1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AsmPrinterHandler.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WinException.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/ConstantFolding.h" 31 #include "llvm/Analysis/ObjectUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AsmPrinter.h" 34 #include "llvm/CodeGen/GCMetadata.h" 35 #include "llvm/CodeGen/GCMetadataPrinter.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineConstantPool.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBundle.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugInfoMetadata.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GlobalAlias.h" 58 #include "llvm/IR/GlobalIFunc.h" 59 #include "llvm/IR/GlobalIndirectSymbol.h" 60 #include "llvm/IR/GlobalObject.h" 61 #include "llvm/IR/GlobalValue.h" 62 #include "llvm/IR/GlobalVariable.h" 63 #include "llvm/IR/Mangler.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/MC/MCAsmInfo.h" 69 #include "llvm/MC/MCContext.h" 70 #include "llvm/MC/MCDirectives.h" 71 #include "llvm/MC/MCExpr.h" 72 #include "llvm/MC/MCInst.h" 73 #include "llvm/MC/MCSection.h" 74 #include "llvm/MC/MCSectionELF.h" 75 #include "llvm/MC/MCSectionMachO.h" 76 #include "llvm/MC/MCStreamer.h" 77 #include "llvm/MC/MCSubtargetInfo.h" 78 #include "llvm/MC/MCSymbol.h" 79 #include "llvm/MC/MCTargetOptions.h" 80 #include "llvm/MC/MCValue.h" 81 #include "llvm/MC/SectionKind.h" 82 #include "llvm/Pass.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Dwarf.h" 86 #include "llvm/Support/ELF.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/Format.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/TargetRegistry.h" 92 #include "llvm/Support/Timer.h" 93 #include "llvm/Target/TargetFrameLowering.h" 94 #include "llvm/Target/TargetInstrInfo.h" 95 #include "llvm/Target/TargetLowering.h" 96 #include "llvm/Target/TargetLoweringObjectFile.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetRegisterInfo.h" 99 #include "llvm/Target/TargetSubtargetInfo.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cinttypes> 103 #include <cstdint> 104 #include <limits> 105 #include <memory> 106 #include <string> 107 #include <utility> 108 #include <vector> 109 110 using namespace llvm; 111 112 #define DEBUG_TYPE "asm-printer" 113 114 static const char *const DWARFGroupName = "dwarf"; 115 static const char *const DWARFGroupDescription = "DWARF Emission"; 116 static const char *const DbgTimerName = "emit"; 117 static const char *const DbgTimerDescription = "Debug Info Emission"; 118 static const char *const EHTimerName = "write_exception"; 119 static const char *const EHTimerDescription = "DWARF Exception Writer"; 120 static const char *const CodeViewLineTablesGroupName = "linetables"; 121 static const char *const CodeViewLineTablesGroupDescription = 122 "CodeView Line Tables"; 123 124 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 125 126 static cl::opt<bool> 127 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 128 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 129 130 char AsmPrinter::ID = 0; 131 132 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 133 static gcp_map_type &getGCMap(void *&P) { 134 if (!P) 135 P = new gcp_map_type(); 136 return *(gcp_map_type*)P; 137 } 138 139 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 140 /// value in log2 form. This rounds up to the preferred alignment if possible 141 /// and legal. 142 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 143 unsigned InBits = 0) { 144 unsigned NumBits = 0; 145 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 146 NumBits = DL.getPreferredAlignmentLog(GVar); 147 148 // If InBits is specified, round it to it. 149 if (InBits > NumBits) 150 NumBits = InBits; 151 152 // If the GV has a specified alignment, take it into account. 153 if (GV->getAlignment() == 0) 154 return NumBits; 155 156 unsigned GVAlign = Log2_32(GV->getAlignment()); 157 158 // If the GVAlign is larger than NumBits, or if we are required to obey 159 // NumBits because the GV has an assigned section, obey it. 160 if (GVAlign > NumBits || GV->hasSection()) 161 NumBits = GVAlign; 162 return NumBits; 163 } 164 165 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 166 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 167 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 168 VerboseAsm = OutStreamer->isVerboseAsm(); 169 } 170 171 AsmPrinter::~AsmPrinter() { 172 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 173 174 if (GCMetadataPrinters) { 175 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 176 177 delete &GCMap; 178 GCMetadataPrinters = nullptr; 179 } 180 } 181 182 bool AsmPrinter::isPositionIndependent() const { 183 return TM.isPositionIndependent(); 184 } 185 186 /// getFunctionNumber - Return a unique ID for the current function. 187 /// 188 unsigned AsmPrinter::getFunctionNumber() const { 189 return MF->getFunctionNumber(); 190 } 191 192 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 193 return *TM.getObjFileLowering(); 194 } 195 196 const DataLayout &AsmPrinter::getDataLayout() const { 197 return MMI->getModule()->getDataLayout(); 198 } 199 200 // Do not use the cached DataLayout because some client use it without a Module 201 // (llvm-dsymutil, llvm-dwarfdump). 202 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 203 204 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 205 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 206 return MF->getSubtarget<MCSubtargetInfo>(); 207 } 208 209 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 210 S.EmitInstruction(Inst, getSubtargetInfo()); 211 } 212 213 /// getCurrentSection() - Return the current section we are emitting to. 214 const MCSection *AsmPrinter::getCurrentSection() const { 215 return OutStreamer->getCurrentSectionOnly(); 216 } 217 218 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 219 AU.setPreservesAll(); 220 MachineFunctionPass::getAnalysisUsage(AU); 221 AU.addRequired<MachineModuleInfo>(); 222 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 223 AU.addRequired<GCModuleInfo>(); 224 if (isVerbose()) 225 AU.addRequired<MachineLoopInfo>(); 226 } 227 228 bool AsmPrinter::doInitialization(Module &M) { 229 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 230 231 // Initialize TargetLoweringObjectFile. 232 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 233 .Initialize(OutContext, TM); 234 235 OutStreamer->InitSections(false); 236 237 // Emit the version-min deplyment target directive if needed. 238 // 239 // FIXME: If we end up with a collection of these sorts of Darwin-specific 240 // or ELF-specific things, it may make sense to have a platform helper class 241 // that will work with the target helper class. For now keep it here, as the 242 // alternative is duplicated code in each of the target asm printers that 243 // use the directive, where it would need the same conditionalization 244 // anyway. 245 const Triple &TT = TM.getTargetTriple(); 246 // If there is a version specified, Major will be non-zero. 247 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 248 unsigned Major, Minor, Update; 249 MCVersionMinType VersionType; 250 if (TT.isWatchOS()) { 251 VersionType = MCVM_WatchOSVersionMin; 252 TT.getWatchOSVersion(Major, Minor, Update); 253 } else if (TT.isTvOS()) { 254 VersionType = MCVM_TvOSVersionMin; 255 TT.getiOSVersion(Major, Minor, Update); 256 } else if (TT.isMacOSX()) { 257 VersionType = MCVM_OSXVersionMin; 258 if (!TT.getMacOSXVersion(Major, Minor, Update)) 259 Major = 0; 260 } else { 261 VersionType = MCVM_IOSVersionMin; 262 TT.getiOSVersion(Major, Minor, Update); 263 } 264 if (Major != 0) 265 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 266 } 267 268 // Allow the target to emit any magic that it wants at the start of the file. 269 EmitStartOfAsmFile(M); 270 271 // Very minimal debug info. It is ignored if we emit actual debug info. If we 272 // don't, this at least helps the user find where a global came from. 273 if (MAI->hasSingleParameterDotFile()) { 274 // .file "foo.c" 275 OutStreamer->EmitFileDirective(M.getSourceFileName()); 276 } 277 278 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 279 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 280 for (auto &I : *MI) 281 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 282 MP->beginAssembly(M, *MI, *this); 283 284 // Emit module-level inline asm if it exists. 285 if (!M.getModuleInlineAsm().empty()) { 286 // We're at the module level. Construct MCSubtarget from the default CPU 287 // and target triple. 288 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 289 TM.getTargetTriple().str(), TM.getTargetCPU(), 290 TM.getTargetFeatureString())); 291 OutStreamer->AddComment("Start of file scope inline assembly"); 292 OutStreamer->AddBlankLine(); 293 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 294 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 295 OutStreamer->AddComment("End of file scope inline assembly"); 296 OutStreamer->AddBlankLine(); 297 } 298 299 if (MAI->doesSupportDebugInformation()) { 300 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 301 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 302 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 303 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 304 DbgTimerName, DbgTimerDescription, 305 CodeViewLineTablesGroupName, 306 CodeViewLineTablesGroupDescription)); 307 } 308 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 309 DD = new DwarfDebug(this, &M); 310 DD->beginModule(); 311 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 312 DWARFGroupName, DWARFGroupDescription)); 313 } 314 } 315 316 switch (MAI->getExceptionHandlingType()) { 317 case ExceptionHandling::SjLj: 318 case ExceptionHandling::DwarfCFI: 319 case ExceptionHandling::ARM: 320 isCFIMoveForDebugging = true; 321 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 322 break; 323 for (auto &F: M.getFunctionList()) { 324 // If the module contains any function with unwind data, 325 // .eh_frame has to be emitted. 326 // Ignore functions that won't get emitted. 327 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 328 isCFIMoveForDebugging = false; 329 break; 330 } 331 } 332 break; 333 default: 334 isCFIMoveForDebugging = false; 335 break; 336 } 337 338 EHStreamer *ES = nullptr; 339 switch (MAI->getExceptionHandlingType()) { 340 case ExceptionHandling::None: 341 break; 342 case ExceptionHandling::SjLj: 343 case ExceptionHandling::DwarfCFI: 344 ES = new DwarfCFIException(this); 345 break; 346 case ExceptionHandling::ARM: 347 ES = new ARMException(this); 348 break; 349 case ExceptionHandling::WinEH: 350 switch (MAI->getWinEHEncodingType()) { 351 default: llvm_unreachable("unsupported unwinding information encoding"); 352 case WinEH::EncodingType::Invalid: 353 break; 354 case WinEH::EncodingType::X86: 355 case WinEH::EncodingType::Itanium: 356 ES = new WinException(this); 357 break; 358 } 359 break; 360 } 361 if (ES) 362 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 363 DWARFGroupName, DWARFGroupDescription)); 364 return false; 365 } 366 367 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 368 if (!MAI.hasWeakDefCanBeHiddenDirective()) 369 return false; 370 371 return canBeOmittedFromSymbolTable(GV); 372 } 373 374 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 375 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 376 switch (Linkage) { 377 case GlobalValue::CommonLinkage: 378 case GlobalValue::LinkOnceAnyLinkage: 379 case GlobalValue::LinkOnceODRLinkage: 380 case GlobalValue::WeakAnyLinkage: 381 case GlobalValue::WeakODRLinkage: 382 if (MAI->hasWeakDefDirective()) { 383 // .globl _foo 384 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 385 386 if (!canBeHidden(GV, *MAI)) 387 // .weak_definition _foo 388 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 389 else 390 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 391 } else if (MAI->hasLinkOnceDirective()) { 392 // .globl _foo 393 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 394 //NOTE: linkonce is handled by the section the symbol was assigned to. 395 } else { 396 // .weak _foo 397 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 398 } 399 return; 400 case GlobalValue::ExternalLinkage: 401 // If external, declare as a global symbol: .globl _foo 402 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 403 return; 404 case GlobalValue::PrivateLinkage: 405 case GlobalValue::InternalLinkage: 406 return; 407 case GlobalValue::AppendingLinkage: 408 case GlobalValue::AvailableExternallyLinkage: 409 case GlobalValue::ExternalWeakLinkage: 410 llvm_unreachable("Should never emit this"); 411 } 412 llvm_unreachable("Unknown linkage type!"); 413 } 414 415 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 416 const GlobalValue *GV) const { 417 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 418 } 419 420 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 421 return TM.getSymbol(GV); 422 } 423 424 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 425 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 426 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 427 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 428 "No emulated TLS variables in the common section"); 429 430 // Never emit TLS variable xyz in emulated TLS model. 