1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/RemarkStreamer.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCStreamer.h"
95 #include "llvm/MC/MCSubtargetInfo.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/MC/MCSymbolELF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Remarks/RemarkFormat.h"
104 #include "llvm/Remarks/RemarkStringTable.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/ErrorHandling.h"
109 #include "llvm/Support/Format.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/Path.h"
112 #include "llvm/Support/TargetRegistry.h"
113 #include "llvm/Support/Timer.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include "llvm/Target/TargetLoweringObjectFile.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Target/TargetOptions.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cinttypes>
121 #include <cstdint>
122 #include <iterator>
123 #include <limits>
124 #include <memory>
125 #include <string>
126 #include <utility>
127 #include <vector>
128 
129 using namespace llvm;
130 
131 #define DEBUG_TYPE "asm-printer"
132 
133 static const char *const DWARFGroupName = "dwarf";
134 static const char *const DWARFGroupDescription = "DWARF Emission";
135 static const char *const DbgTimerName = "emit";
136 static const char *const DbgTimerDescription = "Debug Info Emission";
137 static const char *const EHTimerName = "write_exception";
138 static const char *const EHTimerDescription = "DWARF Exception Writer";
139 static const char *const CFGuardName = "Control Flow Guard";
140 static const char *const CFGuardDescription = "Control Flow Guard Tables";
141 static const char *const CodeViewLineTablesGroupName = "linetables";
142 static const char *const CodeViewLineTablesGroupDescription =
143   "CodeView Line Tables";
144 
145 STATISTIC(EmittedInsts, "Number of machine instrs printed");
146 
147 static cl::opt<bool> EnableRemarksSection(
148     "remarks-section",
149     cl::desc("Emit a section containing remark diagnostics metadata"),
150     cl::init(false));
151 
152 char AsmPrinter::ID = 0;
153 
154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
155 
156 static gcp_map_type &getGCMap(void *&P) {
157   if (!P)
158     P = new gcp_map_type();
159   return *(gcp_map_type*)P;
160 }
161 
162 /// getGVAlignment - Return the alignment to use for the specified global
163 /// value.  This rounds up to the preferred alignment if possible and legal.
164 llvm::Align AsmPrinter::getGVAlignment(const GlobalValue *GV,
165                                        const DataLayout &DL,
166                                        llvm::Align InAlign) {
167   llvm::Align Align;
168   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
169     Align = llvm::Align(DL.getPreferredAlignment(GVar));
170 
171   // If InAlign is specified, round it to it.
172   if (InAlign > Align)
173     Align = InAlign;
174 
175   // If the GV has a specified alignment, take it into account.
176   const llvm::MaybeAlign GVAlign(GV->getAlignment());
177   if (!GVAlign)
178     return Align;
179 
180   assert(GVAlign && "GVAlign must be set");
181 
182   // If the GVAlign is larger than NumBits, or if we are required to obey
183   // NumBits because the GV has an assigned section, obey it.
184   if (*GVAlign > Align || GV->hasSection())
185     Align = *GVAlign;
186   return Align;
187 }
188 
189 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
190     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
191       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
192   VerboseAsm = OutStreamer->isVerboseAsm();
193 }
194 
195 AsmPrinter::~AsmPrinter() {
196   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
197 
198   if (GCMetadataPrinters) {
199     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
200 
201     delete &GCMap;
202     GCMetadataPrinters = nullptr;
203   }
204 }
205 
206 bool AsmPrinter::isPositionIndependent() const {
207   return TM.isPositionIndependent();
208 }
209 
210 /// getFunctionNumber - Return a unique ID for the current function.
211 unsigned AsmPrinter::getFunctionNumber() const {
212   return MF->getFunctionNumber();
213 }
214 
215 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
216   return *TM.getObjFileLowering();
217 }
218 
219 const DataLayout &AsmPrinter::getDataLayout() const {
220   return MMI->getModule()->getDataLayout();
221 }
222 
223 // Do not use the cached DataLayout because some client use it without a Module
224 // (dsymutil, llvm-dwarfdump).
225 unsigned AsmPrinter::getPointerSize() const {
226   return TM.getPointerSize(0); // FIXME: Default address space
227 }
228 
229 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
230   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
231   return MF->getSubtarget<MCSubtargetInfo>();
232 }
233 
234 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
235   S.EmitInstruction(Inst, getSubtargetInfo());
236 }
237 
238 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
239   assert(DD && "Dwarf debug file is not defined.");
240   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
241   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
242 }
243 
244 /// getCurrentSection() - Return the current section we are emitting to.
245 const MCSection *AsmPrinter::getCurrentSection() const {
246   return OutStreamer->getCurrentSectionOnly();
247 }
248 
249 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
250   AU.setPreservesAll();
251   MachineFunctionPass::getAnalysisUsage(AU);
252   AU.addRequired<MachineModuleInfo>();
253   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
254   AU.addRequired<GCModuleInfo>();
255 }
256 
257 bool AsmPrinter::doInitialization(Module &M) {
258   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
259 
260   // Initialize TargetLoweringObjectFile.
261   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
262     .Initialize(OutContext, TM);
263 
264   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
265       .getModuleMetadata(M);
266 
267   OutStreamer->InitSections(false);
268 
269   // Emit the version-min deployment target directive if needed.
270   //
271   // FIXME: If we end up with a collection of these sorts of Darwin-specific
272   // or ELF-specific things, it may make sense to have a platform helper class
273   // that will work with the target helper class. For now keep it here, as the
274   // alternative is duplicated code in each of the target asm printers that
275   // use the directive, where it would need the same conditionalization
276   // anyway.
277   const Triple &Target = TM.getTargetTriple();
278   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
279 
280   // Allow the target to emit any magic that it wants at the start of the file.
281   EmitStartOfAsmFile(M);
282 
283   // Very minimal debug info. It is ignored if we emit actual debug info. If we
284   // don't, this at least helps the user find where a global came from.
285   if (MAI->hasSingleParameterDotFile()) {
286     // .file "foo.c"
287     OutStreamer->EmitFileDirective(
288         llvm::sys::path::filename(M.getSourceFileName()));
289   }
290 
291   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
292   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
293   for (auto &I : *MI)
294     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
295       MP->beginAssembly(M, *MI, *this);
296 
297   // Emit module-level inline asm if it exists.
298   if (!M.getModuleInlineAsm().empty()) {
299     // We're at the module level. Construct MCSubtarget from the default CPU
300     // and target triple.
301     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
302         TM.getTargetTriple().str(), TM.getTargetCPU(),
303         TM.getTargetFeatureString()));
304     OutStreamer->AddComment("Start of file scope inline assembly");
305     OutStreamer->AddBlankLine();
306     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
307                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
308     OutStreamer->AddComment("End of file scope inline assembly");
309     OutStreamer->AddBlankLine();
310   }
311 
312   if (MAI->doesSupportDebugInformation()) {
313     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
314     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
315       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
316                             DbgTimerName, DbgTimerDescription,
317                             CodeViewLineTablesGroupName,
318                             CodeViewLineTablesGroupDescription);
319     }
320     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
321       DD = new DwarfDebug(this, &M);
322       DD->beginModule();
323       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
324                             DbgTimerDescription, DWARFGroupName,
325                             DWARFGroupDescription);
326     }
327   }
328 
329   switch (MAI->getExceptionHandlingType()) {
330   case ExceptionHandling::SjLj:
331   case ExceptionHandling::DwarfCFI:
332   case ExceptionHandling::ARM:
333     isCFIMoveForDebugging = true;
334     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
335       break;
336     for (auto &F: M.getFunctionList()) {
337       // If the module contains any function with unwind data,
338       // .eh_frame has to be emitted.
339       // Ignore functions that won't get emitted.
340       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
341         isCFIMoveForDebugging = false;
342         break;
343       }
344     }
345     break;
346   default:
347     isCFIMoveForDebugging = false;
348     break;
349   }
350 
351   EHStreamer *ES = nullptr;
352   switch (MAI->getExceptionHandlingType()) {
353   case ExceptionHandling::None:
354     break;
355   case ExceptionHandling::SjLj:
356   case ExceptionHandling::DwarfCFI:
357     ES = new DwarfCFIException(this);
358     break;
359   case ExceptionHandling::ARM:
360     ES = new ARMException(this);
361     break;
362   case ExceptionHandling::WinEH:
363     switch (MAI->getWinEHEncodingType()) {
364     default: llvm_unreachable("unsupported unwinding information encoding");
365     case WinEH::EncodingType::Invalid:
366       break;
367     case WinEH::EncodingType::X86:
368     case WinEH::EncodingType::Itanium:
369       ES = new WinException(this);
370       break;
371     }
372     break;
373   case ExceptionHandling::Wasm:
374     ES = new WasmException(this);
375     break;
376   }
377   if (ES)
378     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
379                           EHTimerDescription, DWARFGroupName,
380                           DWARFGroupDescription);
381 
382   if (mdconst::extract_or_null<ConstantInt>(
383           MMI->getModule()->getModuleFlag("cfguardtable")))
384     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
385                           CFGuardDescription, DWARFGroupName,
386                           DWARFGroupDescription);
387 
388   return false;
389 }
390 
391 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
392   if (!MAI.hasWeakDefCanBeHiddenDirective())
393     return false;
394 
395   return GV->canBeOmittedFromSymbolTable();
396 }
397 
398 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
399   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
400   switch (Linkage) {
401   case GlobalValue::CommonLinkage:
402   case GlobalValue::LinkOnceAnyLinkage:
403   case GlobalValue::LinkOnceODRLinkage:
404   case GlobalValue::WeakAnyLinkage:
405   case GlobalValue::WeakODRLinkage:
406     if (MAI->hasWeakDefDirective()) {
407       // .globl _foo
408       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
409 
410       if (!canBeHidden(GV, *MAI))
411         // .weak_definition _foo
412         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
413       else
414         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
415     } else if (MAI->hasLinkOnceDirective()) {
416       // .globl _foo
417       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
418       //NOTE: linkonce is handled by the section the symbol was assigned to.
419     } else {
420       // .weak _foo
421       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
422     }
423     return;
424   case GlobalValue::ExternalLinkage:
425     // If external, declare as a global symbol: .globl _foo
426     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
427     return;
428   case GlobalValue::PrivateLinkage:
429   case GlobalValue::InternalLinkage:
430     return;
431   case GlobalValue::AppendingLinkage:
432   case GlobalValue::AvailableExternallyLinkage:
433   case GlobalValue::ExternalWeakLinkage:
434     llvm_unreachable("Should never emit this");
435   }
436   llvm_unreachable("Unknown linkage type!");
437 }
438 
439 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
440                                    const GlobalValue *GV) const {
441   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
442 }
443 
444 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
445   return TM.getSymbol(GV);
446 }
447 
448 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
449 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
450   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
451   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
452          "No emulated TLS variables in the common section");
453 
454   // Never emit TLS variable xyz in emulated TLS model.
455   // The initialization value is in __emutls_t.xyz instead of xyz.
456   if (IsEmuTLSVar)
457     return;
458 
459   if (GV->hasInitializer()) {
460     // Check to see if this is a special global used by LLVM, if so, emit it.
461     if (EmitSpecialLLVMGlobal(GV))
462       return;
463 
464     // Skip the emission of global equivalents. The symbol can be emitted later
465     // on by emitGlobalGOTEquivs in case it turns out to be needed.
466     if (GlobalGOTEquivs.count(getSymbol(GV)))
467       return;
468 
469     if (isVerbose()) {
470       // When printing the control variable __emutls_v.*,
471       // we don't need to print the original TLS variable name.
472       GV->printAsOperand(OutStreamer->GetCommentOS(),
473                      /*PrintType=*/false, GV->getParent());
474       OutStreamer->GetCommentOS() << '\n';
475     }
476   }
477 
478   MCSymbol *GVSym = getSymbol(GV);
479   MCSymbol *EmittedSym = GVSym;
480 
481   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
482   // attributes.
483   // GV's or GVSym's attributes will be used for the EmittedSym.
484   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
485 
486   if (!GV->hasInitializer())   // External globals require no extra code.
