1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/BinaryFormat/COFF.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineConstantPool.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineInstrBundle.h" 51 #include "llvm/CodeGen/MachineJumpTableInfo.h" 52 #include "llvm/CodeGen/MachineLoopInfo.h" 53 #include "llvm/CodeGen/MachineMemOperand.h" 54 #include "llvm/CodeGen/MachineModuleInfo.h" 55 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 58 #include "llvm/CodeGen/MachineSizeOpts.h" 59 #include "llvm/CodeGen/StackMaps.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Comdat.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GlobalAlias.h" 74 #include "llvm/IR/GlobalIFunc.h" 75 #include "llvm/IR/GlobalIndirectSymbol.h" 76 #include "llvm/IR/GlobalObject.h" 77 #include "llvm/IR/GlobalValue.h" 78 #include "llvm/IR/GlobalVariable.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Mangler.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/MC/MCAsmInfo.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/MC/MCDirectives.h" 89 #include "llvm/MC/MCDwarf.h" 90 #include "llvm/MC/MCExpr.h" 91 #include "llvm/MC/MCInst.h" 92 #include "llvm/MC/MCSection.h" 93 #include "llvm/MC/MCSectionCOFF.h" 94 #include "llvm/MC/MCSectionELF.h" 95 #include "llvm/MC/MCSectionMachO.h" 96 #include "llvm/MC/MCSectionXCOFF.h" 97 #include "llvm/MC/MCStreamer.h" 98 #include "llvm/MC/MCSubtargetInfo.h" 99 #include "llvm/MC/MCSymbol.h" 100 #include "llvm/MC/MCSymbolELF.h" 101 #include "llvm/MC/MCSymbolXCOFF.h" 102 #include "llvm/MC/MCTargetOptions.h" 103 #include "llvm/MC/MCValue.h" 104 #include "llvm/MC/SectionKind.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Remarks/Remark.h" 107 #include "llvm/Remarks/RemarkFormat.h" 108 #include "llvm/Remarks/RemarkStreamer.h" 109 #include "llvm/Remarks/RemarkStringTable.h" 110 #include "llvm/Support/Casting.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/Format.h" 115 #include "llvm/Support/MathExtras.h" 116 #include "llvm/Support/Path.h" 117 #include "llvm/Support/TargetRegistry.h" 118 #include "llvm/Support/Timer.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include "llvm/Target/TargetLoweringObjectFile.h" 121 #include "llvm/Target/TargetMachine.h" 122 #include "llvm/Target/TargetOptions.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <cinttypes> 126 #include <cstdint> 127 #include <iterator> 128 #include <limits> 129 #include <memory> 130 #include <string> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 136 #define DEBUG_TYPE "asm-printer" 137 138 static const char *const DWARFGroupName = "dwarf"; 139 static const char *const DWARFGroupDescription = "DWARF Emission"; 140 static const char *const DbgTimerName = "emit"; 141 static const char *const DbgTimerDescription = "Debug Info Emission"; 142 static const char *const EHTimerName = "write_exception"; 143 static const char *const EHTimerDescription = "DWARF Exception Writer"; 144 static const char *const CFGuardName = "Control Flow Guard"; 145 static const char *const CFGuardDescription = "Control Flow Guard"; 146 static const char *const CodeViewLineTablesGroupName = "linetables"; 147 static const char *const CodeViewLineTablesGroupDescription = 148 "CodeView Line Tables"; 149 150 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 151 152 char AsmPrinter::ID = 0; 153 154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 155 156 static gcp_map_type &getGCMap(void *&P) { 157 if (!P) 158 P = new gcp_map_type(); 159 return *(gcp_map_type*)P; 160 } 161 162 /// getGVAlignment - Return the alignment to use for the specified global 163 /// value. This rounds up to the preferred alignment if possible and legal. 164 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL, 165 Align InAlign) { 166 Align Alignment; 167 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 168 Alignment = Align(DL.getPreferredAlignment(GVar)); 169 170 // If InAlign is specified, round it to it. 171 if (InAlign > Alignment) 172 Alignment = InAlign; 173 174 // If the GV has a specified alignment, take it into account. 175 const MaybeAlign GVAlign(GV->getAlignment()); 176 if (!GVAlign) 177 return Alignment; 178 179 assert(GVAlign && "GVAlign must be set"); 180 181 // If the GVAlign is larger than NumBits, or if we are required to obey 182 // NumBits because the GV has an assigned section, obey it. 183 if (*GVAlign > Alignment || GV->hasSection()) 184 Alignment = *GVAlign; 185 return Alignment; 186 } 187 188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 189 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 190 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 191 VerboseAsm = OutStreamer->isVerboseAsm(); 192 } 193 194 AsmPrinter::~AsmPrinter() { 195 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 196 197 if (GCMetadataPrinters) { 198 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 199 200 delete &GCMap; 201 GCMetadataPrinters = nullptr; 202 } 203 } 204 205 bool AsmPrinter::isPositionIndependent() const { 206 return TM.isPositionIndependent(); 207 } 208 209 /// getFunctionNumber - Return a unique ID for the current function. 210 unsigned AsmPrinter::getFunctionNumber() const { 211 return MF->getFunctionNumber(); 212 } 213 214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 215 return *TM.getObjFileLowering(); 216 } 217 218 const DataLayout &AsmPrinter::getDataLayout() const { 219 return MMI->getModule()->getDataLayout(); 220 } 221 222 // Do not use the cached DataLayout because some client use it without a Module 223 // (dsymutil, llvm-dwarfdump). 224 unsigned AsmPrinter::getPointerSize() const { 225 return TM.getPointerSize(0); // FIXME: Default address space 226 } 227 228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 229 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 230 return MF->getSubtarget<MCSubtargetInfo>(); 231 } 232 233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 234 S.emitInstruction(Inst, getSubtargetInfo()); 235 } 236 237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 238 assert(DD && "Dwarf debug file is not defined."); 239 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 240 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 241 } 242 243 /// getCurrentSection() - Return the current section we are emitting to. 244 const MCSection *AsmPrinter::getCurrentSection() const { 245 return OutStreamer->getCurrentSectionOnly(); 246 } 247 248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 249 AU.setPreservesAll(); 250 MachineFunctionPass::getAnalysisUsage(AU); 251 AU.addRequired<MachineModuleInfoWrapperPass>(); 252 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 253 AU.addRequired<GCModuleInfo>(); 254 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 255 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 256 } 257 258 bool AsmPrinter::doInitialization(Module &M) { 259 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 260 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 261 262 // Initialize TargetLoweringObjectFile. 263 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 264 .Initialize(OutContext, TM); 265 266 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 267 .getModuleMetadata(M); 268 269 OutStreamer->InitSections(false); 270 271 // Emit the version-min deployment target directive if needed. 272 // 273 // FIXME: If we end up with a collection of these sorts of Darwin-specific 274 // or ELF-specific things, it may make sense to have a platform helper class 275 // that will work with the target helper class. For now keep it here, as the 276 // alternative is duplicated code in each of the target asm printers that 277 // use the directive, where it would need the same conditionalization 278 // anyway. 279 const Triple &Target = TM.getTargetTriple(); 280 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 281 282 // Allow the target to emit any magic that it wants at the start of the file. 283 emitStartOfAsmFile(M); 284 285 // Very minimal debug info. It is ignored if we emit actual debug info. If we 286 // don't, this at least helps the user find where a global came from. 287 if (MAI->hasSingleParameterDotFile()) { 288 // .file "foo.c" 289 OutStreamer->emitFileDirective( 290 llvm::sys::path::filename(M.getSourceFileName())); 291 } 292 293 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 294 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 295 for (auto &I : *MI) 296 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 297 MP->beginAssembly(M, *MI, *this); 298 299 // Emit module-level inline asm if it exists. 300 if (!M.getModuleInlineAsm().empty()) { 301 // We're at the module level. Construct MCSubtarget from the default CPU 302 // and target triple. 303 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 304 TM.getTargetTriple().str(), TM.getTargetCPU(), 305 TM.getTargetFeatureString())); 306 OutStreamer->AddComment("Start of file scope inline assembly"); 307 OutStreamer->AddBlankLine(); 308 emitInlineAsm(M.getModuleInlineAsm() + "\n", 309 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 310 OutStreamer->AddComment("End of file scope inline assembly"); 311 OutStreamer->AddBlankLine(); 312 } 313 314 if (MAI->doesSupportDebugInformation()) { 315 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 316 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 317 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 318 DbgTimerName, DbgTimerDescription, 319 CodeViewLineTablesGroupName, 320 CodeViewLineTablesGroupDescription); 321 } 322 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 323 DD = new DwarfDebug(this, &M); 324 DD->beginModule(); 325 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 326 DbgTimerDescription, DWARFGroupName, 327 DWARFGroupDescription); 328 } 329 } 330 331 switch (MAI->getExceptionHandlingType()) { 332 case ExceptionHandling::SjLj: 333 case ExceptionHandling::DwarfCFI: 334 case ExceptionHandling::ARM: 335 isCFIMoveForDebugging = true; 336 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 337 break; 338 for (auto &F: M.getFunctionList()) { 339 // If the module contains any function with unwind data, 340 // .eh_frame has to be emitted. 341 // Ignore functions that won't get emitted. 342 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 343 isCFIMoveForDebugging = false; 344 break; 345 } 346 } 347 break; 348 default: 349 isCFIMoveForDebugging = false; 350 break; 351 } 352 353 EHStreamer *ES = nullptr; 354 switch (MAI->getExceptionHandlingType()) { 355 case ExceptionHandling::None: 356 break; 357 case ExceptionHandling::SjLj: 358 case ExceptionHandling::DwarfCFI: 359 ES = new DwarfCFIException(this); 360 break; 361 case ExceptionHandling::ARM: 362 ES = new ARMException(this); 363 break; 364 case ExceptionHandling::WinEH: 365 switch (MAI->getWinEHEncodingType()) { 366 default: llvm_unreachable("unsupported unwinding information encoding"); 367 case WinEH::EncodingType::Invalid: 368 break; 369 case WinEH::EncodingType::X86: 370 case WinEH::EncodingType::Itanium: 371 ES = new WinException(this); 372 break; 373 } 374 break; 375 case ExceptionHandling::Wasm: 376 ES = new WasmException(this); 377 break; 378 } 379 if (ES) 380 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 381 EHTimerDescription, DWARFGroupName, 382 DWARFGroupDescription); 383 384 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 385 if (mdconst::extract_or_null<ConstantInt>( 386 MMI->getModule()->getModuleFlag("cfguard"))) 387 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 388 CFGuardDescription, DWARFGroupName, 389 DWARFGroupDescription); 390 return false; 391 } 392 393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 394 if (!MAI.hasWeakDefCanBeHiddenDirective()) 395 return false; 396 397 return GV->canBeOmittedFromSymbolTable(); 398 } 399 400 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 401 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 402 switch (Linkage) { 403 case GlobalValue::CommonLinkage: 404 case GlobalValue::LinkOnceAnyLinkage: 405 case GlobalValue::LinkOnceODRLinkage: 406 case GlobalValue::WeakAnyLinkage: 407 case GlobalValue::WeakODRLinkage: 408 if (MAI->hasWeakDefDirective()) { 409 // .globl _foo 410 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 411 412 if (!canBeHidden(GV, *MAI)) 413 // .weak_definition _foo 414 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 415 else 416 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 417 } else if (MAI->hasLinkOnceDirective()) { 418 // .globl _foo 419 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 420 //NOTE: linkonce is handled by the section the symbol was assigned to. 421 } else { 422 // .weak _foo 423 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 424 } 425 return; 426 case GlobalValue::ExternalLinkage: 427 // If external, declare as a global symbol: .globl _foo 428 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 429 return; 430 case GlobalValue::PrivateLinkage: 431 return; 432 case GlobalValue::InternalLinkage: 433 if (MAI->hasDotLGloblDirective()) 434 OutStreamer->emitSymbolAttribute(GVSym, MCSA_LGlobal); 435 return; 436 case GlobalValue::AppendingLinkage: 437 case GlobalValue::AvailableExternallyLinkage: 438 case GlobalValue::ExternalWeakLinkage: 439 llvm_unreachable("Should never emit this"); 440 } 441 llvm_unreachable("Unknown linkage type!"); 442 } 443 444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 445 const GlobalValue *GV) const { 446 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 447 } 448 449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 450 return TM.getSymbol(GV); 451 } 452 453 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 454 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 455 // exact definion (intersection of GlobalValue::hasExactDefinition() and 456 // !isInterposable()). These linkages include: external, appending, internal, 457 // private. It may be profitable to use a local alias for external. The 458 // assembler would otherwise be conservative and assume a global default 459 // visibility symbol can be interposable, even if the code generator already 460 // assumed it. 461 if (TM.getTargetTriple().isOSBinFormatELF() && 462 GlobalObject::isExternalLinkage(GV.getLinkage()) && GV.isDSOLocal() && 463 !GV.isDeclaration() && !isa<GlobalIFunc>(GV)) 464 return getSymbolWithGlobalValueBase(&GV, "$local"); 465 return TM.getSymbol(&GV); 466 } 467 468 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 469 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 470 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 471 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 472 "No emulated TLS variables in the common section"); 473 474 // Never emit TLS variable xyz in emulated TLS model. 