1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/BinaryFormat/COFF.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Comdat.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GlobalAlias.h" 71 #include "llvm/IR/GlobalIFunc.h" 72 #include "llvm/IR/GlobalIndirectSymbol.h" 73 #include "llvm/IR/GlobalObject.h" 74 #include "llvm/IR/GlobalValue.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Mangler.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/PseudoProbe.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/MC/MCAsmInfo.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCSectionXCOFF.h" 95 #include "llvm/MC/MCStreamer.h" 96 #include "llvm/MC/MCSubtargetInfo.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/MC/MCSymbolELF.h" 99 #include "llvm/MC/MCSymbolXCOFF.h" 100 #include "llvm/MC/MCTargetOptions.h" 101 #include "llvm/MC/MCValue.h" 102 #include "llvm/MC/SectionKind.h" 103 #include "llvm/Pass.h" 104 #include "llvm/Remarks/Remark.h" 105 #include "llvm/Remarks/RemarkFormat.h" 106 #include "llvm/Remarks/RemarkStreamer.h" 107 #include "llvm/Remarks/RemarkStringTable.h" 108 #include "llvm/Support/Casting.h" 109 #include "llvm/Support/CommandLine.h" 110 #include "llvm/Support/Compiler.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/Support/Format.h" 113 #include "llvm/Support/MathExtras.h" 114 #include "llvm/Support/Path.h" 115 #include "llvm/Support/TargetRegistry.h" 116 #include "llvm/Support/Timer.h" 117 #include "llvm/Support/raw_ostream.h" 118 #include "llvm/Target/TargetLoweringObjectFile.h" 119 #include "llvm/Target/TargetMachine.h" 120 #include "llvm/Target/TargetOptions.h" 121 #include <algorithm> 122 #include <cassert> 123 #include <cinttypes> 124 #include <cstdint> 125 #include <iterator> 126 #include <limits> 127 #include <memory> 128 #include <string> 129 #include <utility> 130 #include <vector> 131 132 using namespace llvm; 133 134 #define DEBUG_TYPE "asm-printer" 135 136 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 137 static cl::opt<bool> 138 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 139 cl::desc("Disable debug info printing")); 140 141 const char DWARFGroupName[] = "dwarf"; 142 const char DWARFGroupDescription[] = "DWARF Emission"; 143 const char DbgTimerName[] = "emit"; 144 const char DbgTimerDescription[] = "Debug Info Emission"; 145 const char EHTimerName[] = "write_exception"; 146 const char EHTimerDescription[] = "DWARF Exception Writer"; 147 const char CFGuardName[] = "Control Flow Guard"; 148 const char CFGuardDescription[] = "Control Flow Guard"; 149 const char CodeViewLineTablesGroupName[] = "linetables"; 150 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 151 const char PPTimerName[] = "emit"; 152 const char PPTimerDescription[] = "Pseudo Probe Emission"; 153 const char PPGroupName[] = "pseudo probe"; 154 const char PPGroupDescription[] = "Pseudo Probe Emission"; 155 156 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 157 158 char AsmPrinter::ID = 0; 159 160 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 161 162 static gcp_map_type &getGCMap(void *&P) { 163 if (!P) 164 P = new gcp_map_type(); 165 return *(gcp_map_type*)P; 166 } 167 168 /// getGVAlignment - Return the alignment to use for the specified global 169 /// value. This rounds up to the preferred alignment if possible and legal. 170 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 171 Align InAlign) { 172 Align Alignment; 173 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 174 Alignment = DL.getPreferredAlign(GVar); 175 176 // If InAlign is specified, round it to it. 177 if (InAlign > Alignment) 178 Alignment = InAlign; 179 180 // If the GV has a specified alignment, take it into account. 181 const MaybeAlign GVAlign(GV->getAlignment()); 182 if (!GVAlign) 183 return Alignment; 184 185 assert(GVAlign && "GVAlign must be set"); 186 187 // If the GVAlign is larger than NumBits, or if we are required to obey 188 // NumBits because the GV has an assigned section, obey it. 189 if (*GVAlign > Alignment || GV->hasSection()) 190 Alignment = *GVAlign; 191 return Alignment; 192 } 193 194 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 195 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 196 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 197 VerboseAsm = OutStreamer->isVerboseAsm(); 198 } 199 200 AsmPrinter::~AsmPrinter() { 201 assert(!DD && Handlers.size() == NumUserHandlers && 202 "Debug/EH info didn't get finalized"); 203 204 if (GCMetadataPrinters) { 205 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 206 207 delete &GCMap; 208 GCMetadataPrinters = nullptr; 209 } 210 } 211 212 bool AsmPrinter::isPositionIndependent() const { 213 return TM.isPositionIndependent(); 214 } 215 216 /// getFunctionNumber - Return a unique ID for the current function. 217 unsigned AsmPrinter::getFunctionNumber() const { 218 return MF->getFunctionNumber(); 219 } 220 221 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 222 return *TM.getObjFileLowering(); 223 } 224 225 const DataLayout &AsmPrinter::getDataLayout() const { 226 return MMI->getModule()->getDataLayout(); 227 } 228 229 // Do not use the cached DataLayout because some client use it without a Module 230 // (dsymutil, llvm-dwarfdump). 