487     return;
488 
489   GVSym->redefineIfPossible();
490   if (GVSym->isDefined() || GVSym->isVariable())
491     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
492                        "' is already defined");
493 
494   if (MAI->hasDotTypeDotSizeDirective())
495     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
496 
497   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
498 
499   const DataLayout &DL = GV->getParent()->getDataLayout();
500   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
501 
502   // If the alignment is specified, we *must* obey it.  Overaligning a global
503   // with a specified alignment is a prompt way to break globals emitted to
504   // sections and expected to be contiguous (e.g. ObjC metadata).
505   const llvm::Align Align = getGVAlignment(GV, DL);
506 
507   for (const HandlerInfo &HI : Handlers) {
508     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
509                        HI.TimerGroupName, HI.TimerGroupDescription,
510                        TimePassesIsEnabled);
511     HI.Handler->setSymbolSize(GVSym, Size);
512   }
513 
514   // Handle common symbols
515   if (GVKind.isCommon()) {
516     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
517     // .comm _foo, 42, 4
518     const bool SupportsAlignment =
519         getObjFileLowering().getCommDirectiveSupportsAlignment();
520     OutStreamer->EmitCommonSymbol(GVSym, Size,
521                                   SupportsAlignment ? Align.value() : 0);
522     return;
523   }
524 
525   // Determine to which section this global should be emitted.
526   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
527 
528   // If we have a bss global going to a section that supports the
529   // zerofill directive, do so here.
530   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
531       TheSection->isVirtualSection()) {
532     if (Size == 0)
533       Size = 1; // zerofill of 0 bytes is undefined.
534     EmitLinkage(GV, GVSym);
535     // .zerofill __DATA, __bss, _foo, 400, 5
536     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align.value());
537     return;
538   }
539 
540   // If this is a BSS local symbol and we are emitting in the BSS
541   // section use .lcomm/.comm directive.
542   if (GVKind.isBSSLocal() &&
543       getObjFileLowering().getBSSSection() == TheSection) {
544     if (Size == 0)
545       Size = 1; // .comm Foo, 0 is undefined, avoid it.
546 
547     // Use .lcomm only if it supports user-specified alignment.
548     // Otherwise, while it would still be correct to use .lcomm in some
549     // cases (e.g. when Align == 1), the external assembler might enfore
550     // some -unknown- default alignment behavior, which could cause
551     // spurious differences between external and integrated assembler.
552     // Prefer to simply fall back to .local / .comm in this case.
553     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
554       // .lcomm _foo, 42
555       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align.value());
556       return;
557     }
558 
559     // .local _foo
560     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
561     // .comm _foo, 42, 4
562     const bool SupportsAlignment =
563         getObjFileLowering().getCommDirectiveSupportsAlignment();
564     OutStreamer->EmitCommonSymbol(GVSym, Size,
565                                   SupportsAlignment ? Align.value() : 0);
566     return;
567   }
568 
569   // Handle thread local data for mach-o which requires us to output an
570   // additional structure of data and mangle the original symbol so that we
571   // can reference it later.
572   //
573   // TODO: This should become an "emit thread local global" method on TLOF.
574   // All of this macho specific stuff should be sunk down into TLOFMachO and
575   // stuff like "TLSExtraDataSection" should no longer be part of the parent
576   // TLOF class.  This will also make it more obvious that stuff like
577   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
578   // specific code.
579   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
580     // Emit the .tbss symbol
581     MCSymbol *MangSym =
582         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
583 
584     if (GVKind.isThreadBSS()) {
585       TheSection = getObjFileLowering().getTLSBSSSection();
586       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Align.value());
587     } else if (GVKind.isThreadData()) {
588       OutStreamer->SwitchSection(TheSection);
589 
590       EmitAlignment(Align, GV);
591       OutStreamer->EmitLabel(MangSym);
592 
593       EmitGlobalConstant(GV->getParent()->getDataLayout(),
594                          GV->getInitializer());
595     }
596 
597     OutStreamer->AddBlankLine();
598 
599     // Emit the variable struct for the runtime.
600     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
601 
602     OutStreamer->SwitchSection(TLVSect);
603     // Emit the linkage here.
604     EmitLinkage(GV, GVSym);
605     OutStreamer->EmitLabel(GVSym);
606 
607     // Three pointers in size:
608     //   - __tlv_bootstrap - used to make sure support exists
609     //   - spare pointer, used when mapped by the runtime
610     //   - pointer to mangled symbol above with initializer
611     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
612     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
613                                 PtrSize);
614     OutStreamer->EmitIntValue(0, PtrSize);
615     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
616 
617     OutStreamer->AddBlankLine();
618     return;
619   }
620 
621   MCSymbol *EmittedInitSym = GVSym;
622 
623   OutStreamer->SwitchSection(TheSection);
624 
625   EmitLinkage(GV, EmittedInitSym);
626   EmitAlignment(Align, GV);
627 
628   OutStreamer->EmitLabel(EmittedInitSym);
629 
630   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
631 
632   if (MAI->hasDotTypeDotSizeDirective())
633     // .size foo, 42
634     OutStreamer->emitELFSize(EmittedInitSym,
635                              MCConstantExpr::create(Size, OutContext));
636 
637   OutStreamer->AddBlankLine();
638 }
639 
640 /// Emit the directive and value for debug thread local expression
641 ///
642 /// \p Value - The value to emit.
643 /// \p Size - The size of the integer (in bytes) to emit.
644 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
645   OutStreamer->EmitValue(Value, Size);
646 }
647 
648 /// EmitFunctionHeader - This method emits the header for the current
649 /// function.
650 void AsmPrinter::EmitFunctionHeader() {
651   const Function &F = MF->getFunction();
652 
653   if (isVerbose())
654     OutStreamer->GetCommentOS()
655         << "-- Begin function "
656         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
657 
658   // Print out constants referenced by the function
659   EmitConstantPool();
660 
661   // Print the 'header' of function.
662   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
663   EmitVisibility(CurrentFnSym, F.getVisibility());
664 
665   EmitLinkage(&F, CurrentFnSym);
666   if (MAI->hasFunctionAlignment())
667     EmitAlignment(MF->getAlignment(), &F);
668 
669   if (MAI->hasDotTypeDotSizeDirective())
670     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
671 
672   if (F.hasFnAttribute(Attribute::Cold))
673     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
674 
675   if (isVerbose()) {
676     F.printAsOperand(OutStreamer->GetCommentOS(),
677                    /*PrintType=*/false, F.getParent());
678     OutStreamer->GetCommentOS() << '\n';
679   }
680 
681   // Emit the prefix data.
682   if (F.hasPrefixData()) {
683     if (MAI->hasSubsectionsViaSymbols()) {
684       // Preserving prefix data on platforms which use subsections-via-symbols
685       // is a bit tricky. Here we introduce a symbol for the prefix data
686       // and use the .alt_entry attribute to mark the function's real entry point
687       // as an alternative entry point to the prefix-data symbol.
688       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
689       OutStreamer->EmitLabel(PrefixSym);
690 
691       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
692 
693       // Emit an .alt_entry directive for the actual function symbol.
694       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
695     } else {
696       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
697     }
698   }
699 
700   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
701   // do their wild and crazy things as required.
702   EmitFunctionEntryLabel();
703 
704   // If the function had address-taken blocks that got deleted, then we have
705   // references to the dangling symbols.  Emit them at the start of the function
706   // so that we don't get references to undefined symbols.
707   std::vector<MCSymbol*> DeadBlockSyms;
708   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
709   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
710     OutStreamer->AddComment("Address taken block that was later removed");
711     OutStreamer->EmitLabel(DeadBlockSyms[i]);
712   }
713 
714   if (CurrentFnBegin) {
715     if (MAI->useAssignmentForEHBegin()) {
716       MCSymbol *CurPos = OutContext.createTempSymbol();
717       OutStreamer->EmitLabel(CurPos);
718       OutStreamer->EmitAssignment(CurrentFnBegin,
719                                  MCSymbolRefExpr::create(CurPos, OutContext));
720     } else {
721       OutStreamer->EmitLabel(CurrentFnBegin);
722     }
723   }
724 
725   // Emit pre-function debug and/or EH information.
726   for (const HandlerInfo &HI : Handlers) {
727     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
728                        HI.TimerGroupDescription, TimePassesIsEnabled);
729     HI.Handler->beginFunction(MF);
730   }
731 
732   // Emit the prologue data.
733   if (F.hasPrologueData())
734     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
735 }
736 
737 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
738 /// function.  This can be overridden by targets as required to do custom stuff.
739 void AsmPrinter::EmitFunctionEntryLabel() {
740   CurrentFnSym->redefineIfPossible();
741 
742   // The function label could have already been emitted if two symbols end up
743   // conflicting due to asm renaming.  Detect this and emit an error.
744   if (CurrentFnSym->isVariable())
745     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
746                        "' is a protected alias");
747   if (CurrentFnSym->isDefined())
748     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
749                        "' label emitted multiple times to assembly file");
750 
751   return OutStreamer->EmitLabel(CurrentFnSym);
752 }
753 
754 /// emitComments - Pretty-print comments for instructions.
755 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
756   const MachineFunction *MF = MI.getMF();
757   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
758 
759   // Check for spills and reloads
760 
761   // We assume a single instruction only has a spill or reload, not
762   // both.
763   Optional<unsigned> Size;
764   if ((Size = MI.getRestoreSize(TII))) {
765     CommentOS << *Size << "-byte Reload\n";
766   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
767     if (*Size)
768       CommentOS << *Size << "-byte Folded Reload\n";
769   } else if ((Size = MI.getSpillSize(TII))) {
770     CommentOS << *Size << "-byte Spill\n";
771   } else if ((Size = MI.getFoldedSpillSize(TII))) {
772     if (*Size)
773       CommentOS << *Size << "-byte Folded Spill\n";
774   }
775 
776   // Check for spill-induced copies
777   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
778     CommentOS << " Reload Reuse\n";
779 }
780 
781 /// emitImplicitDef - This method emits the specified machine instruction
782 /// that is an implicit def.
783 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
784   Register RegNo = MI->getOperand(0).getReg();
785 
786   SmallString<128> Str;
787   raw_svector_ostream OS(Str);
788   OS << "implicit-def: "
789      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
790 
791   OutStreamer->AddComment(OS.str());
792   OutStreamer->AddBlankLine();
793 }
794 
795 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
796   std::string Str;
797   raw_string_ostream OS(Str);
798   OS << "kill:";
799   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
800     const MachineOperand &Op = MI->getOperand(i);
801     assert(Op.isReg() && "KILL instruction must have only register operands");
802     OS << ' ' << (Op.isDef() ? "def " : "killed ")
803        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
804   }
805   AP.OutStreamer->AddComment(OS.str());
806   AP.OutStreamer->AddBlankLine();
807 }
808 
809 /// emitDebugValueComment - This method handles the target-independent form
810 /// of DBG_VALUE, returning true if it was able to do so.  A false return
811 /// means the target will need to handle MI in EmitInstruction.
812 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
813   // This code handles only the 4-operand target-independent form.
814   if (MI->getNumOperands() != 4)
815     return false;
816 
817   SmallString<128> Str;
818   raw_svector_ostream OS(Str);
819   OS << "DEBUG_VALUE: ";
820 
821   const DILocalVariable *V = MI->getDebugVariable();
822   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
823     StringRef Name = SP->getName();
824     if (!Name.empty())
825       OS << Name << ":";
826   }
827   OS << V->getName();
828   OS << " <- ";
829 
830   // The second operand is only an offset if it's an immediate.
831   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
832   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
833   const DIExpression *Expr = MI->getDebugExpression();
834   if (Expr->getNumElements()) {
835     OS << '[';
836     bool NeedSep = false;
837     for (auto Op : Expr->expr_ops()) {
838       if (NeedSep)
839         OS << ", ";
840       else
841         NeedSep = true;
842       OS << dwarf::OperationEncodingString(Op.getOp());
843       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
844         OS << ' ' << Op.getArg(I);
845     }
846     OS << "] ";
847   }
848 
849   // Register or immediate value. Register 0 means undef.
850   if (MI->getOperand(0).isFPImm()) {
851     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
852     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
853       OS << (double)APF.convertToFloat();
854     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
855       OS << APF.convertToDouble();
856     } else {
857       // There is no good way to print long double.  Convert a copy to
858       // double.  Ah well, it's only a comment.
