1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/GCStrategy.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineMemOperand.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalIFunc.h" 73 #include "llvm/IR/GlobalIndirectSymbol.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Remarks/Remark.h" 106 #include "llvm/Remarks/RemarkFormat.h" 107 #include "llvm/Remarks/RemarkStreamer.h" 108 #include "llvm/Remarks/RemarkStringTable.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Compiler.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/Support/FileSystem.h" 114 #include "llvm/Support/Format.h" 115 #include "llvm/Support/MathExtras.h" 116 #include "llvm/Support/Path.h" 117 #include "llvm/Support/TargetRegistry.h" 118 #include "llvm/Support/Timer.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include "llvm/Target/TargetLoweringObjectFile.h" 121 #include "llvm/Target/TargetMachine.h" 122 #include "llvm/Target/TargetOptions.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <cinttypes> 126 #include <cstdint> 127 #include <iterator> 128 #include <limits> 129 #include <memory> 130 #include <string> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 136 #define DEBUG_TYPE "asm-printer" 137 138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 139 static cl::opt<bool> 140 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 141 cl::desc("Disable debug info printing")); 142 143 const char DWARFGroupName[] = "dwarf"; 144 const char DWARFGroupDescription[] = "DWARF Emission"; 145 const char DbgTimerName[] = "emit"; 146 const char DbgTimerDescription[] = "Debug Info Emission"; 147 const char EHTimerName[] = "write_exception"; 148 const char EHTimerDescription[] = "DWARF Exception Writer"; 149 const char CFGuardName[] = "Control Flow Guard"; 150 const char CFGuardDescription[] = "Control Flow Guard"; 151 const char CodeViewLineTablesGroupName[] = "linetables"; 152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 153 const char PPTimerName[] = "emit"; 154 const char PPTimerDescription[] = "Pseudo Probe Emission"; 155 const char PPGroupName[] = "pseudo probe"; 156 const char PPGroupDescription[] = "Pseudo Probe Emission"; 157 158 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 159 160 char AsmPrinter::ID = 0; 161 162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 163 164 static gcp_map_type &getGCMap(void *&P) { 165 if (!P) 166 P = new gcp_map_type(); 167 return *(gcp_map_type*)P; 168 } 169 170 /// getGVAlignment - Return the alignment to use for the specified global 171 /// value. This rounds up to the preferred alignment if possible and legal. 172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 173 Align InAlign) { 174 Align Alignment; 175 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 176 Alignment = DL.getPreferredAlign(GVar); 177 178 // If InAlign is specified, round it to it. 179 if (InAlign > Alignment) 180 Alignment = InAlign; 181 182 // If the GV has a specified alignment, take it into account. 183 const MaybeAlign GVAlign(GV->getAlignment()); 184 if (!GVAlign) 185 return Alignment; 186 187 assert(GVAlign && "GVAlign must be set"); 188 189 // If the GVAlign is larger than NumBits, or if we are required to obey 190 // NumBits because the GV has an assigned section, obey it. 191 if (*GVAlign > Alignment || GV->hasSection()) 192 Alignment = *GVAlign; 193 return Alignment; 194 } 195 196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 197 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 198 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 199 VerboseAsm = OutStreamer->isVerboseAsm(); 200 } 201 202 AsmPrinter::~AsmPrinter() { 203 assert(!DD && Handlers.size() == NumUserHandlers && 204 "Debug/EH info didn't get finalized"); 205 206 if (GCMetadataPrinters) { 207 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 208 209 delete &GCMap; 210 GCMetadataPrinters = nullptr; 211 } 212 } 213 214 bool AsmPrinter::isPositionIndependent() const { 215 return TM.isPositionIndependent(); 216 } 217 218 /// getFunctionNumber - Return a unique ID for the current function. 219 unsigned AsmPrinter::getFunctionNumber() const { 220 return MF->getFunctionNumber(); 221 } 222 223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 224 return *TM.getObjFileLowering(); 225 } 226 227 const DataLayout &AsmPrinter::getDataLayout() const { 228 return MMI->getModule()->getDataLayout(); 229 } 230 231 // Do not use the cached DataLayout because some client use it without a Module 232 // (dsymutil, llvm-dwarfdump). 233 unsigned AsmPrinter::getPointerSize() const { 234 return TM.getPointerSize(0); // FIXME: Default address space 235 } 236 237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 238 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 239 return MF->getSubtarget<MCSubtargetInfo>(); 240 } 241 242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 243 S.emitInstruction(Inst, getSubtargetInfo()); 244 } 245 246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 247 if (DD) { 248 assert(OutStreamer->hasRawTextSupport() && 249 "Expected assembly output mode."); 250 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 251 } 252 } 253 254 /// getCurrentSection() - Return the current section we are emitting to. 255 const MCSection *AsmPrinter::getCurrentSection() const { 256 return OutStreamer->getCurrentSectionOnly(); 257 } 258 259 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 260 AU.setPreservesAll(); 261 MachineFunctionPass::getAnalysisUsage(AU); 262 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 263 AU.addRequired<GCModuleInfo>(); 264 } 265 266 bool AsmPrinter::doInitialization(Module &M) { 267 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 268 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 269 270 // Initialize TargetLoweringObjectFile. 271 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 272 .Initialize(OutContext, TM); 273 274 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 275 .getModuleMetadata(M); 276 277 OutStreamer->InitSections(false); 278 279 if (DisableDebugInfoPrinting) 280 MMI->setDebugInfoAvailability(false); 281 282 // Emit the version-min deployment target directive if needed. 283 // 284 // FIXME: If we end up with a collection of these sorts of Darwin-specific 285 // or ELF-specific things, it may make sense to have a platform helper class 286 // that will work with the target helper class. For now keep it here, as the 287 // alternative is duplicated code in each of the target asm printers that 288 // use the directive, where it would need the same conditionalization 289 // anyway. 290 const Triple &Target = TM.getTargetTriple(); 291 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 292 293 // Allow the target to emit any magic that it wants at the start of the file. 294 emitStartOfAsmFile(M); 295 296 // Very minimal debug info. It is ignored if we emit actual debug info. If we 297 // don't, this at least helps the user find where a global came from. 298 if (MAI->hasSingleParameterDotFile()) { 299 // .file "foo.c" 300 OutStreamer->emitFileDirective( 301 llvm::sys::path::filename(M.getSourceFileName())); 302 } 303 304 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 305 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 306 for (auto &I : *MI) 307 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 308 MP->beginAssembly(M, *MI, *this); 309 310 // Emit module-level inline asm if it exists. 311 if (!M.getModuleInlineAsm().empty()) { 312 // We're at the module level. Construct MCSubtarget from the default CPU 313 // and target triple. 314 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 315 TM.getTargetTriple().str(), TM.getTargetCPU(), 316 TM.getTargetFeatureString())); 317 assert(STI && "Unable to create subtarget info"); 318 OutStreamer->AddComment("Start of file scope inline assembly"); 319 OutStreamer->AddBlankLine(); 320 emitInlineAsm(M.getModuleInlineAsm() + "\n", 321 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 322 OutStreamer->AddComment("End of file scope inline assembly"); 323 OutStreamer->AddBlankLine(); 324 } 325 326 if (MAI->doesSupportDebugInformation()) { 327 bool EmitCodeView = M.getCodeViewFlag(); 328 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 329 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 330 DbgTimerName, DbgTimerDescription, 331 CodeViewLineTablesGroupName, 332 CodeViewLineTablesGroupDescription); 333 } 334 if (!EmitCodeView || M.getDwarfVersion()) { 335 if (!DisableDebugInfoPrinting) { 336 DD = new DwarfDebug(this); 337 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 338 DbgTimerDescription, DWARFGroupName, 339 DWARFGroupDescription); 340 } 341 } 342 } 343 344 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 345 PP = new PseudoProbeHandler(this, &M); 346 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 347 PPTimerDescription, PPGroupName, PPGroupDescription); 348 } 349 350 switch (MAI->getExceptionHandlingType()) { 351 case ExceptionHandling::SjLj: 352 case ExceptionHandling::DwarfCFI: 353 case ExceptionHandling::ARM: 354 isCFIMoveForDebugging = true; 355 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 356 break; 357 for (auto &F: M.getFunctionList()) { 358 // If the module contains any function with unwind data, 359 // .eh_frame has to be emitted. 360 // Ignore functions that won't get emitted. 361 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 362 isCFIMoveForDebugging = false; 363 break; 364 } 365 } 366 break; 367 default: 368 isCFIMoveForDebugging = false; 369 break; 370 } 371 372 EHStreamer *ES = nullptr; 373 switch (MAI->getExceptionHandlingType()) { 374 case ExceptionHandling::None: 375 break; 376 case ExceptionHandling::SjLj: 377 case ExceptionHandling::DwarfCFI: 378 ES = new DwarfCFIException(this); 379 break; 380 case ExceptionHandling::ARM: 381 ES = new ARMException(this); 382 break; 383 case ExceptionHandling::WinEH: 384 switch (MAI->getWinEHEncodingType()) { 385 default: llvm_unreachable("unsupported unwinding information encoding"); 386 case WinEH::EncodingType::Invalid: 387 break; 388 case WinEH::EncodingType::X86: 389 case WinEH::EncodingType::Itanium: 390 ES = new WinException(this); 391 break; 392 } 393 break; 394 case ExceptionHandling::Wasm: 395 ES = new WasmException(this); 396 break; 397 case ExceptionHandling::AIX: 398 ES = new AIXException(this); 399 break; 400 } 401 if (ES) 402 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 403 EHTimerDescription, DWARFGroupName, 404 DWARFGroupDescription); 405 406 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 407 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 408 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 409 CFGuardDescription, DWARFGroupName, 410 DWARFGroupDescription); 411 412 for (const HandlerInfo &HI : Handlers) { 413 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 414 HI.TimerGroupDescription, TimePassesIsEnabled); 415 HI.Handler->beginModule(&M); 416 } 417 418 return false; 419 } 420 421 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 422 if (!MAI.hasWeakDefCanBeHiddenDirective()) 423 return false; 424 425 return GV->canBeOmittedFromSymbolTable(); 426 } 427 428 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 429 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 430 switch (Linkage) { 431 case GlobalValue::CommonLinkage: 432 case GlobalValue::LinkOnceAnyLinkage: 433 case GlobalValue::LinkOnceODRLinkage: 434 case GlobalValue::WeakAnyLinkage: 435 case GlobalValue::WeakODRLinkage: 436 if (MAI->hasWeakDefDirective()) { 437 // .globl _foo 438 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 439 440 if (!canBeHidden(GV, *MAI)) 441 // .weak_definition _foo 442 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 443 else 444 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 445 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 446 // .globl _foo 447 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 448 //NOTE: linkonce is handled by the section the symbol was assigned to. 449 } else { 450 // .weak _foo 451 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 452 } 453 return; 454 case GlobalValue::ExternalLinkage: 455 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 456 return; 457 case GlobalValue::PrivateLinkage: 458 case GlobalValue::InternalLinkage: 459 return; 460 case GlobalValue::ExternalWeakLinkage: 461 case GlobalValue::AvailableExternallyLinkage: 462 case GlobalValue::AppendingLinkage: 463 llvm_unreachable("Should never emit this"); 464 } 465 llvm_unreachable("Unknown linkage type!"); 466 } 467 468 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 469 const GlobalValue *GV) const { 470 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 471 } 472 473 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 474 return TM.getSymbol(GV); 475 } 476 477 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 478 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 479 // exact definion (intersection of GlobalValue::hasExactDefinition() and 480 // !isInterposable()). These linkages include: external, appending, internal, 481 // private. It may be profitable to use a local alias for external. The 482 // assembler would otherwise be conservative and assume a global default 483 // visibility symbol can be interposable, even if the code generator already 484 // assumed it. 485 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 486 const Module &M = *GV.getParent(); 487 if (TM.getRelocationModel() != Reloc::Static && 488 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 489 return getSymbolWithGlobalValueBase(&GV, "$local"); 490 } 491 return TM.getSymbol(&GV); 492 } 493 494 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 495 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 496 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 497 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 498 "No emulated TLS variables in the common section"); 499 500 // Never emit TLS variable xyz in emulated TLS model. 501 // The initialization value is in __emutls_t.xyz instead of xyz. 502 if (IsEmuTLSVar) 503 return; 504 505 if (GV->hasInitializer()) { 506 // Check to see if this is a special global used by LLVM, if so, emit it. 507 if (emitSpecialLLVMGlobal(GV)) 508 return; 509 510 // Skip the emission of global equivalents. The symbol can be emitted later 511 // on by emitGlobalGOTEquivs in case it turns out to be needed. 512 if (GlobalGOTEquivs.count(getSymbol(GV))) 513 return; 514 515 if (isVerbose()) { 516 // When printing the control variable __emutls_v.*, 517 // we don't need to print the original TLS variable name. 518 GV->printAsOperand(OutStreamer->GetCommentOS(), 519 /*PrintType=*/false, GV->getParent()); 520 OutStreamer->GetCommentOS() << '\n'; 521 } 522 } 523 524 MCSymbol *GVSym = getSymbol(GV); 525 MCSymbol *EmittedSym = GVSym; 526 527 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 528 // attributes. 529 // GV's or GVSym's attributes will be used for the EmittedSym. 530 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 531 532 if (!GV->hasInitializer()) // External globals require no extra code. 533 return; 534 535 GVSym->redefineIfPossible(); 536 if (GVSym->isDefined() || GVSym->isVariable()) 537 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 538 "' is already defined"); 539 540 if (MAI->hasDotTypeDotSizeDirective()) 541 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 542 543 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 544 545 const DataLayout &DL = GV->getParent()->getDataLayout(); 546 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 547 548 // If the alignment is specified, we *must* obey it. Overaligning a global 549 // with a specified alignment is a prompt way to break globals emitted to 550 // sections and expected to be contiguous (e.g. ObjC metadata). 