431 // The initialization value is in __emutls_t.xyz instead of xyz. 432 if (IsEmuTLSVar) 433 return; 434 435 if (GV->hasInitializer()) { 436 // Check to see if this is a special global used by LLVM, if so, emit it. 437 if (EmitSpecialLLVMGlobal(GV)) 438 return; 439 440 // Skip the emission of global equivalents. The symbol can be emitted later 441 // on by emitGlobalGOTEquivs in case it turns out to be needed. 442 if (GlobalGOTEquivs.count(getSymbol(GV))) 443 return; 444 445 if (isVerbose()) { 446 // When printing the control variable __emutls_v.*, 447 // we don't need to print the original TLS variable name. 448 GV->printAsOperand(OutStreamer->GetCommentOS(), 449 /*PrintType=*/false, GV->getParent()); 450 OutStreamer->GetCommentOS() << '\n'; 451 } 452 } 453 454 MCSymbol *GVSym = getSymbol(GV); 455 MCSymbol *EmittedSym = GVSym; 456 457 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 458 // attributes. 459 // GV's or GVSym's attributes will be used for the EmittedSym. 460 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 461 462 if (!GV->hasInitializer()) // External globals require no extra code. 463 return; 464 465 GVSym->redefineIfPossible(); 466 if (GVSym->isDefined() || GVSym->isVariable()) 467 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 468 "' is already defined"); 469 470 if (MAI->hasDotTypeDotSizeDirective()) 471 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 472 473 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 474 475 const DataLayout &DL = GV->getParent()->getDataLayout(); 476 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 477 478 // If the alignment is specified, we *must* obey it. Overaligning a global 479 // with a specified alignment is a prompt way to break globals emitted to 480 // sections and expected to be contiguous (e.g. ObjC metadata). 481 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 482 483 for (const HandlerInfo &HI : Handlers) { 484 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 485 HI.TimerGroupName, HI.TimerGroupDescription, 486 TimePassesIsEnabled); 487 HI.Handler->setSymbolSize(GVSym, Size); 488 } 489 490 // Handle common symbols 491 if (GVKind.isCommon()) { 492 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 493 unsigned Align = 1 << AlignLog; 494 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 495 Align = 0; 496 497 // .comm _foo, 42, 4 498 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 499 return; 500 } 501 502 // Determine to which section this global should be emitted. 503 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 504 505 // If we have a bss global going to a section that supports the 506 // zerofill directive, do so here. 507 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 508 TheSection->isVirtualSection()) { 509 if (Size == 0) 510 Size = 1; // zerofill of 0 bytes is undefined. 511 unsigned Align = 1 << AlignLog; 512 EmitLinkage(GV, GVSym); 513 // .zerofill __DATA, __bss, _foo, 400, 5 514 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 515 return; 516 } 517 518 // If this is a BSS local symbol and we are emitting in the BSS 519 // section use .lcomm/.comm directive. 520 if (GVKind.isBSSLocal() && 521 getObjFileLowering().getBSSSection() == TheSection) { 522 if (Size == 0) 523 Size = 1; // .comm Foo, 0 is undefined, avoid it. 524 unsigned Align = 1 << AlignLog; 525 526 // Use .lcomm only if it supports user-specified alignment. 527 // Otherwise, while it would still be correct to use .lcomm in some 528 // cases (e.g. when Align == 1), the external assembler might enfore 529 // some -unknown- default alignment behavior, which could cause 530 // spurious differences between external and integrated assembler. 531 // Prefer to simply fall back to .local / .comm in this case. 532 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 533 // .lcomm _foo, 42 534 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 535 return; 536 } 537 538 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 539 Align = 0; 540 541 // .local _foo 542 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 543 // .comm _foo, 42, 4 544 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 545 return; 546 } 547 548 // Handle thread local data for mach-o which requires us to output an 549 // additional structure of data and mangle the original symbol so that we 550 // can reference it later. 551 // 552 // TODO: This should become an "emit thread local global" method on TLOF. 553 // All of this macho specific stuff should be sunk down into TLOFMachO and 554 // stuff like "TLSExtraDataSection" should no longer be part of the parent 555 // TLOF class. This will also make it more obvious that stuff like 556 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 557 // specific code. 558 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 559 // Emit the .tbss symbol 560 MCSymbol *MangSym = 561 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 562 563 if (GVKind.isThreadBSS()) { 564 TheSection = getObjFileLowering().getTLSBSSSection(); 565 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 566 } else if (GVKind.isThreadData()) { 567 OutStreamer->SwitchSection(TheSection); 568 569 EmitAlignment(AlignLog, GV); 570 OutStreamer->EmitLabel(MangSym); 571 572 EmitGlobalConstant(GV->getParent()->getDataLayout(), 573 GV->getInitializer()); 574 } 575 576 OutStreamer->AddBlankLine(); 577 578 // Emit the variable struct for the runtime. 579 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 580 581 OutStreamer->SwitchSection(TLVSect); 582 // Emit the linkage here. 583 EmitLinkage(GV, GVSym); 584 OutStreamer->EmitLabel(GVSym); 585 586 // Three pointers in size: 587 // - __tlv_bootstrap - used to make sure support exists 588 // - spare pointer, used when mapped by the runtime 589 // - pointer to mangled symbol above with initializer 590 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 591 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 592 PtrSize); 593 OutStreamer->EmitIntValue(0, PtrSize); 594 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 595 596 OutStreamer->AddBlankLine(); 597 return; 598 } 599 600 MCSymbol *EmittedInitSym = GVSym; 601 602 OutStreamer->SwitchSection(TheSection); 603 604 EmitLinkage(GV, EmittedInitSym); 605 EmitAlignment(AlignLog, GV); 606 607 OutStreamer->EmitLabel(EmittedInitSym); 608 609 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 610 611 if (MAI->hasDotTypeDotSizeDirective()) 612 // .size foo, 42 613 OutStreamer->emitELFSize(EmittedInitSym, 614 MCConstantExpr::create(Size, OutContext)); 615 616 OutStreamer->AddBlankLine(); 617 } 618 619 /// Emit the directive and value for debug thread local expression 620 /// 621 /// \p Value - The value to emit. 622 /// \p Size - The size of the integer (in bytes) to emit. 623 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 624 unsigned Size) const { 625 OutStreamer->EmitValue(Value, Size); 626 } 627 628 /// EmitFunctionHeader - This method emits the header for the current 629 /// function. 630 void AsmPrinter::EmitFunctionHeader() { 631 // Print out constants referenced by the function 632 EmitConstantPool(); 633 634 // Print the 'header' of function. 635 const Function *F = MF->getFunction(); 636 637 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 638 EmitVisibility(CurrentFnSym, F->getVisibility()); 639 640 EmitLinkage(F, CurrentFnSym); 641 if (MAI->hasFunctionAlignment()) 642 EmitAlignment(MF->getAlignment(), F); 643 644 if (MAI->hasDotTypeDotSizeDirective()) 645 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 646 647 if (isVerbose()) { 648 F->printAsOperand(OutStreamer->GetCommentOS(), 649 /*PrintType=*/false, F->getParent()); 650 OutStreamer->GetCommentOS() << '\n'; 651 } 652 653 // Emit the prefix data. 654 if (F->hasPrefixData()) { 655 if (MAI->hasSubsectionsViaSymbols()) { 656 // Preserving prefix data on platforms which use subsections-via-symbols 657 // is a bit tricky. Here we introduce a symbol for the prefix data 658 // and use the .alt_entry attribute to mark the function's real entry point 659 // as an alternative entry point to the prefix-data symbol. 660 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 661 OutStreamer->EmitLabel(PrefixSym); 662 663 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 664 665 // Emit an .alt_entry directive for the actual function symbol. 666 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 667 } else { 668 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 669 } 670 } 671 672 // Emit the CurrentFnSym. This is a virtual function to allow targets to 673 // do their wild and crazy things as required. 674 EmitFunctionEntryLabel(); 675 676 // If the function had address-taken blocks that got deleted, then we have 677 // references to the dangling symbols. Emit them at the start of the function 678 // so that we don't get references to undefined symbols. 679 std::vector<MCSymbol*> DeadBlockSyms; 680 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 681 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 682 OutStreamer->AddComment("Address taken block that was later removed"); 683 OutStreamer->EmitLabel(DeadBlockSyms[i]); 684 } 685 686 if (CurrentFnBegin) { 687 if (MAI->useAssignmentForEHBegin()) { 688 MCSymbol *CurPos = OutContext.createTempSymbol(); 689 OutStreamer->EmitLabel(CurPos); 690 OutStreamer->EmitAssignment(CurrentFnBegin, 691 MCSymbolRefExpr::create(CurPos, OutContext)); 692 } else { 693 OutStreamer->EmitLabel(CurrentFnBegin); 694 } 695 } 696 697 // Emit pre-function debug and/or EH information. 698 for (const HandlerInfo &HI : Handlers) { 699 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 700 HI.TimerGroupDescription, TimePassesIsEnabled); 701 HI.Handler->beginFunction(MF); 702 } 703 704 // Emit the prologue data. 705 if (F->hasPrologueData()) 706 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 707 } 708 709 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 710 /// function. This can be overridden by targets as required to do custom stuff. 711 void AsmPrinter::EmitFunctionEntryLabel() { 712 CurrentFnSym->redefineIfPossible(); 713 714 // The function label could have already been emitted if two symbols end up 715 // conflicting due to asm renaming. Detect this and emit an error. 716 if (CurrentFnSym->isVariable()) 717 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 718 "' is a protected alias"); 719 if (CurrentFnSym->isDefined()) 720 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 721 "' label emitted multiple times to assembly file"); 722 723 return OutStreamer->EmitLabel(CurrentFnSym); 724 } 725 726 /// emitComments - Pretty-print comments for instructions. 