit such
1527 /// globals we previously omitted in EmitGlobalVariable.
1528 void AsmPrinter::emitGlobalGOTEquivs() {
1529   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1530     return;
1531 
1532   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1533   for (auto &I : GlobalGOTEquivs) {
1534     const GlobalVariable *GV = I.second.first;
1535     unsigned Cnt = I.second.second;
1536     if (Cnt)
1537       FailedCandidates.push_back(GV);
1538   }
1539   GlobalGOTEquivs.clear();
1540 
1541   for (auto *GV : FailedCandidates)
1542     emitGlobalVariable(GV);
1543 }
1544 
1545 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1546                                           const GlobalIndirectSymbol& GIS) {
1547   MCSymbol *Name = getSymbol(&GIS);
1548   bool IsFunction = GIS.getValueType()->isFunctionTy();
1549   // Treat bitcasts of functions as functions also. This is important at least
1550   // on WebAssembly where object and function addresses can't alias each other.
1551   if (!IsFunction)
1552     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1553       if (CE->getOpcode() == Instruction::BitCast)
1554         IsFunction =
1555           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1556 
1557   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1558   // so AIX has to use the extra-label-at-definition strategy. At this
1559   // point, all the extra label is emitted, we just have to emit linkage for
1560   // those labels.
1561   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1562     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1563     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1564            "Visibility should be handled with emitLinkage() on AIX.");
1565     emitLinkage(&GIS, Name);
1566     // If it's a function, also emit linkage for aliases of function entry
1567     // point.
1568     if (IsFunction)
1569       emitLinkage(&GIS,
1570                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1571     return;
1572   }
1573 
1574   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1575     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1576   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1577     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1578   else
1579     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1580 
1581   // Set the symbol type to function if the alias has a function type.
1582   // This affects codegen when the aliasee is not a function.
1583   if (IsFunction)
1584     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1585                                                ? MCSA_ELF_TypeIndFunction
1586                                                : MCSA_ELF_TypeFunction);
1587 
1588   emitVisibility(Name, GIS.getVisibility());
1589 
1590   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1591 
1592   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1593     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1594 
1595   // Emit the directives as assignments aka .set:
1596   OutStreamer->emitAssignment(Name, Expr);
1597   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1598   if (LocalAlias != Name)
1599     OutStreamer->emitAssignment(LocalAlias, Expr);
1600 
1601   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1602     // If the aliasee does not correspond to a symbol in the output, i.e. the
1603     // alias is not of an object or the aliased object is private, then set the
1604     // size of the alias symbol from the type of the alias. We don't do this in
1605     // other situations as the alias and aliasee having differing types but same
1606     // size may be intentional.
1607     const GlobalObject *BaseObject = GA->getBaseObject();
1608     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1609         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1610       const DataLayout &DL = M.getDataLayout();
1611       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1612       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1613     }
1614   }
1615 }
1616 
1617 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1618   if (!RS.needsSection())
1619     return;
1620 
1621   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1622 
1623   Optional<SmallString<128>> Filename;
1624   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1625     Filename = *FilenameRef;
1626     sys::fs::make_absolute(*Filename);
1627     assert(!Filename->empty() && "The filename can't be empty.");
1628   }
1629 
1630   std::string Buf;
1631   raw_string_ostream OS(Buf);
1632   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1633       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1634                : RemarkSerializer.metaSerializer(OS);
1635   MetaSerializer->emit();
1636 
1637   // Switch to the remarks section.
1638   MCSection *RemarksSection =
1639       OutContext.getObjectFileInfo()->getRemarksSection();
1640   OutStreamer->SwitchSection(RemarksSection);
1641 
1642   OutStreamer->emitBinaryData(OS.str());
1643 }
1644 
1645 bool AsmPrinter::doFinalization(Module &M) {
1646   // Set the MachineFunction to nullptr so that we can catch attempted
1647   // accesses to MF specific features at the module level and so that
1648   // we can conditionalize accesses based on whether or not it is nullptr.
1649   MF = nullptr;
1650 
1651   // Gather all GOT equivalent globals in the module. We really need two
1652   // passes over the globals: one to compute and another to avoid its emission
1653   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1654   // where the got equivalent shows up before its use.
1655   computeGlobalGOTEquivs(M);
1656 
1657   // Emit global variables.
1658   for (const auto &G : M.globals())
1659     emitGlobalVariable(&G);
1660 
1661   // Emit remaining GOT equivalent globals.
1662   emitGlobalGOTEquivs();
1663 
1664   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1665 
1666   // Emit linkage(XCOFF) and visibility info for declarations
1667   for (const Function &F : M) {
1668     if (!F.isDeclarationForLinker())
1669       continue;
1670 
1671     MCSymbol *Name = getSymbol(&F);
1672     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1673 
1674     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1675       GlobalValue::VisibilityTypes V = F.getVisibility();
1676       if (V == GlobalValue::DefaultVisibility)
1677         continue;
1678 
1679       emitVisibility(Name, V, false);
1680       continue;
1681     }
1682 
1683     if (F.isIntrinsic())
1684       continue;
1685 
1686     // Handle the XCOFF case.
1687     // Variable `Name` is the function descriptor symbol (see above). Get the
1688     // function entry point symbol.
1689     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1690     // Emit linkage for the function entry point.
1691     emitLinkage(&F, FnEntryPointSym);
1692 
1693     // Emit linkage for the function descriptor.
1694     emitLinkage(&F, Name);
1695   }
1696 
1697   // Emit the remarks section contents.
1698   // FIXME: Figure out when is the safest time to emit this section. It should
1699   // not come after debug info.
1700   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1701     emitRemarksSection(*RS);
1702 
1703   TLOF.emitModuleMetadata(*OutStreamer, M);
1704 
1705   if (TM.getTargetTriple().isOSBinFormatELF()) {
1706     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1707 
1708     // Output stubs for external and common global variables.
1709     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1710     if (!Stubs.empty()) {
1711       OutStreamer->SwitchSection(TLOF.getDataSection());
1712       const DataLayout &DL = M.getDataLayout();
1713 
1714       emitAlignment(Align(DL.getPointerSize()));
1715       for (const auto &Stub : Stubs) {
1716         OutStreamer->emitLabel(Stub.first);
1717         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1718                                      DL.getPointerSize());
1719       }
1720     }
1721   }
1722 
1723   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1724     MachineModuleInfoCOFF &MMICOFF =
1725         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1726 
1727     // Output stubs for external and common global variables.
1728     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1729     if (!Stubs.empty()) {
1730       const DataLayout &DL = M.getDataLayout();
1731 
1732       for (const auto &Stub : Stubs) {
1733         SmallString<256> SectionName = StringRef(".rdata$");
1734         SectionName += Stub.first->getName();
1735         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1736             SectionName,
1737             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1738                 COFF::IMAGE_SCN_LNK_COMDAT,
1739             SectionKind::getReadOnly(), Stub.first->getName(),
1740             COFF::IMAGE_COMDAT_SELECT_ANY));
1741         emitAlignment(Align(DL.getPointerSize()));
1742         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1743         OutStreamer->emitLabel(Stub.first);
1744         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1745                                      DL.getPointerSize());
1746       }
1747     }
1748   }
1749 
1750   // Finalize debug and EH information.
1751   for (const HandlerInfo &HI : Handlers) {
1752     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1753                        HI.TimerGroupDescription, TimePassesIsEnabled);
1754     HI.Handler->endModule();
1755   }
1756 
1757   // This deletes all the ephemeral handlers that AsmPrinter added, while
1758   // keeping all the user-added handlers alive until the AsmPrinter is
1759   // destroyed.
1760   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1761   DD = nullptr;
1762 
1763   // If the target wants to know about weak references, print them all.
1764   if (MAI->getWeakRefDirective()) {
1765     // FIXME: This is not lazy, it would be nice to only print weak references
1766     // to stuff that is actually used.  Note that doing so would require targets
1767     // to notice uses in operands (due to constant exprs etc).  This should
1768     // happen with the MC stuff eventually.