859       bool ignored;
860       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
861                   &ignored);
862       OS << "(long double) " << APF.convertToDouble();
863     }
864   } else if (MI->getOperand(0).isImm()) {
865     OS << MI->getOperand(0).getImm();
866   } else if (MI->getOperand(0).isCImm()) {
867     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
868   } else {
869     unsigned Reg;
870     if (MI->getOperand(0).isReg()) {
871       Reg = MI->getOperand(0).getReg();
872     } else {
873       assert(MI->getOperand(0).isFI() && "Unknown operand type");
874       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
875       Offset += TFI->getFrameIndexReference(*AP.MF,
876                                             MI->getOperand(0).getIndex(), Reg);
877       MemLoc = true;
878     }
879     if (Reg == 0) {
880       // Suppress offset, it is not meaningful here.
881       OS << "undef";
882       // NOTE: Want this comment at start of line, don't emit with AddComment.
883       AP.OutStreamer->emitRawComment(OS.str());
884       return true;
885     }
886     if (MemLoc)
887       OS << '[';
888     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
889   }
890 
891   if (MemLoc)
892     OS << '+' << Offset << ']';
893 
894   // NOTE: Want this comment at start of line, don't emit with AddComment.
895   AP.OutStreamer->emitRawComment(OS.str());
896   return true;
897 }
898 
899 /// This method handles the target-independent form of DBG_LABEL, returning
900 /// true if it was able to do so.  A false return means the target will need
901 /// to handle MI in EmitInstruction.
902 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
903   if (MI->getNumOperands() != 1)
904     return false;
905 
906   SmallString<128> Str;
907   raw_svector_ostream OS(Str);
908   OS << "DEBUG_LABEL: ";
909 
910   const DILabel *V = MI->getDebugLabel();
911   if (auto *SP = dyn_cast<DISubprogram>(
912           V->getScope()->getNonLexicalBlockFileScope())) {
913     StringRef Name = SP->getName();
914     if (!Name.empty())
915       OS << Name << ":";
916   }
917   OS << V->getName();
918 
919   // NOTE: Want this comment at start of line, don't emit with AddComment.
920   AP.OutStreamer->emitRawComment(OS.str());
921   return true;
922 }
923 
924 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
925   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
926       MF->getFunction().needsUnwindTableEntry())
927     return CFI_M_EH;
928 
929   if (MMI->hasDebugInfo())
930     return CFI_M_Debug;
931 
932   return CFI_M_None;
933 }
934 
935 bool AsmPrinter::needsSEHMoves() {
936   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
937 }
938 
939 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
940   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
941   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
942       ExceptionHandlingType != ExceptionHandling::ARM)
943     return;
944 
945   if (needsCFIMoves() == CFI_M_None)
946     return;
947 
948   // If there is no "real" instruction following this CFI instruction, skip
949   // emitting it; it would be beyond the end of the function's FDE range.
950   auto *MBB = MI.getParent();
951   auto I = std::next(MI.getIterator());
952   while (I != MBB->end() && I->isTransient())
953     ++I;
954   if (I == MBB->instr_end() &&
955       MBB->getReverseIterator() == MBB->getParent()->rbegin())
956     return;
957 
958   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
959   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
960   const MCCFIInstruction &CFI = Instrs[CFIIndex];
961   emitCFIInstruction(CFI);
962 }
963 
964 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
965   // The operands are the MCSymbol and the frame offset of the allocation.
966   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
967   int FrameOffset = MI.getOperand(1).getImm();
968 
969   // Emit a symbol assignment.
970   OutStreamer->EmitAssignment(FrameAllocSym,
971                              MCConstantExpr::create(FrameOffset, OutContext));
972 }
973 
974 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
975   if (!MF.getTarget().Options.EmitStackSizeSection)
976     return;
977 
978   MCSection *StackSizeSection =
979       getObjFileLowering().getStackSizesSection(*getCurrentSection());
980   if (!StackSizeSection)
981     return;
982 
983   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
984   // Don't emit functions with dynamic stack allocations.
985   if (FrameInfo.hasVarSizedObjects())
986     return;
987 
988   OutStreamer->PushSection();
989   OutStreamer->SwitchSection(StackSizeSection);
990 
991   const MCSymbol *FunctionSymbol = getFunctionBegin();
992   uint64_t StackSize = FrameInfo.getStackSize();
993   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
994   OutStreamer->EmitULEB128IntValue(StackSize);
995 
996   OutStreamer->PopSection();
997 }
998 
999 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1000                                            MachineModuleInfo *MMI) {
1001   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1002     return true;
1003 
1004   // We might emit an EH table that uses function begin and end labels even if
1005   // we don't have any landingpads.
1006   if (!MF.getFunction().hasPersonalityFn())
1007     return false;
1008   return !isNoOpWithoutInvoke(
1009       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1010 }
1011 
1012 /// EmitFunctionBody - This method emits the body and trailer for a
1013 /// function.
1014 void AsmPrinter::EmitFunctionBody() {
1015   EmitFunctionHeader();
1016 
1017   // Emit target-specific gunk before the function body.
1018   EmitFunctionBodyStart();
1019 
1020   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1021 
1022   if (isVerbose()) {
1023     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1024     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1025     if (!MDT) {
1026       OwnedMDT = std::make_unique<MachineDominatorTree>();
1027       OwnedMDT->getBase().recalculate(*MF);
1028       MDT = OwnedMDT.get();
1029     }
1030 
1031     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1032     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1033     if (!MLI) {
1034       OwnedMLI = std::make_unique<MachineLoopInfo>();
1035       OwnedMLI->getBase().analyze(MDT->getBase());
1036       MLI = OwnedMLI.get();
1037     }
1038   }
1039 
1040   // Print out code for the function.
1041   bool HasAnyRealCode = false;
1042   int NumInstsInFunction = 0;
1043   for (auto &MBB : *MF) {
1044     // Print a label for the basic block.
1045     EmitBasicBlockStart(MBB);
1046     for (auto &MI : MBB) {
1047       // Print the assembly for the instruction.
1048       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1049           !MI.isDebugInstr()) {
1050         HasAnyRealCode = true;
1051         ++NumInstsInFunction;
1052       }
1053 
1054       // If there is a pre-instruction symbol, emit a label for it here.
1055       if (MCSymbol *S = MI.getPreInstrSymbol())
1056         OutStreamer->EmitLabel(S);
1057 
1058       if (ShouldPrintDebugScopes) {
1059         for (const HandlerInfo &HI : Handlers) {
1060           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1061                              HI.TimerGroupName, HI.TimerGroupDescription,
1062                              TimePassesIsEnabled);
1063           HI.Handler->beginInstruction(&MI);
1064         }
1065       }
1066 
1067       if (isVerbose())
1068         emitComments(MI, OutStreamer->GetCommentOS());
1069 
1070       switch (MI.getOpcode()) {
1071       case TargetOpcode::CFI_INSTRUCTION:
1072         emitCFIInstruction(MI);
1073         break;
1074       case TargetOpcode::LOCAL_ESCAPE:
1075         emitFrameAlloc(MI);
1076         break;
1077       case TargetOpcode::ANNOTATION_LABEL:
1078       case TargetOpcode::EH_LABEL:
1079       case TargetOpcode::GC_LABEL:
1080         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1081         break;
1082       case TargetOpcode::INLINEASM:
1083       case TargetOpcode::INLINEASM_BR:
1084         EmitInlineAsm(&MI);
1085         break;
1086       case TargetOpcode::DBG_VALUE:
1087         if (isVerbose()) {
1088           if (!emitDebugValueComment(&MI, *this))
1089             EmitInstruction(&MI);
1090         }
1091         break;
1092       case TargetOpcode::DBG_LABEL:
1093         if (isVerbose()) {
1094           if (!emitDebugLabelComment(&MI, *this))
1095             EmitInstruction(&MI);
1096         }
1097         break;
1098       case TargetOpcode::IMPLICIT_DEF:
1099         if (isVerbose()) emitImplicitDef(&MI);
1100         break;
1101       case TargetOpcode::KILL:
1102         if (isVerbose()) emitKill(&MI, *this);
1103         break;
1104       default:
1105         EmitInstruction(&MI);
1106         break;
1107       }
1108 
1109       // If there is a post-instruction symbol, emit a label for it here.
1110       if (MCSymbol *S = MI.getPostInstrSymbol())
1111         OutStreamer->EmitLabel(S);
1112 
1113       if (ShouldPrintDebugScopes) {
1114         for (const HandlerInfo &HI : Handlers) {
1115           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1116                              HI.TimerGroupName, HI.TimerGroupDescription,
1117                              TimePassesIsEnabled);
1118           HI.Handler->endInstruction();
1119         }
1120       }
1121     }
1122 
1123     EmitBasicBlockEnd(MBB);
1124   }
1125 
1126   EmittedInsts += NumInstsInFunction;
1127   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1128                                       MF->getFunction().getSubprogram(),
1129                                       &MF->front());
1130   R << ore::NV("NumInstructions", NumInstsInFunction)
1131     << " instructions in function";
1132   ORE->emit(R);
1133 
1134   // If the function is empty and the object file uses .subsections_via_symbols,
1135   // then we need to emit *something* to the function body to prevent the
1136   // labels from collapsing together.  Just emit a noop.
1137   // Similarly, don't emit empty functions on Windows either. It can lead to
1138   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1139   // after linking, causing the kernel not to load the binary:
1140   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1141   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1142   const Triple &TT = TM.getTargetTriple();
1143   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1144                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1145     MCInst Noop;
1146     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1147 
1148     // Targets can opt-out of emitting the noop here by leaving the opcode
1149     // unspecified.
1150     if (Noop.getOpcode()) {
1151       OutStreamer->AddComment("avoids zero-length function");
1152       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1153     }
1154   }
1155 
1156   const Function &F = MF->getFunction();
1157   for (const auto &BB : F) {
1158     if (!BB.hasAddressTaken())
1159       continue;
1160     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1161     if (Sym->isDefined())
1162       continue;
1163     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1164     OutStreamer->EmitLabel(Sym);
1165   }
1166 
1167   // Emit target-specific gunk after the function body.
1168   EmitFunctionBodyEnd();
1169 
1170   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1171       MAI->hasDotTypeDotSizeDirective()) {
1172     // Create a symbol for the end of function.
1173     CurrentFnEnd = createTempSymbol("func_end");
1174     OutStreamer->EmitLabel(CurrentFnEnd);
1175   }
1176 
1177   // If the target wants a .size directive for the size of the function, emit
1178   // it.
1179   if (MAI->hasDotTypeDotSizeDirective()) {
1180     // We can get the size as difference between the function label and the
1181     // temp label.
1182     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1183         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1184         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1185     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1186   }
1187 
1188   for (const HandlerInfo &HI : Handlers) {
1189     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1190                        HI.TimerGroupDescription, TimePassesIsEnabled);
1191     HI.Handler->markFunctionEnd();
1192   }
1193 
1194   // Print out jump tables referenced by the function.
1195   EmitJumpTableInfo();
1196 
1197   // Emit post-function debug and/or EH information.
1198   for (const HandlerInfo &HI : Handlers) {
1199     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1200                        HI.TimerGroupDescription, TimePassesIsEnabled);
1201     HI.Handler->endFunction(MF);
1202   }
1203 
1204   // Emit section containing stack size metadata.
1205   emitStackSizeSection(*MF);
1206 
1207   if (isVerbose())
1208     OutStreamer->GetCommentOS() << "-- End function\n";
1209 
1210   OutStreamer->AddBlankLine();
1211 }
1212 
1213 /// Compute the number of Global Variables that uses a Constant.
1214 static unsigned getNumGlobalVariableUses(const Constant *C) {
1215   if (!C)
1216     return 0;
1217 
1218   if (isa<GlobalVariable>(C))
1219     return 1;
1220 
1221   unsigned NumUses = 0;
1222   for (auto *CU : C->users())
1223     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1224 
1225   return NumUses;
1226 }
1227 
1228 /// Only consider global GOT equivalents if at least one user is a
1229 /// cstexpr inside an initializer of another global variables. Also, don't
1230 /// handle cstexpr inside instructions. During global variable emission,
1231 /// candidates are skipped and are emitted later in case at least one cstexpr
1232 /// isn't replaced by a PC relative GOT entry access.
