1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/RemarkStreamer.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCStreamer.h" 95 #include "llvm/MC/MCSubtargetInfo.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/MC/MCSymbolELF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/Format.h" 108 #include "llvm/Support/MathExtras.h" 109 #include "llvm/Support/Path.h" 110 #include "llvm/Support/TargetRegistry.h" 111 #include "llvm/Support/Timer.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetLoweringObjectFile.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cinttypes> 119 #include <cstdint> 120 #include <iterator> 121 #include <limits> 122 #include <memory> 123 #include <string> 124 #include <utility> 125 #include <vector> 126 127 using namespace llvm; 128 129 #define DEBUG_TYPE "asm-printer" 130 131 static const char *const DWARFGroupName = "dwarf"; 132 static const char *const DWARFGroupDescription = "DWARF Emission"; 133 static const char *const DbgTimerName = "emit"; 134 static const char *const DbgTimerDescription = "Debug Info Emission"; 135 static const char *const EHTimerName = "write_exception"; 136 static const char *const EHTimerDescription = "DWARF Exception Writer"; 137 static const char *const CFGuardName = "Control Flow Guard"; 138 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 139 static const char *const CodeViewLineTablesGroupName = "linetables"; 140 static const char *const CodeViewLineTablesGroupDescription = 141 "CodeView Line Tables"; 142 143 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 144 145 static cl::opt<bool> EnableRemarksSection( 146 "remarks-section", 147 cl::desc("Emit a section containing remark diagnostics metadata"), 148 cl::init(false)); 149 150 char AsmPrinter::ID = 0; 151 152 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 153 154 static gcp_map_type &getGCMap(void *&P) { 155 if (!P) 156 P = new gcp_map_type(); 157 return *(gcp_map_type*)P; 158 } 159 160 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 161 /// value in log2 form. This rounds up to the preferred alignment if possible 162 /// and legal. 163 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 164 unsigned InBits = 0) { 165 unsigned NumBits = 0; 166 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 167 NumBits = DL.getPreferredAlignmentLog(GVar); 168 169 // If InBits is specified, round it to it. 170 if (InBits > NumBits) 171 NumBits = InBits; 172 173 // If the GV has a specified alignment, take it into account. 174 if (GV->getAlignment() == 0) 175 return NumBits; 176 177 unsigned GVAlign = Log2_32(GV->getAlignment()); 178 179 // If the GVAlign is larger than NumBits, or if we are required to obey 180 // NumBits because the GV has an assigned section, obey it. 181 if (GVAlign > NumBits || GV->hasSection()) 182 NumBits = GVAlign; 183 return NumBits; 184 } 185 186 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 187 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 188 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 189 VerboseAsm = OutStreamer->isVerboseAsm(); 190 } 191 192 AsmPrinter::~AsmPrinter() { 193 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 194 195 if (GCMetadataPrinters) { 196 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 197 198 delete &GCMap; 199 GCMetadataPrinters = nullptr; 200 } 201 } 202 203 bool AsmPrinter::isPositionIndependent() const { 204 return TM.isPositionIndependent(); 205 } 206 207 /// getFunctionNumber - Return a unique ID for the current function. 208 unsigned AsmPrinter::getFunctionNumber() const { 209 return MF->getFunctionNumber(); 210 } 211 212 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 213 return *TM.getObjFileLowering(); 214 } 215 216 const DataLayout &AsmPrinter::getDataLayout() const { 217 return MMI->getModule()->getDataLayout(); 218 } 219 220 // Do not use the cached DataLayout because some client use it without a Module 221 // (dsymutil, llvm-dwarfdump). 222 unsigned AsmPrinter::getPointerSize() const { 223 return TM.getPointerSize(0); // FIXME: Default address space 224 } 225 226 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 227 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 228 return MF->getSubtarget<MCSubtargetInfo>(); 229 } 230 231 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 232 S.EmitInstruction(Inst, getSubtargetInfo()); 233 } 234 235 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 236 assert(DD && "Dwarf debug file is not defined."); 237 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 238 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 239 } 240 241 /// getCurrentSection() - Return the current section we are emitting to. 242 const MCSection *AsmPrinter::getCurrentSection() const { 243 return OutStreamer->getCurrentSectionOnly(); 244 } 245 246 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 247 AU.setPreservesAll(); 248 MachineFunctionPass::getAnalysisUsage(AU); 249 AU.addRequired<MachineModuleInfo>(); 250 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 251 AU.addRequired<GCModuleInfo>(); 252 } 253 254 bool AsmPrinter::doInitialization(Module &M) { 255 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 256 257 // Initialize TargetLoweringObjectFile. 258 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 259 .Initialize(OutContext, TM); 260 261 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 262 .getModuleMetadata(M); 263 264 OutStreamer->InitSections(false); 265 266 // Emit the version-min deployment target directive if needed. 267 // 268 // FIXME: If we end up with a collection of these sorts of Darwin-specific 269 // or ELF-specific things, it may make sense to have a platform helper class 270 // that will work with the target helper class. For now keep it here, as the 271 // alternative is duplicated code in each of the target asm printers that 272 // use the directive, where it would need the same conditionalization 273 // anyway. 274 const Triple &Target = TM.getTargetTriple(); 275 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 276 277 // Allow the target to emit any magic that it wants at the start of the file. 278 EmitStartOfAsmFile(M); 279 280 // Very minimal debug info. It is ignored if we emit actual debug info. If we 281 // don't, this at least helps the user find where a global came from. 282 if (MAI->hasSingleParameterDotFile()) { 283 // .file "foo.c" 284 OutStreamer->EmitFileDirective( 285 llvm::sys::path::filename(M.getSourceFileName())); 286 } 287 288 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 289 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 290 for (auto &I : *MI) 291 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 292 MP->beginAssembly(M, *MI, *this); 293 294 // Emit module-level inline asm if it exists. 295 if (!M.getModuleInlineAsm().empty()) { 296 // We're at the module level. Construct MCSubtarget from the default CPU 297 // and target triple. 298 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 299 TM.getTargetTriple().str(), TM.getTargetCPU(), 300 TM.getTargetFeatureString())); 301 OutStreamer->AddComment("Start of file scope inline assembly"); 302 OutStreamer->AddBlankLine(); 303 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 304 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 305 OutStreamer->AddComment("End of file scope inline assembly"); 306 OutStreamer->AddBlankLine(); 307 } 308 309 if (MAI->doesSupportDebugInformation()) { 310 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 311 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 312 Handlers.emplace_back(llvm::make_unique<CodeViewDebug>(this), 313 DbgTimerName, DbgTimerDescription, 314 CodeViewLineTablesGroupName, 315 CodeViewLineTablesGroupDescription); 316 } 317 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 318 DD = new DwarfDebug(this, &M); 319 DD->beginModule(); 320 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 321 DbgTimerDescription, DWARFGroupName, 322 DWARFGroupDescription); 323 } 324 } 325 326 switch (MAI->getExceptionHandlingType()) { 327 case ExceptionHandling::SjLj: 328 case ExceptionHandling::DwarfCFI: 329 case ExceptionHandling::ARM: 330 isCFIMoveForDebugging = true; 331 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 332 break; 333 for (auto &F: M.getFunctionList()) { 334 // If the module contains any function with unwind data, 335 // .eh_frame has to be emitted. 336 // Ignore functions that won't get emitted. 337 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 338 isCFIMoveForDebugging = false; 339 break; 340 } 341 } 342 break; 343 default: 344 isCFIMoveForDebugging = false; 345 break; 346 } 347 348 EHStreamer *ES = nullptr; 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::None: 351 break; 352 case ExceptionHandling::SjLj: 353 case ExceptionHandling::DwarfCFI: 354 ES = new DwarfCFIException(this); 355 break; 356 case ExceptionHandling::ARM: 357 ES = new ARMException(this); 358 break; 359 case ExceptionHandling::WinEH: 360 switch (MAI->getWinEHEncodingType()) { 361 default: llvm_unreachable("unsupported unwinding information encoding"); 362 case WinEH::EncodingType::Invalid: 363 break; 364 case WinEH::EncodingType::X86: 365 case WinEH::EncodingType::Itanium: 366 ES = new WinException(this); 367 break; 368 } 369 break; 370 case ExceptionHandling::Wasm: 371 ES = new WasmException(this); 372 break; 373 } 374 if (ES) 375 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 376 EHTimerDescription, DWARFGroupName, 377 DWARFGroupDescription); 378 379 if (mdconst::extract_or_null<ConstantInt>( 380 MMI->getModule()->getModuleFlag("cfguardtable"))) 381 Handlers.emplace_back(llvm::make_unique<WinCFGuard>(this), CFGuardName, 382 CFGuardDescription, DWARFGroupName, 383 DWARFGroupDescription); 384 385 return false; 386 } 387 388 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 389 if (!MAI.hasWeakDefCanBeHiddenDirective()) 390 return false; 391 392 return GV->canBeOmittedFromSymbolTable(); 393 } 394 395 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 396 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 397 switch (Linkage) { 398 case GlobalValue::CommonLinkage: 399 case GlobalValue::LinkOnceAnyLinkage: 400 case GlobalValue::LinkOnceODRLinkage: 401 case GlobalValue::WeakAnyLinkage: 402 case GlobalValue::WeakODRLinkage: 403 if (MAI->hasWeakDefDirective()) { 404 // .globl _foo 405 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 406 407 if (!canBeHidden(GV, *MAI)) 408 // .weak_definition _foo 409 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 410 else 411 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 412 } else if (MAI->hasLinkOnceDirective()) { 413 // .globl _foo 414 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 415 //NOTE: linkonce is handled by the section the symbol was assigned to. 416 } else { 417 // .weak _foo 418 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 419 } 420 return; 421 case GlobalValue::ExternalLinkage: 422 // If external, declare as a global symbol: .globl _foo 423 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 424 return; 425 case GlobalValue::PrivateLinkage: 426 case GlobalValue::InternalLinkage: 427 return; 428 case GlobalValue::AppendingLinkage: 429 case GlobalValue::AvailableExternallyLinkage: 430 case GlobalValue::ExternalWeakLinkage: 431 llvm_unreachable("Should never emit this"); 432 } 433 llvm_unreachable("Unknown linkage type!"); 434 } 435 436 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 437 const GlobalValue *GV) const { 438 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 439 } 440 441 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 442 return TM.getSymbol(GV); 443 } 444 445 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 446 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 447 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 448 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 449 "No emulated TLS variables in the common section"); 450 451 // Never emit TLS variable xyz in emulated TLS model. 452 // The initialization value is in __emutls_t.xyz instead of xyz. 453 if (IsEmuTLSVar) 454 return; 455 456 if (GV->hasInitializer()) { 457 // Check to see if this is a special global used by LLVM, if so, emit it. 458 if (EmitSpecialLLVMGlobal(GV)) 459 return; 460 461 // Skip the emission of global equivalents. The symbol can be emitted later 462 // on by emitGlobalGOTEquivs in case it turns out to be needed. 463 if (GlobalGOTEquivs.count(getSymbol(GV))) 464 return; 465 466 if (isVerbose()) { 467 // When printing the control variable __emutls_v.*, 468 // we don't need to print the original TLS variable name. 469 GV->printAsOperand(OutStreamer->GetCommentOS(), 470 /*PrintType=*/false, GV->getParent()); 471 OutStreamer->GetCommentOS() << '\n'; 472 } 473 } 474 475 MCSymbol *GVSym = getSymbol(GV); 476 MCSymbol *EmittedSym = GVSym; 477 478 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 479 // attributes. 480 // GV's or GVSym's attributes will be used for the EmittedSym. 481 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 482 483 if (!GV->hasInitializer()) // External globals require no extra code. 484 return; 485 486 GVSym->redefineIfPossible(); 487 if (GVSym->isDefined() || GVSym->isVariable()) 488 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 489 "' is already defined"); 490 491 if (MAI->hasDotTypeDotSizeDirective()) 492 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 493 494 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 495 496 const DataLayout &DL = GV->getParent()->getDataLayout(); 497 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 498 499 // If the alignment is specified, we *must* obey it. Overaligning a global 500 // with a specified alignment is a prompt way to break globals emitted to 501 // sections and expected to be contiguous (e.g. ObjC metadata). 