1769 
1770     // Print out module-level global objects here.
1771     for (const auto &GO : M.global_objects()) {
1772       if (!GO.hasExternalWeakLinkage())
1773         continue;
1774       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1775     }
1776   }
1777 
1778   // Print aliases in topological order, that is, for each alias a = b,
1779   // b must be printed before a.
1780   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1781   // such an order to generate correct TOC information.
1782   SmallVector<const GlobalAlias *, 16> AliasStack;
1783   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1784   for (const auto &Alias : M.aliases()) {
1785     for (const GlobalAlias *Cur = &Alias; Cur;
1786          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1787       if (!AliasVisited.insert(Cur).second)
1788         break;
1789       AliasStack.push_back(Cur);
1790     }
1791     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1792       emitGlobalIndirectSymbol(M, *AncestorAlias);
1793     AliasStack.clear();
1794   }
1795   for (const auto &IFunc : M.ifuncs())
1796     emitGlobalIndirectSymbol(M, IFunc);
1797 
1798   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1799   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1800   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1801     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1802       MP->finishAssembly(M, *MI, *this);
1803 
1804   // Emit llvm.ident metadata in an '.ident' directive.
1805   emitModuleIdents(M);
1806 
1807   // Emit bytes for llvm.commandline metadata.
1808   emitModuleCommandLines(M);
1809 
1810   // Emit __morestack address if needed for indirect calls.
1811   if (MMI->usesMorestackAddr()) {
1812     Align Alignment(1);
1813     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1814         getDataLayout(), SectionKind::getReadOnly(),
1815         /*C=*/nullptr, Alignment);
1816     OutStreamer->SwitchSection(ReadOnlySection);
1817 
1818     MCSymbol *AddrSymbol =
1819         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1820     OutStreamer->emitLabel(AddrSymbol);
1821 
1822     unsigned PtrSize = MAI->getCodePointerSize();
1823     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1824                                  PtrSize);
1825   }
1826 
1827   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1828   // split-stack is used.
1829   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1830     OutStreamer->SwitchSection(
1831         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1832     if (MMI->hasNosplitStack())
1833       OutStreamer->SwitchSection(
1834           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1835   }
1836 
1837   // If we don't have any trampolines, then we don't require stack memory
1838   // to be executable. Some targets have a directive to declare this.
1839   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1840   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1841     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1842       OutStreamer->SwitchSection(S);
1843 
1844   if (TM.Options.EmitAddrsig) {
1845     // Emit address-significance attributes for all globals.
1846     OutStreamer->emitAddrsig();
1847     for (const GlobalValue &GV : M.global_values())
1848       if (!GV.use_empty() && !GV.isThreadLocal() &&
1849           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1850           !GV.hasAtLeastLocalUnnamedAddr())
1851         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1852   }
1853 
1854   // Emit symbol partition specifications (ELF only).
1855   if (TM.getTargetTriple().isOSBinFormatELF()) {
1856     unsigned UniqueID = 0;
1857     for (const GlobalValue &GV : M.global_values()) {
1858       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1859           GV.getVisibility() != GlobalValue::DefaultVisibility)
1860         continue;
1861 
1862       OutStreamer->SwitchSection(
1863           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1864                                    "", false, ++UniqueID, nullptr));
1865       OutStreamer->emitBytes(GV.getPartition());
1866       OutStreamer->emitZeros(1);
1867       OutStreamer->emitValue(
1868           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1869           MAI->getCodePointerSize());
1870     }
1871   }
1872 
1873   // Allow the target to emit any magic that it wants at the end of the file,
1874   // after everything else has gone out.
1875   emitEndOfAsmFile(M);
1876 
1877   MMI = nullptr;
1878 
1879   OutStreamer->Finish();
1880   OutStreamer->reset();
1881   OwnedMLI.reset();
1882   OwnedMDT.reset();
1883 
1884   return false;
1885 }
1886 
1887 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1888   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1889   if (Res.second)
1890     Res.first->second = createTempSymbol("exception");
1891   return Res.first->second;
1892 }
1893 
1894 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1895   this->MF = &MF;
1896   const Function &F = MF.getFunction();
1897 
1898   // Get the function symbol.
1899   if (!MAI->needsFunctionDescriptors()) {
1900     CurrentFnSym = getSymbol(&MF.getFunction());
1901   } else {
1902     assert(TM.getTargetTriple().isOSAIX() &&
1903            "Only AIX uses the function descriptor hooks.");
1904     // AIX is unique here in that the name of the symbol emitted for the
1905     // function body does not have the same name as the source function's
1906     // C-linkage name.
1907     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1908                                " initalized first.");
1909 
1910     // Get the function entry point symbol.
1911     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1912   }
1913 
1914   CurrentFnSymForSize = CurrentFnSym;
1915   CurrentFnBegin = nullptr;
1916   CurrentSectionBeginSym = nullptr;
1917   MBBSectionRanges.clear();
1918   MBBSectionExceptionSyms.clear();
1919   bool NeedsLocalForSize = MAI->needsLocalForSize();
1920   if (F.hasFnAttribute("patchable-function-entry") ||
1921       F.hasFnAttribute("function-instrument") ||
1922       F.hasFnAttribute("xray-instruction-threshold") ||
1923       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1924       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1925     CurrentFnBegin = createTempSymbol("func_begin");
1926     if (NeedsLocalForSize)
1927       CurrentFnSymForSize = CurrentFnBegin;
1928   }
1929 
1930   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1931 }
1932 
1933 namespace {
1934 
1935 // Keep track the alignment, constpool entries per Section.
1936   struct SectionCPs {
1937     MCSection *S;
1938     Align Alignment;
1939     SmallVector<unsigned, 4> CPEs;
1940 
1941     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1942   };
1943 
1944 } // end anonymous namespace
1945 
1946 /// EmitConstantPool - Print to the current output stream assembly
1947 /// representations of the constants in the constant pool MCP. This is
1948 /// used to print out constants which have been "spilled to memory" by
1949 /// the code generator.
1950 void AsmPrinter::emitConstantPool() {
1951   const MachineConstantPool *MCP = MF->getConstantPool();
1952   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1953   if (CP.empty()) return;
1954 
1955   // Calculate sections for constant pool entries. We collect entries to go into
1956   // the same section together to reduce amount of section switch statements.
1957   SmallVector<SectionCPs, 4> CPSections;
1958   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1959     const MachineConstantPoolEntry &CPE = CP[i];
1960     Align Alignment = CPE.getAlign();
1961 
1962     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1963 
1964     const Constant *C = nullptr;
1965     if (!CPE.isMachineConstantPoolEntry())
1966       C = CPE.Val.ConstVal;
1967 
1968     MCSection *S = getObjFileLowering().getSectionForConstant(
1969         getDataLayout(), Kind, C, Alignment);
1970 
1971     // The number of sections are small, just do a linear search from the
1972     // last section to the first.
1973     bool Found = false;
1974     unsigned SecIdx = CPSections.size();
1975     while (SecIdx != 0) {
1976       if (CPSections[--SecIdx].S == S) {
1977         Found = true;
1978         break;
1979       }
1980     }
1981     if (!Found) {
1982       SecIdx = CPSections.size();
1983       CPSections.push_back(SectionCPs(S, Alignment));
1984     }
1985 
1986     if (Alignment > CPSections[SecIdx].Alignment)
1987       CPSections[SecIdx].Alignment = Alignment;
1988     CPSections[SecIdx].CPEs.push_back(i);
1989   }
1990 
1991   // Now print stuff into the calculated sections.