231 unsigned AsmPrinter::getPointerSize() const { 232 return TM.getPointerSize(0); // FIXME: Default address space 233 } 234 235 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 236 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 237 return MF->getSubtarget<MCSubtargetInfo>(); 238 } 239 240 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 241 S.emitInstruction(Inst, getSubtargetInfo()); 242 } 243 244 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 245 if (DD) { 246 assert(OutStreamer->hasRawTextSupport() && 247 "Expected assembly output mode."); 248 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 249 } 250 } 251 252 /// getCurrentSection() - Return the current section we are emitting to. 253 const MCSection *AsmPrinter::getCurrentSection() const { 254 return OutStreamer->getCurrentSectionOnly(); 255 } 256 257 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 258 AU.setPreservesAll(); 259 MachineFunctionPass::getAnalysisUsage(AU); 260 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 261 AU.addRequired<GCModuleInfo>(); 262 } 263 264 bool AsmPrinter::doInitialization(Module &M) { 265 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 266 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 267 268 // Initialize TargetLoweringObjectFile. 269 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 270 .Initialize(OutContext, TM); 271 272 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 273 .getModuleMetadata(M); 274 275 OutStreamer->InitSections(false); 276 277 if (DisableDebugInfoPrinting) 278 MMI->setDebugInfoAvailability(false); 279 280 // Emit the version-min deployment target directive if needed. 281 // 282 // FIXME: If we end up with a collection of these sorts of Darwin-specific 283 // or ELF-specific things, it may make sense to have a platform helper class 284 // that will work with the target helper class. For now keep it here, as the 285 // alternative is duplicated code in each of the target asm printers that 286 // use the directive, where it would need the same conditionalization 287 // anyway. 288 const Triple &Target = TM.getTargetTriple(); 289 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 290 291 // Allow the target to emit any magic that it wants at the start of the file. 292 emitStartOfAsmFile(M); 293 294 // Very minimal debug info. It is ignored if we emit actual debug info. If we 295 // don't, this at least helps the user find where a global came from. 296 if (MAI->hasSingleParameterDotFile()) { 297 // .file "foo.c" 298 OutStreamer->emitFileDirective( 299 llvm::sys::path::filename(M.getSourceFileName())); 300 } 301 302 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 303 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 304 for (auto &I : *MI) 305 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 306 MP->beginAssembly(M, *MI, *this); 307 308 // Emit module-level inline asm if it exists. 309 if (!M.getModuleInlineAsm().empty()) { 310 // We're at the module level. Construct MCSubtarget from the default CPU 311 // and target triple. 312 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 313 TM.getTargetTriple().str(), TM.getTargetCPU(), 314 TM.getTargetFeatureString())); 315 assert(STI && "Unable to create subtarget info"); 316 OutStreamer->AddComment("Start of file scope inline assembly"); 317 OutStreamer->AddBlankLine(); 318 emitInlineAsm(M.getModuleInlineAsm() + "\n", 319 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 320 OutStreamer->AddComment("End of file scope inline assembly"); 321 OutStreamer->AddBlankLine(); 322 } 323 324 if (MAI->doesSupportDebugInformation()) { 325 bool EmitCodeView = M.getCodeViewFlag(); 326 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 327 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 328 DbgTimerName, DbgTimerDescription, 329 CodeViewLineTablesGroupName, 330 CodeViewLineTablesGroupDescription); 331 } 332 if (!EmitCodeView || M.getDwarfVersion()) { 333 if (!DisableDebugInfoPrinting) { 334 DD = new DwarfDebug(this); 335 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 336 DbgTimerDescription, DWARFGroupName, 337 DWARFGroupDescription); 338 } 339 } 340 } 341 342 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 343 PP = new PseudoProbeHandler(this, &M); 344 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 345 PPTimerDescription, PPGroupName, PPGroupDescription); 346 } 347 348 switch (MAI->getExceptionHandlingType()) { 349 case ExceptionHandling::SjLj: 350 case ExceptionHandling::DwarfCFI: 351 case ExceptionHandling::ARM: 352 isCFIMoveForDebugging = true; 353 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 354 break; 355 for (auto &F: M.getFunctionList()) { 356 // If the module contains any function with unwind data, 357 // .eh_frame has to be emitted. 358 // Ignore functions that won't get emitted. 359 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 360 isCFIMoveForDebugging = false; 361 break; 362 } 363 } 364 break; 365 default: 366 isCFIMoveForDebugging = false; 367 break; 368 } 369 370 EHStreamer *ES = nullptr; 371 switch (MAI->getExceptionHandlingType()) { 372 case ExceptionHandling::None: 373 break; 374 case ExceptionHandling::SjLj: 375 case ExceptionHandling::DwarfCFI: 376 ES = new DwarfCFIException(this); 377 break; 378 case ExceptionHandling::ARM: 379 ES = new ARMException(this); 380 break; 381 case ExceptionHandling::WinEH: 382 switch (MAI->getWinEHEncodingType()) { 383 default: llvm_unreachable("unsupported unwinding information encoding"); 384 case WinEH::EncodingType::Invalid: 385 break; 386 case WinEH::EncodingType::X86: 387 case WinEH::EncodingType::Itanium: 388 ES = new WinException(this); 389 break; 390 } 391 break; 392 case