475 // The initialization value is in __emutls_t.xyz instead of xyz. 476 if (IsEmuTLSVar) 477 return; 478 479 if (GV->hasInitializer()) { 480 // Check to see if this is a special global used by LLVM, if so, emit it. 481 if (emitSpecialLLVMGlobal(GV)) 482 return; 483 484 // Skip the emission of global equivalents. The symbol can be emitted later 485 // on by emitGlobalGOTEquivs in case it turns out to be needed. 486 if (GlobalGOTEquivs.count(getSymbol(GV))) 487 return; 488 489 if (isVerbose()) { 490 // When printing the control variable __emutls_v.*, 491 // we don't need to print the original TLS variable name. 492 GV->printAsOperand(OutStreamer->GetCommentOS(), 493 /*PrintType=*/false, GV->getParent()); 494 OutStreamer->GetCommentOS() << '\n'; 495 } 496 } 497 498 MCSymbol *GVSym = getSymbol(GV); 499 MCSymbol *EmittedSym = GVSym; 500 501 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 502 // attributes. 503 // GV's or GVSym's attributes will be used for the EmittedSym. 504 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 505 506 if (!GV->hasInitializer()) // External globals require no extra code. 507 return; 508 509 GVSym->redefineIfPossible(); 510 if (GVSym->isDefined() || GVSym->isVariable()) 511 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 512 "' is already defined"); 513 514 if (MAI->hasDotTypeDotSizeDirective()) 515 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 516 517 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 518 519 const DataLayout &DL = GV->getParent()->getDataLayout(); 520 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 521 522 // If the alignment is specified, we *must* obey it. Overaligning a global 523 // with a specified alignment is a prompt way to break globals emitted to 524 // sections and expected to be contiguous (e.g. ObjC metadata). 525 const Align Alignment = getGVAlignment(GV, DL); 526 527 for (const HandlerInfo &HI : Handlers) { 528 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 529 HI.TimerGroupName, HI.TimerGroupDescription, 530 TimePassesIsEnabled); 531 HI.Handler->setSymbolSize(GVSym, Size); 532 } 533 534 // Handle common symbols 535 if (GVKind.isCommon()) { 536 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 537 // .comm _foo, 42, 4 538 const bool SupportsAlignment = 539 getObjFileLowering().getCommDirectiveSupportsAlignment(); 540 OutStreamer->emitCommonSymbol(GVSym, Size, 541 SupportsAlignment ? Alignment.value() : 0); 542 return; 543 } 544 545 // Determine to which section this global should be emitted. 546 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 547 548 // If we have a bss global going to a section that supports the 549 // zerofill directive, do so here. 550 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 551 TheSection->isVirtualSection()) { 552 if (Size == 0) 553 Size = 1; // zerofill of 0 bytes is undefined. 554 emitLinkage(GV, GVSym); 555 // .zerofill __DATA, __bss, _foo, 400, 5 556 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 557 return; 558 } 559 560 // If this is a BSS local symbol and we are emitting in the BSS 561 // section use .lcomm/.comm directive. 562 if (GVKind.isBSSLocal() && 563 getObjFileLowering().getBSSSection() == TheSection) { 564 if (Size == 0) 565 Size = 1; // .comm Foo, 0 is undefined, avoid it. 566 567 // Use .lcomm only if it supports user-specified alignment. 568 // Otherwise, while it would still be correct to use .lcomm in some 569 // cases (e.g. when Align == 1), the external assembler might enfore 570 // some -unknown- default alignment behavior, which could cause 571 // spurious differences between external and integrated assembler. 572 // Prefer to simply fall back to .local / .comm in this case. 573 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 574 // .lcomm _foo, 42 575 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 576 return; 577 } 578 579 // .local _foo 580 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 581 // .comm _foo, 42, 4 582 const bool SupportsAlignment = 583 getObjFileLowering().getCommDirectiveSupportsAlignment(); 584 OutStreamer->emitCommonSymbol(GVSym, Size, 585 SupportsAlignment ? Alignment.value() : 0); 586 return; 587 } 588 589 // Handle thread local data for mach-o which requires us to output an 590 // additional structure of data and mangle the original symbol so that we 591 // can reference it later. 592 // 593 // TODO: This should become an "emit thread local global" method on TLOF. 594 // All of this macho specific stuff should be sunk down into TLOFMachO and 595 // stuff like "TLSExtraDataSection" should no longer be part of the parent 596 // TLOF class. This will also make it more obvious that stuff like 597 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 598 // specific code. 599 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 600 // Emit the .tbss symbol 601 MCSymbol *MangSym = 602 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 603 604 if (GVKind.isThreadBSS()) { 605 TheSection = getObjFileLowering().getTLSBSSSection(); 606 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 607 } else if (GVKind.isThreadData()) { 608 OutStreamer->SwitchSection(TheSection); 609 610 emitAlignment(Alignment, GV); 611 OutStreamer->emitLabel(MangSym); 612 613 emitGlobalConstant(GV->getParent()->getDataLayout(), 614 GV->getInitializer()); 615 } 616 617 OutStreamer->AddBlankLine(); 618 619 // Emit the variable struct for the runtime. 620 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 621 622 OutStreamer->SwitchSection(TLVSect); 623 // Emit the linkage here. 624 emitLinkage(GV, GVSym); 625 OutStreamer->emitLabel(GVSym); 626 627 // Three pointers in size: 628 // - __tlv_bootstrap - used to make sure support exists 629 // - spare pointer, used when mapped by the runtime 630 // - pointer to mangled symbol above with initializer 631 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 632 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 633 PtrSize); 634 OutStreamer->emitIntValue(0, PtrSize); 635 OutStreamer->emitSymbolValue(MangSym, PtrSize); 636 637 OutStreamer->AddBlankLine(); 638 return; 639 } 640 641 MCSymbol *EmittedInitSym = GVSym; 642 643 OutStreamer->SwitchSection(TheSection); 644 645 emitLinkage(GV, EmittedInitSym); 646 emitAlignment(Alignment, GV); 647 648 OutStreamer->emitLabel(EmittedInitSym); 649 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 650 if (LocalAlias != EmittedInitSym) 651 OutStreamer->emitLabel(LocalAlias); 652 653 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 654 655 if (MAI->hasDotTypeDotSizeDirective()) 656 // .size foo, 42 657 OutStreamer->emitELFSize(EmittedInitSym, 658 MCConstantExpr::create(Size, OutContext)); 659 660 OutStreamer->AddBlankLine(); 661 } 662 663 /// Emit the directive and value for debug thread local expression 664 /// 665 /// \p Value - The value to emit. 666 /// \p Size - The size of the integer (in bytes) to emit. 667 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 668 OutStreamer->emitValue(Value, Size); 669 } 670 671 /// EmitFunctionHeader - This method emits the header for the current 672 /// function. 673 void AsmPrinter::emitFunctionHeader() { 674 const Function &F = MF->getFunction(); 675 676 if (isVerbose()) 677 OutStreamer->GetCommentOS() 678 << "-- Begin function " 679 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 680 681 // Print out constants referenced by the function 682 emitConstantPool(); 683 684 // Print the 'header' of function. 685 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 686 OutStreamer->SwitchSection(MF->getSection()); 687 688 emitVisibility(CurrentFnSym, F.getVisibility()); 689 690 if (MAI->needsFunctionDescriptors() && 691 F.getLinkage() != GlobalValue::InternalLinkage) 692 emitLinkage(&F, CurrentFnDescSym); 693 694 emitLinkage(&F, CurrentFnSym); 695 if (MAI->hasFunctionAlignment()) 696 emitAlignment(MF->getAlignment(), &F); 697 698 if (MAI->hasDotTypeDotSizeDirective()) 699 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 700 701 if (F.hasFnAttribute(Attribute::Cold)) 702 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 703 704 if (isVerbose()) { 705 F.printAsOperand(OutStreamer->GetCommentOS(), 706 /*PrintType=*/false, F.getParent()); 707 OutStreamer->GetCommentOS() << '\n'; 708 } 709 710 // Emit the prefix data. 711 if (F.hasPrefixData()) { 712 if (MAI->hasSubsectionsViaSymbols()) { 713 // Preserving prefix data on platforms which use subsections-via-symbols 714 // is a bit tricky. Here we introduce a symbol for the prefix data 715 // and use the .alt_entry attribute to mark the function's real entry point 716 // as an alternative entry point to the prefix-data symbol. 717 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 718 OutStreamer->emitLabel(PrefixSym); 719 720 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 721 722 // Emit an .alt_entry directive for the actual function symbol. 723 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 724 } else { 725 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 726 } 727 } 728 729 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 730 // place prefix data before NOPs. 731 unsigned PatchableFunctionPrefix = 0; 732 unsigned PatchableFunctionEntry = 0; 733 (void)F.getFnAttribute("patchable-function-prefix") 734 .getValueAsString() 735 .getAsInteger(10, PatchableFunctionPrefix); 736 (void)F.getFnAttribute("patchable-function-entry") 737 .getValueAsString() 738 .getAsInteger(10, PatchableFunctionEntry); 739 if (PatchableFunctionPrefix) { 740 CurrentPatchableFunctionEntrySym = 741 OutContext.createLinkerPrivateTempSymbol(); 742 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 743 emitNops(PatchableFunctionPrefix); 744 } else if (PatchableFunctionEntry) { 745 // May be reassigned when emitting the body, to reference the label after 746 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 747 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 748 } 749 750 // Emit the function descriptor. This is a virtual function to allow targets 751 // to emit their specific function descriptor. Right now it is only used by 752 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 753 // descriptors and should be converted to use this hook as well. 754 if (MAI->needsFunctionDescriptors()) 755 emitFunctionDescriptor(); 756 757 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 758 // their wild and crazy things as required. 759 emitFunctionEntryLabel(); 760 761 if (CurrentFnBegin) { 762 if (MAI->useAssignmentForEHBegin()) { 763 MCSymbol *CurPos = OutContext.createTempSymbol(); 764 OutStreamer->emitLabel(CurPos); 765 OutStreamer->emitAssignment(CurrentFnBegin, 766 MCSymbolRefExpr::create(CurPos, OutContext)); 767 } else { 768 OutStreamer->emitLabel(CurrentFnBegin); 769 } 770 } 771 772 // Emit pre-function debug and/or EH information. 773 for (const HandlerInfo &HI : Handlers) { 774 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 775 HI.TimerGroupDescription, TimePassesIsEnabled); 776 HI.Handler->beginFunction(MF); 777 } 778 779 // Emit the prologue data. 780 if (F.hasPrologueData()) 781 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 782 } 783 784 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 785 /// function. This can be overridden by targets as required to do custom stuff. 786 void AsmPrinter::emitFunctionEntryLabel() { 787 CurrentFnSym->redefineIfPossible(); 788 789 // The function label could have already been emitted if two symbols end up 790 // conflicting due to asm renaming. Detect this and emit an error. 791 if (CurrentFnSym->isVariable()) 792 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 793 "' is a protected alias"); 794 if (CurrentFnSym->isDefined()) 795 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 796 "' label emitted multiple times to assembly file"); 797 798 OutStreamer->emitLabel(CurrentFnSym); 799 800 if (TM.getTargetTriple().isOSBinFormatELF()) { 801 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 802 if (Sym != CurrentFnSym) 803 OutStreamer->emitLabel(Sym); 804 } 805 } 806 807 /// emitComments - Pretty-print comments for instructions. 808 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 809 const MachineFunction *MF = MI.getMF(); 810 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 811 812 // Check for spills and reloads 813 814 // We assume a single instruction only has a spill or reload, not 815 // both. 816 Optional<unsigned> Size; 817 if ((Size = MI.getRestoreSize(TII))) { 818 CommentOS << *Size << "-byte Reload\n"; 819 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 820 if (*Size) 821 CommentOS << *Size << "-byte Folded Reload\n"; 822 } else if ((Size = MI.getSpillSize(TII))) { 823 CommentOS << *Size << "-byte Spill\n"; 824 } else if ((Size = MI.getFoldedSpillSize(TII))) { 825 if (*Size) 826 CommentOS << *Size << "-byte Folded Spill\n"; 827 } 828 829 // Check for spill-induced copies 830 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 831 CommentOS << " Reload Reuse\n"; 832 } 833 834 /// emitImplicitDef - This method emits the specified machine instruction 835 /// that is an implicit def. 836 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 837 Register RegNo = MI->getOperand(0).getReg(); 838 839 SmallString<128> Str; 840 raw_svector_ostream OS(Str); 841 OS << "implicit-def: " 842 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 843 844 OutStreamer->AddComment(OS.str()); 845 OutStreamer->AddBlankLine(); 846 } 847 848 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 849 std::string Str; 850 raw_string_ostream OS(Str); 851 OS << "kill:"; 852 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 853 const MachineOperand &Op = MI->getOperand(i); 854 assert(Op.isReg() && "KILL instruction must have only register operands"); 855 OS << ' ' << (Op.isDef() ? "def " : "killed ") 856 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 857 } 858 AP.OutStreamer->AddComment(OS.str()); 859 AP.OutStreamer->AddBlankLine(); 860 } 861 862 /// emitDebugValueComment - This method handles the target-independent form 863 /// of DBG_VALUE, returning true if it was able to do so. A false return 864 /// means the target will need to handle MI in EmitInstruction. 865 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 866 // This code handles only the 4-operand target-independent form. 867 if (MI->getNumOperands() != 4) 868 return false; 869 870 SmallString<128> Str; 871 raw_svector_ostream OS(Str); 872 OS << "DEBUG_VALUE: "; 873 874 const DILocalVariable *V = MI->getDebugVariable(); 875 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 876 StringRef Name = SP->getName(); 877 if (!Name.empty()) 878 OS << Name << ":"; 879 } 880 OS << V->getName(); 881 OS << " <- "; 882 883 // The second operand is only an offset if it's an immediate. 