1992   const MCSection *CurSection = nullptr;
1993   unsigned Offset = 0;
1994   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1995     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1996       unsigned CPI = CPSections[i].CPEs[j];
1997       MCSymbol *Sym = GetCPISymbol(CPI);
1998       if (!Sym->isUndefined())
1999         continue;
2000 
2001       if (CurSection != CPSections[i].S) {
2002         OutStreamer->SwitchSection(CPSections[i].S);
2003         emitAlignment(Align(CPSections[i].Alignment));
2004         CurSection = CPSections[i].S;
2005         Offset = 0;
2006       }
2007 
2008       MachineConstantPoolEntry CPE = CP[CPI];
2009 
2010       // Emit inter-object padding for alignment.
2011       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2012       OutStreamer->emitZeros(NewOffset - Offset);
2013 
2014       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2015 
2016       OutStreamer->emitLabel(Sym);
2017       if (CPE.isMachineConstantPoolEntry())
2018         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2019       else
2020         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2021     }
2022   }
2023 }
2024 
2025 // Print assembly representations of the jump tables used by the current
2026 // function.
2027 void AsmPrinter::emitJumpTableInfo() {
2028   const DataLayout &DL = MF->getDataLayout();
2029   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2030   if (!MJTI) return;
2031   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2032   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2033   if (JT.empty()) return;
2034 
2035   // Pick the directive to use to print the jump table entries, and switch to
2036   // the appropriate section.
2037   const Function &F = MF->getFunction();
2038   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2039   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2040       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2041       F);
2042   if (JTInDiffSection) {
2043     // Drop it in the readonly section.
2044     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2045     OutStreamer->SwitchSection(ReadOnlySection);
2046   }
2047 
2048   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2049 
2050   // Jump tables in code sections are marked with a data_region directive
2051   // where that's supported.
2052   if (!JTInDiffSection)
2053     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2054 
2055   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2056     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2057 
2058     // If this jump table was deleted, ignore it.
2059     if (JTBBs.empty()) continue;
2060 
2061     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2062     /// emit a .set directive for each unique entry.
2063     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2064         MAI->doesSetDirectiveSuppressReloc()) {
2065       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2066       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2067       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2068       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2069         const MachineBasicBlock *MBB = JTBBs[ii];
2070         if (!EmittedSets.insert(MBB).second)
2071           continue;
2072 
2073         // .set LJTSet, LBB32-base
2074         const MCExpr *LHS =
2075           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2076         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2077                                     MCBinaryExpr::createSub(LHS, Base,
2078                                                             OutContext));
2079       }
2080     }
2081 
2082     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2083     // before each jump table.  The first label is never referenced, but tells
2084     // the assembler and linker the extents of the jump table object.  The
2085     // second label is actually referenced by the code.
2086     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2087       // FIXME: This doesn't have to have any specific name, just any randomly
2088       // named and numbered local label started with 'l' would work.  Simplify
2089       // GetJTISymbol.
2090       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2091 
2092     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2093     OutStreamer->emitLabel(JTISymbol);
2094 
2095     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2096       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2097   }
2098   if (!JTInDiffSection)
2099     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2100 }
2101 
2102 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2103 /// current stream.
2104 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2105                                     const MachineBasicBlock *MBB,
2106                                     unsigned UID) const {
2107   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2108   const MCExpr *Value = nullptr;
2109   switch (MJTI->getEntryKind()) {
2110   case MachineJumpTableInfo::EK_Inline:
2111     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2112   case MachineJumpTableInfo::EK_Custom32:
2113     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2114         MJTI, MBB, UID, OutContext);
2115     break;
2116   case MachineJumpTableInfo::EK_BlockAddress:
2117     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2118     //     .word LBB123
2119     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2120     break;
2121   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2122     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2123     // with a relocation as gp-relative, e.g.:
2124     //     .gprel32 LBB123
2125     MCSymbol *MBBSym = MBB->getSymbol();
2126     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2127     return;
2128   }
2129 
2130   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2131     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2132     // with a relocation as gp-relative, e.g.:
2133     //     .gpdword LBB123
2134     MCSymbol *MBBSym = MBB->getSymbol();
2135     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2136     return;
2137   }
2138 
2139   case MachineJumpTableInfo::EK_LabelDifference32: {
2140     // Each entry is the address of the block minus the address of the jump
2141     // table. This is used for PIC jump tables where gprel32 is not supported.
2142     // e.g.:
2143     //      .word LBB123 - LJTI1_2
2144     // If the .set directive avoids relocations, this is emitted as:
2145     //      .set L4_5_set_123, LBB123 - LJTI1_2
2146     //      .word L4_5_set_123
2147     if (MAI->doesSetDirectiveSuppressReloc()) {
2148       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2149                                       OutContext);
2150       break;
2151     }
2152     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2153     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2154     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2155     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2156     break;
2157   }
2158   }
2159 
2160   assert(Value && "Unknown entry kind!");
2161 
2162   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2163   OutStreamer->emitValue(Value, EntrySize);
2164 }
2165 
2166 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2167 /// special global used by LLVM.  If so, emit it and return true, otherwise
2168 /// do nothing and return false.
2169 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2170   if (GV->getName() == "llvm.used") {
2171     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2172       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2173     return true;
2174   }
2175 
2176   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2177   if (GV->getSection() == "llvm.metadata" ||
2178       GV->hasAvailableExternallyLinkage())
2179     return true;
2180 
2181   if (!GV->hasAppendingLinkage()) return false;
2182 
2183   assert(GV->hasInitializer() && "Not a special LLVM global!");
2184 
2185   if (GV->getName() == "llvm.global_ctors") {
2186     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2187                        /* isCtor */ true);
2188 
2189     return true;
2190   }
2191 
2192   if (GV->getName() == "llvm.global_dtors") {
2193     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2194                        /* isCtor */ false);
2195 
2196     return true;
2197   }
2198 
2199   report_fatal_error("unknown special variable");
2200 }
2201 
2202 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2203 /// global in the specified llvm.used list.
2204 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2205   // Should be an array of 'i8*'.
2206   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2207     const GlobalValue *GV =
2208       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2209     if (GV)
2210       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2211   }
2212 }
2213 
2214 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2215                                           const Constant *List,
2216                                           SmallVector<Structor, 8> &Structors) {
2217   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2218   // the init priority.
2219   if (!isa<ConstantArray>(List))
2220     return;
2221 
2222   // Gather the structors in a form that's convenient for sorting by priority.
2223   for (Value *O : cast<ConstantArray>(List)->operands()) {
2224     auto *CS = cast<ConstantStruct>(O);
2225     if (CS->getOperand(1)->isNullValue())
2226       break; // Found a null terminator, skip the rest.
2227     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2228     if (!Priority)
2229       continue; // Malformed.
2230     Structors.push_back(Structor());
2231     Structor &S = Structors.back();
2232     S.Priority = Priority->getLimitedValue(65535);
2233     S.Func = CS->getOperand(1);
2234     if (!CS->getOperand(2)->isNullValue()) {
2235       if (TM.getTargetTriple().isOSAIX())
2236         llvm::report_fatal_error(
2237             "associated data of XXStructor list is not yet supported on AIX");
2238       S.ComdatKey =
2239           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2240     }
2241   }
2242 
2243   // Emit the function pointers in the target-specific order
2244   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2245     return L.Priority < R.Priority;
2246   });
2247 }
2248 
2249 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2250 /// priority.
2251 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2252                                     bool IsCtor) {
2253   SmallVector<Structor, 8> Structors;
2254   preprocessXXStructorList(DL, List, Structors);
2255   if (Structors.empty())
2256     return;
2257 
2258   const Align Align = DL.getPointerPrefAlignment();
2259   for (Structor &S : Structors) {
2260     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2261     const MCSymbol *KeySym = nullptr;
2262     if (GlobalValue *GV = S.ComdatKey) {
2263       if (GV->isDeclarationForLinker())
2264         // If the associated variable is not defined in this module
2265         // (it might be available_externally, or have been an
2266         // available_externally definition that was dropped by the
2267         // EliminateAvailableExternally pass), some other TU
2268         // will provide its dynamic initializer.
