1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/RemarkStreamer.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCStreamer.h"
95 #include "llvm/MC/MCSubtargetInfo.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/MC/MCSymbolELF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/Format.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/Path.h"
110 #include "llvm/Support/TargetRegistry.h"
111 #include "llvm/Support/Timer.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetLoweringObjectFile.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cinttypes>
119 #include <cstdint>
120 #include <iterator>
121 #include <limits>
122 #include <memory>
123 #include <string>
124 #include <utility>
125 #include <vector>
126 
127 using namespace llvm;
128 
129 #define DEBUG_TYPE "asm-printer"
130 
131 static const char *const DWARFGroupName = "dwarf";
132 static const char *const DWARFGroupDescription = "DWARF Emission";
133 static const char *const DbgTimerName = "emit";
134 static const char *const DbgTimerDescription = "Debug Info Emission";
135 static const char *const EHTimerName = "write_exception";
136 static const char *const EHTimerDescription = "DWARF Exception Writer";
137 static const char *const CFGuardName = "Control Flow Guard";
138 static const char *const CFGuardDescription = "Control Flow Guard Tables";
139 static const char *const CodeViewLineTablesGroupName = "linetables";
140 static const char *const CodeViewLineTablesGroupDescription =
141   "CodeView Line Tables";
142 
143 STATISTIC(EmittedInsts, "Number of machine instrs printed");
144 
145 static cl::opt<bool> EnableRemarksSection(
146     "remarks-section",
147     cl::desc("Emit a section containing remark diagnostics metadata"),
148     cl::init(false));
149 
150 char AsmPrinter::ID = 0;
151 
152 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
153 
154 static gcp_map_type &getGCMap(void *&P) {
155   if (!P)
156     P = new gcp_map_type();
157   return *(gcp_map_type*)P;
158 }
159 
160 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
161 /// value in log2 form.  This rounds up to the preferred alignment if possible
162 /// and legal.
163 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
164                                    unsigned InBits = 0) {
165   unsigned NumBits = 0;
166   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
167     NumBits = DL.getPreferredAlignmentLog(GVar);
168 
169   // If InBits is specified, round it to it.
170   if (InBits > NumBits)
171     NumBits = InBits;
172 
173   // If the GV has a specified alignment, take it into account.
174   if (GV->getAlignment() == 0)
175     return NumBits;
176 
177   unsigned GVAlign = Log2_32(GV->getAlignment());
178 
179   // If the GVAlign is larger than NumBits, or if we are required to obey
180   // NumBits because the GV has an assigned section, obey it.
181   if (GVAlign > NumBits || GV->hasSection())
182     NumBits = GVAlign;
183   return NumBits;
184 }
185 
186 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
187     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
188       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
189   VerboseAsm = OutStreamer->isVerboseAsm();
190 }
191 
192 AsmPrinter::~AsmPrinter() {
193   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
194 
195   if (GCMetadataPrinters) {
196     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
197 
198     delete &GCMap;
199     GCMetadataPrinters = nullptr;
200   }
201 }
202 
203 bool AsmPrinter::isPositionIndependent() const {
204   return TM.isPositionIndependent();
205 }
206 
207 /// getFunctionNumber - Return a unique ID for the current function.
208 unsigned AsmPrinter::getFunctionNumber() const {
209   return MF->getFunctionNumber();
210 }
211 
212 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
213   return *TM.getObjFileLowering();
214 }
215 
216 const DataLayout &AsmPrinter::getDataLayout() const {
217   return MMI->getModule()->getDataLayout();
218 }
219 
220 // Do not use the cached DataLayout because some client use it without a Module
221 // (dsymutil, llvm-dwarfdump).
222 unsigned AsmPrinter::getPointerSize() const {
223   return TM.getPointerSize(0); // FIXME: Default address space
224 }
225 
226 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
227   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
228   return MF->getSubtarget<MCSubtargetInfo>();
229 }
230 
231 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
232   S.EmitInstruction(Inst, getSubtargetInfo());
233 }
234 
235 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
236   assert(DD && "Dwarf debug file is not defined.");
237   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
238   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
239 }
240 
241 /// getCurrentSection() - Return the current section we are emitting to.
242 const MCSection *AsmPrinter::getCurrentSection() const {
243   return OutStreamer->getCurrentSectionOnly();
244 }
245 
246 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
247   AU.setPreservesAll();
248   MachineFunctionPass::getAnalysisUsage(AU);
249   AU.addRequired<MachineModuleInfo>();
250   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
251   AU.addRequired<GCModuleInfo>();
252 }
253 
254 bool AsmPrinter::doInitialization(Module &M) {
255   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
256 
257   // Initialize TargetLoweringObjectFile.
258   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
259     .Initialize(OutContext, TM);
260 
261   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
262       .getModuleMetadata(M);
263 
264   OutStreamer->InitSections(false);
265 
266   // Emit the version-min deployment target directive if needed.
267   //
268   // FIXME: If we end up with a collection of these sorts of Darwin-specific
269   // or ELF-specific things, it may make sense to have a platform helper class
270   // that will work with the target helper class. For now keep it here, as the
271   // alternative is duplicated code in each of the target asm printers that
272   // use the directive, where it would need the same conditionalization
273   // anyway.
274   const Triple &Target = TM.getTargetTriple();
275   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
276 
277   // Allow the target to emit any magic that it wants at the start of the file.
278   EmitStartOfAsmFile(M);
279 
280   // Very minimal debug info. It is ignored if we emit actual debug info. If we
281   // don't, this at least helps the user find where a global came from.
282   if (MAI->hasSingleParameterDotFile()) {
283     // .file "foo.c"
284     OutStreamer->EmitFileDirective(
285         llvm::sys::path::filename(M.getSourceFileName()));
286   }
287 
288   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
289   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
290   for (auto &I : *MI)
291     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
292       MP->beginAssembly(M, *MI, *this);
293 
294   // Emit module-level inline asm if it exists.
295   if (!M.getModuleInlineAsm().empty()) {
296     // We're at the module level. Construct MCSubtarget from the default CPU
297     // and target triple.
298     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
299         TM.getTargetTriple().str(), TM.getTargetCPU(),
300         TM.getTargetFeatureString()));
301     OutStreamer->AddComment("Start of file scope inline assembly");
302     OutStreamer->AddBlankLine();
303     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
304                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
305     OutStreamer->AddComment("End of file scope inline assembly");
306     OutStreamer->AddBlankLine();
307   }
308 
309   if (MAI->doesSupportDebugInformation()) {
310     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
311     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
312       Handlers.emplace_back(llvm::make_unique<CodeViewDebug>(this),
313                             DbgTimerName, DbgTimerDescription,
314                             CodeViewLineTablesGroupName,
315                             CodeViewLineTablesGroupDescription);
316     }
317     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
318       DD = new DwarfDebug(this, &M);
319       DD->beginModule();
320       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
321                             DbgTimerDescription, DWARFGroupName,
322                             DWARFGroupDescription);
323     }
324   }
325 
326   switch (MAI->getExceptionHandlingType()) {
327   case ExceptionHandling::SjLj:
328   case ExceptionHandling::DwarfCFI:
329   case ExceptionHandling::ARM:
330     isCFIMoveForDebugging = true;
331     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
332       break;
333     for (auto &F: M.getFunctionList()) {
334       // If the module contains any function with unwind data,
335       // .eh_frame has to be emitted.
336       // Ignore functions that won't get emitted.
337       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
338         isCFIMoveForDebugging = false;
339         break;
340       }
341     }
342     break;
343   default:
344     isCFIMoveForDebugging = false;
345     break;
346   }
347 
348   EHStreamer *ES = nullptr;
349   switch (MAI->getExceptionHandlingType()) {
350   case ExceptionHandling::None:
351     break;
352   case ExceptionHandling::SjLj:
353   case ExceptionHandling::DwarfCFI:
354     ES = new DwarfCFIException(this);
355     break;
356   case ExceptionHandling::ARM:
357     ES = new ARMException(this);
358     break;
359   case ExceptionHandling::WinEH:
360     switch (MAI->getWinEHEncodingType()) {
361     default: llvm_unreachable("unsupported unwinding information encoding");
362     case WinEH::EncodingType::Invalid:
363       break;
364     case WinEH::EncodingType::X86:
365     case WinEH::EncodingType::Itanium:
366       ES = new WinException(this);
367       break;
368     }
369     break;
370   case ExceptionHandling::Wasm:
371     ES = new WasmException(this);
372     break;
373   }
374   if (ES)
375     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
376                           EHTimerDescription, DWARFGroupName,
377                           DWARFGroupDescription);
378 
379   if (mdconst::extract_or_null<ConstantInt>(
380           MMI->getModule()->getModuleFlag("cfguardtable")))
381     Handlers.emplace_back(llvm::make_unique<WinCFGuard>(this), CFGuardName,
382                           CFGuardDescription, DWARFGroupName,
383                           DWARFGroupDescription);
384 
385   return false;
386 }
387 
388 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
389   if (!MAI.hasWeakDefCanBeHiddenDirective())
390     return false;
391 
392   return GV->canBeOmittedFromSymbolTable();
393 }
394 
395 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
396   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
397   switch (Linkage) {
398   case GlobalValue::CommonLinkage:
399   case GlobalValue::LinkOnceAnyLinkage:
400   case GlobalValue::LinkOnceODRLinkage:
401   case GlobalValue::WeakAnyLinkage:
402   case GlobalValue::WeakODRLinkage:
403     if (MAI->hasWeakDefDirective()) {
404       // .globl _foo
405       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
406 
407       if (!canBeHidden(GV, *MAI))
408         // .weak_definition _foo
409         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
410       else
411         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
412     } else if (MAI->hasLinkOnceDirective()) {
413       // .globl _foo
414       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
415       //NOTE: linkonce is handled by the section the symbol was assigned to.
416     } else {
417       // .weak _foo
418       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
419     }
420     return;
421   case GlobalValue::ExternalLinkage:
422     // If external, declare as a global symbol: .globl _foo
423     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
424     return;
425   case GlobalValue::PrivateLinkage:
426   case GlobalValue::InternalLinkage:
427     return;
428   case GlobalValue::AppendingLinkage:
429   case GlobalValue::AvailableExternallyLinkage:
430   case GlobalValue::ExternalWeakLinkage:
431     llvm_unreachable("Should never emit this");
432   }
433   llvm_unreachable("Unknown linkage type!");
434 }
435 
436 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
437                                    const GlobalValue *GV) const {
438   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
439 }
440 
441 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
442   return TM.getSymbol(GV);
443 }
444 
445 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
446 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
447   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
448   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
449          "No emulated TLS variables in the common section");
450 
451   // Never emit TLS variable xyz in emulated TLS model.
452   // The initialization value is in __emutls_t.xyz instead of xyz.
453   if (IsEmuTLSVar)
454     return;
455 
456   if (GV->hasInitializer()) {
457     // Check to see if this is a special global used by LLVM, if so, emit it.
458     if (EmitSpecialLLVMGlobal(GV))
459       return;
460 
461     // Skip the emission of global equivalents. The symbol can be emitted later
462     // on by emitGlobalGOTEquivs in case it turns out to be needed.
463     if (GlobalGOTEquivs.count(getSymbol(GV)))
464       return;
465 
466     if (isVerbose()) {
467       // When printing the control variable __emutls_v.*,
468       // we don't need to print the original TLS variable name.
469       GV->printAsOperand(OutStreamer->GetCommentOS(),
470                      /*PrintType=*/false, GV->getParent());
471       OutStreamer->GetCommentOS() << '\n';
472     }
473   }
474 
475   MCSymbol *GVSym = getSymbol(GV);
476   MCSymbol *EmittedSym = GVSym;
477 
478   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
479   // attributes.
480   // GV's or GVSym's attributes will be used for the EmittedSym.
481   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
482 
483   if (!GV->hasInitializer())   // External globals require no extra code.
484     return;
485 
486   GVSym->redefineIfPossible();
487   if (GVSym->isDefined() || GVSym->isVariable())
488     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
489                        "' is already defined");
490 
491   if (MAI->hasDotTypeDotSizeDirective())
492     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
493 
494   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
495 
496   const DataLayout &DL = GV->getParent()->getDataLayout();
497   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
498 
499   // If the alignment is specified, we *must* obey it.  Overaligning a global
500   // with a specified alignment is a prompt way to break globals emitted to
501   // sections and expected to be contiguous (e.g. ObjC metadata).