884 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 885 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 886 const DIExpression *Expr = MI->getDebugExpression(); 887 if (Expr->getNumElements()) { 888 OS << '['; 889 bool NeedSep = false; 890 for (auto Op : Expr->expr_ops()) { 891 if (NeedSep) 892 OS << ", "; 893 else 894 NeedSep = true; 895 OS << dwarf::OperationEncodingString(Op.getOp()); 896 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 897 OS << ' ' << Op.getArg(I); 898 } 899 OS << "] "; 900 } 901 902 // Register or immediate value. Register 0 means undef. 903 if (MI->getOperand(0).isFPImm()) { 904 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 905 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 906 OS << (double)APF.convertToFloat(); 907 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 908 OS << APF.convertToDouble(); 909 } else { 910 // There is no good way to print long double. Convert a copy to 911 // double. Ah well, it's only a comment. 912 bool ignored; 913 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 914 &ignored); 915 OS << "(long double) " << APF.convertToDouble(); 916 } 917 } else if (MI->getOperand(0).isImm()) { 918 OS << MI->getOperand(0).getImm(); 919 } else if (MI->getOperand(0).isCImm()) { 920 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 921 } else if (MI->getOperand(0).isTargetIndex()) { 922 auto Op = MI->getOperand(0); 923 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 924 return true; 925 } else { 926 unsigned Reg; 927 if (MI->getOperand(0).isReg()) { 928 Reg = MI->getOperand(0).getReg(); 929 } else { 930 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 931 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 932 Offset += TFI->getFrameIndexReference(*AP.MF, 933 MI->getOperand(0).getIndex(), Reg); 934 MemLoc = true; 935 } 936 if (Reg == 0) { 937 // Suppress offset, it is not meaningful here. 938 OS << "undef"; 939 // NOTE: Want this comment at start of line, don't emit with AddComment. 940 AP.OutStreamer->emitRawComment(OS.str()); 941 return true; 942 } 943 if (MemLoc) 944 OS << '['; 945 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 946 } 947 948 if (MemLoc) 949 OS << '+' << Offset << ']'; 950 951 // NOTE: Want this comment at start of line, don't emit with AddComment. 952 AP.OutStreamer->emitRawComment(OS.str()); 953 return true; 954 } 955 956 /// This method handles the target-independent form of DBG_LABEL, returning 957 /// true if it was able to do so. A false return means the target will need 958 /// to handle MI in EmitInstruction. 959 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 960 if (MI->getNumOperands() != 1) 961 return false; 962 963 SmallString<128> Str; 964 raw_svector_ostream OS(Str); 965 OS << "DEBUG_LABEL: "; 966 967 const DILabel *V = MI->getDebugLabel(); 968 if (auto *SP = dyn_cast<DISubprogram>( 969 V->getScope()->getNonLexicalBlockFileScope())) { 970 StringRef Name = SP->getName(); 971 if (!Name.empty()) 972 OS << Name << ":"; 973 } 974 OS << V->getName(); 975 976 // NOTE: Want this comment at start of line, don't emit with AddComment. 977 AP.OutStreamer->emitRawComment(OS.str()); 978 return true; 979 } 980 981 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 982 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 983 MF->getFunction().needsUnwindTableEntry()) 984 return CFI_M_EH; 985 986 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 987 return CFI_M_Debug; 988 989 return CFI_M_None; 990 } 991 992 bool AsmPrinter::needsSEHMoves() { 993 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 994 } 995 996 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 997 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 998 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 999 ExceptionHandlingType != ExceptionHandling::ARM) 1000 return; 1001 1002 if (needsCFIMoves() == CFI_M_None) 1003 return; 1004 1005 // If there is no "real" instruction following this CFI instruction, skip 1006 // emitting it; it would be beyond the end of the function's FDE range. 1007 auto *MBB = MI.getParent(); 1008 auto I = std::next(MI.getIterator()); 1009 while (I != MBB->end() && I->isTransient()) 1010 ++I; 1011 if (I == MBB->instr_end() && 1012 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1013 return; 1014 1015 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1016 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1017 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1018 emitCFIInstruction(CFI); 1019 } 1020 1021 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1022 // The operands are the MCSymbol and the frame offset of the allocation. 1023 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1024 int FrameOffset = MI.getOperand(1).getImm(); 1025 1026 // Emit a symbol assignment. 1027 OutStreamer->emitAssignment(FrameAllocSym, 1028 MCConstantExpr::create(FrameOffset, OutContext)); 1029 } 1030 1031 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1032 if (!MF.getTarget().Options.EmitStackSizeSection) 1033 return; 1034 1035 MCSection *StackSizeSection = 1036 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1037 if (!StackSizeSection) 1038 return; 1039 1040 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1041 // Don't emit functions with dynamic stack allocations. 1042 if (FrameInfo.hasVarSizedObjects()) 1043 return; 1044 1045 OutStreamer->PushSection(); 1046 OutStreamer->SwitchSection(StackSizeSection); 1047 1048 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1049 uint64_t StackSize = FrameInfo.getStackSize(); 1050 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1051 OutStreamer->emitULEB128IntValue(StackSize); 1052 1053 OutStreamer->PopSection(); 1054 } 1055 1056 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1057 MachineModuleInfo *MMI) { 1058 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1059 return true; 1060 1061 // We might emit an EH table that uses function begin and end labels even if 1062 // we don't have any landingpads. 1063 if (!MF.getFunction().hasPersonalityFn()) 1064 return false; 1065 return !isNoOpWithoutInvoke( 1066 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1067 } 1068 1069 /// EmitFunctionBody - This method emits the body and trailer for a 1070 /// function. 1071 void AsmPrinter::emitFunctionBody() { 1072 emitFunctionHeader(); 1073 1074 // Emit target-specific gunk before the function body. 1075 emitFunctionBodyStart(); 1076 1077 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1078 1079 if (isVerbose()) { 1080 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1081 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1082 if (!MDT) { 1083 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1084 OwnedMDT->getBase().recalculate(*MF); 1085 MDT = OwnedMDT.get(); 1086 } 1087 1088 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1089 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1090 if (!MLI) { 1091 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1092 OwnedMLI->getBase().analyze(MDT->getBase()); 1093 MLI = OwnedMLI.get(); 1094 } 1095 } 1096 1097 // Print out code for the function. 1098 bool HasAnyRealCode = false; 1099 int NumInstsInFunction = 0; 1100 bool emitBBSections = MF->hasBBSections(); 1101 MachineBasicBlock *EndOfRegularSectionMBB = nullptr; 1102 if (emitBBSections) { 1103 EndOfRegularSectionMBB = 1104 const_cast<MachineBasicBlock *>(MF->front().getSectionEndMBB()); 1105 assert(EndOfRegularSectionMBB->isEndSection() && 1106 "The MBB at the end of the regular section must end a section"); 1107 } 1108 1109 for (auto &MBB : *MF) { 1110 // Print a label for the basic block. 1111 emitBasicBlockStart(MBB); 1112 for (auto &MI : MBB) { 1113 // Print the assembly for the instruction. 1114 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1115 !MI.isDebugInstr()) { 1116 HasAnyRealCode = true; 1117 ++NumInstsInFunction; 1118 } 1119 1120 // If there is a pre-instruction symbol, emit a label for it here. 1121 if (MCSymbol *S = MI.getPreInstrSymbol()) 1122 OutStreamer->emitLabel(S); 1123 1124 if (ShouldPrintDebugScopes) { 1125 for (const HandlerInfo &HI : Handlers) { 1126 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1127 HI.TimerGroupName, HI.TimerGroupDescription, 1128 TimePassesIsEnabled); 1129 HI.Handler->beginInstruction(&MI); 1130 } 1131 } 1132 1133 if (isVerbose()) 1134 emitComments(MI, OutStreamer->GetCommentOS()); 1135 1136 switch (MI.getOpcode()) { 1137 case TargetOpcode::CFI_INSTRUCTION: 1138 emitCFIInstruction(MI); 1139 break; 1140 case TargetOpcode::LOCAL_ESCAPE: 1141 emitFrameAlloc(MI); 1142 break; 1143 case TargetOpcode::ANNOTATION_LABEL: 1144 case TargetOpcode::EH_LABEL: 1145 case TargetOpcode::GC_LABEL: 1146 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1147 break; 1148 case TargetOpcode::INLINEASM: 1149 case TargetOpcode::INLINEASM_BR: 1150 emitInlineAsm(&MI); 1151 break; 1152 case TargetOpcode::DBG_VALUE: 1153 if (isVerbose()) { 1154 if (!emitDebugValueComment(&MI, *this)) 1155 emitInstruction(&MI); 1156 } 1157 break; 1158 case TargetOpcode::DBG_LABEL: 1159 if (isVerbose()) { 1160 if (!emitDebugLabelComment(&MI, *this)) 1161 emitInstruction(&MI); 1162 } 1163 break; 1164 case TargetOpcode::IMPLICIT_DEF: 1165 if (isVerbose()) emitImplicitDef(&MI); 1166 break; 1167 case TargetOpcode::KILL: 1168 if (isVerbose()) emitKill(&MI, *this); 1169 break; 1170 default: 1171 emitInstruction(&MI); 1172 break; 1173 } 1174 1175 // If there is a post-instruction symbol, emit a label for it here. 1176 if (MCSymbol *S = MI.getPostInstrSymbol()) 1177 OutStreamer->emitLabel(S); 1178 1179 if (ShouldPrintDebugScopes) { 1180 for (const HandlerInfo &HI : Handlers) { 1181 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1182 HI.TimerGroupName, HI.TimerGroupDescription, 1183 TimePassesIsEnabled); 1184 HI.Handler->endInstruction(); 1185 } 1186 } 1187 } 1188 if (&MBB != EndOfRegularSectionMBB && 1189 (MF->hasBBLabels() || MBB.isEndSection())) { 1190 // Emit size directive for the size of this basic block. Create a symbol 1191 // for the end of the basic block. 1192 MCSymbol *CurrentBBEnd = OutContext.createTempSymbol(); 1193 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1194 MCSymbolRefExpr::create(CurrentBBEnd, OutContext), 1195 MCSymbolRefExpr::create(MBB.getSymbol(), OutContext), OutContext); 1196 OutStreamer->emitLabel(CurrentBBEnd); 1197 MBB.setEndMCSymbol(CurrentBBEnd); 1198 OutStreamer->emitELFSize(MBB.getSymbol(), SizeExp); 1199 } 1200 emitBasicBlockEnd(MBB); 1201 } 1202 1203 EmittedInsts += NumInstsInFunction; 1204 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1205 MF->getFunction().getSubprogram(), 1206 &MF->front()); 1207 R << ore::NV("NumInstructions", NumInstsInFunction) 1208 << " instructions in function"; 1209 ORE->emit(R); 1210 1211 // If the function is empty and the object file uses .subsections_via_symbols, 1212 // then we need to emit *something* to the function body to prevent the 1213 // labels from collapsing together. Just emit a noop. 1214 // Similarly, don't emit empty functions on Windows either. It can lead to 1215 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1216 // after linking, causing the kernel not to load the binary: 1217 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1218 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1219 const Triple &TT = TM.getTargetTriple(); 1220 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1221 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1222 MCInst Noop; 1223 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1224 1225 // Targets can opt-out of emitting the noop here by leaving the opcode 1226 // unspecified. 1227 if (Noop.getOpcode()) { 1228 OutStreamer->AddComment("avoids zero-length function"); 1229 emitNops(1); 1230 } 1231 } 1232 1233 // Switch to the original section if basic block sections was used. 1234 if (emitBBSections) 1235 OutStreamer->SwitchSection(MF->getSection()); 1236 1237 const Function &F = MF->getFunction(); 1238 for (const auto &BB : F) { 1239 if (!BB.hasAddressTaken()) 1240 continue; 1241 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1242 if (Sym->isDefined()) 1243 continue; 1244 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1245 OutStreamer->emitLabel(Sym); 1246 } 1247 1248 // Emit target-specific gunk after the function body. 1249 emitFunctionBodyEnd(); 1250 1251 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1252 MAI->hasDotTypeDotSizeDirective() || emitBBSections) { 1253 // Create a symbol for the end of function. 1254 CurrentFnEnd = createTempSymbol("func_end"); 1255 OutStreamer->emitLabel(CurrentFnEnd); 1256 } 1257 1258 // If the target wants a .size directive for the size of the function, emit 1259 // it. 1260 if (MAI->hasDotTypeDotSizeDirective()) { 1261 // We can get the size as difference between the function label and the 1262 // temp label. 1263 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1264 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1265 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1266 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1267 } 1268 1269 for (const HandlerInfo &HI : Handlers) { 1270 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1271 HI.TimerGroupDescription, TimePassesIsEnabled); 1272 HI.Handler->markFunctionEnd(); 1273 } 1274 1275 if (emitBBSections) 1276 EndOfRegularSectionMBB->setEndMCSymbol(CurrentFnEnd); 1277 1278 // Print out jump tables referenced by the function. 1279 emitJumpTableInfo(); 1280 1281 // Emit post-function debug and/or EH information. 1282 for (const HandlerInfo &HI : Handlers) { 1283 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1284 HI.TimerGroupDescription, TimePassesIsEnabled); 1285 HI.Handler->endFunction(MF); 1286 } 1287 1288 // Emit section containing stack size metadata. 1289 emitStackSizeSection(*MF); 1290 1291 emitPatchableFunctionEntries(); 1292 1293 if (isVerbose()) 1294 OutStreamer->GetCommentOS() << "-- End function\n"; 1295 1296 OutStreamer->AddBlankLine(); 1297 } 1298 1299 /// Compute the number of Global Variables that uses a Constant. 1300 static unsigned getNumGlobalVariableUses(const Constant *C) { 1301 if (!C) 1302 return 0; 1303 1304 if (isa<GlobalVariable>(C)) 1305 return 1; 1306 1307 unsigned NumUses = 0; 1308 for (auto *CU : C->users()) 1309 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1310 1311 return NumUses; 1312 } 1313 1314 /// Only consider global GOT equivalents if at least one user is a 1315 /// cstexpr inside an initializer of another global variables. Also, don't 1316 /// handle cstexpr inside instructions. During global variable emission, 1317 /// candidates are skipped and are emitted later in case at least one cstexpr 1318 /// isn't replaced by a PC relative GOT entry access. 1319 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1320 unsigned &NumGOTEquivUsers) { 1321 // Global GOT equivalents are unnamed private globals with a constant 1322 // pointer initializer to another global symbol. They must point to a 1323 // GlobalVariable or Function, i.e., as GlobalValue. 