2269         continue;
2270 
2271       KeySym = getSymbol(GV);
2272     }
2273 
2274     MCSection *OutputSection =
2275         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2276                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2277     OutStreamer->SwitchSection(OutputSection);
2278     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2279       emitAlignment(Align);
2280     emitXXStructor(DL, S.Func);
2281   }
2282 }
2283 
2284 void AsmPrinter::emitModuleIdents(Module &M) {
2285   if (!MAI->hasIdentDirective())
2286     return;
2287 
2288   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2289     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2290       const MDNode *N = NMD->getOperand(i);
2291       assert(N->getNumOperands() == 1 &&
2292              "llvm.ident metadata entry can have only one operand");
2293       const MDString *S = cast<MDString>(N->getOperand(0));
2294       OutStreamer->emitIdent(S->getString());
2295     }
2296   }
2297 }
2298 
2299 void AsmPrinter::emitModuleCommandLines(Module &M) {
2300   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2301   if (!CommandLine)
2302     return;
2303 
2304   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2305   if (!NMD || !NMD->getNumOperands())
2306     return;
2307 
2308   OutStreamer->PushSection();
2309   OutStreamer->SwitchSection(CommandLine);
2310   OutStreamer->emitZeros(1);
2311   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2312     const MDNode *N = NMD->getOperand(i);
2313     assert(N->getNumOperands() == 1 &&
2314            "llvm.commandline metadata entry can have only one operand");
2315     const MDString *S = cast<MDString>(N->getOperand(0));
2316     OutStreamer->emitBytes(S->getString());
2317     OutStreamer->emitZeros(1);
2318   }
2319   OutStreamer->PopSection();
2320 }
2321 
2322 //===--------------------------------------------------------------------===//
2323 // Emission and print routines
2324 //
2325 
2326 /// Emit a byte directive and value.
2327 ///
2328 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2329 
2330 /// Emit a short directive and value.
2331 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2332 
2333 /// Emit a long directive and value.
2334 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2335 
2336 /// Emit a long long directive and value.
2337 void AsmPrinter::emitInt64(uint64_t Value) const {
2338   OutStreamer->emitInt64(Value);
2339 }
2340 
2341 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2342 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2343 /// .set if it avoids relocations.
2344 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2345                                      unsigned Size) const {
2346   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2347 }
2348 
2349 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2350 /// where the size in bytes of the directive is specified by Size and Label
2351 /// specifies the label.  This implicitly uses .set if it is available.
2352 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2353                                      unsigned Size,
2354                                      bool IsSectionRelative) const {
2355   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2356     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2357     if (Size > 4)
2358       OutStreamer->emitZeros(Size - 4);
2359     return;
2360   }
2361 
2362   // Emit Label+Offset (or just Label if Offset is zero)
2363   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2364   if (Offset)
2365     Expr = MCBinaryExpr::createAdd(
2366         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2367 
2368   OutStreamer->emitValue(Expr, Size);
2369 }
2370 
2371 //===----------------------------------------------------------------------===//
2372 
2373 // EmitAlignment - Emit an alignment directive to the specified power of
2374 // two boundary.  If a global value is specified, and if that global has
2375 // an explicit alignment requested, it will override the alignment request
2376 // if required for correctness.
2377 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2378   if (GV)
2379     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2380 
2381   if (Alignment == Align(1))
2382     return; // 1-byte aligned: no need to emit alignment.
2383 
2384   if (getCurrentSection()->getKind().isText())
2385     OutStreamer->emitCodeAlignment(Alignment.value());
2386   else
2387     OutStreamer->emitValueToAlignment(Alignment.value());
2388 }
2389 
2390 //===----------------------------------------------------------------------===//
2391 // Constant emission.
2392 //===----------------------------------------------------------------------===//
2393 
2394 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2395   MCContext &Ctx = OutContext;
2396 
2397   if (CV->isNullValue() || isa<UndefValue>(CV))
2398     return MCConstantExpr::create(0, Ctx);
2399 
2400   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2401     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2402 
2403   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2404     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2405 
2406   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2407     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2408 
2409   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2410     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2411 
2412   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2413   if (!CE) {
2414     llvm_unreachable("Unknown constant value to lower!");
2415   }
2416 
2417   switch (CE->getOpcode()) {
2418   case Instruction::AddrSpaceCast: {
2419     const Constant *Op = CE->getOperand(0);
2420     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2421     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2422     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2423       return lowerConstant(Op);
2424 
2425     // Fallthrough to error.
2426     LLVM_FALLTHROUGH;
2427   }
2428   default: {
2429     // If the code isn't optimized, there may be outstanding folding
2430     // opportunities. Attempt to fold the expression using DataLayout as a
2431     // last resort before giving up.
2432     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2433     if (C != CE)
2434       return lowerConstant(C);
2435 
2436     // Otherwise report the problem to the user.
2437     std::string S;
2438     raw_string_ostream OS(S);
2439     OS << "Unsupported expression in static initializer: ";
2440     CE->printAsOperand(OS, /*PrintType=*/false,
2441                    !MF ? nullptr : MF->getFunction().getParent());
2442     report_fatal_error(OS.str());
2443   }
2444   case Instruction::GetElementPtr: {
2445     // Generate a symbolic expression for the byte address
2446     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2447     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2448 
2449     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2450     if (!OffsetAI)
2451       return Base;
2452 
2453     int64_t Offset = OffsetAI.getSExtValue();
2454     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2455                                    Ctx);
2456   }
2457 
2458   case Instruction::Trunc:
2459     // We emit the value and depend on the assembler to truncate the generated
2460     // expression properly.  This is important for differences between
2461     // blockaddress labels.  Since the two labels are in the same function, it
2462     // is reasonable to treat their delta as a 32-bit value.
2463     LLVM_FALLTHROUGH;
2464   case Instruction::BitCast:
2465     return lowerConstant(CE->getOperand(0));
2466 
2467   case Instruction::IntToPtr: {
2468     const DataLayout &DL = getDataLayout();
2469 
2470     // Handle casts to pointers by changing them into casts to the appropriate
2471     // integer type.  This promotes constant folding and simplifies this code.
2472     Constant *Op = CE->getOperand(0);
2473     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2474                                       false/*ZExt*/);
2475     return lowerConstant(Op);
2476   }
2477 
2478   case Instruction::PtrToInt: {
2479     const DataLayout &DL = getDataLayout();
2480 
2481     // Support only foldable casts to/from pointers that can be eliminated by
2482     // changing the pointer to the appropriately sized integer type.
2483     Constant *Op = CE->getOperand(0);
2484     Type *Ty = CE->getType();
2485 
2486     const MCExpr *OpExpr = lowerConstant(Op);
2487 
2488     // We can emit the pointer value into this slot if the slot is an
2489     // integer slot equal to the size of the pointer.
2490     //
2491     // If the pointer is larger than the resultant integer, then
2492     // as with Trunc just depend on the assembler to truncate it.
2493     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2494         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2495       return OpExpr;
2496 
2497     // Otherwise the pointer is smaller than the resultant integer, mask off
2498     // the high bits so we are sure to get a proper truncation if the input is
2499     // a constant expr.
2500     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2501     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2502     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2503   }
2504 
2505   case Instruction::Sub: {
2506     GlobalValue *LHSGV;
2507     APInt LHSOffset;
2508     DSOLocalEquivalent *DSOEquiv;
2509     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2510                                    getDataLayout(), &DSOEquiv)) {
2511       GlobalValue *RHSGV;
2512       APInt RHSOffset;
2513       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2514                                      getDataLayout())) {
2515         const MCExpr *RelocExpr =
2516             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2517         if (!RelocExpr) {
2518           const MCExpr *LHSExpr =
2519               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2520           if (DSOEquiv &&
2521               getObjFileLowering().supportDSOLocalEquivalentLowering())
2522             LHSExpr =
2523                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2524           RelocExpr = MCBinaryExpr::createSub(
2525               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2526         }
2527         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2528         if (Addend != 0)
2529           RelocExpr = MCBinaryExpr::createAdd(
2530               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2531         return RelocExpr;
2532       }
2533     }
2534   }
2535   // else fallthrough
2536   LLVM_FALLTHROUGH;
2537 
2538   // The MC library also has a right-shift operator, but it isn't consistently
2539   // signed or unsigned between different targets.