502   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
503 
504   for (const HandlerInfo &HI : Handlers) {
505     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
506                        HI.TimerGroupName, HI.TimerGroupDescription,
507                        TimePassesIsEnabled);
508     HI.Handler->setSymbolSize(GVSym, Size);
509   }
510 
511   // Handle common symbols
512   if (GVKind.isCommon()) {
513     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
514     unsigned Align = 1 << AlignLog;
515     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
516       Align = 0;
517 
518     // .comm _foo, 42, 4
519     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
520     return;
521   }
522 
523   // Determine to which section this global should be emitted.
524   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
525 
526   // If we have a bss global going to a section that supports the
527   // zerofill directive, do so here.
528   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
529       TheSection->isVirtualSection()) {
530     if (Size == 0)
531       Size = 1; // zerofill of 0 bytes is undefined.
532     unsigned Align = 1 << AlignLog;
533     EmitLinkage(GV, GVSym);
534     // .zerofill __DATA, __bss, _foo, 400, 5
535     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
536     return;
537   }
538 
539   // If this is a BSS local symbol and we are emitting in the BSS
540   // section use .lcomm/.comm directive.
541   if (GVKind.isBSSLocal() &&
542       getObjFileLowering().getBSSSection() == TheSection) {
543     if (Size == 0)
544       Size = 1; // .comm Foo, 0 is undefined, avoid it.
545     unsigned Align = 1 << AlignLog;
546 
547     // Use .lcomm only if it supports user-specified alignment.
548     // Otherwise, while it would still be correct to use .lcomm in some
549     // cases (e.g. when Align == 1), the external assembler might enfore
550     // some -unknown- default alignment behavior, which could cause
551     // spurious differences between external and integrated assembler.
552     // Prefer to simply fall back to .local / .comm in this case.
553     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
554       // .lcomm _foo, 42
555       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
556       return;
557     }
558 
559     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
560       Align = 0;
561 
562     // .local _foo
563     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
564     // .comm _foo, 42, 4
565     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
566     return;
567   }
568 
569   // Handle thread local data for mach-o which requires us to output an
570   // additional structure of data and mangle the original symbol so that we
571   // can reference it later.
572   //
573   // TODO: This should become an "emit thread local global" method on TLOF.
574   // All of this macho specific stuff should be sunk down into TLOFMachO and
575   // stuff like "TLSExtraDataSection" should no longer be part of the parent
576   // TLOF class.  This will also make it more obvious that stuff like
577   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
578   // specific code.
579   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
580     // Emit the .tbss symbol
581     MCSymbol *MangSym =
582         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
583 
584     if (GVKind.isThreadBSS()) {
585       TheSection = getObjFileLowering().getTLSBSSSection();
586       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
587     } else if (GVKind.isThreadData()) {
588       OutStreamer->SwitchSection(TheSection);
589 
590       EmitAlignment(AlignLog, GV);
591       OutStreamer->EmitLabel(MangSym);
592 
593       EmitGlobalConstant(GV->getParent()->getDataLayout(),
594                          GV->getInitializer());
595     }
596 
597     OutStreamer->AddBlankLine();
598 
599     // Emit the variable struct for the runtime.
600     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
601 
602     OutStreamer->SwitchSection(TLVSect);
603     // Emit the linkage here.
604     EmitLinkage(GV, GVSym);
605     OutStreamer->EmitLabel(GVSym);
606 
607     // Three pointers in size:
608     //   - __tlv_bootstrap - used to make sure support exists
609     //   - spare pointer, used when mapped by the runtime
610     //   - pointer to mangled symbol above with initializer
611     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
612     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
613                                 PtrSize);
614     OutStreamer->EmitIntValue(0, PtrSize);
615     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
616 
617     OutStreamer->AddBlankLine();
618     return;
619   }
620 
621   MCSymbol *EmittedInitSym = GVSym;
622 
623   OutStreamer->SwitchSection(TheSection);
624 
625   EmitLinkage(GV, EmittedInitSym);
626   EmitAlignment(AlignLog, GV);
627 
628   OutStreamer->EmitLabel(EmittedInitSym);
629 
630   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
631 
632   if (MAI->hasDotTypeDotSizeDirective())
633     // .size foo, 42
634     OutStreamer->emitELFSize(EmittedInitSym,
635                              MCConstantExpr::create(Size, OutContext));
636 
637   OutStreamer->AddBlankLine();
638 }
639 
640 /// Emit the directive and value for debug thread local expression
641 ///
642 /// \p Value - The value to emit.
643 /// \p Size - The size of the integer (in bytes) to emit.
644 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
645   OutStreamer->EmitValue(Value, Size);
646 }
647 
648 /// EmitFunctionHeader - This method emits the header for the current
649 /// function.
650 void AsmPrinter::EmitFunctionHeader() {
651   const Function &F = MF->getFunction();
652 
653   if (isVerbose())
654     OutStreamer->GetCommentOS()
655         << "-- Begin function "
656         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
657 
658   // Print out constants referenced by the function
659   EmitConstantPool();
660 
661   // Print the 'header' of function.
662   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
663   EmitVisibility(CurrentFnSym, F.getVisibility());
664 
665   EmitLinkage(&F, CurrentFnSym);
666   if (MAI->hasFunctionAlignment())
667     EmitAlignment(MF->getAlignment(), &F);
668 
669   if (MAI->hasDotTypeDotSizeDirective())
670     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
671 
672   if (F.hasFnAttribute(Attribute::Cold))
673     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
674 
675   if (isVerbose()) {
676     F.printAsOperand(OutStreamer->GetCommentOS(),
677                    /*PrintType=*/false, F.getParent());
678     OutStreamer->GetCommentOS() << '\n';
679   }
680 
681   // Emit the prefix data.
682   if (F.hasPrefixData()) {
683     if (MAI->hasSubsectionsViaSymbols()) {
684       // Preserving prefix data on platforms which use subsections-via-symbols
685       // is a bit tricky. Here we introduce a symbol for the prefix data
686       // and use the .alt_entry attribute to mark the function's real entry point
687       // as an alternative entry point to the prefix-data symbol.
688       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
689       OutStreamer->EmitLabel(PrefixSym);
690 
691       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
692 
693       // Emit an .alt_entry directive for the actual function symbol.
694       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
695     } else {
696       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
697     }
698   }
699 
700   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
701   // do their wild and crazy things as required.
702   EmitFunctionEntryLabel();
703 
704   // If the function had address-taken blocks that got deleted, then we have
705   // references to the dangling symbols.  Emit them at the start of the function
706   // so that we don't get references to undefined symbols.
707   std::vector<MCSymbol*> DeadBlockSyms;
708   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
709   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
710     OutStreamer->AddComment("Address taken block that was later removed");
711     OutStreamer->EmitLabel(DeadBlockSyms[i]);
712   }
713 
714   if (CurrentFnBegin) {
715     if (MAI->useAssignmentForEHBegin()) {
716       MCSymbol *CurPos = OutContext.createTempSymbol();
717       OutStreamer->EmitLabel(CurPos);
718       OutStreamer->EmitAssignment(CurrentFnBegin,
719                                  MCSymbolRefExpr::create(CurPos, OutContext));
720     } else {
721       OutStreamer->EmitLabel(CurrentFnBegin);
722     }
723   }
724 
725   // Emit pre-function debug and/or EH information.
726   for (const HandlerInfo &HI : Handlers) {
727     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
728                        HI.TimerGroupDescription, TimePassesIsEnabled);
729     HI.Handler->beginFunction(MF);
730   }
731 
732   // Emit the prologue data.
733   if (F.hasPrologueData())
734     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
735 }
736 
737 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
738 /// function.  This can be overridden by targets as required to do custom stuff.
739 void AsmPrinter::EmitFunctionEntryLabel() {
740   CurrentFnSym->redefineIfPossible();
741 
742   // The function label could have already been emitted if two symbols end up
743   // conflicting due to asm renaming.  Detect this and emit an error.
744   if (CurrentFnSym->isVariable())
745     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
746                        "' is a protected alias");
747   if (CurrentFnSym->isDefined())
748     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
749                        "' label emitted multiple times to assembly file");
750 
751   return OutStreamer->EmitLabel(CurrentFnSym);
752 }
753 
754 /// emitComments - Pretty-print comments for instructions.
755 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
756   const MachineFunction *MF = MI.getMF();
757   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
758 
759   // Check for spills and reloads
760 
761   // We assume a single instruction only has a spill or reload, not
762   // both.
763   Optional<unsigned> Size;
764   if ((Size = MI.getRestoreSize(TII))) {
765     CommentOS << *Size << "-byte Reload\n";
766   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
767     if (*Size)
768       CommentOS << *Size << "-byte Folded Reload\n";
769   } else if ((Size = MI.getSpillSize(TII))) {
770     CommentOS << *Size << "-byte Spill\n";
771   } else if ((Size = MI.getFoldedSpillSize(TII))) {
772     if (*Size)
773       CommentOS << *Size << "-byte Folded Spill\n";
774   }
775 
776   // Check for spill-induced copies
777   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
778     CommentOS << " Reload Reuse\n";
779 }
780 
781 /// emitImplicitDef - This method emits the specified machine instruction
782 /// that is an implicit def.
783 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
784   unsigned RegNo = MI->getOperand(0).getReg();
785 
786   SmallString<128> Str;
787   raw_svector_ostream OS(Str);
788   OS << "implicit-def: "
789      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
790 
791   OutStreamer->AddComment(OS.str());
792   OutStreamer->AddBlankLine();
793 }
794 
795 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
796   std::string Str;
797   raw_string_ostream OS(Str);
798   OS << "kill:";
799   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
800     const MachineOperand &Op = MI->getOperand(i);
801     assert(Op.isReg() && "KILL instruction must have only register operands");
802     OS << ' ' << (Op.isDef() ? "def " : "killed ")
803        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
804   }
805   AP.OutStreamer->AddComment(OS.str());
806   AP.OutStreamer->AddBlankLine();
807 }
808 
809 /// emitDebugValueComment - This method handles the target-independent form
810 /// of DBG_VALUE, returning true if it was able to do so.  A false return
811 /// means the target will need to handle MI in EmitInstruction.
812 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
813   // This code handles only the 4-operand target-independent form.
814   if (MI->getNumOperands() != 4)
815     return false;
816 
817   SmallString<128> Str;
818   raw_svector_ostream OS(Str);
819   OS << "DEBUG_VALUE: ";
820 
821   const DILocalVariable *V = MI->getDebugVariable();
822   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
823     StringRef Name = SP->getName();
824     if (!Name.empty())
825       OS << Name << ":";
826   }
827   OS << V->getName();
828   OS << " <- ";
829 
830   // The second operand is only an offset if it's an immediate.
831   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
832   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
833   const DIExpression *Expr = MI->getDebugExpression();
834   if (Expr->getNumElements()) {
835     OS << '[';
836     bool NeedSep = false;
837     for (auto Op : Expr->expr_ops()) {
838       if (NeedSep)
839         OS << ", ";
840       else
841         NeedSep = true;
842       OS << dwarf::OperationEncodingString(Op.getOp());
843       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
844         OS << ' ' << Op.getArg(I);
845     }
846     OS << "] ";
847   }
848 
849   // Register or immediate value. Register 0 means undef.
850   if (MI->getOperand(0).isFPImm()) {
851     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
852     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
853       OS << (double)APF.convertToFloat();
854     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
855       OS << APF.convertToDouble();
856     } else {
857       // There is no good way to print long double.  Convert a copy to
858       // double.  Ah well, it's only a comment.
859       bool ignored;
860       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
861                   &ignored);
862       OS << "(long double) " << APF.convertToDouble();
863     }
864   } else if (MI->getOperand(0).isImm()) {
865     OS << MI->getOperand(0).getImm();
866   } else if (MI->getOperand(0).isCImm()) {
867     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
868   } else {
869     unsigned Reg;
870     if (MI->getOperand(0).isReg()) {
871       Reg = MI->getOperand(0).getReg();
872     } else {
873       assert(MI->getOperand(0).isFI() && "Unknown operand type");
874       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
875       Offset += TFI->getFrameIndexReference(*AP.MF,
876                                             MI->getOperand(0).getIndex(), Reg);
877       MemLoc = true;
878     }
879     if (Reg == 0) {
880       // Suppress offset, it is not meaningful here.