551 const Align Alignment = getGVAlignment(GV, DL); 552 553 for (const HandlerInfo &HI : Handlers) { 554 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 555 HI.TimerGroupName, HI.TimerGroupDescription, 556 TimePassesIsEnabled); 557 HI.Handler->setSymbolSize(GVSym, Size); 558 } 559 560 // Handle common symbols 561 if (GVKind.isCommon()) { 562 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 563 // .comm _foo, 42, 4 564 const bool SupportsAlignment = 565 getObjFileLowering().getCommDirectiveSupportsAlignment(); 566 OutStreamer->emitCommonSymbol(GVSym, Size, 567 SupportsAlignment ? Alignment.value() : 0); 568 return; 569 } 570 571 // Determine to which section this global should be emitted. 572 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 573 574 // If we have a bss global going to a section that supports the 575 // zerofill directive, do so here. 576 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 577 TheSection->isVirtualSection()) { 578 if (Size == 0) 579 Size = 1; // zerofill of 0 bytes is undefined. 580 emitLinkage(GV, GVSym); 581 // .zerofill __DATA, __bss, _foo, 400, 5 582 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 583 return; 584 } 585 586 // If this is a BSS local symbol and we are emitting in the BSS 587 // section use .lcomm/.comm directive. 588 if (GVKind.isBSSLocal() && 589 getObjFileLowering().getBSSSection() == TheSection) { 590 if (Size == 0) 591 Size = 1; // .comm Foo, 0 is undefined, avoid it. 592 593 // Use .lcomm only if it supports user-specified alignment. 594 // Otherwise, while it would still be correct to use .lcomm in some 595 // cases (e.g. when Align == 1), the external assembler might enfore 596 // some -unknown- default alignment behavior, which could cause 597 // spurious differences between external and integrated assembler. 598 // Prefer to simply fall back to .local / .comm in this case. 599 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 600 // .lcomm _foo, 42 601 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 602 return; 603 } 604 605 // .local _foo 606 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 607 // .comm _foo, 42, 4 608 const bool SupportsAlignment = 609 getObjFileLowering().getCommDirectiveSupportsAlignment(); 610 OutStreamer->emitCommonSymbol(GVSym, Size, 611 SupportsAlignment ? Alignment.value() : 0); 612 return; 613 } 614 615 // Handle thread local data for mach-o which requires us to output an 616 // additional structure of data and mangle the original symbol so that we 617 // can reference it later. 618 // 619 // TODO: This should become an "emit thread local global" method on TLOF. 620 // All of this macho specific stuff should be sunk down into TLOFMachO and 621 // stuff like "TLSExtraDataSection" should no longer be part of the parent 622 // TLOF class. This will also make it more obvious that stuff like 623 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 624 // specific code. 625 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 626 // Emit the .tbss symbol 627 MCSymbol *MangSym = 628 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 629 630 if (GVKind.isThreadBSS()) { 631 TheSection = getObjFileLowering().getTLSBSSSection(); 632 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 633 } else if (GVKind.isThreadData()) { 634 OutStreamer->SwitchSection(TheSection); 635 636 emitAlignment(Alignment, GV); 637 OutStreamer->emitLabel(MangSym); 638 639 emitGlobalConstant(GV->getParent()->getDataLayout(), 640 GV->getInitializer()); 641 } 642 643 OutStreamer->AddBlankLine(); 644 645 // Emit the variable struct for the runtime. 646 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 647 648 OutStreamer->SwitchSection(TLVSect); 649 // Emit the linkage here. 650 emitLinkage(GV, GVSym); 651 OutStreamer->emitLabel(GVSym); 652 653 // Three pointers in size: 654 // - __tlv_bootstrap - used to make sure support exists 655 // - spare pointer, used when mapped by the runtime 656 // - pointer to mangled symbol above with initializer 657 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 658 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 659 PtrSize); 660 OutStreamer->emitIntValue(0, PtrSize); 661 OutStreamer->emitSymbolValue(MangSym, PtrSize); 662 663 OutStreamer->AddBlankLine(); 664 return; 665 } 666 667 MCSymbol *EmittedInitSym = GVSym; 668 669 OutStreamer->SwitchSection(TheSection); 670 671 emitLinkage(GV, EmittedInitSym); 672 emitAlignment(Alignment, GV); 673 674 OutStreamer->emitLabel(EmittedInitSym); 675 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 676 if (LocalAlias != EmittedInitSym) 677 OutStreamer->emitLabel(LocalAlias); 678 679 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 680 681 if (MAI->hasDotTypeDotSizeDirective()) 682 // .size foo, 42 683 OutStreamer->emitELFSize(EmittedInitSym, 684 MCConstantExpr::create(Size, OutContext)); 685 686 OutStreamer->AddBlankLine(); 687 } 688 689 /// Emit the directive and value for debug thread local expression 690 /// 691 /// \p Value - The value to emit. 692 /// \p Size - The size of the integer (in bytes) to emit. 693 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 694 OutStreamer->emitValue(Value, Size); 695 } 696 697 void AsmPrinter::emitFunctionHeaderComment() {} 698 699 /// EmitFunctionHeader - This method emits the header for the current 700 /// function. 701 void AsmPrinter::emitFunctionHeader() { 702 const Function &F = MF->getFunction(); 703 704 if (isVerbose()) 705 OutStreamer->GetCommentOS() 706 << "-- Begin function " 707 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 708 709 // Print out constants referenced by the function 710 emitConstantPool(); 711 712 // Print the 'header' of function. 713 // If basic block sections is desired and function sections is off, 714 // explicitly request a unique section for this function. 715 if (MF->front().isBeginSection() && !TM.getFunctionSections()) 716 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 717 else 718 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 719 OutStreamer->SwitchSection(MF->getSection()); 720 721 if (!MAI->hasVisibilityOnlyWithLinkage()) 722 emitVisibility(CurrentFnSym, F.getVisibility()); 723 724 if (MAI->needsFunctionDescriptors()) 725 emitLinkage(&F, CurrentFnDescSym); 726 727 emitLinkage(&F, CurrentFnSym); 728 if (MAI->hasFunctionAlignment()) 729 emitAlignment(MF->getAlignment(), &F); 730 731 if (MAI->hasDotTypeDotSizeDirective()) 732 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 733 734 if (F.hasFnAttribute(Attribute::Cold)) 735 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 736 737 if (isVerbose()) { 738 F.printAsOperand(OutStreamer->GetCommentOS(), 739 /*PrintType=*/false, F.getParent()); 740 emitFunctionHeaderComment(); 741 OutStreamer->GetCommentOS() << '\n'; 742 } 743 744 // Emit the prefix data. 745 if (F.hasPrefixData()) { 746 if (MAI->hasSubsectionsViaSymbols()) { 747 // Preserving prefix data on platforms which use subsections-via-symbols 748 // is a bit tricky. Here we introduce a symbol for the prefix data 749 // and use the .alt_entry attribute to mark the function's real entry point 750 // as an alternative entry point to the prefix-data symbol. 751 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 752 OutStreamer->emitLabel(PrefixSym); 753 754 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 755 756 // Emit an .alt_entry directive for the actual function symbol. 757 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 758 } else { 759 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 760 } 761 } 762 763 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 764 // place prefix data before NOPs. 765 unsigned PatchableFunctionPrefix = 0; 766 unsigned PatchableFunctionEntry = 0; 767 (void)F.getFnAttribute("patchable-function-prefix") 768 .getValueAsString() 769 .getAsInteger(10, PatchableFunctionPrefix); 770 (void)F.getFnAttribute("patchable-function-entry") 771 .getValueAsString() 772 .getAsInteger(10, PatchableFunctionEntry); 773 if (PatchableFunctionPrefix) { 774 CurrentPatchableFunctionEntrySym = 775 OutContext.createLinkerPrivateTempSymbol(); 776 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 777 emitNops(PatchableFunctionPrefix); 778 } else if (PatchableFunctionEntry) { 779 // May be reassigned when emitting the body, to reference the label after 780 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 781 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 782 } 783 784 // Emit the function descriptor. This is a virtual function to allow targets 785 // to emit their specific function descriptor. Right now it is only used by 786 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 787 // descriptors and should be converted to use this hook as well. 788 if (MAI->needsFunctionDescriptors()) 789 emitFunctionDescriptor(); 790 791 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 792 // their wild and crazy things as required. 793 emitFunctionEntryLabel(); 794 795 // If the function had address-taken blocks that got deleted, then we have 796 // references to the dangling symbols. Emit them at the start of the function 797 // so that we don't get references to undefined symbols. 798 std::vector<MCSymbol*> DeadBlockSyms; 799 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 800 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 801 OutStreamer->AddComment("Address taken block that was later removed"); 802 OutStreamer->emitLabel(DeadBlockSyms[i]); 803 } 804 805 if (CurrentFnBegin) { 806 if (MAI->useAssignmentForEHBegin()) { 807 MCSymbol *CurPos = OutContext.createTempSymbol(); 808 OutStreamer->emitLabel(CurPos); 809 OutStreamer->emitAssignment(CurrentFnBegin, 810 MCSymbolRefExpr::create(CurPos, OutContext)); 811 } else { 812 OutStreamer->emitLabel(CurrentFnBegin); 813 } 814 } 815 816 // Emit pre-function debug and/or EH information. 817 for (const HandlerInfo &HI : Handlers) { 818 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 819 HI.TimerGroupDescription, TimePassesIsEnabled); 820 HI.Handler->beginFunction(MF); 821 } 822 823 // Emit the prologue data. 824 if (F.hasPrologueData()) 825 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 826 } 827 828 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 829 /// function. This can be overridden by targets as required to do custom stuff. 830 void AsmPrinter::emitFunctionEntryLabel() { 831 CurrentFnSym->redefineIfPossible(); 832 833 // The function label could have already been emitted if two symbols end up 834 // conflicting due to asm renaming. Detect this and emit an error. 835 if (CurrentFnSym->isVariable()) 836 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 837 "' is a protected alias"); 838 839 OutStreamer->emitLabel(CurrentFnSym); 840 841 if (TM.getTargetTriple().isOSBinFormatELF()) { 842 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 843 if (Sym != CurrentFnSym) 844 OutStreamer->emitLabel(Sym); 845 } 846 } 847 848 /// emitComments - Pretty-print comments for instructions. 849 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 850 const MachineFunction *MF = MI.getMF(); 851 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 852 853 // Check for spills and reloads 854 855 // We assume a single instruction only has a spill or reload, not 856 // both. 857 Optional<unsigned> Size; 858 if ((Size = MI.getRestoreSize(TII))) { 859 CommentOS << *Size << "-byte Reload\n"; 860 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 861 if (*Size) { 862 if (*Size == unsigned(MemoryLocation::UnknownSize)) 863 CommentOS << "Unknown-size Folded Reload\n"; 864 else 865 CommentOS << *Size << "-byte Folded Reload\n"; 866 } 867 } else if ((Size = MI.getSpillSize(TII))) { 868 CommentOS << *Size << "-byte Spill\n"; 869 } else if ((Size = MI.getFoldedSpillSize(TII))) { 870 if (*Size) { 871 if (*Size == unsigned(MemoryLocation::UnknownSize)) 872 CommentOS << "Unknown-size Folded Spill\n"; 873 else 874 CommentOS << *Size << "-byte Folded Spill\n"; 875 } 876 } 877 878 // Check for spill-induced copies 879 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 880 CommentOS << " Reload Reuse\n"; 881 } 882 883 /// emitImplicitDef - This method emits the specified machine instruction 884 /// that is an implicit def. 885 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 886 Register RegNo = MI->getOperand(0).getReg(); 887 888 SmallString<128> Str; 889 raw_svector_ostream OS(Str); 890 OS << "implicit-def: " 891 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 892 893 OutStreamer->AddComment(OS.str()); 894 OutStreamer->AddBlankLine(); 895 } 896 897 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 898 std::string Str; 899 raw_string_ostream OS(Str); 900 OS << "kill:"; 901 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 902 const MachineOperand &Op = MI->getOperand(i); 903 assert(Op.isReg() && "KILL instruction must have only register operands"); 904 OS << ' ' << (Op.isDef() ? "def " : "killed ") 905 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 906 } 907 AP.OutStreamer->AddComment(OS.str()); 908 AP.OutStreamer->AddBlankLine(); 909 } 910 911 /// emitDebugValueComment - This method handles the target-independent form 912 /// of DBG_VALUE, returning true if it was able to do so. A false return 913 /// means the target will need to handle MI in EmitInstruction. 914 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 915 // This code handles only the 4-operand target-independent form. 916 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 917 return false; 918 919 SmallString<128> Str; 920 raw_svector_ostream OS(Str); 921 OS << "DEBUG_VALUE: "; 922 923 const DILocalVariable *V = MI->getDebugVariable(); 924 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 925 StringRef Name = SP->getName(); 926 if (!Name.empty()) 927 OS << Name << ":"; 928 } 929 OS << V->getName(); 930 OS << " <- "; 931 932 const DIExpression *Expr = MI->getDebugExpression(); 933 if (Expr->getNumElements()) { 934 OS << '['; 935 ListSeparator LS; 936 for (auto Op : Expr->expr_ops()) { 937 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 938 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 939 OS << ' ' << Op.getArg(I); 940 } 941 OS << "] "; 942 } 943 944 // Register or immediate value. Register 0 means undef. 945 for (const MachineOperand &Op : MI->debug_operands()) { 946 if (&Op != MI->debug_operands().begin()) 947 OS << ", "; 948 switch (Op.getType()) { 949 case MachineOperand::MO_FPImmediate: { 950 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 951 if (Op.getFPImm()->getType()->isFloatTy()) { 952 OS << (double)APF.convertToFloat(); 953 } else if (Op.getFPImm()->getType()->isDoubleTy()) { 954 OS << APF.convertToDouble(); 955 } else { 956 // There is no good way to print long double. Convert a copy to 957 // double. Ah well, it's only a comment. 958 bool ignored; 959 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 960 &ignored); 961 OS << "(long double) " << APF.convertToDouble(); 962 } 963 break; 964 } 965 case MachineOperand::MO_Immediate: { 966 OS << Op.getImm(); 967 break; 968 } 969 case MachineOperand::MO_CImmediate: { 970 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 971 break; 972 } 973 case MachineOperand::MO_TargetIndex: { 974 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 975 // NOTE: Want this comment at start of line, don't emit with AddComment. 