2540   case Instruction::Add:
2541   case Instruction::Mul:
2542   case Instruction::SDiv:
2543   case Instruction::SRem:
2544   case Instruction::Shl:
2545   case Instruction::And:
2546   case Instruction::Or:
2547   case Instruction::Xor: {
2548     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2549     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2550     switch (CE->getOpcode()) {
2551     default: llvm_unreachable("Unknown binary operator constant cast expr");
2552     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2553     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2554     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2555     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2556     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2557     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2558     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2559     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2560     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2561     }
2562   }
2563   }
2564 }
2565 
2566 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2567                                    AsmPrinter &AP,
2568                                    const Constant *BaseCV = nullptr,
2569                                    uint64_t Offset = 0);
2570 
2571 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2572 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2573 
2574 /// isRepeatedByteSequence - Determine whether the given value is
2575 /// composed of a repeated sequence of identical bytes and return the
2576 /// byte value.  If it is not a repeated sequence, return -1.
2577 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2578   StringRef Data = V->getRawDataValues();
2579   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2580   char C = Data[0];
2581   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2582     if (Data[i] != C) return -1;
2583   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2584 }
2585 
2586 /// isRepeatedByteSequence - Determine whether the given value is
2587 /// composed of a repeated sequence of identical bytes and return the
2588 /// byte value.  If it is not a repeated sequence, return -1.
2589 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2590   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2591     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2592     assert(Size % 8 == 0);
2593 
2594     // Extend the element to take zero padding into account.
2595     APInt Value = CI->getValue().zextOrSelf(Size);
2596     if (!Value.isSplat(8))
2597       return -1;
2598 
2599     return Value.zextOrTrunc(8).getZExtValue();
2600   }
2601   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2602     // Make sure all array elements are sequences of the same repeated
2603     // byte.
2604     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2605     Constant *Op0 = CA->getOperand(0);
2606     int Byte = isRepeatedByteSequence(Op0, DL);
2607     if (Byte == -1)
2608       return -1;
2609 
2610     // All array elements must be equal.
2611     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2612       if (CA->getOperand(i) != Op0)
2613         return -1;
2614     return Byte;
2615   }
2616 
2617   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2618     return isRepeatedByteSequence(CDS);
2619 
2620   return -1;
2621 }
2622 
2623 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2624                                              const ConstantDataSequential *CDS,
2625                                              AsmPrinter &AP) {
2626   // See if we can aggregate this into a .fill, if so, emit it as such.
2627   int Value = isRepeatedByteSequence(CDS, DL);
2628   if (Value != -1) {
2629     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2630     // Don't emit a 1-byte object as a .fill.
2631     if (Bytes > 1)
2632       return AP.OutStreamer->emitFill(Bytes, Value);
2633   }
2634 
2635   // If this can be emitted with .ascii/.asciz, emit it as such.
2636   if (CDS->isString())
2637     return AP.OutStreamer->emitBytes(CDS->getAsString());
2638 
2639   // Otherwise, emit the values in successive locations.
2640   unsigned ElementByteSize = CDS->getElementByteSize();
2641   if (isa<IntegerType>(CDS->getElementType())) {
2642     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2643       if (AP.isVerbose())
2644         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2645                                                  CDS->getElementAsInteger(i));
2646       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2647                                    ElementByteSize);
2648     }
2649   } else {
2650     Type *ET = CDS->getElementType();
2651     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2652       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2653   }
2654 
2655   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2656   unsigned EmittedSize =
2657       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2658   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2659   if (unsigned Padding = Size - EmittedSize)
2660     AP.OutStreamer->emitZeros(Padding);
2661 }
2662 
2663 static void emitGlobalConstantArray(const DataLayout &DL,
2664                                     const ConstantArray *CA, AsmPrinter &AP,
2665                                     const Constant *BaseCV, uint64_t Offset) {
2666   // See if we can aggregate some values.  Make sure it can be
2667   // represented as a series of bytes of the constant value.
2668   int Value = isRepeatedByteSequence(CA, DL);
2669 
2670   if (Value != -1) {
2671     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2672     AP.OutStreamer->emitFill(Bytes, Value);
2673   }
2674   else {
2675     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2676       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2677       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2678     }
2679   }
2680 }
2681 
2682 static void emitGlobalConstantVector(const DataLayout &DL,
2683                                      const ConstantVector *CV, AsmPrinter &AP) {
2684   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2685     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2686 
2687   unsigned Size = DL.getTypeAllocSize(CV->getType());
2688   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2689                          CV->getType()->getNumElements();
2690   if (unsigned Padding = Size - EmittedSize)
2691     AP.OutStreamer->emitZeros(Padding);
2692 }
2693 
2694 static void emitGlobalConstantStruct(const DataLayout &DL,
2695                                      const ConstantStruct *CS, AsmPrinter &AP,
2696                                      const Constant *BaseCV, uint64_t Offset) {
2697   // Print the fields in successive locations. Pad to align if needed!
2698   unsigned Size = DL.getTypeAllocSize(CS->getType());
2699   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2700   uint64_t SizeSoFar = 0;
2701   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2702     const Constant *Field = CS->getOperand(i);
2703 
2704     // Print the actual field value.
2705     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2706 
2707     // Check if padding is needed and insert one or more 0s.
2708     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2709     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2710                         - Layout->getElementOffset(i)) - FieldSize;
2711     SizeSoFar += FieldSize + PadSize;
2712 
2713     // Insert padding - this may include padding to increase the size of the
2714     // current field up to the ABI size (if the struct is not packed) as well
2715     // as padding to ensure that the next field starts at the right offset.
2716     AP.OutStreamer->emitZeros(PadSize);
2717   }
2718   assert(SizeSoFar == Layout->getSizeInBytes() &&
2719          "Layout of constant struct may be incorrect!");
2720 }
2721 
2722 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2723   assert(ET && "Unknown float type");
2724   APInt API = APF.bitcastToAPInt();
2725 
2726   // First print a comment with what we think the original floating-point value
2727   // should have been.
2728   if (AP.isVerbose()) {
2729     SmallString<8> StrVal;
2730     APF.toString(StrVal);
2731     ET->print(AP.OutStreamer->GetCommentOS());
2732     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2733   }
2734 
2735   // Now iterate through the APInt chunks, emitting them in endian-correct
2736   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2737   // floats).
2738   unsigned NumBytes = API.getBitWidth() / 8;
2739   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2740   const uint64_t *p = API.getRawData();
2741 
2742   // PPC's long double has odd notions of endianness compared to how LLVM
2743   // handles it: p[0] goes first for *big* endian on PPC.
2744   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2745     int Chunk = API.getNumWords() - 1;
2746 
2747     if (TrailingBytes)
2748       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2749 
2750     for (; Chunk >= 0; --Chunk)
2751       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2752   } else {
2753     unsigned Chunk;
2754     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2755       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2756 
2757     if (TrailingBytes)
2758       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2759   }
2760 
2761   // Emit the tail padding for the long double.
2762   const DataLayout &DL = AP.getDataLayout();
2763   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2764 }
2765 
2766 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2767   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2768 }
2769 
2770 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2771   const DataLayout &DL = AP.getDataLayout();
2772   unsigned BitWidth = CI->getBitWidth();
2773 
2774   // Copy the value as we may massage the layout for constants whose bit width
2775   // is not a multiple of 64-bits.
2776   APInt Realigned(CI->getValue());
2777   uint64_t ExtraBits = 0;
2778   unsigned ExtraBitsSize = BitWidth & 63;
2779 
2780   if (ExtraBitsSize) {
2781     // The bit width of the data is not a multiple of 64-bits.
