1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/MC/MCAsmInfo.h"
83 #include "llvm/MC/MCContext.h"
84 #include "llvm/MC/MCDirectives.h"
85 #include "llvm/MC/MCDwarf.h"
86 #include "llvm/MC/MCExpr.h"
87 #include "llvm/MC/MCInst.h"
88 #include "llvm/MC/MCSection.h"
89 #include "llvm/MC/MCSectionCOFF.h"
90 #include "llvm/MC/MCSectionELF.h"
91 #include "llvm/MC/MCSectionMachO.h"
92 #include "llvm/MC/MCSectionXCOFF.h"
93 #include "llvm/MC/MCStreamer.h"
94 #include "llvm/MC/MCSubtargetInfo.h"
95 #include "llvm/MC/MCSymbol.h"
96 #include "llvm/MC/MCSymbolELF.h"
97 #include "llvm/MC/MCSymbolXCOFF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Remarks/RemarkFormat.h"
104 #include "llvm/Remarks/RemarkStreamer.h"
105 #include "llvm/Remarks/RemarkStringTable.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/Format.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/Path.h"
113 #include "llvm/Support/TargetRegistry.h"
114 #include "llvm/Support/Timer.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetLoweringObjectFile.h"
117 #include "llvm/Target/TargetMachine.h"
118 #include "llvm/Target/TargetOptions.h"
119 #include <algorithm>
120 #include <cassert>
121 #include <cinttypes>
122 #include <cstdint>
123 #include <iterator>
124 #include <limits>
125 #include <memory>
126 #include <string>
127 #include <utility>
128 #include <vector>
129 
130 using namespace llvm;
131 
132 #define DEBUG_TYPE "asm-printer"
133 
134 static const char *const DWARFGroupName = "dwarf";
135 static const char *const DWARFGroupDescription = "DWARF Emission";
136 static const char *const DbgTimerName = "emit";
137 static const char *const DbgTimerDescription = "Debug Info Emission";
138 static const char *const EHTimerName = "write_exception";
139 static const char *const EHTimerDescription = "DWARF Exception Writer";
140 static const char *const CFGuardName = "Control Flow Guard";
141 static const char *const CFGuardDescription = "Control Flow Guard";
142 static const char *const CodeViewLineTablesGroupName = "linetables";
143 static const char *const CodeViewLineTablesGroupDescription =
144   "CodeView Line Tables";
145 
146 STATISTIC(EmittedInsts, "Number of machine instrs printed");
147 
148 char AsmPrinter::ID = 0;
149 
150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
151 
152 static gcp_map_type &getGCMap(void *&P) {
153   if (!P)
154     P = new gcp_map_type();
155   return *(gcp_map_type*)P;
156 }
157 
158 /// getGVAlignment - Return the alignment to use for the specified global
159 /// value.  This rounds up to the preferred alignment if possible and legal.
160 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL,
161                                  Align InAlign) {
162   Align Alignment;
163   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
164     Alignment = Align(DL.getPreferredAlignment(GVar));
165 
166   // If InAlign is specified, round it to it.
167   if (InAlign > Alignment)
168     Alignment = InAlign;
169 
170   // If the GV has a specified alignment, take it into account.
171   const MaybeAlign GVAlign(GV->getAlignment());
172   if (!GVAlign)
173     return Alignment;
174 
175   assert(GVAlign && "GVAlign must be set");
176 
177   // If the GVAlign is larger than NumBits, or if we are required to obey
178   // NumBits because the GV has an assigned section, obey it.
179   if (*GVAlign > Alignment || GV->hasSection())
180     Alignment = *GVAlign;
181   return Alignment;
182 }
183 
184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
185     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
186       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
187   VerboseAsm = OutStreamer->isVerboseAsm();
188 }
189 
190 AsmPrinter::~AsmPrinter() {
191   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
192 
193   if (GCMetadataPrinters) {
194     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
195 
196     delete &GCMap;
197     GCMetadataPrinters = nullptr;
198   }
199 }
200 
201 bool AsmPrinter::isPositionIndependent() const {
202   return TM.isPositionIndependent();
203 }
204 
205 /// getFunctionNumber - Return a unique ID for the current function.
206 unsigned AsmPrinter::getFunctionNumber() const {
207   return MF->getFunctionNumber();
208 }
209 
210 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
211   return *TM.getObjFileLowering();
212 }
213 
214 const DataLayout &AsmPrinter::getDataLayout() const {
215   return MMI->getModule()->getDataLayout();
216 }
217 
218 // Do not use the cached DataLayout because some client use it without a Module
219 // (dsymutil, llvm-dwarfdump).
220 unsigned AsmPrinter::getPointerSize() const {
221   return TM.getPointerSize(0); // FIXME: Default address space
222 }
223 
224 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
225   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
226   return MF->getSubtarget<MCSubtargetInfo>();
227 }
228 
229 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
230   S.emitInstruction(Inst, getSubtargetInfo());
231 }
232 
233 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
234   assert(DD && "Dwarf debug file is not defined.");
235   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
236   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
237 }
238 
239 /// getCurrentSection() - Return the current section we are emitting to.
240 const MCSection *AsmPrinter::getCurrentSection() const {
241   return OutStreamer->getCurrentSectionOnly();
242 }
243 
244 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
245   AU.setPreservesAll();
246   MachineFunctionPass::getAnalysisUsage(AU);
247   AU.addRequired<MachineModuleInfoWrapperPass>();
248   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
249   AU.addRequired<GCModuleInfo>();
250 }
251 
252 bool AsmPrinter::doInitialization(Module &M) {
253   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
254   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
255 
256   // Initialize TargetLoweringObjectFile.
257   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
258     .Initialize(OutContext, TM);
259 
260   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
261       .getModuleMetadata(M);
262 
263   OutStreamer->InitSections(false);
264 
265   // Emit the version-min deployment target directive if needed.
266   //
267   // FIXME: If we end up with a collection of these sorts of Darwin-specific
268   // or ELF-specific things, it may make sense to have a platform helper class
269   // that will work with the target helper class. For now keep it here, as the
270   // alternative is duplicated code in each of the target asm printers that
271   // use the directive, where it would need the same conditionalization
272   // anyway.
273   const Triple &Target = TM.getTargetTriple();
274   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
275 
276   // Allow the target to emit any magic that it wants at the start of the file.
277   emitStartOfAsmFile(M);
278 
279   // Very minimal debug info. It is ignored if we emit actual debug info. If we
280   // don't, this at least helps the user find where a global came from.
281   if (MAI->hasSingleParameterDotFile()) {
282     // .file "foo.c"
283     OutStreamer->emitFileDirective(
284         llvm::sys::path::filename(M.getSourceFileName()));
285   }
286 
287   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
288   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
289   for (auto &I : *MI)
290     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
291       MP->beginAssembly(M, *MI, *this);
292 
293   // Emit module-level inline asm if it exists.
294   if (!M.getModuleInlineAsm().empty()) {
295     // We're at the module level. Construct MCSubtarget from the default CPU
296     // and target triple.
297     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
298         TM.getTargetTriple().str(), TM.getTargetCPU(),
299         TM.getTargetFeatureString()));
300     OutStreamer->AddComment("Start of file scope inline assembly");
301     OutStreamer->AddBlankLine();
302     emitInlineAsm(M.getModuleInlineAsm() + "\n",
303                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
304     OutStreamer->AddComment("End of file scope inline assembly");
305     OutStreamer->AddBlankLine();
306   }
307 
308   if (MAI->doesSupportDebugInformation()) {
309     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
310     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
311       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
312                             DbgTimerName, DbgTimerDescription,
313                             CodeViewLineTablesGroupName,
314                             CodeViewLineTablesGroupDescription);
315     }
316     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
317       DD = new DwarfDebug(this, &M);
318       DD->beginModule();
319       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
320                             DbgTimerDescription, DWARFGroupName,
321                             DWARFGroupDescription);
322     }
323   }
324 
325   switch (MAI->getExceptionHandlingType()) {
326   case ExceptionHandling::SjLj:
327   case ExceptionHandling::DwarfCFI:
328   case ExceptionHandling::ARM:
329     isCFIMoveForDebugging = true;
330     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
331       break;
332     for (auto &F: M.getFunctionList()) {
333       // If the module contains any function with unwind data,
334       // .eh_frame has to be emitted.
335       // Ignore functions that won't get emitted.
336       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
337         isCFIMoveForDebugging = false;
338         break;
339       }
340     }
341     break;
342   default:
343     isCFIMoveForDebugging = false;
344     break;
345   }
346 
347   EHStreamer *ES = nullptr;
348   switch (MAI->getExceptionHandlingType()) {
349   case ExceptionHandling::None:
350     break;
351   case ExceptionHandling::SjLj:
352   case ExceptionHandling::DwarfCFI:
353     ES = new DwarfCFIException(this);
354     break;
355   case ExceptionHandling::ARM:
356     ES = new ARMException(this);
357     break;
358   case ExceptionHandling::WinEH:
359     switch (MAI->getWinEHEncodingType()) {
360     default: llvm_unreachable("unsupported unwinding information encoding");
361     case WinEH::EncodingType::Invalid:
362       break;
363     case WinEH::EncodingType::X86:
364     case WinEH::EncodingType::Itanium:
365       ES = new WinException(this);
366       break;
367     }
368     break;
369   case ExceptionHandling::Wasm:
370     ES = new WasmException(this);
371     break;
372   }
373   if (ES)
374     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
375                           EHTimerDescription, DWARFGroupName,
376                           DWARFGroupDescription);
377 
378   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
379   if (mdconst::extract_or_null<ConstantInt>(
380           MMI->getModule()->getModuleFlag("cfguard")))
381     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
382                           CFGuardDescription, DWARFGroupName,
383                           DWARFGroupDescription);
384   return false;
385 }
386 
387 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
388   if (!MAI.hasWeakDefCanBeHiddenDirective())
389     return false;
390 
391   return GV->canBeOmittedFromSymbolTable();
392 }
393 
394 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
395   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
396   switch (Linkage) {
397   case GlobalValue::CommonLinkage:
398     assert(!TM.getTargetTriple().isOSBinFormatXCOFF() &&
399            "CommonLinkage of XCOFF should not come to this path.");
400     LLVM_FALLTHROUGH;
401   case GlobalValue::LinkOnceAnyLinkage:
402   case GlobalValue::LinkOnceODRLinkage:
403   case GlobalValue::WeakAnyLinkage:
404   case GlobalValue::WeakODRLinkage:
405     if (MAI->hasWeakDefDirective()) {
406       // .globl _foo
407       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
408 
409       if (!canBeHidden(GV, *MAI))
410         // .weak_definition _foo
411         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
412       else
413         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
414     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
415       // .globl _foo
416       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
417       //NOTE: linkonce is handled by the section the symbol was assigned to.
418     } else {
419       // .weak _foo
420       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
421     }
422     return;
423   case GlobalValue::ExternalLinkage:
424     if (MAI->hasDotExternDirective() && GV->isDeclaration())
425       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Extern);
426     else
427       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
428     return;
429   case GlobalValue::PrivateLinkage:
430     return;
431   case GlobalValue::InternalLinkage:
432     if (MAI->hasDotLGloblDirective())
433       OutStreamer->emitSymbolAttribute(GVSym, MCSA_LGlobal);
434     return;
435   case GlobalValue::ExternalWeakLinkage:
436     if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
437       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
438       return;
439     }
440     LLVM_FALLTHROUGH;
441   case GlobalValue::AvailableExternallyLinkage:
442     if (MAI->hasDotExternDirective()) {
443       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Extern);
444       return;
445     }
446     LLVM_FALLTHROUGH;
447   case GlobalValue::AppendingLinkage:
448     llvm_unreachable("Should never emit this");
449   }
450   llvm_unreachable("Unknown linkage type!");
451 }
452 
453 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
454                                    const GlobalValue *GV) const {
455   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
456 }
457 
458 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
459   return TM.getSymbol(GV);
460 }
461 
462 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
463   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
464   // exact definion (intersection of GlobalValue::hasExactDefinition() and
465   // !isInterposable()). These linkages include: external, appending, internal,
466   // private. It may be profitable to use a local alias for external. The
467   // assembler would otherwise be conservative and assume a global default
468   // visibility symbol can be interposable, even if the code generator already
469   // assumed it.
470   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
471     const Module &M = *GV.getParent();
472     if (TM.getRelocationModel() != Reloc::Static &&
473         M.getPIELevel() == PIELevel::Default)
474       if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() &&
475                               GV.getParent()->noSemanticInterposition()))
476         return getSymbolWithGlobalValueBase(&GV, "$local");
477   }
478   return TM.getSymbol(&GV);
479 }
480 
481 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
482 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
483   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
484   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
485          "No emulated TLS variables in the common section");
486 
487   // Never emit TLS variable xyz in emulated TLS model.
488   // The initialization value is in __emutls_t.xyz instead of xyz.
489   if (IsEmuTLSVar)
490     return;
491 
492   if (GV->hasInitializer()) {
493     // Check to see if this is a special global used by LLVM, if so, emit it.
494     if (emitSpecialLLVMGlobal(GV))
495       return;
496 
497     // Skip the emission of global equivalents. The symbol can be emitted later
498     // on by emitGlobalGOTEquivs in case it turns out to be needed.