976 AP.OutStreamer->emitRawComment(OS.str()); 977 break; 978 } 979 case MachineOperand::MO_Register: 980 case MachineOperand::MO_FrameIndex: { 981 Register Reg; 982 Optional<StackOffset> Offset; 983 if (Op.isReg()) { 984 Reg = Op.getReg(); 985 } else { 986 const TargetFrameLowering *TFI = 987 AP.MF->getSubtarget().getFrameLowering(); 988 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 989 } 990 if (!Reg) { 991 // Suppress offset, it is not meaningful here. 992 OS << "undef"; 993 break; 994 } 995 // The second operand is only an offset if it's an immediate. 996 if (MI->isIndirectDebugValue()) 997 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 998 if (Offset) 999 OS << '['; 1000 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1001 if (Offset) 1002 OS << '+' << Offset->getFixed() << ']'; 1003 break; 1004 } 1005 default: 1006 llvm_unreachable("Unknown operand type"); 1007 } 1008 } 1009 1010 // NOTE: Want this comment at start of line, don't emit with AddComment. 1011 AP.OutStreamer->emitRawComment(OS.str()); 1012 return true; 1013 } 1014 1015 /// This method handles the target-independent form of DBG_LABEL, returning 1016 /// true if it was able to do so. A false return means the target will need 1017 /// to handle MI in EmitInstruction. 1018 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1019 if (MI->getNumOperands() != 1) 1020 return false; 1021 1022 SmallString<128> Str; 1023 raw_svector_ostream OS(Str); 1024 OS << "DEBUG_LABEL: "; 1025 1026 const DILabel *V = MI->getDebugLabel(); 1027 if (auto *SP = dyn_cast<DISubprogram>( 1028 V->getScope()->getNonLexicalBlockFileScope())) { 1029 StringRef Name = SP->getName(); 1030 if (!Name.empty()) 1031 OS << Name << ":"; 1032 } 1033 OS << V->getName(); 1034 1035 // NOTE: Want this comment at start of line, don't emit with AddComment. 1036 AP.OutStreamer->emitRawComment(OS.str()); 1037 return true; 1038 } 1039 1040 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 1041 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1042 MF->getFunction().needsUnwindTableEntry()) 1043 return CFI_M_EH; 1044 1045 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1046 return CFI_M_Debug; 1047 1048 return CFI_M_None; 1049 } 1050 1051 bool AsmPrinter::needsSEHMoves() { 1052 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1053 } 1054 1055 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1056 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1057 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1058 ExceptionHandlingType != ExceptionHandling::ARM) 1059 return; 1060 1061 if (needsCFIMoves() == CFI_M_None) 1062 return; 1063 1064 // If there is no "real" instruction following this CFI instruction, skip 1065 // emitting it; it would be beyond the end of the function's FDE range. 1066 auto *MBB = MI.getParent(); 1067 auto I = std::next(MI.getIterator()); 1068 while (I != MBB->end() && I->isTransient()) 1069 ++I; 1070 if (I == MBB->instr_end() && 1071 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1072 return; 1073 1074 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1075 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1076 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1077 emitCFIInstruction(CFI); 1078 } 1079 1080 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1081 // The operands are the MCSymbol and the frame offset of the allocation. 1082 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1083 int FrameOffset = MI.getOperand(1).getImm(); 1084 1085 // Emit a symbol assignment. 1086 OutStreamer->emitAssignment(FrameAllocSym, 1087 MCConstantExpr::create(FrameOffset, OutContext)); 1088 } 1089 1090 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1091 /// given basic block. This can be used to capture more precise profile 1092 /// information. We use the last 4 bits (LSBs) to encode the following 1093 /// information: 1094 /// * (1): set if return block (ret or tail call). 1095 /// * (2): set if ends with a tail call. 1096 /// * (3): set if exception handling (EH) landing pad. 1097 /// * (4): set if the block can fall through to its next. 1098 /// The remaining bits are zero. 1099 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1100 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1101 return ((unsigned)MBB.isReturnBlock()) | 1102 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1103 (MBB.isEHPad() << 2) | 1104 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); 1105 } 1106 1107 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1108 MCSection *BBAddrMapSection = 1109 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1110 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1111 1112 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1113 1114 OutStreamer->PushSection(); 1115 OutStreamer->SwitchSection(BBAddrMapSection); 1116 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1117 // Emit the total number of basic blocks in this function. 1118 OutStreamer->emitULEB128IntValue(MF.size()); 1119 // Emit BB Information for each basic block in the funciton. 1120 for (const MachineBasicBlock &MBB : MF) { 1121 const MCSymbol *MBBSymbol = 1122 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1123 // Emit the basic block offset. 1124 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1125 // Emit the basic block size. When BBs have alignments, their size cannot 1126 // always be computed from their offsets. 1127 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1128 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1129 } 1130 OutStreamer->PopSection(); 1131 } 1132 1133 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1134 auto GUID = MI.getOperand(0).getImm(); 1135 auto Index = MI.getOperand(1).getImm(); 1136 auto Type = MI.getOperand(2).getImm(); 1137 auto Attr = MI.getOperand(3).getImm(); 1138 DILocation *DebugLoc = MI.getDebugLoc(); 1139 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1140 } 1141 1142 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1143 if (!MF.getTarget().Options.EmitStackSizeSection) 1144 return; 1145 1146 MCSection *StackSizeSection = 1147 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1148 if (!StackSizeSection) 1149 return; 1150 1151 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1152 // Don't emit functions with dynamic stack allocations. 1153 if (FrameInfo.hasVarSizedObjects()) 1154 return; 1155 1156 OutStreamer->PushSection(); 1157 OutStreamer->SwitchSection(StackSizeSection); 1158 1159 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1160 uint64_t StackSize = FrameInfo.getStackSize(); 1161 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1162 OutStreamer->emitULEB128IntValue(StackSize); 1163 1164 OutStreamer->PopSection(); 1165 } 1166 1167 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1168 MachineModuleInfo &MMI = MF.getMMI(); 1169 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1170 return true; 1171 1172 // We might emit an EH table that uses function begin and end labels even if 1173 // we don't have any landingpads. 1174 if (!MF.getFunction().hasPersonalityFn()) 1175 return false; 1176 return !isNoOpWithoutInvoke( 1177 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1178 } 1179 1180 /// EmitFunctionBody - This method emits the body and trailer for a 1181 /// function. 1182 void AsmPrinter::emitFunctionBody() { 1183 emitFunctionHeader(); 1184 1185 // Emit target-specific gunk before the function body. 1186 emitFunctionBodyStart(); 1187 1188 if (isVerbose()) { 1189 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1190 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1191 if (!MDT) { 1192 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1193 OwnedMDT->getBase().recalculate(*MF); 1194 MDT = OwnedMDT.get(); 1195 } 1196 1197 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1198 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1199 if (!MLI) { 1200 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1201 OwnedMLI->getBase().analyze(MDT->getBase()); 1202 MLI = OwnedMLI.get(); 1203 } 1204 } 1205 1206 // Print out code for the function. 1207 bool HasAnyRealCode = false; 1208 int NumInstsInFunction = 0; 1209 1210 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1211 for (auto &MBB : *MF) { 1212 // Print a label for the basic block. 1213 emitBasicBlockStart(MBB); 1214 DenseMap<StringRef, unsigned> MnemonicCounts; 1215 for (auto &MI : MBB) { 1216 // Print the assembly for the instruction. 1217 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1218 !MI.isDebugInstr()) { 1219 HasAnyRealCode = true; 1220 ++NumInstsInFunction; 1221 } 1222 1223 // If there is a pre-instruction symbol, emit a label for it here. 1224 if (MCSymbol *S = MI.getPreInstrSymbol()) 1225 OutStreamer->emitLabel(S); 1226 1227 for (const HandlerInfo &HI : Handlers) { 1228 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1229 HI.TimerGroupDescription, TimePassesIsEnabled); 1230 HI.Handler->beginInstruction(&MI); 1231 } 1232 1233 if (isVerbose()) 1234 emitComments(MI, OutStreamer->GetCommentOS()); 1235 1236 switch (MI.getOpcode()) { 1237 case TargetOpcode::CFI_INSTRUCTION: 1238 emitCFIInstruction(MI); 1239 break; 1240 case TargetOpcode::LOCAL_ESCAPE: 1241 emitFrameAlloc(MI); 1242 break; 1243 case TargetOpcode::ANNOTATION_LABEL: 1244 case TargetOpcode::EH_LABEL: 1245 case TargetOpcode::GC_LABEL: 1246 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1247 break; 1248 case TargetOpcode::INLINEASM: 1249 case TargetOpcode::INLINEASM_BR: 1250 emitInlineAsm(&MI); 1251 break; 1252 case TargetOpcode::DBG_VALUE: 1253 case TargetOpcode::DBG_VALUE_LIST: 1254 if (isVerbose()) { 1255 if (!emitDebugValueComment(&MI, *this)) 1256 emitInstruction(&MI); 1257 } 1258 break; 1259 case TargetOpcode::DBG_INSTR_REF: 1260 // This instruction reference will have been resolved to a machine 1261 // location, and a nearby DBG_VALUE created. We can safely ignore 1262 // the instruction reference. 1263 break; 1264 case TargetOpcode::DBG_LABEL: 1265 if (isVerbose()) { 1266 if (!emitDebugLabelComment(&MI, *this)) 1267 emitInstruction(&MI); 1268 } 1269 break; 1270 case TargetOpcode::IMPLICIT_DEF: 1271 if (isVerbose()) emitImplicitDef(&MI); 1272 break; 1273 case TargetOpcode::KILL: 1274 if (isVerbose()) emitKill(&MI, *this); 1275 break; 1276 case TargetOpcode::PSEUDO_PROBE: 1277 emitPseudoProbe(MI); 1278 break; 1279 default: 1280 emitInstruction(&MI); 1281 if (CanDoExtraAnalysis) { 1282 MCInst MCI; 1283 MCI.setOpcode(MI.getOpcode()); 1284 auto Name = OutStreamer->getMnemonic(MCI); 1285 auto I = MnemonicCounts.insert({Name, 0u}); 1286 I.first->second++; 1287 } 1288 break; 1289 } 1290 1291 // If there is a post-instruction symbol, emit a label for it here. 1292 if (MCSymbol *S = MI.getPostInstrSymbol()) 1293 OutStreamer->emitLabel(S); 1294 1295 for (const HandlerInfo &HI : Handlers) { 1296 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1297 HI.TimerGroupDescription, TimePassesIsEnabled); 1298 HI.Handler->endInstruction(); 1299 } 1300 } 1301 1302 // We must emit temporary symbol for the end of this basic block, if either 1303 // we have BBLabels enabled or if this basic blocks marks the end of a 1304 // section (except the section containing the entry basic block as the end 1305 // symbol for that section is CurrentFnEnd). 1306 if (MF->hasBBLabels() || 1307 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1308 !MBB.sameSection(&MF->front()))) 1309 OutStreamer->emitLabel(MBB.getEndSymbol()); 1310 1311 if (MBB.isEndSection()) { 1312 // The size directive for the section containing the entry block is 1313 // handled separately by the function section. 1314 if (!MBB.sameSection(&MF->front())) { 1315 if (MAI->hasDotTypeDotSizeDirective()) { 1316 // Emit the size directive for the basic block section. 1317 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1318 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1319 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1320 OutContext); 1321 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1322 } 1323 MBBSectionRanges[MBB.getSectionIDNum()] = 1324 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1325 } 1326 } 1327 emitBasicBlockEnd(MBB); 1328 1329 if (CanDoExtraAnalysis) { 1330 // Skip empty blocks. 1331 if (MBB.empty()) 1332 continue; 1333 1334 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1335 MBB.begin()->getDebugLoc(), &MBB); 1336 1337 // Generate instruction mix remark. First, sort counts in descending order 1338 // by count and name. 1339 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1340 for (auto &KV : MnemonicCounts) 1341 MnemonicVec.emplace_back(KV.first, KV.second); 1342 1343 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1344 const std::pair<StringRef, unsigned> &B) { 1345 if (A.second > B.second) 1346 return true; 1347 if (A.second == B.second) 1348 return StringRef(A.first) < StringRef(B.first); 1349 return false; 1350 }); 1351 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1352 for (auto &KV : MnemonicVec) { 1353 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1354 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1355 } 1356 ORE->emit(R); 1357 } 1358 } 1359 1360 EmittedInsts += NumInstsInFunction; 1361 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1362 MF->getFunction().getSubprogram(), 1363 &MF->front()); 1364 R << ore::NV("NumInstructions", NumInstsInFunction) 1365 << " instructions in function"; 1366 ORE->emit(R); 1367 1368 // If the function is empty and the object file uses .subsections_via_symbols, 1369 // then we need to emit *something* to the function body to prevent the 1370 // labels from collapsing together. Just emit a noop. 1371 // Similarly, don't emit empty functions on Windows either. It can lead to 1372 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1373 // after linking, causing the kernel not to load the binary: 1374 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1375 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1376 const Triple &TT = TM.getTargetTriple(); 1377 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1378 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1379 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1380 1381 // Targets can opt-out of emitting the noop here by leaving the opcode 1382 // unspecified. 1383 if (Noop.getOpcode()) { 1384 OutStreamer->AddComment("avoids zero-length function"); 1385 emitNops(1); 1386 } 1387 } 1388 1389 // Switch to the original section in case basic block sections was used. 1390 OutStreamer->SwitchSection(MF->getSection()); 1391 1392 const Function &F = MF->getFunction(); 1393 for (const auto &BB : F) { 1394 if (!BB.hasAddressTaken()) 1395 continue; 1396 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1397 if (Sym->isDefined()) 1398 continue; 1399 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1400 OutStreamer->emitLabel(Sym); 1401 } 1402 1403 // Emit target-specific gunk after the function body. 1404 emitFunctionBodyEnd(); 1405 1406 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1407 MAI->hasDotTypeDotSizeDirective()) { 1408 // Create a symbol for the end of function. 1409 CurrentFnEnd = createTempSymbol("func_end"); 1410 OutStreamer->emitLabel(CurrentFnEnd); 1411 } 1412 1413 // If the target wants a .size directive for the size of the function, emit 1414 // it. 1415 if (MAI->hasDotTypeDotSizeDirective()) { 1416 // We can get the size as difference between the function label and the 1417 // temp label. 