2782     // The extra bits are expected to be at the end of the chunk of the memory.
2783     // Little endian:
2784     // * Nothing to be done, just record the extra bits to emit.
2785     // Big endian:
2786     // * Record the extra bits to emit.
2787     // * Realign the raw data to emit the chunks of 64-bits.
2788     if (DL.isBigEndian()) {
2789       // Basically the structure of the raw data is a chunk of 64-bits cells:
2790       //    0        1         BitWidth / 64
2791       // [chunk1][chunk2] ... [chunkN].
2792       // The most significant chunk is chunkN and it should be emitted first.
2793       // However, due to the alignment issue chunkN contains useless bits.
2794       // Realign the chunks so that they contain only useful information:
2795       // ExtraBits     0       1       (BitWidth / 64) - 1
2796       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2797       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2798       ExtraBits = Realigned.getRawData()[0] &
2799         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2800       Realigned.lshrInPlace(ExtraBitsSize);
2801     } else
2802       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2803   }
2804 
2805   // We don't expect assemblers to support integer data directives
2806   // for more than 64 bits, so we emit the data in at most 64-bit
2807   // quantities at a time.
2808   const uint64_t *RawData = Realigned.getRawData();
2809   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2810     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2811     AP.OutStreamer->emitIntValue(Val, 8);
2812   }
2813 
2814   if (ExtraBitsSize) {
2815     // Emit the extra bits after the 64-bits chunks.
2816 
2817     // Emit a directive that fills the expected size.
2818     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2819     Size -= (BitWidth / 64) * 8;
2820     assert(Size && Size * 8 >= ExtraBitsSize &&
2821            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2822            == ExtraBits && "Directive too small for extra bits.");
2823     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2824   }
2825 }
2826 
2827 /// Transform a not absolute MCExpr containing a reference to a GOT
2828 /// equivalent global, by a target specific GOT pc relative access to the
2829 /// final symbol.
2830 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2831                                          const Constant *BaseCst,
2832                                          uint64_t Offset) {
2833   // The global @foo below illustrates a global that uses a got equivalent.
2834   //
2835   //  @bar = global i32 42
2836   //  @gotequiv = private unnamed_addr constant i32* @bar
2837   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2838   //                             i64 ptrtoint (i32* @foo to i64))
2839   //                        to i32)
2840   //
2841   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2842   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2843   // form:
2844   //
2845   //  foo = cstexpr, where
2846   //    cstexpr := <gotequiv> - "." + <cst>
2847   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2848   //
2849   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2850   //
2851   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2852   //    gotpcrelcst := <offset from @foo base> + <cst>
2853   MCValue MV;
2854   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2855     return;
2856   const MCSymbolRefExpr *SymA = MV.getSymA();
2857   if (!SymA)
2858     return;
2859 
2860   // Check that GOT equivalent symbol is cached.
2861   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2862   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2863     return;
2864 
2865   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2866   if (!BaseGV)
2867     return;
2868 
2869   // Check for a valid base symbol
2870   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2871   const MCSymbolRefExpr *SymB = MV.getSymB();
2872 
2873   if (!SymB || BaseSym != &SymB->getSymbol())
2874     return;
2875 
2876   // Make sure to match:
2877   //
2878   //    gotpcrelcst := <offset from @foo base> + <cst>
2879   //
2880   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2881   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2882   // if the target knows how to encode it.
2883   int64_t GOTPCRelCst = Offset + MV.getConstant();
2884   if (GOTPCRelCst < 0)
2885     return;
2886   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2887     return;
2888 
2889   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2890   //
2891   //  bar:
2892   //    .long 42
2893   //  gotequiv:
2894   //    .quad bar
2895   //  foo:
2896   //    .long gotequiv - "." + <cst>
2897   //
2898   // is replaced by the target specific equivalent to:
2899   //
2900   //  bar:
2901   //    .long 42
2902   //  foo:
2903   //    .long bar@GOTPCREL+<gotpcrelcst>
2904   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2905   const GlobalVariable *GV = Result.first;
2906   int NumUses = (int)Result.second;
2907   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2908   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2909   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2910       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2911 
2912   // Update GOT equivalent usage information
2913   --NumUses;
2914   if (NumUses >= 0)
2915     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2916 }
2917 
2918 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2919                                    AsmPrinter &AP, const Constant *BaseCV,
2920                                    uint64_t Offset) {
2921   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2922 
2923   // Globals with sub-elements such as combinations of arrays and structs
2924   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2925   // constant symbol base and the current position with BaseCV and Offset.
2926   if (!BaseCV && CV->hasOneUse())
2927     BaseCV = dyn_cast<Constant>(CV->user_back());
2928 
2929   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2930     return AP.OutStreamer->emitZeros(Size);
2931 
2932   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2933     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2934 
2935     if (StoreSize <= 8) {
2936       if (AP.isVerbose())
2937         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2938                                                  CI->getZExtValue());
2939       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2940     } else {
2941       emitGlobalConstantLargeInt(CI, AP);
2942     }
2943 
2944     // Emit tail padding if needed
2945     if (Size != StoreSize)
2946       AP.OutStreamer->emitZeros(Size - StoreSize);
2947 
2948     return;
2949   }
2950 
2951   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2952     return emitGlobalConstantFP(CFP, AP);
2953 
2954   if (isa<ConstantPointerNull>(CV)) {
2955     AP.OutStreamer->emitIntValue(0, Size);
2956     return;
2957   }
2958 
2959   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2960     return emitGlobalConstantDataSequential(DL, CDS, AP);
2961 
2962   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2963     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2964 
2965   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2966     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2967 
2968   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2969     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2970     // vectors).
2971     if (CE->getOpcode() == Instruction::BitCast)
2972       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2973 
2974     if (Size > 8) {
2975       // If the constant expression's size is greater than 64-bits, then we have
2976       // to emit the value in chunks. Try to constant fold the value and emit it
2977       // that way.
2978       Constant *New = ConstantFoldConstant(CE, DL);
2979       if (New != CE)
2980         return emitGlobalConstantImpl(DL, New, AP);
2981     }
2982   }
2983 
2984   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2985     return emitGlobalConstantVector(DL, V, AP);
2986 
2987   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2988   // thread the streamer with EmitValue.
2989   const MCExpr *ME = AP.lowerConstant(CV);
2990 
2991   // Since lowerConstant already folded and got rid of all IR pointer and
2992   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2993   // directly.
2994   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2995     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2996 
2997   AP.OutStreamer->emitValue(ME, Size);
2998 }
2999 
3000 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
3001 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
3002   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3003   if (Size)
3004     emitGlobalConstantImpl(DL, CV, *this);
3005   else if (MAI->hasSubsectionsViaSymbols()) {
3006     // If the global has zero size, emit a single byte so that two labels don't
3007     // look like they are at the same location.
3008     OutStreamer->emitIntValue(0, 1);
3009   }
3010 }
3011 
3012 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
3013   // Target doesn't support this yet!
3014   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3015 }
3016 
3017 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
3018   if (Offset > 0)
3019     OS << '+' << Offset;
3020   else if (Offset < 0)
3021     OS << Offset;
3022 }
3023 
3024 void AsmPrinter::emitNops(unsigned N) {
3025   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
3026   for (; N; --N)
3027     EmitToStreamer(*OutStreamer, Nop);
3028 }
3029 
3030 //===----------------------------------------------------------------------===//
3031 // Symbol Lowering Routines.