1233 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1234                                      unsigned &NumGOTEquivUsers) {
1235   // Global GOT equivalents are unnamed private globals with a constant
1236   // pointer initializer to another global symbol. They must point to a
1237   // GlobalVariable or Function, i.e., as GlobalValue.
1238   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1239       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1240       !isa<GlobalValue>(GV->getOperand(0)))
1241     return false;
1242 
1243   // To be a got equivalent, at least one of its users need to be a constant
1244   // expression used by another global variable.
1245   for (auto *U : GV->users())
1246     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1247 
1248   return NumGOTEquivUsers > 0;
1249 }
1250 
1251 /// Unnamed constant global variables solely contaning a pointer to
1252 /// another globals variable is equivalent to a GOT table entry; it contains the
1253 /// the address of another symbol. Optimize it and replace accesses to these
1254 /// "GOT equivalents" by using the GOT entry for the final global instead.
1255 /// Compute GOT equivalent candidates among all global variables to avoid
1256 /// emitting them if possible later on, after it use is replaced by a GOT entry
1257 /// access.
1258 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1259   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1260     return;
1261 
1262   for (const auto &G : M.globals()) {
1263     unsigned NumGOTEquivUsers = 0;
1264     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1265       continue;
1266 
1267     const MCSymbol *GOTEquivSym = getSymbol(&G);
1268     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1269   }
1270 }
1271 
1272 /// Constant expressions using GOT equivalent globals may not be eligible
1273 /// for PC relative GOT entry conversion, in such cases we need to emit such
1274 /// globals we previously omitted in EmitGlobalVariable.
1275 void AsmPrinter::emitGlobalGOTEquivs() {
1276   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1277     return;
1278 
1279   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1280   for (auto &I : GlobalGOTEquivs) {
1281     const GlobalVariable *GV = I.second.first;
1282     unsigned Cnt = I.second.second;
1283     if (Cnt)
1284       FailedCandidates.push_back(GV);
1285   }
1286   GlobalGOTEquivs.clear();
1287 
1288   for (auto *GV : FailedCandidates)
1289     EmitGlobalVariable(GV);
1290 }
1291 
1292 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1293                                           const GlobalIndirectSymbol& GIS) {
1294   MCSymbol *Name = getSymbol(&GIS);
1295 
1296   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1297     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1298   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1299     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1300   else
1301     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1302 
1303   bool IsFunction = GIS.getValueType()->isFunctionTy();
1304 
1305   // Treat bitcasts of functions as functions also. This is important at least
1306   // on WebAssembly where object and function addresses can't alias each other.
1307   if (!IsFunction)
1308     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1309       if (CE->getOpcode() == Instruction::BitCast)
1310         IsFunction =
1311           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1312 
1313   // Set the symbol type to function if the alias has a function type.
1314   // This affects codegen when the aliasee is not a function.
1315   if (IsFunction)
1316     OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1317                                                ? MCSA_ELF_TypeIndFunction
1318                                                : MCSA_ELF_TypeFunction);
1319 
1320   EmitVisibility(Name, GIS.getVisibility());
1321 
1322   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1323 
1324   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1325     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1326 
1327   // Emit the directives as assignments aka .set:
1328   OutStreamer->EmitAssignment(Name, Expr);
1329 
1330   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1331     // If the aliasee does not correspond to a symbol in the output, i.e. the
1332     // alias is not of an object or the aliased object is private, then set the
1333     // size of the alias symbol from the type of the alias. We don't do this in
1334     // other situations as the alias and aliasee having differing types but same
1335     // size may be intentional.
1336     const GlobalObject *BaseObject = GA->getBaseObject();
1337     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1338         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1339       const DataLayout &DL = M.getDataLayout();
1340       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1341       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1342     }
1343   }
1344 }
1345 
1346 void AsmPrinter::emitRemarksSection(Module &M) {
1347   RemarkStreamer *RS = M.getContext().getRemarkStreamer();
1348   if (!RS)
1349     return;
1350   remarks::RemarkSerializer &RemarkSerializer = RS->getSerializer();
1351 
1352   Optional<SmallString<128>> Filename;
1353   if (Optional<StringRef> FilenameRef = RS->getFilename()) {
1354     Filename = *FilenameRef;
1355     sys::fs::make_absolute(*Filename);
1356     assert(!Filename->empty() && "The filename can't be empty.");
1357   }
1358 
1359   std::string Buf;
1360   raw_string_ostream OS(Buf);
1361   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1362       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1363                : RemarkSerializer.metaSerializer(OS);
1364   MetaSerializer->emit();
1365 
1366   // Switch to the right section: .remarks/__remarks.
1367   MCSection *RemarksSection =
1368       OutContext.getObjectFileInfo()->getRemarksSection();
1369   OutStreamer->SwitchSection(RemarksSection);
1370 
1371   OutStreamer->EmitBinaryData(OS.str());
1372 }
1373 
1374 bool AsmPrinter::doFinalization(Module &M) {
1375   // Set the MachineFunction to nullptr so that we can catch attempted
1376   // accesses to MF specific features at the module level and so that
1377   // we can conditionalize accesses based on whether or not it is nullptr.
1378   MF = nullptr;
1379 
1380   // Gather all GOT equivalent globals in the module. We really need two
1381   // passes over the globals: one to compute and another to avoid its emission
1382   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1383   // where the got equivalent shows up before its use.
1384   computeGlobalGOTEquivs(M);
1385 
1386   // Emit global variables.
1387   for (const auto &G : M.globals())
1388     EmitGlobalVariable(&G);
1389 
1390   // Emit remaining GOT equivalent globals.
1391   emitGlobalGOTEquivs();
1392 
1393   // Emit visibility info for declarations
1394   for (const Function &F : M) {
1395     if (!F.isDeclarationForLinker())
1396       continue;
1397     GlobalValue::VisibilityTypes V = F.getVisibility();
1398     if (V == GlobalValue::DefaultVisibility)
1399       continue;
1400 
1401     MCSymbol *Name = getSymbol(&F);
1402     EmitVisibility(Name, V, false);
1403   }
1404 
1405   // Emit the remarks section contents.
1406   // FIXME: Figure out when is the safest time to emit this section. It should
1407   // not come after debug info.
1408   if (EnableRemarksSection)
1409     emitRemarksSection(M);
1410 
1411   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1412 
1413   TLOF.emitModuleMetadata(*OutStreamer, M);
1414 
1415   if (TM.getTargetTriple().isOSBinFormatELF()) {
1416     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1417 
1418     // Output stubs for external and common global variables.
1419     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1420     if (!Stubs.empty()) {
1421       OutStreamer->SwitchSection(TLOF.getDataSection());
1422       const DataLayout &DL = M.getDataLayout();
1423 
1424       EmitAlignment(llvm::Align(DL.getPointerSize()));
1425       for (const auto &Stub : Stubs) {
1426         OutStreamer->EmitLabel(Stub.first);
1427         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1428                                      DL.getPointerSize());
1429       }
1430     }
1431   }
1432 
1433   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1434     MachineModuleInfoCOFF &MMICOFF =
1435         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1436 
1437     // Output stubs for external and common global variables.
1438     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1439     if (!Stubs.empty()) {
1440       const DataLayout &DL = M.getDataLayout();
1441 
1442       for (const auto &Stub : Stubs) {
1443         SmallString<256> SectionName = StringRef(".rdata$");
1444         SectionName += Stub.first->getName();
1445         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1446             SectionName,
1447             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1448                 COFF::IMAGE_SCN_LNK_COMDAT,
1449             SectionKind::getReadOnly(), Stub.first->getName(),
1450             COFF::IMAGE_COMDAT_SELECT_ANY));
1451         EmitAlignment(llvm::Align(DL.getPointerSize()));
1452         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1453         OutStreamer->EmitLabel(Stub.first);
1454         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1455                                      DL.getPointerSize());
1456       }
1457     }
1458   }
1459 
1460   // Finalize debug and EH information.
1461   for (const HandlerInfo &HI : Handlers) {
1462     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1463                        HI.TimerGroupDescription, TimePassesIsEnabled);
1464     HI.Handler->endModule();
1465   }
1466   Handlers.clear();
1467   DD = nullptr;
1468 
1469   // If the target wants to know about weak references, print them all.
1470   if (MAI->getWeakRefDirective()) {
1471     // FIXME: This is not lazy, it would be nice to only print weak references
1472     // to stuff that is actually used.  Note that doing so would require targets
1473     // to notice uses in operands (due to constant exprs etc).  This should
1474     // happen with the MC stuff eventually.
1475 
1476     // Print out module-level global objects here.
1477     for (const auto &GO : M.global_objects()) {
1478       if (!GO.hasExternalWeakLinkage())
1479         continue;
1480       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1481     }
1482   }
1483 
1484   OutStreamer->AddBlankLine();
1485 
1486   // Print aliases in topological order, that is, for each alias a = b,
1487   // b must be printed before a.
1488   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1489   // such an order to generate correct TOC information.
1490   SmallVector<const GlobalAlias *, 16> AliasStack;
1491   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1492   for (const auto &Alias : M.aliases()) {
1493     for (const GlobalAlias *Cur = &Alias; Cur;
1494          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1495       if (!AliasVisited.insert(Cur).second)
1496         break;
1497       AliasStack.push_back(Cur);
1498     }
1499     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1500       emitGlobalIndirectSymbol(M, *AncestorAlias);
1501     AliasStack.clear();
1502   }
1503   for (const auto &IFunc : M.ifuncs())
1504     emitGlobalIndirectSymbol(M, IFunc);
1505 
1506   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1507   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1508   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1509     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1510       MP->finishAssembly(M, *MI, *this);
1511 
1512   // Emit llvm.ident metadata in an '.ident' directive.
1513   EmitModuleIdents(M);
1514 
1515   // Emit bytes for llvm.commandline metadata.
1516   EmitModuleCommandLines(M);
1517 
1518   // Emit __morestack address if needed for indirect calls.
1519   if (MMI->usesMorestackAddr()) {
1520     unsigned Align = 1;
1521     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1522         getDataLayout(), SectionKind::getReadOnly(),
1523         /*C=*/nullptr, Align);
1524     OutStreamer->SwitchSection(ReadOnlySection);
1525 
1526     MCSymbol *AddrSymbol =
1527         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1528     OutStreamer->EmitLabel(AddrSymbol);
1529 
1530     unsigned PtrSize = MAI->getCodePointerSize();
1531     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1532                                  PtrSize);
1533   }
1534 
1535   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1536   // split-stack is used.
1537   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1538     OutStreamer->SwitchSection(
1539         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1540     if (MMI->hasNosplitStack())
1541       OutStreamer->SwitchSection(
1542           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1543   }
1544 
1545   // If we don't have any trampolines, then we don't require stack memory
1546   // to be executable. Some targets have a directive to declare this.
1547   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1548   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1549     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1550       OutStreamer->SwitchSection(S);
1551 
1552   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1553     // Emit /EXPORT: flags for each exported global as necessary.
1554     const auto &TLOF = getObjFileLowering();
1555     std::string Flags;
1556 
1557     for (const GlobalValue &GV : M.global_values()) {
1558       raw_string_ostream OS(Flags);
1559       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1560       OS.flush();
1561       if (!Flags.empty()) {
1562         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1563         OutStreamer->EmitBytes(Flags);
1564       }
1565       Flags.clear();
1566     }
1567 
1568     // Emit /INCLUDE: flags for each used global as necessary.
1569     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1570       assert(LU->hasInitializer() &&
1571              "expected llvm.used to have an initializer");
1572       assert(isa<ArrayType>(LU->getValueType()) &&
1573              "expected llvm.used to be an array type");
1574       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1575         for (const Value *Op : A->operands()) {
1576           const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1577           // Global symbols with internal or private linkage are not visible to
1578           // the linker, and thus would cause an error when the linker tried to
1579           // preserve the symbol due to the `/include:` directive.