ExceptionHandling::Wasm: 393 ES = new WasmException(this); 394 break; 395 case ExceptionHandling::AIX: 396 ES = new AIXException(this); 397 break; 398 } 399 if (ES) 400 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 401 EHTimerDescription, DWARFGroupName, 402 DWARFGroupDescription); 403 404 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 405 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 406 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 407 CFGuardDescription, DWARFGroupName, 408 DWARFGroupDescription); 409 410 for (const HandlerInfo &HI : Handlers) { 411 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 412 HI.TimerGroupDescription, TimePassesIsEnabled); 413 HI.Handler->beginModule(&M); 414 } 415 416 return false; 417 } 418 419 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 420 if (!MAI.hasWeakDefCanBeHiddenDirective()) 421 return false; 422 423 return GV->canBeOmittedFromSymbolTable(); 424 } 425 426 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 427 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 428 switch (Linkage) { 429 case GlobalValue::CommonLinkage: 430 case GlobalValue::LinkOnceAnyLinkage: 431 case GlobalValue::LinkOnceODRLinkage: 432 case GlobalValue::WeakAnyLinkage: 433 case GlobalValue::WeakODRLinkage: 434 if (MAI->hasWeakDefDirective()) { 435 // .globl _foo 436 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 437 438 if (!canBeHidden(GV, *MAI)) 439 // .weak_definition _foo 440 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 441 else 442 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 443 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 444 // .globl _foo 445 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 446 //NOTE: linkonce is handled by the section the symbol was assigned to. 447 } else { 448 // .weak _foo 449 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 450 } 451 return; 452 case GlobalValue::ExternalLinkage: 453 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 454 return; 455 case GlobalValue::PrivateLinkage: 456 case GlobalValue::InternalLinkage: 457 return; 458 case GlobalValue::ExternalWeakLinkage: 459 case GlobalValue::AvailableExternallyLinkage: 460 case GlobalValue::AppendingLinkage: 461 llvm_unreachable("Should never emit this"); 462 } 463 llvm_unreachable("Unknown linkage type!"); 464 } 465 466 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 467 const GlobalValue *GV) const { 468 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 469 } 470 471 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 472 return TM.getSymbol(GV); 473 } 474 475 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 476 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 477 // exact definion (intersection of GlobalValue::hasExactDefinition() and 478 // !isInterposable()). These linkages include: external, appending, internal, 479 // private. It may be profitable to use a local alias for external. The 480 // assembler would otherwise be conservative and assume a global default 481 // visibility symbol can be interposable, even if the code generator already 482 // assumed it. 483 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 484 const Module &M = *GV.getParent(); 485 if (TM.getRelocationModel() != Reloc::Static && 486 M.getPIELevel() == PIELevel::Default) 487 if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() && 488 GV.getParent()->noSemanticInterposition())) 489 return getSymbolWithGlobalValueBase(&GV, "$local"); 490 } 491 return TM.getSymbol(&GV); 492 } 493 494 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 495 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 496 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 497 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 498 "No emulated TLS variables in the common section"); 499 500 // Never emit TLS variable xyz in emulated TLS model. 501 // The initialization value is in __emutls_t.xyz instead of xyz. 502 if (IsEmuTLSVar) 503 return; 504 505 if (GV->hasInitializer()) { 506 // Check to see if this is a special global used by LLVM, if so, emit it. 507 if (emitSpecialLLVMGlobal(GV)) 508 return; 509 510 // Skip the emission of global equivalents. The symbol can be emitted later 511 // on by emitGlobalGOTEquivs in case it turns out to be needed. 512 if (GlobalGOTEquivs.count(getSymbol(GV))) 513 return; 514 515 if (isVerbose()) { 516 // When printing the control variable __emutls_v.*, 517 // we don't need to print the original TLS variable name. 518 GV->printAsOperand(OutStreamer->GetCommentOS(), 519 /*PrintType=*/false, GV->getParent()); 520 OutStreamer->GetCommentOS() << '\n'; 521 } 522 } 523 524 MCSymbol *GVSym = getSymbol(GV); 525 MCSymbol *EmittedSym = GVSym; 526 527 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 528 // attributes. 529 // GV's or GVSym's attributes will be used for the EmittedSym. 530 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 531 532 if (!GV->hasInitializer()) // External globals require no extra code. 533 return; 534 535 GVSym->redefineIfPossible(); 536 if (GVSym->isDefined() || GVSym->isVariable()) 537 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 538 "' is already defined"); 539 540 if (MAI->hasDotTypeDotSizeDirective()) 541 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 542 543 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 544 545 const DataLayout &DL = GV->getParent()->getDataLayout(); 546 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 547 548 // If the alignment is specified, we *must* obey it. Overaligning a global 549 // with a specified alignment is a prompt way to break globals emitted to 550 // sections and expected to be contiguous (e.g. ObjC metadata). 