881       OS << "undef";
882       // NOTE: Want this comment at start of line, don't emit with AddComment.
883       AP.OutStreamer->emitRawComment(OS.str());
884       return true;
885     }
886     if (MemLoc)
887       OS << '[';
888     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
889   }
890 
891   if (MemLoc)
892     OS << '+' << Offset << ']';
893 
894   // NOTE: Want this comment at start of line, don't emit with AddComment.
895   AP.OutStreamer->emitRawComment(OS.str());
896   return true;
897 }
898 
899 /// This method handles the target-independent form of DBG_LABEL, returning
900 /// true if it was able to do so.  A false return means the target will need
901 /// to handle MI in EmitInstruction.
902 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
903   if (MI->getNumOperands() != 1)
904     return false;
905 
906   SmallString<128> Str;
907   raw_svector_ostream OS(Str);
908   OS << "DEBUG_LABEL: ";
909 
910   const DILabel *V = MI->getDebugLabel();
911   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
912     StringRef Name = SP->getName();
913     if (!Name.empty())
914       OS << Name << ":";
915   }
916   OS << V->getName();
917 
918   // NOTE: Want this comment at start of line, don't emit with AddComment.
919   AP.OutStreamer->emitRawComment(OS.str());
920   return true;
921 }
922 
923 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
924   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
925       MF->getFunction().needsUnwindTableEntry())
926     return CFI_M_EH;
927 
928   if (MMI->hasDebugInfo())
929     return CFI_M_Debug;
930 
931   return CFI_M_None;
932 }
933 
934 bool AsmPrinter::needsSEHMoves() {
935   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
936 }
937 
938 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
939   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
940   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
941       ExceptionHandlingType != ExceptionHandling::ARM)
942     return;
943 
944   if (needsCFIMoves() == CFI_M_None)
945     return;
946 
947   // If there is no "real" instruction following this CFI instruction, skip
948   // emitting it; it would be beyond the end of the function's FDE range.
949   auto *MBB = MI.getParent();
950   auto I = std::next(MI.getIterator());
951   while (I != MBB->end() && I->isTransient())
952     ++I;
953   if (I == MBB->instr_end() &&
954       MBB->getReverseIterator() == MBB->getParent()->rbegin())
955     return;
956 
957   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
958   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
959   const MCCFIInstruction &CFI = Instrs[CFIIndex];
960   emitCFIInstruction(CFI);
961 }
962 
963 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
964   // The operands are the MCSymbol and the frame offset of the allocation.
965   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
966   int FrameOffset = MI.getOperand(1).getImm();
967 
968   // Emit a symbol assignment.
969   OutStreamer->EmitAssignment(FrameAllocSym,
970                              MCConstantExpr::create(FrameOffset, OutContext));
971 }
972 
973 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
974   if (!MF.getTarget().Options.EmitStackSizeSection)
975     return;
976 
977   MCSection *StackSizeSection =
978       getObjFileLowering().getStackSizesSection(*getCurrentSection());
979   if (!StackSizeSection)
980     return;
981 
982   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
983   // Don't emit functions with dynamic stack allocations.
984   if (FrameInfo.hasVarSizedObjects())
985     return;
986 
987   OutStreamer->PushSection();
988   OutStreamer->SwitchSection(StackSizeSection);
989 
990   const MCSymbol *FunctionSymbol = getFunctionBegin();
991   uint64_t StackSize = FrameInfo.getStackSize();
992   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
993   OutStreamer->EmitULEB128IntValue(StackSize);
994 
995   OutStreamer->PopSection();
996 }
997 
998 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
999                                            MachineModuleInfo *MMI) {
1000   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1001     return true;
1002 
1003   // We might emit an EH table that uses function begin and end labels even if
1004   // we don't have any landingpads.
1005   if (!MF.getFunction().hasPersonalityFn())
1006     return false;
1007   return !isNoOpWithoutInvoke(
1008       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1009 }
1010 
1011 /// EmitFunctionBody - This method emits the body and trailer for a
1012 /// function.
1013 void AsmPrinter::EmitFunctionBody() {
1014   EmitFunctionHeader();
1015 
1016   // Emit target-specific gunk before the function body.
1017   EmitFunctionBodyStart();
1018 
1019   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1020 
1021   if (isVerbose()) {
1022     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1023     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1024     if (!MDT) {
1025       OwnedMDT = make_unique<MachineDominatorTree>();
1026       OwnedMDT->getBase().recalculate(*MF);
1027       MDT = OwnedMDT.get();
1028     }
1029 
1030     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1031     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1032     if (!MLI) {
1033       OwnedMLI = make_unique<MachineLoopInfo>();
1034       OwnedMLI->getBase().analyze(MDT->getBase());
1035       MLI = OwnedMLI.get();
1036     }
1037   }
1038 
1039   // Print out code for the function.
1040   bool HasAnyRealCode = false;
1041   int NumInstsInFunction = 0;
1042   for (auto &MBB : *MF) {
1043     // Print a label for the basic block.
1044     EmitBasicBlockStart(MBB);
1045     for (auto &MI : MBB) {
1046       // Print the assembly for the instruction.
1047       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1048           !MI.isDebugInstr()) {
1049         HasAnyRealCode = true;
1050         ++NumInstsInFunction;
1051       }
1052 
1053       // If there is a pre-instruction symbol, emit a label for it here.
1054       if (MCSymbol *S = MI.getPreInstrSymbol())
1055         OutStreamer->EmitLabel(S);
1056 
1057       if (ShouldPrintDebugScopes) {
1058         for (const HandlerInfo &HI : Handlers) {
1059           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1060                              HI.TimerGroupName, HI.TimerGroupDescription,
1061                              TimePassesIsEnabled);
1062           HI.Handler->beginInstruction(&MI);
1063         }
1064       }
1065 
1066       if (isVerbose())
1067         emitComments(MI, OutStreamer->GetCommentOS());
1068 
1069       switch (MI.getOpcode()) {
1070       case TargetOpcode::CFI_INSTRUCTION:
1071         emitCFIInstruction(MI);
1072         break;
1073       case TargetOpcode::LOCAL_ESCAPE:
1074         emitFrameAlloc(MI);
1075         break;
1076       case TargetOpcode::ANNOTATION_LABEL:
1077       case TargetOpcode::EH_LABEL:
1078       case TargetOpcode::GC_LABEL:
1079         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1080         break;
1081       case TargetOpcode::INLINEASM:
1082       case TargetOpcode::INLINEASM_BR:
1083         EmitInlineAsm(&MI);
1084         break;
1085       case TargetOpcode::DBG_VALUE:
1086         if (isVerbose()) {
1087           if (!emitDebugValueComment(&MI, *this))
1088             EmitInstruction(&MI);
1089         }
1090         break;
1091       case TargetOpcode::DBG_LABEL:
1092         if (isVerbose()) {
1093           if (!emitDebugLabelComment(&MI, *this))
1094             EmitInstruction(&MI);
1095         }
1096         break;
1097       case TargetOpcode::IMPLICIT_DEF:
1098         if (isVerbose()) emitImplicitDef(&MI);
1099         break;
1100       case TargetOpcode::KILL:
1101         if (isVerbose()) emitKill(&MI, *this);
1102         break;
1103       default:
1104         EmitInstruction(&MI);
1105         break;
1106       }
1107 
1108       // If there is a post-instruction symbol, emit a label for it here.
1109       if (MCSymbol *S = MI.getPostInstrSymbol())
1110         OutStreamer->EmitLabel(S);
1111 
1112       if (ShouldPrintDebugScopes) {
1113         for (const HandlerInfo &HI : Handlers) {
1114           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1115                              HI.TimerGroupName, HI.TimerGroupDescription,
1116                              TimePassesIsEnabled);
1117           HI.Handler->endInstruction();
1118         }
1119       }
1120     }
1121 
1122     EmitBasicBlockEnd(MBB);
1123   }
1124 
1125   EmittedInsts += NumInstsInFunction;
1126   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1127                                       MF->getFunction().getSubprogram(),
1128                                       &MF->front());
1129   R << ore::NV("NumInstructions", NumInstsInFunction)
1130     << " instructions in function";
1131   ORE->emit(R);
1132 
1133   // If the function is empty and the object file uses .subsections_via_symbols,
1134   // then we need to emit *something* to the function body to prevent the
1135   // labels from collapsing together.  Just emit a noop.
1136   // Similarly, don't emit empty functions on Windows either. It can lead to
1137   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1138   // after linking, causing the kernel not to load the binary:
1139   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1140   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1141   const Triple &TT = TM.getTargetTriple();
1142   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1143                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1144     MCInst Noop;
1145     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1146 
1147     // Targets can opt-out of emitting the noop here by leaving the opcode
1148     // unspecified.
1149     if (Noop.getOpcode()) {
1150       OutStreamer->AddComment("avoids zero-length function");
1151       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1152     }
1153   }
1154 
1155   const Function &F = MF->getFunction();
1156   for (const auto &BB : F) {
1157     if (!BB.hasAddressTaken())
1158       continue;
1159     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1160     if (Sym->isDefined())
1161       continue;
1162     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1163     OutStreamer->EmitLabel(Sym);
1164   }
1165 
1166   // Emit target-specific gunk after the function body.
1167   EmitFunctionBodyEnd();
1168 
1169   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1170       MAI->hasDotTypeDotSizeDirective()) {
1171     // Create a symbol for the end of function.
1172     CurrentFnEnd = createTempSymbol("func_end");
1173     OutStreamer->EmitLabel(CurrentFnEnd);
1174   }
1175 
1176   // If the target wants a .size directive for the size of the function, emit
1177   // it.
1178   if (MAI->hasDotTypeDotSizeDirective()) {
1179     // We can get the size as difference between the function label and the
1180     // temp label.
1181     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1182         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1183         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1184     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1185   }
1186 
1187   for (const HandlerInfo &HI : Handlers) {
1188     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1189                        HI.TimerGroupDescription, TimePassesIsEnabled);
1190     HI.Handler->markFunctionEnd();
1191   }
1192 
1193   // Print out jump tables referenced by the function.
1194   EmitJumpTableInfo();
1195 
1196   // Emit post-function debug and/or EH information.
1197   for (const HandlerInfo &HI : Handlers) {
1198     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1199                        HI.TimerGroupDescription, TimePassesIsEnabled);
1200     HI.Handler->endFunction(MF);
1201   }
1202 
1203   // Emit section containing stack size metadata.
1204   emitStackSizeSection(*MF);
1205 
1206   if (isVerbose())
1207     OutStreamer->GetCommentOS() << "-- End function\n";
1208 
1209   OutStreamer->AddBlankLine();
1210 }
1211 
1212 /// Compute the number of Global Variables that uses a Constant.
1213 static unsigned getNumGlobalVariableUses(const Constant *C) {
1214   if (!C)
1215     return 0;
1216 
1217   if (isa<GlobalVariable>(C))
1218     return 1;
1219 
1220   unsigned NumUses = 0;
1221   for (auto *CU : C->users())
1222     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1223 
1224   return NumUses;
1225 }
1226 
1227 /// Only consider global GOT equivalents if at least one user is a
1228 /// cstexpr inside an initializer of another global variables. Also, don't
1229 /// handle cstexpr inside instructions. During global variable emission,
1230 /// candidates are skipped and are emitted later in case at least one cstexpr
1231 /// isn't replaced by a PC relative GOT entry access.
1232 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1233                                      unsigned &NumGOTEquivUsers) {
1234   // Global GOT equivalents are unnamed private globals with a constant
1235   // pointer initializer to another global symbol. They must point to a
1236   // GlobalVariable or Function, i.e., as GlobalValue.
1237   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1238       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1239       !isa<GlobalValue>(GV->getOperand(0)))
1240     return false;
1241 
1242   // To be a got equivalent, at least one of its users need to be a constant
1243   // expression used by another global variable.