727 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 728 AsmPrinter *AP) { 729 const MachineFunction *MF = MI.getParent()->getParent(); 730 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 731 732 // Check for spills and reloads 733 int FI; 734 735 const MachineFrameInfo &MFI = MF->getFrameInfo(); 736 bool Commented = false; 737 738 // We assume a single instruction only has a spill or reload, not 739 // both. 740 const MachineMemOperand *MMO; 741 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 742 if (MFI.isSpillSlotObjectIndex(FI)) { 743 MMO = *MI.memoperands_begin(); 744 CommentOS << MMO->getSize() << "-byte Reload"; 745 Commented = true; 746 } 747 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 748 if (MFI.isSpillSlotObjectIndex(FI)) { 749 CommentOS << MMO->getSize() << "-byte Folded Reload"; 750 Commented = true; 751 } 752 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 753 if (MFI.isSpillSlotObjectIndex(FI)) { 754 MMO = *MI.memoperands_begin(); 755 CommentOS << MMO->getSize() << "-byte Spill"; 756 Commented = true; 757 } 758 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 759 if (MFI.isSpillSlotObjectIndex(FI)) { 760 CommentOS << MMO->getSize() << "-byte Folded Spill"; 761 Commented = true; 762 } 763 } 764 765 // Check for spill-induced copies 766 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 767 Commented = true; 768 CommentOS << " Reload Reuse"; 769 } 770 771 if (Commented && AP->EnablePrintSchedInfo) 772 // If any comment was added above and we need sched info comment then 773 // add this new comment just after the above comment w/o "\n" between them. 774 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 775 else if (Commented) 776 CommentOS << "\n"; 777 } 778 779 /// emitImplicitDef - This method emits the specified machine instruction 780 /// that is an implicit def. 781 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 782 unsigned RegNo = MI->getOperand(0).getReg(); 783 784 SmallString<128> Str; 785 raw_svector_ostream OS(Str); 786 OS << "implicit-def: " 787 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 788 789 OutStreamer->AddComment(OS.str()); 790 OutStreamer->AddBlankLine(); 791 } 792 793 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 794 std::string Str; 795 raw_string_ostream OS(Str); 796 OS << "kill:"; 797 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 798 const MachineOperand &Op = MI->getOperand(i); 799 assert(Op.isReg() && "KILL instruction must have only register operands"); 800 OS << ' ' 801 << PrintReg(Op.getReg(), 802 AP.MF->getSubtarget().getRegisterInfo()) 803 << (Op.isDef() ? "<def>" : "<kill>"); 804 } 805 AP.OutStreamer->AddComment(OS.str()); 806 AP.OutStreamer->AddBlankLine(); 807 } 808 809 /// emitDebugValueComment - This method handles the target-independent form 810 /// of DBG_VALUE, returning true if it was able to do so. A false return 811 /// means the target will need to handle MI in EmitInstruction. 812 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 813 // This code handles only the 4-operand target-independent form. 814 if (MI->getNumOperands() != 4) 815 return false; 816 817 SmallString<128> Str; 818 raw_svector_ostream OS(Str); 819 OS << "DEBUG_VALUE: "; 820 821 const DILocalVariable *V = MI->getDebugVariable(); 822 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 823 StringRef Name = SP->getDisplayName(); 824 if (!Name.empty()) 825 OS << Name << ":"; 826 } 827 OS << V->getName(); 828 829 const DIExpression *Expr = MI->getDebugExpression(); 830 auto Fragment = Expr->getFragmentInfo(); 831 if (Fragment) 832 OS << " [fragment offset=" << Fragment->OffsetInBits 833 << " size=" << Fragment->SizeInBits << "]"; 834 OS << " <- "; 835 836 // The second operand is only an offset if it's an immediate. 837 bool Deref = false; 838 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 839 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 840 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 841 uint64_t Op = Expr->getElement(i); 842 if (Op == dwarf::DW_OP_LLVM_fragment) { 843 // There can't be any operands after this in a valid expression 844 break; 845 } else if (Deref) { 846 // We currently don't support extra Offsets or derefs after the first 847 // one. Bail out early instead of emitting an incorrect comment. 848 OS << " [complex expression]"; 849 AP.OutStreamer->emitRawComment(OS.str()); 850 return true; 851 } else if (Op == dwarf::DW_OP_deref) { 852 Deref = true; 853 continue; 854 } 855 856 uint64_t ExtraOffset = Expr->getElement(i++); 857 if (Op == dwarf::DW_OP_plus) 858 Offset += ExtraOffset; 859 else { 860 assert(Op == dwarf::DW_OP_minus); 861 Offset -= ExtraOffset; 862 } 863 } 864 865 // Register or immediate value. Register 0 means undef. 866 if (MI->getOperand(0).isFPImm()) { 867 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 868 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 869 OS << (double)APF.convertToFloat(); 870 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 871 OS << APF.convertToDouble(); 872 } else { 873 // There is no good way to print long double. Convert a copy to 874 // double. Ah well, it's only a comment. 875 bool ignored; 876 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 877 &ignored); 878 OS << "(long double) " << APF.convertToDouble(); 879 } 880 } else if (MI->getOperand(0).isImm()) { 881 OS << MI->getOperand(0).getImm(); 882 } else if (MI->getOperand(0).isCImm()) { 883 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 884 } else { 885 unsigned Reg; 886 if (MI->getOperand(0).isReg()) { 887 Reg = MI->getOperand(0).getReg(); 888 } else { 889 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 890 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 891 Offset += TFI->getFrameIndexReference(*AP.MF, 892 MI->getOperand(0).getIndex(), Reg); 893 Deref = true; 894 } 895 if (Reg == 0) { 896 // Suppress offset, it is not meaningful here. 897 OS << "undef"; 898 // NOTE: Want this comment at start of line, don't emit with AddComment. 899 AP.OutStreamer->emitRawComment(OS.str()); 900 return true; 901 } 902 if (MemLoc || Deref) 903 OS << '['; 904 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 905 } 906 907 if (MemLoc || Deref) 908 OS << '+' << Offset << ']'; 909 910 // NOTE: Want this comment at start of line, don't emit with AddComment. 911 AP.OutStreamer->emitRawComment(OS.str()); 912 return true; 913 } 914 915 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 916 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 917 MF->getFunction()->needsUnwindTableEntry()) 918 return CFI_M_EH; 919 920 if (MMI->hasDebugInfo()) 921 return CFI_M_Debug; 922 923 return CFI_M_None; 924 } 925 926 bool AsmPrinter::needsSEHMoves() { 927 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 928 } 929 930 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 931 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 932 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 933 ExceptionHandlingType != ExceptionHandling::ARM) 934 return; 935 936 if (needsCFIMoves() == CFI_M_None) 937 return; 938 939 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 940 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 941 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 942 emitCFIInstruction(CFI); 943 } 944 945 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 946 // The operands are the MCSymbol and the frame offset of the allocation. 947 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 948 int FrameOffset = MI.getOperand(1).getImm(); 949 950 // Emit a symbol assignment. 951 OutStreamer->EmitAssignment(FrameAllocSym, 952 MCConstantExpr::create(FrameOffset, OutContext)); 953 } 954 955 /// EmitFunctionBody - This method emits the body and trailer for a 956 /// function. 957 void AsmPrinter::EmitFunctionBody() { 958 EmitFunctionHeader(); 959 960 // Emit target-specific gunk before the function body. 961 EmitFunctionBodyStart(); 962 963 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 964 965 // Print out code for the function. 966 bool HasAnyRealCode = false; 967 int NumInstsInFunction = 0; 968 for (auto &MBB : *MF) { 969 // Print a label for the basic block. 970 EmitBasicBlockStart(MBB); 971 for (auto &MI : MBB) { 972 973 // Print the assembly for the instruction. 974 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 975 !MI.isDebugValue()) { 976 HasAnyRealCode = true; 977 ++NumInstsInFunction; 978 } 979 980 if (ShouldPrintDebugScopes) { 981 for (const HandlerInfo &HI : Handlers) { 982 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 983 HI.TimerGroupName, HI.TimerGroupDescription, 984 TimePassesIsEnabled); 985 HI.Handler->beginInstruction(&MI); 986 } 987 } 988 989 if (isVerbose()) 990 emitComments(MI, OutStreamer->GetCommentOS(), this); 991 992 switch (MI.getOpcode()) { 993 case TargetOpcode::CFI_INSTRUCTION: 994 emitCFIInstruction(MI); 995 break; 996 997 case TargetOpcode::LOCAL_ESCAPE: 998 emitFrameAlloc(MI); 999 break; 1000 1001 case TargetOpcode::EH_LABEL: 1002 case TargetOpcode::GC_LABEL: 1003 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1004 break; 1005 case TargetOpcode::INLINEASM: 1006 EmitInlineAsm(&MI); 1007 break; 1008 case TargetOpcode::DBG_VALUE: 1009 if (isVerbose()) { 1010 if (!emitDebugValueComment(&MI, *this)) 1011 EmitInstruction(&MI); 1012 } 1013 break; 1014 case TargetOpcode::IMPLICIT_DEF: 1015 if (isVerbose()) emitImplicitDef(&MI); 1016 break; 1017 case TargetOpcode::KILL: 1018 if (isVerbose()) emitKill(&MI, *this); 1019 break; 1020 default: 1021 EmitInstruction(&MI); 1022 break; 1023 } 1024 1025 if (ShouldPrintDebugScopes) { 1026 for (const HandlerInfo &HI : Handlers) { 1027 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1028 HI.TimerGroupName, HI.TimerGroupDescription, 1029 TimePassesIsEnabled); 1030 HI.Handler->endInstruction(); 1031 } 1032 } 1033 } 1034 1035 EmitBasicBlockEnd(MBB); 1036 } 1037 1038 EmittedInsts += NumInstsInFunction; 1039 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1040 MF->getFunction()->getSubprogram(), 1041 &MF->front()); 1042 R << ore::NV("NumInstructions", NumInstsInFunction) 1043 << " instructions in function"; 1044 ORE->emit(R); 1045 1046 // If the function is empty and the object file uses .subsections_via_symbols, 1047 // then we need to emit *something* to the function body to prevent the 1048 // labels from collapsing together. Just emit a noop. 1049 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 1050 MCInst Noop; 1051 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 1052 OutStreamer->AddComment("avoids zero-length function"); 1053 1054 // Targets can opt-out of emitting the noop here by leaving the opcode 1055 // unspecified. 1056 if (Noop.getOpcode()) 1057 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1058 } 1059 1060 const Function *F = MF->getFunction(); 1061 for (const auto &BB : *F) { 1062 if (!BB.hasAddressTaken()) 1063 continue; 1064 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1065 if (Sym->isDefined()) 1066 continue; 1067 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1068 OutStreamer->EmitLabel(Sym); 1069 } 1070 1071 // Emit target-specific gunk after the function body. 1072 EmitFunctionBodyEnd(); 1073 1074 if (!MF->getLandingPads().empty() || MMI->hasDebugInfo() || 1075 MF->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 1076 // Create a symbol for the end of function. 1077 CurrentFnEnd = createTempSymbol("func_end"); 1078 OutStreamer->EmitLabel(CurrentFnEnd); 1079 } 1080 1081 // If the target wants a .size directive for the size of the function, emit 1082 // it. 1083 if (MAI->hasDotTypeDotSizeDirective()) { 1084 // We can get the size as difference between the function label and the 1085 // temp label. 1086 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1087 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1088 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1089 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1090 } 1091 1092 for (const HandlerInfo &HI : Handlers) { 1093 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1094 HI.TimerGroupDescription, TimePassesIsEnabled); 1095 HI.Handler->markFunctionEnd(); 1096 } 1097 1098 // Print out jump tables referenced by the function. 1099 EmitJumpTableInfo(); 1100 1101 // Emit post-function debug and/or EH information. 1102 for (const HandlerInfo &HI : Handlers) { 1103 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1104 HI.TimerGroupDescription, TimePassesIsEnabled); 1105 HI.Handler->endFunction(MF); 1106 } 1107 1108 OutStreamer->AddBlankLine(); 1109 } 1110 1111 /// \brief Compute the number of Global Variables that uses a Constant. 1112 static unsigned getNumGlobalVariableUses(const Constant *C) { 1113 if (!C) 1114 return 0; 1115 1116 if (isa<GlobalVariable>(C)) 1117 return 1; 1118 1119 unsigned NumUses = 0; 1120 for (auto *CU : C->users()) 1121 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1122 1123 return NumUses; 1124 } 1125 1126 /// \brief Only consider global GOT equivalents if at least one user is a 1127 /// cstexpr inside an initializer of another global variables. Also, don't 1128 /// handle cstexpr inside instructions. During global variable emission, 1129 /// candidates are skipped and are emitted later in case at least one cstexpr 1130 /// isn't replaced by a PC relative GOT entry access. 