551 const Align Alignment = getGVAlignment(GV, DL); 552 553 for (const HandlerInfo &HI : Handlers) { 554 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 555 HI.TimerGroupName, HI.TimerGroupDescription, 556 TimePassesIsEnabled); 557 HI.Handler->setSymbolSize(GVSym, Size); 558 } 559 560 // Handle common symbols 561 if (GVKind.isCommon()) { 562 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 563 // .comm _foo, 42, 4 564 const bool SupportsAlignment = 565 getObjFileLowering().getCommDirectiveSupportsAlignment(); 566 OutStreamer->emitCommonSymbol(GVSym, Size, 567 SupportsAlignment ? Alignment.value() : 0); 568 return; 569 } 570 571 // Determine to which section this global should be emitted. 572 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 573 574 // If we have a bss global going to a section that supports the 575 // zerofill directive, do so here. 576 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 577 TheSection->isVirtualSection()) { 578 if (Size == 0) 579 Size = 1; // zerofill of 0 bytes is undefined. 580 emitLinkage(GV, GVSym); 581 // .zerofill __DATA, __bss, _foo, 400, 5 582 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 583 return; 584 } 585 586 // If this is a BSS local symbol and we are emitting in the BSS 587 // section use .lcomm/.comm directive. 588 if (GVKind.isBSSLocal() && 589 getObjFileLowering().getBSSSection() == TheSection) { 590 if (Size == 0) 591 Size = 1; // .comm Foo, 0 is undefined, avoid it. 592 593 // Use .lcomm only if it supports user-specified alignment. 594 // Otherwise, while it would still be correct to use .lcomm in some 595 // cases (e.g. when Align == 1), the external assembler might enfore 596 // some -unknown- default alignment behavior, which could cause 597 // spurious differences between external and integrated assembler. 598 // Prefer to simply fall back to .local / .comm in this case. 599 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 600 // .lcomm _foo, 42 601 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 602 return; 603 } 604 605 // .local _foo 606 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 607 // .comm _foo, 42, 4 608 const bool SupportsAlignment = 609 getObjFileLowering().getCommDirectiveSupportsAlignment(); 610 OutStreamer->emitCommonSymbol(GVSym, Size, 611 SupportsAlignment ? Alignment.value() : 0); 612 return; 613 } 614 615 // Handle thread local data for mach-o which requires us to output an 616 // additional structure of data and mangle the original symbol so that we 617 // can reference it later. 618 // 619 // TODO: This should become an "emit thread local global" method on TLOF. 620 // All of this macho specific stuff should be sunk down into TLOFMachO and 621 // stuff like "TLSExtraDataSection" should no longer be part of the parent 622 // TLOF class. This will also make it more obvious that stuff like 623 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 624 // specific code. 625 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 626 // Emit the .tbss symbol 627 MCSymbol *MangSym = 628 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 629 630 if (GVKind.isThreadBSS()) { 631 TheSection = getObjFileLowering().getTLSBSSSection(); 632 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 633 } else if (GVKind.isThreadData()) { 634 OutStreamer->SwitchSection(TheSection); 635 636 emitAlignment(Alignment, GV); 637 OutStreamer->emitLabel(MangSym); 638 639 emitGlobalConstant(GV->getParent()->getDataLayout(), 640 GV->getInitializer()); 641 } 642 643 OutStreamer->AddBlankLine(); 644 645 // Emit the variable struct for the runtime. 646 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 647 648 OutStreamer->SwitchSection(TLVSect); 649 // Emit the linkage here. 650 emitLinkage(GV, GVSym); 651 OutStreamer->emitLabel(GVSym); 652 653 // Three pointers in size: 654 // - __tlv_bootstrap - used to make sure support exists 655 // - spare pointer, used when mapped by the runtime 656 // - pointer to mangled symbol above with initializer 657 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 658 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 659 PtrSize); 660 OutStreamer->emitIntValue(0, PtrSize); 661 OutStreamer->emitSymbolValue(MangSym, PtrSize); 662 663 OutStreamer->AddBlankLine(); 664 return; 665 } 666 667 MCSymbol *EmittedInitSym = GVSym; 668 669 OutStreamer->SwitchSection(TheSection); 670 671 emitLinkage(GV, EmittedInitSym); 672 emitAlignment(Alignment, GV); 673 674 OutStreamer->emitLabel(EmittedInitSym); 675 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 676 if (LocalAlias != EmittedInitSym) 677 OutStreamer->emitLabel(LocalAlias); 678 679 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 680 681 if (MAI->hasDotTypeDotSizeDirective()) 682 // .size foo, 42 683 OutStreamer->emitELFSize(EmittedInitSym, 684 MCConstantExpr::create(Size, OutContext)); 685 686 OutStreamer->AddBlankLine(); 687 } 688 689 /// Emit the directive and value for debug thread local expression 690 /// 691 /// \p Value - The value to emit. 692 /// \p Size - The size of the integer (in bytes) to emit. 693 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 694 OutStreamer->emitValue(Value, Size); 695 } 696 697 void AsmPrinter::emitFunctionHeaderComment() {} 698 699 /// EmitFunctionHeader - This method emits the header for the current 700 /// function. 