1244   for (auto *U : GV->users())
1245     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1246 
1247   return NumGOTEquivUsers > 0;
1248 }
1249 
1250 /// Unnamed constant global variables solely contaning a pointer to
1251 /// another globals variable is equivalent to a GOT table entry; it contains the
1252 /// the address of another symbol. Optimize it and replace accesses to these
1253 /// "GOT equivalents" by using the GOT entry for the final global instead.
1254 /// Compute GOT equivalent candidates among all global variables to avoid
1255 /// emitting them if possible later on, after it use is replaced by a GOT entry
1256 /// access.
1257 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1258   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1259     return;
1260 
1261   for (const auto &G : M.globals()) {
1262     unsigned NumGOTEquivUsers = 0;
1263     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1264       continue;
1265 
1266     const MCSymbol *GOTEquivSym = getSymbol(&G);
1267     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1268   }
1269 }
1270 
1271 /// Constant expressions using GOT equivalent globals may not be eligible
1272 /// for PC relative GOT entry conversion, in such cases we need to emit such
1273 /// globals we previously omitted in EmitGlobalVariable.
1274 void AsmPrinter::emitGlobalGOTEquivs() {
1275   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1276     return;
1277 
1278   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1279   for (auto &I : GlobalGOTEquivs) {
1280     const GlobalVariable *GV = I.second.first;
1281     unsigned Cnt = I.second.second;
1282     if (Cnt)
1283       FailedCandidates.push_back(GV);
1284   }
1285   GlobalGOTEquivs.clear();
1286 
1287   for (auto *GV : FailedCandidates)
1288     EmitGlobalVariable(GV);
1289 }
1290 
1291 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1292                                           const GlobalIndirectSymbol& GIS) {
1293   MCSymbol *Name = getSymbol(&GIS);
1294 
1295   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1296     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1297   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1298     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1299   else
1300     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1301 
1302   bool IsFunction = GIS.getType()->getPointerElementType()->isFunctionTy();
1303 
1304   // Treat bitcasts of functions as functions also. This is important at least
1305   // on WebAssembly where object and function addresses can't alias each other.
1306   if (!IsFunction)
1307     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1308       if (CE->getOpcode() == Instruction::BitCast)
1309         IsFunction =
1310           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1311 
1312   // Set the symbol type to function if the alias has a function type.
1313   // This affects codegen when the aliasee is not a function.
1314   if (IsFunction) {
1315     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1316     if (isa<GlobalIFunc>(GIS))
1317       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1318   }
1319 
1320   EmitVisibility(Name, GIS.getVisibility());
1321 
1322   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1323 
1324   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1325     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1326 
1327   // Emit the directives as assignments aka .set:
1328   OutStreamer->EmitAssignment(Name, Expr);
1329 
1330   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1331     // If the aliasee does not correspond to a symbol in the output, i.e. the
1332     // alias is not of an object or the aliased object is private, then set the
1333     // size of the alias symbol from the type of the alias. We don't do this in
1334     // other situations as the alias and aliasee having differing types but same
1335     // size may be intentional.
1336     const GlobalObject *BaseObject = GA->getBaseObject();
1337     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1338         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1339       const DataLayout &DL = M.getDataLayout();
1340       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1341       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1342     }
1343   }
1344 }
1345 
1346 void AsmPrinter::emitRemarksSection(Module &M) {
1347   RemarkStreamer *RS = M.getContext().getRemarkStreamer();
1348   if (!RS)
1349     return;
1350 
1351   // Switch to the right section: .remarks/__remarks.
1352   MCSection *RemarksSection =
1353       OutContext.getObjectFileInfo()->getRemarksSection();
1354   OutStreamer->SwitchSection(RemarksSection);
1355 
1356   // Emit the magic number.
1357   OutStreamer->EmitBytes(remarks::Magic);
1358   // Explicitly emit a '\0'.
1359   OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1);
1360 
1361   // Emit the version number: little-endian uint64_t.
1362   // The version number is located at the offset 0x0 in the section.
1363   std::array<char, 8> Version;
1364   support::endian::write64le(Version.data(), remarks::Version);
1365   OutStreamer->EmitBinaryData(StringRef(Version.data(), Version.size()));
1366 
1367   // Emit the string table in the section.
1368   // Note: we need to use the streamer here to emit it in the section. We can't
1369   // just use the serialize function with a raw_ostream because of the way
1370   // MCStreamers work.
1371   const remarks::StringTable &StrTab = RS->getStringTable();
1372   std::vector<StringRef> StrTabStrings = StrTab.serialize();
1373   uint64_t StrTabSize = StrTab.SerializedSize;
1374   // Emit the total size of the string table (the size itself excluded):
1375   // little-endian uint64_t.
1376   // The total size is located after the version number.
1377   std::array<char, 8> StrTabSizeBuf;
1378   support::endian::write64le(StrTabSizeBuf.data(), StrTabSize);
1379   OutStreamer->EmitBinaryData(
1380       StringRef(StrTabSizeBuf.data(), StrTabSizeBuf.size()));
1381   // Emit a list of null-terminated strings.
1382   // Note: the order is important here: the ID used in the remarks corresponds
1383   // to the position of the string in the section.
1384   for (StringRef Str : StrTabStrings) {
1385     OutStreamer->EmitBytes(Str);
1386     // Explicitly emit a '\0'.
1387     OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1);
1388   }
1389 
1390   // Emit the null-terminated absolute path to the remark file.
1391   // The path is located at the offset 0x4 in the section.
1392   StringRef FilenameRef = RS->getFilename();
1393   SmallString<128> Filename = FilenameRef;
1394   sys::fs::make_absolute(Filename);
1395   assert(!Filename.empty() && "The filename can't be empty.");
1396   OutStreamer->EmitBytes(Filename);
1397   // Explicitly emit a '\0'.
1398   OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1);
1399 }
1400 
1401 bool AsmPrinter::doFinalization(Module &M) {
1402   // Set the MachineFunction to nullptr so that we can catch attempted
1403   // accesses to MF specific features at the module level and so that
1404   // we can conditionalize accesses based on whether or not it is nullptr.
1405   MF = nullptr;
1406 
1407   // Gather all GOT equivalent globals in the module. We really need two
1408   // passes over the globals: one to compute and another to avoid its emission
1409   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1410   // where the got equivalent shows up before its use.
1411   computeGlobalGOTEquivs(M);
1412 
1413   // Emit global variables.
1414   for (const auto &G : M.globals())
1415     EmitGlobalVariable(&G);
1416 
1417   // Emit remaining GOT equivalent globals.
1418   emitGlobalGOTEquivs();
1419 
1420   // Emit visibility info for declarations
1421   for (const Function &F : M) {
1422     if (!F.isDeclarationForLinker())
1423       continue;
1424     GlobalValue::VisibilityTypes V = F.getVisibility();
1425     if (V == GlobalValue::DefaultVisibility)
1426       continue;
1427 
1428     MCSymbol *Name = getSymbol(&F);
1429     EmitVisibility(Name, V, false);
1430   }
1431 
1432   // Emit the remarks section contents.
1433   // FIXME: Figure out when is the safest time to emit this section. It should
1434   // not come after debug info.
1435   if (EnableRemarksSection)
1436     emitRemarksSection(M);
1437 
1438   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1439 
1440   TLOF.emitModuleMetadata(*OutStreamer, M);
1441 
1442   if (TM.getTargetTriple().isOSBinFormatELF()) {
1443     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1444 
1445     // Output stubs for external and common global variables.
1446     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1447     if (!Stubs.empty()) {
1448       OutStreamer->SwitchSection(TLOF.getDataSection());
1449       const DataLayout &DL = M.getDataLayout();
1450 
1451       EmitAlignment(Log2_32(DL.getPointerSize()));
1452       for (const auto &Stub : Stubs) {
1453         OutStreamer->EmitLabel(Stub.first);
1454         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1455                                      DL.getPointerSize());
1456       }
1457     }
1458   }
1459 
1460   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1461     MachineModuleInfoCOFF &MMICOFF =
1462         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1463 
1464     // Output stubs for external and common global variables.
1465     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1466     if (!Stubs.empty()) {
1467       const DataLayout &DL = M.getDataLayout();
1468 
1469       for (const auto &Stub : Stubs) {
1470         SmallString<256> SectionName = StringRef(".rdata$");
1471         SectionName += Stub.first->getName();
1472         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1473             SectionName,
1474             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1475                 COFF::IMAGE_SCN_LNK_COMDAT,
1476             SectionKind::getReadOnly(), Stub.first->getName(),
1477             COFF::IMAGE_COMDAT_SELECT_ANY));
1478         EmitAlignment(Log2_32(DL.getPointerSize()));
1479         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1480         OutStreamer->EmitLabel(Stub.first);
1481         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1482                                      DL.getPointerSize());
1483       }
1484     }
1485   }
1486 
1487   // Finalize debug and EH information.
1488   for (const HandlerInfo &HI : Handlers) {
1489     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1490                        HI.TimerGroupDescription, TimePassesIsEnabled);
1491     HI.Handler->endModule();
1492   }
1493   Handlers.clear();
1494   DD = nullptr;
1495 
1496   // If the target wants to know about weak references, print them all.
1497   if (MAI->getWeakRefDirective()) {
1498     // FIXME: This is not lazy, it would be nice to only print weak references
1499     // to stuff that is actually used.  Note that doing so would require targets
1500     // to notice uses in operands (due to constant exprs etc).  This should
1501     // happen with the MC stuff eventually.
1502 
1503     // Print out module-level global objects here.
1504     for (const auto &GO : M.global_objects()) {
1505       if (!GO.hasExternalWeakLinkage())
1506         continue;
1507       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1508     }
1509   }
1510 
1511   OutStreamer->AddBlankLine();
1512 
1513   // Print aliases in topological order, that is, for each alias a = b,
1514   // b must be printed before a.
1515   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1516   // such an order to generate correct TOC information.
1517   SmallVector<const GlobalAlias *, 16> AliasStack;
1518   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1519   for (const auto &Alias : M.aliases()) {
1520     for (const GlobalAlias *Cur = &Alias; Cur;
1521          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1522       if (!AliasVisited.insert(Cur).second)
1523         break;
1524       AliasStack.push_back(Cur);
1525     }
1526     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1527       emitGlobalIndirectSymbol(M, *AncestorAlias);
1528     AliasStack.clear();
1529   }
1530   for (const auto &IFunc : M.ifuncs())
1531     emitGlobalIndirectSymbol(M, IFunc);
1532 
1533   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1534   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1535   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1536     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1537       MP->finishAssembly(M, *MI, *this);
1538 
1539   // Emit llvm.ident metadata in an '.ident' directive.
1540   EmitModuleIdents(M);
1541 
1542   // Emit bytes for llvm.commandline metadata.
1543   EmitModuleCommandLines(M);
1544 
1545   // Emit __morestack address if needed for indirect calls.
1546   if (MMI->usesMorestackAddr()) {
1547     unsigned Align = 1;
1548     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1549         getDataLayout(), SectionKind::getReadOnly(),
1550         /*C=*/nullptr, Align);
1551     OutStreamer->SwitchSection(ReadOnlySection);
1552 
1553     MCSymbol *AddrSymbol =
1554         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1555     OutStreamer->EmitLabel(AddrSymbol);
1556 
1557     unsigned PtrSize = MAI->getCodePointerSize();
1558     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1559                                  PtrSize);
1560   }
1561 
1562   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1563   // split-stack is used.
1564   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1565     OutStreamer->SwitchSection(
1566         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1567     if (MMI->hasNosplitStack())
1568       OutStreamer->SwitchSection(
1569           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1570   }
1571 
1572   // If we don't have any trampolines, then we don't require stack memory
1573   // to be executable. Some targets have a directive to declare this.
1574   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1575   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1576     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1577       OutStreamer->SwitchSection(S);
1578 
1579   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1580     // Emit /EXPORT: flags for each exported global as necessary.
1581     const auto &TLOF = getObjFileLowering();
1582     std::string Flags;
1583 
1584     for (const GlobalValue &GV : M.global_values()) {
1585       raw_string_ostream OS(Flags);
1586       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1587       OS.flush();
1588       if (!Flags.empty()) {
1589         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1590         OutStreamer->EmitBytes(Flags);
1591       }
1592       Flags.clear();
1593     }
1594 
1595     // Emit /INCLUDE: flags for each used global as necessary.