1131 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1132 unsigned &NumGOTEquivUsers) { 1133 // Global GOT equivalents are unnamed private globals with a constant 1134 // pointer initializer to another global symbol. They must point to a 1135 // GlobalVariable or Function, i.e., as GlobalValue. 1136 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1137 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1138 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1139 return false; 1140 1141 // To be a got equivalent, at least one of its users need to be a constant 1142 // expression used by another global variable. 1143 for (auto *U : GV->users()) 1144 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1145 1146 return NumGOTEquivUsers > 0; 1147 } 1148 1149 /// \brief Unnamed constant global variables solely contaning a pointer to 1150 /// another globals variable is equivalent to a GOT table entry; it contains the 1151 /// the address of another symbol. Optimize it and replace accesses to these 1152 /// "GOT equivalents" by using the GOT entry for the final global instead. 1153 /// Compute GOT equivalent candidates among all global variables to avoid 1154 /// emitting them if possible later on, after it use is replaced by a GOT entry 1155 /// access. 1156 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1157 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1158 return; 1159 1160 for (const auto &G : M.globals()) { 1161 unsigned NumGOTEquivUsers = 0; 1162 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1163 continue; 1164 1165 const MCSymbol *GOTEquivSym = getSymbol(&G); 1166 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1167 } 1168 } 1169 1170 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1171 /// for PC relative GOT entry conversion, in such cases we need to emit such 1172 /// globals we previously omitted in EmitGlobalVariable. 1173 void AsmPrinter::emitGlobalGOTEquivs() { 1174 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1175 return; 1176 1177 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1178 for (auto &I : GlobalGOTEquivs) { 1179 const GlobalVariable *GV = I.second.first; 1180 unsigned Cnt = I.second.second; 1181 if (Cnt) 1182 FailedCandidates.push_back(GV); 1183 } 1184 GlobalGOTEquivs.clear(); 1185 1186 for (auto *GV : FailedCandidates) 1187 EmitGlobalVariable(GV); 1188 } 1189 1190 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1191 const GlobalIndirectSymbol& GIS) { 1192 MCSymbol *Name = getSymbol(&GIS); 1193 1194 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1195 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1196 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1197 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1198 else 1199 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1200 1201 // Set the symbol type to function if the alias has a function type. 1202 // This affects codegen when the aliasee is not a function. 1203 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1204 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1205 if (isa<GlobalIFunc>(GIS)) 1206 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1207 } 1208 1209 EmitVisibility(Name, GIS.getVisibility()); 1210 1211 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1212 1213 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1214 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1215 1216 // Emit the directives as assignments aka .set: 1217 OutStreamer->EmitAssignment(Name, Expr); 1218 1219 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1220 // If the aliasee does not correspond to a symbol in the output, i.e. the 1221 // alias is not of an object or the aliased object is private, then set the 1222 // size of the alias symbol from the type of the alias. We don't do this in 1223 // other situations as the alias and aliasee having differing types but same 1224 // size may be intentional. 1225 const GlobalObject *BaseObject = GA->getBaseObject(); 1226 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1227 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1228 const DataLayout &DL = M.getDataLayout(); 1229 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1230 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1231 } 1232 } 1233 } 1234 1235 bool AsmPrinter::doFinalization(Module &M) { 1236 // Set the MachineFunction to nullptr so that we can catch attempted 1237 // accesses to MF specific features at the module level and so that 1238 // we can conditionalize accesses based on whether or not it is nullptr. 1239 MF = nullptr; 1240 1241 // Gather all GOT equivalent globals in the module. We really need two 1242 // passes over the globals: one to compute and another to avoid its emission 1243 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1244 // where the got equivalent shows up before its use. 1245 computeGlobalGOTEquivs(M); 1246 1247 // Emit global variables. 1248 for (const auto &G : M.globals()) 1249 EmitGlobalVariable(&G); 1250 1251 // Emit remaining GOT equivalent globals. 1252 emitGlobalGOTEquivs(); 1253 1254 // Emit visibility info for declarations 1255 for (const Function &F : M) { 1256 if (!F.isDeclarationForLinker()) 1257 continue; 1258 GlobalValue::VisibilityTypes V = F.getVisibility(); 1259 if (V == GlobalValue::DefaultVisibility) 1260 continue; 1261 1262 MCSymbol *Name = getSymbol(&F); 1263 EmitVisibility(Name, V, false); 1264 } 1265 1266 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1267 1268 // Emit module flags. 1269 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1270 M.getModuleFlagsMetadata(ModuleFlags); 1271 if (!ModuleFlags.empty()) 1272 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM); 1273 1274 if (TM.getTargetTriple().isOSBinFormatELF()) { 1275 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1276 1277 // Output stubs for external and common global variables. 1278 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1279 if (!Stubs.empty()) { 1280 OutStreamer->SwitchSection(TLOF.getDataSection()); 1281 const DataLayout &DL = M.getDataLayout(); 1282 1283 for (const auto &Stub : Stubs) { 1284 OutStreamer->EmitLabel(Stub.first); 1285 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1286 DL.getPointerSize()); 1287 } 1288 } 1289 } 1290 1291 // Finalize debug and EH information. 1292 for (const HandlerInfo &HI : Handlers) { 1293 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1294 HI.TimerGroupDescription, TimePassesIsEnabled); 1295 HI.Handler->endModule(); 1296 delete HI.Handler; 1297 } 1298 Handlers.clear(); 1299 DD = nullptr; 1300 1301 // If the target wants to know about weak references, print them all. 1302 if (MAI->getWeakRefDirective()) { 1303 // FIXME: This is not lazy, it would be nice to only print weak references 1304 // to stuff that is actually used. Note that doing so would require targets 1305 // to notice uses in operands (due to constant exprs etc). This should 1306 // happen with the MC stuff eventually. 1307 1308 // Print out module-level global objects here. 1309 for (const auto &GO : M.global_objects()) { 1310 if (!GO.hasExternalWeakLinkage()) 1311 continue; 1312 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1313 } 1314 } 1315 1316 OutStreamer->AddBlankLine(); 1317 1318 // Print aliases in topological order, that is, for each alias a = b, 1319 // b must be printed before a. 1320 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1321 // such an order to generate correct TOC information. 1322 SmallVector<const GlobalAlias *, 16> AliasStack; 1323 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1324 for (const auto &Alias : M.aliases()) { 1325 for (const GlobalAlias *Cur = &Alias; Cur; 1326 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1327 if (!AliasVisited.insert(Cur).second) 1328 break; 1329 AliasStack.push_back(Cur); 1330 } 1331 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1332 emitGlobalIndirectSymbol(M, *AncestorAlias); 1333 AliasStack.clear(); 1334 } 1335 for (const auto &IFunc : M.ifuncs()) 1336 emitGlobalIndirectSymbol(M, IFunc); 1337 1338 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1339 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1340 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1341 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1342 MP->finishAssembly(M, *MI, *this); 1343 1344 // Emit llvm.ident metadata in an '.ident' directive. 1345 EmitModuleIdents(M); 1346 1347 // Emit __morestack address if needed for indirect calls. 1348 if (MMI->usesMorestackAddr()) { 1349 unsigned Align = 1; 1350 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1351 getDataLayout(), SectionKind::getReadOnly(), 1352 /*C=*/nullptr, Align); 1353 OutStreamer->SwitchSection(ReadOnlySection); 1354 1355 MCSymbol *AddrSymbol = 1356 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1357 OutStreamer->EmitLabel(AddrSymbol); 1358 1359 unsigned PtrSize = MAI->getCodePointerSize(); 1360 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1361 PtrSize); 1362 } 1363 1364 // If we don't have any trampolines, then we don't require stack memory 1365 // to be executable. Some targets have a directive to declare this. 1366 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1367 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1368 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1369 OutStreamer->SwitchSection(S); 1370 1371 // Allow the target to emit any magic that it wants at the end of the file, 1372 // after everything else has gone out. 1373 EmitEndOfAsmFile(M); 1374 1375 MMI = nullptr; 1376 1377 OutStreamer->Finish(); 1378 OutStreamer->reset(); 1379 1380 return false; 1381 } 1382 1383 MCSymbol *AsmPrinter::getCurExceptionSym() { 1384 if (!CurExceptionSym) 1385 CurExceptionSym = createTempSymbol("exception"); 1386 return CurExceptionSym; 1387 } 1388 1389 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1390 this->MF = &MF; 1391 // Get the function symbol. 1392 CurrentFnSym = getSymbol(MF.getFunction()); 1393 CurrentFnSymForSize = CurrentFnSym; 1394 CurrentFnBegin = nullptr; 1395 CurExceptionSym = nullptr; 1396 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1397 if (!MF.getLandingPads().empty() || MMI->hasDebugInfo() || 1398 MF.hasEHFunclets() || NeedsLocalForSize) { 1399 CurrentFnBegin = createTempSymbol("func_begin"); 1400 if (NeedsLocalForSize) 1401 CurrentFnSymForSize = CurrentFnBegin; 1402 } 1403 1404 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1405 if (isVerbose()) 1406 LI = &getAnalysis<MachineLoopInfo>(); 1407 1408 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1409 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1410 ? PrintSchedule 1411 : STI.supportPrintSchedInfo(); 1412 } 1413 1414 namespace { 1415 1416 // Keep track the alignment, constpool entries per Section. 1417 struct SectionCPs { 1418 MCSection *S; 1419 unsigned Alignment; 1420 SmallVector<unsigned, 4> CPEs; 1421 1422 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1423 }; 1424 1425 } // end anonymous namespace 1426 1427 /// EmitConstantPool - Print to the current output stream assembly 1428 /// representations of the constants in the constant pool MCP. This is 1429 /// used to print out constants which have been "spilled to memory" by 1430 /// the code generator. 1431 /// 1432 void AsmPrinter::EmitConstantPool() { 1433 const MachineConstantPool *MCP = MF->getConstantPool(); 1434 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1435 if (CP.empty()) return; 1436 1437 // Calculate sections for constant pool entries. We collect entries to go into 1438 // the same section together to reduce amount of section switch statements. 1439 SmallVector<SectionCPs, 4> CPSections; 1440 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1441 const MachineConstantPoolEntry &CPE = CP[i]; 1442 unsigned Align = CPE.getAlignment(); 1443 1444 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1445 1446 const Constant *C = nullptr; 1447 if (!CPE.isMachineConstantPoolEntry()) 1448 C = CPE.Val.ConstVal; 1449 1450 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1451 Kind, C, Align); 1452 1453 // The number of sections are small, just do a linear search from the 1454 // last section to the first. 