701 void AsmPrinter::emitFunctionHeader() { 702 const Function &F = MF->getFunction(); 703 704 if (isVerbose()) 705 OutStreamer->GetCommentOS() 706 << "-- Begin function " 707 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 708 709 // Print out constants referenced by the function 710 emitConstantPool(); 711 712 // Print the 'header' of function. 713 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 714 OutStreamer->SwitchSection(MF->getSection()); 715 716 if (!MAI->hasVisibilityOnlyWithLinkage()) 717 emitVisibility(CurrentFnSym, F.getVisibility()); 718 719 if (MAI->needsFunctionDescriptors()) 720 emitLinkage(&F, CurrentFnDescSym); 721 722 emitLinkage(&F, CurrentFnSym); 723 if (MAI->hasFunctionAlignment()) 724 emitAlignment(MF->getAlignment(), &F); 725 726 if (MAI->hasDotTypeDotSizeDirective()) 727 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 728 729 if (F.hasFnAttribute(Attribute::Cold)) 730 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 731 732 if (isVerbose()) { 733 F.printAsOperand(OutStreamer->GetCommentOS(), 734 /*PrintType=*/false, F.getParent()); 735 emitFunctionHeaderComment(); 736 OutStreamer->GetCommentOS() << '\n'; 737 } 738 739 // Emit the prefix data. 740 if (F.hasPrefixData()) { 741 if (MAI->hasSubsectionsViaSymbols()) { 742 // Preserving prefix data on platforms which use subsections-via-symbols 743 // is a bit tricky. Here we introduce a symbol for the prefix data 744 // and use the .alt_entry attribute to mark the function's real entry point 745 // as an alternative entry point to the prefix-data symbol. 746 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 747 OutStreamer->emitLabel(PrefixSym); 748 749 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 750 751 // Emit an .alt_entry directive for the actual function symbol. 752 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 753 } else { 754 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 755 } 756 } 757 758 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 759 // place prefix data before NOPs. 760 unsigned PatchableFunctionPrefix = 0; 761 unsigned PatchableFunctionEntry = 0; 762 (void)F.getFnAttribute("patchable-function-prefix") 763 .getValueAsString() 764 .getAsInteger(10, PatchableFunctionPrefix); 765 (void)F.getFnAttribute("patchable-function-entry") 766 .getValueAsString() 767 .getAsInteger(10, PatchableFunctionEntry); 768 if (PatchableFunctionPrefix) { 769 CurrentPatchableFunctionEntrySym = 770 OutContext.createLinkerPrivateTempSymbol(); 771 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 772 emitNops(PatchableFunctionPrefix); 773 } else if (PatchableFunctionEntry) { 774 // May be reassigned when emitting the body, to reference the label after 775 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 776 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 777 } 778 779 // Emit the function descriptor. This is a virtual function to allow targets 780 // to emit their specific function descriptor. Right now it is only used by 781 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 782 // descriptors and should be converted to use this hook as well. 783 if (MAI->needsFunctionDescriptors()) 784 emitFunctionDescriptor(); 785 786 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 787 // their wild and crazy things as required. 788 emitFunctionEntryLabel(); 789 790 if (CurrentFnBegin) { 791 if (MAI->useAssignmentForEHBegin()) { 792 MCSymbol *CurPos = OutContext.createTempSymbol(); 793 OutStreamer->emitLabel(CurPos); 794 OutStreamer->emitAssignment(CurrentFnBegin, 795 MCSymbolRefExpr::create(CurPos, OutContext)); 796 } else { 797 OutStreamer->emitLabel(CurrentFnBegin); 798 } 799 } 800 801 // Emit pre-function debug and/or EH information. 802 for (const HandlerInfo &HI : Handlers) { 803 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 804 HI.TimerGroupDescription, TimePassesIsEnabled); 805 HI.Handler->beginFunction(MF); 806 } 807 808 // Emit the prologue data. 809 if (F.hasPrologueData()) 810 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 811 } 812 813 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 814 /// function. This can be overridden by targets as required to do custom stuff. 815 void AsmPrinter::emitFunctionEntryLabel() { 816 CurrentFnSym->redefineIfPossible(); 817 818 // The function label could have already been emitted if two symbols end up 819 // conflicting due to asm renaming. Detect this and emit an error. 820 if (CurrentFnSym->isVariable()) 821 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 822 "' is a protected alias"); 823 if (CurrentFnSym->isDefined()) 824 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 825 "' label emitted multiple times to assembly file"); 826 827 OutStreamer->emitLabel(CurrentFnSym); 828 829 if (TM.getTargetTriple().isOSBinFormatELF()) { 830 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 831 if (Sym != CurrentFnSym) 832 OutStreamer->emitLabel(Sym); 833 } 834 } 835 836 /// emitComments - Pretty-print comments for instructions. 