499     if (GlobalGOTEquivs.count(getSymbol(GV)))
500       return;
501 
502     if (isVerbose()) {
503       // When printing the control variable __emutls_v.*,
504       // we don't need to print the original TLS variable name.
505       GV->printAsOperand(OutStreamer->GetCommentOS(),
506                      /*PrintType=*/false, GV->getParent());
507       OutStreamer->GetCommentOS() << '\n';
508     }
509   }
510 
511   MCSymbol *GVSym = getSymbol(GV);
512   MCSymbol *EmittedSym = GVSym;
513 
514   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
515   // attributes.
516   // GV's or GVSym's attributes will be used for the EmittedSym.
517   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
518 
519   if (!GV->hasInitializer())   // External globals require no extra code.
520     return;
521 
522   GVSym->redefineIfPossible();
523   if (GVSym->isDefined() || GVSym->isVariable())
524     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
525                        "' is already defined");
526 
527   if (MAI->hasDotTypeDotSizeDirective())
528     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
529 
530   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
531 
532   const DataLayout &DL = GV->getParent()->getDataLayout();
533   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
534 
535   // If the alignment is specified, we *must* obey it.  Overaligning a global
536   // with a specified alignment is a prompt way to break globals emitted to
537   // sections and expected to be contiguous (e.g. ObjC metadata).
538   const Align Alignment = getGVAlignment(GV, DL);
539 
540   for (const HandlerInfo &HI : Handlers) {
541     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
542                        HI.TimerGroupName, HI.TimerGroupDescription,
543                        TimePassesIsEnabled);
544     HI.Handler->setSymbolSize(GVSym, Size);
545   }
546 
547   // Handle common symbols
548   if (GVKind.isCommon()) {
549     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
550     // .comm _foo, 42, 4
551     const bool SupportsAlignment =
552         getObjFileLowering().getCommDirectiveSupportsAlignment();
553     OutStreamer->emitCommonSymbol(GVSym, Size,
554                                   SupportsAlignment ? Alignment.value() : 0);
555     return;
556   }
557 
558   // Determine to which section this global should be emitted.
559   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
560 
561   // If we have a bss global going to a section that supports the
562   // zerofill directive, do so here.
563   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
564       TheSection->isVirtualSection()) {
565     if (Size == 0)
566       Size = 1; // zerofill of 0 bytes is undefined.
567     emitLinkage(GV, GVSym);
568     // .zerofill __DATA, __bss, _foo, 400, 5
569     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
570     return;
571   }
572 
573   // If this is a BSS local symbol and we are emitting in the BSS
574   // section use .lcomm/.comm directive.
575   if (GVKind.isBSSLocal() &&
576       getObjFileLowering().getBSSSection() == TheSection) {
577     if (Size == 0)
578       Size = 1; // .comm Foo, 0 is undefined, avoid it.
579 
580     // Use .lcomm only if it supports user-specified alignment.
581     // Otherwise, while it would still be correct to use .lcomm in some
582     // cases (e.g. when Align == 1), the external assembler might enfore
583     // some -unknown- default alignment behavior, which could cause
584     // spurious differences between external and integrated assembler.
585     // Prefer to simply fall back to .local / .comm in this case.
586     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
587       // .lcomm _foo, 42
588       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
589       return;
590     }
591 
592     // .local _foo
593     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
594     // .comm _foo, 42, 4
595     const bool SupportsAlignment =
596         getObjFileLowering().getCommDirectiveSupportsAlignment();
597     OutStreamer->emitCommonSymbol(GVSym, Size,
598                                   SupportsAlignment ? Alignment.value() : 0);
599     return;
600   }
601 
602   // Handle thread local data for mach-o which requires us to output an
603   // additional structure of data and mangle the original symbol so that we
604   // can reference it later.
605   //
606   // TODO: This should become an "emit thread local global" method on TLOF.
607   // All of this macho specific stuff should be sunk down into TLOFMachO and
608   // stuff like "TLSExtraDataSection" should no longer be part of the parent
609   // TLOF class.  This will also make it more obvious that stuff like
610   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
611   // specific code.
612   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
613     // Emit the .tbss symbol
614     MCSymbol *MangSym =
615         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
616 
617     if (GVKind.isThreadBSS()) {
618       TheSection = getObjFileLowering().getTLSBSSSection();
619       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
620     } else if (GVKind.isThreadData()) {
621       OutStreamer->SwitchSection(TheSection);
622 
623       emitAlignment(Alignment, GV);
624       OutStreamer->emitLabel(MangSym);
625 
626       emitGlobalConstant(GV->getParent()->getDataLayout(),
627                          GV->getInitializer());
628     }
629 
630     OutStreamer->AddBlankLine();
631 
632     // Emit the variable struct for the runtime.
633     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
634 
635     OutStreamer->SwitchSection(TLVSect);
636     // Emit the linkage here.
637     emitLinkage(GV, GVSym);
638     OutStreamer->emitLabel(GVSym);
639 
640     // Three pointers in size:
641     //   - __tlv_bootstrap - used to make sure support exists
642     //   - spare pointer, used when mapped by the runtime
643     //   - pointer to mangled symbol above with initializer
644     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
645     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
646                                 PtrSize);
647     OutStreamer->emitIntValue(0, PtrSize);
648     OutStreamer->emitSymbolValue(MangSym, PtrSize);
649 
650     OutStreamer->AddBlankLine();
651     return;
652   }
653 
654   MCSymbol *EmittedInitSym = GVSym;
655 
656   OutStreamer->SwitchSection(TheSection);
657 
658   emitLinkage(GV, EmittedInitSym);
659   emitAlignment(Alignment, GV);
660 
661   OutStreamer->emitLabel(EmittedInitSym);
662   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
663   if (LocalAlias != EmittedInitSym)
664     OutStreamer->emitLabel(LocalAlias);
665 
666   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
667 
668   if (MAI->hasDotTypeDotSizeDirective())
669     // .size foo, 42
670     OutStreamer->emitELFSize(EmittedInitSym,
671                              MCConstantExpr::create(Size, OutContext));
672 
673   OutStreamer->AddBlankLine();
674 }
675 
676 /// Emit the directive and value for debug thread local expression
677 ///
678 /// \p Value - The value to emit.
679 /// \p Size - The size of the integer (in bytes) to emit.
680 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
681   OutStreamer->emitValue(Value, Size);
682 }
683 
684 void AsmPrinter::emitFunctionHeaderComment() {}
685 
686 /// EmitFunctionHeader - This method emits the header for the current
687 /// function.
688 void AsmPrinter::emitFunctionHeader() {
689   const Function &F = MF->getFunction();
690 
691   if (isVerbose())
692     OutStreamer->GetCommentOS()
693         << "-- Begin function "
694         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
695 
696   // Print out constants referenced by the function
697   emitConstantPool();
698 
699   // Print the 'header' of function.
700   MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
701   OutStreamer->SwitchSection(MF->getSection());
702 
703   emitVisibility(CurrentFnSym, F.getVisibility());
704 
705   if (MAI->needsFunctionDescriptors() &&
706       F.getLinkage() != GlobalValue::InternalLinkage)
707     emitLinkage(&F, CurrentFnDescSym);
708 
709   emitLinkage(&F, CurrentFnSym);
710   if (MAI->hasFunctionAlignment())
711     emitAlignment(MF->getAlignment(), &F);
712 
713   if (MAI->hasDotTypeDotSizeDirective())
714     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
715 
716   if (F.hasFnAttribute(Attribute::Cold))
717     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
718 
719   if (isVerbose()) {
720     F.printAsOperand(OutStreamer->GetCommentOS(),
721                    /*PrintType=*/false, F.getParent());
722     emitFunctionHeaderComment();
723     OutStreamer->GetCommentOS() << '\n';
724   }
725 
726   // Emit the prefix data.
727   if (F.hasPrefixData()) {
728     if (MAI->hasSubsectionsViaSymbols()) {
729       // Preserving prefix data on platforms which use subsections-via-symbols
730       // is a bit tricky. Here we introduce a symbol for the prefix data
731       // and use the .alt_entry attribute to mark the function's real entry point
732       // as an alternative entry point to the prefix-data symbol.
733       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
734       OutStreamer->emitLabel(PrefixSym);
735 
736       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
737 
738       // Emit an .alt_entry directive for the actual function symbol.
739       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
740     } else {
741       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
742     }
743   }
744 
745   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
746   // place prefix data before NOPs.
747   unsigned PatchableFunctionPrefix = 0;
748   unsigned PatchableFunctionEntry = 0;
749   (void)F.getFnAttribute("patchable-function-prefix")
750       .getValueAsString()
751       .getAsInteger(10, PatchableFunctionPrefix);
752   (void)F.getFnAttribute("patchable-function-entry")
753       .getValueAsString()
754       .getAsInteger(10, PatchableFunctionEntry);
755   if (PatchableFunctionPrefix) {
756     CurrentPatchableFunctionEntrySym =
757         OutContext.createLinkerPrivateTempSymbol();
758     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
759     emitNops(PatchableFunctionPrefix);
760   } else if (PatchableFunctionEntry) {
761     // May be reassigned when emitting the body, to reference the label after
762     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
763     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
764   }
765 
766   // Emit the function descriptor. This is a virtual function to allow targets
767   // to emit their specific function descriptor. Right now it is only used by
768   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
769   // descriptors and should be converted to use this hook as well.
770   if (MAI->needsFunctionDescriptors())
771     emitFunctionDescriptor();
772 
773   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
774   // their wild and crazy things as required.
775   emitFunctionEntryLabel();
776 
777   if (CurrentFnBegin) {
778     if (MAI->useAssignmentForEHBegin()) {
779       MCSymbol *CurPos = OutContext.createTempSymbol();
780       OutStreamer->emitLabel(CurPos);
781       OutStreamer->emitAssignment(CurrentFnBegin,
782                                  MCSymbolRefExpr::create(CurPos, OutContext));
783     } else {
784       OutStreamer->emitLabel(CurrentFnBegin);
785     }
786   }
787 
788   // Emit pre-function debug and/or EH information.
789   for (const HandlerInfo &HI : Handlers) {
790     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
791                        HI.TimerGroupDescription, TimePassesIsEnabled);
792     HI.Handler->beginFunction(MF);
793   }
794 
795   // Emit the prologue data.
796   if (F.hasPrologueData())
797     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
798 }
799 
800 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
801 /// function.  This can be overridden by targets as required to do custom stuff.
802 void AsmPrinter::emitFunctionEntryLabel() {
803   CurrentFnSym->redefineIfPossible();
804 
805   // The function label could have already been emitted if two symbols end up
806   // conflicting due to asm renaming.  Detect this and emit an error.
807   if (CurrentFnSym->isVariable())
808     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
809                        "' is a protected alias");
810   if (CurrentFnSym->isDefined())
811     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
812                        "' label emitted multiple times to assembly file");
813 
814   OutStreamer->emitLabel(CurrentFnSym);
815 
816   if (TM.getTargetTriple().isOSBinFormatELF()) {
817     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
818     if (Sym != CurrentFnSym)
819       OutStreamer->emitLabel(Sym);
820   }
821 }
822 
823 /// emitComments - Pretty-print comments for instructions.
824 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
825   const MachineFunction *MF = MI.getMF();
826   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
827 
828   // Check for spills and reloads
829 
830   // We assume a single instruction only has a spill or reload, not
831   // both.
832   Optional<unsigned> Size;
833   if ((Size = MI.getRestoreSize(TII))) {
834     CommentOS << *Size << "-byte Reload\n";
835   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
836     if (*Size)
837       CommentOS << *Size << "-byte Folded Reload\n";
838   } else if ((Size = MI.getSpillSize(TII))) {
839     CommentOS << *Size << "-byte Spill\n";
840   } else if ((Size = MI.getFoldedSpillSize(TII))) {
841     if (*Size)
842       CommentOS << *Size << "-byte Folded Spill\n";
843   }
844 
845   // Check for spill-induced copies
846   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
847     CommentOS << " Reload Reuse\n";
848 }
849 
850 /// emitImplicitDef - This method emits the specified machine instruction
851 /// that is an implicit def.
852 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
853   Register RegNo = MI->getOperand(0).getReg();
854 
855   SmallString<128> Str;
856   raw_svector_ostream OS(Str);
857   OS << "implicit-def: "
858      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
859 
860   OutStreamer->AddComment(OS.str());
861   OutStreamer->AddBlankLine();
862 }
863 
864 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
865   std::string Str;
866   raw_string_ostream OS(Str);
867   OS << "kill:";
868   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
869     const MachineOperand &Op = MI->getOperand(i);
870     assert(Op.isReg() && "KILL instruction must have only register operands");
871     OS << ' ' << (Op.isDef() ? "def " : "killed ")
872        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
873   }
874   AP.OutStreamer->AddComment(OS.str());
875   AP.OutStreamer->AddBlankLine();
876 }
877 
878 /// emitDebugValueComment - This method handles the target-independent form
879 /// of DBG_VALUE, returning true if it was able to do so.  A false return
880 /// means the target will need to handle MI in EmitInstruction.
881 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
882   // This code handles only the 4-operand target-independent form.