1455 bool Found = false; 1456 unsigned SecIdx = CPSections.size(); 1457 while (SecIdx != 0) { 1458 if (CPSections[--SecIdx].S == S) { 1459 Found = true; 1460 break; 1461 } 1462 } 1463 if (!Found) { 1464 SecIdx = CPSections.size(); 1465 CPSections.push_back(SectionCPs(S, Align)); 1466 } 1467 1468 if (Align > CPSections[SecIdx].Alignment) 1469 CPSections[SecIdx].Alignment = Align; 1470 CPSections[SecIdx].CPEs.push_back(i); 1471 } 1472 1473 // Now print stuff into the calculated sections. 1474 const MCSection *CurSection = nullptr; 1475 unsigned Offset = 0; 1476 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1477 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1478 unsigned CPI = CPSections[i].CPEs[j]; 1479 MCSymbol *Sym = GetCPISymbol(CPI); 1480 if (!Sym->isUndefined()) 1481 continue; 1482 1483 if (CurSection != CPSections[i].S) { 1484 OutStreamer->SwitchSection(CPSections[i].S); 1485 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1486 CurSection = CPSections[i].S; 1487 Offset = 0; 1488 } 1489 1490 MachineConstantPoolEntry CPE = CP[CPI]; 1491 1492 // Emit inter-object padding for alignment. 1493 unsigned AlignMask = CPE.getAlignment() - 1; 1494 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1495 OutStreamer->EmitZeros(NewOffset - Offset); 1496 1497 Type *Ty = CPE.getType(); 1498 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1499 1500 OutStreamer->EmitLabel(Sym); 1501 if (CPE.isMachineConstantPoolEntry()) 1502 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1503 else 1504 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1505 } 1506 } 1507 } 1508 1509 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1510 /// by the current function to the current output stream. 1511 /// 1512 void AsmPrinter::EmitJumpTableInfo() { 1513 const DataLayout &DL = MF->getDataLayout(); 1514 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1515 if (!MJTI) return; 1516 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1517 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1518 if (JT.empty()) return; 1519 1520 // Pick the directive to use to print the jump table entries, and switch to 1521 // the appropriate section. 1522 const Function *F = MF->getFunction(); 1523 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1524 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1525 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1526 *F); 1527 if (JTInDiffSection) { 1528 // Drop it in the readonly section. 1529 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1530 OutStreamer->SwitchSection(ReadOnlySection); 1531 } 1532 1533 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1534 1535 // Jump tables in code sections are marked with a data_region directive 1536 // where that's supported. 1537 if (!JTInDiffSection) 1538 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1539 1540 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1541 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1542 1543 // If this jump table was deleted, ignore it. 1544 if (JTBBs.empty()) continue; 1545 1546 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1547 /// emit a .set directive for each unique entry. 1548 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1549 MAI->doesSetDirectiveSuppressReloc()) { 1550 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1551 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1552 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1553 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1554 const MachineBasicBlock *MBB = JTBBs[ii]; 1555 if (!EmittedSets.insert(MBB).second) 1556 continue; 1557 1558 // .set LJTSet, LBB32-base 1559 const MCExpr *LHS = 1560 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1561 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1562 MCBinaryExpr::createSub(LHS, Base, 1563 OutContext)); 1564 } 1565 } 1566 1567 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1568 // before each jump table. The first label is never referenced, but tells 1569 // the assembler and linker the extents of the jump table object. The 1570 // second label is actually referenced by the code. 1571 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1572 // FIXME: This doesn't have to have any specific name, just any randomly 1573 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1574 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1575 1576 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1577 1578 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1579 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1580 } 1581 if (!JTInDiffSection) 1582 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1583 } 1584 1585 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1586 /// current stream. 1587 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1588 const MachineBasicBlock *MBB, 1589 unsigned UID) const { 1590 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1591 const MCExpr *Value = nullptr; 1592 switch (MJTI->getEntryKind()) { 1593 case MachineJumpTableInfo::EK_Inline: 1594 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1595 case MachineJumpTableInfo::EK_Custom32: 1596 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1597 MJTI, MBB, UID, OutContext); 1598 break; 1599 case MachineJumpTableInfo::EK_BlockAddress: 1600 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1601 // .word LBB123 1602 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1603 break; 1604 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1605 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1606 // with a relocation as gp-relative, e.g.: 1607 // .gprel32 LBB123 1608 MCSymbol *MBBSym = MBB->getSymbol(); 1609 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1610 return; 1611 } 1612 1613 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1614 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1615 // with a relocation as gp-relative, e.g.: 1616 // .gpdword LBB123 1617 MCSymbol *MBBSym = MBB->getSymbol(); 1618 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1619 return; 1620 } 1621 1622 case MachineJumpTableInfo::EK_LabelDifference32: { 1623 // Each entry is the address of the block minus the address of the jump 1624 // table. This is used for PIC jump tables where gprel32 is not supported. 1625 // e.g.: 1626 // .word LBB123 - LJTI1_2 1627 // If the .set directive avoids relocations, this is emitted as: 1628 // .set L4_5_set_123, LBB123 - LJTI1_2 1629 // .word L4_5_set_123 1630 if (MAI->doesSetDirectiveSuppressReloc()) { 1631 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1632 OutContext); 1633 break; 1634 } 1635 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1636 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1637 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1638 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1639 break; 1640 } 1641 } 1642 1643 assert(Value && "Unknown entry kind!"); 1644 1645 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1646 OutStreamer->EmitValue(Value, EntrySize); 1647 } 1648 1649 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1650 /// special global used by LLVM. If so, emit it and return true, otherwise 1651 /// do nothing and return false. 1652 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1653 if (GV->getName() == "llvm.used") { 1654 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1655 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1656 return true; 1657 } 1658 1659 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1660 if (GV->getSection() == "llvm.metadata" || 1661 GV->hasAvailableExternallyLinkage()) 1662 return true; 1663 1664 if (!GV->hasAppendingLinkage()) return false; 1665 1666 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1667 1668 if (GV->getName() == "llvm.global_ctors") { 1669 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1670 /* isCtor */ true); 1671 1672 return true; 1673 } 1674 1675 if (GV->getName() == "llvm.global_dtors") { 1676 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1677 /* isCtor */ false); 1678 1679 return true; 1680 } 1681 1682 report_fatal_error("unknown special variable"); 1683 } 1684 1685 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1686 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1687 /// is true, as being used with this directive. 1688 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1689 // Should be an array of 'i8*'. 1690 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1691 const GlobalValue *GV = 1692 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1693 if (GV) 1694 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1695 } 1696 } 1697 1698 namespace { 1699 1700 struct Structor { 1701 int Priority = 0; 1702 Constant *Func = nullptr; 1703 GlobalValue *ComdatKey = nullptr; 1704 1705 Structor() = default; 1706 }; 1707 1708 } // end anonymous namespace 1709 1710 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1711 /// priority. 1712 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1713 bool isCtor) { 1714 // Should be an array of '{ int, void ()* }' structs. The first value is the 1715 // init priority. 1716 if (!isa<ConstantArray>(List)) return; 1717 1718 // Sanity check the structors list. 1719 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1720 if (!InitList) return; // Not an array! 1721 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1722 // FIXME: Only allow the 3-field form in LLVM 4.0. 1723 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1724 return; // Not an array of two or three elements! 1725 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1726 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1727 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1728 return; // Not (int, ptr, ptr). 1729 1730 // Gather the structors in a form that's convenient for sorting by priority. 1731 SmallVector<Structor, 8> Structors; 1732 for (Value *O : InitList->operands()) { 1733 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1734 if (!CS) continue; // Malformed. 1735 if (CS->getOperand(1)->isNullValue()) 1736 break; // Found a null terminator, skip the rest. 1737 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1738 if (!Priority) continue; // Malformed. 1739 Structors.push_back(Structor()); 1740 Structor &S = Structors.back(); 1741 S.Priority = Priority->getLimitedValue(65535); 1742 S.Func = CS->getOperand(1); 1743 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1744 S.ComdatKey = 1745 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1746 } 1747 1748 // Emit the function pointers in the target-specific order 1749 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1750 std::stable_sort(Structors.begin(), Structors.end(), 1751 [](const Structor &L, 1752 const Structor &R) { return L.Priority < R.Priority; }); 1753 for (Structor &S : Structors) { 1754 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1755 const MCSymbol *KeySym = nullptr; 1756 if (GlobalValue *GV = S.ComdatKey) { 1757 if (GV->isDeclarationForLinker()) 1758 // If the associated variable is not defined in this module 1759 // (it might be available_externally, or have been an 1760 // available_externally definition that was dropped by the 1761 // EliminateAvailableExternally pass), some other TU 1762 // will provide its dynamic initializer. 1763 continue; 1764 1765 KeySym = getSymbol(GV); 1766 } 1767 MCSection *OutputSection = 1768 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1769 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1770 OutStreamer->SwitchSection(OutputSection); 1771 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1772 EmitAlignment(Align); 1773 EmitXXStructor(DL, S.Func); 1774 } 1775 } 1776 1777 void AsmPrinter::EmitModuleIdents(Module &M) { 1778 if (!MAI->hasIdentDirective()) 1779 return; 1780 1781 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1782 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1783 const MDNode *N = NMD->getOperand(i); 1784 assert(N->getNumOperands() == 1 && 1785 "llvm.ident metadata entry can have only one operand"); 1786 const MDString *S = cast<MDString>(N->getOperand(0)); 1787 OutStreamer->EmitIdent(S->getString()); 1788 } 1789 } 1790 } 1791 1792 //===--------------------------------------------------------------------===// 1793 // Emission and print routines 1794 // 1795 1796 /// EmitInt8 - Emit a byte directive and value. 