1324 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1325 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1326 !isa<GlobalValue>(GV->getOperand(0))) 1327 return false; 1328 1329 // To be a got equivalent, at least one of its users need to be a constant 1330 // expression used by another global variable. 1331 for (auto *U : GV->users()) 1332 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1333 1334 return NumGOTEquivUsers > 0; 1335 } 1336 1337 /// Unnamed constant global variables solely contaning a pointer to 1338 /// another globals variable is equivalent to a GOT table entry; it contains the 1339 /// the address of another symbol. Optimize it and replace accesses to these 1340 /// "GOT equivalents" by using the GOT entry for the final global instead. 1341 /// Compute GOT equivalent candidates among all global variables to avoid 1342 /// emitting them if possible later on, after it use is replaced by a GOT entry 1343 /// access. 1344 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1345 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1346 return; 1347 1348 for (const auto &G : M.globals()) { 1349 unsigned NumGOTEquivUsers = 0; 1350 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1351 continue; 1352 1353 const MCSymbol *GOTEquivSym = getSymbol(&G); 1354 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1355 } 1356 } 1357 1358 /// Constant expressions using GOT equivalent globals may not be eligible 1359 /// for PC relative GOT entry conversion, in such cases we need to emit such 1360 /// globals we previously omitted in EmitGlobalVariable. 1361 void AsmPrinter::emitGlobalGOTEquivs() { 1362 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1363 return; 1364 1365 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1366 for (auto &I : GlobalGOTEquivs) { 1367 const GlobalVariable *GV = I.second.first; 1368 unsigned Cnt = I.second.second; 1369 if (Cnt) 1370 FailedCandidates.push_back(GV); 1371 } 1372 GlobalGOTEquivs.clear(); 1373 1374 for (auto *GV : FailedCandidates) 1375 emitGlobalVariable(GV); 1376 } 1377 1378 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1379 const GlobalIndirectSymbol& GIS) { 1380 MCSymbol *Name = getSymbol(&GIS); 1381 1382 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1383 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1384 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1385 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1386 else 1387 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1388 1389 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1390 1391 // Treat bitcasts of functions as functions also. This is important at least 1392 // on WebAssembly where object and function addresses can't alias each other. 1393 if (!IsFunction) 1394 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1395 if (CE->getOpcode() == Instruction::BitCast) 1396 IsFunction = 1397 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1398 1399 // Set the symbol type to function if the alias has a function type. 1400 // This affects codegen when the aliasee is not a function. 1401 if (IsFunction) 1402 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1403 ? MCSA_ELF_TypeIndFunction 1404 : MCSA_ELF_TypeFunction); 1405 1406 emitVisibility(Name, GIS.getVisibility()); 1407 1408 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1409 1410 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1411 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1412 1413 // Emit the directives as assignments aka .set: 1414 OutStreamer->emitAssignment(Name, Expr); 1415 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1416 if (LocalAlias != Name) 1417 OutStreamer->emitAssignment(LocalAlias, Expr); 1418 1419 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1420 // If the aliasee does not correspond to a symbol in the output, i.e. the 1421 // alias is not of an object or the aliased object is private, then set the 1422 // size of the alias symbol from the type of the alias. We don't do this in 1423 // other situations as the alias and aliasee having differing types but same 1424 // size may be intentional. 1425 const GlobalObject *BaseObject = GA->getBaseObject(); 1426 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1427 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1428 const DataLayout &DL = M.getDataLayout(); 1429 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1430 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1431 } 1432 } 1433 } 1434 1435 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1436 if (!RS.needsSection()) 1437 return; 1438 1439 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1440 1441 Optional<SmallString<128>> Filename; 1442 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1443 Filename = *FilenameRef; 1444 sys::fs::make_absolute(*Filename); 1445 assert(!Filename->empty() && "The filename can't be empty."); 1446 } 1447 1448 std::string Buf; 1449 raw_string_ostream OS(Buf); 1450 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1451 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1452 : RemarkSerializer.metaSerializer(OS); 1453 MetaSerializer->emit(); 1454 1455 // Switch to the remarks section. 1456 MCSection *RemarksSection = 1457 OutContext.getObjectFileInfo()->getRemarksSection(); 1458 OutStreamer->SwitchSection(RemarksSection); 1459 1460 OutStreamer->emitBinaryData(OS.str()); 1461 } 1462 1463 bool AsmPrinter::doFinalization(Module &M) { 1464 // Set the MachineFunction to nullptr so that we can catch attempted 1465 // accesses to MF specific features at the module level and so that 1466 // we can conditionalize accesses based on whether or not it is nullptr. 1467 MF = nullptr; 1468 1469 // Gather all GOT equivalent globals in the module. We really need two 1470 // passes over the globals: one to compute and another to avoid its emission 1471 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1472 // where the got equivalent shows up before its use. 1473 computeGlobalGOTEquivs(M); 1474 1475 // Emit global variables. 1476 for (const auto &G : M.globals()) 1477 emitGlobalVariable(&G); 1478 1479 // Emit remaining GOT equivalent globals. 1480 emitGlobalGOTEquivs(); 1481 1482 // Emit visibility info for declarations 1483 for (const Function &F : M) { 1484 if (!F.isDeclarationForLinker()) 1485 continue; 1486 GlobalValue::VisibilityTypes V = F.getVisibility(); 1487 if (V == GlobalValue::DefaultVisibility) 1488 continue; 1489 1490 MCSymbol *Name = getSymbol(&F); 1491 emitVisibility(Name, V, false); 1492 } 1493 1494 // Emit the remarks section contents. 1495 // FIXME: Figure out when is the safest time to emit this section. It should 1496 // not come after debug info. 1497 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1498 emitRemarksSection(*RS); 1499 1500 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1501 1502 TLOF.emitModuleMetadata(*OutStreamer, M); 1503 1504 if (TM.getTargetTriple().isOSBinFormatELF()) { 1505 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1506 1507 // Output stubs for external and common global variables. 1508 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1509 if (!Stubs.empty()) { 1510 OutStreamer->SwitchSection(TLOF.getDataSection()); 1511 const DataLayout &DL = M.getDataLayout(); 1512 1513 emitAlignment(Align(DL.getPointerSize())); 1514 for (const auto &Stub : Stubs) { 1515 OutStreamer->emitLabel(Stub.first); 1516 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1517 DL.getPointerSize()); 1518 } 1519 } 1520 } 1521 1522 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1523 MachineModuleInfoCOFF &MMICOFF = 1524 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1525 1526 // Output stubs for external and common global variables. 1527 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1528 if (!Stubs.empty()) { 1529 const DataLayout &DL = M.getDataLayout(); 1530 1531 for (const auto &Stub : Stubs) { 1532 SmallString<256> SectionName = StringRef(".rdata$"); 1533 SectionName += Stub.first->getName(); 1534 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1535 SectionName, 1536 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1537 COFF::IMAGE_SCN_LNK_COMDAT, 1538 SectionKind::getReadOnly(), Stub.first->getName(), 1539 COFF::IMAGE_COMDAT_SELECT_ANY)); 1540 emitAlignment(Align(DL.getPointerSize())); 1541 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1542 OutStreamer->emitLabel(Stub.first); 1543 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1544 DL.getPointerSize()); 1545 } 1546 } 1547 } 1548 1549 // Finalize debug and EH information. 1550 for (const HandlerInfo &HI : Handlers) { 1551 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1552 HI.TimerGroupDescription, TimePassesIsEnabled); 1553 HI.Handler->endModule(); 1554 } 1555 Handlers.clear(); 1556 DD = nullptr; 1557 1558 // If the target wants to know about weak references, print them all. 1559 if (MAI->getWeakRefDirective()) { 1560 // FIXME: This is not lazy, it would be nice to only print weak references 1561 // to stuff that is actually used. Note that doing so would require targets 1562 // to notice uses in operands (due to constant exprs etc). This should 1563 // happen with the MC stuff eventually. 1564 1565 // Print out module-level global objects here. 1566 for (const auto &GO : M.global_objects()) { 1567 if (!GO.hasExternalWeakLinkage()) 1568 continue; 1569 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1570 } 1571 } 1572 1573 // Print aliases in topological order, that is, for each alias a = b, 1574 // b must be printed before a. 1575 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1576 // such an order to generate correct TOC information. 1577 SmallVector<const GlobalAlias *, 16> AliasStack; 1578 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1579 for (const auto &Alias : M.aliases()) { 1580 for (const GlobalAlias *Cur = &Alias; Cur; 1581 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1582 if (!AliasVisited.insert(Cur).second) 1583 break; 1584 AliasStack.push_back(Cur); 1585 } 1586 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1587 emitGlobalIndirectSymbol(M, *AncestorAlias); 1588 AliasStack.clear(); 1589 } 1590 for (const auto &IFunc : M.ifuncs()) 1591 emitGlobalIndirectSymbol(M, IFunc); 1592 1593 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1594 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1595 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1596 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1597 MP->finishAssembly(M, *MI, *this); 1598 1599 // Emit llvm.ident metadata in an '.ident' directive. 1600 emitModuleIdents(M); 1601 1602 // Emit bytes for llvm.commandline metadata. 1603 emitModuleCommandLines(M); 1604 1605 // Emit __morestack address if needed for indirect calls. 1606 if (MMI->usesMorestackAddr()) { 1607 unsigned Align = 1; 1608 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1609 getDataLayout(), SectionKind::getReadOnly(), 1610 /*C=*/nullptr, Align); 1611 OutStreamer->SwitchSection(ReadOnlySection); 1612 1613 MCSymbol *AddrSymbol = 1614 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1615 OutStreamer->emitLabel(AddrSymbol); 1616 1617 unsigned PtrSize = MAI->getCodePointerSize(); 1618 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1619 PtrSize); 1620 } 1621 1622 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1623 // split-stack is used. 1624 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1625 OutStreamer->SwitchSection( 1626 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1627 if (MMI->hasNosplitStack()) 1628 OutStreamer->SwitchSection( 1629 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1630 } 1631 1632 // If we don't have any trampolines, then we don't require stack memory 1633 // to be executable. Some targets have a directive to declare this. 1634 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1635 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1636 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1637 OutStreamer->SwitchSection(S); 1638 1639 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1640 // Emit /EXPORT: flags for each exported global as necessary. 1641 const auto &TLOF = getObjFileLowering(); 1642 std::string Flags; 1643 1644 for (const GlobalValue &GV : M.global_values()) { 1645 raw_string_ostream OS(Flags); 1646 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1647 OS.flush(); 1648 if (!Flags.empty()) { 1649 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1650 OutStreamer->emitBytes(Flags); 1651 } 1652 Flags.clear(); 1653 } 1654 1655 // Emit /INCLUDE: flags for each used global as necessary. 1656 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1657 assert(LU->hasInitializer() && 1658 "expected llvm.used to have an initializer"); 1659 assert(isa<ArrayType>(LU->getValueType()) && 1660 "expected llvm.used to be an array type"); 1661 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1662 for (const Value *Op : A->operands()) { 1663 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1664 // Global symbols with internal or private linkage are not visible to 1665 // the linker, and thus would cause an error when the linker tried to 1666 // preserve the symbol due to the `/include:` directive. 1667 if (GV->hasLocalLinkage()) 1668 continue; 1669 1670 raw_string_ostream OS(Flags); 1671 TLOF.emitLinkerFlagsForUsed(OS, GV); 1672 OS.flush(); 1673 1674 if (!Flags.empty()) { 1675 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1676 OutStreamer->emitBytes(Flags); 1677 } 1678 Flags.clear(); 1679 } 1680 } 1681 } 1682 } 1683 1684 if (TM.Options.EmitAddrsig) { 1685 // Emit address-significance attributes for all globals. 1686 OutStreamer->emitAddrsig(); 1687 for (const GlobalValue &GV : M.global_values()) 1688 if (!GV.use_empty() && !GV.isThreadLocal() && 1689 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1690 !GV.hasAtLeastLocalUnnamedAddr()) 1691 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1692 } 1693 1694 // Emit symbol partition specifications (ELF only). 1695 if (TM.getTargetTriple().isOSBinFormatELF()) { 1696 unsigned UniqueID = 0; 1697 for (const GlobalValue &GV : M.global_values()) { 1698 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1699 GV.getVisibility() != GlobalValue::DefaultVisibility) 1700 continue; 1701 1702 OutStreamer->SwitchSection( 1703 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1704 "", ++UniqueID, nullptr)); 1705 OutStreamer->emitBytes(GV.getPartition()); 1706 OutStreamer->emitZeros(1); 1707 OutStreamer->emitValue( 1708 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1709 MAI->getCodePointerSize()); 1710 } 1711 } 1712 1713 // Allow the target to emit any magic that it wants at the end of the file, 1714 // after everything else has gone out. 1715 emitEndOfAsmFile(M); 1716 1717 MMI = nullptr; 1718 1719 OutStreamer->Finish(); 1720 OutStreamer->reset(); 1721 OwnedMLI.reset(); 1722 OwnedMDT.reset(); 1723 1724 return false; 1725 } 1726 1727 MCSymbol *AsmPrinter::getCurExceptionSym() { 1728 if (!CurExceptionSym) 1729 CurExceptionSym = createTempSymbol("exception"); 1730 return CurExceptionSym; 1731 } 1732 1733 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1734 this->MF = &MF; 1735 const Function &F = MF.getFunction(); 1736 1737 // Get the function symbol. 