883   if (MI->getNumOperands() != 4)
884     return false;
885 
886   SmallString<128> Str;
887   raw_svector_ostream OS(Str);
888   OS << "DEBUG_VALUE: ";
889 
890   const DILocalVariable *V = MI->getDebugVariable();
891   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
892     StringRef Name = SP->getName();
893     if (!Name.empty())
894       OS << Name << ":";
895   }
896   OS << V->getName();
897   OS << " <- ";
898 
899   // The second operand is only an offset if it's an immediate.
900   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
901   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
902   const DIExpression *Expr = MI->getDebugExpression();
903   if (Expr->getNumElements()) {
904     OS << '[';
905     bool NeedSep = false;
906     for (auto Op : Expr->expr_ops()) {
907       if (NeedSep)
908         OS << ", ";
909       else
910         NeedSep = true;
911       OS << dwarf::OperationEncodingString(Op.getOp());
912       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
913         OS << ' ' << Op.getArg(I);
914     }
915     OS << "] ";
916   }
917 
918   // Register or immediate value. Register 0 means undef.
919   if (MI->getOperand(0).isFPImm()) {
920     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
921     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
922       OS << (double)APF.convertToFloat();
923     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
924       OS << APF.convertToDouble();
925     } else {
926       // There is no good way to print long double.  Convert a copy to
927       // double.  Ah well, it's only a comment.
928       bool ignored;
929       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
930                   &ignored);
931       OS << "(long double) " << APF.convertToDouble();
932     }
933   } else if (MI->getOperand(0).isImm()) {
934     OS << MI->getOperand(0).getImm();
935   } else if (MI->getOperand(0).isCImm()) {
936     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
937   } else if (MI->getOperand(0).isTargetIndex()) {
938     auto Op = MI->getOperand(0);
939     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
940     return true;
941   } else {
942     Register Reg;
943     if (MI->getOperand(0).isReg()) {
944       Reg = MI->getOperand(0).getReg();
945     } else {
946       assert(MI->getOperand(0).isFI() && "Unknown operand type");
947       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
948       Offset += TFI->getFrameIndexReference(*AP.MF,
949                                             MI->getOperand(0).getIndex(), Reg);
950       MemLoc = true;
951     }
952     if (Reg == 0) {
953       // Suppress offset, it is not meaningful here.
954       OS << "undef";
955       // NOTE: Want this comment at start of line, don't emit with AddComment.
956       AP.OutStreamer->emitRawComment(OS.str());
957       return true;
958     }
959     if (MemLoc)
960       OS << '[';
961     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
962   }
963 
964   if (MemLoc)
965     OS << '+' << Offset << ']';
966 
967   // NOTE: Want this comment at start of line, don't emit with AddComment.
968   AP.OutStreamer->emitRawComment(OS.str());
969   return true;
970 }
971 
972 /// This method handles the target-independent form of DBG_LABEL, returning
973 /// true if it was able to do so.  A false return means the target will need
974 /// to handle MI in EmitInstruction.
975 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
976   if (MI->getNumOperands() != 1)
977     return false;
978 
979   SmallString<128> Str;
980   raw_svector_ostream OS(Str);
981   OS << "DEBUG_LABEL: ";
982 
983   const DILabel *V = MI->getDebugLabel();
984   if (auto *SP = dyn_cast<DISubprogram>(
985           V->getScope()->getNonLexicalBlockFileScope())) {
986     StringRef Name = SP->getName();
987     if (!Name.empty())
988       OS << Name << ":";
989   }
990   OS << V->getName();
991 
992   // NOTE: Want this comment at start of line, don't emit with AddComment.
993   AP.OutStreamer->emitRawComment(OS.str());
994   return true;
995 }
996 
997 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
998   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
999       MF->getFunction().needsUnwindTableEntry())
1000     return CFI_M_EH;
1001 
1002   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
1003     return CFI_M_Debug;
1004 
1005   return CFI_M_None;
1006 }
1007 
1008 bool AsmPrinter::needsSEHMoves() {
1009   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1010 }
1011 
1012 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1013   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1014   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1015       ExceptionHandlingType != ExceptionHandling::ARM)
1016     return;
1017 
1018   if (needsCFIMoves() == CFI_M_None)
1019     return;
1020 
1021   // If there is no "real" instruction following this CFI instruction, skip
1022   // emitting it; it would be beyond the end of the function's FDE range.
1023   auto *MBB = MI.getParent();
1024   auto I = std::next(MI.getIterator());
1025   while (I != MBB->end() && I->isTransient())
1026     ++I;
1027   if (I == MBB->instr_end() &&
1028       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1029     return;
1030 
1031   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1032   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1033   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1034   emitCFIInstruction(CFI);
1035 }
1036 
1037 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1038   // The operands are the MCSymbol and the frame offset of the allocation.
1039   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1040   int FrameOffset = MI.getOperand(1).getImm();
1041 
1042   // Emit a symbol assignment.
1043   OutStreamer->emitAssignment(FrameAllocSym,
1044                              MCConstantExpr::create(FrameOffset, OutContext));
1045 }
1046 
1047 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1048   if (!MF.getTarget().Options.EmitStackSizeSection)
1049     return;
1050 
1051   MCSection *StackSizeSection =
1052       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1053   if (!StackSizeSection)
1054     return;
1055 
1056   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1057   // Don't emit functions with dynamic stack allocations.
1058   if (FrameInfo.hasVarSizedObjects())
1059     return;
1060 
1061   OutStreamer->PushSection();
1062   OutStreamer->SwitchSection(StackSizeSection);
1063 
1064   const MCSymbol *FunctionSymbol = getFunctionBegin();
1065   uint64_t StackSize = FrameInfo.getStackSize();
1066   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1067   OutStreamer->emitULEB128IntValue(StackSize);
1068 
1069   OutStreamer->PopSection();
1070 }
1071 
1072 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1073                                            MachineModuleInfo *MMI) {
1074   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1075     return true;
1076 
1077   // We might emit an EH table that uses function begin and end labels even if
1078   // we don't have any landingpads.
1079   if (!MF.getFunction().hasPersonalityFn())
1080     return false;
1081   return !isNoOpWithoutInvoke(
1082       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1083 }
1084 
1085 /// EmitFunctionBody - This method emits the body and trailer for a
1086 /// function.
1087 void AsmPrinter::emitFunctionBody() {
1088   emitFunctionHeader();
1089 
1090   // Emit target-specific gunk before the function body.
1091   emitFunctionBodyStart();
1092 
1093   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1094 
1095   if (isVerbose()) {
1096     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1097     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1098     if (!MDT) {
1099       OwnedMDT = std::make_unique<MachineDominatorTree>();
1100       OwnedMDT->getBase().recalculate(*MF);
1101       MDT = OwnedMDT.get();
1102     }
1103 
1104     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1105     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1106     if (!MLI) {
1107       OwnedMLI = std::make_unique<MachineLoopInfo>();
1108       OwnedMLI->getBase().analyze(MDT->getBase());
1109       MLI = OwnedMLI.get();
1110     }
1111   }
1112 
1113   // Print out code for the function.
1114   bool HasAnyRealCode = false;
1115   int NumInstsInFunction = 0;
1116 
1117   for (auto &MBB : *MF) {
1118     // Print a label for the basic block.
1119     emitBasicBlockStart(MBB);
1120     for (auto &MI : MBB) {
1121       // Print the assembly for the instruction.
1122       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1123           !MI.isDebugInstr()) {
1124         HasAnyRealCode = true;
1125         ++NumInstsInFunction;
1126       }
1127 
1128       // If there is a pre-instruction symbol, emit a label for it here.
1129       if (MCSymbol *S = MI.getPreInstrSymbol())
1130         OutStreamer->emitLabel(S);
1131 
1132       if (ShouldPrintDebugScopes) {
1133         for (const HandlerInfo &HI : Handlers) {
1134           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1135                              HI.TimerGroupName, HI.TimerGroupDescription,
1136                              TimePassesIsEnabled);
1137           HI.Handler->beginInstruction(&MI);
1138         }
1139       }
1140 
1141       if (isVerbose())
1142         emitComments(MI, OutStreamer->GetCommentOS());
1143 
1144       switch (MI.getOpcode()) {
1145       case TargetOpcode::CFI_INSTRUCTION:
1146         emitCFIInstruction(MI);
1147         break;
1148       case TargetOpcode::LOCAL_ESCAPE:
1149         emitFrameAlloc(MI);
1150         break;
1151       case TargetOpcode::ANNOTATION_LABEL:
1152       case TargetOpcode::EH_LABEL:
1153       case TargetOpcode::GC_LABEL:
1154         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1155         break;
1156       case TargetOpcode::INLINEASM:
1157       case TargetOpcode::INLINEASM_BR:
1158         emitInlineAsm(&MI);
1159         break;
1160       case TargetOpcode::DBG_VALUE:
1161         if (isVerbose()) {
1162           if (!emitDebugValueComment(&MI, *this))
1163             emitInstruction(&MI);
1164         }
1165         break;
1166       case TargetOpcode::DBG_LABEL:
1167         if (isVerbose()) {
1168           if (!emitDebugLabelComment(&MI, *this))
1169             emitInstruction(&MI);
1170         }
1171         break;
1172       case TargetOpcode::IMPLICIT_DEF:
1173         if (isVerbose()) emitImplicitDef(&MI);
1174         break;
1175       case TargetOpcode::KILL:
1176         if (isVerbose()) emitKill(&MI, *this);
1177         break;
1178       default:
1179         emitInstruction(&MI);
1180         break;
1181       }
1182 
1183       // If there is a post-instruction symbol, emit a label for it here.
1184       if (MCSymbol *S = MI.getPostInstrSymbol())
1185         OutStreamer->emitLabel(S);
1186 
1187       if (ShouldPrintDebugScopes) {
1188         for (const HandlerInfo &HI : Handlers) {
1189           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1190                              HI.TimerGroupName, HI.TimerGroupDescription,
1191                              TimePassesIsEnabled);
1192           HI.Handler->endInstruction();
1193         }
1194       }
1195     }
1196 
1197     // We need a temporary symbol for the end of this basic block, if either we
1198     // have BBLabels enabled and we want to emit size directive for the BBs, or
1199     // if this basic blocks marks the end of a section (except the section
1200     // containing the entry basic block as the end symbol for that section is
1201     // CurrentFnEnd).
1202     MCSymbol *CurrentBBEnd = nullptr;
1203     if ((MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels()) ||
1204         (MBB.isEndSection() && !MBB.sameSection(&MF->front()))) {
1205       CurrentBBEnd = OutContext.createTempSymbol();
1206       OutStreamer->emitLabel(CurrentBBEnd);
1207     }
1208 
1209     // Helper for emitting the size directive associated with a basic block
1210     // symbol.
1211     auto emitELFSizeDirective = [&](MCSymbol *SymForSize) {
1212       assert(CurrentBBEnd && "Basicblock end symbol not set!");
1213       const MCExpr *SizeExp = MCBinaryExpr::createSub(
1214           MCSymbolRefExpr::create(CurrentBBEnd, OutContext),
1215           MCSymbolRefExpr::create(SymForSize, OutContext), OutContext);
1216       OutStreamer->emitELFSize(SymForSize, SizeExp);
1217     };
1218 
1219     // Emit size directive for the size of each basic block, if BBLabels is
1220     // enabled.
1221     if (MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels())
1222       emitELFSizeDirective(MBB.getSymbol());
1223 
1224     // Emit size directive for the size of each basic block section once we
1225     // get to the end of that section.
1226     if (MBB.isEndSection()) {
1227       if (!MBB.sameSection(&MF->front())) {
1228         if (MAI->hasDotTypeDotSizeDirective())
1229           emitELFSizeDirective(CurrentSectionBeginSym);
1230       }
1231     }
1232     emitBasicBlockEnd(MBB);
1233   }
1234 
1235   EmittedInsts += NumInstsInFunction;
1236   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1237                                       MF->getFunction().getSubprogram(),
1238                                       &MF->front());
1239   R << ore::NV("NumInstructions", NumInstsInFunction)
1240     << " instructions in function";
1241   ORE->emit(R);
1242 
1243   // If the function is empty and the object file uses .subsections_via_symbols,
1244   // then we need to emit *something* to the function body to prevent the
1245   // labels from collapsing together.  Just emit a noop.
1246   // Similarly, don't emit empty functions on Windows either. It can lead to
1247   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1248   // after linking, causing the kernel not to load the binary:
1249   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1250   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1251   const Triple &TT = TM.getTargetTriple();
1252   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1253                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1254     MCInst Noop;
1255     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1256 
1257     // Targets can opt-out of emitting the noop here by leaving the opcode
1258     // unspecified.
1259     if (Noop.getOpcode()) {
1260       OutStreamer->AddComment("avoids zero-length function");
1261       emitNops(1);
1262     }
1263   }
1264 
1265   // Switch to the original section in case basic block sections was used.
1266   OutStreamer->SwitchSection(MF->getSection());
1267 
1268   const Function &F = MF->getFunction();
1269   for (const auto &BB : F) {
1270     if (!BB.hasAddressTaken())
1271       continue;
1272     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1273     if (Sym->isDefined())
1274       continue;
1275     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1276     OutStreamer->emitLabel(Sym);
1277   }
1278 
1279   // Emit target-specific gunk after the function body.