1596     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1597       assert(LU->hasInitializer() &&
1598              "expected llvm.used to have an initializer");
1599       assert(isa<ArrayType>(LU->getValueType()) &&
1600              "expected llvm.used to be an array type");
1601       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1602         for (const Value *Op : A->operands()) {
1603           const auto *GV =
1604               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1605           // Global symbols with internal or private linkage are not visible to
1606           // the linker, and thus would cause an error when the linker tried to
1607           // preserve the symbol due to the `/include:` directive.
1608           if (GV->hasLocalLinkage())
1609             continue;
1610 
1611           raw_string_ostream OS(Flags);
1612           TLOF.emitLinkerFlagsForUsed(OS, GV);
1613           OS.flush();
1614 
1615           if (!Flags.empty()) {
1616             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1617             OutStreamer->EmitBytes(Flags);
1618           }
1619           Flags.clear();
1620         }
1621       }
1622     }
1623   }
1624 
1625   if (TM.Options.EmitAddrsig) {
1626     // Emit address-significance attributes for all globals.
1627     OutStreamer->EmitAddrsig();
1628     for (const GlobalValue &GV : M.global_values())
1629       if (!GV.use_empty() && !GV.isThreadLocal() &&
1630           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1631           !GV.hasAtLeastLocalUnnamedAddr())
1632         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1633   }
1634 
1635   // Allow the target to emit any magic that it wants at the end of the file,
1636   // after everything else has gone out.
1637   EmitEndOfAsmFile(M);
1638 
1639   MMI = nullptr;
1640 
1641   OutStreamer->Finish();
1642   OutStreamer->reset();
1643   OwnedMLI.reset();
1644   OwnedMDT.reset();
1645 
1646   return false;
1647 }
1648 
1649 MCSymbol *AsmPrinter::getCurExceptionSym() {
1650   if (!CurExceptionSym)
1651     CurExceptionSym = createTempSymbol("exception");
1652   return CurExceptionSym;
1653 }
1654 
1655 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1656   this->MF = &MF;
1657   // Get the function symbol.
1658   CurrentFnSym = getSymbol(&MF.getFunction());
1659   CurrentFnSymForSize = CurrentFnSym;
1660   CurrentFnBegin = nullptr;
1661   CurExceptionSym = nullptr;
1662   bool NeedsLocalForSize = MAI->needsLocalForSize();
1663   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1664       MF.getTarget().Options.EmitStackSizeSection) {
1665     CurrentFnBegin = createTempSymbol("func_begin");
1666     if (NeedsLocalForSize)
1667       CurrentFnSymForSize = CurrentFnBegin;
1668   }
1669 
1670   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1671 }
1672 
1673 namespace {
1674 
1675 // Keep track the alignment, constpool entries per Section.
1676   struct SectionCPs {
1677     MCSection *S;
1678     unsigned Alignment;
1679     SmallVector<unsigned, 4> CPEs;
1680 
1681     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1682   };
1683 
1684 } // end anonymous namespace
1685 
1686 /// EmitConstantPool - Print to the current output stream assembly
1687 /// representations of the constants in the constant pool MCP. This is
1688 /// used to print out constants which have been "spilled to memory" by
1689 /// the code generator.
1690 void AsmPrinter::EmitConstantPool() {
1691   const MachineConstantPool *MCP = MF->getConstantPool();
1692   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1693   if (CP.empty()) return;
1694 
1695   // Calculate sections for constant pool entries. We collect entries to go into
1696   // the same section together to reduce amount of section switch statements.
1697   SmallVector<SectionCPs, 4> CPSections;
1698   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1699     const MachineConstantPoolEntry &CPE = CP[i];
1700     unsigned Align = CPE.getAlignment();
1701 
1702     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1703 
1704     const Constant *C = nullptr;
1705     if (!CPE.isMachineConstantPoolEntry())
1706       C = CPE.Val.ConstVal;
1707 
1708     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1709                                                               Kind, C, Align);
1710 
1711     // The number of sections are small, just do a linear search from the
1712     // last section to the first.
1713     bool Found = false;
1714     unsigned SecIdx = CPSections.size();
1715     while (SecIdx != 0) {
1716       if (CPSections[--SecIdx].S == S) {
1717         Found = true;
1718         break;
1719       }
1720     }
1721     if (!Found) {
1722       SecIdx = CPSections.size();
1723       CPSections.push_back(SectionCPs(S, Align));
1724     }
1725 
1726     if (Align > CPSections[SecIdx].Alignment)
1727       CPSections[SecIdx].Alignment = Align;
1728     CPSections[SecIdx].CPEs.push_back(i);
1729   }
1730 
1731   // Now print stuff into the calculated sections.
1732   const MCSection *CurSection = nullptr;
1733   unsigned Offset = 0;
1734   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1735     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1736       unsigned CPI = CPSections[i].CPEs[j];
1737       MCSymbol *Sym = GetCPISymbol(CPI);
1738       if (!Sym->isUndefined())
1739         continue;
1740 
1741       if (CurSection != CPSections[i].S) {
1742         OutStreamer->SwitchSection(CPSections[i].S);
1743         EmitAlignment(Log2_32(CPSections[i].Alignment));
1744         CurSection = CPSections[i].S;
1745         Offset = 0;
1746       }
1747 
1748       MachineConstantPoolEntry CPE = CP[CPI];
1749 
1750       // Emit inter-object padding for alignment.
1751       unsigned AlignMask = CPE.getAlignment() - 1;
1752       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1753       OutStreamer->EmitZeros(NewOffset - Offset);
1754 
1755       Type *Ty = CPE.getType();
1756       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1757 
1758       OutStreamer->EmitLabel(Sym);
1759       if (CPE.isMachineConstantPoolEntry())
1760         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1761       else
1762         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1763     }
1764   }
1765 }
1766 
1767 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1768 /// by the current function to the current output stream.
1769 void AsmPrinter::EmitJumpTableInfo() {
1770   const DataLayout &DL = MF->getDataLayout();
1771   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1772   if (!MJTI) return;
1773   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1774   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1775   if (JT.empty()) return;
1776 
1777   // Pick the directive to use to print the jump table entries, and switch to
1778   // the appropriate section.
1779   const Function &F = MF->getFunction();
1780   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1781   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1782       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1783       F);
1784   if (JTInDiffSection) {
1785     // Drop it in the readonly section.
1786     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1787     OutStreamer->SwitchSection(ReadOnlySection);
1788   }
1789 
1790   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1791 
1792   // Jump tables in code sections are marked with a data_region directive
1793   // where that's supported.
1794   if (!JTInDiffSection)
1795     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1796 
1797   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1798     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1799 
1800     // If this jump table was deleted, ignore it.
1801     if (JTBBs.empty()) continue;
1802 
1803     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1804     /// emit a .set directive for each unique entry.
1805     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1806         MAI->doesSetDirectiveSuppressReloc()) {
1807       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1808       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1809       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1810       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1811         const MachineBasicBlock *MBB = JTBBs[ii];
1812         if (!EmittedSets.insert(MBB).second)
1813           continue;
1814 
1815         // .set LJTSet, LBB32-base
1816         const MCExpr *LHS =
1817           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1818         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1819                                     MCBinaryExpr::createSub(LHS, Base,
1820                                                             OutContext));
1821       }
1822     }
1823 
1824     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1825     // before each jump table.  The first label is never referenced, but tells
1826     // the assembler and linker the extents of the jump table object.  The
1827     // second label is actually referenced by the code.
1828     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1829       // FIXME: This doesn't have to have any specific name, just any randomly
1830       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1831       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1832 
1833     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1834 
1835     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1836       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1837   }
1838   if (!JTInDiffSection)
1839     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1840 }
1841 
1842 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1843 /// current stream.
1844 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1845                                     const MachineBasicBlock *MBB,
1846                                     unsigned UID) const {
1847   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1848   const MCExpr *Value = nullptr;
1849   switch (MJTI->getEntryKind()) {
1850   case MachineJumpTableInfo::EK_Inline:
1851     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1852   case MachineJumpTableInfo::EK_Custom32:
1853     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1854         MJTI, MBB, UID, OutContext);
1855     break;
1856   case MachineJumpTableInfo::EK_BlockAddress:
1857     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1858     //     .word LBB123
1859     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1860     break;
1861   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1862     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1863     // with a relocation as gp-relative, e.g.:
1864     //     .gprel32 LBB123
1865     MCSymbol *MBBSym = MBB->getSymbol();
1866     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1867     return;
1868   }
1869 
1870   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1871     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1872     // with a relocation as gp-relative, e.g.:
1873     //     .gpdword LBB123
1874     MCSymbol *MBBSym = MBB->getSymbol();
1875     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1876     return;
1877   }
1878 
1879   case MachineJumpTableInfo::EK_LabelDifference32: {
1880     // Each entry is the address of the block minus the address of the jump
1881     // table. This is used for PIC jump tables where gprel32 is not supported.
1882     // e.g.:
1883     //      .word LBB123 - LJTI1_2
1884     // If the .set directive avoids relocations, this is emitted as:
1885     //      .set L4_5_set_123, LBB123 - LJTI1_2
1886     //      .word L4_5_set_123
1887     if (MAI->doesSetDirectiveSuppressReloc()) {
1888       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1889                                       OutContext);
1890       break;
1891     }
1892     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1893     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1894     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1895     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1896     break;
1897   }
1898   }
1899 
1900   assert(Value && "Unknown entry kind!");
1901 
1902   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1903   OutStreamer->EmitValue(Value, EntrySize);
1904 }
1905 
1906 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1907 /// special global used by LLVM.  If so, emit it and return true, otherwise
1908 /// do nothing and return false.
1909 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1910   if (GV->getName() == "llvm.used") {
1911     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1912       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1913     return true;
1914   }
1915 
1916   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1917   if (GV->getSection() == "llvm.metadata" ||
1918       GV->hasAvailableExternallyLinkage())
1919     return true;
1920 
1921   if (!GV->hasAppendingLinkage()) return false;
1922 
1923   assert(GV->hasInitializer() && "Not a special LLVM global!");
1924 
1925   if (GV->getName() == "llvm.global_ctors") {
1926     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1927                        /* isCtor */ true);
1928 
1929     return true;
1930   }
1931 
1932   if (GV->getName() == "llvm.global_dtors") {
1933     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1934                        /* isCtor */ false);
1935 
1936     return true;
1937   }
1938 
1939   report_fatal_error("unknown special variable");
1940 }
1941 
1942 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1943 /// global in the specified llvm.used list.
1944 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1945   // Should be an array of 'i8*'.
1946   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1947     const GlobalValue *GV =
1948       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1949     if (GV)
1950       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1951   }
1952 }
1953 
1954 namespace {
1955 
1956 struct Structor {
1957   int Priority = 0;
1958   Constant *Func = nullptr;
1959   GlobalValue *ComdatKey = nullptr;
1960 
1961   Structor() = default;
1962 };
1963 
1964 } // end anonymous namespace
1965 
1966 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1967 /// priority.
1968 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1969                                     bool isCtor) {
1970   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
1971   // init priority.
1972   if (!isa<ConstantArray>(List)) return;
1973 
1974   // Sanity check the structors list.
1975   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1976   if (!InitList) return; // Not an array!
1977   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1978   if (!ETy || ETy->getNumElements() != 3 ||
1979       !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1980       !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
1981       !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1982     return; // Not (int, ptr, ptr).
1983 
1984   // Gather the structors in a form that's convenient for sorting by priority.
1985   SmallVector<Structor, 8> Structors;
1986   for (Value *O : InitList->operands()) {
1987     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1988     if (!CS) continue; // Malformed.
1989     if (CS->getOperand(1)->isNullValue())
1990       break;  // Found a null terminator, skip the rest.
1991     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1992     if (!Priority) continue; // Malformed.