3032 //===----------------------------------------------------------------------===//
3033 
3034 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3035   return OutContext.createTempSymbol(Name, true);
3036 }
3037 
3038 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3039   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
3040 }
3041 
3042 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3043   return MMI->getAddrLabelSymbol(BB);
3044 }
3045 
3046 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3047 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3048   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3049     const MachineConstantPoolEntry &CPE =
3050         MF->getConstantPool()->getConstants()[CPID];
3051     if (!CPE.isMachineConstantPoolEntry()) {
3052       const DataLayout &DL = MF->getDataLayout();
3053       SectionKind Kind = CPE.getSectionKind(&DL);
3054       const Constant *C = CPE.Val.ConstVal;
3055       Align Alignment = CPE.Alignment;
3056       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3057               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3058                                                          Alignment))) {
3059         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3060           if (Sym->isUndefined())
3061             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3062           return Sym;
3063         }
3064       }
3065     }
3066   }
3067 
3068   const DataLayout &DL = getDataLayout();
3069   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3070                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3071                                       Twine(CPID));
3072 }
3073 
3074 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3075 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3076   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3077 }
3078 
3079 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3080 /// FIXME: privatize to AsmPrinter.
3081 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3082   const DataLayout &DL = getDataLayout();
3083   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3084                                       Twine(getFunctionNumber()) + "_" +
3085                                       Twine(UID) + "_set_" + Twine(MBBID));
3086 }
3087 
3088 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3089                                                    StringRef Suffix) const {
3090   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3091 }
3092 
3093 /// Return the MCSymbol for the specified ExternalSymbol.
3094 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3095   SmallString<60> NameStr;
3096   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3097   return OutContext.getOrCreateSymbol(NameStr);
3098 }
3099 
3100 /// PrintParentLoopComment - Print comments about parent loops of this one.
3101 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3102                                    unsigned FunctionNumber) {
3103   if (!Loop) return;
3104   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3105   OS.indent(Loop->getLoopDepth()*2)
3106     << "Parent Loop BB" << FunctionNumber << "_"
3107     << Loop->getHeader()->getNumber()
3108     << " Depth=" << Loop->getLoopDepth() << '\n';
3109 }
3110 
3111 /// PrintChildLoopComment - Print comments about child loops within
3112 /// the loop for this basic block, with nesting.
3113 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3114                                   unsigned FunctionNumber) {
3115   // Add child loop information
3116   for (const MachineLoop *CL : *Loop) {
3117     OS.indent(CL->getLoopDepth()*2)
3118       << "Child Loop BB" << FunctionNumber << "_"
3119       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3120       << '\n';
3121     PrintChildLoopComment(OS, CL, FunctionNumber);
3122   }
3123 }
3124 
3125 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3126 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3127                                        const MachineLoopInfo *LI,
3128                                        const AsmPrinter &AP) {
3129   // Add loop depth information
3130   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3131   if (!Loop) return;
3132 
3133   MachineBasicBlock *Header = Loop->getHeader();
3134   assert(Header && "No header for loop");
3135 
3136   // If this block is not a loop header, just print out what is the loop header
3137   // and return.
3138   if (Header != &MBB) {
3139     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3140                                Twine(AP.getFunctionNumber())+"_" +
3141                                Twine(Loop->getHeader()->getNumber())+
3142                                " Depth="+Twine(Loop->getLoopDepth()));
3143     return;
3144   }
3145 
3146   // Otherwise, it is a loop header.  Print out information about child and
3147   // parent loops.
3148   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3149 
3150   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3151 
3152   OS << "=>";
3153   OS.indent(Loop->getLoopDepth()*2-2);
3154 
3155   OS << "This ";
3156   if (Loop->isInnermost())
3157     OS << "Inner ";
3158   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3159 
3160   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3161 }
3162 
3163 /// emitBasicBlockStart - This method prints the label for the specified
3164 /// MachineBasicBlock, an alignment (if present) and a comment describing
3165 /// it if appropriate.
3166 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3167   // End the previous funclet and start a new one.
3168   if (MBB.isEHFuncletEntry()) {
3169     for (const HandlerInfo &HI : Handlers) {
3170       HI.Handler->endFunclet();
3171       HI.Handler->beginFunclet(MBB);
3172     }
3173   }
3174 
3175   // Emit an alignment directive for this block, if needed.
3176   const Align Alignment = MBB.getAlignment();
3177   if (Alignment != Align(1))
3178     emitAlignment(Alignment);
3179 
3180   // Switch to a new section if this basic block must begin a section. The
3181   // entry block is always placed in the function section and is handled
3182   // separately.
3183   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3184     OutStreamer->SwitchSection(
3185         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3186                                                             MBB, TM));
3187     CurrentSectionBeginSym = MBB.getSymbol();
3188   }
3189 
3190   // If the block has its address taken, emit any labels that were used to
3191   // reference the block.  It is possible that there is more than one label
3192   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3193   // the references were generated.
3194   if (MBB.hasAddressTaken()) {
3195     const BasicBlock *BB = MBB.getBasicBlock();
3196     if (isVerbose())
3197       OutStreamer->AddComment("Block address taken");
3198 
3199     // MBBs can have their address taken as part of CodeGen without having
3200     // their corresponding BB's address taken in IR
3201     if (BB->hasAddressTaken())
3202       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3203         OutStreamer->emitLabel(Sym);
3204   }
3205 
3206   // Print some verbose block comments.
3207   if (isVerbose()) {
3208     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3209       if (BB->hasName()) {
3210         BB->printAsOperand(OutStreamer->GetCommentOS(),
3211                            /*PrintType=*/false, BB->getModule());
3212         OutStreamer->GetCommentOS() << '\n';
3213       }
3214     }
3215 
3216     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3217     emitBasicBlockLoopComments(MBB, MLI, *this);
3218   }
3219 
3220   // Print the main label for the block.
3221   if (shouldEmitLabelForBasicBlock(MBB)) {
3222     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3223       OutStreamer->AddComment("Label of block must be emitted");
3224     OutStreamer->emitLabel(MBB.getSymbol());
3225   } else {
3226     if (isVerbose()) {
3227       // NOTE: Want this comment at start of line, don't emit with AddComment.
3228       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3229                                   false);
3230     }
3231   }
3232 
3233   if (MBB.isEHCatchretTarget() &&
3234       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3235     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3236   }
3237 
3238   // With BB sections, each basic block must handle CFI information on its own
3239   // if it begins a section (Entry block is handled separately by
3240   // AsmPrinterHandler::beginFunction).
3241   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3242     for (const HandlerInfo &HI : Handlers)
3243       HI.Handler->beginBasicBlock(MBB);
3244 }
3245 
3246 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3247   // Check if CFI information needs to be updated for this MBB with basic block
3248   // sections.
3249   if (MBB.isEndSection())
3250     for (const HandlerInfo &HI : Handlers)
3251       HI.Handler->endBasicBlock(MBB);
3252 }
3253 
3254 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3255                                 bool IsDefinition) const {
3256   MCSymbolAttr Attr = MCSA_Invalid;
3257 
3258   switch (Visibility) {
3259   default: break;
3260   case GlobalValue::HiddenVisibility:
3261     if (IsDefinition)
3262       Attr = MAI->getHiddenVisibilityAttr();
3263     else
3264       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3265     break;
3266   case GlobalValue::ProtectedVisibility:
3267     Attr = MAI->getProtectedVisibilityAttr();
3268     break;
3269   }
3270 
3271   if (Attr != MCSA_Invalid)
3272     OutStreamer->emitSymbolAttribute(Sym, Attr);
3273 }
3274 
3275 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3276     const MachineBasicBlock &MBB) const {
3277   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3278   // in the labels mode (option `=labels`) and every section beginning in the
3279   // sections mode (`=all` and `=list=`).
3280   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3281     return true;
3282   // A label is needed for any block with at least one predecessor (when that
3283   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3284   // entry, or if a label is forced).
3285   return !MBB.pred_empty() &&
3286          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3287           MBB.hasLabelMustBeEmitted());
3288 }
3289 
3290 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3291 /// exactly one predecessor and the control transfer mechanism between
3292 /// the predecessor and this block is a fall-through.
3293 bool AsmPrinter::
3294 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3295   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3296   // then nothing falls through to it.
3297   if (MBB->isEHPad() || MBB->pred_empty())
3298     return false;
3299 
3300   // If there isn't exactly one predecessor, it can't be a fall through.