1280   emitFunctionBodyEnd();
1281 
1282   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1283       MAI->hasDotTypeDotSizeDirective()) {
1284     // Create a symbol for the end of function.
1285     CurrentFnEnd = createTempSymbol("func_end");
1286     OutStreamer->emitLabel(CurrentFnEnd);
1287   }
1288 
1289   // If the target wants a .size directive for the size of the function, emit
1290   // it.
1291   if (MAI->hasDotTypeDotSizeDirective()) {
1292     // We can get the size as difference between the function label and the
1293     // temp label.
1294     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1295         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1296         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1297     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1298   }
1299 
1300   for (const HandlerInfo &HI : Handlers) {
1301     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1302                        HI.TimerGroupDescription, TimePassesIsEnabled);
1303     HI.Handler->markFunctionEnd();
1304   }
1305 
1306 
1307   // Print out jump tables referenced by the function.
1308   emitJumpTableInfo();
1309 
1310   // Emit post-function debug and/or EH information.
1311   for (const HandlerInfo &HI : Handlers) {
1312     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1313                        HI.TimerGroupDescription, TimePassesIsEnabled);
1314     HI.Handler->endFunction(MF);
1315   }
1316 
1317   // Emit section containing stack size metadata.
1318   emitStackSizeSection(*MF);
1319 
1320   emitPatchableFunctionEntries();
1321 
1322   if (isVerbose())
1323     OutStreamer->GetCommentOS() << "-- End function\n";
1324 
1325   OutStreamer->AddBlankLine();
1326 }
1327 
1328 /// Compute the number of Global Variables that uses a Constant.
1329 static unsigned getNumGlobalVariableUses(const Constant *C) {
1330   if (!C)
1331     return 0;
1332 
1333   if (isa<GlobalVariable>(C))
1334     return 1;
1335 
1336   unsigned NumUses = 0;
1337   for (auto *CU : C->users())
1338     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1339 
1340   return NumUses;
1341 }
1342 
1343 /// Only consider global GOT equivalents if at least one user is a
1344 /// cstexpr inside an initializer of another global variables. Also, don't
1345 /// handle cstexpr inside instructions. During global variable emission,
1346 /// candidates are skipped and are emitted later in case at least one cstexpr
1347 /// isn't replaced by a PC relative GOT entry access.
1348 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1349                                      unsigned &NumGOTEquivUsers) {
1350   // Global GOT equivalents are unnamed private globals with a constant
1351   // pointer initializer to another global symbol. They must point to a
1352   // GlobalVariable or Function, i.e., as GlobalValue.
1353   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1354       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1355       !isa<GlobalValue>(GV->getOperand(0)))
1356     return false;
1357 
1358   // To be a got equivalent, at least one of its users need to be a constant
1359   // expression used by another global variable.
1360   for (auto *U : GV->users())
1361     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1362 
1363   return NumGOTEquivUsers > 0;
1364 }
1365 
1366 /// Unnamed constant global variables solely contaning a pointer to
1367 /// another globals variable is equivalent to a GOT table entry; it contains the
1368 /// the address of another symbol. Optimize it and replace accesses to these
1369 /// "GOT equivalents" by using the GOT entry for the final global instead.
1370 /// Compute GOT equivalent candidates among all global variables to avoid
1371 /// emitting them if possible later on, after it use is replaced by a GOT entry
1372 /// access.
1373 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1374   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1375     return;
1376 
1377   for (const auto &G : M.globals()) {
1378     unsigned NumGOTEquivUsers = 0;
1379     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1380       continue;
1381 
1382     const MCSymbol *GOTEquivSym = getSymbol(&G);
1383     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1384   }
1385 }
1386 
1387 /// Constant expressions using GOT equivalent globals may not be eligible
1388 /// for PC relative GOT entry conversion, in such cases we need to emit such
1389 /// globals we previously omitted in EmitGlobalVariable.
1390 void AsmPrinter::emitGlobalGOTEquivs() {
1391   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1392     return;
1393 
1394   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1395   for (auto &I : GlobalGOTEquivs) {
1396     const GlobalVariable *GV = I.second.first;
1397     unsigned Cnt = I.second.second;
1398     if (Cnt)
1399       FailedCandidates.push_back(GV);
1400   }
1401   GlobalGOTEquivs.clear();
1402 
1403   for (auto *GV : FailedCandidates)
1404     emitGlobalVariable(GV);
1405 }
1406 
1407 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1408                                           const GlobalIndirectSymbol& GIS) {
1409   MCSymbol *Name = getSymbol(&GIS);
1410 
1411   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1412     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1413   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1414     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1415   else
1416     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1417 
1418   bool IsFunction = GIS.getValueType()->isFunctionTy();
1419 
1420   // Treat bitcasts of functions as functions also. This is important at least
1421   // on WebAssembly where object and function addresses can't alias each other.
1422   if (!IsFunction)
1423     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1424       if (CE->getOpcode() == Instruction::BitCast)
1425         IsFunction =
1426           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1427 
1428   // Set the symbol type to function if the alias has a function type.
1429   // This affects codegen when the aliasee is not a function.
1430   if (IsFunction)
1431     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1432                                                ? MCSA_ELF_TypeIndFunction
1433                                                : MCSA_ELF_TypeFunction);
1434 
1435   emitVisibility(Name, GIS.getVisibility());
1436 
1437   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1438 
1439   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1440     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1441 
1442   // Emit the directives as assignments aka .set:
1443   OutStreamer->emitAssignment(Name, Expr);
1444   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1445   if (LocalAlias != Name)
1446     OutStreamer->emitAssignment(LocalAlias, Expr);
1447 
1448   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1449     // If the aliasee does not correspond to a symbol in the output, i.e. the
1450     // alias is not of an object or the aliased object is private, then set the
1451     // size of the alias symbol from the type of the alias. We don't do this in
1452     // other situations as the alias and aliasee having differing types but same
1453     // size may be intentional.
1454     const GlobalObject *BaseObject = GA->getBaseObject();
1455     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1456         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1457       const DataLayout &DL = M.getDataLayout();
1458       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1459       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1460     }
1461   }
1462 }
1463 
1464 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1465   if (!RS.needsSection())
1466     return;
1467 
1468   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1469 
1470   Optional<SmallString<128>> Filename;
1471   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1472     Filename = *FilenameRef;
1473     sys::fs::make_absolute(*Filename);
1474     assert(!Filename->empty() && "The filename can't be empty.");
1475   }
1476 
1477   std::string Buf;
1478   raw_string_ostream OS(Buf);
1479   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1480       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1481                : RemarkSerializer.metaSerializer(OS);
1482   MetaSerializer->emit();
1483 
1484   // Switch to the remarks section.
1485   MCSection *RemarksSection =
1486       OutContext.getObjectFileInfo()->getRemarksSection();
1487   OutStreamer->SwitchSection(RemarksSection);
1488 
1489   OutStreamer->emitBinaryData(OS.str());
1490 }
1491 
1492 bool AsmPrinter::doFinalization(Module &M) {
1493   // Set the MachineFunction to nullptr so that we can catch attempted
1494   // accesses to MF specific features at the module level and so that
1495   // we can conditionalize accesses based on whether or not it is nullptr.
1496   MF = nullptr;
1497 
1498   // Gather all GOT equivalent globals in the module. We really need two
1499   // passes over the globals: one to compute and another to avoid its emission
1500   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1501   // where the got equivalent shows up before its use.
1502   computeGlobalGOTEquivs(M);
1503 
1504   // Emit global variables.
1505   for (const auto &G : M.globals())
1506     emitGlobalVariable(&G);
1507 
1508   // Emit remaining GOT equivalent globals.
1509   emitGlobalGOTEquivs();
1510 
1511   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1512 
1513   // Emit linkage(XCOFF) and visibility info for declarations
1514   for (const Function &F : M) {
1515     if (!F.isDeclarationForLinker())
1516       continue;
1517 
1518     MCSymbol *Name = getSymbol(&F);
1519     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1520     if (TM.getTargetTriple().isOSBinFormatXCOFF() && !F.isIntrinsic()) {
1521 
1522       // Get the function entry point symbol.
1523       MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1524       if (cast<MCSymbolXCOFF>(FnEntryPointSym)->hasRepresentedCsectSet())
1525         // Emit linkage for the function entry point.
1526         emitLinkage(&F, FnEntryPointSym);
1527 
1528       // Emit linkage for the function descriptor.
1529       emitLinkage(&F, Name);
1530     }
1531 
1532     GlobalValue::VisibilityTypes V = F.getVisibility();
1533     if (V == GlobalValue::DefaultVisibility)
1534       continue;
1535 
1536     emitVisibility(Name, V, false);
1537   }
1538 
1539   // Emit the remarks section contents.
1540   // FIXME: Figure out when is the safest time to emit this section. It should
1541   // not come after debug info.
1542   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1543     emitRemarksSection(*RS);
1544 
1545   TLOF.emitModuleMetadata(*OutStreamer, M);
1546 
1547   if (TM.getTargetTriple().isOSBinFormatELF()) {
1548     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1549 
1550     // Output stubs for external and common global variables.
1551     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1552     if (!Stubs.empty()) {
1553       OutStreamer->SwitchSection(TLOF.getDataSection());
1554       const DataLayout &DL = M.getDataLayout();
1555 
1556       emitAlignment(Align(DL.getPointerSize()));
1557       for (const auto &Stub : Stubs) {
1558         OutStreamer->emitLabel(Stub.first);
1559         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1560                                      DL.getPointerSize());
1561       }
1562     }
1563   }
1564 
1565   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1566     MachineModuleInfoCOFF &MMICOFF =
1567         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1568 
1569     // Output stubs for external and common global variables.
1570     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1571     if (!Stubs.empty()) {
1572       const DataLayout &DL = M.getDataLayout();
1573 
1574       for (const auto &Stub : Stubs) {
1575         SmallString<256> SectionName = StringRef(".rdata$");
1576         SectionName += Stub.first->getName();
1577         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1578             SectionName,
1579             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1580                 COFF::IMAGE_SCN_LNK_COMDAT,
1581             SectionKind::getReadOnly(), Stub.first->getName(),
1582             COFF::IMAGE_COMDAT_SELECT_ANY));
1583         emitAlignment(Align(DL.getPointerSize()));
1584         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1585         OutStreamer->emitLabel(Stub.first);
1586         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1587                                      DL.getPointerSize());
1588       }
1589     }
1590   }
1591 
1592   // Finalize debug and EH information.
1593   for (const HandlerInfo &HI : Handlers) {
1594     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1595                        HI.TimerGroupDescription, TimePassesIsEnabled);
1596     HI.Handler->endModule();
1597   }
1598   Handlers.clear();
1599   DD = nullptr;
1600 
1601   // If the target wants to know about weak references, print them all.
1602   if (MAI->getWeakRefDirective()) {
1603     // FIXME: This is not lazy, it would be nice to only print weak references
1604     // to stuff that is actually used.  Note that doing so would require targets
1605     // to notice uses in operands (due to constant exprs etc).  This should
1606     // happen with the MC stuff eventually.
1607 
1608     // Print out module-level global objects here.
1609     for (const auto &GO : M.global_objects()) {
1610       if (!GO.hasExternalWeakLinkage())
1611         continue;
1612       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1613     }
1614   }
1615 
1616   // Print aliases in topological order, that is, for each alias a = b,
1617   // b must be printed before a.
1618   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1619   // such an order to generate correct TOC information.
1620   SmallVector<const GlobalAlias *, 16> AliasStack;
1621   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1622   for (const auto &Alias : M.aliases()) {
1623     for (const GlobalAlias *Cur = &Alias; Cur;
1624          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1625       if (!AliasVisited.insert(Cur).second)
1626         break;
1627       AliasStack.push_back(Cur);
1628     }
1629     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1630       emitGlobalIndirectSymbol(M, *AncestorAlias);
1631     AliasStack.clear();
1632   }
1633   for (const auto &IFunc : M.ifuncs())
1634     emitGlobalIndirectSymbol(M, IFunc);
1635 
1636   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1637   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1638   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1639     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1640       MP->finishAssembly(M, *MI, *this);
1641 
1642   // Emit llvm.ident metadata in an '.ident' directive.
1643   emitModuleIdents(M);
1644 
1645   // Emit bytes for llvm.commandline metadata.
1646   emitModuleCommandLines(M);
1647 
1648   // Emit __morestack address if needed for indirect calls.
1649   if (MMI->usesMorestackAddr()) {
1650     Align Alignment(1);
1651     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1652         getDataLayout(), SectionKind::getReadOnly(),
1653         /*C=*/nullptr, Alignment);
1654     OutStreamer->SwitchSection(ReadOnlySection);
1655 
1656     MCSymbol *AddrSymbol =
1657         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1658     OutStreamer->emitLabel(AddrSymbol);
1659 
1660     unsigned PtrSize = MAI->getCodePointerSize();
1661     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1662                                  PtrSize);
1663   }
1664 
1665   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1666   // split-stack is used.
1667   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1668     OutStreamer->SwitchSection(
1669         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1670     if (MMI->hasNosplitStack())
1671       OutStreamer->SwitchSection(
1672           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1673   }
1674 
1675   // If we don't have any trampolines, then we don't require stack memory
1676   // to be executable. Some targets have a directive to declare this.