837 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 838 const MachineFunction *MF = MI.getMF(); 839 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 840 841 // Check for spills and reloads 842 843 // We assume a single instruction only has a spill or reload, not 844 // both. 845 Optional<unsigned> Size; 846 if ((Size = MI.getRestoreSize(TII))) { 847 CommentOS << *Size << "-byte Reload\n"; 848 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 849 if (*Size) 850 CommentOS << *Size << "-byte Folded Reload\n"; 851 } else if ((Size = MI.getSpillSize(TII))) { 852 CommentOS << *Size << "-byte Spill\n"; 853 } else if ((Size = MI.getFoldedSpillSize(TII))) { 854 if (*Size) 855 CommentOS << *Size << "-byte Folded Spill\n"; 856 } 857 858 // Check for spill-induced copies 859 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 860 CommentOS << " Reload Reuse\n"; 861 } 862 863 /// emitImplicitDef - This method emits the specified machine instruction 864 /// that is an implicit def. 865 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 866 Register RegNo = MI->getOperand(0).getReg(); 867 868 SmallString<128> Str; 869 raw_svector_ostream OS(Str); 870 OS << "implicit-def: " 871 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 872 873 OutStreamer->AddComment(OS.str()); 874 OutStreamer->AddBlankLine(); 875 } 876 877 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 878 std::string Str; 879 raw_string_ostream OS(Str); 880 OS << "kill:"; 881 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 882 const MachineOperand &Op = MI->getOperand(i); 883 assert(Op.isReg() && "KILL instruction must have only register operands"); 884 OS << ' ' << (Op.isDef() ? "def " : "killed ") 885 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 886 } 887 AP.OutStreamer->AddComment(OS.str()); 888 AP.OutStreamer->AddBlankLine(); 889 } 890 891 /// emitDebugValueComment - This method handles the target-independent form 892 /// of DBG_VALUE, returning true if it was able to do so. A false return 893 /// means the target will need to handle MI in EmitInstruction. 894 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 895 // This code handles only the 4-operand target-independent form. 896 if (MI->getNumOperands() != 4) 897 return false; 898 899 SmallString<128> Str; 900 raw_svector_ostream OS(Str); 901 OS << "DEBUG_VALUE: "; 902 903 const DILocalVariable *V = MI->getDebugVariable(); 904 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 905 StringRef Name = SP->getName(); 906 if (!Name.empty()) 907 OS << Name << ":"; 908 } 909 OS << V->getName(); 910 OS << " <- "; 911 912 // The second operand is only an offset if it's an immediate. 913 bool MemLoc = MI->isIndirectDebugValue(); 914 auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0); 915 const DIExpression *Expr = MI->getDebugExpression(); 916 if (Expr->getNumElements()) { 917 OS << '['; 918 bool NeedSep = false; 919 for (auto Op : Expr->expr_ops()) { 920 if (NeedSep) 921 OS << ", "; 922 else 923 NeedSep = true; 924 OS << dwarf::OperationEncodingString(Op.getOp()); 925 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 926 OS << ' ' << Op.getArg(I); 927 } 928 OS << "] "; 929 } 930 931 // Register or immediate value. Register 0 means undef. 932 if (MI->getDebugOperand(0).isFPImm()) { 933 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF()); 934 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) { 935 OS << (double)APF.convertToFloat(); 936 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) { 937 OS << APF.convertToDouble(); 938 } else { 939 // There is no good way to print long double. Convert a copy to 940 // double. Ah well, it's only a comment. 941 bool ignored; 942 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 943 &ignored); 944 OS << "(long double) " << APF.convertToDouble(); 945 } 946 } else if (MI->getDebugOperand(0).isImm()) { 947 OS << MI->getDebugOperand(0).getImm(); 948 } else if (MI->getDebugOperand(0).isCImm()) { 949 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 950 } else if (MI->getDebugOperand(0).isTargetIndex()) { 951 auto Op = MI->getDebugOperand(0); 952 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 953 return true; 954 } else { 955 Register Reg; 956 if (MI->getDebugOperand(0).isReg()) { 957 Reg = MI->getDebugOperand(0).getReg(); 958 } else { 959 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type"); 960 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 961 Offset += TFI->getFrameIndexReference( 962 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg); 963 MemLoc = true; 964 } 965 if (Reg == 0) { 966 // Suppress offset, it is not meaningful here. 967 OS << "undef"; 968 // NOTE: Want this comment at start of line, don't emit with AddComment. 969 AP.OutStreamer->emitRawComment(OS.str()); 970 return true; 971 } 972 if (MemLoc) 973 OS << '['; 974 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 975 } 976 977 if (MemLoc) 978 OS << '+' << Offset.getFixed() << ']'; 979 980 // NOTE: Want this comment at start of line, don't emit with AddComment. 981 AP.OutStreamer->emitRawComment(OS.str()); 982 return true; 983 } 984 985 /// This method handles the target-independent form of DBG_LABEL, returning 986 /// true if it was able to do so. A false return means the target will need 987 /// to handle MI in EmitInstruction. 988 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 989 if (MI->getNumOperands() != 1) 990 return false; 991 992 SmallString<128> Str; 993 raw_svector_ostream OS(Str); 994 OS << "DEBUG_LABEL: "; 995 996 const DILabel *V = MI->getDebugLabel(); 997 if (auto *SP = dyn_cast<DISubprogram>( 998 V->getScope()->getNonLexicalBlockFileScope())) { 999 StringRef Name = SP->getName(); 1000 if (!Name.empty()) 1001 OS << Name << ":"; 1002 } 1003 OS << V->getName(); 1004 1005 // NOTE: Want this comment at start of line, don't emit with AddComment. 