502 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 503 504 for (const HandlerInfo &HI : Handlers) { 505 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 506 HI.TimerGroupName, HI.TimerGroupDescription, 507 TimePassesIsEnabled); 508 HI.Handler->setSymbolSize(GVSym, Size); 509 } 510 511 // Handle common symbols 512 if (GVKind.isCommon()) { 513 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 514 unsigned Align = 1 << AlignLog; 515 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 516 Align = 0; 517 518 // .comm _foo, 42, 4 519 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 520 return; 521 } 522 523 // Determine to which section this global should be emitted. 524 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 525 526 // If we have a bss global going to a section that supports the 527 // zerofill directive, do so here. 528 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 529 TheSection->isVirtualSection()) { 530 if (Size == 0) 531 Size = 1; // zerofill of 0 bytes is undefined. 532 unsigned Align = 1 << AlignLog; 533 EmitLinkage(GV, GVSym); 534 // .zerofill __DATA, __bss, _foo, 400, 5 535 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 536 return; 537 } 538 539 // If this is a BSS local symbol and we are emitting in the BSS 540 // section use .lcomm/.comm directive. 541 if (GVKind.isBSSLocal() && 542 getObjFileLowering().getBSSSection() == TheSection) { 543 if (Size == 0) 544 Size = 1; // .comm Foo, 0 is undefined, avoid it. 545 unsigned Align = 1 << AlignLog; 546 547 // Use .lcomm only if it supports user-specified alignment. 548 // Otherwise, while it would still be correct to use .lcomm in some 549 // cases (e.g. when Align == 1), the external assembler might enfore 550 // some -unknown- default alignment behavior, which could cause 551 // spurious differences between external and integrated assembler. 552 // Prefer to simply fall back to .local / .comm in this case. 553 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 554 // .lcomm _foo, 42 555 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 556 return; 557 } 558 559 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 560 Align = 0; 561 562 // .local _foo 563 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 564 // .comm _foo, 42, 4 565 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 566 return; 567 } 568 569 // Handle thread local data for mach-o which requires us to output an 570 // additional structure of data and mangle the original symbol so that we 571 // can reference it later. 572 // 573 // TODO: This should become an "emit thread local global" method on TLOF. 574 // All of this macho specific stuff should be sunk down into TLOFMachO and 575 // stuff like "TLSExtraDataSection" should no longer be part of the parent 576 // TLOF class. This will also make it more obvious that stuff like 577 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 578 // specific code. 579 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 580 // Emit the .tbss symbol 581 MCSymbol *MangSym = 582 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 583 584 if (GVKind.isThreadBSS()) { 585 TheSection = getObjFileLowering().getTLSBSSSection(); 586 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 587 } else if (GVKind.isThreadData()) { 588 OutStreamer->SwitchSection(TheSection); 589 590 EmitAlignment(AlignLog, GV); 591 OutStreamer->EmitLabel(MangSym); 592 593 EmitGlobalConstant(GV->getParent()->getDataLayout(), 594 GV->getInitializer()); 595 } 596 597 OutStreamer->AddBlankLine(); 598 599 // Emit the variable struct for the runtime. 600 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 601 602 OutStreamer->SwitchSection(TLVSect); 603 // Emit the linkage here. 604 EmitLinkage(GV, GVSym); 605 OutStreamer->EmitLabel(GVSym); 606 607 // Three pointers in size: 608 // - __tlv_bootstrap - used to make sure support exists 609 // - spare pointer, used when mapped by the runtime 610 // - pointer to mangled symbol above with initializer 611 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 612 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 613 PtrSize); 614 OutStreamer->EmitIntValue(0, PtrSize); 615 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 616 617 OutStreamer->AddBlankLine(); 618 return; 619 } 620 621 MCSymbol *EmittedInitSym = GVSym; 622 623 OutStreamer->SwitchSection(TheSection); 624 625 EmitLinkage(GV, EmittedInitSym); 626 EmitAlignment(AlignLog, GV); 627 628 OutStreamer->EmitLabel(EmittedInitSym); 629 630 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 631 632 if (MAI->hasDotTypeDotSizeDirective()) 633 // .size foo, 42 634 OutStreamer->emitELFSize(EmittedInitSym, 635 MCConstantExpr::create(Size, OutContext)); 636 637 OutStreamer->AddBlankLine(); 638 } 639 640 /// Emit the directive and value for debug thread local expression 641 /// 642 /// \p Value - The value to emit. 643 /// \p Size - The size of the integer (in bytes) to emit. 644 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 645 OutStreamer->EmitValue(Value, Size); 646 } 647 648 /// EmitFunctionHeader - This method emits the header for the current 649 /// function. 650 void AsmPrinter::EmitFunctionHeader() { 651 const Function &F = MF->getFunction(); 652 653 if (isVerbose()) 654 OutStreamer->GetCommentOS() 655 << "-- Begin function " 656 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 657 658 // Print out constants referenced by the function 659 EmitConstantPool(); 660 661 // Print the 'header' of function. 662 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 663 EmitVisibility(CurrentFnSym, F.getVisibility()); 664 665 EmitLinkage(&F, CurrentFnSym); 666 if (MAI->hasFunctionAlignment()) 667 EmitAlignment(MF->getAlignment(), &F); 668 669 if (MAI->hasDotTypeDotSizeDirective()) 670 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 671 672 if (F.hasFnAttribute(Attribute::Cold)) 673 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 674 675 if (isVerbose()) { 676 F.printAsOperand(OutStreamer->GetCommentOS(), 677 /*PrintType=*/false, F.getParent()); 678 OutStreamer->GetCommentOS() << '\n'; 679 } 680 681 // Emit the prefix data. 682 if (F.hasPrefixData()) { 683 if (MAI->hasSubsectionsViaSymbols()) { 684 // Preserving prefix data on platforms which use subsections-via-symbols 685 // is a bit tricky. Here we introduce a symbol for the prefix data 686 // and use the .alt_entry attribute to mark the function's real entry point 687 // as an alternative entry point to the prefix-data symbol. 688 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 689 OutStreamer->EmitLabel(PrefixSym); 690 691 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 692 693 // Emit an .alt_entry directive for the actual function symbol. 694 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 695 } else { 696 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 697 } 698 } 699 700 // Emit the CurrentFnSym. This is a virtual function to allow targets to 701 // do their wild and crazy things as required. 702 EmitFunctionEntryLabel(); 703 704 // If the function had address-taken blocks that got deleted, then we have 705 // references to the dangling symbols. Emit them at the start of the function 706 // so that we don't get references to undefined symbols. 707 std::vector<MCSymbol*> DeadBlockSyms; 708 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 709 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 710 OutStreamer->AddComment("Address taken block that was later removed"); 711 OutStreamer->EmitLabel(DeadBlockSyms[i]); 712 } 713 714 if (CurrentFnBegin) { 715 if (MAI->useAssignmentForEHBegin()) { 716 MCSymbol *CurPos = OutContext.createTempSymbol(); 717 OutStreamer->EmitLabel(CurPos); 718 OutStreamer->EmitAssignment(CurrentFnBegin, 719 MCSymbolRefExpr::create(CurPos, OutContext)); 720 } else { 721 OutStreamer->EmitLabel(CurrentFnBegin); 722 } 723 } 724 725 // Emit pre-function debug and/or EH information. 726 for (const HandlerInfo &HI : Handlers) { 727 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 728 HI.TimerGroupDescription, TimePassesIsEnabled); 729 HI.Handler->beginFunction(MF); 730 } 731 732 // Emit the prologue data. 733 if (F.hasPrologueData()) 734 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 735 } 736 737 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 738 /// function. This can be overridden by targets as required to do custom stuff. 739 void AsmPrinter::EmitFunctionEntryLabel() { 740 CurrentFnSym->redefineIfPossible(); 741 742 // The function label could have already been emitted if two symbols end up 743 // conflicting due to asm renaming. Detect this and emit an error. 744 if (CurrentFnSym->isVariable()) 745 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 746 "' is a protected alias"); 747 if (CurrentFnSym->isDefined()) 748 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 749 "' label emitted multiple times to assembly file"); 750 751 return OutStreamer->EmitLabel(CurrentFnSym); 752 } 753 754 /// emitComments - Pretty-print comments for instructions. 755 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 756 const MachineFunction *MF = MI.getMF(); 757 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 758 759 // Check for spills and reloads 760 761 // We assume a single instruction only has a spill or reload, not 762 // both. 763 Optional<unsigned> Size; 764 if ((Size = MI.getRestoreSize(TII))) { 765 CommentOS << *Size << "-byte Reload\n"; 766 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 767 if (*Size) 768 CommentOS << *Size << "-byte Folded Reload\n"; 769 } else if ((Size = MI.getSpillSize(TII))) { 770 CommentOS << *Size << "-byte Spill\n"; 771 } else if ((Size = MI.getFoldedSpillSize(TII))) { 772 if (*Size) 773 CommentOS << *Size << "-byte Folded Spill\n"; 774 } 775 776 // Check for spill-induced copies 777 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 778 CommentOS << " Reload Reuse\n"; 779 } 780 781 /// emitImplicitDef - This method emits the specified machine instruction 782 /// that is an implicit def. 783 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 784 unsigned RegNo = MI->getOperand(0).getReg(); 785 786 SmallString<128> Str; 787 raw_svector_ostream OS(Str); 788 OS << "implicit-def: " 789 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 790 791 OutStreamer->AddComment(OS.str()); 792 OutStreamer->AddBlankLine(); 793 } 794 795 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 796 std::string Str; 797 raw_string_ostream OS(Str); 798 OS << "kill:"; 799 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 800 const MachineOperand &Op = MI->getOperand(i); 801 assert(Op.isReg() && "KILL instruction must have only register operands"); 802 OS << ' ' << (Op.isDef() ? "def " : "killed ") 803 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 804 } 805 AP.OutStreamer->AddComment(OS.str()); 806 AP.OutStreamer->AddBlankLine(); 807 } 808 809 /// emitDebugValueComment - This method handles the target-independent form 810 /// of DBG_VALUE, returning true if it was able to do so. A false return 811 /// means the target will need to handle MI in EmitInstruction. 812 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 813 // This code handles only the 4-operand target-independent form. 814 if (MI->getNumOperands() != 4) 815 return false; 816 817 SmallString<128> Str; 818 raw_svector_ostream OS(Str); 819 OS << "DEBUG_VALUE: "; 820 821 const DILocalVariable *V = MI->getDebugVariable(); 822 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 823 StringRef Name = SP->getName(); 824 if (!Name.empty()) 825 OS << Name << ":"; 826 } 827 OS << V->getName(); 828 OS << " <- "; 829 830 // The second operand is only an offset if it's an immediate. 831 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 832 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 833 const DIExpression *Expr = MI->getDebugExpression(); 834 if (Expr->getNumElements()) { 835 OS << '['; 836 bool NeedSep = false; 837 for (auto Op : Expr->expr_ops()) { 838 if (NeedSep) 839 OS << ", "; 840 else 841 NeedSep = true; 842 OS << dwarf::OperationEncodingString(Op.getOp()); 843 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 844 OS << ' ' << Op.getArg(I); 845 } 846 OS << "] "; 847 } 848 849 // Register or immediate value. Register 0 means undef. 850 if (MI->getOperand(0).isFPImm()) { 851 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 852 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 853 OS << (double)APF.convertToFloat(); 854 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 855 OS << APF.convertToDouble(); 856 } else { 857 // There is no good way to print long double. Convert a copy to 858 // double. Ah well, it's only a comment. 859 bool ignored; 860 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 861 &ignored); 862 OS << "(long double) " << APF.convertToDouble(); 863 } 864 } else if (MI->getOperand(0).isImm()) { 865 OS << MI->getOperand(0).getImm(); 866 } else if (MI->getOperand(0).isCImm()) { 867 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 868 } else { 869 unsigned Reg; 870 if (MI->getOperand(0).isReg()) { 871 Reg = MI->getOperand(0).getReg(); 872 } else { 873 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 874 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 875 Offset += TFI->getFrameIndexReference(*AP.MF, 876 MI->getOperand(0).getIndex(), Reg); 877 MemLoc = true; 878 } 879 if (Reg == 0) { 880 // Suppress offset, it is not meaningful here. 881 OS << "undef"; 882 // NOTE: Want this comment at start of line, don't emit with AddComment. 883 AP.OutStreamer->emitRawComment(OS.str()); 884 return true; 885 } 886 if (MemLoc) 887 OS << '['; 888 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 889 } 890 891 if (MemLoc) 892 OS << '+' << Offset << ']'; 893 894 // NOTE: Want this comment at start of line, don't emit with AddComment. 