1677   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1678   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1679     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1680       OutStreamer->SwitchSection(S);
1681 
1682   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1683     // Emit /EXPORT: flags for each exported global as necessary.
1684     const auto &TLOF = getObjFileLowering();
1685     std::string Flags;
1686 
1687     for (const GlobalValue &GV : M.global_values()) {
1688       raw_string_ostream OS(Flags);
1689       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1690       OS.flush();
1691       if (!Flags.empty()) {
1692         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1693         OutStreamer->emitBytes(Flags);
1694       }
1695       Flags.clear();
1696     }
1697 
1698     // Emit /INCLUDE: flags for each used global as necessary.
1699     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1700       assert(LU->hasInitializer() &&
1701              "expected llvm.used to have an initializer");
1702       assert(isa<ArrayType>(LU->getValueType()) &&
1703              "expected llvm.used to be an array type");
1704       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1705         for (const Value *Op : A->operands()) {
1706           const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1707           // Global symbols with internal or private linkage are not visible to
1708           // the linker, and thus would cause an error when the linker tried to
1709           // preserve the symbol due to the `/include:` directive.
1710           if (GV->hasLocalLinkage())
1711             continue;
1712 
1713           raw_string_ostream OS(Flags);
1714           TLOF.emitLinkerFlagsForUsed(OS, GV);
1715           OS.flush();
1716 
1717           if (!Flags.empty()) {
1718             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1719             OutStreamer->emitBytes(Flags);
1720           }
1721           Flags.clear();
1722         }
1723       }
1724     }
1725   }
1726 
1727   if (TM.Options.EmitAddrsig) {
1728     // Emit address-significance attributes for all globals.
1729     OutStreamer->emitAddrsig();
1730     for (const GlobalValue &GV : M.global_values())
1731       if (!GV.use_empty() && !GV.isThreadLocal() &&
1732           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1733           !GV.hasAtLeastLocalUnnamedAddr())
1734         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1735   }
1736 
1737   // Emit symbol partition specifications (ELF only).
1738   if (TM.getTargetTriple().isOSBinFormatELF()) {
1739     unsigned UniqueID = 0;
1740     for (const GlobalValue &GV : M.global_values()) {
1741       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1742           GV.getVisibility() != GlobalValue::DefaultVisibility)
1743         continue;
1744 
1745       OutStreamer->SwitchSection(
1746           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1747                                    "", ++UniqueID, nullptr));
1748       OutStreamer->emitBytes(GV.getPartition());
1749       OutStreamer->emitZeros(1);
1750       OutStreamer->emitValue(
1751           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1752           MAI->getCodePointerSize());
1753     }
1754   }
1755 
1756   // Allow the target to emit any magic that it wants at the end of the file,
1757   // after everything else has gone out.
1758   emitEndOfAsmFile(M);
1759 
1760   MMI = nullptr;
1761 
1762   OutStreamer->Finish();
1763   OutStreamer->reset();
1764   OwnedMLI.reset();
1765   OwnedMDT.reset();
1766 
1767   return false;
1768 }
1769 
1770 MCSymbol *AsmPrinter::getCurExceptionSym() {
1771   if (!CurExceptionSym)
1772     CurExceptionSym = createTempSymbol("exception");
1773   return CurExceptionSym;
1774 }
1775 
1776 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1777   this->MF = &MF;
1778   const Function &F = MF.getFunction();
1779 
1780   // Get the function symbol.
1781   if (!MAI->needsFunctionDescriptors()) {
1782     CurrentFnSym = getSymbol(&MF.getFunction());
1783   } else {
1784     assert(TM.getTargetTriple().isOSAIX() &&
1785            "Only AIX uses the function descriptor hooks.");
1786     // AIX is unique here in that the name of the symbol emitted for the
1787     // function body does not have the same name as the source function's
1788     // C-linkage name.
1789     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1790                                " initalized first.");
1791 
1792     // Get the function entry point symbol.
1793     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1794   }
1795 
1796   CurrentFnSymForSize = CurrentFnSym;
1797   CurrentFnBegin = nullptr;
1798   CurrentSectionBeginSym = nullptr;
1799   CurExceptionSym = nullptr;
1800   bool NeedsLocalForSize = MAI->needsLocalForSize();
1801   if (F.hasFnAttribute("patchable-function-entry") ||
1802       F.hasFnAttribute("function-instrument") ||
1803       F.hasFnAttribute("xray-instruction-threshold") ||
1804       needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1805       MF.getTarget().Options.EmitStackSizeSection) {
1806     CurrentFnBegin = createTempSymbol("func_begin");
1807     if (NeedsLocalForSize)
1808       CurrentFnSymForSize = CurrentFnBegin;
1809   }
1810 
1811   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1812 }
1813 
1814 namespace {
1815 
1816 // Keep track the alignment, constpool entries per Section.
1817   struct SectionCPs {
1818     MCSection *S;
1819     Align Alignment;
1820     SmallVector<unsigned, 4> CPEs;
1821 
1822     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1823   };
1824 
1825 } // end anonymous namespace
1826 
1827 /// EmitConstantPool - Print to the current output stream assembly
1828 /// representations of the constants in the constant pool MCP. This is
1829 /// used to print out constants which have been "spilled to memory" by
1830 /// the code generator.
1831 void AsmPrinter::emitConstantPool() {
1832   const MachineConstantPool *MCP = MF->getConstantPool();
1833   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1834   if (CP.empty()) return;
1835 
1836   // Calculate sections for constant pool entries. We collect entries to go into
1837   // the same section together to reduce amount of section switch statements.
1838   SmallVector<SectionCPs, 4> CPSections;
1839   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1840     const MachineConstantPoolEntry &CPE = CP[i];
1841     Align Alignment = CPE.getAlign();
1842 
1843     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1844 
1845     const Constant *C = nullptr;
1846     if (!CPE.isMachineConstantPoolEntry())
1847       C = CPE.Val.ConstVal;
1848 
1849     MCSection *S = getObjFileLowering().getSectionForConstant(
1850         getDataLayout(), Kind, C, Alignment);
1851 
1852     // The number of sections are small, just do a linear search from the
1853     // last section to the first.
1854     bool Found = false;
1855     unsigned SecIdx = CPSections.size();
1856     while (SecIdx != 0) {
1857       if (CPSections[--SecIdx].S == S) {
1858         Found = true;
1859         break;
1860       }
1861     }
1862     if (!Found) {
1863       SecIdx = CPSections.size();
1864       CPSections.push_back(SectionCPs(S, Alignment));
1865     }
1866 
1867     if (Alignment > CPSections[SecIdx].Alignment)
1868       CPSections[SecIdx].Alignment = Alignment;
1869     CPSections[SecIdx].CPEs.push_back(i);
1870   }
1871 
1872   // Now print stuff into the calculated sections.
1873   const MCSection *CurSection = nullptr;
1874   unsigned Offset = 0;
1875   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1876     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1877       unsigned CPI = CPSections[i].CPEs[j];
1878       MCSymbol *Sym = GetCPISymbol(CPI);
1879       if (!Sym->isUndefined())
1880         continue;
1881 
1882       if (CurSection != CPSections[i].S) {
1883         OutStreamer->SwitchSection(CPSections[i].S);
1884         emitAlignment(Align(CPSections[i].Alignment));
1885         CurSection = CPSections[i].S;
1886         Offset = 0;
1887       }
1888 
1889       MachineConstantPoolEntry CPE = CP[CPI];
1890 
1891       // Emit inter-object padding for alignment.
1892       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
1893       OutStreamer->emitZeros(NewOffset - Offset);
1894 
1895       Type *Ty = CPE.getType();
1896       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1897 
1898       OutStreamer->emitLabel(Sym);
1899       if (CPE.isMachineConstantPoolEntry())
1900         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1901       else
1902         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1903     }
1904   }
1905 }
1906 
1907 // Print assembly representations of the jump tables used by the current
1908 // function.
1909 void AsmPrinter::emitJumpTableInfo() {
1910   const DataLayout &DL = MF->getDataLayout();
1911   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1912   if (!MJTI) return;
1913   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1914   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1915   if (JT.empty()) return;
1916 
1917   // Pick the directive to use to print the jump table entries, and switch to
1918   // the appropriate section.
1919   const Function &F = MF->getFunction();
1920   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1921   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1922       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1923       F);
1924   if (JTInDiffSection) {
1925     // Drop it in the readonly section.
1926     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1927     OutStreamer->SwitchSection(ReadOnlySection);
1928   }
1929 
1930   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
1931 
1932   // Jump tables in code sections are marked with a data_region directive
1933   // where that's supported.
1934   if (!JTInDiffSection)
1935     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
1936 
1937   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1938     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1939 
1940     // If this jump table was deleted, ignore it.
1941     if (JTBBs.empty()) continue;
1942 
1943     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1944     /// emit a .set directive for each unique entry.
1945     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1946         MAI->doesSetDirectiveSuppressReloc()) {
1947       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1948       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1949       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1950       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1951         const MachineBasicBlock *MBB = JTBBs[ii];
1952         if (!EmittedSets.insert(MBB).second)
1953           continue;
1954 
1955         // .set LJTSet, LBB32-base
1956         const MCExpr *LHS =
1957           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1958         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1959                                     MCBinaryExpr::createSub(LHS, Base,
1960                                                             OutContext));
1961       }
1962     }
1963 
1964     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1965     // before each jump table.  The first label is never referenced, but tells
1966     // the assembler and linker the extents of the jump table object.  The
1967     // second label is actually referenced by the code.
1968     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1969       // FIXME: This doesn't have to have any specific name, just any randomly
1970       // named and numbered local label started with 'l' would work.  Simplify
1971       // GetJTISymbol.
1972       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
1973 
1974     MCSymbol* JTISymbol = GetJTISymbol(JTI);
1975     OutStreamer->emitLabel(JTISymbol);
1976 
1977     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1978       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1979   }
1980   if (!JTInDiffSection)
1981     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
1982 }
1983 
1984 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1985 /// current stream.
1986 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1987                                     const MachineBasicBlock *MBB,
1988                                     unsigned UID) const {
1989   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1990   const MCExpr *Value = nullptr;
1991   switch (MJTI->getEntryKind()) {
1992   case MachineJumpTableInfo::EK_Inline:
1993     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1994   case MachineJumpTableInfo::EK_Custom32:
1995     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1996         MJTI, MBB, UID, OutContext);
1997     break;
1998   case MachineJumpTableInfo::EK_BlockAddress:
1999     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2000     //     .word LBB123
2001     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2002     break;
2003   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2004     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2005     // with a relocation as gp-relative, e.g.:
2006     //     .gprel32 LBB123
2007     MCSymbol *MBBSym = MBB->getSymbol();
2008     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2009     return;
2010   }
2011 
2012   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2013     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2014     // with a relocation as gp-relative, e.g.:
2015     //     .gpdword LBB123
2016     MCSymbol *MBBSym = MBB->getSymbol();
2017     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2018     return;
2019   }
2020 
2021   case MachineJumpTableInfo::EK_LabelDifference32: {
2022     // Each entry is the address of the block minus the address of the jump
2023     // table. This is used for PIC jump tables where gprel32 is not supported.
2024     // e.g.:
2025     //      .word LBB123 - LJTI1_2
2026     // If the .set directive avoids relocations, this is emitted as:
2027     //      .set L4_5_set_123, LBB123 - LJTI1_2
2028     //      .word L4_5_set_123
2029     if (MAI->doesSetDirectiveSuppressReloc()) {
2030       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2031                                       OutContext);
2032       break;
2033     }
2034     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2035     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2036     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2037     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2038     break;
2039   }
2040   }
2041 
2042   assert(Value && "Unknown entry kind!");
2043 
2044   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2045   OutStreamer->emitValue(Value, EntrySize);
2046 }
2047 
2048 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2049 /// special global used by LLVM.  If so, emit it and return true, otherwise
2050 /// do nothing and return false.
2051 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2052   if (GV->getName() == "llvm.used") {
2053     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2054       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2055     return true;
2056   }
2057 
2058   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2059   if (GV->getSection() == "llvm.metadata" ||
2060       GV->hasAvailableExternallyLinkage())
2061     return true;
2062 
2063   if (!GV->hasAppendingLinkage()) return false;
2064 
2065   assert(GV->hasInitializer() && "Not a special LLVM global!");
2066 
2067   if (GV->getName() == "llvm.global_ctors") {
2068     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2069                        /* isCtor */ true);
2070 
2071     return true;
2072   }
2073 
2074   if (GV->getName() == "llvm.global_dtors") {
2075     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2076                        /* isCtor */ false);
2077 
2078     return true;
2079   }
2080 
2081   report_fatal_error("unknown special variable");
2082 }
2083 
2084 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2085 /// global in the specified llvm.used list.
2086 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2087   // Should be an array of 'i8*'.
2088   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2089     const GlobalValue *GV =
2090       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2091     if (GV)
2092       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2093   }
2094 }
2095 
2096 namespace {
2097 
2098 struct Structor {
2099   int Priority = 0;
2100   Constant *Func = nullptr;
2101   GlobalValue *ComdatKey = nullptr;
2102 
2103   Structor() = default;
2104 };
2105 
2106 } // end anonymous namespace
2107 
2108 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2109 /// priority.
2110 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2111                                     bool isCtor) {
2112   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
2113   // init priority.