1580           if (GV->hasLocalLinkage())
1581             continue;
1582 
1583           raw_string_ostream OS(Flags);
1584           TLOF.emitLinkerFlagsForUsed(OS, GV);
1585           OS.flush();
1586 
1587           if (!Flags.empty()) {
1588             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1589             OutStreamer->EmitBytes(Flags);
1590           }
1591           Flags.clear();
1592         }
1593       }
1594     }
1595   }
1596 
1597   if (TM.Options.EmitAddrsig) {
1598     // Emit address-significance attributes for all globals.
1599     OutStreamer->EmitAddrsig();
1600     for (const GlobalValue &GV : M.global_values())
1601       if (!GV.use_empty() && !GV.isThreadLocal() &&
1602           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1603           !GV.hasAtLeastLocalUnnamedAddr())
1604         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1605   }
1606 
1607   // Emit symbol partition specifications (ELF only).
1608   if (TM.getTargetTriple().isOSBinFormatELF()) {
1609     unsigned UniqueID = 0;
1610     for (const GlobalValue &GV : M.global_values()) {
1611       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1612           GV.getVisibility() != GlobalValue::DefaultVisibility)
1613         continue;
1614 
1615       OutStreamer->SwitchSection(OutContext.getELFSection(
1616           ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID));
1617       OutStreamer->EmitBytes(GV.getPartition());
1618       OutStreamer->EmitZeros(1);
1619       OutStreamer->EmitValue(
1620           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1621           MAI->getCodePointerSize());
1622     }
1623   }
1624 
1625   // Allow the target to emit any magic that it wants at the end of the file,
1626   // after everything else has gone out.
1627   EmitEndOfAsmFile(M);
1628 
1629   MMI = nullptr;
1630 
1631   OutStreamer->Finish();
1632   OutStreamer->reset();
1633   OwnedMLI.reset();
1634   OwnedMDT.reset();
1635 
1636   return false;
1637 }
1638 
1639 MCSymbol *AsmPrinter::getCurExceptionSym() {
1640   if (!CurExceptionSym)
1641     CurExceptionSym = createTempSymbol("exception");
1642   return CurExceptionSym;
1643 }
1644 
1645 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1646   this->MF = &MF;
1647   // Get the function symbol.
1648   CurrentFnSym = getSymbol(&MF.getFunction());
1649   CurrentFnSymForSize = CurrentFnSym;
1650   CurrentFnBegin = nullptr;
1651   CurExceptionSym = nullptr;
1652   bool NeedsLocalForSize = MAI->needsLocalForSize();
1653   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1654       MF.getTarget().Options.EmitStackSizeSection) {
1655     CurrentFnBegin = createTempSymbol("func_begin");
1656     if (NeedsLocalForSize)
1657       CurrentFnSymForSize = CurrentFnBegin;
1658   }
1659 
1660   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1661 }
1662 
1663 namespace {
1664 
1665 // Keep track the alignment, constpool entries per Section.
1666   struct SectionCPs {
1667     MCSection *S;
1668     unsigned Alignment;
1669     SmallVector<unsigned, 4> CPEs;
1670 
1671     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1672   };
1673 
1674 } // end anonymous namespace
1675 
1676 /// EmitConstantPool - Print to the current output stream assembly
1677 /// representations of the constants in the constant pool MCP. This is
1678 /// used to print out constants which have been "spilled to memory" by
1679 /// the code generator.
1680 void AsmPrinter::EmitConstantPool() {
1681   const MachineConstantPool *MCP = MF->getConstantPool();
1682   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1683   if (CP.empty()) return;
1684 
1685   // Calculate sections for constant pool entries. We collect entries to go into
1686   // the same section together to reduce amount of section switch statements.
1687   SmallVector<SectionCPs, 4> CPSections;
1688   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1689     const MachineConstantPoolEntry &CPE = CP[i];
1690     unsigned Align = CPE.getAlignment();
1691 
1692     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1693 
1694     const Constant *C = nullptr;
1695     if (!CPE.isMachineConstantPoolEntry())
1696       C = CPE.Val.ConstVal;
1697 
1698     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1699                                                               Kind, C, Align);
1700 
1701     // The number of sections are small, just do a linear search from the
1702     // last section to the first.
1703     bool Found = false;
1704     unsigned SecIdx = CPSections.size();
1705     while (SecIdx != 0) {
1706       if (CPSections[--SecIdx].S == S) {
1707         Found = true;
1708         break;
1709       }
1710     }
1711     if (!Found) {
1712       SecIdx = CPSections.size();
1713       CPSections.push_back(SectionCPs(S, Align));
1714     }
1715 
1716     if (Align > CPSections[SecIdx].Alignment)
1717       CPSections[SecIdx].Alignment = Align;
1718     CPSections[SecIdx].CPEs.push_back(i);
1719   }
1720 
1721   // Now print stuff into the calculated sections.
1722   const MCSection *CurSection = nullptr;
1723   unsigned Offset = 0;
1724   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1725     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1726       unsigned CPI = CPSections[i].CPEs[j];
1727       MCSymbol *Sym = GetCPISymbol(CPI);
1728       if (!Sym->isUndefined())
1729         continue;
1730 
1731       if (CurSection != CPSections[i].S) {
1732         OutStreamer->SwitchSection(CPSections[i].S);
1733         EmitAlignment(llvm::Align(CPSections[i].Alignment));
1734         CurSection = CPSections[i].S;
1735         Offset = 0;
1736       }
1737 
1738       MachineConstantPoolEntry CPE = CP[CPI];
1739 
1740       // Emit inter-object padding for alignment.
1741       unsigned AlignMask = CPE.getAlignment() - 1;
1742       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1743       OutStreamer->EmitZeros(NewOffset - Offset);
1744 
1745       Type *Ty = CPE.getType();
1746       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1747 
1748       OutStreamer->EmitLabel(Sym);
1749       if (CPE.isMachineConstantPoolEntry())
1750         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1751       else
1752         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1753     }
1754   }
1755 }
1756 
1757 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1758 /// by the current function to the current output stream.
1759 void AsmPrinter::EmitJumpTableInfo() {
1760   const DataLayout &DL = MF->getDataLayout();
1761   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1762   if (!MJTI) return;
1763   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1764   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1765   if (JT.empty()) return;
1766 
1767   // Pick the directive to use to print the jump table entries, and switch to
1768   // the appropriate section.
1769   const Function &F = MF->getFunction();
1770   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1771   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1772       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1773       F);
1774   if (JTInDiffSection) {
1775     // Drop it in the readonly section.
1776     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1777     OutStreamer->SwitchSection(ReadOnlySection);
1778   }
1779 
1780   EmitAlignment(llvm::Align(MJTI->getEntryAlignment(DL)));
1781 
1782   // Jump tables in code sections are marked with a data_region directive
1783   // where that's supported.
1784   if (!JTInDiffSection)
1785     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1786 
1787   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1788     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1789 
1790     // If this jump table was deleted, ignore it.
1791     if (JTBBs.empty()) continue;
1792 
1793     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1794     /// emit a .set directive for each unique entry.
1795     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1796         MAI->doesSetDirectiveSuppressReloc()) {
1797       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1798       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1799       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1800       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1801         const MachineBasicBlock *MBB = JTBBs[ii];
1802         if (!EmittedSets.insert(MBB).second)
1803           continue;
1804 
1805         // .set LJTSet, LBB32-base
1806         const MCExpr *LHS =
1807           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1808         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1809                                     MCBinaryExpr::createSub(LHS, Base,
1810                                                             OutContext));
1811       }
1812     }
1813 
1814     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1815     // before each jump table.  The first label is never referenced, but tells
1816     // the assembler and linker the extents of the jump table object.  The
1817     // second label is actually referenced by the code.
1818     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1819       // FIXME: This doesn't have to have any specific name, just any randomly
1820       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1821       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1822 
1823     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1824 
1825     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1826       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1827   }
1828   if (!JTInDiffSection)
1829     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1830 }
1831 
1832 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1833 /// current stream.
1834 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1835                                     const MachineBasicBlock *MBB,
1836                                     unsigned UID) const {
1837   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1838   const MCExpr *Value = nullptr;
1839   switch (MJTI->getEntryKind()) {
1840   case MachineJumpTableInfo::EK_Inline:
1841     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1842   case MachineJumpTableInfo::EK_Custom32:
1843     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1844         MJTI, MBB, UID, OutContext);
1845     break;
1846   case MachineJumpTableInfo::EK_BlockAddress:
1847     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1848     //     .word LBB123
1849     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1850     break;
1851   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1852     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1853     // with a relocation as gp-relative, e.g.:
1854     //     .gprel32 LBB123
1855     MCSymbol *MBBSym = MBB->getSymbol();
1856     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1857     return;
1858   }
1859 
1860   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1861     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1862     // with a relocation as gp-relative, e.g.:
1863     //     .gpdword LBB123
1864     MCSymbol *MBBSym = MBB->getSymbol();
1865     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1866     return;
1867   }
1868 
1869   case MachineJumpTableInfo::EK_LabelDifference32: {
1870     // Each entry is the address of the block minus the address of the jump
1871     // table. This is used for PIC jump tables where gprel32 is not supported.
1872     // e.g.:
1873     //      .word LBB123 - LJTI1_2
1874     // If the .set directive avoids relocations, this is emitted as:
1875     //      .set L4_5_set_123, LBB123 - LJTI1_2
1876     //      .word L4_5_set_123
1877     if (MAI->doesSetDirectiveSuppressReloc()) {
1878       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1879                                       OutContext);
1880       break;
1881     }
1882     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1883     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1884     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1885     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1886     break;
1887   }
1888   }
1889 
1890   assert(Value && "Unknown entry kind!");
1891 
1892   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1893   OutStreamer->EmitValue(Value, EntrySize);
1894 }
1895 
1896 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1897 /// special global used by LLVM.  If so, emit it and return true, otherwise
1898 /// do nothing and return false.
1899 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1900   if (GV->getName() == "llvm.used") {
1901     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1902       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1903     return true;
1904   }
1905 
1906   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1907   if (GV->getSection() == "llvm.metadata" ||
1908       GV->hasAvailableExternallyLinkage())
1909     return true;
1910 
1911   if (!GV->hasAppendingLinkage()) return false;
1912 
1913   assert(GV->hasInitializer() && "Not a special LLVM global!");
1914 
1915   if (GV->getName() == "llvm.global_ctors") {
1916     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1917                        /* isCtor */ true);
1918 
1919     return true;
1920   }
1921 
1922   if (GV->getName() == "llvm.global_dtors") {
1923     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1924                        /* isCtor */ false);
1925 
1926     return true;
1927   }
1928 
1929   report_fatal_error("unknown special variable");
1930 }
1931 
1932 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1933 /// global in the specified llvm.used list.
1934 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1935   // Should be an array of 'i8*'.
1936   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1937     const GlobalValue *GV =
1938       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1939     if (GV)
1940       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1941   }
1942 }
1943 
1944 namespace {
1945 
1946 struct Structor {
1947   int Priority = 0;
1948   Constant *Func = nullptr;
1949   GlobalValue *ComdatKey = nullptr;
1950 
1951   Structor() = default;
1952 };
1953 
1954 } // end anonymous namespace
1955 
1956 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1957 /// priority.
1958 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1959                                     bool isCtor) {
1960   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
1961   // init priority.
1962   if (!isa<ConstantArray>(List)) return;
1963 
1964   // Sanity check the structors list.
1965   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1966   if (!InitList) return; // Not an array!
1967   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1968   if (!ETy || ETy->getNumElements() != 3 ||
1969       !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1970       !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
1971       !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1972     return; // Not (int, ptr, ptr).
1973 
1974   // Gather the structors in a form that's convenient for sorting by priority.
1975   SmallVector<Structor, 8> Structors;
1976   for (Value *O : InitList->operands()) {
1977     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1978     if (!CS) continue; // Malformed.
1979     if (CS->getOperand(1)->isNullValue())
1980       break;  // Found a null terminator, skip the rest.
1981     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1982     if (!Priority) continue; // Malformed.