1738 if (!MAI->needsFunctionDescriptors()) { 1739 CurrentFnSym = getSymbol(&MF.getFunction()); 1740 } else { 1741 assert(TM.getTargetTriple().isOSAIX() && 1742 "Only AIX uses the function descriptor hooks."); 1743 // AIX is unique here in that the name of the symbol emitted for the 1744 // function body does not have the same name as the source function's 1745 // C-linkage name. 1746 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1747 " initalized first."); 1748 1749 // Get the function entry point symbol. 1750 CurrentFnSym = 1751 OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName()); 1752 1753 // Set the containing csect. 1754 MCSectionXCOFF *FnEntryPointSec = 1755 cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM)); 1756 cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec); 1757 } 1758 1759 CurrentFnSymForSize = CurrentFnSym; 1760 CurrentFnBegin = nullptr; 1761 CurExceptionSym = nullptr; 1762 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1763 if (F.hasFnAttribute("patchable-function-entry") || 1764 needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1765 MF.getTarget().Options.EmitStackSizeSection) { 1766 CurrentFnBegin = createTempSymbol("func_begin"); 1767 if (NeedsLocalForSize) 1768 CurrentFnSymForSize = CurrentFnBegin; 1769 } 1770 1771 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1772 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1773 MBFI = (PSI && PSI->hasProfileSummary()) ? 1774 // ORE conditionally computes MBFI. If available, use it, otherwise 1775 // request it. 1776 (ORE->getBFI() ? ORE->getBFI() : 1777 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()) : 1778 nullptr; 1779 } 1780 1781 namespace { 1782 1783 // Keep track the alignment, constpool entries per Section. 1784 struct SectionCPs { 1785 MCSection *S; 1786 unsigned Alignment; 1787 SmallVector<unsigned, 4> CPEs; 1788 1789 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1790 }; 1791 1792 } // end anonymous namespace 1793 1794 /// EmitConstantPool - Print to the current output stream assembly 1795 /// representations of the constants in the constant pool MCP. This is 1796 /// used to print out constants which have been "spilled to memory" by 1797 /// the code generator. 1798 void AsmPrinter::emitConstantPool() { 1799 const MachineConstantPool *MCP = MF->getConstantPool(); 1800 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1801 if (CP.empty()) return; 1802 1803 // Calculate sections for constant pool entries. We collect entries to go into 1804 // the same section together to reduce amount of section switch statements. 1805 SmallVector<SectionCPs, 4> CPSections; 1806 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1807 const MachineConstantPoolEntry &CPE = CP[i]; 1808 unsigned Align = CPE.getAlignment(); 1809 1810 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1811 1812 const Constant *C = nullptr; 1813 if (!CPE.isMachineConstantPoolEntry()) 1814 C = CPE.Val.ConstVal; 1815 1816 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1817 Kind, C, Align); 1818 1819 // The number of sections are small, just do a linear search from the 1820 // last section to the first. 1821 bool Found = false; 1822 unsigned SecIdx = CPSections.size(); 1823 while (SecIdx != 0) { 1824 if (CPSections[--SecIdx].S == S) { 1825 Found = true; 1826 break; 1827 } 1828 } 1829 if (!Found) { 1830 SecIdx = CPSections.size(); 1831 CPSections.push_back(SectionCPs(S, Align)); 1832 } 1833 1834 if (Align > CPSections[SecIdx].Alignment) 1835 CPSections[SecIdx].Alignment = Align; 1836 CPSections[SecIdx].CPEs.push_back(i); 1837 } 1838 1839 // Now print stuff into the calculated sections. 1840 const MCSection *CurSection = nullptr; 1841 unsigned Offset = 0; 1842 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1843 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1844 unsigned CPI = CPSections[i].CPEs[j]; 1845 MCSymbol *Sym = GetCPISymbol(CPI); 1846 if (!Sym->isUndefined()) 1847 continue; 1848 1849 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1850 cast<MCSymbolXCOFF>(Sym)->setContainingCsect( 1851 cast<MCSectionXCOFF>(CPSections[i].S)); 1852 } 1853 1854 if (CurSection != CPSections[i].S) { 1855 OutStreamer->SwitchSection(CPSections[i].S); 1856 emitAlignment(Align(CPSections[i].Alignment)); 1857 CurSection = CPSections[i].S; 1858 Offset = 0; 1859 } 1860 1861 MachineConstantPoolEntry CPE = CP[CPI]; 1862 1863 // Emit inter-object padding for alignment. 1864 unsigned AlignMask = CPE.getAlignment() - 1; 1865 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1866 OutStreamer->emitZeros(NewOffset - Offset); 1867 1868 Type *Ty = CPE.getType(); 1869 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1870 1871 OutStreamer->emitLabel(Sym); 1872 if (CPE.isMachineConstantPoolEntry()) 1873 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1874 else 1875 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1876 } 1877 } 1878 } 1879 1880 // Print assembly representations of the jump tables used by the current 1881 // function. 1882 void AsmPrinter::emitJumpTableInfo() { 1883 const DataLayout &DL = MF->getDataLayout(); 1884 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1885 if (!MJTI) return; 1886 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1887 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1888 if (JT.empty()) return; 1889 1890 // Pick the directive to use to print the jump table entries, and switch to 1891 // the appropriate section. 1892 const Function &F = MF->getFunction(); 1893 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1894 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1895 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1896 F); 1897 if (JTInDiffSection) { 1898 // Drop it in the readonly section. 1899 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1900 OutStreamer->SwitchSection(ReadOnlySection); 1901 } 1902 1903 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 1904 1905 // Jump tables in code sections are marked with a data_region directive 1906 // where that's supported. 1907 if (!JTInDiffSection) 1908 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 1909 1910 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1911 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1912 1913 // If this jump table was deleted, ignore it. 1914 if (JTBBs.empty()) continue; 1915 1916 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1917 /// emit a .set directive for each unique entry. 1918 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1919 MAI->doesSetDirectiveSuppressReloc()) { 1920 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1921 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1922 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1923 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1924 const MachineBasicBlock *MBB = JTBBs[ii]; 1925 if (!EmittedSets.insert(MBB).second) 1926 continue; 1927 1928 // .set LJTSet, LBB32-base 1929 const MCExpr *LHS = 1930 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1931 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1932 MCBinaryExpr::createSub(LHS, Base, 1933 OutContext)); 1934 } 1935 } 1936 1937 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1938 // before each jump table. The first label is never referenced, but tells 1939 // the assembler and linker the extents of the jump table object. The 1940 // second label is actually referenced by the code. 1941 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1942 // FIXME: This doesn't have to have any specific name, just any randomly 1943 // named and numbered local label started with 'l' would work. Simplify 1944 // GetJTISymbol. 1945 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 1946 1947 MCSymbol* JTISymbol = GetJTISymbol(JTI); 1948 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1949 cast<MCSymbolXCOFF>(JTISymbol)->setContainingCsect( 1950 cast<MCSectionXCOFF>(TLOF.getSectionForJumpTable(F, TM))); 1951 } 1952 OutStreamer->emitLabel(JTISymbol); 1953 1954 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1955 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1956 } 1957 if (!JTInDiffSection) 1958 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1959 } 1960 1961 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1962 /// current stream. 1963 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1964 const MachineBasicBlock *MBB, 1965 unsigned UID) const { 1966 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1967 const MCExpr *Value = nullptr; 1968 switch (MJTI->getEntryKind()) { 1969 case MachineJumpTableInfo::EK_Inline: 1970 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1971 case MachineJumpTableInfo::EK_Custom32: 1972 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1973 MJTI, MBB, UID, OutContext); 1974 break; 1975 case MachineJumpTableInfo::EK_BlockAddress: 1976 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1977 // .word LBB123 1978 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1979 break; 1980 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1981 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1982 // with a relocation as gp-relative, e.g.: 1983 // .gprel32 LBB123 1984 MCSymbol *MBBSym = MBB->getSymbol(); 1985 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1986 return; 1987 } 1988 1989 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1990 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1991 // with a relocation as gp-relative, e.g.: 1992 // .gpdword LBB123 1993 MCSymbol *MBBSym = MBB->getSymbol(); 1994 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1995 return; 1996 } 1997 1998 case MachineJumpTableInfo::EK_LabelDifference32: { 1999 // Each entry is the address of the block minus the address of the jump 2000 // table. This is used for PIC jump tables where gprel32 is not supported. 2001 // e.g.: 2002 // .word LBB123 - LJTI1_2 2003 // If the .set directive avoids relocations, this is emitted as: 2004 // .set L4_5_set_123, LBB123 - LJTI1_2 2005 // .word L4_5_set_123 2006 if (MAI->doesSetDirectiveSuppressReloc()) { 2007 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2008 OutContext); 2009 break; 2010 } 2011 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2012 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2013 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2014 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2015 break; 2016 } 2017 } 2018 2019 assert(Value && "Unknown entry kind!"); 2020 2021 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2022 OutStreamer->emitValue(Value, EntrySize); 2023 } 2024 2025 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2026 /// special global used by LLVM. If so, emit it and return true, otherwise 2027 /// do nothing and return false. 2028 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2029 if (GV->getName() == "llvm.used") { 2030 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2031 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2032 return true; 2033 } 2034 2035 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2036 if (GV->getSection() == "llvm.metadata" || 2037 GV->hasAvailableExternallyLinkage()) 2038 return true; 2039 2040 if (!GV->hasAppendingLinkage()) return false; 2041 2042 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2043 2044 if (GV->getName() == "llvm.global_ctors") { 2045 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2046 /* isCtor */ true); 2047 2048 return true; 2049 } 2050 2051 if (GV->getName() == "llvm.global_dtors") { 2052 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2053 /* isCtor */ false); 2054 2055 return true; 2056 } 2057 2058 report_fatal_error("unknown special variable"); 2059 } 2060 2061 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2062 /// global in the specified llvm.used list. 2063 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2064 // Should be an array of 'i8*'. 2065 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2066 const GlobalValue *GV = 2067 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2068 if (GV) 2069 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2070 } 2071 } 2072 2073 namespace { 2074 2075 struct Structor { 2076 int Priority = 0; 2077 Constant *Func = nullptr; 2078 GlobalValue *ComdatKey = nullptr; 2079 2080 Structor() = default; 2081 }; 2082 2083 } // end anonymous namespace 2084 2085 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2086 /// priority. 2087 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2088 bool isCtor) { 2089 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 2090 // init priority. 2091 if (!isa<ConstantArray>(List)) return; 2092 2093 // Sanity check the structors list. 2094 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 2095 if (!InitList) return; // Not an array! 2096 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 2097 if (!ETy || ETy->getNumElements() != 3 || 2098 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 2099 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 2100 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 2101 return; // Not (int, ptr, ptr). 2102 2103 // Gather the structors in a form that's convenient for sorting by priority. 2104 SmallVector<Structor, 8> Structors; 2105 for (Value *O : InitList->operands()) { 2106 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 2107 if (!CS) continue; // Malformed. 2108 if (CS->getOperand(1)->isNullValue()) 2109 break; // Found a null terminator, skip the rest. 2110 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2111 if (!Priority) continue; // Malformed. 2112 Structors.push_back(Structor()); 2113 Structor &S = Structors.back(); 2114 S.Priority = Priority->getLimitedValue(65535); 2115 S.Func = CS->getOperand(1); 2116 if (!CS->getOperand(2)->isNullValue()) 2117 S.ComdatKey = 2118 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2119 } 2120 2121 // Emit the function pointers in the target-specific order 2122 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2123 return L.Priority < R.Priority; 2124 }); 2125 const Align Align = DL.getPointerPrefAlignment(); 2126 for (Structor &S : Structors) { 2127 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2128 const MCSymbol *KeySym = nullptr; 2129 if (GlobalValue *GV = S.ComdatKey) { 2130 if (GV->isDeclarationForLinker()) 2131 // If the associated variable is not defined in this module 2132 // (it might be available_externally, or have been an 2133 // available_externally definition that was dropped by the 2134 // EliminateAvailableExternally pass), some other TU 2135 // will provide its dynamic initializer. 