1418 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1419 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1420 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1421 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1422 } 1423 1424 for (const HandlerInfo &HI : Handlers) { 1425 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1426 HI.TimerGroupDescription, TimePassesIsEnabled); 1427 HI.Handler->markFunctionEnd(); 1428 } 1429 1430 MBBSectionRanges[MF->front().getSectionIDNum()] = 1431 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1432 1433 // Print out jump tables referenced by the function. 1434 emitJumpTableInfo(); 1435 1436 // Emit post-function debug and/or EH information. 1437 for (const HandlerInfo &HI : Handlers) { 1438 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1439 HI.TimerGroupDescription, TimePassesIsEnabled); 1440 HI.Handler->endFunction(MF); 1441 } 1442 1443 // Emit section containing BB address offsets and their metadata, when 1444 // BB labels are requested for this function. Skip empty functions. 1445 if (MF->hasBBLabels() && HasAnyRealCode) 1446 emitBBAddrMapSection(*MF); 1447 1448 // Emit section containing stack size metadata. 1449 emitStackSizeSection(*MF); 1450 1451 emitPatchableFunctionEntries(); 1452 1453 if (isVerbose()) 1454 OutStreamer->GetCommentOS() << "-- End function\n"; 1455 1456 OutStreamer->AddBlankLine(); 1457 } 1458 1459 /// Compute the number of Global Variables that uses a Constant. 1460 static unsigned getNumGlobalVariableUses(const Constant *C) { 1461 if (!C) 1462 return 0; 1463 1464 if (isa<GlobalVariable>(C)) 1465 return 1; 1466 1467 unsigned NumUses = 0; 1468 for (auto *CU : C->users()) 1469 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1470 1471 return NumUses; 1472 } 1473 1474 /// Only consider global GOT equivalents if at least one user is a 1475 /// cstexpr inside an initializer of another global variables. Also, don't 1476 /// handle cstexpr inside instructions. During global variable emission, 1477 /// candidates are skipped and are emitted later in case at least one cstexpr 1478 /// isn't replaced by a PC relative GOT entry access. 1479 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1480 unsigned &NumGOTEquivUsers) { 1481 // Global GOT equivalents are unnamed private globals with a constant 1482 // pointer initializer to another global symbol. They must point to a 1483 // GlobalVariable or Function, i.e., as GlobalValue. 1484 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1485 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1486 !isa<GlobalValue>(GV->getOperand(0))) 1487 return false; 1488 1489 // To be a got equivalent, at least one of its users need to be a constant 1490 // expression used by another global variable. 1491 for (auto *U : GV->users()) 1492 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1493 1494 return NumGOTEquivUsers > 0; 1495 } 1496 1497 /// Unnamed constant global variables solely contaning a pointer to 1498 /// another globals variable is equivalent to a GOT table entry; it contains the 1499 /// the address of another symbol. Optimize it and replace accesses to these 1500 /// "GOT equivalents" by using the GOT entry for the final global instead. 1501 /// Compute GOT equivalent candidates among all global variables to avoid 1502 /// emitting them if possible later on, after it use is replaced by a GOT entry 1503 /// access. 1504 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1505 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1506 return; 1507 1508 for (const auto &G : M.globals()) { 1509 unsigned NumGOTEquivUsers = 0; 1510 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1511 continue; 1512 1513 const MCSymbol *GOTEquivSym = getSymbol(&G); 1514 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1515 } 1516 } 1517 1518 /// Constant expressions using GOT equivalent globals may not be eligible 1519 /// for PC relative GOT entry conversion, in such cases we need to emit such 1520 /// globals we previously omitted in EmitGlobalVariable. 1521 void AsmPrinter::emitGlobalGOTEquivs() { 1522 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1523 return; 1524 1525 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1526 for (auto &I : GlobalGOTEquivs) { 1527 const GlobalVariable *GV = I.second.first; 1528 unsigned Cnt = I.second.second; 1529 if (Cnt) 1530 FailedCandidates.push_back(GV); 1531 } 1532 GlobalGOTEquivs.clear(); 1533 1534 for (auto *GV : FailedCandidates) 1535 emitGlobalVariable(GV); 1536 } 1537 1538 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1539 const GlobalIndirectSymbol& GIS) { 1540 MCSymbol *Name = getSymbol(&GIS); 1541 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1542 // Treat bitcasts of functions as functions also. This is important at least 1543 // on WebAssembly where object and function addresses can't alias each other. 1544 if (!IsFunction) 1545 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1546 if (CE->getOpcode() == Instruction::BitCast) 1547 IsFunction = 1548 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1549 1550 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1551 // so AIX has to use the extra-label-at-definition strategy. At this 1552 // point, all the extra label is emitted, we just have to emit linkage for 1553 // those labels. 1554 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1555 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1556 assert(MAI->hasVisibilityOnlyWithLinkage() && 1557 "Visibility should be handled with emitLinkage() on AIX."); 1558 emitLinkage(&GIS, Name); 1559 // If it's a function, also emit linkage for aliases of function entry 1560 // point. 1561 if (IsFunction) 1562 emitLinkage(&GIS, 1563 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1564 return; 1565 } 1566 1567 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1568 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1569 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1570 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1571 else 1572 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1573 1574 // Set the symbol type to function if the alias has a function type. 1575 // This affects codegen when the aliasee is not a function. 1576 if (IsFunction) 1577 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1578 ? MCSA_ELF_TypeIndFunction 1579 : MCSA_ELF_TypeFunction); 1580 1581 emitVisibility(Name, GIS.getVisibility()); 1582 1583 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1584 1585 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1586 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1587 1588 // Emit the directives as assignments aka .set: 1589 OutStreamer->emitAssignment(Name, Expr); 1590 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1591 if (LocalAlias != Name) 1592 OutStreamer->emitAssignment(LocalAlias, Expr); 1593 1594 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1595 // If the aliasee does not correspond to a symbol in the output, i.e. the 1596 // alias is not of an object or the aliased object is private, then set the 1597 // size of the alias symbol from the type of the alias. We don't do this in 1598 // other situations as the alias and aliasee having differing types but same 1599 // size may be intentional. 1600 const GlobalObject *BaseObject = GA->getBaseObject(); 1601 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1602 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1603 const DataLayout &DL = M.getDataLayout(); 1604 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1605 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1606 } 1607 } 1608 } 1609 1610 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1611 if (!RS.needsSection()) 1612 return; 1613 1614 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1615 1616 Optional<SmallString<128>> Filename; 1617 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1618 Filename = *FilenameRef; 1619 sys::fs::make_absolute(*Filename); 1620 assert(!Filename->empty() && "The filename can't be empty."); 1621 } 1622 1623 std::string Buf; 1624 raw_string_ostream OS(Buf); 1625 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1626 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1627 : RemarkSerializer.metaSerializer(OS); 1628 MetaSerializer->emit(); 1629 1630 // Switch to the remarks section. 1631 MCSection *RemarksSection = 1632 OutContext.getObjectFileInfo()->getRemarksSection(); 1633 OutStreamer->SwitchSection(RemarksSection); 1634 1635 OutStreamer->emitBinaryData(OS.str()); 1636 } 1637 1638 bool AsmPrinter::doFinalization(Module &M) { 1639 // Set the MachineFunction to nullptr so that we can catch attempted 1640 // accesses to MF specific features at the module level and so that 1641 // we can conditionalize accesses based on whether or not it is nullptr. 1642 MF = nullptr; 1643 1644 // Gather all GOT equivalent globals in the module. We really need two 1645 // passes over the globals: one to compute and another to avoid its emission 1646 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1647 // where the got equivalent shows up before its use. 1648 computeGlobalGOTEquivs(M); 1649 1650 // Emit global variables. 1651 for (const auto &G : M.globals()) 1652 emitGlobalVariable(&G); 1653 1654 // Emit remaining GOT equivalent globals. 1655 emitGlobalGOTEquivs(); 1656 1657 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1658 1659 // Emit linkage(XCOFF) and visibility info for declarations 1660 for (const Function &F : M) { 1661 if (!F.isDeclarationForLinker()) 1662 continue; 1663 1664 MCSymbol *Name = getSymbol(&F); 1665 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1666 1667 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1668 GlobalValue::VisibilityTypes V = F.getVisibility(); 1669 if (V == GlobalValue::DefaultVisibility) 1670 continue; 1671 1672 emitVisibility(Name, V, false); 1673 continue; 1674 } 1675 1676 if (F.isIntrinsic()) 1677 continue; 1678 1679 // Handle the XCOFF case. 1680 // Variable `Name` is the function descriptor symbol (see above). Get the 1681 // function entry point symbol. 1682 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1683 // Emit linkage for the function entry point. 1684 emitLinkage(&F, FnEntryPointSym); 1685 1686 // Emit linkage for the function descriptor. 1687 emitLinkage(&F, Name); 1688 } 1689 1690 // Emit the remarks section contents. 1691 // FIXME: Figure out when is the safest time to emit this section. It should 1692 // not come after debug info. 1693 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1694 emitRemarksSection(*RS); 1695 1696 TLOF.emitModuleMetadata(*OutStreamer, M); 1697 1698 if (TM.getTargetTriple().isOSBinFormatELF()) { 1699 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1700 1701 // Output stubs for external and common global variables. 1702 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1703 if (!Stubs.empty()) { 1704 OutStreamer->SwitchSection(TLOF.getDataSection()); 1705 const DataLayout &DL = M.getDataLayout(); 1706 1707 emitAlignment(Align(DL.getPointerSize())); 1708 for (const auto &Stub : Stubs) { 1709 OutStreamer->emitLabel(Stub.first); 1710 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1711 DL.getPointerSize()); 1712 } 1713 } 1714 } 1715 1716 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1717 MachineModuleInfoCOFF &MMICOFF = 1718 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1719 1720 // Output stubs for external and common global variables. 1721 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1722 if (!Stubs.empty()) { 1723 const DataLayout &DL = M.getDataLayout(); 1724 1725 for (const auto &Stub : Stubs) { 1726 SmallString<256> SectionName = StringRef(".rdata$"); 1727 SectionName += Stub.first->getName(); 1728 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1729 SectionName, 1730 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1731 COFF::IMAGE_SCN_LNK_COMDAT, 1732 SectionKind::getReadOnly(), Stub.first->getName(), 1733 COFF::IMAGE_COMDAT_SELECT_ANY)); 1734 emitAlignment(Align(DL.getPointerSize())); 1735 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1736 OutStreamer->emitLabel(Stub.first); 1737 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1738 DL.getPointerSize()); 1739 } 1740 } 1741 } 1742 1743 // Finalize debug and EH information. 1744 for (const HandlerInfo &HI : Handlers) { 1745 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1746 HI.TimerGroupDescription, TimePassesIsEnabled); 1747 HI.Handler->endModule(); 1748 } 1749 1750 // This deletes all the ephemeral handlers that AsmPrinter added, while 1751 // keeping all the user-added handlers alive until the AsmPrinter is 1752 // destroyed. 1753 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1754 DD = nullptr; 1755 1756 // If the target wants to know about weak references, print them all. 1757 if (MAI->getWeakRefDirective()) { 1758 // FIXME: This is not lazy, it would be nice to only print weak references 1759 // to stuff that is actually used. Note that doing so would require targets 1760 // to notice uses in operands (due to constant exprs etc). This should 1761 // happen with the MC stuff eventually. 1762 1763 // Print out module-level global objects here. 1764 for (const auto &GO : M.global_objects()) { 1765 if (!GO.hasExternalWeakLinkage()) 1766 continue; 1767 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1768 } 1769 } 1770 1771 // Print aliases in topological order, that is, for each alias a = b, 1772 // b must be printed before a. 1773 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1774 // such an order to generate correct TOC information. 1775 SmallVector<const GlobalAlias *, 16> AliasStack; 1776 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1777 for (const auto &Alias : M.aliases()) { 1778 for (const GlobalAlias *Cur = &Alias; Cur; 1779 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1780 if (!AliasVisited.insert(Cur).second) 1781 break; 1782 AliasStack.push_back(Cur); 1783 } 1784 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1785 emitGlobalIndirectSymbol(M, *AncestorAlias); 1786 AliasStack.clear(); 1787 } 1788 for (const auto &IFunc : M.ifuncs()) 1789 emitGlobalIndirectSymbol(M, IFunc); 1790 1791 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1792 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1793 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1794 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1795 MP->finishAssembly(M, *MI, *this); 1796 1797 // Emit llvm.ident metadata in an '.ident' directive. 1798 emitModuleIdents(M); 1799 1800 // Emit bytes for llvm.commandline metadata. 1801 emitModuleCommandLines(M); 1802 1803 // Emit __morestack address if needed for indirect calls. 1804 if (MMI->usesMorestackAddr()) { 1805 Align Alignment(1); 1806 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1807 getDataLayout(), SectionKind::getReadOnly(), 1808 /*C=*/nullptr, Alignment); 1809 OutStreamer->SwitchSection(ReadOnlySection); 1810 1811 MCSymbol *AddrSymbol = 1812 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1813 OutStreamer->emitLabel(AddrSymbol); 1814 1815 unsigned PtrSize = MAI->getCodePointerSize(); 1816 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1817 PtrSize); 1818 } 1819 1820 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1821 // split-stack is used. 1822 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1823 OutStreamer->SwitchSection( 1824 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1825 if (MMI->hasNosplitStack()) 1826 OutStreamer->SwitchSection( 1827 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1828 } 1829 1830 // If we don't have any trampolines, then we don't require stack memory 1831 // to be executable. Some targets have a directive to declare this. 1832 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1833 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1834 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1835 OutStreamer->SwitchSection(S); 1836 1837 if (TM.Options.EmitAddrsig) { 1838 // Emit address-significance attributes for all globals. 