895 AP.OutStreamer->emitRawComment(OS.str()); 896 return true; 897 } 898 899 /// This method handles the target-independent form of DBG_LABEL, returning 900 /// true if it was able to do so. A false return means the target will need 901 /// to handle MI in EmitInstruction. 902 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 903 if (MI->getNumOperands() != 1) 904 return false; 905 906 SmallString<128> Str; 907 raw_svector_ostream OS(Str); 908 OS << "DEBUG_LABEL: "; 909 910 const DILabel *V = MI->getDebugLabel(); 911 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 912 StringRef Name = SP->getName(); 913 if (!Name.empty()) 914 OS << Name << ":"; 915 } 916 OS << V->getName(); 917 918 // NOTE: Want this comment at start of line, don't emit with AddComment. 919 AP.OutStreamer->emitRawComment(OS.str()); 920 return true; 921 } 922 923 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 924 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 925 MF->getFunction().needsUnwindTableEntry()) 926 return CFI_M_EH; 927 928 if (MMI->hasDebugInfo()) 929 return CFI_M_Debug; 930 931 return CFI_M_None; 932 } 933 934 bool AsmPrinter::needsSEHMoves() { 935 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 936 } 937 938 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 939 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 940 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 941 ExceptionHandlingType != ExceptionHandling::ARM) 942 return; 943 944 if (needsCFIMoves() == CFI_M_None) 945 return; 946 947 // If there is no "real" instruction following this CFI instruction, skip 948 // emitting it; it would be beyond the end of the function's FDE range. 949 auto *MBB = MI.getParent(); 950 auto I = std::next(MI.getIterator()); 951 while (I != MBB->end() && I->isTransient()) 952 ++I; 953 if (I == MBB->instr_end() && 954 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 955 return; 956 957 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 958 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 959 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 960 emitCFIInstruction(CFI); 961 } 962 963 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 964 // The operands are the MCSymbol and the frame offset of the allocation. 965 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 966 int FrameOffset = MI.getOperand(1).getImm(); 967 968 // Emit a symbol assignment. 969 OutStreamer->EmitAssignment(FrameAllocSym, 970 MCConstantExpr::create(FrameOffset, OutContext)); 971 } 972 973 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 974 if (!MF.getTarget().Options.EmitStackSizeSection) 975 return; 976 977 MCSection *StackSizeSection = 978 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 979 if (!StackSizeSection) 980 return; 981 982 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 983 // Don't emit functions with dynamic stack allocations. 984 if (FrameInfo.hasVarSizedObjects()) 985 return; 986 987 OutStreamer->PushSection(); 988 OutStreamer->SwitchSection(StackSizeSection); 989 990 const MCSymbol *FunctionSymbol = getFunctionBegin(); 991 uint64_t StackSize = FrameInfo.getStackSize(); 992 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 993 OutStreamer->EmitULEB128IntValue(StackSize); 994 995 OutStreamer->PopSection(); 996 } 997 998 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 999 MachineModuleInfo *MMI) { 1000 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1001 return true; 1002 1003 // We might emit an EH table that uses function begin and end labels even if 1004 // we don't have any landingpads. 1005 if (!MF.getFunction().hasPersonalityFn()) 1006 return false; 1007 return !isNoOpWithoutInvoke( 1008 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1009 } 1010 1011 /// EmitFunctionBody - This method emits the body and trailer for a 1012 /// function. 1013 void AsmPrinter::EmitFunctionBody() { 1014 EmitFunctionHeader(); 1015 1016 // Emit target-specific gunk before the function body. 1017 EmitFunctionBodyStart(); 1018 1019 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1020 1021 if (isVerbose()) { 1022 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1023 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1024 if (!MDT) { 1025 OwnedMDT = make_unique<MachineDominatorTree>(); 1026 OwnedMDT->getBase().recalculate(*MF); 1027 MDT = OwnedMDT.get(); 1028 } 1029 1030 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1031 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1032 if (!MLI) { 1033 OwnedMLI = make_unique<MachineLoopInfo>(); 1034 OwnedMLI->getBase().analyze(MDT->getBase()); 1035 MLI = OwnedMLI.get(); 1036 } 1037 } 1038 1039 // Print out code for the function. 1040 bool HasAnyRealCode = false; 1041 int NumInstsInFunction = 0; 1042 for (auto &MBB : *MF) { 1043 // Print a label for the basic block. 1044 EmitBasicBlockStart(MBB); 1045 for (auto &MI : MBB) { 1046 // Print the assembly for the instruction. 1047 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1048 !MI.isDebugInstr()) { 1049 HasAnyRealCode = true; 1050 ++NumInstsInFunction; 1051 } 1052 1053 // If there is a pre-instruction symbol, emit a label for it here. 1054 if (MCSymbol *S = MI.getPreInstrSymbol()) 1055 OutStreamer->EmitLabel(S); 1056 1057 if (ShouldPrintDebugScopes) { 1058 for (const HandlerInfo &HI : Handlers) { 1059 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1060 HI.TimerGroupName, HI.TimerGroupDescription, 1061 TimePassesIsEnabled); 1062 HI.Handler->beginInstruction(&MI); 1063 } 1064 } 1065 1066 if (isVerbose()) 1067 emitComments(MI, OutStreamer->GetCommentOS()); 1068 1069 switch (MI.getOpcode()) { 1070 case TargetOpcode::CFI_INSTRUCTION: 1071 emitCFIInstruction(MI); 1072 break; 1073 case TargetOpcode::LOCAL_ESCAPE: 1074 emitFrameAlloc(MI); 1075 break; 1076 case TargetOpcode::ANNOTATION_LABEL: 1077 case TargetOpcode::EH_LABEL: 1078 case TargetOpcode::GC_LABEL: 1079 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1080 break; 1081 case TargetOpcode::INLINEASM: 1082 case TargetOpcode::INLINEASM_BR: 1083 EmitInlineAsm(&MI); 1084 break; 1085 case TargetOpcode::DBG_VALUE: 1086 if (isVerbose()) { 1087 if (!emitDebugValueComment(&MI, *this)) 1088 EmitInstruction(&MI); 1089 } 1090 break; 1091 case TargetOpcode::DBG_LABEL: 1092 if (isVerbose()) { 1093 if (!emitDebugLabelComment(&MI, *this)) 1094 EmitInstruction(&MI); 1095 } 1096 break; 1097 case TargetOpcode::IMPLICIT_DEF: 1098 if (isVerbose()) emitImplicitDef(&MI); 1099 break; 1100 case TargetOpcode::KILL: 1101 if (isVerbose()) emitKill(&MI, *this); 1102 break; 1103 default: 1104 EmitInstruction(&MI); 1105 break; 1106 } 1107 1108 // If there is a post-instruction symbol, emit a label for it here. 1109 if (MCSymbol *S = MI.getPostInstrSymbol()) 1110 OutStreamer->EmitLabel(S); 1111 1112 if (ShouldPrintDebugScopes) { 1113 for (const HandlerInfo &HI : Handlers) { 1114 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1115 HI.TimerGroupName, HI.TimerGroupDescription, 1116 TimePassesIsEnabled); 1117 HI.Handler->endInstruction(); 1118 } 1119 } 1120 } 1121 1122 EmitBasicBlockEnd(MBB); 1123 } 1124 1125 EmittedInsts += NumInstsInFunction; 1126 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1127 MF->getFunction().getSubprogram(), 1128 &MF->front()); 1129 R << ore::NV("NumInstructions", NumInstsInFunction) 1130 << " instructions in function"; 1131 ORE->emit(R); 1132 1133 // If the function is empty and the object file uses .subsections_via_symbols, 1134 // then we need to emit *something* to the function body to prevent the 1135 // labels from collapsing together. Just emit a noop. 1136 // Similarly, don't emit empty functions on Windows either. It can lead to 1137 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1138 // after linking, causing the kernel not to load the binary: 1139 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1140 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1141 const Triple &TT = TM.getTargetTriple(); 1142 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1143 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1144 MCInst Noop; 1145 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1146 1147 // Targets can opt-out of emitting the noop here by leaving the opcode 1148 // unspecified. 1149 if (Noop.getOpcode()) { 1150 OutStreamer->AddComment("avoids zero-length function"); 1151 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1152 } 1153 } 1154 1155 const Function &F = MF->getFunction(); 1156 for (const auto &BB : F) { 1157 if (!BB.hasAddressTaken()) 1158 continue; 1159 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1160 if (Sym->isDefined()) 1161 continue; 1162 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1163 OutStreamer->EmitLabel(Sym); 1164 } 1165 1166 // Emit target-specific gunk after the function body. 1167 EmitFunctionBodyEnd(); 1168 1169 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1170 MAI->hasDotTypeDotSizeDirective()) { 1171 // Create a symbol for the end of function. 1172 CurrentFnEnd = createTempSymbol("func_end"); 1173 OutStreamer->EmitLabel(CurrentFnEnd); 1174 } 1175 1176 // If the target wants a .size directive for the size of the function, emit 1177 // it. 1178 if (MAI->hasDotTypeDotSizeDirective()) { 1179 // We can get the size as difference between the function label and the 1180 // temp label. 1181 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1182 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1183 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1184 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1185 } 1186 1187 for (const HandlerInfo &HI : Handlers) { 1188 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1189 HI.TimerGroupDescription, TimePassesIsEnabled); 1190 HI.Handler->markFunctionEnd(); 1191 } 1192 1193 // Print out jump tables referenced by the function. 1194 EmitJumpTableInfo(); 1195 1196 // Emit post-function debug and/or EH information. 1197 for (const HandlerInfo &HI : Handlers) { 1198 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1199 HI.TimerGroupDescription, TimePassesIsEnabled); 1200 HI.Handler->endFunction(MF); 1201 } 1202 1203 // Emit section containing stack size metadata. 1204 emitStackSizeSection(*MF); 1205 1206 if (isVerbose()) 1207 OutStreamer->GetCommentOS() << "-- End function\n"; 1208 1209 OutStreamer->AddBlankLine(); 1210 } 1211 1212 /// Compute the number of Global Variables that uses a Constant. 1213 static unsigned getNumGlobalVariableUses(const Constant *C) { 1214 if (!C) 1215 return 0; 1216 1217 if (isa<GlobalVariable>(C)) 1218 return 1; 1219 1220 unsigned NumUses = 0; 1221 for (auto *CU : C->users()) 1222 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1223 1224 return NumUses; 1225 } 1226 1227 /// Only consider global GOT equivalents if at least one user is a 1228 /// cstexpr inside an initializer of another global variables. Also, don't 1229 /// handle cstexpr inside instructions. During global variable emission, 1230 /// candidates are skipped and are emitted later in case at least one cstexpr 1231 /// isn't replaced by a PC relative GOT entry access. 1232 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1233 unsigned &NumGOTEquivUsers) { 1234 // Global GOT equivalents are unnamed private globals with a constant 1235 // pointer initializer to another global symbol. They must point to a 1236 // GlobalVariable or Function, i.e., as GlobalValue. 1237 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1238 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1239 !isa<GlobalValue>(GV->getOperand(0))) 1240 return false; 1241 1242 // To be a got equivalent, at least one of its users need to be a constant 1243 // expression used by another global variable. 1244 for (auto *U : GV->users()) 1245 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1246 1247 return NumGOTEquivUsers > 0; 1248 } 1249 1250 /// Unnamed constant global variables solely contaning a pointer to 1251 /// another globals variable is equivalent to a GOT table entry; it contains the 1252 /// the address of another symbol. Optimize it and replace accesses to these 1253 /// "GOT equivalents" by using the GOT entry for the final global instead. 1254 /// Compute GOT equivalent candidates among all global variables to avoid 1255 /// emitting them if possible later on, after it use is replaced by a GOT entry 1256 /// access. 1257 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1258 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1259 return; 1260 1261 for (const auto &G : M.globals()) { 1262 unsigned NumGOTEquivUsers = 0; 1263 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1264 continue; 1265 1266 const MCSymbol *GOTEquivSym = getSymbol(&G); 1267 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1268 } 1269 } 1270 1271 /// Constant expressions using GOT equivalent globals may not be eligible 1272 /// for PC relative GOT entry conversion, in such cases we need to emit such 1273 /// globals we previously omitted in EmitGlobalVariable. 1274 void AsmPrinter::emitGlobalGOTEquivs() { 1275 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1276 return; 1277 1278 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1279 for (auto &I : GlobalGOTEquivs) { 1280 const GlobalVariable *GV = I.second.first; 1281 unsigned Cnt = I.second.second; 1282 if (Cnt) 1283 FailedCandidates.push_back(GV); 1284 } 1285 GlobalGOTEquivs.clear(); 1286 1287 for (auto *GV : FailedCandidates) 1288 EmitGlobalVariable(GV); 1289 } 1290 1291 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1292 const GlobalIndirectSymbol& GIS) { 1293 MCSymbol *Name = getSymbol(&GIS); 1294 1295 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1296 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1297 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1298 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1299 else 1300 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1301 1302 bool IsFunction = GIS.getType()->getPointerElementType()->isFunctionTy(); 1303 1304 // Treat bitcasts of functions as functions also. This is important at least 1305 // on WebAssembly where object and function addresses can't alias each other. 