1993     Structors.push_back(Structor());
1994     Structor &S = Structors.back();
1995     S.Priority = Priority->getLimitedValue(65535);
1996     S.Func = CS->getOperand(1);
1997     if (!CS->getOperand(2)->isNullValue())
1998       S.ComdatKey =
1999           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2000   }
2001 
2002   // Emit the function pointers in the target-specific order
2003   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
2004   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2005     return L.Priority < R.Priority;
2006   });
2007   for (Structor &S : Structors) {
2008     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2009     const MCSymbol *KeySym = nullptr;
2010     if (GlobalValue *GV = S.ComdatKey) {
2011       if (GV->isDeclarationForLinker())
2012         // If the associated variable is not defined in this module
2013         // (it might be available_externally, or have been an
2014         // available_externally definition that was dropped by the
2015         // EliminateAvailableExternally pass), some other TU
2016         // will provide its dynamic initializer.
2017         continue;
2018 
2019       KeySym = getSymbol(GV);
2020     }
2021     MCSection *OutputSection =
2022         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2023                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2024     OutStreamer->SwitchSection(OutputSection);
2025     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2026       EmitAlignment(Align);
2027     EmitXXStructor(DL, S.Func);
2028   }
2029 }
2030 
2031 void AsmPrinter::EmitModuleIdents(Module &M) {
2032   if (!MAI->hasIdentDirective())
2033     return;
2034 
2035   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2036     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2037       const MDNode *N = NMD->getOperand(i);
2038       assert(N->getNumOperands() == 1 &&
2039              "llvm.ident metadata entry can have only one operand");
2040       const MDString *S = cast<MDString>(N->getOperand(0));
2041       OutStreamer->EmitIdent(S->getString());
2042     }
2043   }
2044 }
2045 
2046 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2047   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2048   if (!CommandLine)
2049     return;
2050 
2051   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2052   if (!NMD || !NMD->getNumOperands())
2053     return;
2054 
2055   OutStreamer->PushSection();
2056   OutStreamer->SwitchSection(CommandLine);
2057   OutStreamer->EmitZeros(1);
2058   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2059     const MDNode *N = NMD->getOperand(i);
2060     assert(N->getNumOperands() == 1 &&
2061            "llvm.commandline metadata entry can have only one operand");
2062     const MDString *S = cast<MDString>(N->getOperand(0));
2063     OutStreamer->EmitBytes(S->getString());
2064     OutStreamer->EmitZeros(1);
2065   }
2066   OutStreamer->PopSection();
2067 }
2068 
2069 //===--------------------------------------------------------------------===//
2070 // Emission and print routines
2071 //
2072 
2073 /// Emit a byte directive and value.
2074 ///
2075 void AsmPrinter::emitInt8(int Value) const {
2076   OutStreamer->EmitIntValue(Value, 1);
2077 }
2078 
2079 /// Emit a short directive and value.
2080 void AsmPrinter::emitInt16(int Value) const {
2081   OutStreamer->EmitIntValue(Value, 2);
2082 }
2083 
2084 /// Emit a long directive and value.
2085 void AsmPrinter::emitInt32(int Value) const {
2086   OutStreamer->EmitIntValue(Value, 4);
2087 }
2088 
2089 /// Emit a long long directive and value.
2090 void AsmPrinter::emitInt64(uint64_t Value) const {
2091   OutStreamer->EmitIntValue(Value, 8);
2092 }
2093 
2094 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2095 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2096 /// .set if it avoids relocations.
2097 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2098                                      unsigned Size) const {
2099   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2100 }
2101 
2102 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2103 /// where the size in bytes of the directive is specified by Size and Label
2104 /// specifies the label.  This implicitly uses .set if it is available.
2105 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2106                                      unsigned Size,
2107                                      bool IsSectionRelative) const {
2108   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2109     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2110     if (Size > 4)
2111       OutStreamer->EmitZeros(Size - 4);
2112     return;
2113   }
2114 
2115   // Emit Label+Offset (or just Label if Offset is zero)
2116   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2117   if (Offset)
2118     Expr = MCBinaryExpr::createAdd(
2119         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2120 
2121   OutStreamer->EmitValue(Expr, Size);
2122 }
2123 
2124 //===----------------------------------------------------------------------===//
2125 
2126 // EmitAlignment - Emit an alignment directive to the specified power of
2127 // two boundary.  For example, if you pass in 3 here, you will get an 8
2128 // byte alignment.  If a global value is specified, and if that global has
2129 // an explicit alignment requested, it will override the alignment request
2130 // if required for correctness.
2131 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2132   if (GV)
2133     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2134 
2135   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
2136 
2137   assert(NumBits <
2138              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2139          "undefined behavior");
2140   if (getCurrentSection()->getKind().isText())
2141     OutStreamer->EmitCodeAlignment(1u << NumBits);
2142   else
2143     OutStreamer->EmitValueToAlignment(1u << NumBits);
2144 }
2145 
2146 //===----------------------------------------------------------------------===//
2147 // Constant emission.
2148 //===----------------------------------------------------------------------===//
2149 
2150 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2151   MCContext &Ctx = OutContext;
2152 
2153   if (CV->isNullValue() || isa<UndefValue>(CV))
2154     return MCConstantExpr::create(0, Ctx);
2155 
2156   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2157     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2158 
2159   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2160     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2161 
2162   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2163     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2164 
2165   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2166   if (!CE) {
2167     llvm_unreachable("Unknown constant value to lower!");
2168   }
2169 
2170   switch (CE->getOpcode()) {
2171   default:
2172     // If the code isn't optimized, there may be outstanding folding
2173     // opportunities. Attempt to fold the expression using DataLayout as a
2174     // last resort before giving up.
2175     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2176       if (C != CE)
2177         return lowerConstant(C);
2178 
2179     // Otherwise report the problem to the user.
2180     {
2181       std::string S;
2182       raw_string_ostream OS(S);
2183       OS << "Unsupported expression in static initializer: ";
2184       CE->printAsOperand(OS, /*PrintType=*/false,
2185                      !MF ? nullptr : MF->getFunction().getParent());
2186       report_fatal_error(OS.str());
2187     }
2188   case Instruction::GetElementPtr: {
2189     // Generate a symbolic expression for the byte address
2190     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2191     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2192 
2193     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2194     if (!OffsetAI)
2195       return Base;
2196 
2197     int64_t Offset = OffsetAI.getSExtValue();
2198     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2199                                    Ctx);
2200   }
2201 
2202   case Instruction::Trunc:
2203     // We emit the value and depend on the assembler to truncate the generated
2204     // expression properly.  This is important for differences between
2205     // blockaddress labels.  Since the two labels are in the same function, it
2206     // is reasonable to treat their delta as a 32-bit value.
2207     LLVM_FALLTHROUGH;
2208   case Instruction::BitCast:
2209     return lowerConstant(CE->getOperand(0));
2210 
2211   case Instruction::IntToPtr: {
2212     const DataLayout &DL = getDataLayout();
2213 
2214     // Handle casts to pointers by changing them into casts to the appropriate
2215     // integer type.  This promotes constant folding and simplifies this code.
2216     Constant *Op = CE->getOperand(0);
2217     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2218                                       false/*ZExt*/);
2219     return lowerConstant(Op);
2220   }
2221 
2222   case Instruction::PtrToInt: {
2223     const DataLayout &DL = getDataLayout();
2224 
2225     // Support only foldable casts to/from pointers that can be eliminated by
2226     // changing the pointer to the appropriately sized integer type.
2227     Constant *Op = CE->getOperand(0);
2228     Type *Ty = CE->getType();
2229 
2230     const MCExpr *OpExpr = lowerConstant(Op);
2231 
2232     // We can emit the pointer value into this slot if the slot is an
2233     // integer slot equal to the size of the pointer.
2234     //
2235     // If the pointer is larger than the resultant integer, then
2236     // as with Trunc just depend on the assembler to truncate it.
2237     if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2238       return OpExpr;
2239 
2240     // Otherwise the pointer is smaller than the resultant integer, mask off
2241     // the high bits so we are sure to get a proper truncation if the input is
2242     // a constant expr.
2243     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2244     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2245     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2246   }
2247 
2248   case Instruction::Sub: {
2249     GlobalValue *LHSGV;
2250     APInt LHSOffset;
2251     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2252                                    getDataLayout())) {
2253       GlobalValue *RHSGV;
2254       APInt RHSOffset;
2255       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2256                                      getDataLayout())) {
2257         const MCExpr *RelocExpr =
2258             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2259         if (!RelocExpr)
2260           RelocExpr = MCBinaryExpr::createSub(
2261               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2262               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2263         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2264         if (Addend != 0)
2265           RelocExpr = MCBinaryExpr::createAdd(
2266               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2267         return RelocExpr;
2268       }
2269     }
2270   }
2271   // else fallthrough
2272   LLVM_FALLTHROUGH;
2273 
2274   // The MC library also has a right-shift operator, but it isn't consistently
2275   // signed or unsigned between different targets.
2276   case Instruction::Add:
2277   case Instruction::Mul:
2278   case Instruction::SDiv:
2279   case Instruction::SRem:
2280   case Instruction::Shl:
2281   case Instruction::And:
2282   case Instruction::Or:
2283   case Instruction::Xor: {
2284     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2285     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2286     switch (CE->getOpcode()) {
2287     default: llvm_unreachable("Unknown binary operator constant cast expr");
2288     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2289     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2290     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2291     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2292     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2293     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2294     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2295     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2296     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2297     }
2298   }
2299   }
2300 }
2301 
2302 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2303                                    AsmPrinter &AP,
2304                                    const Constant *BaseCV = nullptr,
2305                                    uint64_t Offset = 0);
2306 
2307 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2308 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2309 
2310 /// isRepeatedByteSequence - Determine whether the given value is
2311 /// composed of a repeated sequence of identical bytes and return the
2312 /// byte value.  If it is not a repeated sequence, return -1.
2313 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2314   StringRef Data = V->getRawDataValues();
2315   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2316   char C = Data[0];
2317   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2318     if (Data[i] != C) return -1;
2319   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2320 }
2321 
2322 /// isRepeatedByteSequence - Determine whether the given value is
2323 /// composed of a repeated sequence of identical bytes and return the
2324 /// byte value.  If it is not a repeated sequence, return -1.
2325 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2326   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2327     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2328     assert(Size % 8 == 0);
2329 
2330     // Extend the element to take zero padding into account.
2331     APInt Value = CI->getValue().zextOrSelf(Size);
2332     if (!Value.isSplat(8))
2333       return -1;
2334 
2335     return Value.zextOrTrunc(8).getZExtValue();
2336   }
2337   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2338     // Make sure all array elements are sequences of the same repeated
2339     // byte.
2340     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2341     Constant *Op0 = CA->getOperand(0);
2342     int Byte = isRepeatedByteSequence(Op0, DL);
2343     if (Byte == -1)
2344       return -1;
2345 
2346     // All array elements must be equal.
2347     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2348       if (CA->getOperand(i) != Op0)
2349         return -1;
2350     return Byte;
2351   }
2352 
2353   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2354     return isRepeatedByteSequence(CDS);
2355 
2356   return -1;
2357 }
2358 
2359 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2360                                              const ConstantDataSequential *CDS,
2361                                              AsmPrinter &AP) {
2362   // See if we can aggregate this into a .fill, if so, emit it as such.
2363   int Value = isRepeatedByteSequence(CDS, DL);
2364   if (Value != -1) {
2365     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2366     // Don't emit a 1-byte object as a .fill.
2367     if (Bytes > 1)
2368       return AP.OutStreamer->emitFill(Bytes, Value);
2369   }
2370 
2371   // If this can be emitted with .ascii/.asciz, emit it as such.
2372   if (CDS->isString())
2373     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2374 
2375   // Otherwise, emit the values in successive locations.
2376   unsigned ElementByteSize = CDS->getElementByteSize();
2377   if (isa<IntegerType>(CDS->getElementType())) {
2378     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2379       if (AP.isVerbose())
2380         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2381                                                  CDS->getElementAsInteger(i));
2382       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2383                                    ElementByteSize);
2384     }
2385   } else {
2386     Type *ET = CDS->getElementType();
2387     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2388       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2389   }
2390 
2391   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2392   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2393                         CDS->getNumElements();
2394   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2395   if (unsigned Padding = Size - EmittedSize)
2396     AP.OutStreamer->EmitZeros(Padding);
2397 }
2398 
2399 static void emitGlobalConstantArray(const DataLayout &DL,
2400                                     const ConstantArray *CA, AsmPrinter &AP,
2401                                     const Constant *BaseCV, uint64_t Offset) {
2402   // See if we can aggregate some values.  Make sure it can be
2403   // represented as a series of bytes of the constant value.