1839 OutStreamer->emitAddrsig(); 1840 for (const GlobalValue &GV : M.global_values()) 1841 if (!GV.use_empty() && !GV.isThreadLocal() && 1842 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1843 !GV.hasAtLeastLocalUnnamedAddr()) 1844 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1845 } 1846 1847 // Emit symbol partition specifications (ELF only). 1848 if (TM.getTargetTriple().isOSBinFormatELF()) { 1849 unsigned UniqueID = 0; 1850 for (const GlobalValue &GV : M.global_values()) { 1851 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1852 GV.getVisibility() != GlobalValue::DefaultVisibility) 1853 continue; 1854 1855 OutStreamer->SwitchSection( 1856 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1857 "", false, ++UniqueID, nullptr)); 1858 OutStreamer->emitBytes(GV.getPartition()); 1859 OutStreamer->emitZeros(1); 1860 OutStreamer->emitValue( 1861 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1862 MAI->getCodePointerSize()); 1863 } 1864 } 1865 1866 // Allow the target to emit any magic that it wants at the end of the file, 1867 // after everything else has gone out. 1868 emitEndOfAsmFile(M); 1869 1870 MMI = nullptr; 1871 1872 OutStreamer->Finish(); 1873 OutStreamer->reset(); 1874 OwnedMLI.reset(); 1875 OwnedMDT.reset(); 1876 1877 return false; 1878 } 1879 1880 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1881 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1882 if (Res.second) 1883 Res.first->second = createTempSymbol("exception"); 1884 return Res.first->second; 1885 } 1886 1887 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1888 this->MF = &MF; 1889 const Function &F = MF.getFunction(); 1890 1891 // Get the function symbol. 1892 if (!MAI->needsFunctionDescriptors()) { 1893 CurrentFnSym = getSymbol(&MF.getFunction()); 1894 } else { 1895 assert(TM.getTargetTriple().isOSAIX() && 1896 "Only AIX uses the function descriptor hooks."); 1897 // AIX is unique here in that the name of the symbol emitted for the 1898 // function body does not have the same name as the source function's 1899 // C-linkage name. 1900 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1901 " initalized first."); 1902 1903 // Get the function entry point symbol. 1904 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1905 } 1906 1907 CurrentFnSymForSize = CurrentFnSym; 1908 CurrentFnBegin = nullptr; 1909 CurrentSectionBeginSym = nullptr; 1910 MBBSectionRanges.clear(); 1911 MBBSectionExceptionSyms.clear(); 1912 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1913 if (F.hasFnAttribute("patchable-function-entry") || 1914 F.hasFnAttribute("function-instrument") || 1915 F.hasFnAttribute("xray-instruction-threshold") || 1916 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1917 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1918 CurrentFnBegin = createTempSymbol("func_begin"); 1919 if (NeedsLocalForSize) 1920 CurrentFnSymForSize = CurrentFnBegin; 1921 } 1922 1923 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1924 } 1925 1926 namespace { 1927 1928 // Keep track the alignment, constpool entries per Section. 1929 struct SectionCPs { 1930 MCSection *S; 1931 Align Alignment; 1932 SmallVector<unsigned, 4> CPEs; 1933 1934 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1935 }; 1936 1937 } // end anonymous namespace 1938 1939 /// EmitConstantPool - Print to the current output stream assembly 1940 /// representations of the constants in the constant pool MCP. This is 1941 /// used to print out constants which have been "spilled to memory" by 1942 /// the code generator. 1943 void AsmPrinter::emitConstantPool() { 1944 const MachineConstantPool *MCP = MF->getConstantPool(); 1945 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1946 if (CP.empty()) return; 1947 1948 // Calculate sections for constant pool entries. We collect entries to go into 1949 // the same section together to reduce amount of section switch statements. 1950 SmallVector<SectionCPs, 4> CPSections; 1951 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1952 const MachineConstantPoolEntry &CPE = CP[i]; 1953 Align Alignment = CPE.getAlign(); 1954 1955 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1956 1957 const Constant *C = nullptr; 1958 if (!CPE.isMachineConstantPoolEntry()) 1959 C = CPE.Val.ConstVal; 1960 1961 MCSection *S = getObjFileLowering().getSectionForConstant( 1962 getDataLayout(), Kind, C, Alignment); 1963 1964 // The number of sections are small, just do a linear search from the 1965 // last section to the first. 1966 bool Found = false; 1967 unsigned SecIdx = CPSections.size(); 1968 while (SecIdx != 0) { 1969 if (CPSections[--SecIdx].S == S) { 1970 Found = true; 1971 break; 1972 } 1973 } 1974 if (!Found) { 1975 SecIdx = CPSections.size(); 1976 CPSections.push_back(SectionCPs(S, Alignment)); 1977 } 1978 1979 if (Alignment > CPSections[SecIdx].Alignment) 1980 CPSections[SecIdx].Alignment = Alignment; 1981 CPSections[SecIdx].CPEs.push_back(i); 1982 } 1983 1984 // Now print stuff into the calculated sections. 1985 const MCSection *CurSection = nullptr; 1986 unsigned Offset = 0; 1987 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1988 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1989 unsigned CPI = CPSections[i].CPEs[j]; 1990 MCSymbol *Sym = GetCPISymbol(CPI); 1991 if (!Sym->isUndefined()) 1992 continue; 1993 1994 if (CurSection != CPSections[i].S) { 1995 OutStreamer->SwitchSection(CPSections[i].S); 1996 emitAlignment(Align(CPSections[i].Alignment)); 1997 CurSection = CPSections[i].S; 1998 Offset = 0; 1999 } 2000 2001 MachineConstantPoolEntry CPE = CP[CPI]; 2002 2003 // Emit inter-object padding for alignment. 2004 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2005 OutStreamer->emitZeros(NewOffset - Offset); 2006 2007 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2008 2009 OutStreamer->emitLabel(Sym); 2010 if (CPE.isMachineConstantPoolEntry()) 2011 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2012 else 2013 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2014 } 2015 } 2016 } 2017 2018 // Print assembly representations of the jump tables used by the current 2019 // function. 2020 void AsmPrinter::emitJumpTableInfo() { 2021 const DataLayout &DL = MF->getDataLayout(); 2022 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2023 if (!MJTI) return; 2024 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2025 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2026 if (JT.empty()) return; 2027 2028 // Pick the directive to use to print the jump table entries, and switch to 2029 // the appropriate section. 2030 const Function &F = MF->getFunction(); 2031 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2032 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2033 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2034 F); 2035 if (JTInDiffSection) { 2036 // Drop it in the readonly section. 2037 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2038 OutStreamer->SwitchSection(ReadOnlySection); 2039 } 2040 2041 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2042 2043 // Jump tables in code sections are marked with a data_region directive 2044 // where that's supported. 2045 if (!JTInDiffSection) 2046 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2047 2048 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2049 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2050 2051 // If this jump table was deleted, ignore it. 2052 if (JTBBs.empty()) continue; 2053 2054 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2055 /// emit a .set directive for each unique entry. 2056 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2057 MAI->doesSetDirectiveSuppressReloc()) { 2058 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2059 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2060 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2061 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2062 const MachineBasicBlock *MBB = JTBBs[ii]; 2063 if (!EmittedSets.insert(MBB).second) 2064 continue; 2065 2066 // .set LJTSet, LBB32-base 2067 const MCExpr *LHS = 2068 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2069 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2070 MCBinaryExpr::createSub(LHS, Base, 2071 OutContext)); 2072 } 2073 } 2074 2075 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2076 // before each jump table. The first label is never referenced, but tells 2077 // the assembler and linker the extents of the jump table object. The 2078 // second label is actually referenced by the code. 2079 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2080 // FIXME: This doesn't have to have any specific name, just any randomly 2081 // named and numbered local label started with 'l' would work. Simplify 2082 // GetJTISymbol. 2083 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2084 2085 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2086 OutStreamer->emitLabel(JTISymbol); 2087 2088 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2089 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2090 } 2091 if (!JTInDiffSection) 2092 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2093 } 2094 2095 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2096 /// current stream. 2097 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2098 const MachineBasicBlock *MBB, 2099 unsigned UID) const { 2100 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2101 const MCExpr *Value = nullptr; 2102 switch (MJTI->getEntryKind()) { 2103 case MachineJumpTableInfo::EK_Inline: 2104 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2105 case MachineJumpTableInfo::EK_Custom32: 2106 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2107 MJTI, MBB, UID, OutContext); 2108 break; 2109 case MachineJumpTableInfo::EK_BlockAddress: 2110 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2111 // .word LBB123 2112 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2113 break; 2114 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2115 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2116 // with a relocation as gp-relative, e.g.: 2117 // .gprel32 LBB123 2118 MCSymbol *MBBSym = MBB->getSymbol(); 2119 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2120 return; 2121 } 2122 2123 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2124 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2125 // with a relocation as gp-relative, e.g.: 2126 // .gpdword LBB123 2127 MCSymbol *MBBSym = MBB->getSymbol(); 2128 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2129 return; 2130 } 2131 2132 case MachineJumpTableInfo::EK_LabelDifference32: { 2133 // Each entry is the address of the block minus the address of the jump 2134 // table. This is used for PIC jump tables where gprel32 is not supported. 2135 // e.g.: 2136 // .word LBB123 - LJTI1_2 2137 // If the .set directive avoids relocations, this is emitted as: 2138 // .set L4_5_set_123, LBB123 - LJTI1_2 2139 // .word L4_5_set_123 2140 if (MAI->doesSetDirectiveSuppressReloc()) { 2141 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2142 OutContext); 2143 break; 2144 } 2145 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2146 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2147 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2148 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2149 break; 2150 } 2151 } 2152 2153 assert(Value && "Unknown entry kind!"); 2154 2155 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2156 OutStreamer->emitValue(Value, EntrySize); 2157 } 2158 2159 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2160 /// special global used by LLVM. If so, emit it and return true, otherwise 2161 /// do nothing and return false. 2162 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2163 if (GV->getName() == "llvm.used") { 2164 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2165 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2166 return true; 2167 } 2168 2169 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2170 if (GV->getSection() == "llvm.metadata" || 2171 GV->hasAvailableExternallyLinkage()) 2172 return true; 2173 2174 if (!GV->hasAppendingLinkage()) return false; 2175 2176 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2177 2178 if (GV->getName() == "llvm.global_ctors") { 2179 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2180 /* isCtor */ true); 2181 2182 return true; 2183 } 2184 2185 if (GV->getName() == "llvm.global_dtors") { 2186 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2187 /* isCtor */ false); 2188 2189 return true; 2190 } 2191 2192 report_fatal_error("unknown special variable"); 2193 } 2194 2195 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2196 /// global in the specified llvm.used list. 2197 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2198 // Should be an array of 'i8*'. 2199 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2200 const GlobalValue *GV = 2201 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2202 if (GV) 2203 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2204 } 2205 } 2206 2207 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2208 const Constant *List, 2209 SmallVector<Structor, 8> &Structors) { 2210 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2211 // the init priority. 2212 if (!isa<ConstantArray>(List)) 2213 return; 2214 2215 // Gather the structors in a form that's convenient for sorting by priority. 2216 for (Value *O : cast<ConstantArray>(List)->operands()) { 2217 auto *CS = cast<ConstantStruct>(O); 2218 if (CS->getOperand(1)->isNullValue()) 2219 break; // Found a null terminator, skip the rest. 2220 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2221 if (!Priority) 2222 continue; // Malformed. 2223 Structors.push_back(Structor()); 2224 Structor &S = Structors.back(); 2225 S.Priority = Priority->getLimitedValue(65535); 2226 S.Func = CS->getOperand(1); 2227 if (!CS->getOperand(2)->isNullValue()) { 2228 if (TM.getTargetTriple().isOSAIX()) 2229 llvm::report_fatal_error( 2230 "associated data of XXStructor list is not yet supported on AIX"); 2231 S.ComdatKey = 2232 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2233 } 2234 } 2235 2236 // Emit the function pointers in the target-specific order 2237 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2238 return L.Priority < R.Priority; 2239 }); 2240 } 2241 2242 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2243 /// priority. 2244 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2245 bool IsCtor) { 2246 SmallVector<Structor, 8> Structors; 2247 preprocessXXStructorList(DL, List, Structors); 2248 if (Structors.empty()) 2249 return; 2250 2251 const Align Align = DL.getPointerPrefAlignment(); 2252 for (Structor &S : Structors) { 2253 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2254 const MCSymbol *KeySym = nullptr; 2255 if (GlobalValue *GV = S.ComdatKey) { 2256 if (GV->isDeclarationForLinker()) 2257 // If the associated variable is not defined in this module 2258 // (it might be available_externally, or have been an 2259 // available_externally definition that was dropped by the 2260 // EliminateAvailableExternally pass), some other TU 2261 // will provide its dynamic initializer. 