1306 if (!IsFunction) 1307 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1308 if (CE->getOpcode() == Instruction::BitCast) 1309 IsFunction = 1310 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1311 1312 // Set the symbol type to function if the alias has a function type. 1313 // This affects codegen when the aliasee is not a function. 1314 if (IsFunction) { 1315 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1316 if (isa<GlobalIFunc>(GIS)) 1317 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1318 } 1319 1320 EmitVisibility(Name, GIS.getVisibility()); 1321 1322 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1323 1324 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1325 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1326 1327 // Emit the directives as assignments aka .set: 1328 OutStreamer->EmitAssignment(Name, Expr); 1329 1330 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1331 // If the aliasee does not correspond to a symbol in the output, i.e. the 1332 // alias is not of an object or the aliased object is private, then set the 1333 // size of the alias symbol from the type of the alias. We don't do this in 1334 // other situations as the alias and aliasee having differing types but same 1335 // size may be intentional. 1336 const GlobalObject *BaseObject = GA->getBaseObject(); 1337 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1338 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1339 const DataLayout &DL = M.getDataLayout(); 1340 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1341 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1342 } 1343 } 1344 } 1345 1346 void AsmPrinter::emitRemarksSection(Module &M) { 1347 RemarkStreamer *RS = M.getContext().getRemarkStreamer(); 1348 if (!RS) 1349 return; 1350 1351 // Switch to the right section: .remarks/__remarks. 1352 MCSection *RemarksSection = 1353 OutContext.getObjectFileInfo()->getRemarksSection(); 1354 OutStreamer->SwitchSection(RemarksSection); 1355 1356 // Emit the magic number. 1357 OutStreamer->EmitBytes(remarks::Magic); 1358 // Explicitly emit a '\0'. 1359 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1360 1361 // Emit the version number: little-endian uint64_t. 1362 // The version number is located at the offset 0x0 in the section. 1363 std::array<char, 8> Version; 1364 support::endian::write64le(Version.data(), remarks::Version); 1365 OutStreamer->EmitBinaryData(StringRef(Version.data(), Version.size())); 1366 1367 // Emit the string table in the section. 1368 // Note: we need to use the streamer here to emit it in the section. We can't 1369 // just use the serialize function with a raw_ostream because of the way 1370 // MCStreamers work. 1371 const remarks::StringTable &StrTab = RS->getStringTable(); 1372 std::vector<StringRef> StrTabStrings = StrTab.serialize(); 1373 uint64_t StrTabSize = StrTab.SerializedSize; 1374 // Emit the total size of the string table (the size itself excluded): 1375 // little-endian uint64_t. 1376 // The total size is located after the version number. 1377 std::array<char, 8> StrTabSizeBuf; 1378 support::endian::write64le(StrTabSizeBuf.data(), StrTabSize); 1379 OutStreamer->EmitBinaryData( 1380 StringRef(StrTabSizeBuf.data(), StrTabSizeBuf.size())); 1381 // Emit a list of null-terminated strings. 1382 // Note: the order is important here: the ID used in the remarks corresponds 1383 // to the position of the string in the section. 1384 for (StringRef Str : StrTabStrings) { 1385 OutStreamer->EmitBytes(Str); 1386 // Explicitly emit a '\0'. 1387 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1388 } 1389 1390 // Emit the null-terminated absolute path to the remark file. 1391 // The path is located at the offset 0x4 in the section. 1392 StringRef FilenameRef = RS->getFilename(); 1393 SmallString<128> Filename = FilenameRef; 1394 sys::fs::make_absolute(Filename); 1395 assert(!Filename.empty() && "The filename can't be empty."); 1396 OutStreamer->EmitBytes(Filename); 1397 // Explicitly emit a '\0'. 1398 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1399 } 1400 1401 bool AsmPrinter::doFinalization(Module &M) { 1402 // Set the MachineFunction to nullptr so that we can catch attempted 1403 // accesses to MF specific features at the module level and so that 1404 // we can conditionalize accesses based on whether or not it is nullptr. 1405 MF = nullptr; 1406 1407 // Gather all GOT equivalent globals in the module. We really need two 1408 // passes over the globals: one to compute and another to avoid its emission 1409 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1410 // where the got equivalent shows up before its use. 1411 computeGlobalGOTEquivs(M); 1412 1413 // Emit global variables. 1414 for (const auto &G : M.globals()) 1415 EmitGlobalVariable(&G); 1416 1417 // Emit remaining GOT equivalent globals. 1418 emitGlobalGOTEquivs(); 1419 1420 // Emit visibility info for declarations 1421 for (const Function &F : M) { 1422 if (!F.isDeclarationForLinker()) 1423 continue; 1424 GlobalValue::VisibilityTypes V = F.getVisibility(); 1425 if (V == GlobalValue::DefaultVisibility) 1426 continue; 1427 1428 MCSymbol *Name = getSymbol(&F); 1429 EmitVisibility(Name, V, false); 1430 } 1431 1432 // Emit the remarks section contents. 1433 // FIXME: Figure out when is the safest time to emit this section. It should 1434 // not come after debug info. 1435 if (EnableRemarksSection) 1436 emitRemarksSection(M); 1437 1438 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1439 1440 TLOF.emitModuleMetadata(*OutStreamer, M); 1441 1442 if (TM.getTargetTriple().isOSBinFormatELF()) { 1443 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1444 1445 // Output stubs for external and common global variables. 1446 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1447 if (!Stubs.empty()) { 1448 OutStreamer->SwitchSection(TLOF.getDataSection()); 1449 const DataLayout &DL = M.getDataLayout(); 1450 1451 EmitAlignment(Log2_32(DL.getPointerSize())); 1452 for (const auto &Stub : Stubs) { 1453 OutStreamer->EmitLabel(Stub.first); 1454 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1455 DL.getPointerSize()); 1456 } 1457 } 1458 } 1459 1460 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1461 MachineModuleInfoCOFF &MMICOFF = 1462 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1463 1464 // Output stubs for external and common global variables. 1465 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1466 if (!Stubs.empty()) { 1467 const DataLayout &DL = M.getDataLayout(); 1468 1469 for (const auto &Stub : Stubs) { 1470 SmallString<256> SectionName = StringRef(".rdata$"); 1471 SectionName += Stub.first->getName(); 1472 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1473 SectionName, 1474 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1475 COFF::IMAGE_SCN_LNK_COMDAT, 1476 SectionKind::getReadOnly(), Stub.first->getName(), 1477 COFF::IMAGE_COMDAT_SELECT_ANY)); 1478 EmitAlignment(Log2_32(DL.getPointerSize())); 1479 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1480 OutStreamer->EmitLabel(Stub.first); 1481 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1482 DL.getPointerSize()); 1483 } 1484 } 1485 } 1486 1487 // Finalize debug and EH information. 1488 for (const HandlerInfo &HI : Handlers) { 1489 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1490 HI.TimerGroupDescription, TimePassesIsEnabled); 1491 HI.Handler->endModule(); 1492 } 1493 Handlers.clear(); 1494 DD = nullptr; 1495 1496 // If the target wants to know about weak references, print them all. 1497 if (MAI->getWeakRefDirective()) { 1498 // FIXME: This is not lazy, it would be nice to only print weak references 1499 // to stuff that is actually used. Note that doing so would require targets 1500 // to notice uses in operands (due to constant exprs etc). This should 1501 // happen with the MC stuff eventually. 1502 1503 // Print out module-level global objects here. 1504 for (const auto &GO : M.global_objects()) { 1505 if (!GO.hasExternalWeakLinkage()) 1506 continue; 1507 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1508 } 1509 } 1510 1511 OutStreamer->AddBlankLine(); 1512 1513 // Print aliases in topological order, that is, for each alias a = b, 1514 // b must be printed before a. 1515 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1516 // such an order to generate correct TOC information. 1517 SmallVector<const GlobalAlias *, 16> AliasStack; 1518 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1519 for (const auto &Alias : M.aliases()) { 1520 for (const GlobalAlias *Cur = &Alias; Cur; 1521 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1522 if (!AliasVisited.insert(Cur).second) 1523 break; 1524 AliasStack.push_back(Cur); 1525 } 1526 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1527 emitGlobalIndirectSymbol(M, *AncestorAlias); 1528 AliasStack.clear(); 1529 } 1530 for (const auto &IFunc : M.ifuncs()) 1531 emitGlobalIndirectSymbol(M, IFunc); 1532 1533 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1534 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1535 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1536 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1537 MP->finishAssembly(M, *MI, *this); 1538 1539 // Emit llvm.ident metadata in an '.ident' directive. 1540 EmitModuleIdents(M); 1541 1542 // Emit bytes for llvm.commandline metadata. 1543 EmitModuleCommandLines(M); 1544 1545 // Emit __morestack address if needed for indirect calls. 1546 if (MMI->usesMorestackAddr()) { 1547 unsigned Align = 1; 1548 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1549 getDataLayout(), SectionKind::getReadOnly(), 1550 /*C=*/nullptr, Align); 1551 OutStreamer->SwitchSection(ReadOnlySection); 1552 1553 MCSymbol *AddrSymbol = 1554 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1555 OutStreamer->EmitLabel(AddrSymbol); 1556 1557 unsigned PtrSize = MAI->getCodePointerSize(); 1558 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1559 PtrSize); 1560 } 1561 1562 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1563 // split-stack is used. 1564 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1565 OutStreamer->SwitchSection( 1566 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1567 if (MMI->hasNosplitStack()) 1568 OutStreamer->SwitchSection( 1569 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1570 } 1571 1572 // If we don't have any trampolines, then we don't require stack memory 1573 // to be executable. Some targets have a directive to declare this. 1574 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1575 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1576 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1577 OutStreamer->SwitchSection(S); 1578 1579 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1580 // Emit /EXPORT: flags for each exported global as necessary. 1581 const auto &TLOF = getObjFileLowering(); 1582 std::string Flags; 1583 1584 for (const GlobalValue &GV : M.global_values()) { 1585 raw_string_ostream OS(Flags); 1586 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1587 OS.flush(); 1588 if (!Flags.empty()) { 1589 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1590 OutStreamer->EmitBytes(Flags); 1591 } 1592 Flags.clear(); 1593 } 1594 1595 // Emit /INCLUDE: flags for each used global as necessary. 1596 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1597 assert(LU->hasInitializer() && 1598 "expected llvm.used to have an initializer"); 1599 assert(isa<ArrayType>(LU->getValueType()) && 1600 "expected llvm.used to be an array type"); 1601 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1602 for (const Value *Op : A->operands()) { 1603 const auto *GV = 1604 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1605 // Global symbols with internal or private linkage are not visible to 1606 // the linker, and thus would cause an error when the linker tried to 1607 // preserve the symbol due to the `/include:` directive. 1608 if (GV->hasLocalLinkage()) 1609 continue; 1610 1611 raw_string_ostream OS(Flags); 1612 TLOF.emitLinkerFlagsForUsed(OS, GV); 1613 OS.flush(); 1614 1615 if (!Flags.empty()) { 1616 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1617 OutStreamer->EmitBytes(Flags); 1618 } 1619 Flags.clear(); 1620 } 1621 } 1622 } 1623 } 1624 1625 if (TM.Options.EmitAddrsig) { 1626 // Emit address-significance attributes for all globals. 1627 OutStreamer->EmitAddrsig(); 1628 for (const GlobalValue &GV : M.global_values()) 1629 if (!GV.use_empty() && !GV.isThreadLocal() && 1630 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1631 !GV.hasAtLeastLocalUnnamedAddr()) 1632 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1633 } 1634 1635 // Allow the target to emit any magic that it wants at the end of the file, 1636 // after everything else has gone out. 1637 EmitEndOfAsmFile(M); 1638 1639 MMI = nullptr; 1640 1641 OutStreamer->Finish(); 1642 OutStreamer->reset(); 1643 OwnedMLI.reset(); 1644 OwnedMDT.reset(); 1645 1646 return false; 1647 } 1648 1649 MCSymbol *AsmPrinter::getCurExceptionSym() { 1650 if (!CurExceptionSym) 1651 CurExceptionSym = createTempSymbol("exception"); 1652 return CurExceptionSym; 1653 } 1654 1655 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1656 this->MF = &MF; 1657 // Get the function symbol. 1658 CurrentFnSym = getSymbol(&MF.getFunction()); 1659 CurrentFnSymForSize = CurrentFnSym; 1660 CurrentFnBegin = nullptr; 1661 CurExceptionSym = nullptr; 1662 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1663 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1664 MF.getTarget().Options.EmitStackSizeSection) { 1665 CurrentFnBegin = createTempSymbol("func_begin"); 1666 if (NeedsLocalForSize) 1667 CurrentFnSymForSize = CurrentFnBegin; 1668 } 1669 1670 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1671 } 1672 1673 namespace { 1674 1675 // Keep track the alignment, constpool entries per Section. 