3301   if (MBB->pred_size() > 1)
3302     return false;
3303 
3304   // The predecessor has to be immediately before this block.
3305   MachineBasicBlock *Pred = *MBB->pred_begin();
3306   if (!Pred->isLayoutSuccessor(MBB))
3307     return false;
3308 
3309   // If the block is completely empty, then it definitely does fall through.
3310   if (Pred->empty())
3311     return true;
3312 
3313   // Check the terminators in the previous blocks
3314   for (const auto &MI : Pred->terminators()) {
3315     // If it is not a simple branch, we are in a table somewhere.
3316     if (!MI.isBranch() || MI.isIndirectBranch())
3317       return false;
3318 
3319     // If we are the operands of one of the branches, this is not a fall
3320     // through. Note that targets with delay slots will usually bundle
3321     // terminators with the delay slot instruction.
3322     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3323       if (OP->isJTI())
3324         return false;
3325       if (OP->isMBB() && OP->getMBB() == MBB)
3326         return false;
3327     }
3328   }
3329 
3330   return true;
3331 }
3332 
3333 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3334   if (!S.usesMetadata())
3335     return nullptr;
3336 
3337   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3338   gcp_map_type::iterator GCPI = GCMap.find(&S);
3339   if (GCPI != GCMap.end())
3340     return GCPI->second.get();
3341 
3342   auto Name = S.getName();
3343 
3344   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3345        GCMetadataPrinterRegistry::entries())
3346     if (Name == GCMetaPrinter.getName()) {
3347       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3348       GMP->S = &S;
3349       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3350       return IterBool.first->second.get();
3351     }
3352 
3353   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3354 }
3355 
3356 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3357   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3358   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3359   bool NeedsDefault = false;
3360   if (MI->begin() == MI->end())
3361     // No GC strategy, use the default format.
3362     NeedsDefault = true;
3363   else
3364     for (auto &I : *MI) {
3365       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3366         if (MP->emitStackMaps(SM, *this))
3367           continue;
3368       // The strategy doesn't have printer or doesn't emit custom stack maps.
3369       // Use the default format.
3370       NeedsDefault = true;
3371     }
3372 
3373   if (NeedsDefault)
3374     SM.serializeToStackMapSection();
3375 }
3376 
3377 /// Pin vtable to this file.
3378 AsmPrinterHandler::~AsmPrinterHandler() = default;
3379 
3380 void AsmPrinterHandler::markFunctionEnd() {}
3381 
3382 // In the binary's "xray_instr_map" section, an array of these function entries
3383 // describes each instrumentation point.  When XRay patches your code, the index
3384 // into this table will be given to your handler as a patch point identifier.
3385 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3386   auto Kind8 = static_cast<uint8_t>(Kind);
3387   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3388   Out->emitBinaryData(
3389       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3390   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3391   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3392   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3393   Out->emitZeros(Padding);
3394 }
3395 
3396 void AsmPrinter::emitXRayTable() {
3397   if (Sleds.empty())
3398     return;
3399 
3400   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3401   const Function &F = MF->getFunction();
3402   MCSection *InstMap = nullptr;
3403   MCSection *FnSledIndex = nullptr;
3404   const Triple &TT = TM.getTargetTriple();
3405   // Use PC-relative addresses on all targets.
3406   if (TT.isOSBinFormatELF()) {
3407     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3408     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3409     StringRef GroupName;
3410     if (F.hasComdat()) {
3411       Flags |= ELF::SHF_GROUP;
3412       GroupName = F.getComdat()->getName();
3413     }
3414     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3415                                        Flags, 0, GroupName, F.hasComdat(),
3416                                        MCSection::NonUniqueID, LinkedToSym);
3417 
3418     if (!TM.Options.XRayOmitFunctionIndex)
3419       FnSledIndex = OutContext.getELFSection(
3420           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3421           GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
3422   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3423     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3424                                          SectionKind::getReadOnlyWithRel());
3425     if (!TM.Options.XRayOmitFunctionIndex)
3426       FnSledIndex = OutContext.getMachOSection(
3427           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3428   } else {
3429     llvm_unreachable("Unsupported target");
3430   }
3431 
3432   auto WordSizeBytes = MAI->getCodePointerSize();
3433 
3434   // Now we switch to the instrumentation map section. Because this is done
3435   // per-function, we are able to create an index entry that will represent the
3436   // range of sleds associated with a function.
3437   auto &Ctx = OutContext;
3438   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3439   OutStreamer->SwitchSection(InstMap);
3440   OutStreamer->emitLabel(SledsStart);
3441   for (const auto &Sled : Sleds) {
3442     MCSymbol *Dot = Ctx.createTempSymbol();
3443     OutStreamer->emitLabel(Dot);
3444     OutStreamer->emitValueImpl(
3445         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3446                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3447         WordSizeBytes);
3448     OutStreamer->emitValueImpl(
3449         MCBinaryExpr::createSub(
3450             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3451             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3452                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3453                                     Ctx),
3454             Ctx),
3455         WordSizeBytes);
3456     Sled.emit(WordSizeBytes, OutStreamer.get());
3457   }
3458   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3459   OutStreamer->emitLabel(SledsEnd);
3460 
3461   // We then emit a single entry in the index per function. We use the symbols
3462   // that bound the instrumentation map as the range for a specific function.
3463   // Each entry here will be 2 * word size aligned, as we're writing down two
3464   // pointers. This should work for both 32-bit and 64-bit platforms.
3465   if (FnSledIndex) {
3466     OutStreamer->SwitchSection(FnSledIndex);
3467     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3468     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3469     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3470     OutStreamer->SwitchSection(PrevSection);
3471   }
3472   Sleds.clear();
3473 }
3474 
3475 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3476                             SledKind Kind, uint8_t Version) {
3477   const Function &F = MI.getMF()->getFunction();
3478   auto Attr = F.getFnAttribute("function-instrument");
3479   bool LogArgs = F.hasFnAttribute("xray-log-args");
3480   bool AlwaysInstrument =
3481     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3482   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3483     Kind = SledKind::LOG_ARGS_ENTER;
3484   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3485                                        AlwaysInstrument, &F, Version});
3486 }
3487 
3488 void AsmPrinter::emitPatchableFunctionEntries() {
3489   const Function &F = MF->getFunction();
3490   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3491   (void)F.getFnAttribute("patchable-function-prefix")
3492       .getValueAsString()
3493       .getAsInteger(10, PatchableFunctionPrefix);
3494   (void)F.getFnAttribute("patchable-function-entry")
3495       .getValueAsString()
3496       .getAsInteger(10, PatchableFunctionEntry);
3497   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3498     return;
3499   const unsigned PointerSize = getPointerSize();
3500   if (TM.getTargetTriple().isOSBinFormatELF()) {
3501     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3502     const MCSymbolELF *LinkedToSym = nullptr;
3503     StringRef GroupName;
3504 
3505     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3506     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3507     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3508       Flags |= ELF::SHF_LINK_ORDER;
3509       if (F.hasComdat()) {
3510         Flags |= ELF::SHF_GROUP;
3511         GroupName = F.getComdat()->getName();
3512       }
3513       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3514     }
3515     OutStreamer->SwitchSection(OutContext.getELFSection(
3516         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3517         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
3518     emitAlignment(Align(PointerSize));
3519     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3520   }
3521 }
3522 
3523 uint16_t AsmPrinter::getDwarfVersion() const {
3524   return OutStreamer->getContext().getDwarfVersion();
3525 }
3526 
3527 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3528   OutStreamer->getContext().setDwarfVersion(Version);
3529 }
3530 
3531 bool AsmPrinter::isDwarf64() const {
3532   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3533 }
3534 
3535 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3536   return dwarf::getDwarfOffsetByteSize(
3537       OutStreamer->getContext().getDwarfFormat());
3538 }
3539 
3540 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3541   return dwarf::getUnitLengthFieldByteSize(
3542       OutStreamer->getContext().getDwarfFormat());
3543 }
3544