1983     Structors.push_back(Structor());
1984     Structor &S = Structors.back();
1985     S.Priority = Priority->getLimitedValue(65535);
1986     S.Func = CS->getOperand(1);
1987     if (!CS->getOperand(2)->isNullValue())
1988       S.ComdatKey =
1989           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1990   }
1991 
1992   // Emit the function pointers in the target-specific order
1993   const llvm::Align Align = llvm::Align(DL.getPointerPrefAlignment());
1994   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
1995     return L.Priority < R.Priority;
1996   });
1997   for (Structor &S : Structors) {
1998     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1999     const MCSymbol *KeySym = nullptr;
2000     if (GlobalValue *GV = S.ComdatKey) {
2001       if (GV->isDeclarationForLinker())
2002         // If the associated variable is not defined in this module
2003         // (it might be available_externally, or have been an
2004         // available_externally definition that was dropped by the
2005         // EliminateAvailableExternally pass), some other TU
2006         // will provide its dynamic initializer.
2007         continue;
2008 
2009       KeySym = getSymbol(GV);
2010     }
2011     MCSection *OutputSection =
2012         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2013                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2014     OutStreamer->SwitchSection(OutputSection);
2015     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2016       EmitAlignment(Align);
2017     EmitXXStructor(DL, S.Func);
2018   }
2019 }
2020 
2021 void AsmPrinter::EmitModuleIdents(Module &M) {
2022   if (!MAI->hasIdentDirective())
2023     return;
2024 
2025   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2026     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2027       const MDNode *N = NMD->getOperand(i);
2028       assert(N->getNumOperands() == 1 &&
2029              "llvm.ident metadata entry can have only one operand");
2030       const MDString *S = cast<MDString>(N->getOperand(0));
2031       OutStreamer->EmitIdent(S->getString());
2032     }
2033   }
2034 }
2035 
2036 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2037   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2038   if (!CommandLine)
2039     return;
2040 
2041   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2042   if (!NMD || !NMD->getNumOperands())
2043     return;
2044 
2045   OutStreamer->PushSection();
2046   OutStreamer->SwitchSection(CommandLine);
2047   OutStreamer->EmitZeros(1);
2048   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2049     const MDNode *N = NMD->getOperand(i);
2050     assert(N->getNumOperands() == 1 &&
2051            "llvm.commandline metadata entry can have only one operand");
2052     const MDString *S = cast<MDString>(N->getOperand(0));
2053     OutStreamer->EmitBytes(S->getString());
2054     OutStreamer->EmitZeros(1);
2055   }
2056   OutStreamer->PopSection();
2057 }
2058 
2059 //===--------------------------------------------------------------------===//
2060 // Emission and print routines
2061 //
2062 
2063 /// Emit a byte directive and value.
2064 ///
2065 void AsmPrinter::emitInt8(int Value) const {
2066   OutStreamer->EmitIntValue(Value, 1);
2067 }
2068 
2069 /// Emit a short directive and value.
2070 void AsmPrinter::emitInt16(int Value) const {
2071   OutStreamer->EmitIntValue(Value, 2);
2072 }
2073 
2074 /// Emit a long directive and value.
2075 void AsmPrinter::emitInt32(int Value) const {
2076   OutStreamer->EmitIntValue(Value, 4);
2077 }
2078 
2079 /// Emit a long long directive and value.
2080 void AsmPrinter::emitInt64(uint64_t Value) const {
2081   OutStreamer->EmitIntValue(Value, 8);
2082 }
2083 
2084 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2085 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2086 /// .set if it avoids relocations.
2087 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2088                                      unsigned Size) const {
2089   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2090 }
2091 
2092 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2093 /// where the size in bytes of the directive is specified by Size and Label
2094 /// specifies the label.  This implicitly uses .set if it is available.
2095 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2096                                      unsigned Size,
2097                                      bool IsSectionRelative) const {
2098   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2099     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2100     if (Size > 4)
2101       OutStreamer->EmitZeros(Size - 4);
2102     return;
2103   }
2104 
2105   // Emit Label+Offset (or just Label if Offset is zero)
2106   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2107   if (Offset)
2108     Expr = MCBinaryExpr::createAdd(
2109         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2110 
2111   OutStreamer->EmitValue(Expr, Size);
2112 }
2113 
2114 //===----------------------------------------------------------------------===//
2115 
2116 // EmitAlignment - Emit an alignment directive to the specified power of
2117 // two boundary.  If a global value is specified, and if that global has
2118 // an explicit alignment requested, it will override the alignment request
2119 // if required for correctness.
2120 void AsmPrinter::EmitAlignment(llvm::Align Align,
2121                                const GlobalObject *GV) const {
2122   if (GV)
2123     Align = getGVAlignment(GV, GV->getParent()->getDataLayout(), Align);
2124 
2125   if (Align == 1)
2126     return; // 1-byte aligned: no need to emit alignment.
2127 
2128   if (getCurrentSection()->getKind().isText())
2129     OutStreamer->EmitCodeAlignment(Align.value());
2130   else
2131     OutStreamer->EmitValueToAlignment(Align.value());
2132 }
2133 
2134 //===----------------------------------------------------------------------===//
2135 // Constant emission.
2136 //===----------------------------------------------------------------------===//
2137 
2138 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2139   MCContext &Ctx = OutContext;
2140 
2141   if (CV->isNullValue() || isa<UndefValue>(CV))
2142     return MCConstantExpr::create(0, Ctx);
2143 
2144   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2145     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2146 
2147   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2148     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2149 
2150   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2151     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2152 
2153   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2154   if (!CE) {
2155     llvm_unreachable("Unknown constant value to lower!");
2156   }
2157 
2158   switch (CE->getOpcode()) {
2159   default:
2160     // If the code isn't optimized, there may be outstanding folding
2161     // opportunities. Attempt to fold the expression using DataLayout as a
2162     // last resort before giving up.
2163     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2164       if (C != CE)
2165         return lowerConstant(C);
2166 
2167     // Otherwise report the problem to the user.
2168     {
2169       std::string S;
2170       raw_string_ostream OS(S);
2171       OS << "Unsupported expression in static initializer: ";
2172       CE->printAsOperand(OS, /*PrintType=*/false,
2173                      !MF ? nullptr : MF->getFunction().getParent());
2174       report_fatal_error(OS.str());
2175     }
2176   case Instruction::GetElementPtr: {
2177     // Generate a symbolic expression for the byte address
2178     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2179     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2180 
2181     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2182     if (!OffsetAI)
2183       return Base;
2184 
2185     int64_t Offset = OffsetAI.getSExtValue();
2186     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2187                                    Ctx);
2188   }
2189 
2190   case Instruction::Trunc:
2191     // We emit the value and depend on the assembler to truncate the generated
2192     // expression properly.  This is important for differences between
2193     // blockaddress labels.  Since the two labels are in the same function, it
2194     // is reasonable to treat their delta as a 32-bit value.
2195     LLVM_FALLTHROUGH;
2196   case Instruction::BitCast:
2197     return lowerConstant(CE->getOperand(0));
2198 
2199   case Instruction::IntToPtr: {
2200     const DataLayout &DL = getDataLayout();
2201 
2202     // Handle casts to pointers by changing them into casts to the appropriate
2203     // integer type.  This promotes constant folding and simplifies this code.
2204     Constant *Op = CE->getOperand(0);
2205     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2206                                       false/*ZExt*/);
2207     return lowerConstant(Op);
2208   }
2209 
2210   case Instruction::PtrToInt: {
2211     const DataLayout &DL = getDataLayout();
2212 
2213     // Support only foldable casts to/from pointers that can be eliminated by
2214     // changing the pointer to the appropriately sized integer type.
2215     Constant *Op = CE->getOperand(0);
2216     Type *Ty = CE->getType();
2217 
2218     const MCExpr *OpExpr = lowerConstant(Op);
2219 
2220     // We can emit the pointer value into this slot if the slot is an
2221     // integer slot equal to the size of the pointer.
2222     //
2223     // If the pointer is larger than the resultant integer, then
2224     // as with Trunc just depend on the assembler to truncate it.
2225     if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2226       return OpExpr;
2227 
2228     // Otherwise the pointer is smaller than the resultant integer, mask off
2229     // the high bits so we are sure to get a proper truncation if the input is
2230     // a constant expr.
2231     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2232     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2233     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2234   }
2235 
2236   case Instruction::Sub: {
2237     GlobalValue *LHSGV;
2238     APInt LHSOffset;
2239     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2240                                    getDataLayout())) {
2241       GlobalValue *RHSGV;
2242       APInt RHSOffset;
2243       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2244                                      getDataLayout())) {
2245         const MCExpr *RelocExpr =
2246             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2247         if (!RelocExpr)
2248           RelocExpr = MCBinaryExpr::createSub(
2249               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2250               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2251         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2252         if (Addend != 0)
2253           RelocExpr = MCBinaryExpr::createAdd(
2254               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2255         return RelocExpr;
2256       }
2257     }
2258   }
2259   // else fallthrough
2260   LLVM_FALLTHROUGH;
2261 
2262   // The MC library also has a right-shift operator, but it isn't consistently
2263   // signed or unsigned between different targets.
2264   case Instruction::Add:
2265   case Instruction::Mul:
2266   case Instruction::SDiv:
2267   case Instruction::SRem:
2268   case Instruction::Shl:
2269   case Instruction::And:
2270   case Instruction::Or:
2271   case Instruction::Xor: {
2272     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2273     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2274     switch (CE->getOpcode()) {
2275     default: llvm_unreachable("Unknown binary operator constant cast expr");
2276     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2277     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2278     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2279     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2280     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2281     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2282     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2283     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2284     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2285     }
2286   }
2287   }
2288 }
2289 
2290 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2291                                    AsmPrinter &AP,
2292                                    const Constant *BaseCV = nullptr,
2293                                    uint64_t Offset = 0);
2294 
2295 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2296 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2297 
2298 /// isRepeatedByteSequence - Determine whether the given value is
2299 /// composed of a repeated sequence of identical bytes and return the
2300 /// byte value.  If it is not a repeated sequence, return -1.
2301 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2302   StringRef Data = V->getRawDataValues();
2303   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2304   char C = Data[0];
2305   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2306     if (Data[i] != C) return -1;
2307   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2308 }
2309 
2310 /// isRepeatedByteSequence - Determine whether the given value is
2311 /// composed of a repeated sequence of identical bytes and return the
2312 /// byte value.  If it is not a repeated sequence, return -1.
2313 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2314   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2315     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2316     assert(Size % 8 == 0);
2317 
2318     // Extend the element to take zero padding into account.
2319     APInt Value = CI->getValue().zextOrSelf(Size);
2320     if (!Value.isSplat(8))
2321       return -1;
2322 
2323     return Value.zextOrTrunc(8).getZExtValue();
2324   }
2325   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2326     // Make sure all array elements are sequences of the same repeated
2327     // byte.
2328     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2329     Constant *Op0 = CA->getOperand(0);
2330     int Byte = isRepeatedByteSequence(Op0, DL);
2331     if (Byte == -1)
2332       return -1;
2333 
2334     // All array elements must be equal.
2335     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2336       if (CA->getOperand(i) != Op0)
2337         return -1;
2338     return Byte;
2339   }
2340 
2341   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2342     return isRepeatedByteSequence(CDS);
2343 
2344   return -1;
2345 }
2346 
2347 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2348                                              const ConstantDataSequential *CDS,
2349                                              AsmPrinter &AP) {
2350   // See if we can aggregate this into a .fill, if so, emit it as such.
2351   int Value = isRepeatedByteSequence(CDS, DL);
2352   if (Value != -1) {
2353     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2354     // Don't emit a 1-byte object as a .fill.
2355     if (Bytes > 1)
2356       return AP.OutStreamer->emitFill(Bytes, Value);
2357   }
2358 
2359   // If this can be emitted with .ascii/.asciz, emit it as such.
2360   if (CDS->isString())
2361     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2362 
2363   // Otherwise, emit the values in successive locations.
2364   unsigned ElementByteSize = CDS->getElementByteSize();
2365   if (isa<IntegerType>(CDS->getElementType())) {
2366     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2367       if (AP.isVerbose())
2368         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2369                                                  CDS->getElementAsInteger(i));
2370       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2371                                    ElementByteSize);
2372     }
2373   } else {
2374     Type *ET = CDS->getElementType();
2375     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2376       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2377   }
2378 
2379   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2380   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2381                         CDS->getNumElements();
2382   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2383   if (unsigned Padding = Size - EmittedSize)
2384     AP.OutStreamer->EmitZeros(Padding);
2385 }
2386 
2387 static void emitGlobalConstantArray(const DataLayout &DL,
2388                                     const ConstantArray *CA, AsmPrinter &AP,
2389                                     const Constant *BaseCV, uint64_t Offset) {
2390   // See if we can aggregate some values.  Make sure it can be
2391   // represented as a series of bytes of the constant value.