1676 struct SectionCPs { 1677 MCSection *S; 1678 unsigned Alignment; 1679 SmallVector<unsigned, 4> CPEs; 1680 1681 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1682 }; 1683 1684 } // end anonymous namespace 1685 1686 /// EmitConstantPool - Print to the current output stream assembly 1687 /// representations of the constants in the constant pool MCP. This is 1688 /// used to print out constants which have been "spilled to memory" by 1689 /// the code generator. 1690 void AsmPrinter::EmitConstantPool() { 1691 const MachineConstantPool *MCP = MF->getConstantPool(); 1692 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1693 if (CP.empty()) return; 1694 1695 // Calculate sections for constant pool entries. We collect entries to go into 1696 // the same section together to reduce amount of section switch statements. 1697 SmallVector<SectionCPs, 4> CPSections; 1698 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1699 const MachineConstantPoolEntry &CPE = CP[i]; 1700 unsigned Align = CPE.getAlignment(); 1701 1702 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1703 1704 const Constant *C = nullptr; 1705 if (!CPE.isMachineConstantPoolEntry()) 1706 C = CPE.Val.ConstVal; 1707 1708 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1709 Kind, C, Align); 1710 1711 // The number of sections are small, just do a linear search from the 1712 // last section to the first. 1713 bool Found = false; 1714 unsigned SecIdx = CPSections.size(); 1715 while (SecIdx != 0) { 1716 if (CPSections[--SecIdx].S == S) { 1717 Found = true; 1718 break; 1719 } 1720 } 1721 if (!Found) { 1722 SecIdx = CPSections.size(); 1723 CPSections.push_back(SectionCPs(S, Align)); 1724 } 1725 1726 if (Align > CPSections[SecIdx].Alignment) 1727 CPSections[SecIdx].Alignment = Align; 1728 CPSections[SecIdx].CPEs.push_back(i); 1729 } 1730 1731 // Now print stuff into the calculated sections. 1732 const MCSection *CurSection = nullptr; 1733 unsigned Offset = 0; 1734 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1735 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1736 unsigned CPI = CPSections[i].CPEs[j]; 1737 MCSymbol *Sym = GetCPISymbol(CPI); 1738 if (!Sym->isUndefined()) 1739 continue; 1740 1741 if (CurSection != CPSections[i].S) { 1742 OutStreamer->SwitchSection(CPSections[i].S); 1743 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1744 CurSection = CPSections[i].S; 1745 Offset = 0; 1746 } 1747 1748 MachineConstantPoolEntry CPE = CP[CPI]; 1749 1750 // Emit inter-object padding for alignment. 1751 unsigned AlignMask = CPE.getAlignment() - 1; 1752 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1753 OutStreamer->EmitZeros(NewOffset - Offset); 1754 1755 Type *Ty = CPE.getType(); 1756 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1757 1758 OutStreamer->EmitLabel(Sym); 1759 if (CPE.isMachineConstantPoolEntry()) 1760 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1761 else 1762 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1763 } 1764 } 1765 } 1766 1767 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1768 /// by the current function to the current output stream. 1769 void AsmPrinter::EmitJumpTableInfo() { 1770 const DataLayout &DL = MF->getDataLayout(); 1771 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1772 if (!MJTI) return; 1773 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1774 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1775 if (JT.empty()) return; 1776 1777 // Pick the directive to use to print the jump table entries, and switch to 1778 // the appropriate section. 1779 const Function &F = MF->getFunction(); 1780 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1781 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1782 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1783 F); 1784 if (JTInDiffSection) { 1785 // Drop it in the readonly section. 1786 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1787 OutStreamer->SwitchSection(ReadOnlySection); 1788 } 1789 1790 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1791 1792 // Jump tables in code sections are marked with a data_region directive 1793 // where that's supported. 1794 if (!JTInDiffSection) 1795 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1796 1797 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1798 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1799 1800 // If this jump table was deleted, ignore it. 1801 if (JTBBs.empty()) continue; 1802 1803 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1804 /// emit a .set directive for each unique entry. 1805 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1806 MAI->doesSetDirectiveSuppressReloc()) { 1807 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1808 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1809 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1810 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1811 const MachineBasicBlock *MBB = JTBBs[ii]; 1812 if (!EmittedSets.insert(MBB).second) 1813 continue; 1814 1815 // .set LJTSet, LBB32-base 1816 const MCExpr *LHS = 1817 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1818 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1819 MCBinaryExpr::createSub(LHS, Base, 1820 OutContext)); 1821 } 1822 } 1823 1824 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1825 // before each jump table. The first label is never referenced, but tells 1826 // the assembler and linker the extents of the jump table object. The 1827 // second label is actually referenced by the code. 1828 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1829 // FIXME: This doesn't have to have any specific name, just any randomly 1830 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1831 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1832 1833 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1834 1835 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1836 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1837 } 1838 if (!JTInDiffSection) 1839 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1840 } 1841 1842 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1843 /// current stream. 1844 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1845 const MachineBasicBlock *MBB, 1846 unsigned UID) const { 1847 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1848 const MCExpr *Value = nullptr; 1849 switch (MJTI->getEntryKind()) { 1850 case MachineJumpTableInfo::EK_Inline: 1851 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1852 case MachineJumpTableInfo::EK_Custom32: 1853 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1854 MJTI, MBB, UID, OutContext); 1855 break; 1856 case MachineJumpTableInfo::EK_BlockAddress: 1857 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1858 // .word LBB123 1859 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1860 break; 1861 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1862 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1863 // with a relocation as gp-relative, e.g.: 1864 // .gprel32 LBB123 1865 MCSymbol *MBBSym = MBB->getSymbol(); 1866 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1867 return; 1868 } 1869 1870 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1871 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1872 // with a relocation as gp-relative, e.g.: 1873 // .gpdword LBB123 1874 MCSymbol *MBBSym = MBB->getSymbol(); 1875 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1876 return; 1877 } 1878 1879 case MachineJumpTableInfo::EK_LabelDifference32: { 1880 // Each entry is the address of the block minus the address of the jump 1881 // table. This is used for PIC jump tables where gprel32 is not supported. 1882 // e.g.: 1883 // .word LBB123 - LJTI1_2 1884 // If the .set directive avoids relocations, this is emitted as: 1885 // .set L4_5_set_123, LBB123 - LJTI1_2 1886 // .word L4_5_set_123 1887 if (MAI->doesSetDirectiveSuppressReloc()) { 1888 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1889 OutContext); 1890 break; 1891 } 1892 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1893 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1894 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1895 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1896 break; 1897 } 1898 } 1899 1900 assert(Value && "Unknown entry kind!"); 1901 1902 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1903 OutStreamer->EmitValue(Value, EntrySize); 1904 } 1905 1906 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1907 /// special global used by LLVM. If so, emit it and return true, otherwise 1908 /// do nothing and return false. 1909 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1910 if (GV->getName() == "llvm.used") { 1911 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1912 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1913 return true; 1914 } 1915 1916 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1917 if (GV->getSection() == "llvm.metadata" || 1918 GV->hasAvailableExternallyLinkage()) 1919 return true; 1920 1921 if (!GV->hasAppendingLinkage()) return false; 1922 1923 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1924 1925 if (GV->getName() == "llvm.global_ctors") { 1926 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1927 /* isCtor */ true); 1928 1929 return true; 1930 } 1931 1932 if (GV->getName() == "llvm.global_dtors") { 1933 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1934 /* isCtor */ false); 1935 1936 return true; 1937 } 1938 1939 report_fatal_error("unknown special variable"); 1940 } 1941 1942 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1943 /// global in the specified llvm.used list. 1944 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1945 // Should be an array of 'i8*'. 1946 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1947 const GlobalValue *GV = 1948 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1949 if (GV) 1950 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1951 } 1952 } 1953 1954 namespace { 1955 1956 struct Structor { 1957 int Priority = 0; 1958 Constant *Func = nullptr; 1959 GlobalValue *ComdatKey = nullptr; 1960 1961 Structor() = default; 1962 }; 1963 1964 } // end anonymous namespace 1965 1966 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1967 /// priority. 1968 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1969 bool isCtor) { 1970 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 1971 // init priority. 1972 if (!isa<ConstantArray>(List)) return; 1973 1974 // Sanity check the structors list. 1975 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1976 if (!InitList) return; // Not an array! 1977 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1978 if (!ETy || ETy->getNumElements() != 3 || 1979 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1980 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 1981 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1982 return; // Not (int, ptr, ptr). 1983 1984 // Gather the structors in a form that's convenient for sorting by priority. 1985 SmallVector<Structor, 8> Structors; 1986 for (Value *O : InitList->operands()) { 1987 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1988 if (!CS) continue; // Malformed. 1989 if (CS->getOperand(1)->isNullValue()) 1990 break; // Found a null terminator, skip the rest. 1991 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1992 if (!Priority) continue; // Malformed. 1993 Structors.push_back(Structor()); 1994 Structor &S = Structors.back(); 1995 S.Priority = Priority->getLimitedValue(65535); 1996 S.Func = CS->getOperand(1); 1997 if (!CS->getOperand(2)->isNullValue()) 1998 S.ComdatKey = 1999 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2000 } 2001 2002 // Emit the function pointers in the target-specific order 2003 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 2004 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2005 return L.Priority < R.Priority; 2006 }); 2007 for (Structor &S : Structors) { 2008 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2009 const MCSymbol *KeySym = nullptr; 2010 if (GlobalValue *GV = S.ComdatKey) { 2011 if (GV->isDeclarationForLinker()) 2012 // If the associated variable is not defined in this module 2013 // (it might be available_externally, or have been an 2014 // available_externally definition that was dropped by the 2015 // EliminateAvailableExternally pass), some other TU 2016 // will provide its dynamic initializer. 2017 continue; 2018 2019 KeySym = getSymbol(GV); 2020 } 2021 MCSection *OutputSection = 2022 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2023 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2024 OutStreamer->SwitchSection(OutputSection); 2025 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2026 EmitAlignment(Align); 2027 EmitXXStructor(DL, S.Func); 2028 } 2029 } 2030 2031 void AsmPrinter::EmitModuleIdents(Module &M) { 2032 if (!MAI->hasIdentDirective()) 2033 return; 2034 2035 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2036 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2037 const MDNode *N = NMD->getOperand(i); 2038 assert(N->getNumOperands() == 1 && 2039 "llvm.ident metadata entry can have only one operand"); 2040 const MDString *S = cast<MDString>(N->getOperand(0)); 2041 OutStreamer->EmitIdent(S->getString()); 2042 } 2043 } 2044 } 2045 2046 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2047 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2048 if (!CommandLine) 2049 return; 2050 2051 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2052 if (!NMD || !NMD->getNumOperands()) 2053 return; 2054 2055 OutStreamer->PushSection(); 2056 OutStreamer->SwitchSection(CommandLine); 2057 OutStreamer->EmitZeros(1); 2058 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2059 const MDNode *N = NMD->getOperand(i); 2060 assert(N->getNumOperands() == 1 && 2061 "llvm.commandline metadata entry can have only one operand"); 2062 const MDString *S = cast<MDString>(N->getOperand(0)); 2063 OutStreamer->EmitBytes(S->getString()); 2064 OutStreamer->EmitZeros(1); 2065 } 2066 OutStreamer->PopSection(); 2067 } 2068 2069 //===--------------------------------------------------------------------===// 2070 // Emission and print routines 2071 // 2072 2073 /// Emit a byte directive and value. 