2404   int Value = isRepeatedByteSequence(CA, DL);
2405 
2406   if (Value != -1) {
2407     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2408     AP.OutStreamer->emitFill(Bytes, Value);
2409   }
2410   else {
2411     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2412       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2413       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2414     }
2415   }
2416 }
2417 
2418 static void emitGlobalConstantVector(const DataLayout &DL,
2419                                      const ConstantVector *CV, AsmPrinter &AP) {
2420   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2421     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2422 
2423   unsigned Size = DL.getTypeAllocSize(CV->getType());
2424   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2425                          CV->getType()->getNumElements();
2426   if (unsigned Padding = Size - EmittedSize)
2427     AP.OutStreamer->EmitZeros(Padding);
2428 }
2429 
2430 static void emitGlobalConstantStruct(const DataLayout &DL,
2431                                      const ConstantStruct *CS, AsmPrinter &AP,
2432                                      const Constant *BaseCV, uint64_t Offset) {
2433   // Print the fields in successive locations. Pad to align if needed!
2434   unsigned Size = DL.getTypeAllocSize(CS->getType());
2435   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2436   uint64_t SizeSoFar = 0;
2437   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2438     const Constant *Field = CS->getOperand(i);
2439 
2440     // Print the actual field value.
2441     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2442 
2443     // Check if padding is needed and insert one or more 0s.
2444     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2445     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2446                         - Layout->getElementOffset(i)) - FieldSize;
2447     SizeSoFar += FieldSize + PadSize;
2448 
2449     // Insert padding - this may include padding to increase the size of the
2450     // current field up to the ABI size (if the struct is not packed) as well
2451     // as padding to ensure that the next field starts at the right offset.
2452     AP.OutStreamer->EmitZeros(PadSize);
2453   }
2454   assert(SizeSoFar == Layout->getSizeInBytes() &&
2455          "Layout of constant struct may be incorrect!");
2456 }
2457 
2458 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2459   APInt API = APF.bitcastToAPInt();
2460 
2461   // First print a comment with what we think the original floating-point value
2462   // should have been.
2463   if (AP.isVerbose()) {
2464     SmallString<8> StrVal;
2465     APF.toString(StrVal);
2466 
2467     if (ET)
2468       ET->print(AP.OutStreamer->GetCommentOS());
2469     else
2470       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2471     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2472   }
2473 
2474   // Now iterate through the APInt chunks, emitting them in endian-correct
2475   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2476   // floats).
2477   unsigned NumBytes = API.getBitWidth() / 8;
2478   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2479   const uint64_t *p = API.getRawData();
2480 
2481   // PPC's long double has odd notions of endianness compared to how LLVM
2482   // handles it: p[0] goes first for *big* endian on PPC.
2483   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2484     int Chunk = API.getNumWords() - 1;
2485 
2486     if (TrailingBytes)
2487       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2488 
2489     for (; Chunk >= 0; --Chunk)
2490       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2491   } else {
2492     unsigned Chunk;
2493     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2494       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2495 
2496     if (TrailingBytes)
2497       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2498   }
2499 
2500   // Emit the tail padding for the long double.
2501   const DataLayout &DL = AP.getDataLayout();
2502   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2503 }
2504 
2505 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2506   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2507 }
2508 
2509 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2510   const DataLayout &DL = AP.getDataLayout();
2511   unsigned BitWidth = CI->getBitWidth();
2512 
2513   // Copy the value as we may massage the layout for constants whose bit width
2514   // is not a multiple of 64-bits.
2515   APInt Realigned(CI->getValue());
2516   uint64_t ExtraBits = 0;
2517   unsigned ExtraBitsSize = BitWidth & 63;
2518 
2519   if (ExtraBitsSize) {
2520     // The bit width of the data is not a multiple of 64-bits.
2521     // The extra bits are expected to be at the end of the chunk of the memory.
2522     // Little endian:
2523     // * Nothing to be done, just record the extra bits to emit.
2524     // Big endian:
2525     // * Record the extra bits to emit.
2526     // * Realign the raw data to emit the chunks of 64-bits.
2527     if (DL.isBigEndian()) {
2528       // Basically the structure of the raw data is a chunk of 64-bits cells:
2529       //    0        1         BitWidth / 64
2530       // [chunk1][chunk2] ... [chunkN].
2531       // The most significant chunk is chunkN and it should be emitted first.
2532       // However, due to the alignment issue chunkN contains useless bits.
2533       // Realign the chunks so that they contain only useless information:
2534       // ExtraBits     0       1       (BitWidth / 64) - 1
2535       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2536       ExtraBits = Realigned.getRawData()[0] &
2537         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2538       Realigned.lshrInPlace(ExtraBitsSize);
2539     } else
2540       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2541   }
2542 
2543   // We don't expect assemblers to support integer data directives
2544   // for more than 64 bits, so we emit the data in at most 64-bit
2545   // quantities at a time.
2546   const uint64_t *RawData = Realigned.getRawData();
2547   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2548     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2549     AP.OutStreamer->EmitIntValue(Val, 8);
2550   }
2551 
2552   if (ExtraBitsSize) {
2553     // Emit the extra bits after the 64-bits chunks.
2554 
2555     // Emit a directive that fills the expected size.
2556     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2557     Size -= (BitWidth / 64) * 8;
2558     assert(Size && Size * 8 >= ExtraBitsSize &&
2559            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2560            == ExtraBits && "Directive too small for extra bits.");
2561     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2562   }
2563 }
2564 
2565 /// Transform a not absolute MCExpr containing a reference to a GOT
2566 /// equivalent global, by a target specific GOT pc relative access to the
2567 /// final symbol.
2568 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2569                                          const Constant *BaseCst,
2570                                          uint64_t Offset) {
2571   // The global @foo below illustrates a global that uses a got equivalent.
2572   //
2573   //  @bar = global i32 42
2574   //  @gotequiv = private unnamed_addr constant i32* @bar
2575   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2576   //                             i64 ptrtoint (i32* @foo to i64))
2577   //                        to i32)
2578   //
2579   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2580   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2581   // form:
2582   //
2583   //  foo = cstexpr, where
2584   //    cstexpr := <gotequiv> - "." + <cst>
2585   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2586   //
2587   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2588   //
2589   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2590   //    gotpcrelcst := <offset from @foo base> + <cst>
2591   MCValue MV;
2592   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2593     return;
2594   const MCSymbolRefExpr *SymA = MV.getSymA();
2595   if (!SymA)
2596     return;
2597 
2598   // Check that GOT equivalent symbol is cached.
2599   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2600   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2601     return;
2602 
2603   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2604   if (!BaseGV)
2605     return;
2606 
2607   // Check for a valid base symbol
2608   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2609   const MCSymbolRefExpr *SymB = MV.getSymB();
2610 
2611   if (!SymB || BaseSym != &SymB->getSymbol())
2612     return;
2613 
2614   // Make sure to match:
2615   //
2616   //    gotpcrelcst := <offset from @foo base> + <cst>
2617   //
2618   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2619   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2620   // if the target knows how to encode it.
2621   int64_t GOTPCRelCst = Offset + MV.getConstant();
2622   if (GOTPCRelCst < 0)
2623     return;
2624   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2625     return;
2626 
2627   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2628   //
2629   //  bar:
2630   //    .long 42
2631   //  gotequiv:
2632   //    .quad bar
2633   //  foo:
2634   //    .long gotequiv - "." + <cst>
2635   //
2636   // is replaced by the target specific equivalent to:
2637   //
2638   //  bar:
2639   //    .long 42
2640   //  foo:
2641   //    .long bar@GOTPCREL+<gotpcrelcst>
2642   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2643   const GlobalVariable *GV = Result.first;
2644   int NumUses = (int)Result.second;
2645   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2646   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2647   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2648       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2649 
2650   // Update GOT equivalent usage information
2651   --NumUses;
2652   if (NumUses >= 0)
2653     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2654 }
2655 
2656 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2657                                    AsmPrinter &AP, const Constant *BaseCV,
2658                                    uint64_t Offset) {
2659   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2660 
2661   // Globals with sub-elements such as combinations of arrays and structs
2662   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2663   // constant symbol base and the current position with BaseCV and Offset.
2664   if (!BaseCV && CV->hasOneUse())
2665     BaseCV = dyn_cast<Constant>(CV->user_back());
2666 
2667   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2668     return AP.OutStreamer->EmitZeros(Size);
2669 
2670   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2671     switch (Size) {
2672     case 1:
2673     case 2:
2674     case 4:
2675     case 8:
2676       if (AP.isVerbose())
2677         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2678                                                  CI->getZExtValue());
2679       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2680       return;
2681     default:
2682       emitGlobalConstantLargeInt(CI, AP);
2683       return;
2684     }
2685   }
2686 
2687   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2688     return emitGlobalConstantFP(CFP, AP);
2689 
2690   if (isa<ConstantPointerNull>(CV)) {
2691     AP.OutStreamer->EmitIntValue(0, Size);
2692     return;
2693   }
2694 
2695   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2696     return emitGlobalConstantDataSequential(DL, CDS, AP);
2697 
2698   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2699     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2700 
2701   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2702     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2703 
2704   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2705     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2706     // vectors).
2707     if (CE->getOpcode() == Instruction::BitCast)
2708       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2709 
2710     if (Size > 8) {
2711       // If the constant expression's size is greater than 64-bits, then we have
2712       // to emit the value in chunks. Try to constant fold the value and emit it
2713       // that way.
2714       Constant *New = ConstantFoldConstant(CE, DL);
2715       if (New && New != CE)
2716         return emitGlobalConstantImpl(DL, New, AP);
2717     }
2718   }
2719 
2720   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2721     return emitGlobalConstantVector(DL, V, AP);
2722 
2723   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2724   // thread the streamer with EmitValue.
2725   const MCExpr *ME = AP.lowerConstant(CV);
2726 
2727   // Since lowerConstant already folded and got rid of all IR pointer and
2728   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2729   // directly.
2730   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2731     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2732 
2733   AP.OutStreamer->EmitValue(ME, Size);
2734 }
2735 
2736 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2737 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2738   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2739   if (Size)
2740     emitGlobalConstantImpl(DL, CV, *this);
2741   else if (MAI->hasSubsectionsViaSymbols()) {
2742     // If the global has zero size, emit a single byte so that two labels don't
2743     // look like they are at the same location.
2744     OutStreamer->EmitIntValue(0, 1);
2745   }
2746 }
2747 
2748 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2749   // Target doesn't support this yet!
2750   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2751 }
2752 
2753 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2754   if (Offset > 0)
2755     OS << '+' << Offset;
2756   else if (Offset < 0)
2757     OS << Offset;
2758 }
2759 
2760 //===----------------------------------------------------------------------===//
2761 // Symbol Lowering Routines.
2762 //===----------------------------------------------------------------------===//
2763 
2764 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2765   return OutContext.createTempSymbol(Name, true);
2766 }
2767 
2768 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2769   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2770 }
2771 
2772 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2773   return MMI->getAddrLabelSymbol(BB);
2774 }
2775 
2776 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2777 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2778   if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) {
2779     const MachineConstantPoolEntry &CPE =
2780         MF->getConstantPool()->getConstants()[CPID];
2781     if (!CPE.isMachineConstantPoolEntry()) {
2782       const DataLayout &DL = MF->getDataLayout();
2783       SectionKind Kind = CPE.getSectionKind(&DL);
2784       const Constant *C = CPE.Val.ConstVal;
2785       unsigned Align = CPE.Alignment;
2786       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2787               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2788         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2789           if (Sym->isUndefined())
2790             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2791           return Sym;
2792         }
2793       }
2794     }
2795   }
2796 
2797   const DataLayout &DL = getDataLayout();
2798   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2799                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2800                                       Twine(CPID));
2801 }
2802 
2803 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2804 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2805   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2806 }
2807 
2808 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2809 /// FIXME: privatize to AsmPrinter.