2392   int Value = isRepeatedByteSequence(CA, DL);
2393 
2394   if (Value != -1) {
2395     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2396     AP.OutStreamer->emitFill(Bytes, Value);
2397   }
2398   else {
2399     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2400       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2401       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2402     }
2403   }
2404 }
2405 
2406 static void emitGlobalConstantVector(const DataLayout &DL,
2407                                      const ConstantVector *CV, AsmPrinter &AP) {
2408   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2409     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2410 
2411   unsigned Size = DL.getTypeAllocSize(CV->getType());
2412   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2413                          CV->getType()->getNumElements();
2414   if (unsigned Padding = Size - EmittedSize)
2415     AP.OutStreamer->EmitZeros(Padding);
2416 }
2417 
2418 static void emitGlobalConstantStruct(const DataLayout &DL,
2419                                      const ConstantStruct *CS, AsmPrinter &AP,
2420                                      const Constant *BaseCV, uint64_t Offset) {
2421   // Print the fields in successive locations. Pad to align if needed!
2422   unsigned Size = DL.getTypeAllocSize(CS->getType());
2423   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2424   uint64_t SizeSoFar = 0;
2425   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2426     const Constant *Field = CS->getOperand(i);
2427 
2428     // Print the actual field value.
2429     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2430 
2431     // Check if padding is needed and insert one or more 0s.
2432     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2433     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2434                         - Layout->getElementOffset(i)) - FieldSize;
2435     SizeSoFar += FieldSize + PadSize;
2436 
2437     // Insert padding - this may include padding to increase the size of the
2438     // current field up to the ABI size (if the struct is not packed) as well
2439     // as padding to ensure that the next field starts at the right offset.
2440     AP.OutStreamer->EmitZeros(PadSize);
2441   }
2442   assert(SizeSoFar == Layout->getSizeInBytes() &&
2443          "Layout of constant struct may be incorrect!");
2444 }
2445 
2446 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2447   APInt API = APF.bitcastToAPInt();
2448 
2449   // First print a comment with what we think the original floating-point value
2450   // should have been.
2451   if (AP.isVerbose()) {
2452     SmallString<8> StrVal;
2453     APF.toString(StrVal);
2454 
2455     if (ET)
2456       ET->print(AP.OutStreamer->GetCommentOS());
2457     else
2458       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2459     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2460   }
2461 
2462   // Now iterate through the APInt chunks, emitting them in endian-correct
2463   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2464   // floats).
2465   unsigned NumBytes = API.getBitWidth() / 8;
2466   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2467   const uint64_t *p = API.getRawData();
2468 
2469   // PPC's long double has odd notions of endianness compared to how LLVM
2470   // handles it: p[0] goes first for *big* endian on PPC.
2471   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2472     int Chunk = API.getNumWords() - 1;
2473 
2474     if (TrailingBytes)
2475       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2476 
2477     for (; Chunk >= 0; --Chunk)
2478       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2479   } else {
2480     unsigned Chunk;
2481     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2482       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2483 
2484     if (TrailingBytes)
2485       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2486   }
2487 
2488   // Emit the tail padding for the long double.
2489   const DataLayout &DL = AP.getDataLayout();
2490   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2491 }
2492 
2493 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2494   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2495 }
2496 
2497 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2498   const DataLayout &DL = AP.getDataLayout();
2499   unsigned BitWidth = CI->getBitWidth();
2500 
2501   // Copy the value as we may massage the layout for constants whose bit width
2502   // is not a multiple of 64-bits.
2503   APInt Realigned(CI->getValue());
2504   uint64_t ExtraBits = 0;
2505   unsigned ExtraBitsSize = BitWidth & 63;
2506 
2507   if (ExtraBitsSize) {
2508     // The bit width of the data is not a multiple of 64-bits.
2509     // The extra bits are expected to be at the end of the chunk of the memory.
2510     // Little endian:
2511     // * Nothing to be done, just record the extra bits to emit.
2512     // Big endian:
2513     // * Record the extra bits to emit.
2514     // * Realign the raw data to emit the chunks of 64-bits.
2515     if (DL.isBigEndian()) {
2516       // Basically the structure of the raw data is a chunk of 64-bits cells:
2517       //    0        1         BitWidth / 64
2518       // [chunk1][chunk2] ... [chunkN].
2519       // The most significant chunk is chunkN and it should be emitted first.
2520       // However, due to the alignment issue chunkN contains useless bits.
2521       // Realign the chunks so that they contain only useless information:
2522       // ExtraBits     0       1       (BitWidth / 64) - 1
2523       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2524       ExtraBits = Realigned.getRawData()[0] &
2525         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2526       Realigned.lshrInPlace(ExtraBitsSize);
2527     } else
2528       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2529   }
2530 
2531   // We don't expect assemblers to support integer data directives
2532   // for more than 64 bits, so we emit the data in at most 64-bit
2533   // quantities at a time.
2534   const uint64_t *RawData = Realigned.getRawData();
2535   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2536     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2537     AP.OutStreamer->EmitIntValue(Val, 8);
2538   }
2539 
2540   if (ExtraBitsSize) {
2541     // Emit the extra bits after the 64-bits chunks.
2542 
2543     // Emit a directive that fills the expected size.
2544     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2545     Size -= (BitWidth / 64) * 8;
2546     assert(Size && Size * 8 >= ExtraBitsSize &&
2547            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2548            == ExtraBits && "Directive too small for extra bits.");
2549     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2550   }
2551 }
2552 
2553 /// Transform a not absolute MCExpr containing a reference to a GOT
2554 /// equivalent global, by a target specific GOT pc relative access to the
2555 /// final symbol.
2556 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2557                                          const Constant *BaseCst,
2558                                          uint64_t Offset) {
2559   // The global @foo below illustrates a global that uses a got equivalent.
2560   //
2561   //  @bar = global i32 42
2562   //  @gotequiv = private unnamed_addr constant i32* @bar
2563   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2564   //                             i64 ptrtoint (i32* @foo to i64))
2565   //                        to i32)
2566   //
2567   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2568   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2569   // form:
2570   //
2571   //  foo = cstexpr, where
2572   //    cstexpr := <gotequiv> - "." + <cst>
2573   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2574   //
2575   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2576   //
2577   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2578   //    gotpcrelcst := <offset from @foo base> + <cst>
2579   MCValue MV;
2580   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2581     return;
2582   const MCSymbolRefExpr *SymA = MV.getSymA();
2583   if (!SymA)
2584     return;
2585 
2586   // Check that GOT equivalent symbol is cached.
2587   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2588   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2589     return;
2590 
2591   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2592   if (!BaseGV)
2593     return;
2594 
2595   // Check for a valid base symbol
2596   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2597   const MCSymbolRefExpr *SymB = MV.getSymB();
2598 
2599   if (!SymB || BaseSym != &SymB->getSymbol())
2600     return;
2601 
2602   // Make sure to match:
2603   //
2604   //    gotpcrelcst := <offset from @foo base> + <cst>
2605   //
2606   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2607   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2608   // if the target knows how to encode it.
2609   int64_t GOTPCRelCst = Offset + MV.getConstant();
2610   if (GOTPCRelCst < 0)
2611     return;
2612   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2613     return;
2614 
2615   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2616   //
2617   //  bar:
2618   //    .long 42
2619   //  gotequiv:
2620   //    .quad bar
2621   //  foo:
2622   //    .long gotequiv - "." + <cst>
2623   //
2624   // is replaced by the target specific equivalent to:
2625   //
2626   //  bar:
2627   //    .long 42
2628   //  foo:
2629   //    .long bar@GOTPCREL+<gotpcrelcst>
2630   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2631   const GlobalVariable *GV = Result.first;
2632   int NumUses = (int)Result.second;
2633   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2634   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2635   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2636       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2637 
2638   // Update GOT equivalent usage information
2639   --NumUses;
2640   if (NumUses >= 0)
2641     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2642 }
2643 
2644 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2645                                    AsmPrinter &AP, const Constant *BaseCV,
2646                                    uint64_t Offset) {
2647   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2648 
2649   // Globals with sub-elements such as combinations of arrays and structs
2650   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2651   // constant symbol base and the current position with BaseCV and Offset.
2652   if (!BaseCV && CV->hasOneUse())
2653     BaseCV = dyn_cast<Constant>(CV->user_back());
2654 
2655   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2656     return AP.OutStreamer->EmitZeros(Size);
2657 
2658   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2659     switch (Size) {
2660     case 1:
2661     case 2:
2662     case 4:
2663     case 8:
2664       if (AP.isVerbose())
2665         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2666                                                  CI->getZExtValue());
2667       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2668       return;
2669     default:
2670       emitGlobalConstantLargeInt(CI, AP);
2671       return;
2672     }
2673   }
2674 
2675   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2676     return emitGlobalConstantFP(CFP, AP);
2677 
2678   if (isa<ConstantPointerNull>(CV)) {
2679     AP.OutStreamer->EmitIntValue(0, Size);
2680     return;
2681   }
2682 
2683   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2684     return emitGlobalConstantDataSequential(DL, CDS, AP);
2685 
2686   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2687     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2688 
2689   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2690     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2691 
2692   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2693     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2694     // vectors).
2695     if (CE->getOpcode() == Instruction::BitCast)
2696       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2697 
2698     if (Size > 8) {
2699       // If the constant expression's size is greater than 64-bits, then we have
2700       // to emit the value in chunks. Try to constant fold the value and emit it
2701       // that way.
2702       Constant *New = ConstantFoldConstant(CE, DL);
2703       if (New && New != CE)
2704         return emitGlobalConstantImpl(DL, New, AP);
2705     }
2706   }
2707 
2708   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2709     return emitGlobalConstantVector(DL, V, AP);
2710 
2711   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2712   // thread the streamer with EmitValue.
2713   const MCExpr *ME = AP.lowerConstant(CV);
2714 
2715   // Since lowerConstant already folded and got rid of all IR pointer and
2716   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2717   // directly.
2718   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2719     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2720 
2721   AP.OutStreamer->EmitValue(ME, Size);
2722 }
2723 
2724 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2725 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2726   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2727   if (Size)
2728     emitGlobalConstantImpl(DL, CV, *this);
2729   else if (MAI->hasSubsectionsViaSymbols()) {
2730     // If the global has zero size, emit a single byte so that two labels don't
2731     // look like they are at the same location.
2732     OutStreamer->EmitIntValue(0, 1);
2733   }
2734 }
2735 
2736 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2737   // Target doesn't support this yet!
2738   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2739 }
2740 
2741 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2742   if (Offset > 0)
2743     OS << '+' << Offset;
2744   else if (Offset < 0)
2745     OS << Offset;
2746 }
2747 
2748 //===----------------------------------------------------------------------===//
2749 // Symbol Lowering Routines.
2750 //===----------------------------------------------------------------------===//
2751 
2752 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2753   return OutContext.createTempSymbol(Name, true);
2754 }
2755 
2756 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2757   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2758 }
2759 
2760 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2761   return MMI->getAddrLabelSymbol(BB);
2762 }
2763 
2764 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2765 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2766   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2767     const MachineConstantPoolEntry &CPE =
2768         MF->getConstantPool()->getConstants()[CPID];
2769     if (!CPE.isMachineConstantPoolEntry()) {
2770       const DataLayout &DL = MF->getDataLayout();
2771       SectionKind Kind = CPE.getSectionKind(&DL);
2772       const Constant *C = CPE.Val.ConstVal;
2773       unsigned Align = CPE.Alignment;
2774       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2775               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2776         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2777           if (Sym->isUndefined())
2778             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2779           return Sym;
2780         }
2781       }
2782     }
2783   }
2784 
2785   const DataLayout &DL = getDataLayout();
2786   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2787                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2788                                       Twine(CPID));
2789 }
2790 
2791 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2792 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2793   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2794 }
2795 
2796 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2797 /// FIXME: privatize to AsmPrinter.