2074 /// 2075 void AsmPrinter::emitInt8(int Value) const { 2076 OutStreamer->EmitIntValue(Value, 1); 2077 } 2078 2079 /// Emit a short directive and value. 2080 void AsmPrinter::emitInt16(int Value) const { 2081 OutStreamer->EmitIntValue(Value, 2); 2082 } 2083 2084 /// Emit a long directive and value. 2085 void AsmPrinter::emitInt32(int Value) const { 2086 OutStreamer->EmitIntValue(Value, 4); 2087 } 2088 2089 /// Emit a long long directive and value. 2090 void AsmPrinter::emitInt64(uint64_t Value) const { 2091 OutStreamer->EmitIntValue(Value, 8); 2092 } 2093 2094 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2095 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2096 /// .set if it avoids relocations. 2097 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2098 unsigned Size) const { 2099 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2100 } 2101 2102 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2103 /// where the size in bytes of the directive is specified by Size and Label 2104 /// specifies the label. This implicitly uses .set if it is available. 2105 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2106 unsigned Size, 2107 bool IsSectionRelative) const { 2108 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2109 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2110 if (Size > 4) 2111 OutStreamer->EmitZeros(Size - 4); 2112 return; 2113 } 2114 2115 // Emit Label+Offset (or just Label if Offset is zero) 2116 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2117 if (Offset) 2118 Expr = MCBinaryExpr::createAdd( 2119 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2120 2121 OutStreamer->EmitValue(Expr, Size); 2122 } 2123 2124 //===----------------------------------------------------------------------===// 2125 2126 // EmitAlignment - Emit an alignment directive to the specified power of 2127 // two boundary. For example, if you pass in 3 here, you will get an 8 2128 // byte alignment. If a global value is specified, and if that global has 2129 // an explicit alignment requested, it will override the alignment request 2130 // if required for correctness. 2131 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2132 if (GV) 2133 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2134 2135 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2136 2137 assert(NumBits < 2138 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2139 "undefined behavior"); 2140 if (getCurrentSection()->getKind().isText()) 2141 OutStreamer->EmitCodeAlignment(1u << NumBits); 2142 else 2143 OutStreamer->EmitValueToAlignment(1u << NumBits); 2144 } 2145 2146 //===----------------------------------------------------------------------===// 2147 // Constant emission. 2148 //===----------------------------------------------------------------------===// 2149 2150 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2151 MCContext &Ctx = OutContext; 2152 2153 if (CV->isNullValue() || isa<UndefValue>(CV)) 2154 return MCConstantExpr::create(0, Ctx); 2155 2156 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2157 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2158 2159 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2160 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2161 2162 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2163 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2164 2165 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2166 if (!CE) { 2167 llvm_unreachable("Unknown constant value to lower!"); 2168 } 2169 2170 switch (CE->getOpcode()) { 2171 default: 2172 // If the code isn't optimized, there may be outstanding folding 2173 // opportunities. Attempt to fold the expression using DataLayout as a 2174 // last resort before giving up. 2175 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2176 if (C != CE) 2177 return lowerConstant(C); 2178 2179 // Otherwise report the problem to the user. 2180 { 2181 std::string S; 2182 raw_string_ostream OS(S); 2183 OS << "Unsupported expression in static initializer: "; 2184 CE->printAsOperand(OS, /*PrintType=*/false, 2185 !MF ? nullptr : MF->getFunction().getParent()); 2186 report_fatal_error(OS.str()); 2187 } 2188 case Instruction::GetElementPtr: { 2189 // Generate a symbolic expression for the byte address 2190 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2191 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2192 2193 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2194 if (!OffsetAI) 2195 return Base; 2196 2197 int64_t Offset = OffsetAI.getSExtValue(); 2198 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2199 Ctx); 2200 } 2201 2202 case Instruction::Trunc: 2203 // We emit the value and depend on the assembler to truncate the generated 2204 // expression properly. This is important for differences between 2205 // blockaddress labels. Since the two labels are in the same function, it 2206 // is reasonable to treat their delta as a 32-bit value. 2207 LLVM_FALLTHROUGH; 2208 case Instruction::BitCast: 2209 return lowerConstant(CE->getOperand(0)); 2210 2211 case Instruction::IntToPtr: { 2212 const DataLayout &DL = getDataLayout(); 2213 2214 // Handle casts to pointers by changing them into casts to the appropriate 2215 // integer type. This promotes constant folding and simplifies this code. 2216 Constant *Op = CE->getOperand(0); 2217 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2218 false/*ZExt*/); 2219 return lowerConstant(Op); 2220 } 2221 2222 case Instruction::PtrToInt: { 2223 const DataLayout &DL = getDataLayout(); 2224 2225 // Support only foldable casts to/from pointers that can be eliminated by 2226 // changing the pointer to the appropriately sized integer type. 2227 Constant *Op = CE->getOperand(0); 2228 Type *Ty = CE->getType(); 2229 2230 const MCExpr *OpExpr = lowerConstant(Op); 2231 2232 // We can emit the pointer value into this slot if the slot is an 2233 // integer slot equal to the size of the pointer. 2234 // 2235 // If the pointer is larger than the resultant integer, then 2236 // as with Trunc just depend on the assembler to truncate it. 2237 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2238 return OpExpr; 2239 2240 // Otherwise the pointer is smaller than the resultant integer, mask off 2241 // the high bits so we are sure to get a proper truncation if the input is 2242 // a constant expr. 2243 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2244 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2245 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2246 } 2247 2248 case Instruction::Sub: { 2249 GlobalValue *LHSGV; 2250 APInt LHSOffset; 2251 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2252 getDataLayout())) { 2253 GlobalValue *RHSGV; 2254 APInt RHSOffset; 2255 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2256 getDataLayout())) { 2257 const MCExpr *RelocExpr = 2258 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2259 if (!RelocExpr) 2260 RelocExpr = MCBinaryExpr::createSub( 2261 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2262 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2263 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2264 if (Addend != 0) 2265 RelocExpr = MCBinaryExpr::createAdd( 2266 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2267 return RelocExpr; 2268 } 2269 } 2270 } 2271 // else fallthrough 2272 LLVM_FALLTHROUGH; 2273 2274 // The MC library also has a right-shift operator, but it isn't consistently 2275 // signed or unsigned between different targets. 2276 case Instruction::Add: 2277 case Instruction::Mul: 2278 case Instruction::SDiv: 2279 case Instruction::SRem: 2280 case Instruction::Shl: 2281 case Instruction::And: 2282 case Instruction::Or: 2283 case Instruction::Xor: { 2284 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2285 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2286 switch (CE->getOpcode()) { 2287 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2288 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2289 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2290 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2291 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2292 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2293 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2294 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2295 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2296 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2297 } 2298 } 2299 } 2300 } 2301 2302 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2303 AsmPrinter &AP, 2304 const Constant *BaseCV = nullptr, 2305 uint64_t Offset = 0); 2306 2307 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2308 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2309 2310 /// isRepeatedByteSequence - Determine whether the given value is 2311 /// composed of a repeated sequence of identical bytes and return the 2312 /// byte value. If it is not a repeated sequence, return -1. 2313 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2314 StringRef Data = V->getRawDataValues(); 2315 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2316 char C = Data[0]; 2317 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2318 if (Data[i] != C) return -1; 2319 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2320 } 2321 2322 /// isRepeatedByteSequence - Determine whether the given value is 2323 /// composed of a repeated sequence of identical bytes and return the 2324 /// byte value. If it is not a repeated sequence, return -1. 2325 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2326 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2327 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2328 assert(Size % 8 == 0); 2329 2330 // Extend the element to take zero padding into account. 2331 APInt Value = CI->getValue().zextOrSelf(Size); 2332 if (!Value.isSplat(8)) 2333 return -1; 2334 2335 return Value.zextOrTrunc(8).getZExtValue(); 2336 } 2337 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2338 // Make sure all array elements are sequences of the same repeated 2339 // byte. 2340 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2341 Constant *Op0 = CA->getOperand(0); 2342 int Byte = isRepeatedByteSequence(Op0, DL); 2343 if (Byte == -1) 2344 return -1; 2345 2346 // All array elements must be equal. 2347 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2348 if (CA->getOperand(i) != Op0) 2349 return -1; 2350 return Byte; 2351 } 2352 2353 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2354 return isRepeatedByteSequence(CDS); 2355 2356 return -1; 2357 } 2358 2359 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2360 const ConstantDataSequential *CDS, 2361 AsmPrinter &AP) { 2362 // See if we can aggregate this into a .fill, if so, emit it as such. 2363 int Value = isRepeatedByteSequence(CDS, DL); 2364 if (Value != -1) { 2365 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2366 // Don't emit a 1-byte object as a .fill. 2367 if (Bytes > 1) 2368 return AP.OutStreamer->emitFill(Bytes, Value); 2369 } 2370 2371 // If this can be emitted with .ascii/.asciz, emit it as such. 2372 if (CDS->isString()) 2373 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2374 2375 // Otherwise, emit the values in successive locations. 2376 unsigned ElementByteSize = CDS->getElementByteSize(); 2377 if (isa<IntegerType>(CDS->getElementType())) { 2378 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2379 if (AP.isVerbose()) 2380 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2381 CDS->getElementAsInteger(i)); 2382 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2383 ElementByteSize); 2384 } 2385 } else { 2386 Type *ET = CDS->getElementType(); 2387 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2388 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2389 } 2390 2391 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2392 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2393 CDS->getNumElements(); 2394 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2395 if (unsigned Padding = Size - EmittedSize) 2396 AP.OutStreamer->EmitZeros(Padding); 2397 } 2398 2399 static void emitGlobalConstantArray(const DataLayout &DL, 2400 const ConstantArray *CA, AsmPrinter &AP, 2401 const Constant *BaseCV, uint64_t Offset) { 2402 // See if we can aggregate some values. Make sure it can be 2403 // represented as a series of bytes of the constant value. 2404 int Value = isRepeatedByteSequence(CA, DL); 2405 2406 if (Value != -1) { 2407 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2408 AP.OutStreamer->emitFill(Bytes, Value); 2409 } 2410 else { 2411 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2412 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2413 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2414 } 2415 } 2416 } 2417 2418 static void emitGlobalConstantVector(const DataLayout &DL, 2419 const ConstantVector *CV, AsmPrinter &AP) { 2420 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2421 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2422 2423 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2424 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2425 CV->getType()->getNumElements(); 2426 if (unsigned Padding = Size - EmittedSize) 2427 AP.OutStreamer->EmitZeros(Padding); 2428 } 2429 2430 static void emitGlobalConstantStruct(const DataLayout &DL, 2431 const ConstantStruct *CS, AsmPrinter &AP, 2432 const Constant *BaseCV, uint64_t Offset) { 2433 // Print the fields in successive locations. Pad to align if needed! 