2810 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2811   const DataLayout &DL = getDataLayout();
2812   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2813                                       Twine(getFunctionNumber()) + "_" +
2814                                       Twine(UID) + "_set_" + Twine(MBBID));
2815 }
2816 
2817 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2818                                                    StringRef Suffix) const {
2819   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2820 }
2821 
2822 /// Return the MCSymbol for the specified ExternalSymbol.
2823 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2824   SmallString<60> NameStr;
2825   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2826   return OutContext.getOrCreateSymbol(NameStr);
2827 }
2828 
2829 /// PrintParentLoopComment - Print comments about parent loops of this one.
2830 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2831                                    unsigned FunctionNumber) {
2832   if (!Loop) return;
2833   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2834   OS.indent(Loop->getLoopDepth()*2)
2835     << "Parent Loop BB" << FunctionNumber << "_"
2836     << Loop->getHeader()->getNumber()
2837     << " Depth=" << Loop->getLoopDepth() << '\n';
2838 }
2839 
2840 /// PrintChildLoopComment - Print comments about child loops within
2841 /// the loop for this basic block, with nesting.
2842 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2843                                   unsigned FunctionNumber) {
2844   // Add child loop information
2845   for (const MachineLoop *CL : *Loop) {
2846     OS.indent(CL->getLoopDepth()*2)
2847       << "Child Loop BB" << FunctionNumber << "_"
2848       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2849       << '\n';
2850     PrintChildLoopComment(OS, CL, FunctionNumber);
2851   }
2852 }
2853 
2854 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2855 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2856                                        const MachineLoopInfo *LI,
2857                                        const AsmPrinter &AP) {
2858   // Add loop depth information
2859   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2860   if (!Loop) return;
2861 
2862   MachineBasicBlock *Header = Loop->getHeader();
2863   assert(Header && "No header for loop");
2864 
2865   // If this block is not a loop header, just print out what is the loop header
2866   // and return.
2867   if (Header != &MBB) {
2868     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2869                                Twine(AP.getFunctionNumber())+"_" +
2870                                Twine(Loop->getHeader()->getNumber())+
2871                                " Depth="+Twine(Loop->getLoopDepth()));
2872     return;
2873   }
2874 
2875   // Otherwise, it is a loop header.  Print out information about child and
2876   // parent loops.
2877   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2878 
2879   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2880 
2881   OS << "=>";
2882   OS.indent(Loop->getLoopDepth()*2-2);
2883 
2884   OS << "This ";
2885   if (Loop->empty())
2886     OS << "Inner ";
2887   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2888 
2889   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2890 }
2891 
2892 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2893                                          MCCodePaddingContext &Context) const {
2894   assert(MF != nullptr && "Machine function must be valid");
2895   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2896                             !MF->getFunction().hasOptSize() &&
2897                             TM.getOptLevel() != CodeGenOpt::None;
2898   Context.IsBasicBlockReachableViaFallthrough =
2899       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2900       MBB.pred_end();
2901   Context.IsBasicBlockReachableViaBranch =
2902       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2903 }
2904 
2905 /// EmitBasicBlockStart - This method prints the label for the specified
2906 /// MachineBasicBlock, an alignment (if present) and a comment describing
2907 /// it if appropriate.
2908 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2909   // End the previous funclet and start a new one.
2910   if (MBB.isEHFuncletEntry()) {
2911     for (const HandlerInfo &HI : Handlers) {
2912       HI.Handler->endFunclet();
2913       HI.Handler->beginFunclet(MBB);
2914     }
2915   }
2916 
2917   // Emit an alignment directive for this block, if needed.
2918   if (unsigned Align = MBB.getAlignment())
2919     EmitAlignment(Align);
2920   MCCodePaddingContext Context;
2921   setupCodePaddingContext(MBB, Context);
2922   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2923 
2924   // If the block has its address taken, emit any labels that were used to
2925   // reference the block.  It is possible that there is more than one label
2926   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2927   // the references were generated.
2928   if (MBB.hasAddressTaken()) {
2929     const BasicBlock *BB = MBB.getBasicBlock();
2930     if (isVerbose())
2931       OutStreamer->AddComment("Block address taken");
2932 
2933     // MBBs can have their address taken as part of CodeGen without having
2934     // their corresponding BB's address taken in IR
2935     if (BB->hasAddressTaken())
2936       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2937         OutStreamer->EmitLabel(Sym);
2938   }
2939 
2940   // Print some verbose block comments.
2941   if (isVerbose()) {
2942     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2943       if (BB->hasName()) {
2944         BB->printAsOperand(OutStreamer->GetCommentOS(),
2945                            /*PrintType=*/false, BB->getModule());
2946         OutStreamer->GetCommentOS() << '\n';
2947       }
2948     }
2949 
2950     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2951     emitBasicBlockLoopComments(MBB, MLI, *this);
2952   }
2953 
2954   // Print the main label for the block.
2955   if (MBB.pred_empty() ||
2956       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
2957        !MBB.hasLabelMustBeEmitted())) {
2958     if (isVerbose()) {
2959       // NOTE: Want this comment at start of line, don't emit with AddComment.
2960       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2961                                   false);
2962     }
2963   } else {
2964     if (isVerbose() && MBB.hasLabelMustBeEmitted())
2965       OutStreamer->AddComment("Label of block must be emitted");
2966     OutStreamer->EmitLabel(MBB.getSymbol());
2967   }
2968 }
2969 
2970 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2971   MCCodePaddingContext Context;
2972   setupCodePaddingContext(MBB, Context);
2973   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2974 }
2975 
2976 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2977                                 bool IsDefinition) const {
2978   MCSymbolAttr Attr = MCSA_Invalid;
2979 
2980   switch (Visibility) {
2981   default: break;
2982   case GlobalValue::HiddenVisibility:
2983     if (IsDefinition)
2984       Attr = MAI->getHiddenVisibilityAttr();
2985     else
2986       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2987     break;
2988   case GlobalValue::ProtectedVisibility:
2989     Attr = MAI->getProtectedVisibilityAttr();
2990     break;
2991   }
2992 
2993   if (Attr != MCSA_Invalid)
2994     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2995 }
2996 
2997 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2998 /// exactly one predecessor and the control transfer mechanism between
2999 /// the predecessor and this block is a fall-through.
3000 bool AsmPrinter::
3001 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3002   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3003   // then nothing falls through to it.
3004   if (MBB->isEHPad() || MBB->pred_empty())
3005     return false;
3006 
3007   // If there isn't exactly one predecessor, it can't be a fall through.
3008   if (MBB->pred_size() > 1)
3009     return false;
3010 
3011   // The predecessor has to be immediately before this block.
3012   MachineBasicBlock *Pred = *MBB->pred_begin();
3013   if (!Pred->isLayoutSuccessor(MBB))
3014     return false;
3015 
3016   // If the block is completely empty, then it definitely does fall through.
3017   if (Pred->empty())
3018     return true;
3019 
3020   // Check the terminators in the previous blocks
3021   for (const auto &MI : Pred->terminators()) {
3022     // If it is not a simple branch, we are in a table somewhere.
3023     if (!MI.isBranch() || MI.isIndirectBranch())
3024       return false;
3025 
3026     // If we are the operands of one of the branches, this is not a fall
3027     // through. Note that targets with delay slots will usually bundle
3028     // terminators with the delay slot instruction.
3029     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3030       if (OP->isJTI())
3031         return false;
3032       if (OP->isMBB() && OP->getMBB() == MBB)
3033         return false;
3034     }
3035   }
3036 
3037   return true;
3038 }
3039 
3040 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3041   if (!S.usesMetadata())
3042     return nullptr;
3043 
3044   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3045   gcp_map_type::iterator GCPI = GCMap.find(&S);
3046   if (GCPI != GCMap.end())
3047     return GCPI->second.get();
3048 
3049   auto Name = S.getName();
3050 
3051   for (GCMetadataPrinterRegistry::iterator
3052          I = GCMetadataPrinterRegistry::begin(),
3053          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3054     if (Name == I->getName()) {
3055       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3056       GMP->S = &S;
3057       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3058       return IterBool.first->second.get();
3059     }
3060 
3061   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3062 }
3063 
3064 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3065   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3066   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3067   bool NeedsDefault = false;
3068   if (MI->begin() == MI->end())
3069     // No GC strategy, use the default format.
3070     NeedsDefault = true;
3071   else
3072     for (auto &I : *MI) {
3073       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3074         if (MP->emitStackMaps(SM, *this))
3075           continue;
3076       // The strategy doesn't have printer or doesn't emit custom stack maps.
3077       // Use the default format.
3078       NeedsDefault = true;
3079     }
3080 
3081   if (NeedsDefault)
3082     SM.serializeToStackMapSection();
3083 }
3084 
3085 /// Pin vtable to this file.
3086 AsmPrinterHandler::~AsmPrinterHandler() = default;
3087 
3088 void AsmPrinterHandler::markFunctionEnd() {}
3089 
3090 // In the binary's "xray_instr_map" section, an array of these function entries
3091 // describes each instrumentation point.  When XRay patches your code, the index
3092 // into this table will be given to your handler as a patch point identifier.
3093 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3094                                          const MCSymbol *CurrentFnSym) const {
3095   Out->EmitSymbolValue(Sled, Bytes);
3096   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3097   auto Kind8 = static_cast<uint8_t>(Kind);
3098   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3099   Out->EmitBinaryData(
3100       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3101   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3102   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3103   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3104   Out->EmitZeros(Padding);
3105 }
3106 
3107 void AsmPrinter::emitXRayTable() {
3108   if (Sleds.empty())
3109     return;
3110 
3111   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3112   const Function &F = MF->getFunction();
3113   MCSection *InstMap = nullptr;
3114   MCSection *FnSledIndex = nullptr;
3115   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3116     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3117     assert(Associated != nullptr);
3118     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3119     std::string GroupName;
3120     if (F.hasComdat()) {
3121       Flags |= ELF::SHF_GROUP;
3122       GroupName = F.getComdat()->getName();
3123     }
3124 
3125     auto UniqueID = ++XRayFnUniqueID;
3126     InstMap =
3127         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3128                                  GroupName, UniqueID, Associated);
3129     FnSledIndex =
3130         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3131                                  GroupName, UniqueID, Associated);
3132   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3133     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3134                                          SectionKind::getReadOnlyWithRel());
3135     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3136                                              SectionKind::getReadOnlyWithRel());
3137   } else {
3138     llvm_unreachable("Unsupported target");
3139   }
3140 
3141   auto WordSizeBytes = MAI->getCodePointerSize();
3142 
3143   // Now we switch to the instrumentation map section. Because this is done
3144   // per-function, we are able to create an index entry that will represent the
3145   // range of sleds associated with a function.
3146   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3147   OutStreamer->SwitchSection(InstMap);
3148   OutStreamer->EmitLabel(SledsStart);
3149   for (const auto &Sled : Sleds)
3150     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3151   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3152   OutStreamer->EmitLabel(SledsEnd);
3153 
3154   // We then emit a single entry in the index per function. We use the symbols
3155   // that bound the instrumentation map as the range for a specific function.
3156   // Each entry here will be 2 * word size aligned, as we're writing down two
3157   // pointers. This should work for both 32-bit and 64-bit platforms.
3158   OutStreamer->SwitchSection(FnSledIndex);
3159   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3160   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3161   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3162   OutStreamer->SwitchSection(PrevSection);
3163   Sleds.clear();
3164 }
3165 
3166 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3167                             SledKind Kind, uint8_t Version) {
3168   const Function &F = MI.getMF()->getFunction();
3169   auto Attr = F.getFnAttribute("function-instrument");
3170   bool LogArgs = F.hasFnAttribute("xray-log-args");
3171   bool AlwaysInstrument =
3172     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3173   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3174     Kind = SledKind::LOG_ARGS_ENTER;
3175   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3176                                        AlwaysInstrument, &F, Version});
3177 }
3178 
3179 uint16_t AsmPrinter::getDwarfVersion() const {
3180   return OutStreamer->getContext().getDwarfVersion();
3181 }
3182 
3183 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3184   OutStreamer->getContext().setDwarfVersion(Version);
3185 }
3186