2114   if (!isa<ConstantArray>(List)) return;
2115 
2116   // Gather the structors in a form that's convenient for sorting by priority.
2117   SmallVector<Structor, 8> Structors;
2118   for (Value *O : cast<ConstantArray>(List)->operands()) {
2119     auto *CS = cast<ConstantStruct>(O);
2120     if (CS->getOperand(1)->isNullValue())
2121       break;  // Found a null terminator, skip the rest.
2122     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2123     if (!Priority) continue; // Malformed.
2124     Structors.push_back(Structor());
2125     Structor &S = Structors.back();
2126     S.Priority = Priority->getLimitedValue(65535);
2127     S.Func = CS->getOperand(1);
2128     if (!CS->getOperand(2)->isNullValue())
2129       S.ComdatKey =
2130           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2131   }
2132 
2133   // Emit the function pointers in the target-specific order
2134   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2135     return L.Priority < R.Priority;
2136   });
2137   const Align Align = DL.getPointerPrefAlignment();
2138   for (Structor &S : Structors) {
2139     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2140     const MCSymbol *KeySym = nullptr;
2141     if (GlobalValue *GV = S.ComdatKey) {
2142       if (GV->isDeclarationForLinker())
2143         // If the associated variable is not defined in this module
2144         // (it might be available_externally, or have been an
2145         // available_externally definition that was dropped by the
2146         // EliminateAvailableExternally pass), some other TU
2147         // will provide its dynamic initializer.
2148         continue;
2149 
2150       KeySym = getSymbol(GV);
2151     }
2152     MCSection *OutputSection =
2153         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2154                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2155     OutStreamer->SwitchSection(OutputSection);
2156     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2157       emitAlignment(Align);
2158     emitXXStructor(DL, S.Func);
2159   }
2160 }
2161 
2162 void AsmPrinter::emitModuleIdents(Module &M) {
2163   if (!MAI->hasIdentDirective())
2164     return;
2165 
2166   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2167     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2168       const MDNode *N = NMD->getOperand(i);
2169       assert(N->getNumOperands() == 1 &&
2170              "llvm.ident metadata entry can have only one operand");
2171       const MDString *S = cast<MDString>(N->getOperand(0));
2172       OutStreamer->emitIdent(S->getString());
2173     }
2174   }
2175 }
2176 
2177 void AsmPrinter::emitModuleCommandLines(Module &M) {
2178   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2179   if (!CommandLine)
2180     return;
2181 
2182   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2183   if (!NMD || !NMD->getNumOperands())
2184     return;
2185 
2186   OutStreamer->PushSection();
2187   OutStreamer->SwitchSection(CommandLine);
2188   OutStreamer->emitZeros(1);
2189   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2190     const MDNode *N = NMD->getOperand(i);
2191     assert(N->getNumOperands() == 1 &&
2192            "llvm.commandline metadata entry can have only one operand");
2193     const MDString *S = cast<MDString>(N->getOperand(0));
2194     OutStreamer->emitBytes(S->getString());
2195     OutStreamer->emitZeros(1);
2196   }
2197   OutStreamer->PopSection();
2198 }
2199 
2200 //===--------------------------------------------------------------------===//
2201 // Emission and print routines
2202 //
2203 
2204 /// Emit a byte directive and value.
2205 ///
2206 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2207 
2208 /// Emit a short directive and value.
2209 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2210 
2211 /// Emit a long directive and value.
2212 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2213 
2214 /// Emit a long long directive and value.
2215 void AsmPrinter::emitInt64(uint64_t Value) const {
2216   OutStreamer->emitInt64(Value);
2217 }
2218 
2219 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2220 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2221 /// .set if it avoids relocations.
2222 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2223                                      unsigned Size) const {
2224   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2225 }
2226 
2227 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2228 /// where the size in bytes of the directive is specified by Size and Label
2229 /// specifies the label.  This implicitly uses .set if it is available.
2230 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2231                                      unsigned Size,
2232                                      bool IsSectionRelative) const {
2233   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2234     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2235     if (Size > 4)
2236       OutStreamer->emitZeros(Size - 4);
2237     return;
2238   }
2239 
2240   // Emit Label+Offset (or just Label if Offset is zero)
2241   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2242   if (Offset)
2243     Expr = MCBinaryExpr::createAdd(
2244         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2245 
2246   OutStreamer->emitValue(Expr, Size);
2247 }
2248 
2249 //===----------------------------------------------------------------------===//
2250 
2251 // EmitAlignment - Emit an alignment directive to the specified power of
2252 // two boundary.  If a global value is specified, and if that global has
2253 // an explicit alignment requested, it will override the alignment request
2254 // if required for correctness.
2255 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2256   if (GV)
2257     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2258 
2259   if (Alignment == Align(1))
2260     return; // 1-byte aligned: no need to emit alignment.
2261 
2262   if (getCurrentSection()->getKind().isText())
2263     OutStreamer->emitCodeAlignment(Alignment.value());
2264   else
2265     OutStreamer->emitValueToAlignment(Alignment.value());
2266 }
2267 
2268 //===----------------------------------------------------------------------===//
2269 // Constant emission.
2270 //===----------------------------------------------------------------------===//
2271 
2272 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2273   MCContext &Ctx = OutContext;
2274 
2275   if (CV->isNullValue() || isa<UndefValue>(CV))
2276     return MCConstantExpr::create(0, Ctx);
2277 
2278   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2279     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2280 
2281   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2282     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2283 
2284   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2285     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2286 
2287   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2288   if (!CE) {
2289     llvm_unreachable("Unknown constant value to lower!");
2290   }
2291 
2292   switch (CE->getOpcode()) {
2293   default: {
2294     // If the code isn't optimized, there may be outstanding folding
2295     // opportunities. Attempt to fold the expression using DataLayout as a
2296     // last resort before giving up.
2297     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2298     if (C != CE)
2299       return lowerConstant(C);
2300 
2301     // Otherwise report the problem to the user.
2302     std::string S;
2303     raw_string_ostream OS(S);
2304     OS << "Unsupported expression in static initializer: ";
2305     CE->printAsOperand(OS, /*PrintType=*/false,
2306                    !MF ? nullptr : MF->getFunction().getParent());
2307     report_fatal_error(OS.str());
2308   }
2309   case Instruction::GetElementPtr: {
2310     // Generate a symbolic expression for the byte address
2311     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2312     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2313 
2314     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2315     if (!OffsetAI)
2316       return Base;
2317 
2318     int64_t Offset = OffsetAI.getSExtValue();
2319     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2320                                    Ctx);
2321   }
2322 
2323   case Instruction::Trunc:
2324     // We emit the value and depend on the assembler to truncate the generated
2325     // expression properly.  This is important for differences between
2326     // blockaddress labels.  Since the two labels are in the same function, it
2327     // is reasonable to treat their delta as a 32-bit value.
2328     LLVM_FALLTHROUGH;
2329   case Instruction::BitCast:
2330     return lowerConstant(CE->getOperand(0));
2331 
2332   case Instruction::IntToPtr: {
2333     const DataLayout &DL = getDataLayout();
2334 
2335     // Handle casts to pointers by changing them into casts to the appropriate
2336     // integer type.  This promotes constant folding and simplifies this code.
2337     Constant *Op = CE->getOperand(0);
2338     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2339                                       false/*ZExt*/);
2340     return lowerConstant(Op);
2341   }
2342 
2343   case Instruction::PtrToInt: {
2344     const DataLayout &DL = getDataLayout();
2345 
2346     // Support only foldable casts to/from pointers that can be eliminated by
2347     // changing the pointer to the appropriately sized integer type.
2348     Constant *Op = CE->getOperand(0);
2349     Type *Ty = CE->getType();
2350 
2351     const MCExpr *OpExpr = lowerConstant(Op);
2352 
2353     // We can emit the pointer value into this slot if the slot is an
2354     // integer slot equal to the size of the pointer.
2355     //
2356     // If the pointer is larger than the resultant integer, then
2357     // as with Trunc just depend on the assembler to truncate it.
2358     if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2359       return OpExpr;
2360 
2361     // Otherwise the pointer is smaller than the resultant integer, mask off
2362     // the high bits so we are sure to get a proper truncation if the input is
2363     // a constant expr.
2364     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2365     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2366     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2367   }
2368 
2369   case Instruction::Sub: {
2370     GlobalValue *LHSGV;
2371     APInt LHSOffset;
2372     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2373                                    getDataLayout())) {
2374       GlobalValue *RHSGV;
2375       APInt RHSOffset;
2376       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2377                                      getDataLayout())) {
2378         const MCExpr *RelocExpr =
2379             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2380         if (!RelocExpr)
2381           RelocExpr = MCBinaryExpr::createSub(
2382               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2383               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2384         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2385         if (Addend != 0)
2386           RelocExpr = MCBinaryExpr::createAdd(
2387               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2388         return RelocExpr;
2389       }
2390     }
2391   }
2392   // else fallthrough
2393   LLVM_FALLTHROUGH;
2394 
2395   // The MC library also has a right-shift operator, but it isn't consistently
2396   // signed or unsigned between different targets.
2397   case Instruction::Add:
2398   case Instruction::Mul:
2399   case Instruction::SDiv:
2400   case Instruction::SRem:
2401   case Instruction::Shl:
2402   case Instruction::And:
2403   case Instruction::Or:
2404   case Instruction::Xor: {
2405     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2406     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2407     switch (CE->getOpcode()) {
2408     default: llvm_unreachable("Unknown binary operator constant cast expr");
2409     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2410     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2411     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2412     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2413     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2414     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2415     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2416     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2417     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2418     }
2419   }
2420   }
2421 }
2422 
2423 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2424                                    AsmPrinter &AP,
2425                                    const Constant *BaseCV = nullptr,
2426                                    uint64_t Offset = 0);
2427 
2428 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2429 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2430 
2431 /// isRepeatedByteSequence - Determine whether the given value is
2432 /// composed of a repeated sequence of identical bytes and return the
2433 /// byte value.  If it is not a repeated sequence, return -1.
2434 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2435   StringRef Data = V->getRawDataValues();
2436   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2437   char C = Data[0];
2438   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2439     if (Data[i] != C) return -1;
2440   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2441 }
2442 
2443 /// isRepeatedByteSequence - Determine whether the given value is
2444 /// composed of a repeated sequence of identical bytes and return the
2445 /// byte value.  If it is not a repeated sequence, return -1.
2446 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2447   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2448     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2449     assert(Size % 8 == 0);
2450 
2451     // Extend the element to take zero padding into account.
2452     APInt Value = CI->getValue().zextOrSelf(Size);
2453     if (!Value.isSplat(8))
2454       return -1;
2455 
2456     return Value.zextOrTrunc(8).getZExtValue();
2457   }
2458   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2459     // Make sure all array elements are sequences of the same repeated
2460     // byte.
2461     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2462     Constant *Op0 = CA->getOperand(0);
2463     int Byte = isRepeatedByteSequence(Op0, DL);
2464     if (Byte == -1)
2465       return -1;
2466 
2467     // All array elements must be equal.
2468     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2469       if (CA->getOperand(i) != Op0)
2470         return -1;
2471     return Byte;
2472   }
2473 
2474   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2475     return isRepeatedByteSequence(CDS);
2476 
2477   return -1;
2478 }
2479 
2480 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2481                                              const ConstantDataSequential *CDS,
2482                                              AsmPrinter &AP) {
2483   // See if we can aggregate this into a .fill, if so, emit it as such.
2484   int Value = isRepeatedByteSequence(CDS, DL);
2485   if (Value != -1) {
2486     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2487     // Don't emit a 1-byte object as a .fill.
2488     if (Bytes > 1)
2489       return AP.OutStreamer->emitFill(Bytes, Value);
2490   }
2491 
2492   // If this can be emitted with .ascii/.asciz, emit it as such.
2493   if (CDS->isString())
2494     return AP.OutStreamer->emitBytes(CDS->getAsString());
2495 
2496   // Otherwise, emit the values in successive locations.
2497   unsigned ElementByteSize = CDS->getElementByteSize();
2498   if (isa<IntegerType>(CDS->getElementType())) {
2499     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2500       if (AP.isVerbose())
2501         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2502                                                  CDS->getElementAsInteger(i));
2503       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2504                                    ElementByteSize);
2505     }
2506   } else {
2507     Type *ET = CDS->getElementType();
2508     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2509       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2510   }
2511 
2512   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2513   unsigned EmittedSize =
2514       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2515   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2516   if (unsigned Padding = Size - EmittedSize)
2517     AP.OutStreamer->emitZeros(Padding);
2518 }
2519 
2520 static void emitGlobalConstantArray(const DataLayout &DL,
2521                                     const ConstantArray *CA, AsmPrinter &AP,
2522                                     const Constant *BaseCV, uint64_t Offset) {
2523   // See if we can aggregate some values.  Make sure it can be
2524   // represented as a series of bytes of the constant value.