1797 /// 1798 void AsmPrinter::EmitInt8(int Value) const { 1799 OutStreamer->EmitIntValue(Value, 1); 1800 } 1801 1802 /// EmitInt16 - Emit a short directive and value. 1803 /// 1804 void AsmPrinter::EmitInt16(int Value) const { 1805 OutStreamer->EmitIntValue(Value, 2); 1806 } 1807 1808 /// EmitInt32 - Emit a long directive and value. 1809 /// 1810 void AsmPrinter::EmitInt32(int Value) const { 1811 OutStreamer->EmitIntValue(Value, 4); 1812 } 1813 1814 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1815 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1816 /// .set if it avoids relocations. 1817 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1818 unsigned Size) const { 1819 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1820 } 1821 1822 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1823 /// where the size in bytes of the directive is specified by Size and Label 1824 /// specifies the label. This implicitly uses .set if it is available. 1825 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1826 unsigned Size, 1827 bool IsSectionRelative) const { 1828 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1829 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1830 if (Size > 4) 1831 OutStreamer->EmitZeros(Size - 4); 1832 return; 1833 } 1834 1835 // Emit Label+Offset (or just Label if Offset is zero) 1836 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1837 if (Offset) 1838 Expr = MCBinaryExpr::createAdd( 1839 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1840 1841 OutStreamer->EmitValue(Expr, Size); 1842 } 1843 1844 //===----------------------------------------------------------------------===// 1845 1846 // EmitAlignment - Emit an alignment directive to the specified power of 1847 // two boundary. For example, if you pass in 3 here, you will get an 8 1848 // byte alignment. If a global value is specified, and if that global has 1849 // an explicit alignment requested, it will override the alignment request 1850 // if required for correctness. 1851 // 1852 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1853 if (GV) 1854 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1855 1856 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1857 1858 assert(NumBits < 1859 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1860 "undefined behavior"); 1861 if (getCurrentSection()->getKind().isText()) 1862 OutStreamer->EmitCodeAlignment(1u << NumBits); 1863 else 1864 OutStreamer->EmitValueToAlignment(1u << NumBits); 1865 } 1866 1867 //===----------------------------------------------------------------------===// 1868 // Constant emission. 1869 //===----------------------------------------------------------------------===// 1870 1871 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1872 MCContext &Ctx = OutContext; 1873 1874 if (CV->isNullValue() || isa<UndefValue>(CV)) 1875 return MCConstantExpr::create(0, Ctx); 1876 1877 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1878 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1879 1880 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1881 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1882 1883 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1884 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1885 1886 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1887 if (!CE) { 1888 llvm_unreachable("Unknown constant value to lower!"); 1889 } 1890 1891 switch (CE->getOpcode()) { 1892 default: 1893 // If the code isn't optimized, there may be outstanding folding 1894 // opportunities. Attempt to fold the expression using DataLayout as a 1895 // last resort before giving up. 1896 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1897 if (C != CE) 1898 return lowerConstant(C); 1899 1900 // Otherwise report the problem to the user. 1901 { 1902 std::string S; 1903 raw_string_ostream OS(S); 1904 OS << "Unsupported expression in static initializer: "; 1905 CE->printAsOperand(OS, /*PrintType=*/false, 1906 !MF ? nullptr : MF->getFunction()->getParent()); 1907 report_fatal_error(OS.str()); 1908 } 1909 case Instruction::GetElementPtr: { 1910 // Generate a symbolic expression for the byte address 1911 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1912 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1913 1914 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1915 if (!OffsetAI) 1916 return Base; 1917 1918 int64_t Offset = OffsetAI.getSExtValue(); 1919 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1920 Ctx); 1921 } 1922 1923 case Instruction::Trunc: 1924 // We emit the value and depend on the assembler to truncate the generated 1925 // expression properly. This is important for differences between 1926 // blockaddress labels. Since the two labels are in the same function, it 1927 // is reasonable to treat their delta as a 32-bit value. 1928 LLVM_FALLTHROUGH; 1929 case Instruction::BitCast: 1930 return lowerConstant(CE->getOperand(0)); 1931 1932 case Instruction::IntToPtr: { 1933 const DataLayout &DL = getDataLayout(); 1934 1935 // Handle casts to pointers by changing them into casts to the appropriate 1936 // integer type. This promotes constant folding and simplifies this code. 1937 Constant *Op = CE->getOperand(0); 1938 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1939 false/*ZExt*/); 1940 return lowerConstant(Op); 1941 } 1942 1943 case Instruction::PtrToInt: { 1944 const DataLayout &DL = getDataLayout(); 1945 1946 // Support only foldable casts to/from pointers that can be eliminated by 1947 // changing the pointer to the appropriately sized integer type. 1948 Constant *Op = CE->getOperand(0); 1949 Type *Ty = CE->getType(); 1950 1951 const MCExpr *OpExpr = lowerConstant(Op); 1952 1953 // We can emit the pointer value into this slot if the slot is an 1954 // integer slot equal to the size of the pointer. 1955 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1956 return OpExpr; 1957 1958 // Otherwise the pointer is smaller than the resultant integer, mask off 1959 // the high bits so we are sure to get a proper truncation if the input is 1960 // a constant expr. 1961 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1962 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1963 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1964 } 1965 1966 case Instruction::Sub: { 1967 GlobalValue *LHSGV; 1968 APInt LHSOffset; 1969 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1970 getDataLayout())) { 1971 GlobalValue *RHSGV; 1972 APInt RHSOffset; 1973 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1974 getDataLayout())) { 1975 const MCExpr *RelocExpr = 1976 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 1977 if (!RelocExpr) 1978 RelocExpr = MCBinaryExpr::createSub( 1979 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 1980 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 1981 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 1982 if (Addend != 0) 1983 RelocExpr = MCBinaryExpr::createAdd( 1984 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 1985 return RelocExpr; 1986 } 1987 } 1988 } 1989 // else fallthrough 1990 1991 // The MC library also has a right-shift operator, but it isn't consistently 1992 // signed or unsigned between different targets. 1993 case Instruction::Add: 1994 case Instruction::Mul: 1995 case Instruction::SDiv: 1996 case Instruction::SRem: 1997 case Instruction::Shl: 1998 case Instruction::And: 1999 case Instruction::Or: 2000 case Instruction::Xor: { 2001 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2002 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2003 switch (CE->getOpcode()) { 2004 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2005 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2006 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2007 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2008 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2009 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2010 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2011 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2012 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2013 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2014 } 2015 } 2016 } 2017 } 2018 2019 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2020 AsmPrinter &AP, 2021 const Constant *BaseCV = nullptr, 2022 uint64_t Offset = 0); 2023 2024 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2025 2026 /// isRepeatedByteSequence - Determine whether the given value is 2027 /// composed of a repeated sequence of identical bytes and return the 2028 /// byte value. If it is not a repeated sequence, return -1. 2029 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2030 StringRef Data = V->getRawDataValues(); 2031 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2032 char C = Data[0]; 2033 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2034 if (Data[i] != C) return -1; 2035 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2036 } 2037 2038 /// isRepeatedByteSequence - Determine whether the given value is 2039 /// composed of a repeated sequence of identical bytes and return the 2040 /// byte value. If it is not a repeated sequence, return -1. 2041 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2042 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2043 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2044 assert(Size % 8 == 0); 2045 2046 // Extend the element to take zero padding into account. 2047 APInt Value = CI->getValue().zextOrSelf(Size); 2048 if (!Value.isSplat(8)) 2049 return -1; 2050 2051 return Value.zextOrTrunc(8).getZExtValue(); 2052 } 2053 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2054 // Make sure all array elements are sequences of the same repeated 2055 // byte. 2056 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2057 Constant *Op0 = CA->getOperand(0); 2058 int Byte = isRepeatedByteSequence(Op0, DL); 2059 if (Byte == -1) 2060 return -1; 2061 2062 // All array elements must be equal. 2063 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2064 if (CA->getOperand(i) != Op0) 2065 return -1; 2066 return Byte; 2067 } 2068 2069 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2070 return isRepeatedByteSequence(CDS); 2071 2072 return -1; 2073 } 2074 2075 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2076 const ConstantDataSequential *CDS, 2077 AsmPrinter &AP) { 2078 // See if we can aggregate this into a .fill, if so, emit it as such. 2079 int Value = isRepeatedByteSequence(CDS, DL); 2080 if (Value != -1) { 2081 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2082 // Don't emit a 1-byte object as a .fill. 2083 if (Bytes > 1) 2084 return AP.OutStreamer->emitFill(Bytes, Value); 2085 } 2086 2087 // If this can be emitted with .ascii/.asciz, emit it as such. 2088 if (CDS->isString()) 2089 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2090 2091 // Otherwise, emit the values in successive locations. 2092 unsigned ElementByteSize = CDS->getElementByteSize(); 2093 if (isa<IntegerType>(CDS->getElementType())) { 2094 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2095 if (AP.isVerbose()) 2096 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2097 CDS->getElementAsInteger(i)); 2098 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2099 ElementByteSize); 2100 } 2101 } else { 2102 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2103 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2104 } 2105 2106 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2107 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2108 CDS->getNumElements(); 2109 if (unsigned Padding = Size - EmittedSize) 2110 AP.OutStreamer->EmitZeros(Padding); 2111 } 2112 2113 static void emitGlobalConstantArray(const DataLayout &DL, 2114 const ConstantArray *CA, AsmPrinter &AP, 2115 const Constant *BaseCV, uint64_t Offset) { 2116 // See if we can aggregate some values. Make sure it can be 2117 // represented as a series of bytes of the constant value. 