1006 AP.OutStreamer->emitRawComment(OS.str()); 1007 return true; 1008 } 1009 1010 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 1011 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1012 MF->getFunction().needsUnwindTableEntry()) 1013 return CFI_M_EH; 1014 1015 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1016 return CFI_M_Debug; 1017 1018 return CFI_M_None; 1019 } 1020 1021 bool AsmPrinter::needsSEHMoves() { 1022 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1023 } 1024 1025 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1026 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1027 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1028 ExceptionHandlingType != ExceptionHandling::ARM) 1029 return; 1030 1031 if (needsCFIMoves() == CFI_M_None) 1032 return; 1033 1034 // If there is no "real" instruction following this CFI instruction, skip 1035 // emitting it; it would be beyond the end of the function's FDE range. 1036 auto *MBB = MI.getParent(); 1037 auto I = std::next(MI.getIterator()); 1038 while (I != MBB->end() && I->isTransient()) 1039 ++I; 1040 if (I == MBB->instr_end() && 1041 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1042 return; 1043 1044 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1045 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1046 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1047 emitCFIInstruction(CFI); 1048 } 1049 1050 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1051 // The operands are the MCSymbol and the frame offset of the allocation. 1052 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1053 int FrameOffset = MI.getOperand(1).getImm(); 1054 1055 // Emit a symbol assignment. 1056 OutStreamer->emitAssignment(FrameAllocSym, 1057 MCConstantExpr::create(FrameOffset, OutContext)); 1058 } 1059 1060 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1061 /// given basic block. This can be used to capture more precise profile 1062 /// information. We use the last 3 bits (LSBs) to ecnode the following 1063 /// information: 1064 /// * (1): set if return block (ret or tail call). 1065 /// * (2): set if ends with a tail call. 1066 /// * (3): set if exception handling (EH) landing pad. 1067 /// The remaining bits are zero. 1068 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1069 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1070 return ((unsigned)MBB.isReturnBlock()) | 1071 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1072 (MBB.isEHPad() << 2); 1073 } 1074 1075 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1076 MCSection *BBAddrMapSection = 1077 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1078 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1079 1080 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1081 1082 OutStreamer->PushSection(); 1083 OutStreamer->SwitchSection(BBAddrMapSection); 1084 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1085 // Emit the total number of basic blocks in this function. 1086 OutStreamer->emitULEB128IntValue(MF.size()); 1087 // Emit BB Information for each basic block in the funciton. 1088 for (const MachineBasicBlock &MBB : MF) { 1089 const MCSymbol *MBBSymbol = 1090 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1091 // Emit the basic block offset. 1092 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1093 // Emit the basic block size. When BBs have alignments, their size cannot 1094 // always be computed from their offsets. 1095 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1096 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1097 } 1098 OutStreamer->PopSection(); 1099 } 1100 1101 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1102 auto GUID = MI.getOperand(0).getImm(); 1103 auto Index = MI.getOperand(1).getImm(); 1104 auto Type = MI.getOperand(2).getImm(); 1105 auto Attr = MI.getOperand(3).getImm(); 1106 DILocation *DebugLoc = MI.getDebugLoc(); 1107 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1108 } 1109 1110 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1111 if (!MF.getTarget().Options.EmitStackSizeSection) 1112 return; 1113 1114 MCSection *StackSizeSection = 1115 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1116 if (!StackSizeSection) 1117 return; 1118 1119 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1120 // Don't emit functions with dynamic stack allocations. 1121 if (FrameInfo.hasVarSizedObjects()) 1122 return; 1123 1124 OutStreamer->PushSection(); 1125 OutStreamer->SwitchSection(StackSizeSection); 1126 1127 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1128 uint64_t StackSize = FrameInfo.getStackSize(); 1129 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1130 OutStreamer->emitULEB128IntValue(StackSize); 1131 1132 OutStreamer->PopSection(); 1133 } 1134 1135 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1136 MachineModuleInfo &MMI = MF.getMMI(); 1137 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1138 return true; 1139 1140 // We might emit an EH table that uses function begin and end labels even if 1141 // we don't have any landingpads. 1142 if (!MF.getFunction().hasPersonalityFn()) 1143 return false; 1144 return !isNoOpWithoutInvoke( 1145 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1146 } 1147 1148 /// EmitFunctionBody - This method emits the body and trailer for a 1149 /// function. 