2262 continue; 2263 2264 KeySym = getSymbol(GV); 2265 } 2266 2267 MCSection *OutputSection = 2268 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2269 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2270 OutStreamer->SwitchSection(OutputSection); 2271 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2272 emitAlignment(Align); 2273 emitXXStructor(DL, S.Func); 2274 } 2275 } 2276 2277 void AsmPrinter::emitModuleIdents(Module &M) { 2278 if (!MAI->hasIdentDirective()) 2279 return; 2280 2281 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2282 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2283 const MDNode *N = NMD->getOperand(i); 2284 assert(N->getNumOperands() == 1 && 2285 "llvm.ident metadata entry can have only one operand"); 2286 const MDString *S = cast<MDString>(N->getOperand(0)); 2287 OutStreamer->emitIdent(S->getString()); 2288 } 2289 } 2290 } 2291 2292 void AsmPrinter::emitModuleCommandLines(Module &M) { 2293 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2294 if (!CommandLine) 2295 return; 2296 2297 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2298 if (!NMD || !NMD->getNumOperands()) 2299 return; 2300 2301 OutStreamer->PushSection(); 2302 OutStreamer->SwitchSection(CommandLine); 2303 OutStreamer->emitZeros(1); 2304 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2305 const MDNode *N = NMD->getOperand(i); 2306 assert(N->getNumOperands() == 1 && 2307 "llvm.commandline metadata entry can have only one operand"); 2308 const MDString *S = cast<MDString>(N->getOperand(0)); 2309 OutStreamer->emitBytes(S->getString()); 2310 OutStreamer->emitZeros(1); 2311 } 2312 OutStreamer->PopSection(); 2313 } 2314 2315 //===--------------------------------------------------------------------===// 2316 // Emission and print routines 2317 // 2318 2319 /// Emit a byte directive and value. 2320 /// 2321 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2322 2323 /// Emit a short directive and value. 2324 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2325 2326 /// Emit a long directive and value. 2327 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2328 2329 /// Emit a long long directive and value. 2330 void AsmPrinter::emitInt64(uint64_t Value) const { 2331 OutStreamer->emitInt64(Value); 2332 } 2333 2334 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2335 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2336 /// .set if it avoids relocations. 2337 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2338 unsigned Size) const { 2339 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2340 } 2341 2342 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2343 /// where the size in bytes of the directive is specified by Size and Label 2344 /// specifies the label. This implicitly uses .set if it is available. 2345 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2346 unsigned Size, 2347 bool IsSectionRelative) const { 2348 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2349 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2350 if (Size > 4) 2351 OutStreamer->emitZeros(Size - 4); 2352 return; 2353 } 2354 2355 // Emit Label+Offset (or just Label if Offset is zero) 2356 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2357 if (Offset) 2358 Expr = MCBinaryExpr::createAdd( 2359 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2360 2361 OutStreamer->emitValue(Expr, Size); 2362 } 2363 2364 //===----------------------------------------------------------------------===// 2365 2366 // EmitAlignment - Emit an alignment directive to the specified power of 2367 // two boundary. If a global value is specified, and if that global has 2368 // an explicit alignment requested, it will override the alignment request 2369 // if required for correctness. 2370 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2371 if (GV) 2372 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2373 2374 if (Alignment == Align(1)) 2375 return; // 1-byte aligned: no need to emit alignment. 2376 2377 if (getCurrentSection()->getKind().isText()) 2378 OutStreamer->emitCodeAlignment(Alignment.value()); 2379 else 2380 OutStreamer->emitValueToAlignment(Alignment.value()); 2381 } 2382 2383 //===----------------------------------------------------------------------===// 2384 // Constant emission. 2385 //===----------------------------------------------------------------------===// 2386 2387 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2388 MCContext &Ctx = OutContext; 2389 2390 if (CV->isNullValue() || isa<UndefValue>(CV)) 2391 return MCConstantExpr::create(0, Ctx); 2392 2393 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2394 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2395 2396 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2397 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2398 2399 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2400 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2401 2402 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2403 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2404 2405 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2406 if (!CE) { 2407 llvm_unreachable("Unknown constant value to lower!"); 2408 } 2409 2410 switch (CE->getOpcode()) { 2411 case Instruction::AddrSpaceCast: { 2412 const Constant *Op = CE->getOperand(0); 2413 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2414 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2415 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2416 return lowerConstant(Op); 2417 2418 // Fallthrough to error. 2419 LLVM_FALLTHROUGH; 2420 } 2421 default: { 2422 // If the code isn't optimized, there may be outstanding folding 2423 // opportunities. Attempt to fold the expression using DataLayout as a 2424 // last resort before giving up. 2425 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2426 if (C != CE) 2427 return lowerConstant(C); 2428 2429 // Otherwise report the problem to the user. 2430 std::string S; 2431 raw_string_ostream OS(S); 2432 OS << "Unsupported expression in static initializer: "; 2433 CE->printAsOperand(OS, /*PrintType=*/false, 2434 !MF ? nullptr : MF->getFunction().getParent()); 2435 report_fatal_error(OS.str()); 2436 } 2437 case Instruction::GetElementPtr: { 2438 // Generate a symbolic expression for the byte address 2439 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2440 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2441 2442 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2443 if (!OffsetAI) 2444 return Base; 2445 2446 int64_t Offset = OffsetAI.getSExtValue(); 2447 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2448 Ctx); 2449 } 2450 2451 case Instruction::Trunc: 2452 // We emit the value and depend on the assembler to truncate the generated 2453 // expression properly. This is important for differences between 2454 // blockaddress labels. Since the two labels are in the same function, it 2455 // is reasonable to treat their delta as a 32-bit value. 2456 LLVM_FALLTHROUGH; 2457 case Instruction::BitCast: 2458 return lowerConstant(CE->getOperand(0)); 2459 2460 case Instruction::IntToPtr: { 2461 const DataLayout &DL = getDataLayout(); 2462 2463 // Handle casts to pointers by changing them into casts to the appropriate 2464 // integer type. This promotes constant folding and simplifies this code. 2465 Constant *Op = CE->getOperand(0); 2466 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2467 false/*ZExt*/); 2468 return lowerConstant(Op); 2469 } 2470 2471 case Instruction::PtrToInt: { 2472 const DataLayout &DL = getDataLayout(); 2473 2474 // Support only foldable casts to/from pointers that can be eliminated by 2475 // changing the pointer to the appropriately sized integer type. 2476 Constant *Op = CE->getOperand(0); 2477 Type *Ty = CE->getType(); 2478 2479 const MCExpr *OpExpr = lowerConstant(Op); 2480 2481 // We can emit the pointer value into this slot if the slot is an 2482 // integer slot equal to the size of the pointer. 2483 // 2484 // If the pointer is larger than the resultant integer, then 2485 // as with Trunc just depend on the assembler to truncate it. 2486 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2487 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2488 return OpExpr; 2489 2490 // Otherwise the pointer is smaller than the resultant integer, mask off 2491 // the high bits so we are sure to get a proper truncation if the input is 2492 // a constant expr. 2493 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2494 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2495 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2496 } 2497 2498 case Instruction::Sub: { 2499 GlobalValue *LHSGV; 2500 APInt LHSOffset; 2501 DSOLocalEquivalent *DSOEquiv; 2502 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2503 getDataLayout(), &DSOEquiv)) { 2504 GlobalValue *RHSGV; 2505 APInt RHSOffset; 2506 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2507 getDataLayout())) { 2508 const MCExpr *RelocExpr = 2509 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2510 if (!RelocExpr) { 2511 const MCExpr *LHSExpr = 2512 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2513 if (DSOEquiv && 2514 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2515 LHSExpr = 2516 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2517 RelocExpr = MCBinaryExpr::createSub( 2518 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2519 } 2520 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2521 if (Addend != 0) 2522 RelocExpr = MCBinaryExpr::createAdd( 2523 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2524 return RelocExpr; 2525 } 2526 } 2527 } 2528 // else fallthrough 2529 LLVM_FALLTHROUGH; 2530 2531 // The MC library also has a right-shift operator, but it isn't consistently 2532 // signed or unsigned between different targets. 2533 case Instruction::Add: 2534 case Instruction::Mul: 2535 case Instruction::SDiv: 2536 case Instruction::SRem: 2537 case Instruction::Shl: 2538 case Instruction::And: 2539 case Instruction::Or: 2540 case Instruction::Xor: { 2541 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2542 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2543 switch (CE->getOpcode()) { 2544 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2545 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2546 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2547 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2548 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2549 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2550 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2551 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2552 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2553 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2554 } 2555 } 2556 } 2557 } 2558 2559 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2560 AsmPrinter &AP, 2561 const Constant *BaseCV = nullptr, 2562 uint64_t Offset = 0); 2563 2564 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2565 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2566 2567 /// isRepeatedByteSequence - Determine whether the given value is 2568 /// composed of a repeated sequence of identical bytes and return the 2569 /// byte value. If it is not a repeated sequence, return -1. 2570 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2571 StringRef Data = V->getRawDataValues(); 2572 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2573 char C = Data[0]; 2574 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2575 if (Data[i] != C) return -1; 2576 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2577 } 2578 2579 /// isRepeatedByteSequence - Determine whether the given value is 2580 /// composed of a repeated sequence of identical bytes and return the 2581 /// byte value. If it is not a repeated sequence, return -1. 2582 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2583 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2584 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2585 assert(Size % 8 == 0); 2586 2587 // Extend the element to take zero padding into account. 2588 APInt Value = CI->getValue().zextOrSelf(Size); 2589 if (!Value.isSplat(8)) 2590 return -1; 2591 2592 return Value.zextOrTrunc(8).getZExtValue(); 2593 } 2594 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2595 // Make sure all array elements are sequences of the same repeated 2596 // byte. 2597 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2598 Constant *Op0 = CA->getOperand(0); 2599 int Byte = isRepeatedByteSequence(Op0, DL); 2600 if (Byte == -1) 2601 return -1; 2602 2603 // All array elements must be equal. 2604 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2605 if (CA->getOperand(i) != Op0) 2606 return -1; 2607 return Byte; 2608 } 2609 2610 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2611 return isRepeatedByteSequence(CDS); 2612 2613 return -1; 2614 } 2615 2616 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2617 const ConstantDataSequential *CDS, 2618 AsmPrinter &AP) { 2619 // See if we can aggregate this into a .fill, if so, emit it as such. 2620 int Value = isRepeatedByteSequence(CDS, DL); 2621 if (Value != -1) { 2622 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2623 // Don't emit a 1-byte object as a .fill. 2624 if (Bytes > 1) 2625 return AP.OutStreamer->emitFill(Bytes, Value); 2626 } 2627 2628 // If this can be emitted with .ascii/.asciz, emit it as such. 2629 if (CDS->isString()) 2630 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2631 2632 // Otherwise, emit the values in successive locations. 2633 unsigned ElementByteSize = CDS->getElementByteSize(); 2634 if (isa<IntegerType>(CDS->getElementType())) { 2635 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2636 if (AP.isVerbose()) 2637 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2638 CDS->getElementAsInteger(i)); 2639 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2640 ElementByteSize); 2641 } 2642 } else { 2643 Type *ET = CDS->getElementType(); 2644 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2645 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2646 } 2647 2648 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2649 unsigned EmittedSize = 2650 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2651 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2652 if (unsigned Padding = Size - EmittedSize) 2653 AP.OutStreamer->emitZeros(Padding); 2654 } 2655 2656 static void emitGlobalConstantArray(const DataLayout &DL, 2657 const ConstantArray *CA, AsmPrinter &AP, 2658 const Constant *BaseCV, uint64_t Offset) { 2659 // See if we can aggregate some values. Make sure it can be 2660 // represented as a series of bytes of the constant value. 2661 int Value = isRepeatedByteSequence(CA, DL); 2662 2663 if (Value != -1) { 2664 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2665 AP.OutStreamer->emitFill(Bytes, Value); 2666 } 2667 else { 2668 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2669 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2670 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2671 } 2672 } 2673 } 2674 2675 static void emitGlobalConstantVector(const DataLayout &DL, 2676 const ConstantVector *CV, AsmPrinter &AP) { 2677 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2678 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2679 2680 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2681 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2682 CV->getType()->getNumElements(); 2683 if (unsigned Padding = Size - EmittedSize) 2684 AP.OutStreamer->emitZeros(Padding); 2685 } 2686 2687 static void emitGlobalConstantStruct(const DataLayout &DL, 2688 const ConstantStruct *CS, AsmPrinter &AP, 2689 const Constant *BaseCV, uint64_t Offset) { 2690 // Print the fields in successive locations. Pad to align if needed! 