2118 int Value = isRepeatedByteSequence(CA, DL); 2119 2120 if (Value != -1) { 2121 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2122 AP.OutStreamer->emitFill(Bytes, Value); 2123 } 2124 else { 2125 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2126 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2127 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2128 } 2129 } 2130 } 2131 2132 static void emitGlobalConstantVector(const DataLayout &DL, 2133 const ConstantVector *CV, AsmPrinter &AP) { 2134 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2135 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2136 2137 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2138 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2139 CV->getType()->getNumElements(); 2140 if (unsigned Padding = Size - EmittedSize) 2141 AP.OutStreamer->EmitZeros(Padding); 2142 } 2143 2144 static void emitGlobalConstantStruct(const DataLayout &DL, 2145 const ConstantStruct *CS, AsmPrinter &AP, 2146 const Constant *BaseCV, uint64_t Offset) { 2147 // Print the fields in successive locations. Pad to align if needed! 2148 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2149 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2150 uint64_t SizeSoFar = 0; 2151 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2152 const Constant *Field = CS->getOperand(i); 2153 2154 // Print the actual field value. 2155 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2156 2157 // Check if padding is needed and insert one or more 0s. 2158 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2159 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2160 - Layout->getElementOffset(i)) - FieldSize; 2161 SizeSoFar += FieldSize + PadSize; 2162 2163 // Insert padding - this may include padding to increase the size of the 2164 // current field up to the ABI size (if the struct is not packed) as well 2165 // as padding to ensure that the next field starts at the right offset. 2166 AP.OutStreamer->EmitZeros(PadSize); 2167 } 2168 assert(SizeSoFar == Layout->getSizeInBytes() && 2169 "Layout of constant struct may be incorrect!"); 2170 } 2171 2172 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2173 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2174 2175 // First print a comment with what we think the original floating-point value 2176 // should have been. 2177 if (AP.isVerbose()) { 2178 SmallString<8> StrVal; 2179 CFP->getValueAPF().toString(StrVal); 2180 2181 if (CFP->getType()) 2182 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2183 else 2184 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2185 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2186 } 2187 2188 // Now iterate through the APInt chunks, emitting them in endian-correct 2189 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2190 // floats). 2191 unsigned NumBytes = API.getBitWidth() / 8; 2192 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2193 const uint64_t *p = API.getRawData(); 2194 2195 // PPC's long double has odd notions of endianness compared to how LLVM 2196 // handles it: p[0] goes first for *big* endian on PPC. 2197 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2198 int Chunk = API.getNumWords() - 1; 2199 2200 if (TrailingBytes) 2201 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2202 2203 for (; Chunk >= 0; --Chunk) 2204 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2205 } else { 2206 unsigned Chunk; 2207 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2208 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2209 2210 if (TrailingBytes) 2211 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2212 } 2213 2214 // Emit the tail padding for the long double. 2215 const DataLayout &DL = AP.getDataLayout(); 2216 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2217 DL.getTypeStoreSize(CFP->getType())); 2218 } 2219 2220 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2221 const DataLayout &DL = AP.getDataLayout(); 2222 unsigned BitWidth = CI->getBitWidth(); 2223 2224 // Copy the value as we may massage the layout for constants whose bit width 2225 // is not a multiple of 64-bits. 2226 APInt Realigned(CI->getValue()); 2227 uint64_t ExtraBits = 0; 2228 unsigned ExtraBitsSize = BitWidth & 63; 2229 2230 if (ExtraBitsSize) { 2231 // The bit width of the data is not a multiple of 64-bits. 2232 // The extra bits are expected to be at the end of the chunk of the memory. 2233 // Little endian: 2234 // * Nothing to be done, just record the extra bits to emit. 2235 // Big endian: 2236 // * Record the extra bits to emit. 2237 // * Realign the raw data to emit the chunks of 64-bits. 2238 if (DL.isBigEndian()) { 2239 // Basically the structure of the raw data is a chunk of 64-bits cells: 2240 // 0 1 BitWidth / 64 2241 // [chunk1][chunk2] ... [chunkN]. 2242 // The most significant chunk is chunkN and it should be emitted first. 2243 // However, due to the alignment issue chunkN contains useless bits. 2244 // Realign the chunks so that they contain only useless information: 2245 // ExtraBits 0 1 (BitWidth / 64) - 1 2246 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2247 ExtraBits = Realigned.getRawData()[0] & 2248 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2249 Realigned.lshrInPlace(ExtraBitsSize); 2250 } else 2251 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2252 } 2253 2254 // We don't expect assemblers to support integer data directives 2255 // for more than 64 bits, so we emit the data in at most 64-bit 2256 // quantities at a time. 2257 const uint64_t *RawData = Realigned.getRawData(); 2258 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2259 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2260 AP.OutStreamer->EmitIntValue(Val, 8); 2261 } 2262 2263 if (ExtraBitsSize) { 2264 // Emit the extra bits after the 64-bits chunks. 2265 2266 // Emit a directive that fills the expected size. 2267 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2268 Size -= (BitWidth / 64) * 8; 2269 assert(Size && Size * 8 >= ExtraBitsSize && 2270 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2271 == ExtraBits && "Directive too small for extra bits."); 2272 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2273 } 2274 } 2275 2276 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2277 /// equivalent global, by a target specific GOT pc relative access to the 2278 /// final symbol. 2279 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2280 const Constant *BaseCst, 2281 uint64_t Offset) { 2282 // The global @foo below illustrates a global that uses a got equivalent. 2283 // 2284 // @bar = global i32 42 2285 // @gotequiv = private unnamed_addr constant i32* @bar 2286 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2287 // i64 ptrtoint (i32* @foo to i64)) 2288 // to i32) 2289 // 2290 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2291 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2292 // form: 2293 // 2294 // foo = cstexpr, where 2295 // cstexpr := <gotequiv> - "." + <cst> 2296 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2297 // 2298 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2299 // 2300 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2301 // gotpcrelcst := <offset from @foo base> + <cst> 2302 // 2303 MCValue MV; 2304 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2305 return; 2306 const MCSymbolRefExpr *SymA = MV.getSymA(); 2307 if (!SymA) 2308 return; 2309 2310 // Check that GOT equivalent symbol is cached. 2311 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2312 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2313 return; 2314 2315 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2316 if (!BaseGV) 2317 return; 2318 2319 // Check for a valid base symbol 2320 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2321 const MCSymbolRefExpr *SymB = MV.getSymB(); 2322 2323 if (!SymB || BaseSym != &SymB->getSymbol()) 2324 return; 2325 2326 // Make sure to match: 2327 // 2328 // gotpcrelcst := <offset from @foo base> + <cst> 2329 // 2330 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2331 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2332 // if the target knows how to encode it. 2333 // 2334 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2335 if (GOTPCRelCst < 0) 2336 return; 2337 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2338 return; 2339 2340 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2341 // 2342 // bar: 2343 // .long 42 2344 // gotequiv: 2345 // .quad bar 2346 // foo: 2347 // .long gotequiv - "." + <cst> 2348 // 2349 // is replaced by the target specific equivalent to: 2350 // 2351 // bar: 2352 // .long 42 2353 // foo: 2354 // .long bar@GOTPCREL+<gotpcrelcst> 2355 // 2356 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2357 const GlobalVariable *GV = Result.first; 2358 int NumUses = (int)Result.second; 2359 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2360 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2361 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2362 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2363 2364 // Update GOT equivalent usage information 2365 --NumUses; 2366 if (NumUses >= 0) 2367 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2368 } 2369 2370 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2371 AsmPrinter &AP, const Constant *BaseCV, 2372 uint64_t Offset) { 2373 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2374 2375 // Globals with sub-elements such as combinations of arrays and structs 2376 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2377 // constant symbol base and the current position with BaseCV and Offset. 2378 if (!BaseCV && CV->hasOneUse()) 2379 BaseCV = dyn_cast<Constant>(CV->user_back()); 2380 2381 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2382 return AP.OutStreamer->EmitZeros(Size); 2383 2384 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2385 switch (Size) { 2386 case 1: 2387 case 2: 2388 case 4: 2389 case 8: 2390 if (AP.isVerbose()) 2391 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2392 CI->getZExtValue()); 2393 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2394 return; 2395 default: 2396 emitGlobalConstantLargeInt(CI, AP); 2397 return; 2398 } 2399 } 2400 2401 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2402 return emitGlobalConstantFP(CFP, AP); 2403 2404 if (isa<ConstantPointerNull>(CV)) { 2405 AP.OutStreamer->EmitIntValue(0, Size); 2406 return; 2407 } 2408 2409 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2410 return emitGlobalConstantDataSequential(DL, CDS, AP); 2411 2412 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2413 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2414 2415 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2416 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2417 2418 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2419 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2420 // vectors). 2421 if (CE->getOpcode() == Instruction::BitCast) 2422 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2423 2424 if (Size > 8) { 2425 // If the constant expression's size is greater than 64-bits, then we have 2426 // to emit the value in chunks. Try to constant fold the value and emit it 2427 // that way. 2428 Constant *New = ConstantFoldConstant(CE, DL); 2429 if (New && New != CE) 2430 return emitGlobalConstantImpl(DL, New, AP); 2431 } 2432 } 2433 2434 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2435 return emitGlobalConstantVector(DL, V, AP); 2436 2437 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2438 // thread the streamer with EmitValue. 2439 const MCExpr *ME = AP.lowerConstant(CV); 2440 2441 // Since lowerConstant already folded and got rid of all IR pointer and 2442 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2443 // directly. 2444 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2445 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2446 2447 AP.OutStreamer->EmitValue(ME, Size); 2448 } 2449 2450 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2451 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2452 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2453 if (Size) 2454 emitGlobalConstantImpl(DL, CV, *this); 2455 else if (MAI->hasSubsectionsViaSymbols()) { 2456 // If the global has zero size, emit a single byte so that two labels don't 2457 // look like they are at the same location. 2458 OutStreamer->EmitIntValue(0, 1); 2459 } 2460 } 2461 2462 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2463 // Target doesn't support this yet! 2464 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2465 } 2466 2467 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2468 if (Offset > 0) 2469 OS << '+' << Offset; 2470 else if (Offset < 0) 2471 OS << Offset; 2472 } 2473 2474 //===----------------------------------------------------------------------===// 2475 // Symbol Lowering Routines. 