2798 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2799   const DataLayout &DL = getDataLayout();
2800   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2801                                       Twine(getFunctionNumber()) + "_" +
2802                                       Twine(UID) + "_set_" + Twine(MBBID));
2803 }
2804 
2805 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2806                                                    StringRef Suffix) const {
2807   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2808 }
2809 
2810 /// Return the MCSymbol for the specified ExternalSymbol.
2811 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2812   SmallString<60> NameStr;
2813   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2814   return OutContext.getOrCreateSymbol(NameStr);
2815 }
2816 
2817 /// PrintParentLoopComment - Print comments about parent loops of this one.
2818 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2819                                    unsigned FunctionNumber) {
2820   if (!Loop) return;
2821   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2822   OS.indent(Loop->getLoopDepth()*2)
2823     << "Parent Loop BB" << FunctionNumber << "_"
2824     << Loop->getHeader()->getNumber()
2825     << " Depth=" << Loop->getLoopDepth() << '\n';
2826 }
2827 
2828 /// PrintChildLoopComment - Print comments about child loops within
2829 /// the loop for this basic block, with nesting.
2830 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2831                                   unsigned FunctionNumber) {
2832   // Add child loop information
2833   for (const MachineLoop *CL : *Loop) {
2834     OS.indent(CL->getLoopDepth()*2)
2835       << "Child Loop BB" << FunctionNumber << "_"
2836       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2837       << '\n';
2838     PrintChildLoopComment(OS, CL, FunctionNumber);
2839   }
2840 }
2841 
2842 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2843 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2844                                        const MachineLoopInfo *LI,
2845                                        const AsmPrinter &AP) {
2846   // Add loop depth information
2847   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2848   if (!Loop) return;
2849 
2850   MachineBasicBlock *Header = Loop->getHeader();
2851   assert(Header && "No header for loop");
2852 
2853   // If this block is not a loop header, just print out what is the loop header
2854   // and return.
2855   if (Header != &MBB) {
2856     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2857                                Twine(AP.getFunctionNumber())+"_" +
2858                                Twine(Loop->getHeader()->getNumber())+
2859                                " Depth="+Twine(Loop->getLoopDepth()));
2860     return;
2861   }
2862 
2863   // Otherwise, it is a loop header.  Print out information about child and
2864   // parent loops.
2865   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2866 
2867   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2868 
2869   OS << "=>";
2870   OS.indent(Loop->getLoopDepth()*2-2);
2871 
2872   OS << "This ";
2873   if (Loop->empty())
2874     OS << "Inner ";
2875   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2876 
2877   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2878 }
2879 
2880 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2881                                          MCCodePaddingContext &Context) const {
2882   assert(MF != nullptr && "Machine function must be valid");
2883   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2884                             !MF->getFunction().hasOptSize() &&
2885                             TM.getOptLevel() != CodeGenOpt::None;
2886   Context.IsBasicBlockReachableViaFallthrough =
2887       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2888       MBB.pred_end();
2889   Context.IsBasicBlockReachableViaBranch =
2890       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2891 }
2892 
2893 /// EmitBasicBlockStart - This method prints the label for the specified
2894 /// MachineBasicBlock, an alignment (if present) and a comment describing
2895 /// it if appropriate.
2896 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) {
2897   // End the previous funclet and start a new one.
2898   if (MBB.isEHFuncletEntry()) {
2899     for (const HandlerInfo &HI : Handlers) {
2900       HI.Handler->endFunclet();
2901       HI.Handler->beginFunclet(MBB);
2902     }
2903   }
2904 
2905   // Emit an alignment directive for this block, if needed.
2906   const llvm::Align Align = MBB.getAlignment();
2907   if (Align != llvm::Align::None())
2908     EmitAlignment(Align);
2909   MCCodePaddingContext Context;
2910   setupCodePaddingContext(MBB, Context);
2911   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2912 
2913   // If the block has its address taken, emit any labels that were used to
2914   // reference the block.  It is possible that there is more than one label
2915   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2916   // the references were generated.
2917   if (MBB.hasAddressTaken()) {
2918     const BasicBlock *BB = MBB.getBasicBlock();
2919     if (isVerbose())
2920       OutStreamer->AddComment("Block address taken");
2921 
2922     // MBBs can have their address taken as part of CodeGen without having
2923     // their corresponding BB's address taken in IR
2924     if (BB->hasAddressTaken())
2925       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2926         OutStreamer->EmitLabel(Sym);
2927   }
2928 
2929   // Print some verbose block comments.
2930   if (isVerbose()) {
2931     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2932       if (BB->hasName()) {
2933         BB->printAsOperand(OutStreamer->GetCommentOS(),
2934                            /*PrintType=*/false, BB->getModule());
2935         OutStreamer->GetCommentOS() << '\n';
2936       }
2937     }
2938 
2939     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2940     emitBasicBlockLoopComments(MBB, MLI, *this);
2941   }
2942 
2943   // Print the main label for the block.
2944   if (MBB.pred_empty() ||
2945       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
2946        !MBB.hasLabelMustBeEmitted())) {
2947     if (isVerbose()) {
2948       // NOTE: Want this comment at start of line, don't emit with AddComment.
2949       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2950                                   false);
2951     }
2952   } else {
2953     if (isVerbose() && MBB.hasLabelMustBeEmitted())
2954       OutStreamer->AddComment("Label of block must be emitted");
2955     OutStreamer->EmitLabel(MBB.getSymbol());
2956   }
2957 }
2958 
2959 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2960   MCCodePaddingContext Context;
2961   setupCodePaddingContext(MBB, Context);
2962   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2963 }
2964 
2965 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2966                                 bool IsDefinition) const {
2967   MCSymbolAttr Attr = MCSA_Invalid;
2968 
2969   switch (Visibility) {
2970   default: break;
2971   case GlobalValue::HiddenVisibility:
2972     if (IsDefinition)
2973       Attr = MAI->getHiddenVisibilityAttr();
2974     else
2975       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2976     break;
2977   case GlobalValue::ProtectedVisibility:
2978     Attr = MAI->getProtectedVisibilityAttr();
2979     break;
2980   }
2981 
2982   if (Attr != MCSA_Invalid)
2983     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2984 }
2985 
2986 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2987 /// exactly one predecessor and the control transfer mechanism between
2988 /// the predecessor and this block is a fall-through.
2989 bool AsmPrinter::
2990 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2991   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2992   // then nothing falls through to it.
2993   if (MBB->isEHPad() || MBB->pred_empty())
2994     return false;
2995 
2996   // If there isn't exactly one predecessor, it can't be a fall through.
2997   if (MBB->pred_size() > 1)
2998     return false;
2999 
3000   // The predecessor has to be immediately before this block.
3001   MachineBasicBlock *Pred = *MBB->pred_begin();
3002   if (!Pred->isLayoutSuccessor(MBB))
3003     return false;
3004 
3005   // If the block is completely empty, then it definitely does fall through.
3006   if (Pred->empty())
3007     return true;
3008 
3009   // Check the terminators in the previous blocks
3010   for (const auto &MI : Pred->terminators()) {
3011     // If it is not a simple branch, we are in a table somewhere.
3012     if (!MI.isBranch() || MI.isIndirectBranch())
3013       return false;
3014 
3015     // If we are the operands of one of the branches, this is not a fall
3016     // through. Note that targets with delay slots will usually bundle
3017     // terminators with the delay slot instruction.
3018     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3019       if (OP->isJTI())
3020         return false;
3021       if (OP->isMBB() && OP->getMBB() == MBB)
3022         return false;
3023     }
3024   }
3025 
3026   return true;
3027 }
3028 
3029 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3030   if (!S.usesMetadata())
3031     return nullptr;
3032 
3033   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3034   gcp_map_type::iterator GCPI = GCMap.find(&S);
3035   if (GCPI != GCMap.end())
3036     return GCPI->second.get();
3037 
3038   auto Name = S.getName();
3039 
3040   for (GCMetadataPrinterRegistry::iterator
3041          I = GCMetadataPrinterRegistry::begin(),
3042          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3043     if (Name == I->getName()) {
3044       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3045       GMP->S = &S;
3046       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3047       return IterBool.first->second.get();
3048     }
3049 
3050   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3051 }
3052 
3053 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3054   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3055   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3056   bool NeedsDefault = false;
3057   if (MI->begin() == MI->end())
3058     // No GC strategy, use the default format.
3059     NeedsDefault = true;
3060   else
3061     for (auto &I : *MI) {
3062       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3063         if (MP->emitStackMaps(SM, *this))
3064           continue;
3065       // The strategy doesn't have printer or doesn't emit custom stack maps.
3066       // Use the default format.
3067       NeedsDefault = true;
3068     }
3069 
3070   if (NeedsDefault)
3071     SM.serializeToStackMapSection();
3072 }
3073 
3074 /// Pin vtable to this file.
3075 AsmPrinterHandler::~AsmPrinterHandler() = default;
3076 
3077 void AsmPrinterHandler::markFunctionEnd() {}
3078 
3079 // In the binary's "xray_instr_map" section, an array of these function entries
3080 // describes each instrumentation point.  When XRay patches your code, the index
3081 // into this table will be given to your handler as a patch point identifier.
3082 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3083                                          const MCSymbol *CurrentFnSym) const {
3084   Out->EmitSymbolValue(Sled, Bytes);
3085   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3086   auto Kind8 = static_cast<uint8_t>(Kind);
3087   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3088   Out->EmitBinaryData(
3089       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3090   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3091   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3092   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3093   Out->EmitZeros(Padding);
3094 }
3095 
3096 void AsmPrinter::emitXRayTable() {
3097   if (Sleds.empty())
3098     return;
3099 
3100   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3101   const Function &F = MF->getFunction();
3102   MCSection *InstMap = nullptr;
3103   MCSection *FnSledIndex = nullptr;
3104   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3105     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3106     assert(Associated != nullptr);
3107     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3108     std::string GroupName;
3109     if (F.hasComdat()) {
3110       Flags |= ELF::SHF_GROUP;
3111       GroupName = F.getComdat()->getName();
3112     }
3113 
3114     auto UniqueID = ++XRayFnUniqueID;
3115     InstMap =
3116         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3117                                  GroupName, UniqueID, Associated);
3118     FnSledIndex =
3119         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3120                                  GroupName, UniqueID, Associated);
3121   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3122     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3123                                          SectionKind::getReadOnlyWithRel());
3124     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3125                                              SectionKind::getReadOnlyWithRel());
3126   } else {
3127     llvm_unreachable("Unsupported target");
3128   }
3129 
3130   auto WordSizeBytes = MAI->getCodePointerSize();
3131 
3132   // Now we switch to the instrumentation map section. Because this is done
3133   // per-function, we are able to create an index entry that will represent the
3134   // range of sleds associated with a function.
3135   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3136   OutStreamer->SwitchSection(InstMap);
3137   OutStreamer->EmitLabel(SledsStart);
3138   for (const auto &Sled : Sleds)
3139     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3140   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3141   OutStreamer->EmitLabel(SledsEnd);
3142 
3143   // We then emit a single entry in the index per function. We use the symbols
3144   // that bound the instrumentation map as the range for a specific function.
3145   // Each entry here will be 2 * word size aligned, as we're writing down two
3146   // pointers. This should work for both 32-bit and 64-bit platforms.
3147   OutStreamer->SwitchSection(FnSledIndex);
3148   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3149   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3150   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3151   OutStreamer->SwitchSection(PrevSection);
3152   Sleds.clear();
3153 }
3154 
3155 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3156                             SledKind Kind, uint8_t Version) {
3157   const Function &F = MI.getMF()->getFunction();
3158   auto Attr = F.getFnAttribute("function-instrument");
3159   bool LogArgs = F.hasFnAttribute("xray-log-args");
3160   bool AlwaysInstrument =
3161     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3162   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3163     Kind = SledKind::LOG_ARGS_ENTER;
3164   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3165                                        AlwaysInstrument, &F, Version});
3166 }
3167 
3168 uint16_t AsmPrinter::getDwarfVersion() const {
3169   return OutStreamer->getContext().getDwarfVersion();
3170 }
3171 
3172 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3173   OutStreamer->getContext().setDwarfVersion(Version);
3174 }
3175