2525   int Value = isRepeatedByteSequence(CA, DL);
2526 
2527   if (Value != -1) {
2528     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2529     AP.OutStreamer->emitFill(Bytes, Value);
2530   }
2531   else {
2532     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2533       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2534       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2535     }
2536   }
2537 }
2538 
2539 static void emitGlobalConstantVector(const DataLayout &DL,
2540                                      const ConstantVector *CV, AsmPrinter &AP) {
2541   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2542     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2543 
2544   unsigned Size = DL.getTypeAllocSize(CV->getType());
2545   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2546                          CV->getType()->getNumElements();
2547   if (unsigned Padding = Size - EmittedSize)
2548     AP.OutStreamer->emitZeros(Padding);
2549 }
2550 
2551 static void emitGlobalConstantStruct(const DataLayout &DL,
2552                                      const ConstantStruct *CS, AsmPrinter &AP,
2553                                      const Constant *BaseCV, uint64_t Offset) {
2554   // Print the fields in successive locations. Pad to align if needed!
2555   unsigned Size = DL.getTypeAllocSize(CS->getType());
2556   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2557   uint64_t SizeSoFar = 0;
2558   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2559     const Constant *Field = CS->getOperand(i);
2560 
2561     // Print the actual field value.
2562     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2563 
2564     // Check if padding is needed and insert one or more 0s.
2565     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2566     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2567                         - Layout->getElementOffset(i)) - FieldSize;
2568     SizeSoFar += FieldSize + PadSize;
2569 
2570     // Insert padding - this may include padding to increase the size of the
2571     // current field up to the ABI size (if the struct is not packed) as well
2572     // as padding to ensure that the next field starts at the right offset.
2573     AP.OutStreamer->emitZeros(PadSize);
2574   }
2575   assert(SizeSoFar == Layout->getSizeInBytes() &&
2576          "Layout of constant struct may be incorrect!");
2577 }
2578 
2579 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2580   assert(ET && "Unknown float type");
2581   APInt API = APF.bitcastToAPInt();
2582 
2583   // First print a comment with what we think the original floating-point value
2584   // should have been.
2585   if (AP.isVerbose()) {
2586     SmallString<8> StrVal;
2587     APF.toString(StrVal);
2588     ET->print(AP.OutStreamer->GetCommentOS());
2589     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2590   }
2591 
2592   // Now iterate through the APInt chunks, emitting them in endian-correct
2593   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2594   // floats).
2595   unsigned NumBytes = API.getBitWidth() / 8;
2596   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2597   const uint64_t *p = API.getRawData();
2598 
2599   // PPC's long double has odd notions of endianness compared to how LLVM
2600   // handles it: p[0] goes first for *big* endian on PPC.
2601   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2602     int Chunk = API.getNumWords() - 1;
2603 
2604     if (TrailingBytes)
2605       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2606 
2607     for (; Chunk >= 0; --Chunk)
2608       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2609   } else {
2610     unsigned Chunk;
2611     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2612       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2613 
2614     if (TrailingBytes)
2615       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2616   }
2617 
2618   // Emit the tail padding for the long double.
2619   const DataLayout &DL = AP.getDataLayout();
2620   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2621 }
2622 
2623 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2624   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2625 }
2626 
2627 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2628   const DataLayout &DL = AP.getDataLayout();
2629   unsigned BitWidth = CI->getBitWidth();
2630 
2631   // Copy the value as we may massage the layout for constants whose bit width
2632   // is not a multiple of 64-bits.
2633   APInt Realigned(CI->getValue());
2634   uint64_t ExtraBits = 0;
2635   unsigned ExtraBitsSize = BitWidth & 63;
2636 
2637   if (ExtraBitsSize) {
2638     // The bit width of the data is not a multiple of 64-bits.
2639     // The extra bits are expected to be at the end of the chunk of the memory.
2640     // Little endian:
2641     // * Nothing to be done, just record the extra bits to emit.
2642     // Big endian:
2643     // * Record the extra bits to emit.
2644     // * Realign the raw data to emit the chunks of 64-bits.
2645     if (DL.isBigEndian()) {
2646       // Basically the structure of the raw data is a chunk of 64-bits cells:
2647       //    0        1         BitWidth / 64
2648       // [chunk1][chunk2] ... [chunkN].
2649       // The most significant chunk is chunkN and it should be emitted first.
2650       // However, due to the alignment issue chunkN contains useless bits.
2651       // Realign the chunks so that they contain only useful information:
2652       // ExtraBits     0       1       (BitWidth / 64) - 1
2653       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2654       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2655       ExtraBits = Realigned.getRawData()[0] &
2656         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2657       Realigned.lshrInPlace(ExtraBitsSize);
2658     } else
2659       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2660   }
2661 
2662   // We don't expect assemblers to support integer data directives
2663   // for more than 64 bits, so we emit the data in at most 64-bit
2664   // quantities at a time.
2665   const uint64_t *RawData = Realigned.getRawData();
2666   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2667     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2668     AP.OutStreamer->emitIntValue(Val, 8);
2669   }
2670 
2671   if (ExtraBitsSize) {
2672     // Emit the extra bits after the 64-bits chunks.
2673 
2674     // Emit a directive that fills the expected size.
2675     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2676     Size -= (BitWidth / 64) * 8;
2677     assert(Size && Size * 8 >= ExtraBitsSize &&
2678            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2679            == ExtraBits && "Directive too small for extra bits.");
2680     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2681   }
2682 }
2683 
2684 /// Transform a not absolute MCExpr containing a reference to a GOT
2685 /// equivalent global, by a target specific GOT pc relative access to the
2686 /// final symbol.
2687 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2688                                          const Constant *BaseCst,
2689                                          uint64_t Offset) {
2690   // The global @foo below illustrates a global that uses a got equivalent.
2691   //
2692   //  @bar = global i32 42
2693   //  @gotequiv = private unnamed_addr constant i32* @bar
2694   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2695   //                             i64 ptrtoint (i32* @foo to i64))
2696   //                        to i32)
2697   //
2698   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2699   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2700   // form:
2701   //
2702   //  foo = cstexpr, where
2703   //    cstexpr := <gotequiv> - "." + <cst>
2704   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2705   //
2706   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2707   //
2708   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2709   //    gotpcrelcst := <offset from @foo base> + <cst>
2710   MCValue MV;
2711   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2712     return;
2713   const MCSymbolRefExpr *SymA = MV.getSymA();
2714   if (!SymA)
2715     return;
2716 
2717   // Check that GOT equivalent symbol is cached.
2718   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2719   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2720     return;
2721 
2722   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2723   if (!BaseGV)
2724     return;
2725 
2726   // Check for a valid base symbol
2727   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2728   const MCSymbolRefExpr *SymB = MV.getSymB();
2729 
2730   if (!SymB || BaseSym != &SymB->getSymbol())
2731     return;
2732 
2733   // Make sure to match:
2734   //
2735   //    gotpcrelcst := <offset from @foo base> + <cst>
2736   //
2737   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2738   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2739   // if the target knows how to encode it.
2740   int64_t GOTPCRelCst = Offset + MV.getConstant();
2741   if (GOTPCRelCst < 0)
2742     return;
2743   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2744     return;
2745 
2746   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2747   //
2748   //  bar:
2749   //    .long 42
2750   //  gotequiv:
2751   //    .quad bar
2752   //  foo:
2753   //    .long gotequiv - "." + <cst>
2754   //
2755   // is replaced by the target specific equivalent to:
2756   //
2757   //  bar:
2758   //    .long 42
2759   //  foo:
2760   //    .long bar@GOTPCREL+<gotpcrelcst>
2761   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2762   const GlobalVariable *GV = Result.first;
2763   int NumUses = (int)Result.second;
2764   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2765   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2766   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2767       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2768 
2769   // Update GOT equivalent usage information
2770   --NumUses;
2771   if (NumUses >= 0)
2772     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2773 }
2774 
2775 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2776                                    AsmPrinter &AP, const Constant *BaseCV,
2777                                    uint64_t Offset) {
2778   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2779 
2780   // Globals with sub-elements such as combinations of arrays and structs
2781   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2782   // constant symbol base and the current position with BaseCV and Offset.
2783   if (!BaseCV && CV->hasOneUse())
2784     BaseCV = dyn_cast<Constant>(CV->user_back());
2785 
2786   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2787     return AP.OutStreamer->emitZeros(Size);
2788 
2789   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2790     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2791 
2792     if (StoreSize < 8) {
2793       if (AP.isVerbose())
2794         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2795                                                  CI->getZExtValue());
2796       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2797     } else {
2798       emitGlobalConstantLargeInt(CI, AP);
2799     }
2800 
2801     // Emit tail padding if needed
2802     if (Size != StoreSize)
2803       AP.OutStreamer->emitZeros(Size - StoreSize);
2804 
2805     return;
2806   }
2807 
2808   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2809     return emitGlobalConstantFP(CFP, AP);
2810 
2811   if (isa<ConstantPointerNull>(CV)) {
2812     AP.OutStreamer->emitIntValue(0, Size);
2813     return;
2814   }
2815 
2816   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2817     return emitGlobalConstantDataSequential(DL, CDS, AP);
2818 
2819   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2820     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2821 
2822   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2823     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2824 
2825   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2826     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2827     // vectors).
2828     if (CE->getOpcode() == Instruction::BitCast)
2829       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2830 
2831     if (Size > 8) {
2832       // If the constant expression's size is greater than 64-bits, then we have
2833       // to emit the value in chunks. Try to constant fold the value and emit it
2834       // that way.
2835       Constant *New = ConstantFoldConstant(CE, DL);
2836       if (New != CE)
2837         return emitGlobalConstantImpl(DL, New, AP);
2838     }
2839   }
2840 
2841   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2842     return emitGlobalConstantVector(DL, V, AP);
2843 
2844   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2845   // thread the streamer with EmitValue.
2846   const MCExpr *ME = AP.lowerConstant(CV);
2847 
2848   // Since lowerConstant already folded and got rid of all IR pointer and
2849   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2850   // directly.
2851   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2852     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2853 
2854   AP.OutStreamer->emitValue(ME, Size);
2855 }
2856 
2857 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2858 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2859   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2860   if (Size)
2861     emitGlobalConstantImpl(DL, CV, *this);
2862   else if (MAI->hasSubsectionsViaSymbols()) {
2863     // If the global has zero size, emit a single byte so that two labels don't
2864     // look like they are at the same location.
2865     OutStreamer->emitIntValue(0, 1);
2866   }
2867 }
2868 
2869 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2870   // Target doesn't support this yet!
2871   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2872 }
2873 
2874 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2875   if (Offset > 0)
2876     OS << '+' << Offset;
2877   else if (Offset < 0)
2878     OS << Offset;
2879 }
2880 
2881 void AsmPrinter::emitNops(unsigned N) {
2882   MCInst Nop;
2883   MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2884   for (; N; --N)
2885     EmitToStreamer(*OutStreamer, Nop);
2886 }
2887 
2888 //===----------------------------------------------------------------------===//
2889 // Symbol Lowering Routines.
2890 //===----------------------------------------------------------------------===//
2891 
2892 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2893   return OutContext.createTempSymbol(Name, true);
2894 }
2895 
2896 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2897   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2898 }
2899 
2900 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2901   return MMI->getAddrLabelSymbol(BB);
2902 }
2903 
2904 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2905 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2906   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2907     const MachineConstantPoolEntry &CPE =
2908         MF->getConstantPool()->getConstants()[CPID];
2909     if (!CPE.isMachineConstantPoolEntry()) {
2910       const DataLayout &DL = MF->getDataLayout();
2911       SectionKind Kind = CPE.getSectionKind(&DL);
2912       const Constant *C = CPE.Val.ConstVal;
2913       Align Alignment = CPE.Alignment;
2914       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2915               getObjFileLowering().getSectionForConstant(DL, Kind, C,
2916                                                          Alignment))) {
2917         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2918           if (Sym->isUndefined())
2919             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
2920           return Sym;
2921         }
2922       }
2923     }
2924   }
2925 
2926   const DataLayout &DL = getDataLayout();
2927   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2928                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2929                                       Twine(CPID));
2930 }
2931 
2932 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2933 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2934   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2935 }
2936 
2937 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2938 /// FIXME: privatize to AsmPrinter.
2939 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2940   const DataLayout &DL = getDataLayout();
2941   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2942                                       Twine(getFunctionNumber()) + "_" +
2943                                       Twine(UID) + "_set_" + Twine(MBBID));
2944 }
2945 
2946 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2947                                                    StringRef Suffix) const {
2948   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2949 }
2950 
2951 /// Return the MCSymbol for the specified ExternalSymbol.
2952 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2953   SmallString<60> NameStr;
2954   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2955   return OutContext.getOrCreateSymbol(NameStr);
2956 }
2957 
2958 /// PrintParentLoopComment - Print comments about parent loops of this one.
2959 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2960                                    unsigned FunctionNumber) {
2961   if (!Loop) return;
2962   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2963   OS.indent(Loop->getLoopDepth()*2)
2964     << "Parent Loop BB" << FunctionNumber << "_"
2965     << Loop->getHeader()->getNumber()
2966     << " Depth=" << Loop->getLoopDepth() << '\n';
2967 }
2968 
2969 /// PrintChildLoopComment - Print comments about child loops within
2970 /// the loop for this basic block, with nesting.