2476 //===----------------------------------------------------------------------===// 2477 2478 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2479 return OutContext.createTempSymbol(Name, true); 2480 } 2481 2482 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2483 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2484 } 2485 2486 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2487 return MMI->getAddrLabelSymbol(BB); 2488 } 2489 2490 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2491 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2492 const DataLayout &DL = getDataLayout(); 2493 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2494 "CPI" + Twine(getFunctionNumber()) + "_" + 2495 Twine(CPID)); 2496 } 2497 2498 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2499 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2500 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2501 } 2502 2503 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2504 /// FIXME: privatize to AsmPrinter. 2505 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2506 const DataLayout &DL = getDataLayout(); 2507 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2508 Twine(getFunctionNumber()) + "_" + 2509 Twine(UID) + "_set_" + Twine(MBBID)); 2510 } 2511 2512 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2513 StringRef Suffix) const { 2514 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2515 } 2516 2517 /// Return the MCSymbol for the specified ExternalSymbol. 2518 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2519 SmallString<60> NameStr; 2520 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2521 return OutContext.getOrCreateSymbol(NameStr); 2522 } 2523 2524 /// PrintParentLoopComment - Print comments about parent loops of this one. 2525 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2526 unsigned FunctionNumber) { 2527 if (!Loop) return; 2528 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2529 OS.indent(Loop->getLoopDepth()*2) 2530 << "Parent Loop BB" << FunctionNumber << "_" 2531 << Loop->getHeader()->getNumber() 2532 << " Depth=" << Loop->getLoopDepth() << '\n'; 2533 } 2534 2535 2536 /// PrintChildLoopComment - Print comments about child loops within 2537 /// the loop for this basic block, with nesting. 2538 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2539 unsigned FunctionNumber) { 2540 // Add child loop information 2541 for (const MachineLoop *CL : *Loop) { 2542 OS.indent(CL->getLoopDepth()*2) 2543 << "Child Loop BB" << FunctionNumber << "_" 2544 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2545 << '\n'; 2546 PrintChildLoopComment(OS, CL, FunctionNumber); 2547 } 2548 } 2549 2550 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2551 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2552 const MachineLoopInfo *LI, 2553 const AsmPrinter &AP) { 2554 // Add loop depth information 2555 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2556 if (!Loop) return; 2557 2558 MachineBasicBlock *Header = Loop->getHeader(); 2559 assert(Header && "No header for loop"); 2560 2561 // If this block is not a loop header, just print out what is the loop header 2562 // and return. 2563 if (Header != &MBB) { 2564 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2565 Twine(AP.getFunctionNumber())+"_" + 2566 Twine(Loop->getHeader()->getNumber())+ 2567 " Depth="+Twine(Loop->getLoopDepth())); 2568 return; 2569 } 2570 2571 // Otherwise, it is a loop header. Print out information about child and 2572 // parent loops. 2573 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2574 2575 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2576 2577 OS << "=>"; 2578 OS.indent(Loop->getLoopDepth()*2-2); 2579 2580 OS << "This "; 2581 if (Loop->empty()) 2582 OS << "Inner "; 2583 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2584 2585 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2586 } 2587 2588 /// EmitBasicBlockStart - This method prints the label for the specified 2589 /// MachineBasicBlock, an alignment (if present) and a comment describing 2590 /// it if appropriate. 2591 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2592 // End the previous funclet and start a new one. 2593 if (MBB.isEHFuncletEntry()) { 2594 for (const HandlerInfo &HI : Handlers) { 2595 HI.Handler->endFunclet(); 2596 HI.Handler->beginFunclet(MBB); 2597 } 2598 } 2599 2600 // Emit an alignment directive for this block, if needed. 2601 if (unsigned Align = MBB.getAlignment()) 2602 EmitAlignment(Align); 2603 2604 // If the block has its address taken, emit any labels that were used to 2605 // reference the block. It is possible that there is more than one label 2606 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2607 // the references were generated. 2608 if (MBB.hasAddressTaken()) { 2609 const BasicBlock *BB = MBB.getBasicBlock(); 2610 if (isVerbose()) 2611 OutStreamer->AddComment("Block address taken"); 2612 2613 // MBBs can have their address taken as part of CodeGen without having 2614 // their corresponding BB's address taken in IR 2615 if (BB->hasAddressTaken()) 2616 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2617 OutStreamer->EmitLabel(Sym); 2618 } 2619 2620 // Print some verbose block comments. 2621 if (isVerbose()) { 2622 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2623 if (BB->hasName()) { 2624 BB->printAsOperand(OutStreamer->GetCommentOS(), 2625 /*PrintType=*/false, BB->getModule()); 2626 OutStreamer->GetCommentOS() << '\n'; 2627 } 2628 } 2629 emitBasicBlockLoopComments(MBB, LI, *this); 2630 } 2631 2632 // Print the main label for the block. 2633 if (MBB.pred_empty() || 2634 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2635 if (isVerbose()) { 2636 // NOTE: Want this comment at start of line, don't emit with AddComment. 2637 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2638 } 2639 } else { 2640 OutStreamer->EmitLabel(MBB.getSymbol()); 2641 } 2642 } 2643 2644 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2645 bool IsDefinition) const { 2646 MCSymbolAttr Attr = MCSA_Invalid; 2647 2648 switch (Visibility) { 2649 default: break; 2650 case GlobalValue::HiddenVisibility: 2651 if (IsDefinition) 2652 Attr = MAI->getHiddenVisibilityAttr(); 2653 else 2654 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2655 break; 2656 case GlobalValue::ProtectedVisibility: 2657 Attr = MAI->getProtectedVisibilityAttr(); 2658 break; 2659 } 2660 2661 if (Attr != MCSA_Invalid) 2662 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2663 } 2664 2665 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2666 /// exactly one predecessor and the control transfer mechanism between 2667 /// the predecessor and this block is a fall-through. 2668 bool AsmPrinter:: 2669 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2670 // If this is a landing pad, it isn't a fall through. If it has no preds, 2671 // then nothing falls through to it. 2672 if (MBB->isEHPad() || MBB->pred_empty()) 2673 return false; 2674 2675 // If there isn't exactly one predecessor, it can't be a fall through. 2676 if (MBB->pred_size() > 1) 2677 return false; 2678 2679 // The predecessor has to be immediately before this block. 2680 MachineBasicBlock *Pred = *MBB->pred_begin(); 2681 if (!Pred->isLayoutSuccessor(MBB)) 2682 return false; 2683 2684 // If the block is completely empty, then it definitely does fall through. 2685 if (Pred->empty()) 2686 return true; 2687 2688 // Check the terminators in the previous blocks 2689 for (const auto &MI : Pred->terminators()) { 2690 // If it is not a simple branch, we are in a table somewhere. 2691 if (!MI.isBranch() || MI.isIndirectBranch()) 2692 return false; 2693 2694 // If we are the operands of one of the branches, this is not a fall 2695 // through. Note that targets with delay slots will usually bundle 2696 // terminators with the delay slot instruction. 2697 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2698 if (OP->isJTI()) 2699 return false; 2700 if (OP->isMBB() && OP->getMBB() == MBB) 2701 return false; 2702 } 2703 } 2704 2705 return true; 2706 } 2707 2708 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2709 if (!S.usesMetadata()) 2710 return nullptr; 2711 2712 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2713 " stackmap formats, please see the documentation for a description of" 2714 " the default format. If you really need a custom serialized format," 2715 " please file a bug"); 2716 2717 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2718 gcp_map_type::iterator GCPI = GCMap.find(&S); 2719 if (GCPI != GCMap.end()) 2720 return GCPI->second.get(); 2721 2722 auto Name = S.getName(); 2723 2724 for (GCMetadataPrinterRegistry::iterator 2725 I = GCMetadataPrinterRegistry::begin(), 2726 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2727 if (Name == I->getName()) { 2728 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2729 GMP->S = &S; 2730 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2731 return IterBool.first->second.get(); 2732 } 2733 2734 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2735 } 2736 2737 /// Pin vtable to this file. 2738 AsmPrinterHandler::~AsmPrinterHandler() = default; 2739 2740 void AsmPrinterHandler::markFunctionEnd() {} 2741 2742 // In the binary's "xray_instr_map" section, an array of these function entries 2743 // describes each instrumentation point. When XRay patches your code, the index 2744 // into this table will be given to your handler as a patch point identifier. 2745 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2746 const MCSymbol *CurrentFnSym) const { 2747 Out->EmitSymbolValue(Sled, Bytes); 2748 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2749 auto Kind8 = static_cast<uint8_t>(Kind); 2750 Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2751 Out->EmitBytes( 2752 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2753 Out->EmitZeros(2 * Bytes - 2); // Pad the previous two entries 2754 } 2755 2756 void AsmPrinter::emitXRayTable() { 2757 if (Sleds.empty()) 2758 return; 2759 2760 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2761 auto Fn = MF->getFunction(); 2762 MCSection *Section = nullptr; 2763 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2764 if (Fn->hasComdat()) { 2765 Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2766 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 2767 Fn->getComdat()->getName()); 2768 } else { 2769 Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2770 ELF::SHF_ALLOC); 2771 } 2772 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2773 Section = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2774 SectionKind::getReadOnlyWithRel()); 2775 } else { 2776 llvm_unreachable("Unsupported target"); 2777 } 2778 2779 // Before we switch over, we force a reference to a label inside the 2780 // xray_instr_map section. Since this function is always called just 2781 // before the function's end, we assume that this is happening after 2782 // the last return instruction. 2783 2784 auto WordSizeBytes = MAI->getCodePointerSize(); 2785 MCSymbol *Tmp = OutContext.createTempSymbol("xray_synthetic_", true); 2786 OutStreamer->EmitCodeAlignment(16); 2787 OutStreamer->EmitSymbolValue(Tmp, WordSizeBytes, false); 2788 OutStreamer->SwitchSection(Section); 2789 OutStreamer->EmitLabel(Tmp); 2790 for (const auto &Sled : Sleds) 2791 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2792 2793 OutStreamer->SwitchSection(PrevSection); 2794 Sleds.clear(); 2795 } 2796 2797 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2798 SledKind Kind) { 2799 auto Fn = MI.getParent()->getParent()->getFunction(); 2800 auto Attr = Fn->getFnAttribute("function-instrument"); 2801 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2802 bool AlwaysInstrument = 2803 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2804 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2805 Kind = SledKind::LOG_ARGS_ENTER; 2806 Sleds.emplace_back( 2807 XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn }); 2808 } 2809 2810 uint16_t AsmPrinter::getDwarfVersion() const { 2811 return OutStreamer->getContext().getDwarfVersion(); 2812 } 2813 2814 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2815 OutStreamer->getContext().setDwarfVersion(Version); 2816 } 2817