2136 continue; 2137 2138 KeySym = getSymbol(GV); 2139 } 2140 MCSection *OutputSection = 2141 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2142 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2143 OutStreamer->SwitchSection(OutputSection); 2144 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2145 emitAlignment(Align); 2146 emitXXStructor(DL, S.Func); 2147 } 2148 } 2149 2150 void AsmPrinter::emitModuleIdents(Module &M) { 2151 if (!MAI->hasIdentDirective()) 2152 return; 2153 2154 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2155 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2156 const MDNode *N = NMD->getOperand(i); 2157 assert(N->getNumOperands() == 1 && 2158 "llvm.ident metadata entry can have only one operand"); 2159 const MDString *S = cast<MDString>(N->getOperand(0)); 2160 OutStreamer->emitIdent(S->getString()); 2161 } 2162 } 2163 } 2164 2165 void AsmPrinter::emitModuleCommandLines(Module &M) { 2166 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2167 if (!CommandLine) 2168 return; 2169 2170 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2171 if (!NMD || !NMD->getNumOperands()) 2172 return; 2173 2174 OutStreamer->PushSection(); 2175 OutStreamer->SwitchSection(CommandLine); 2176 OutStreamer->emitZeros(1); 2177 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2178 const MDNode *N = NMD->getOperand(i); 2179 assert(N->getNumOperands() == 1 && 2180 "llvm.commandline metadata entry can have only one operand"); 2181 const MDString *S = cast<MDString>(N->getOperand(0)); 2182 OutStreamer->emitBytes(S->getString()); 2183 OutStreamer->emitZeros(1); 2184 } 2185 OutStreamer->PopSection(); 2186 } 2187 2188 //===--------------------------------------------------------------------===// 2189 // Emission and print routines 2190 // 2191 2192 /// Emit a byte directive and value. 2193 /// 2194 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2195 2196 /// Emit a short directive and value. 2197 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2198 2199 /// Emit a long directive and value. 2200 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2201 2202 /// Emit a long long directive and value. 2203 void AsmPrinter::emitInt64(uint64_t Value) const { 2204 OutStreamer->emitInt64(Value); 2205 } 2206 2207 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2208 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2209 /// .set if it avoids relocations. 2210 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2211 unsigned Size) const { 2212 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2213 } 2214 2215 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2216 /// where the size in bytes of the directive is specified by Size and Label 2217 /// specifies the label. This implicitly uses .set if it is available. 2218 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2219 unsigned Size, 2220 bool IsSectionRelative) const { 2221 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2222 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2223 if (Size > 4) 2224 OutStreamer->emitZeros(Size - 4); 2225 return; 2226 } 2227 2228 // Emit Label+Offset (or just Label if Offset is zero) 2229 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2230 if (Offset) 2231 Expr = MCBinaryExpr::createAdd( 2232 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2233 2234 OutStreamer->emitValue(Expr, Size); 2235 } 2236 2237 //===----------------------------------------------------------------------===// 2238 2239 // EmitAlignment - Emit an alignment directive to the specified power of 2240 // two boundary. If a global value is specified, and if that global has 2241 // an explicit alignment requested, it will override the alignment request 2242 // if required for correctness. 2243 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2244 if (GV) 2245 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2246 2247 if (Alignment == Align(1)) 2248 return; // 1-byte aligned: no need to emit alignment. 2249 2250 if (getCurrentSection()->getKind().isText()) 2251 OutStreamer->emitCodeAlignment(Alignment.value()); 2252 else 2253 OutStreamer->emitValueToAlignment(Alignment.value()); 2254 } 2255 2256 //===----------------------------------------------------------------------===// 2257 // Constant emission. 2258 //===----------------------------------------------------------------------===// 2259 2260 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2261 MCContext &Ctx = OutContext; 2262 2263 if (CV->isNullValue() || isa<UndefValue>(CV)) 2264 return MCConstantExpr::create(0, Ctx); 2265 2266 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2267 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2268 2269 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2270 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2271 2272 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2273 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2274 2275 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2276 if (!CE) { 2277 llvm_unreachable("Unknown constant value to lower!"); 2278 } 2279 2280 switch (CE->getOpcode()) { 2281 default: { 2282 // If the code isn't optimized, there may be outstanding folding 2283 // opportunities. Attempt to fold the expression using DataLayout as a 2284 // last resort before giving up. 2285 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2286 if (C != CE) 2287 return lowerConstant(C); 2288 2289 // Otherwise report the problem to the user. 2290 std::string S; 2291 raw_string_ostream OS(S); 2292 OS << "Unsupported expression in static initializer: "; 2293 CE->printAsOperand(OS, /*PrintType=*/false, 2294 !MF ? nullptr : MF->getFunction().getParent()); 2295 report_fatal_error(OS.str()); 2296 } 2297 case Instruction::GetElementPtr: { 2298 // Generate a symbolic expression for the byte address 2299 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2300 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2301 2302 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2303 if (!OffsetAI) 2304 return Base; 2305 2306 int64_t Offset = OffsetAI.getSExtValue(); 2307 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2308 Ctx); 2309 } 2310 2311 case Instruction::Trunc: 2312 // We emit the value and depend on the assembler to truncate the generated 2313 // expression properly. This is important for differences between 2314 // blockaddress labels. Since the two labels are in the same function, it 2315 // is reasonable to treat their delta as a 32-bit value. 2316 LLVM_FALLTHROUGH; 2317 case Instruction::BitCast: 2318 return lowerConstant(CE->getOperand(0)); 2319 2320 case Instruction::IntToPtr: { 2321 const DataLayout &DL = getDataLayout(); 2322 2323 // Handle casts to pointers by changing them into casts to the appropriate 2324 // integer type. This promotes constant folding and simplifies this code. 2325 Constant *Op = CE->getOperand(0); 2326 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2327 false/*ZExt*/); 2328 return lowerConstant(Op); 2329 } 2330 2331 case Instruction::PtrToInt: { 2332 const DataLayout &DL = getDataLayout(); 2333 2334 // Support only foldable casts to/from pointers that can be eliminated by 2335 // changing the pointer to the appropriately sized integer type. 2336 Constant *Op = CE->getOperand(0); 2337 Type *Ty = CE->getType(); 2338 2339 const MCExpr *OpExpr = lowerConstant(Op); 2340 2341 // We can emit the pointer value into this slot if the slot is an 2342 // integer slot equal to the size of the pointer. 2343 // 2344 // If the pointer is larger than the resultant integer, then 2345 // as with Trunc just depend on the assembler to truncate it. 2346 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2347 return OpExpr; 2348 2349 // Otherwise the pointer is smaller than the resultant integer, mask off 2350 // the high bits so we are sure to get a proper truncation if the input is 2351 // a constant expr. 2352 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2353 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2354 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2355 } 2356 2357 case Instruction::Sub: { 2358 GlobalValue *LHSGV; 2359 APInt LHSOffset; 2360 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2361 getDataLayout())) { 2362 GlobalValue *RHSGV; 2363 APInt RHSOffset; 2364 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2365 getDataLayout())) { 2366 const MCExpr *RelocExpr = 2367 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2368 if (!RelocExpr) 2369 RelocExpr = MCBinaryExpr::createSub( 2370 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2371 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2372 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2373 if (Addend != 0) 2374 RelocExpr = MCBinaryExpr::createAdd( 2375 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2376 return RelocExpr; 2377 } 2378 } 2379 } 2380 // else fallthrough 2381 LLVM_FALLTHROUGH; 2382 2383 // The MC library also has a right-shift operator, but it isn't consistently 2384 // signed or unsigned between different targets. 2385 case Instruction::Add: 2386 case Instruction::Mul: 2387 case Instruction::SDiv: 2388 case Instruction::SRem: 2389 case Instruction::Shl: 2390 case Instruction::And: 2391 case Instruction::Or: 2392 case Instruction::Xor: { 2393 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2394 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2395 switch (CE->getOpcode()) { 2396 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2397 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2398 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2399 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2400 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2401 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2402 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2403 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2404 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2405 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2406 } 2407 } 2408 } 2409 } 2410 2411 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2412 AsmPrinter &AP, 2413 const Constant *BaseCV = nullptr, 2414 uint64_t Offset = 0); 2415 2416 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2417 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2418 2419 /// isRepeatedByteSequence - Determine whether the given value is 2420 /// composed of a repeated sequence of identical bytes and return the 2421 /// byte value. If it is not a repeated sequence, return -1. 2422 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2423 StringRef Data = V->getRawDataValues(); 2424 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2425 char C = Data[0]; 2426 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2427 if (Data[i] != C) return -1; 2428 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2429 } 2430 2431 /// isRepeatedByteSequence - Determine whether the given value is 2432 /// composed of a repeated sequence of identical bytes and return the 2433 /// byte value. If it is not a repeated sequence, return -1. 2434 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2435 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2436 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2437 assert(Size % 8 == 0); 2438 2439 // Extend the element to take zero padding into account. 2440 APInt Value = CI->getValue().zextOrSelf(Size); 2441 if (!Value.isSplat(8)) 2442 return -1; 2443 2444 return Value.zextOrTrunc(8).getZExtValue(); 2445 } 2446 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2447 // Make sure all array elements are sequences of the same repeated 2448 // byte. 2449 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2450 Constant *Op0 = CA->getOperand(0); 2451 int Byte = isRepeatedByteSequence(Op0, DL); 2452 if (Byte == -1) 2453 return -1; 2454 2455 // All array elements must be equal. 2456 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2457 if (CA->getOperand(i) != Op0) 2458 return -1; 2459 return Byte; 2460 } 2461 2462 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2463 return isRepeatedByteSequence(CDS); 2464 2465 return -1; 2466 } 2467 2468 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2469 const ConstantDataSequential *CDS, 2470 AsmPrinter &AP) { 2471 // See if we can aggregate this into a .fill, if so, emit it as such. 2472 int Value = isRepeatedByteSequence(CDS, DL); 2473 if (Value != -1) { 2474 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2475 // Don't emit a 1-byte object as a .fill. 2476 if (Bytes > 1) 2477 return AP.OutStreamer->emitFill(Bytes, Value); 2478 } 2479 2480 // If this can be emitted with .ascii/.asciz, emit it as such. 2481 if (CDS->isString()) 2482 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2483 2484 // Otherwise, emit the values in successive locations. 2485 unsigned ElementByteSize = CDS->getElementByteSize(); 2486 if (isa<IntegerType>(CDS->getElementType())) { 2487 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2488 if (AP.isVerbose()) 2489 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2490 CDS->getElementAsInteger(i)); 2491 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2492 ElementByteSize); 2493 } 2494 } else { 2495 Type *ET = CDS->getElementType(); 2496 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2497 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2498 } 2499 2500 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2501 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2502 CDS->getNumElements(); 2503 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2504 if (unsigned Padding = Size - EmittedSize) 2505 AP.OutStreamer->emitZeros(Padding); 2506 } 2507 2508 static void emitGlobalConstantArray(const DataLayout &DL, 2509 const ConstantArray *CA, AsmPrinter &AP, 2510 const Constant *BaseCV, uint64_t Offset) { 2511 // See if we can aggregate some values. Make sure it can be 2512 // represented as a series of bytes of the constant value. 2513 int Value = isRepeatedByteSequence(CA, DL); 2514 2515 if (Value != -1) { 2516 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2517 AP.OutStreamer->emitFill(Bytes, Value); 2518 } 2519 else { 2520 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2521 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2522 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2523 } 2524 } 2525 } 2526 2527 static void emitGlobalConstantVector(const DataLayout &DL, 2528 const ConstantVector *CV, AsmPrinter &AP) { 2529 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2530 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2531 2532 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2533 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2534 CV->getType()->getNumElements(); 2535 if (unsigned Padding = Size - EmittedSize) 2536 AP.OutStreamer->emitZeros(Padding); 2537 } 2538 2539 static void emitGlobalConstantStruct(const DataLayout &DL, 2540 const ConstantStruct *CS, AsmPrinter &AP, 2541 const Constant *BaseCV, uint64_t Offset) { 2542 // Print the fields in successive locations. Pad to align if needed! 