2691 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2692 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2693 uint64_t SizeSoFar = 0; 2694 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2695 const Constant *Field = CS->getOperand(i); 2696 2697 // Print the actual field value. 2698 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2699 2700 // Check if padding is needed and insert one or more 0s. 2701 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2702 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2703 - Layout->getElementOffset(i)) - FieldSize; 2704 SizeSoFar += FieldSize + PadSize; 2705 2706 // Insert padding - this may include padding to increase the size of the 2707 // current field up to the ABI size (if the struct is not packed) as well 2708 // as padding to ensure that the next field starts at the right offset. 2709 AP.OutStreamer->emitZeros(PadSize); 2710 } 2711 assert(SizeSoFar == Layout->getSizeInBytes() && 2712 "Layout of constant struct may be incorrect!"); 2713 } 2714 2715 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2716 assert(ET && "Unknown float type"); 2717 APInt API = APF.bitcastToAPInt(); 2718 2719 // First print a comment with what we think the original floating-point value 2720 // should have been. 2721 if (AP.isVerbose()) { 2722 SmallString<8> StrVal; 2723 APF.toString(StrVal); 2724 ET->print(AP.OutStreamer->GetCommentOS()); 2725 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2726 } 2727 2728 // Now iterate through the APInt chunks, emitting them in endian-correct 2729 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2730 // floats). 2731 unsigned NumBytes = API.getBitWidth() / 8; 2732 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2733 const uint64_t *p = API.getRawData(); 2734 2735 // PPC's long double has odd notions of endianness compared to how LLVM 2736 // handles it: p[0] goes first for *big* endian on PPC. 2737 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2738 int Chunk = API.getNumWords() - 1; 2739 2740 if (TrailingBytes) 2741 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2742 2743 for (; Chunk >= 0; --Chunk) 2744 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2745 } else { 2746 unsigned Chunk; 2747 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2748 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2749 2750 if (TrailingBytes) 2751 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2752 } 2753 2754 // Emit the tail padding for the long double. 2755 const DataLayout &DL = AP.getDataLayout(); 2756 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2757 } 2758 2759 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2760 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2761 } 2762 2763 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2764 const DataLayout &DL = AP.getDataLayout(); 2765 unsigned BitWidth = CI->getBitWidth(); 2766 2767 // Copy the value as we may massage the layout for constants whose bit width 2768 // is not a multiple of 64-bits. 2769 APInt Realigned(CI->getValue()); 2770 uint64_t ExtraBits = 0; 2771 unsigned ExtraBitsSize = BitWidth & 63; 2772 2773 if (ExtraBitsSize) { 2774 // The bit width of the data is not a multiple of 64-bits. 2775 // The extra bits are expected to be at the end of the chunk of the memory. 2776 // Little endian: 2777 // * Nothing to be done, just record the extra bits to emit. 2778 // Big endian: 2779 // * Record the extra bits to emit. 2780 // * Realign the raw data to emit the chunks of 64-bits. 2781 if (DL.isBigEndian()) { 2782 // Basically the structure of the raw data is a chunk of 64-bits cells: 2783 // 0 1 BitWidth / 64 2784 // [chunk1][chunk2] ... [chunkN]. 2785 // The most significant chunk is chunkN and it should be emitted first. 2786 // However, due to the alignment issue chunkN contains useless bits. 2787 // Realign the chunks so that they contain only useful information: 2788 // ExtraBits 0 1 (BitWidth / 64) - 1 2789 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2790 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2791 ExtraBits = Realigned.getRawData()[0] & 2792 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2793 Realigned.lshrInPlace(ExtraBitsSize); 2794 } else 2795 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2796 } 2797 2798 // We don't expect assemblers to support integer data directives 2799 // for more than 64 bits, so we emit the data in at most 64-bit 2800 // quantities at a time. 2801 const uint64_t *RawData = Realigned.getRawData(); 2802 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2803 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2804 AP.OutStreamer->emitIntValue(Val, 8); 2805 } 2806 2807 if (ExtraBitsSize) { 2808 // Emit the extra bits after the 64-bits chunks. 2809 2810 // Emit a directive that fills the expected size. 2811 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2812 Size -= (BitWidth / 64) * 8; 2813 assert(Size && Size * 8 >= ExtraBitsSize && 2814 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2815 == ExtraBits && "Directive too small for extra bits."); 2816 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2817 } 2818 } 2819 2820 /// Transform a not absolute MCExpr containing a reference to a GOT 2821 /// equivalent global, by a target specific GOT pc relative access to the 2822 /// final symbol. 2823 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2824 const Constant *BaseCst, 2825 uint64_t Offset) { 2826 // The global @foo below illustrates a global that uses a got equivalent. 2827 // 2828 // @bar = global i32 42 2829 // @gotequiv = private unnamed_addr constant i32* @bar 2830 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2831 // i64 ptrtoint (i32* @foo to i64)) 2832 // to i32) 2833 // 2834 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2835 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2836 // form: 2837 // 2838 // foo = cstexpr, where 2839 // cstexpr := <gotequiv> - "." + <cst> 2840 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2841 // 2842 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2843 // 2844 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2845 // gotpcrelcst := <offset from @foo base> + <cst> 2846 MCValue MV; 2847 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2848 return; 2849 const MCSymbolRefExpr *SymA = MV.getSymA(); 2850 if (!SymA) 2851 return; 2852 2853 // Check that GOT equivalent symbol is cached. 2854 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2855 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2856 return; 2857 2858 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2859 if (!BaseGV) 2860 return; 2861 2862 // Check for a valid base symbol 2863 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2864 const MCSymbolRefExpr *SymB = MV.getSymB(); 2865 2866 if (!SymB || BaseSym != &SymB->getSymbol()) 2867 return; 2868 2869 // Make sure to match: 2870 // 2871 // gotpcrelcst := <offset from @foo base> + <cst> 2872 // 2873 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2874 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2875 // if the target knows how to encode it. 2876 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2877 if (GOTPCRelCst < 0) 2878 return; 2879 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2880 return; 2881 2882 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2883 // 2884 // bar: 2885 // .long 42 2886 // gotequiv: 2887 // .quad bar 2888 // foo: 2889 // .long gotequiv - "." + <cst> 2890 // 2891 // is replaced by the target specific equivalent to: 2892 // 2893 // bar: 2894 // .long 42 2895 // foo: 2896 // .long bar@GOTPCREL+<gotpcrelcst> 2897 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2898 const GlobalVariable *GV = Result.first; 2899 int NumUses = (int)Result.second; 2900 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2901 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2902 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2903 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2904 2905 // Update GOT equivalent usage information 2906 --NumUses; 2907 if (NumUses >= 0) 2908 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2909 } 2910 2911 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2912 AsmPrinter &AP, const Constant *BaseCV, 2913 uint64_t Offset) { 2914 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2915 2916 // Globals with sub-elements such as combinations of arrays and structs 2917 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2918 // constant symbol base and the current position with BaseCV and Offset. 2919 if (!BaseCV && CV->hasOneUse()) 2920 BaseCV = dyn_cast<Constant>(CV->user_back()); 2921 2922 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2923 return AP.OutStreamer->emitZeros(Size); 2924 2925 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2926 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2927 2928 if (StoreSize <= 8) { 2929 if (AP.isVerbose()) 2930 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2931 CI->getZExtValue()); 2932 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2933 } else { 2934 emitGlobalConstantLargeInt(CI, AP); 2935 } 2936 2937 // Emit tail padding if needed 2938 if (Size != StoreSize) 2939 AP.OutStreamer->emitZeros(Size - StoreSize); 2940 2941 return; 2942 } 2943 2944 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2945 return emitGlobalConstantFP(CFP, AP); 2946 2947 if (isa<ConstantPointerNull>(CV)) { 2948 AP.OutStreamer->emitIntValue(0, Size); 2949 return; 2950 } 2951 2952 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2953 return emitGlobalConstantDataSequential(DL, CDS, AP); 2954 2955 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2956 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2957 2958 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2959 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2960 2961 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2962 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2963 // vectors). 2964 if (CE->getOpcode() == Instruction::BitCast) 2965 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2966 2967 if (Size > 8) { 2968 // If the constant expression's size is greater than 64-bits, then we have 2969 // to emit the value in chunks. Try to constant fold the value and emit it 2970 // that way. 2971 Constant *New = ConstantFoldConstant(CE, DL); 2972 if (New != CE) 2973 return emitGlobalConstantImpl(DL, New, AP); 2974 } 2975 } 2976 2977 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2978 return emitGlobalConstantVector(DL, V, AP); 2979 2980 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2981 // thread the streamer with EmitValue. 2982 const MCExpr *ME = AP.lowerConstant(CV); 2983 2984 // Since lowerConstant already folded and got rid of all IR pointer and 2985 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2986 // directly. 2987 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2988 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2989 2990 AP.OutStreamer->emitValue(ME, Size); 2991 } 2992 2993 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2994 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2995 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2996 if (Size) 2997 emitGlobalConstantImpl(DL, CV, *this); 2998 else if (MAI->hasSubsectionsViaSymbols()) { 2999 // If the global has zero size, emit a single byte so that two labels don't 3000 // look like they are at the same location. 3001 OutStreamer->emitIntValue(0, 1); 3002 } 3003 } 3004 3005 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3006 // Target doesn't support this yet! 3007 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3008 } 3009 3010 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3011 if (Offset > 0) 3012 OS << '+' << Offset; 3013 else if (Offset < 0) 3014 OS << Offset; 3015 } 3016 3017 void AsmPrinter::emitNops(unsigned N) { 3018 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3019 for (; N; --N) 3020 EmitToStreamer(*OutStreamer, Nop); 3021 } 3022 3023 //===----------------------------------------------------------------------===// 3024 // Symbol Lowering Routines. 3025 //===----------------------------------------------------------------------===// 3026 3027 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3028 return OutContext.createTempSymbol(Name, true); 3029 } 3030 3031 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3032 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3033 } 3034 3035 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3036 return MMI->getAddrLabelSymbol(BB); 3037 } 3038 3039 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3040 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3041 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3042 const MachineConstantPoolEntry &CPE = 3043 MF->getConstantPool()->getConstants()[CPID]; 3044 if (!CPE.isMachineConstantPoolEntry()) { 3045 const DataLayout &DL = MF->getDataLayout(); 3046 SectionKind Kind = CPE.getSectionKind(&DL); 3047 const Constant *C = CPE.Val.ConstVal; 3048 Align Alignment = CPE.Alignment; 3049 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3050 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3051 Alignment))) { 3052 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3053 if (Sym->isUndefined()) 3054 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3055 return Sym; 3056 } 3057 } 3058 } 3059 } 3060 3061 const DataLayout &DL = getDataLayout(); 3062 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3063 "CPI" + Twine(getFunctionNumber()) + "_" + 3064 Twine(CPID)); 3065 } 3066 3067 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3068 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3069 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3070 } 3071 3072 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3073 /// FIXME: privatize to AsmPrinter. 3074 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3075 const DataLayout &DL = getDataLayout(); 3076 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3077 Twine(getFunctionNumber()) + "_" + 3078 Twine(UID) + "_set_" + Twine(MBBID)); 3079 } 3080 3081 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3082 StringRef Suffix) const { 3083 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3084 } 3085 3086 /// Return the MCSymbol for the specified ExternalSymbol. 3087 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3088 SmallString<60> NameStr; 3089 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3090 return OutContext.getOrCreateSymbol(NameStr); 3091 } 3092 3093 /// PrintParentLoopComment - Print comments about parent loops of this one. 3094 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3095 unsigned FunctionNumber) { 3096 if (!Loop) return; 3097 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3098 OS.indent(Loop->getLoopDepth()*2) 3099 << "Parent Loop BB" << FunctionNumber << "_" 3100 << Loop->getHeader()->getNumber() 3101 << " Depth=" << Loop->getLoopDepth() << '\n'; 3102 } 3103 3104 /// PrintChildLoopComment - Print comments about child loops within 3105 /// the loop for this basic block, with nesting. 