2434 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2435 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2436 uint64_t SizeSoFar = 0; 2437 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2438 const Constant *Field = CS->getOperand(i); 2439 2440 // Print the actual field value. 2441 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2442 2443 // Check if padding is needed and insert one or more 0s. 2444 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2445 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2446 - Layout->getElementOffset(i)) - FieldSize; 2447 SizeSoFar += FieldSize + PadSize; 2448 2449 // Insert padding - this may include padding to increase the size of the 2450 // current field up to the ABI size (if the struct is not packed) as well 2451 // as padding to ensure that the next field starts at the right offset. 2452 AP.OutStreamer->EmitZeros(PadSize); 2453 } 2454 assert(SizeSoFar == Layout->getSizeInBytes() && 2455 "Layout of constant struct may be incorrect!"); 2456 } 2457 2458 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2459 APInt API = APF.bitcastToAPInt(); 2460 2461 // First print a comment with what we think the original floating-point value 2462 // should have been. 2463 if (AP.isVerbose()) { 2464 SmallString<8> StrVal; 2465 APF.toString(StrVal); 2466 2467 if (ET) 2468 ET->print(AP.OutStreamer->GetCommentOS()); 2469 else 2470 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2471 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2472 } 2473 2474 // Now iterate through the APInt chunks, emitting them in endian-correct 2475 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2476 // floats). 2477 unsigned NumBytes = API.getBitWidth() / 8; 2478 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2479 const uint64_t *p = API.getRawData(); 2480 2481 // PPC's long double has odd notions of endianness compared to how LLVM 2482 // handles it: p[0] goes first for *big* endian on PPC. 2483 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2484 int Chunk = API.getNumWords() - 1; 2485 2486 if (TrailingBytes) 2487 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2488 2489 for (; Chunk >= 0; --Chunk) 2490 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2491 } else { 2492 unsigned Chunk; 2493 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2494 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2495 2496 if (TrailingBytes) 2497 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2498 } 2499 2500 // Emit the tail padding for the long double. 2501 const DataLayout &DL = AP.getDataLayout(); 2502 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2503 } 2504 2505 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2506 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2507 } 2508 2509 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2510 const DataLayout &DL = AP.getDataLayout(); 2511 unsigned BitWidth = CI->getBitWidth(); 2512 2513 // Copy the value as we may massage the layout for constants whose bit width 2514 // is not a multiple of 64-bits. 2515 APInt Realigned(CI->getValue()); 2516 uint64_t ExtraBits = 0; 2517 unsigned ExtraBitsSize = BitWidth & 63; 2518 2519 if (ExtraBitsSize) { 2520 // The bit width of the data is not a multiple of 64-bits. 2521 // The extra bits are expected to be at the end of the chunk of the memory. 2522 // Little endian: 2523 // * Nothing to be done, just record the extra bits to emit. 2524 // Big endian: 2525 // * Record the extra bits to emit. 2526 // * Realign the raw data to emit the chunks of 64-bits. 2527 if (DL.isBigEndian()) { 2528 // Basically the structure of the raw data is a chunk of 64-bits cells: 2529 // 0 1 BitWidth / 64 2530 // [chunk1][chunk2] ... [chunkN]. 2531 // The most significant chunk is chunkN and it should be emitted first. 2532 // However, due to the alignment issue chunkN contains useless bits. 2533 // Realign the chunks so that they contain only useless information: 2534 // ExtraBits 0 1 (BitWidth / 64) - 1 2535 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2536 ExtraBits = Realigned.getRawData()[0] & 2537 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2538 Realigned.lshrInPlace(ExtraBitsSize); 2539 } else 2540 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2541 } 2542 2543 // We don't expect assemblers to support integer data directives 2544 // for more than 64 bits, so we emit the data in at most 64-bit 2545 // quantities at a time. 2546 const uint64_t *RawData = Realigned.getRawData(); 2547 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2548 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2549 AP.OutStreamer->EmitIntValue(Val, 8); 2550 } 2551 2552 if (ExtraBitsSize) { 2553 // Emit the extra bits after the 64-bits chunks. 2554 2555 // Emit a directive that fills the expected size. 2556 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2557 Size -= (BitWidth / 64) * 8; 2558 assert(Size && Size * 8 >= ExtraBitsSize && 2559 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2560 == ExtraBits && "Directive too small for extra bits."); 2561 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2562 } 2563 } 2564 2565 /// Transform a not absolute MCExpr containing a reference to a GOT 2566 /// equivalent global, by a target specific GOT pc relative access to the 2567 /// final symbol. 2568 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2569 const Constant *BaseCst, 2570 uint64_t Offset) { 2571 // The global @foo below illustrates a global that uses a got equivalent. 2572 // 2573 // @bar = global i32 42 2574 // @gotequiv = private unnamed_addr constant i32* @bar 2575 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2576 // i64 ptrtoint (i32* @foo to i64)) 2577 // to i32) 2578 // 2579 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2580 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2581 // form: 2582 // 2583 // foo = cstexpr, where 2584 // cstexpr := <gotequiv> - "." + <cst> 2585 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2586 // 2587 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2588 // 2589 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2590 // gotpcrelcst := <offset from @foo base> + <cst> 2591 MCValue MV; 2592 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2593 return; 2594 const MCSymbolRefExpr *SymA = MV.getSymA(); 2595 if (!SymA) 2596 return; 2597 2598 // Check that GOT equivalent symbol is cached. 2599 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2600 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2601 return; 2602 2603 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2604 if (!BaseGV) 2605 return; 2606 2607 // Check for a valid base symbol 2608 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2609 const MCSymbolRefExpr *SymB = MV.getSymB(); 2610 2611 if (!SymB || BaseSym != &SymB->getSymbol()) 2612 return; 2613 2614 // Make sure to match: 2615 // 2616 // gotpcrelcst := <offset from @foo base> + <cst> 2617 // 2618 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2619 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2620 // if the target knows how to encode it. 2621 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2622 if (GOTPCRelCst < 0) 2623 return; 2624 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2625 return; 2626 2627 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2628 // 2629 // bar: 2630 // .long 42 2631 // gotequiv: 2632 // .quad bar 2633 // foo: 2634 // .long gotequiv - "." + <cst> 2635 // 2636 // is replaced by the target specific equivalent to: 2637 // 2638 // bar: 2639 // .long 42 2640 // foo: 2641 // .long bar@GOTPCREL+<gotpcrelcst> 2642 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2643 const GlobalVariable *GV = Result.first; 2644 int NumUses = (int)Result.second; 2645 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2646 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2647 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2648 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2649 2650 // Update GOT equivalent usage information 2651 --NumUses; 2652 if (NumUses >= 0) 2653 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2654 } 2655 2656 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2657 AsmPrinter &AP, const Constant *BaseCV, 2658 uint64_t Offset) { 2659 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2660 2661 // Globals with sub-elements such as combinations of arrays and structs 2662 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2663 // constant symbol base and the current position with BaseCV and Offset. 2664 if (!BaseCV && CV->hasOneUse()) 2665 BaseCV = dyn_cast<Constant>(CV->user_back()); 2666 2667 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2668 return AP.OutStreamer->EmitZeros(Size); 2669 2670 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2671 switch (Size) { 2672 case 1: 2673 case 2: 2674 case 4: 2675 case 8: 2676 if (AP.isVerbose()) 2677 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2678 CI->getZExtValue()); 2679 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2680 return; 2681 default: 2682 emitGlobalConstantLargeInt(CI, AP); 2683 return; 2684 } 2685 } 2686 2687 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2688 return emitGlobalConstantFP(CFP, AP); 2689 2690 if (isa<ConstantPointerNull>(CV)) { 2691 AP.OutStreamer->EmitIntValue(0, Size); 2692 return; 2693 } 2694 2695 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2696 return emitGlobalConstantDataSequential(DL, CDS, AP); 2697 2698 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2699 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2700 2701 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2702 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2703 2704 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2705 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2706 // vectors). 2707 if (CE->getOpcode() == Instruction::BitCast) 2708 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2709 2710 if (Size > 8) { 2711 // If the constant expression's size is greater than 64-bits, then we have 2712 // to emit the value in chunks. Try to constant fold the value and emit it 2713 // that way. 2714 Constant *New = ConstantFoldConstant(CE, DL); 2715 if (New && New != CE) 2716 return emitGlobalConstantImpl(DL, New, AP); 2717 } 2718 } 2719 2720 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2721 return emitGlobalConstantVector(DL, V, AP); 2722 2723 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2724 // thread the streamer with EmitValue. 2725 const MCExpr *ME = AP.lowerConstant(CV); 2726 2727 // Since lowerConstant already folded and got rid of all IR pointer and 2728 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2729 // directly. 2730 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2731 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2732 2733 AP.OutStreamer->EmitValue(ME, Size); 2734 } 2735 2736 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2737 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2738 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2739 if (Size) 2740 emitGlobalConstantImpl(DL, CV, *this); 2741 else if (MAI->hasSubsectionsViaSymbols()) { 2742 // If the global has zero size, emit a single byte so that two labels don't 2743 // look like they are at the same location. 2744 OutStreamer->EmitIntValue(0, 1); 2745 } 2746 } 2747 2748 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2749 // Target doesn't support this yet! 2750 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2751 } 2752 2753 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2754 if (Offset > 0) 2755 OS << '+' << Offset; 2756 else if (Offset < 0) 2757 OS << Offset; 2758 } 2759 2760 //===----------------------------------------------------------------------===// 2761 // Symbol Lowering Routines. 2762 //===----------------------------------------------------------------------===// 2763 2764 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2765 return OutContext.createTempSymbol(Name, true); 2766 } 2767 2768 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2769 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2770 } 2771 2772 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2773 return MMI->getAddrLabelSymbol(BB); 2774 } 2775 2776 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2777 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2778 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) { 2779 const MachineConstantPoolEntry &CPE = 2780 MF->getConstantPool()->getConstants()[CPID]; 2781 if (!CPE.isMachineConstantPoolEntry()) { 2782 const DataLayout &DL = MF->getDataLayout(); 2783 SectionKind Kind = CPE.getSectionKind(&DL); 2784 const Constant *C = CPE.Val.ConstVal; 2785 unsigned Align = CPE.Alignment; 2786 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2787 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2788 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2789 if (Sym->isUndefined()) 2790 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2791 return Sym; 2792 } 2793 } 2794 } 2795 } 2796 2797 const DataLayout &DL = getDataLayout(); 2798 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2799 "CPI" + Twine(getFunctionNumber()) + "_" + 2800 Twine(CPID)); 2801 } 2802 2803 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2804 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2805 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2806 } 2807 2808 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2809 /// FIXME: privatize to AsmPrinter. 