2543 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2544 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2545 uint64_t SizeSoFar = 0; 2546 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2547 const Constant *Field = CS->getOperand(i); 2548 2549 // Print the actual field value. 2550 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2551 2552 // Check if padding is needed and insert one or more 0s. 2553 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2554 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2555 - Layout->getElementOffset(i)) - FieldSize; 2556 SizeSoFar += FieldSize + PadSize; 2557 2558 // Insert padding - this may include padding to increase the size of the 2559 // current field up to the ABI size (if the struct is not packed) as well 2560 // as padding to ensure that the next field starts at the right offset. 2561 AP.OutStreamer->emitZeros(PadSize); 2562 } 2563 assert(SizeSoFar == Layout->getSizeInBytes() && 2564 "Layout of constant struct may be incorrect!"); 2565 } 2566 2567 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2568 assert(ET && "Unknown float type"); 2569 APInt API = APF.bitcastToAPInt(); 2570 2571 // First print a comment with what we think the original floating-point value 2572 // should have been. 2573 if (AP.isVerbose()) { 2574 SmallString<8> StrVal; 2575 APF.toString(StrVal); 2576 ET->print(AP.OutStreamer->GetCommentOS()); 2577 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2578 } 2579 2580 // Now iterate through the APInt chunks, emitting them in endian-correct 2581 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2582 // floats). 2583 unsigned NumBytes = API.getBitWidth() / 8; 2584 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2585 const uint64_t *p = API.getRawData(); 2586 2587 // PPC's long double has odd notions of endianness compared to how LLVM 2588 // handles it: p[0] goes first for *big* endian on PPC. 2589 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2590 int Chunk = API.getNumWords() - 1; 2591 2592 if (TrailingBytes) 2593 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2594 2595 for (; Chunk >= 0; --Chunk) 2596 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2597 } else { 2598 unsigned Chunk; 2599 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2600 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2601 2602 if (TrailingBytes) 2603 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2604 } 2605 2606 // Emit the tail padding for the long double. 2607 const DataLayout &DL = AP.getDataLayout(); 2608 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2609 } 2610 2611 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2612 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2613 } 2614 2615 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2616 const DataLayout &DL = AP.getDataLayout(); 2617 unsigned BitWidth = CI->getBitWidth(); 2618 2619 // Copy the value as we may massage the layout for constants whose bit width 2620 // is not a multiple of 64-bits. 2621 APInt Realigned(CI->getValue()); 2622 uint64_t ExtraBits = 0; 2623 unsigned ExtraBitsSize = BitWidth & 63; 2624 2625 if (ExtraBitsSize) { 2626 // The bit width of the data is not a multiple of 64-bits. 2627 // The extra bits are expected to be at the end of the chunk of the memory. 2628 // Little endian: 2629 // * Nothing to be done, just record the extra bits to emit. 2630 // Big endian: 2631 // * Record the extra bits to emit. 2632 // * Realign the raw data to emit the chunks of 64-bits. 2633 if (DL.isBigEndian()) { 2634 // Basically the structure of the raw data is a chunk of 64-bits cells: 2635 // 0 1 BitWidth / 64 2636 // [chunk1][chunk2] ... [chunkN]. 2637 // The most significant chunk is chunkN and it should be emitted first. 2638 // However, due to the alignment issue chunkN contains useless bits. 2639 // Realign the chunks so that they contain only useless information: 2640 // ExtraBits 0 1 (BitWidth / 64) - 1 2641 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2642 ExtraBits = Realigned.getRawData()[0] & 2643 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2644 Realigned.lshrInPlace(ExtraBitsSize); 2645 } else 2646 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2647 } 2648 2649 // We don't expect assemblers to support integer data directives 2650 // for more than 64 bits, so we emit the data in at most 64-bit 2651 // quantities at a time. 2652 const uint64_t *RawData = Realigned.getRawData(); 2653 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2654 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2655 AP.OutStreamer->emitIntValue(Val, 8); 2656 } 2657 2658 if (ExtraBitsSize) { 2659 // Emit the extra bits after the 64-bits chunks. 2660 2661 // Emit a directive that fills the expected size. 2662 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2663 Size -= (BitWidth / 64) * 8; 2664 assert(Size && Size * 8 >= ExtraBitsSize && 2665 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2666 == ExtraBits && "Directive too small for extra bits."); 2667 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2668 } 2669 } 2670 2671 /// Transform a not absolute MCExpr containing a reference to a GOT 2672 /// equivalent global, by a target specific GOT pc relative access to the 2673 /// final symbol. 2674 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2675 const Constant *BaseCst, 2676 uint64_t Offset) { 2677 // The global @foo below illustrates a global that uses a got equivalent. 2678 // 2679 // @bar = global i32 42 2680 // @gotequiv = private unnamed_addr constant i32* @bar 2681 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2682 // i64 ptrtoint (i32* @foo to i64)) 2683 // to i32) 2684 // 2685 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2686 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2687 // form: 2688 // 2689 // foo = cstexpr, where 2690 // cstexpr := <gotequiv> - "." + <cst> 2691 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2692 // 2693 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2694 // 2695 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2696 // gotpcrelcst := <offset from @foo base> + <cst> 2697 MCValue MV; 2698 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2699 return; 2700 const MCSymbolRefExpr *SymA = MV.getSymA(); 2701 if (!SymA) 2702 return; 2703 2704 // Check that GOT equivalent symbol is cached. 2705 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2706 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2707 return; 2708 2709 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2710 if (!BaseGV) 2711 return; 2712 2713 // Check for a valid base symbol 2714 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2715 const MCSymbolRefExpr *SymB = MV.getSymB(); 2716 2717 if (!SymB || BaseSym != &SymB->getSymbol()) 2718 return; 2719 2720 // Make sure to match: 2721 // 2722 // gotpcrelcst := <offset from @foo base> + <cst> 2723 // 2724 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2725 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2726 // if the target knows how to encode it. 2727 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2728 if (GOTPCRelCst < 0) 2729 return; 2730 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2731 return; 2732 2733 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2734 // 2735 // bar: 2736 // .long 42 2737 // gotequiv: 2738 // .quad bar 2739 // foo: 2740 // .long gotequiv - "." + <cst> 2741 // 2742 // is replaced by the target specific equivalent to: 2743 // 2744 // bar: 2745 // .long 42 2746 // foo: 2747 // .long bar@GOTPCREL+<gotpcrelcst> 2748 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2749 const GlobalVariable *GV = Result.first; 2750 int NumUses = (int)Result.second; 2751 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2752 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2753 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2754 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2755 2756 // Update GOT equivalent usage information 2757 --NumUses; 2758 if (NumUses >= 0) 2759 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2760 } 2761 2762 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2763 AsmPrinter &AP, const Constant *BaseCV, 2764 uint64_t Offset) { 2765 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2766 2767 // Globals with sub-elements such as combinations of arrays and structs 2768 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2769 // constant symbol base and the current position with BaseCV and Offset. 2770 if (!BaseCV && CV->hasOneUse()) 2771 BaseCV = dyn_cast<Constant>(CV->user_back()); 2772 2773 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2774 return AP.OutStreamer->emitZeros(Size); 2775 2776 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2777 switch (Size) { 2778 case 1: 2779 case 2: 2780 case 4: 2781 case 8: 2782 if (AP.isVerbose()) 2783 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2784 CI->getZExtValue()); 2785 AP.OutStreamer->emitIntValue(CI->getZExtValue(), Size); 2786 return; 2787 default: 2788 emitGlobalConstantLargeInt(CI, AP); 2789 return; 2790 } 2791 } 2792 2793 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2794 return emitGlobalConstantFP(CFP, AP); 2795 2796 if (isa<ConstantPointerNull>(CV)) { 2797 AP.OutStreamer->emitIntValue(0, Size); 2798 return; 2799 } 2800 2801 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2802 return emitGlobalConstantDataSequential(DL, CDS, AP); 2803 2804 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2805 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2806 2807 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2808 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2809 2810 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2811 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2812 // vectors). 2813 if (CE->getOpcode() == Instruction::BitCast) 2814 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2815 2816 if (Size > 8) { 2817 // If the constant expression's size is greater than 64-bits, then we have 2818 // to emit the value in chunks. Try to constant fold the value and emit it 2819 // that way. 2820 Constant *New = ConstantFoldConstant(CE, DL); 2821 if (New != CE) 2822 return emitGlobalConstantImpl(DL, New, AP); 2823 } 2824 } 2825 2826 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2827 return emitGlobalConstantVector(DL, V, AP); 2828 2829 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2830 // thread the streamer with EmitValue. 2831 const MCExpr *ME = AP.lowerConstant(CV); 2832 2833 // Since lowerConstant already folded and got rid of all IR pointer and 2834 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2835 // directly. 2836 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2837 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2838 2839 AP.OutStreamer->emitValue(ME, Size); 2840 } 2841 2842 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2843 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2844 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2845 if (Size) 2846 emitGlobalConstantImpl(DL, CV, *this); 2847 else if (MAI->hasSubsectionsViaSymbols()) { 2848 // If the global has zero size, emit a single byte so that two labels don't 2849 // look like they are at the same location. 2850 OutStreamer->emitIntValue(0, 1); 2851 } 2852 } 2853 2854 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2855 // Target doesn't support this yet! 2856 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2857 } 2858 2859 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2860 if (Offset > 0) 2861 OS << '+' << Offset; 2862 else if (Offset < 0) 2863 OS << Offset; 2864 } 2865 2866 void AsmPrinter::emitNops(unsigned N) { 2867 MCInst Nop; 2868 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2869 for (; N; --N) 2870 EmitToStreamer(*OutStreamer, Nop); 2871 } 2872 2873 //===----------------------------------------------------------------------===// 2874 // Symbol Lowering Routines. 2875 //===----------------------------------------------------------------------===// 2876 2877 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2878 return OutContext.createTempSymbol(Name, true); 2879 } 2880 2881 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2882 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2883 } 2884 2885 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2886 return MMI->getAddrLabelSymbol(BB); 2887 } 2888 2889 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2890 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2891 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2892 const MachineConstantPoolEntry &CPE = 2893 MF->getConstantPool()->getConstants()[CPID]; 2894 if (!CPE.isMachineConstantPoolEntry()) { 2895 const DataLayout &DL = MF->getDataLayout(); 2896 SectionKind Kind = CPE.getSectionKind(&DL); 2897 const Constant *C = CPE.Val.ConstVal; 2898 unsigned Align = CPE.Alignment; 2899 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2900 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2901 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2902 if (Sym->isUndefined()) 2903 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2904 return Sym; 2905 } 2906 } 2907 } 2908 } 2909 2910 const DataLayout &DL = getDataLayout(); 2911 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2912 "CPI" + Twine(getFunctionNumber()) + "_" + 2913 Twine(CPID)); 2914 } 2915 2916 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2917 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2918 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2919 } 2920 2921 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2922 /// FIXME: privatize to AsmPrinter. 2923 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2924 const DataLayout &DL = getDataLayout(); 2925 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2926 Twine(getFunctionNumber()) + "_" + 2927 Twine(UID) + "_set_" + Twine(MBBID)); 2928 } 2929 2930 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2931 StringRef Suffix) const { 2932 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2933 } 2934 2935 /// Return the MCSymbol for the specified ExternalSymbol. 