2971 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2972                                   unsigned FunctionNumber) {
2973   // Add child loop information
2974   for (const MachineLoop *CL : *Loop) {
2975     OS.indent(CL->getLoopDepth()*2)
2976       << "Child Loop BB" << FunctionNumber << "_"
2977       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2978       << '\n';
2979     PrintChildLoopComment(OS, CL, FunctionNumber);
2980   }
2981 }
2982 
2983 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2984 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2985                                        const MachineLoopInfo *LI,
2986                                        const AsmPrinter &AP) {
2987   // Add loop depth information
2988   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2989   if (!Loop) return;
2990 
2991   MachineBasicBlock *Header = Loop->getHeader();
2992   assert(Header && "No header for loop");
2993 
2994   // If this block is not a loop header, just print out what is the loop header
2995   // and return.
2996   if (Header != &MBB) {
2997     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2998                                Twine(AP.getFunctionNumber())+"_" +
2999                                Twine(Loop->getHeader()->getNumber())+
3000                                " Depth="+Twine(Loop->getLoopDepth()));
3001     return;
3002   }
3003 
3004   // Otherwise, it is a loop header.  Print out information about child and
3005   // parent loops.
3006   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3007 
3008   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3009 
3010   OS << "=>";
3011   OS.indent(Loop->getLoopDepth()*2-2);
3012 
3013   OS << "This ";
3014   if (Loop->empty())
3015     OS << "Inner ";
3016   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3017 
3018   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3019 }
3020 
3021 /// emitBasicBlockStart - This method prints the label for the specified
3022 /// MachineBasicBlock, an alignment (if present) and a comment describing
3023 /// it if appropriate.
3024 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3025   // End the previous funclet and start a new one.
3026   if (MBB.isEHFuncletEntry()) {
3027     for (const HandlerInfo &HI : Handlers) {
3028       HI.Handler->endFunclet();
3029       HI.Handler->beginFunclet(MBB);
3030     }
3031   }
3032 
3033   // Emit an alignment directive for this block, if needed.
3034   const Align Alignment = MBB.getAlignment();
3035   if (Alignment != Align(1))
3036     emitAlignment(Alignment);
3037 
3038   // If the block has its address taken, emit any labels that were used to
3039   // reference the block.  It is possible that there is more than one label
3040   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3041   // the references were generated.
3042   if (MBB.hasAddressTaken()) {
3043     const BasicBlock *BB = MBB.getBasicBlock();
3044     if (isVerbose())
3045       OutStreamer->AddComment("Block address taken");
3046 
3047     // MBBs can have their address taken as part of CodeGen without having
3048     // their corresponding BB's address taken in IR
3049     if (BB->hasAddressTaken())
3050       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3051         OutStreamer->emitLabel(Sym);
3052   }
3053 
3054   // Print some verbose block comments.
3055   if (isVerbose()) {
3056     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3057       if (BB->hasName()) {
3058         BB->printAsOperand(OutStreamer->GetCommentOS(),
3059                            /*PrintType=*/false, BB->getModule());
3060         OutStreamer->GetCommentOS() << '\n';
3061       }
3062     }
3063 
3064     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3065     emitBasicBlockLoopComments(MBB, MLI, *this);
3066   }
3067 
3068   if (MBB.pred_empty() ||
3069       (!MF->hasBBLabels() && isBlockOnlyReachableByFallthrough(&MBB) &&
3070        !MBB.isEHFuncletEntry() && !MBB.hasLabelMustBeEmitted())) {
3071     if (isVerbose()) {
3072       // NOTE: Want this comment at start of line, don't emit with AddComment.
3073       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3074                                   false);
3075     }
3076   } else {
3077     if (isVerbose() && MBB.hasLabelMustBeEmitted()) {
3078       OutStreamer->AddComment("Label of block must be emitted");
3079     }
3080     // Switch to a new section if this basic block must begin a section.
3081     if (MBB.isBeginSection()) {
3082       OutStreamer->SwitchSection(
3083           getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3084                                                               MBB, TM));
3085       CurrentSectionBeginSym = MBB.getSymbol();
3086     }
3087     OutStreamer->emitLabel(MBB.getSymbol());
3088   }
3089 }
3090 
3091 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {}
3092 
3093 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3094                                 bool IsDefinition) const {
3095   MCSymbolAttr Attr = MCSA_Invalid;
3096 
3097   switch (Visibility) {
3098   default: break;
3099   case GlobalValue::HiddenVisibility:
3100     if (IsDefinition)
3101       Attr = MAI->getHiddenVisibilityAttr();
3102     else
3103       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3104     break;
3105   case GlobalValue::ProtectedVisibility:
3106     Attr = MAI->getProtectedVisibilityAttr();
3107     break;
3108   }
3109 
3110   if (Attr != MCSA_Invalid)
3111     OutStreamer->emitSymbolAttribute(Sym, Attr);
3112 }
3113 
3114 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3115 /// exactly one predecessor and the control transfer mechanism between
3116 /// the predecessor and this block is a fall-through.
3117 bool AsmPrinter::
3118 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3119   // With BasicBlock Sections, beginning of the section is not a fallthrough.
3120   if (MBB->isBeginSection())
3121     return false;
3122 
3123   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3124   // then nothing falls through to it.
3125   if (MBB->isEHPad() || MBB->pred_empty())
3126     return false;
3127 
3128   // If there isn't exactly one predecessor, it can't be a fall through.
3129   if (MBB->pred_size() > 1)
3130     return false;
3131 
3132   // The predecessor has to be immediately before this block.
3133   MachineBasicBlock *Pred = *MBB->pred_begin();
3134   if (!Pred->isLayoutSuccessor(MBB))
3135     return false;
3136 
3137   // If the block is completely empty, then it definitely does fall through.
3138   if (Pred->empty())
3139     return true;
3140 
3141   // Check the terminators in the previous blocks
3142   for (const auto &MI : Pred->terminators()) {
3143     // If it is not a simple branch, we are in a table somewhere.
3144     if (!MI.isBranch() || MI.isIndirectBranch())
3145       return false;
3146 
3147     // If we are the operands of one of the branches, this is not a fall
3148     // through. Note that targets with delay slots will usually bundle
3149     // terminators with the delay slot instruction.
3150     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3151       if (OP->isJTI())
3152         return false;
3153       if (OP->isMBB() && OP->getMBB() == MBB)
3154         return false;
3155     }
3156   }
3157 
3158   return true;
3159 }
3160 
3161 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3162   if (!S.usesMetadata())
3163     return nullptr;
3164 
3165   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3166   gcp_map_type::iterator GCPI = GCMap.find(&S);
3167   if (GCPI != GCMap.end())
3168     return GCPI->second.get();
3169 
3170   auto Name = S.getName();
3171 
3172   for (GCMetadataPrinterRegistry::iterator
3173          I = GCMetadataPrinterRegistry::begin(),
3174          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3175     if (Name == I->getName()) {
3176       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3177       GMP->S = &S;
3178       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3179       return IterBool.first->second.get();
3180     }
3181 
3182   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3183 }
3184 
3185 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3186   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3187   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3188   bool NeedsDefault = false;
3189   if (MI->begin() == MI->end())
3190     // No GC strategy, use the default format.
3191     NeedsDefault = true;
3192   else
3193     for (auto &I : *MI) {
3194       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3195         if (MP->emitStackMaps(SM, *this))
3196           continue;
3197       // The strategy doesn't have printer or doesn't emit custom stack maps.
3198       // Use the default format.
3199       NeedsDefault = true;
3200     }
3201 
3202   if (NeedsDefault)
3203     SM.serializeToStackMapSection();
3204 }
3205 
3206 /// Pin vtable to this file.
3207 AsmPrinterHandler::~AsmPrinterHandler() = default;
3208 
3209 void AsmPrinterHandler::markFunctionEnd() {}
3210 
3211 // In the binary's "xray_instr_map" section, an array of these function entries
3212 // describes each instrumentation point.  When XRay patches your code, the index
3213 // into this table will be given to your handler as a patch point identifier.
3214 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3215   auto Kind8 = static_cast<uint8_t>(Kind);
3216   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3217   Out->emitBinaryData(
3218       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3219   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3220   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3221   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3222   Out->emitZeros(Padding);
3223 }
3224 
3225 void AsmPrinter::emitXRayTable() {
3226   if (Sleds.empty())
3227     return;
3228 
3229   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3230   const Function &F = MF->getFunction();
3231   MCSection *InstMap = nullptr;
3232   MCSection *FnSledIndex = nullptr;
3233   const Triple &TT = TM.getTargetTriple();
3234   // Use PC-relative addresses on all targets except MIPS (MIPS64 cannot use
3235   // PC-relative addresses because R_MIPS_PC64 does not exist).
3236   bool PCRel = !TT.isMIPS();
3237   if (TT.isOSBinFormatELF()) {
3238     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3239     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3240     if (!PCRel)
3241       Flags |= ELF::SHF_WRITE;
3242     StringRef GroupName;
3243     if (F.hasComdat()) {
3244       Flags |= ELF::SHF_GROUP;
3245       GroupName = F.getComdat()->getName();
3246     }
3247     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3248                                        Flags, 0, GroupName,
3249                                        MCSection::NonUniqueID, LinkedToSym);
3250     FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS,
3251                                            Flags | ELF::SHF_WRITE, 0, GroupName,
3252                                            MCSection::NonUniqueID, LinkedToSym);
3253   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3254     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3255                                          SectionKind::getReadOnlyWithRel());
3256     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3257                                              SectionKind::getReadOnlyWithRel());
3258   } else {
3259     llvm_unreachable("Unsupported target");
3260   }
3261 
3262   auto WordSizeBytes = MAI->getCodePointerSize();
3263 
3264   // Now we switch to the instrumentation map section. Because this is done
3265   // per-function, we are able to create an index entry that will represent the
3266   // range of sleds associated with a function.
3267   auto &Ctx = OutContext;
3268   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3269   OutStreamer->SwitchSection(InstMap);
3270   OutStreamer->emitLabel(SledsStart);
3271   for (const auto &Sled : Sleds) {
3272     if (PCRel) {
3273       MCSymbol *Dot = Ctx.createTempSymbol();
3274       OutStreamer->emitLabel(Dot);
3275       OutStreamer->emitValueImpl(
3276           MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3277                                   MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3278           WordSizeBytes);
3279       OutStreamer->emitValueImpl(
3280           MCBinaryExpr::createSub(
3281               MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3282               MCBinaryExpr::createAdd(
3283                   MCSymbolRefExpr::create(Dot, Ctx),
3284                   MCConstantExpr::create(WordSizeBytes, Ctx), Ctx),
3285               Ctx),
3286           WordSizeBytes);
3287     } else {
3288       OutStreamer->emitSymbolValue(Sled.Sled, WordSizeBytes);
3289       OutStreamer->emitSymbolValue(CurrentFnSym, WordSizeBytes);
3290     }
3291     Sled.emit(WordSizeBytes, OutStreamer.get());
3292   }
3293   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3294   OutStreamer->emitLabel(SledsEnd);
3295 
3296   // We then emit a single entry in the index per function. We use the symbols
3297   // that bound the instrumentation map as the range for a specific function.
3298   // Each entry here will be 2 * word size aligned, as we're writing down two
3299   // pointers. This should work for both 32-bit and 64-bit platforms.
3300   OutStreamer->SwitchSection(FnSledIndex);
3301   OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3302   OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3303   OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3304   OutStreamer->SwitchSection(PrevSection);
3305   Sleds.clear();
3306 }
3307 
3308 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3309                             SledKind Kind, uint8_t Version) {
3310   const Function &F = MI.getMF()->getFunction();
3311   auto Attr = F.getFnAttribute("function-instrument");
3312   bool LogArgs = F.hasFnAttribute("xray-log-args");
3313   bool AlwaysInstrument =
3314     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3315   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3316     Kind = SledKind::LOG_ARGS_ENTER;
3317   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3318                                        AlwaysInstrument, &F, Version});
3319 }
3320 
3321 void AsmPrinter::emitPatchableFunctionEntries() {
3322   const Function &F = MF->getFunction();
3323   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3324   (void)F.getFnAttribute("patchable-function-prefix")
3325       .getValueAsString()
3326       .getAsInteger(10, PatchableFunctionPrefix);
3327   (void)F.getFnAttribute("patchable-function-entry")
3328       .getValueAsString()
3329       .getAsInteger(10, PatchableFunctionEntry);
3330   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3331     return;
3332   const unsigned PointerSize = getPointerSize();
3333   if (TM.getTargetTriple().isOSBinFormatELF()) {
3334     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3335     const MCSymbolELF *LinkedToSym = nullptr;
3336     StringRef GroupName;
3337 
3338     // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only
3339     // if we are using the integrated assembler.
3340     if (MAI->useIntegratedAssembler()) {
3341       Flags |= ELF::SHF_LINK_ORDER;
3342       if (F.hasComdat()) {
3343         Flags |= ELF::SHF_GROUP;
3344         GroupName = F.getComdat()->getName();
3345       }
3346       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3347     }
3348     OutStreamer->SwitchSection(OutContext.getELFSection(
3349         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3350         MCSection::NonUniqueID, LinkedToSym));
3351     emitAlignment(Align(PointerSize));
3352     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3353   }
3354 }
3355 
3356 uint16_t AsmPrinter::getDwarfVersion() const {
3357   return OutStreamer->getContext().getDwarfVersion();
3358 }
3359 
3360 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3361   OutStreamer->getContext().setDwarfVersion(Version);
3362 }
3363