2810 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2811 const DataLayout &DL = getDataLayout(); 2812 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2813 Twine(getFunctionNumber()) + "_" + 2814 Twine(UID) + "_set_" + Twine(MBBID)); 2815 } 2816 2817 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2818 StringRef Suffix) const { 2819 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2820 } 2821 2822 /// Return the MCSymbol for the specified ExternalSymbol. 2823 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2824 SmallString<60> NameStr; 2825 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2826 return OutContext.getOrCreateSymbol(NameStr); 2827 } 2828 2829 /// PrintParentLoopComment - Print comments about parent loops of this one. 2830 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2831 unsigned FunctionNumber) { 2832 if (!Loop) return; 2833 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2834 OS.indent(Loop->getLoopDepth()*2) 2835 << "Parent Loop BB" << FunctionNumber << "_" 2836 << Loop->getHeader()->getNumber() 2837 << " Depth=" << Loop->getLoopDepth() << '\n'; 2838 } 2839 2840 /// PrintChildLoopComment - Print comments about child loops within 2841 /// the loop for this basic block, with nesting. 2842 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2843 unsigned FunctionNumber) { 2844 // Add child loop information 2845 for (const MachineLoop *CL : *Loop) { 2846 OS.indent(CL->getLoopDepth()*2) 2847 << "Child Loop BB" << FunctionNumber << "_" 2848 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2849 << '\n'; 2850 PrintChildLoopComment(OS, CL, FunctionNumber); 2851 } 2852 } 2853 2854 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2855 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2856 const MachineLoopInfo *LI, 2857 const AsmPrinter &AP) { 2858 // Add loop depth information 2859 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2860 if (!Loop) return; 2861 2862 MachineBasicBlock *Header = Loop->getHeader(); 2863 assert(Header && "No header for loop"); 2864 2865 // If this block is not a loop header, just print out what is the loop header 2866 // and return. 2867 if (Header != &MBB) { 2868 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2869 Twine(AP.getFunctionNumber())+"_" + 2870 Twine(Loop->getHeader()->getNumber())+ 2871 " Depth="+Twine(Loop->getLoopDepth())); 2872 return; 2873 } 2874 2875 // Otherwise, it is a loop header. Print out information about child and 2876 // parent loops. 2877 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2878 2879 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2880 2881 OS << "=>"; 2882 OS.indent(Loop->getLoopDepth()*2-2); 2883 2884 OS << "This "; 2885 if (Loop->empty()) 2886 OS << "Inner "; 2887 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2888 2889 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2890 } 2891 2892 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2893 MCCodePaddingContext &Context) const { 2894 assert(MF != nullptr && "Machine function must be valid"); 2895 Context.IsPaddingActive = !MF->hasInlineAsm() && 2896 !MF->getFunction().hasOptSize() && 2897 TM.getOptLevel() != CodeGenOpt::None; 2898 Context.IsBasicBlockReachableViaFallthrough = 2899 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2900 MBB.pred_end(); 2901 Context.IsBasicBlockReachableViaBranch = 2902 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2903 } 2904 2905 /// EmitBasicBlockStart - This method prints the label for the specified 2906 /// MachineBasicBlock, an alignment (if present) and a comment describing 2907 /// it if appropriate. 2908 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2909 // End the previous funclet and start a new one. 2910 if (MBB.isEHFuncletEntry()) { 2911 for (const HandlerInfo &HI : Handlers) { 2912 HI.Handler->endFunclet(); 2913 HI.Handler->beginFunclet(MBB); 2914 } 2915 } 2916 2917 // Emit an alignment directive for this block, if needed. 2918 if (unsigned Align = MBB.getAlignment()) 2919 EmitAlignment(Align); 2920 MCCodePaddingContext Context; 2921 setupCodePaddingContext(MBB, Context); 2922 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2923 2924 // If the block has its address taken, emit any labels that were used to 2925 // reference the block. It is possible that there is more than one label 2926 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2927 // the references were generated. 2928 if (MBB.hasAddressTaken()) { 2929 const BasicBlock *BB = MBB.getBasicBlock(); 2930 if (isVerbose()) 2931 OutStreamer->AddComment("Block address taken"); 2932 2933 // MBBs can have their address taken as part of CodeGen without having 2934 // their corresponding BB's address taken in IR 2935 if (BB->hasAddressTaken()) 2936 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2937 OutStreamer->EmitLabel(Sym); 2938 } 2939 2940 // Print some verbose block comments. 2941 if (isVerbose()) { 2942 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2943 if (BB->hasName()) { 2944 BB->printAsOperand(OutStreamer->GetCommentOS(), 2945 /*PrintType=*/false, BB->getModule()); 2946 OutStreamer->GetCommentOS() << '\n'; 2947 } 2948 } 2949 2950 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2951 emitBasicBlockLoopComments(MBB, MLI, *this); 2952 } 2953 2954 // Print the main label for the block. 2955 if (MBB.pred_empty() || 2956 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2957 !MBB.hasLabelMustBeEmitted())) { 2958 if (isVerbose()) { 2959 // NOTE: Want this comment at start of line, don't emit with AddComment. 2960 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2961 false); 2962 } 2963 } else { 2964 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 2965 OutStreamer->AddComment("Label of block must be emitted"); 2966 OutStreamer->EmitLabel(MBB.getSymbol()); 2967 } 2968 } 2969 2970 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2971 MCCodePaddingContext Context; 2972 setupCodePaddingContext(MBB, Context); 2973 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2974 } 2975 2976 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2977 bool IsDefinition) const { 2978 MCSymbolAttr Attr = MCSA_Invalid; 2979 2980 switch (Visibility) { 2981 default: break; 2982 case GlobalValue::HiddenVisibility: 2983 if (IsDefinition) 2984 Attr = MAI->getHiddenVisibilityAttr(); 2985 else 2986 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2987 break; 2988 case GlobalValue::ProtectedVisibility: 2989 Attr = MAI->getProtectedVisibilityAttr(); 2990 break; 2991 } 2992 2993 if (Attr != MCSA_Invalid) 2994 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2995 } 2996 2997 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2998 /// exactly one predecessor and the control transfer mechanism between 2999 /// the predecessor and this block is a fall-through. 3000 bool AsmPrinter:: 3001 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3002 // If this is a landing pad, it isn't a fall through. If it has no preds, 3003 // then nothing falls through to it. 3004 if (MBB->isEHPad() || MBB->pred_empty()) 3005 return false; 3006 3007 // If there isn't exactly one predecessor, it can't be a fall through. 3008 if (MBB->pred_size() > 1) 3009 return false; 3010 3011 // The predecessor has to be immediately before this block. 3012 MachineBasicBlock *Pred = *MBB->pred_begin(); 3013 if (!Pred->isLayoutSuccessor(MBB)) 3014 return false; 3015 3016 // If the block is completely empty, then it definitely does fall through. 3017 if (Pred->empty()) 3018 return true; 3019 3020 // Check the terminators in the previous blocks 3021 for (const auto &MI : Pred->terminators()) { 3022 // If it is not a simple branch, we are in a table somewhere. 3023 if (!MI.isBranch() || MI.isIndirectBranch()) 3024 return false; 3025 3026 // If we are the operands of one of the branches, this is not a fall 3027 // through. Note that targets with delay slots will usually bundle 3028 // terminators with the delay slot instruction. 3029 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3030 if (OP->isJTI()) 3031 return false; 3032 if (OP->isMBB() && OP->getMBB() == MBB) 3033 return false; 3034 } 3035 } 3036 3037 return true; 3038 } 3039 3040 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3041 if (!S.usesMetadata()) 3042 return nullptr; 3043 3044 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3045 gcp_map_type::iterator GCPI = GCMap.find(&S); 3046 if (GCPI != GCMap.end()) 3047 return GCPI->second.get(); 3048 3049 auto Name = S.getName(); 3050 3051 for (GCMetadataPrinterRegistry::iterator 3052 I = GCMetadataPrinterRegistry::begin(), 3053 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3054 if (Name == I->getName()) { 3055 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3056 GMP->S = &S; 3057 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3058 return IterBool.first->second.get(); 3059 } 3060 3061 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3062 } 3063 3064 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3065 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3066 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3067 bool NeedsDefault = false; 3068 if (MI->begin() == MI->end()) 3069 // No GC strategy, use the default format. 3070 NeedsDefault = true; 3071 else 3072 for (auto &I : *MI) { 3073 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3074 if (MP->emitStackMaps(SM, *this)) 3075 continue; 3076 // The strategy doesn't have printer or doesn't emit custom stack maps. 3077 // Use the default format. 3078 NeedsDefault = true; 3079 } 3080 3081 if (NeedsDefault) 3082 SM.serializeToStackMapSection(); 3083 } 3084 3085 /// Pin vtable to this file. 3086 AsmPrinterHandler::~AsmPrinterHandler() = default; 3087 3088 void AsmPrinterHandler::markFunctionEnd() {} 3089 3090 // In the binary's "xray_instr_map" section, an array of these function entries 3091 // describes each instrumentation point. When XRay patches your code, the index 3092 // into this table will be given to your handler as a patch point identifier. 3093 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3094 const MCSymbol *CurrentFnSym) const { 3095 Out->EmitSymbolValue(Sled, Bytes); 3096 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3097 auto Kind8 = static_cast<uint8_t>(Kind); 3098 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3099 Out->EmitBinaryData( 3100 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3101 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3102 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3103 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3104 Out->EmitZeros(Padding); 3105 } 3106 3107 void AsmPrinter::emitXRayTable() { 3108 if (Sleds.empty()) 3109 return; 3110 3111 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3112 const Function &F = MF->getFunction(); 3113 MCSection *InstMap = nullptr; 3114 MCSection *FnSledIndex = nullptr; 3115 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3116 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3117 assert(Associated != nullptr); 3118 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3119 std::string GroupName; 3120 if (F.hasComdat()) { 3121 Flags |= ELF::SHF_GROUP; 3122 GroupName = F.getComdat()->getName(); 3123 } 3124 3125 auto UniqueID = ++XRayFnUniqueID; 3126 InstMap = 3127 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3128 GroupName, UniqueID, Associated); 3129 FnSledIndex = 3130 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3131 GroupName, UniqueID, Associated); 3132 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3133 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3134 SectionKind::getReadOnlyWithRel()); 3135 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3136 SectionKind::getReadOnlyWithRel()); 3137 } else { 3138 llvm_unreachable("Unsupported target"); 3139 } 3140 3141 auto WordSizeBytes = MAI->getCodePointerSize(); 3142 3143 // Now we switch to the instrumentation map section. Because this is done 3144 // per-function, we are able to create an index entry that will represent the 3145 // range of sleds associated with a function. 3146 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3147 OutStreamer->SwitchSection(InstMap); 3148 OutStreamer->EmitLabel(SledsStart); 3149 for (const auto &Sled : Sleds) 3150 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3151 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3152 OutStreamer->EmitLabel(SledsEnd); 3153 3154 // We then emit a single entry in the index per function. We use the symbols 3155 // that bound the instrumentation map as the range for a specific function. 3156 // Each entry here will be 2 * word size aligned, as we're writing down two 3157 // pointers. This should work for both 32-bit and 64-bit platforms. 3158 OutStreamer->SwitchSection(FnSledIndex); 3159 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3160 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3161 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3162 OutStreamer->SwitchSection(PrevSection); 3163 Sleds.clear(); 3164 } 3165 3166 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3167 SledKind Kind, uint8_t Version) { 3168 const Function &F = MI.getMF()->getFunction(); 3169 auto Attr = F.getFnAttribute("function-instrument"); 3170 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3171 bool AlwaysInstrument = 3172 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3173 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3174 Kind = SledKind::LOG_ARGS_ENTER; 3175 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3176 AlwaysInstrument, &F, Version}); 3177 } 3178 3179 uint16_t AsmPrinter::getDwarfVersion() const { 3180 return OutStreamer->getContext().getDwarfVersion(); 3181 } 3182 3183 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3184 OutStreamer->getContext().setDwarfVersion(Version); 3185 } 3186