2936 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2937 SmallString<60> NameStr; 2938 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2939 return OutContext.getOrCreateSymbol(NameStr); 2940 } 2941 2942 /// PrintParentLoopComment - Print comments about parent loops of this one. 2943 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2944 unsigned FunctionNumber) { 2945 if (!Loop) return; 2946 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2947 OS.indent(Loop->getLoopDepth()*2) 2948 << "Parent Loop BB" << FunctionNumber << "_" 2949 << Loop->getHeader()->getNumber() 2950 << " Depth=" << Loop->getLoopDepth() << '\n'; 2951 } 2952 2953 /// PrintChildLoopComment - Print comments about child loops within 2954 /// the loop for this basic block, with nesting. 2955 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2956 unsigned FunctionNumber) { 2957 // Add child loop information 2958 for (const MachineLoop *CL : *Loop) { 2959 OS.indent(CL->getLoopDepth()*2) 2960 << "Child Loop BB" << FunctionNumber << "_" 2961 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2962 << '\n'; 2963 PrintChildLoopComment(OS, CL, FunctionNumber); 2964 } 2965 } 2966 2967 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2968 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2969 const MachineLoopInfo *LI, 2970 const AsmPrinter &AP) { 2971 // Add loop depth information 2972 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2973 if (!Loop) return; 2974 2975 MachineBasicBlock *Header = Loop->getHeader(); 2976 assert(Header && "No header for loop"); 2977 2978 // If this block is not a loop header, just print out what is the loop header 2979 // and return. 2980 if (Header != &MBB) { 2981 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2982 Twine(AP.getFunctionNumber())+"_" + 2983 Twine(Loop->getHeader()->getNumber())+ 2984 " Depth="+Twine(Loop->getLoopDepth())); 2985 return; 2986 } 2987 2988 // Otherwise, it is a loop header. Print out information about child and 2989 // parent loops. 2990 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2991 2992 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2993 2994 OS << "=>"; 2995 OS.indent(Loop->getLoopDepth()*2-2); 2996 2997 OS << "This "; 2998 if (Loop->empty()) 2999 OS << "Inner "; 3000 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3001 3002 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3003 } 3004 3005 /// emitBasicBlockStart - This method prints the label for the specified 3006 /// MachineBasicBlock, an alignment (if present) and a comment describing 3007 /// it if appropriate. 3008 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3009 bool BBSections = MF->hasBBSections(); 3010 // End the previous funclet and start a new one. 3011 if (MBB.isEHFuncletEntry()) { 3012 for (const HandlerInfo &HI : Handlers) { 3013 HI.Handler->endFunclet(); 3014 HI.Handler->beginFunclet(MBB); 3015 } 3016 } 3017 3018 // Emit an alignment directive for this block, if needed. 3019 if (MBB.pred_empty() || !BBSections) { 3020 const Align Alignment = MBB.getAlignment(); 3021 if (Alignment != Align(1)) 3022 emitAlignment(Alignment); 3023 } 3024 3025 // If the block has its address taken, emit any labels that were used to 3026 // reference the block. It is possible that there is more than one label 3027 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3028 // the references were generated. 3029 if (MBB.hasAddressTaken()) { 3030 const BasicBlock *BB = MBB.getBasicBlock(); 3031 if (isVerbose()) 3032 OutStreamer->AddComment("Block address taken"); 3033 3034 // MBBs can have their address taken as part of CodeGen without having 3035 // their corresponding BB's address taken in IR 3036 if (BB->hasAddressTaken()) 3037 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3038 OutStreamer->emitLabel(Sym); 3039 } 3040 3041 // Print some verbose block comments. 3042 if (isVerbose()) { 3043 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3044 if (BB->hasName()) { 3045 BB->printAsOperand(OutStreamer->GetCommentOS(), 3046 /*PrintType=*/false, BB->getModule()); 3047 OutStreamer->GetCommentOS() << '\n'; 3048 } 3049 } 3050 3051 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3052 emitBasicBlockLoopComments(MBB, MLI, *this); 3053 } 3054 3055 bool emitBBLabels = BBSections || MF->hasBBLabels(); 3056 if (MBB.pred_empty() || 3057 (!emitBBLabels && isBlockOnlyReachableByFallthrough(&MBB) && 3058 !MBB.isEHFuncletEntry() && !MBB.hasLabelMustBeEmitted())) { 3059 if (isVerbose()) { 3060 // NOTE: Want this comment at start of line, don't emit with AddComment. 3061 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3062 false); 3063 } 3064 } else { 3065 if (isVerbose() && MBB.hasLabelMustBeEmitted()) { 3066 OutStreamer->AddComment("Label of block must be emitted"); 3067 } 3068 // With -fbasicblock-sections, a basic block can start a new section. 3069 if (MBB.getSectionType() == MachineBasicBlockSection::MBBS_Exception) { 3070 // Create the exception section for this function. 3071 OutStreamer->SwitchSection( 3072 getObjFileLowering().getNamedSectionForMachineBasicBlock( 3073 MF->getFunction(), MBB, TM, ".eh")); 3074 } else if (MBB.getSectionType() == MachineBasicBlockSection::MBBS_Cold) { 3075 // Create the cold section here. 3076 OutStreamer->SwitchSection( 3077 getObjFileLowering().getNamedSectionForMachineBasicBlock( 3078 MF->getFunction(), MBB, TM, ".unlikely")); 3079 } else if (MBB.isBeginSection() && MBB.isEndSection()) { 3080 OutStreamer->SwitchSection( 3081 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3082 MBB, TM)); 3083 } else if (BBSections) { 3084 OutStreamer->SwitchSection(MF->getSection()); 3085 } 3086 OutStreamer->emitLabel(MBB.getSymbol()); 3087 } 3088 } 3089 3090 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {} 3091 3092 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3093 bool IsDefinition) const { 3094 MCSymbolAttr Attr = MCSA_Invalid; 3095 3096 switch (Visibility) { 3097 default: break; 3098 case GlobalValue::HiddenVisibility: 3099 if (IsDefinition) 3100 Attr = MAI->getHiddenVisibilityAttr(); 3101 else 3102 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3103 break; 3104 case GlobalValue::ProtectedVisibility: 3105 Attr = MAI->getProtectedVisibilityAttr(); 3106 break; 3107 } 3108 3109 if (Attr != MCSA_Invalid) 3110 OutStreamer->emitSymbolAttribute(Sym, Attr); 3111 } 3112 3113 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3114 /// exactly one predecessor and the control transfer mechanism between 3115 /// the predecessor and this block is a fall-through. 3116 bool AsmPrinter:: 3117 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3118 // With BasicBlock Sections, no block is a fall through. 3119 if (MBB->isBeginSection()) 3120 return false; 3121 3122 // If this is a landing pad, it isn't a fall through. If it has no preds, 3123 // then nothing falls through to it. 3124 if (MBB->isEHPad() || MBB->pred_empty()) 3125 return false; 3126 3127 // If there isn't exactly one predecessor, it can't be a fall through. 3128 if (MBB->pred_size() > 1) 3129 return false; 3130 3131 // The predecessor has to be immediately before this block. 3132 MachineBasicBlock *Pred = *MBB->pred_begin(); 3133 if (!Pred->isLayoutSuccessor(MBB)) 3134 return false; 3135 3136 // If the block is completely empty, then it definitely does fall through. 3137 if (Pred->empty()) 3138 return true; 3139 3140 // Check the terminators in the previous blocks 3141 for (const auto &MI : Pred->terminators()) { 3142 // If it is not a simple branch, we are in a table somewhere. 3143 if (!MI.isBranch() || MI.isIndirectBranch()) 3144 return false; 3145 3146 // If we are the operands of one of the branches, this is not a fall 3147 // through. Note that targets with delay slots will usually bundle 3148 // terminators with the delay slot instruction. 3149 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3150 if (OP->isJTI()) 3151 return false; 3152 if (OP->isMBB() && OP->getMBB() == MBB) 3153 return false; 3154 } 3155 } 3156 3157 return true; 3158 } 3159 3160 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3161 if (!S.usesMetadata()) 3162 return nullptr; 3163 3164 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3165 gcp_map_type::iterator GCPI = GCMap.find(&S); 3166 if (GCPI != GCMap.end()) 3167 return GCPI->second.get(); 3168 3169 auto Name = S.getName(); 3170 3171 for (GCMetadataPrinterRegistry::iterator 3172 I = GCMetadataPrinterRegistry::begin(), 3173 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3174 if (Name == I->getName()) { 3175 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3176 GMP->S = &S; 3177 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3178 return IterBool.first->second.get(); 3179 } 3180 3181 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3182 } 3183 3184 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3185 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3186 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3187 bool NeedsDefault = false; 3188 if (MI->begin() == MI->end()) 3189 // No GC strategy, use the default format. 3190 NeedsDefault = true; 3191 else 3192 for (auto &I : *MI) { 3193 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3194 if (MP->emitStackMaps(SM, *this)) 3195 continue; 3196 // The strategy doesn't have printer or doesn't emit custom stack maps. 3197 // Use the default format. 3198 NeedsDefault = true; 3199 } 3200 3201 if (NeedsDefault) 3202 SM.serializeToStackMapSection(); 3203 } 3204 3205 /// Pin vtable to this file. 3206 AsmPrinterHandler::~AsmPrinterHandler() = default; 3207 3208 void AsmPrinterHandler::markFunctionEnd() {} 3209 3210 // In the binary's "xray_instr_map" section, an array of these function entries 3211 // describes each instrumentation point. When XRay patches your code, the index 3212 // into this table will be given to your handler as a patch point identifier. 3213 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3214 const MCSymbol *CurrentFnSym) const { 3215 Out->emitSymbolValue(Sled, Bytes); 3216 Out->emitSymbolValue(CurrentFnSym, Bytes); 3217 auto Kind8 = static_cast<uint8_t>(Kind); 3218 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3219 Out->emitBinaryData( 3220 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3221 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3222 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3223 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3224 Out->emitZeros(Padding); 3225 } 3226 3227 void AsmPrinter::emitXRayTable() { 3228 if (Sleds.empty()) 3229 return; 3230 3231 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3232 const Function &F = MF->getFunction(); 3233 MCSection *InstMap = nullptr; 3234 MCSection *FnSledIndex = nullptr; 3235 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3236 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3237 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3238 StringRef GroupName; 3239 if (F.hasComdat()) { 3240 Flags |= ELF::SHF_GROUP; 3241 GroupName = F.getComdat()->getName(); 3242 } 3243 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3244 Flags, 0, GroupName, 3245 MCSection::NonUniqueID, LinkedToSym); 3246 FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, 3247 Flags, 0, GroupName, 3248 MCSection::NonUniqueID, LinkedToSym); 3249 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3250 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3251 SectionKind::getReadOnlyWithRel()); 3252 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3253 SectionKind::getReadOnlyWithRel()); 3254 } else { 3255 llvm_unreachable("Unsupported target"); 3256 } 3257 3258 auto WordSizeBytes = MAI->getCodePointerSize(); 3259 3260 // Now we switch to the instrumentation map section. Because this is done 3261 // per-function, we are able to create an index entry that will represent the 3262 // range of sleds associated with a function. 3263 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3264 OutStreamer->SwitchSection(InstMap); 3265 OutStreamer->emitLabel(SledsStart); 3266 for (const auto &Sled : Sleds) 3267 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3268 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3269 OutStreamer->emitLabel(SledsEnd); 3270 3271 // We then emit a single entry in the index per function. We use the symbols 3272 // that bound the instrumentation map as the range for a specific function. 3273 // Each entry here will be 2 * word size aligned, as we're writing down two 3274 // pointers. This should work for both 32-bit and 64-bit platforms. 3275 OutStreamer->SwitchSection(FnSledIndex); 3276 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3277 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3278 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3279 OutStreamer->SwitchSection(PrevSection); 3280 Sleds.clear(); 3281 } 3282 3283 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3284 SledKind Kind, uint8_t Version) { 3285 const Function &F = MI.getMF()->getFunction(); 3286 auto Attr = F.getFnAttribute("function-instrument"); 3287 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3288 bool AlwaysInstrument = 3289 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3290 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3291 Kind = SledKind::LOG_ARGS_ENTER; 3292 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3293 AlwaysInstrument, &F, Version}); 3294 } 3295 3296 void AsmPrinter::emitPatchableFunctionEntries() { 3297 const Function &F = MF->getFunction(); 3298 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3299 (void)F.getFnAttribute("patchable-function-prefix") 3300 .getValueAsString() 3301 .getAsInteger(10, PatchableFunctionPrefix); 3302 (void)F.getFnAttribute("patchable-function-entry") 3303 .getValueAsString() 3304 .getAsInteger(10, PatchableFunctionEntry); 3305 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3306 return; 3307 const unsigned PointerSize = getPointerSize(); 3308 if (TM.getTargetTriple().isOSBinFormatELF()) { 3309 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3310 const MCSymbolELF *LinkedToSym = nullptr; 3311 StringRef GroupName; 3312 3313 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3314 // if we are using the integrated assembler. 3315 if (MAI->useIntegratedAssembler()) { 3316 Flags |= ELF::SHF_LINK_ORDER; 3317 if (F.hasComdat()) { 3318 Flags |= ELF::SHF_GROUP; 3319 GroupName = F.getComdat()->getName(); 3320 } 3321 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3322 } 3323 OutStreamer->SwitchSection(OutContext.getELFSection( 3324 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3325 MCSection::NonUniqueID, LinkedToSym)); 3326 emitAlignment(Align(PointerSize)); 3327 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3328 } 3329 } 3330 3331 uint16_t AsmPrinter::getDwarfVersion() const { 3332 return OutStreamer->getContext().getDwarfVersion(); 3333 } 3334 3335 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3336 OutStreamer->getContext().setDwarfVersion(Version); 3337 } 3338