3106 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3107 unsigned FunctionNumber) { 3108 // Add child loop information 3109 for (const MachineLoop *CL : *Loop) { 3110 OS.indent(CL->getLoopDepth()*2) 3111 << "Child Loop BB" << FunctionNumber << "_" 3112 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3113 << '\n'; 3114 PrintChildLoopComment(OS, CL, FunctionNumber); 3115 } 3116 } 3117 3118 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3119 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3120 const MachineLoopInfo *LI, 3121 const AsmPrinter &AP) { 3122 // Add loop depth information 3123 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3124 if (!Loop) return; 3125 3126 MachineBasicBlock *Header = Loop->getHeader(); 3127 assert(Header && "No header for loop"); 3128 3129 // If this block is not a loop header, just print out what is the loop header 3130 // and return. 3131 if (Header != &MBB) { 3132 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3133 Twine(AP.getFunctionNumber())+"_" + 3134 Twine(Loop->getHeader()->getNumber())+ 3135 " Depth="+Twine(Loop->getLoopDepth())); 3136 return; 3137 } 3138 3139 // Otherwise, it is a loop header. Print out information about child and 3140 // parent loops. 3141 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3142 3143 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3144 3145 OS << "=>"; 3146 OS.indent(Loop->getLoopDepth()*2-2); 3147 3148 OS << "This "; 3149 if (Loop->isInnermost()) 3150 OS << "Inner "; 3151 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3152 3153 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3154 } 3155 3156 /// emitBasicBlockStart - This method prints the label for the specified 3157 /// MachineBasicBlock, an alignment (if present) and a comment describing 3158 /// it if appropriate. 3159 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3160 // End the previous funclet and start a new one. 3161 if (MBB.isEHFuncletEntry()) { 3162 for (const HandlerInfo &HI : Handlers) { 3163 HI.Handler->endFunclet(); 3164 HI.Handler->beginFunclet(MBB); 3165 } 3166 } 3167 3168 // Emit an alignment directive for this block, if needed. 3169 const Align Alignment = MBB.getAlignment(); 3170 if (Alignment != Align(1)) 3171 emitAlignment(Alignment); 3172 3173 // Switch to a new section if this basic block must begin a section. The 3174 // entry block is always placed in the function section and is handled 3175 // separately. 3176 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3177 OutStreamer->SwitchSection( 3178 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3179 MBB, TM)); 3180 CurrentSectionBeginSym = MBB.getSymbol(); 3181 } 3182 3183 // If the block has its address taken, emit any labels that were used to 3184 // reference the block. It is possible that there is more than one label 3185 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3186 // the references were generated. 3187 if (MBB.hasAddressTaken()) { 3188 const BasicBlock *BB = MBB.getBasicBlock(); 3189 if (isVerbose()) 3190 OutStreamer->AddComment("Block address taken"); 3191 3192 // MBBs can have their address taken as part of CodeGen without having 3193 // their corresponding BB's address taken in IR 3194 if (BB->hasAddressTaken()) 3195 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3196 OutStreamer->emitLabel(Sym); 3197 } 3198 3199 // Print some verbose block comments. 3200 if (isVerbose()) { 3201 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3202 if (BB->hasName()) { 3203 BB->printAsOperand(OutStreamer->GetCommentOS(), 3204 /*PrintType=*/false, BB->getModule()); 3205 OutStreamer->GetCommentOS() << '\n'; 3206 } 3207 } 3208 3209 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3210 emitBasicBlockLoopComments(MBB, MLI, *this); 3211 } 3212 3213 // Print the main label for the block. 3214 if (shouldEmitLabelForBasicBlock(MBB)) { 3215 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3216 OutStreamer->AddComment("Label of block must be emitted"); 3217 OutStreamer->emitLabel(MBB.getSymbol()); 3218 } else { 3219 if (isVerbose()) { 3220 // NOTE: Want this comment at start of line, don't emit with AddComment. 3221 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3222 false); 3223 } 3224 } 3225 3226 if (MBB.isEHCatchretTarget() && 3227 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3228 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3229 } 3230 3231 // With BB sections, each basic block must handle CFI information on its own 3232 // if it begins a section (Entry block is handled separately by 3233 // AsmPrinterHandler::beginFunction). 3234 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3235 for (const HandlerInfo &HI : Handlers) 3236 HI.Handler->beginBasicBlock(MBB); 3237 } 3238 3239 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3240 // Check if CFI information needs to be updated for this MBB with basic block 3241 // sections. 3242 if (MBB.isEndSection()) 3243 for (const HandlerInfo &HI : Handlers) 3244 HI.Handler->endBasicBlock(MBB); 3245 } 3246 3247 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3248 bool IsDefinition) const { 3249 MCSymbolAttr Attr = MCSA_Invalid; 3250 3251 switch (Visibility) { 3252 default: break; 3253 case GlobalValue::HiddenVisibility: 3254 if (IsDefinition) 3255 Attr = MAI->getHiddenVisibilityAttr(); 3256 else 3257 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3258 break; 3259 case GlobalValue::ProtectedVisibility: 3260 Attr = MAI->getProtectedVisibilityAttr(); 3261 break; 3262 } 3263 3264 if (Attr != MCSA_Invalid) 3265 OutStreamer->emitSymbolAttribute(Sym, Attr); 3266 } 3267 3268 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3269 const MachineBasicBlock &MBB) const { 3270 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3271 // in the labels mode (option `=labels`) and every section beginning in the 3272 // sections mode (`=all` and `=list=`). 3273 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3274 return true; 3275 // A label is needed for any block with at least one predecessor (when that 3276 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3277 // entry, or if a label is forced). 3278 return !MBB.pred_empty() && 3279 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3280 MBB.hasLabelMustBeEmitted()); 3281 } 3282 3283 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3284 /// exactly one predecessor and the control transfer mechanism between 3285 /// the predecessor and this block is a fall-through. 3286 bool AsmPrinter:: 3287 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3288 // If this is a landing pad, it isn't a fall through. If it has no preds, 3289 // then nothing falls through to it. 3290 if (MBB->isEHPad() || MBB->pred_empty()) 3291 return false; 3292 3293 // If there isn't exactly one predecessor, it can't be a fall through. 3294 if (MBB->pred_size() > 1) 3295 return false; 3296 3297 // The predecessor has to be immediately before this block. 3298 MachineBasicBlock *Pred = *MBB->pred_begin(); 3299 if (!Pred->isLayoutSuccessor(MBB)) 3300 return false; 3301 3302 // If the block is completely empty, then it definitely does fall through. 3303 if (Pred->empty()) 3304 return true; 3305 3306 // Check the terminators in the previous blocks 3307 for (const auto &MI : Pred->terminators()) { 3308 // If it is not a simple branch, we are in a table somewhere. 3309 if (!MI.isBranch() || MI.isIndirectBranch()) 3310 return false; 3311 3312 // If we are the operands of one of the branches, this is not a fall 3313 // through. Note that targets with delay slots will usually bundle 3314 // terminators with the delay slot instruction. 3315 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3316 if (OP->isJTI()) 3317 return false; 3318 if (OP->isMBB() && OP->getMBB() == MBB) 3319 return false; 3320 } 3321 } 3322 3323 return true; 3324 } 3325 3326 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3327 if (!S.usesMetadata()) 3328 return nullptr; 3329 3330 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3331 gcp_map_type::iterator GCPI = GCMap.find(&S); 3332 if (GCPI != GCMap.end()) 3333 return GCPI->second.get(); 3334 3335 auto Name = S.getName(); 3336 3337 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3338 GCMetadataPrinterRegistry::entries()) 3339 if (Name == GCMetaPrinter.getName()) { 3340 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3341 GMP->S = &S; 3342 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3343 return IterBool.first->second.get(); 3344 } 3345 3346 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3347 } 3348 3349 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3350 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3351 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3352 bool NeedsDefault = false; 3353 if (MI->begin() == MI->end()) 3354 // No GC strategy, use the default format. 3355 NeedsDefault = true; 3356 else 3357 for (auto &I : *MI) { 3358 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3359 if (MP->emitStackMaps(SM, *this)) 3360 continue; 3361 // The strategy doesn't have printer or doesn't emit custom stack maps. 3362 // Use the default format. 3363 NeedsDefault = true; 3364 } 3365 3366 if (NeedsDefault) 3367 SM.serializeToStackMapSection(); 3368 } 3369 3370 /// Pin vtable to this file. 3371 AsmPrinterHandler::~AsmPrinterHandler() = default; 3372 3373 void AsmPrinterHandler::markFunctionEnd() {} 3374 3375 // In the binary's "xray_instr_map" section, an array of these function entries 3376 // describes each instrumentation point. When XRay patches your code, the index 3377 // into this table will be given to your handler as a patch point identifier. 3378 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3379 auto Kind8 = static_cast<uint8_t>(Kind); 3380 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3381 Out->emitBinaryData( 3382 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3383 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3384 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3385 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3386 Out->emitZeros(Padding); 3387 } 3388 3389 void AsmPrinter::emitXRayTable() { 3390 if (Sleds.empty()) 3391 return; 3392 3393 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3394 const Function &F = MF->getFunction(); 3395 MCSection *InstMap = nullptr; 3396 MCSection *FnSledIndex = nullptr; 3397 const Triple &TT = TM.getTargetTriple(); 3398 // Use PC-relative addresses on all targets. 3399 if (TT.isOSBinFormatELF()) { 3400 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3401 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3402 StringRef GroupName; 3403 if (F.hasComdat()) { 3404 Flags |= ELF::SHF_GROUP; 3405 GroupName = F.getComdat()->getName(); 3406 } 3407 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3408 Flags, 0, GroupName, F.hasComdat(), 3409 MCSection::NonUniqueID, LinkedToSym); 3410 3411 if (!TM.Options.XRayOmitFunctionIndex) 3412 FnSledIndex = OutContext.getELFSection( 3413 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3414 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3415 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3416 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3417 SectionKind::getReadOnlyWithRel()); 3418 if (!TM.Options.XRayOmitFunctionIndex) 3419 FnSledIndex = OutContext.getMachOSection( 3420 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3421 } else { 3422 llvm_unreachable("Unsupported target"); 3423 } 3424 3425 auto WordSizeBytes = MAI->getCodePointerSize(); 3426 3427 // Now we switch to the instrumentation map section. Because this is done 3428 // per-function, we are able to create an index entry that will represent the 3429 // range of sleds associated with a function. 3430 auto &Ctx = OutContext; 3431 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3432 OutStreamer->SwitchSection(InstMap); 3433 OutStreamer->emitLabel(SledsStart); 3434 for (const auto &Sled : Sleds) { 3435 MCSymbol *Dot = Ctx.createTempSymbol(); 3436 OutStreamer->emitLabel(Dot); 3437 OutStreamer->emitValueImpl( 3438 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3439 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3440 WordSizeBytes); 3441 OutStreamer->emitValueImpl( 3442 MCBinaryExpr::createSub( 3443 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3444 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3445 MCConstantExpr::create(WordSizeBytes, Ctx), 3446 Ctx), 3447 Ctx), 3448 WordSizeBytes); 3449 Sled.emit(WordSizeBytes, OutStreamer.get()); 3450 } 3451 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3452 OutStreamer->emitLabel(SledsEnd); 3453 3454 // We then emit a single entry in the index per function. We use the symbols 3455 // that bound the instrumentation map as the range for a specific function. 3456 // Each entry here will be 2 * word size aligned, as we're writing down two 3457 // pointers. This should work for both 32-bit and 64-bit platforms. 3458 if (FnSledIndex) { 3459 OutStreamer->SwitchSection(FnSledIndex); 3460 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3461 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3462 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3463 OutStreamer->SwitchSection(PrevSection); 3464 } 3465 Sleds.clear(); 3466 } 3467 3468 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3469 SledKind Kind, uint8_t Version) { 3470 const Function &F = MI.getMF()->getFunction(); 3471 auto Attr = F.getFnAttribute("function-instrument"); 3472 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3473 bool AlwaysInstrument = 3474 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3475 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3476 Kind = SledKind::LOG_ARGS_ENTER; 3477 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3478 AlwaysInstrument, &F, Version}); 3479 } 3480 3481 void AsmPrinter::emitPatchableFunctionEntries() { 3482 const Function &F = MF->getFunction(); 3483 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3484 (void)F.getFnAttribute("patchable-function-prefix") 3485 .getValueAsString() 3486 .getAsInteger(10, PatchableFunctionPrefix); 3487 (void)F.getFnAttribute("patchable-function-entry") 3488 .getValueAsString() 3489 .getAsInteger(10, PatchableFunctionEntry); 3490 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3491 return; 3492 const unsigned PointerSize = getPointerSize(); 3493 if (TM.getTargetTriple().isOSBinFormatELF()) { 3494 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3495 const MCSymbolELF *LinkedToSym = nullptr; 3496 StringRef GroupName; 3497 3498 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3499 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3500 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3501 Flags |= ELF::SHF_LINK_ORDER; 3502 if (F.hasComdat()) { 3503 Flags |= ELF::SHF_GROUP; 3504 GroupName = F.getComdat()->getName(); 3505 } 3506 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3507 } 3508 OutStreamer->SwitchSection(OutContext.getELFSection( 3509 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3510 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3511 emitAlignment(Align(PointerSize)); 3512 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3513 } 3514 } 3515 3516 uint16_t AsmPrinter::getDwarfVersion() const { 3517 return OutStreamer->getContext().getDwarfVersion(); 3518 } 3519 3520 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3521 OutStreamer->getContext().setDwarfVersion(Version); 3522 } 3523 3524 bool AsmPrinter::isDwarf64() const { 3525 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3526 } 3527 3528 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3529 return dwarf::getDwarfOffsetByteSize( 3530 OutStreamer->getContext().getDwarfFormat()); 3531 } 3532 3533 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3534 return dwarf::getUnitLengthFieldByteSize( 3535 OutStreamer->getContext().getDwarfFormat()); 3536 } 3537