1150 void AsmPrinter::emitFunctionBody() { 1151 emitFunctionHeader(); 1152 1153 // Emit target-specific gunk before the function body. 1154 emitFunctionBodyStart(); 1155 1156 if (isVerbose()) { 1157 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1158 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1159 if (!MDT) { 1160 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1161 OwnedMDT->getBase().recalculate(*MF); 1162 MDT = OwnedMDT.get(); 1163 } 1164 1165 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1166 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1167 if (!MLI) { 1168 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1169 OwnedMLI->getBase().analyze(MDT->getBase()); 1170 MLI = OwnedMLI.get(); 1171 } 1172 } 1173 1174 // Print out code for the function. 1175 bool HasAnyRealCode = false; 1176 int NumInstsInFunction = 0; 1177 1178 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1179 for (auto &MBB : *MF) { 1180 // Print a label for the basic block. 1181 emitBasicBlockStart(MBB); 1182 DenseMap<StringRef, unsigned> MnemonicCounts; 1183 for (auto &MI : MBB) { 1184 // Print the assembly for the instruction. 1185 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1186 !MI.isDebugInstr()) { 1187 HasAnyRealCode = true; 1188 ++NumInstsInFunction; 1189 } 1190 1191 // If there is a pre-instruction symbol, emit a label for it here. 1192 if (MCSymbol *S = MI.getPreInstrSymbol()) 1193 OutStreamer->emitLabel(S); 1194 1195 for (const HandlerInfo &HI : Handlers) { 1196 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1197 HI.TimerGroupDescription, TimePassesIsEnabled); 1198 HI.Handler->beginInstruction(&MI); 1199 } 1200 1201 if (isVerbose()) 1202 emitComments(MI, OutStreamer->GetCommentOS()); 1203 1204 switch (MI.getOpcode()) { 1205 case TargetOpcode::CFI_INSTRUCTION: 1206 emitCFIInstruction(MI); 1207 break; 1208 case TargetOpcode::LOCAL_ESCAPE: 1209 emitFrameAlloc(MI); 1210 break; 1211 case TargetOpcode::ANNOTATION_LABEL: 1212 case TargetOpcode::EH_LABEL: 1213 case TargetOpcode::GC_LABEL: 1214 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1215 break; 1216 case TargetOpcode::INLINEASM: 1217 case TargetOpcode::INLINEASM_BR: 1218 emitInlineAsm(&MI); 1219 break; 1220 case TargetOpcode::DBG_VALUE: 1221 if (isVerbose()) { 1222 if (!emitDebugValueComment(&MI, *this)) 1223 emitInstruction(&MI); 1224 } 1225 break; 1226 case TargetOpcode::DBG_INSTR_REF: 1227 // This instruction reference will have been resolved to a machine 1228 // location, and a nearby DBG_VALUE created. We can safely ignore 1229 // the instruction reference. 1230 break; 1231 case TargetOpcode::DBG_LABEL: 1232 if (isVerbose()) { 1233 if (!emitDebugLabelComment(&MI, *this)) 1234 emitInstruction(&MI); 1235 } 1236 break; 1237 case TargetOpcode::IMPLICIT_DEF: 1238 if (isVerbose()) emitImplicitDef(&MI); 1239 break; 1240 case TargetOpcode::KILL: 1241 if (isVerbose()) emitKill(&MI, *this); 1242 break; 1243 case TargetOpcode::PSEUDO_PROBE: 1244 emitPseudoProbe(MI); 1245 break; 1246 default: 1247 emitInstruction(&MI); 1248 if (CanDoExtraAnalysis) { 1249 MCInst MCI; 1250 MCI.setOpcode(MI.getOpcode()); 1251 auto Name = OutStreamer->getMnemonic(MCI); 1252 auto I = MnemonicCounts.insert({Name, 0u}); 1253 I.first->second++; 1254 } 1255 break; 1256 } 1257 1258 // If there is a post-instruction symbol, emit a label for it here. 1259 if (MCSymbol *S = MI.getPostInstrSymbol()) 1260 OutStreamer->emitLabel(S); 1261 1262 for (const HandlerInfo &HI : Handlers) { 1263 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1264 HI.TimerGroupDescription, TimePassesIsEnabled); 1265 HI.Handler->endInstruction(); 1266 } 1267 } 1268 1269 // We must emit temporary symbol for the end of this basic block, if either 1270 // we have BBLabels enabled or if this basic blocks marks the end of a 1271 // section (except the section containing the entry basic block as the end 1272 // symbol for that section is CurrentFnEnd). 1273 if (MF->hasBBLabels() || 1274 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1275 !MBB.sameSection(&MF->front()))) 1276 OutStreamer->emitLabel(MBB.getEndSymbol()); 1277 1278 if (MBB.isEndSection()) { 1279 // The size directive for the section containing the entry block is 1280 // handled separately by the function section. 1281 if (!MBB.sameSection(&MF->front())) { 1282 if (MAI->hasDotTypeDotSizeDirective()) { 1283 // Emit the size directive for the basic block section. 1284 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1285 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1286 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1287 OutContext); 1288 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1289 } 1290 MBBSectionRanges[MBB.getSectionIDNum()] = 1291 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1292 } 1293 } 1294 emitBasicBlockEnd(MBB); 1295 1296 if (CanDoExtraAnalysis) { 1297 // Skip empty blocks. 1298 if (MBB.empty()) 1299 continue; 1300 1301 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1302 MBB.begin()->getDebugLoc(), &MBB); 1303 1304 // Generate instruction mix remark. First, sort counts in descending order 1305 // by count and name. 1306 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1307 for (auto &KV : MnemonicCounts) 1308 MnemonicVec.emplace_back(KV.first, KV.second); 1309 1310 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1311 const std::pair<StringRef, unsigned> &B) { 1312 if (A.second > B.second) 1313 return true; 1314 if (A.second == B.second) 1315 return StringRef(A.first) < StringRef(B.first); 1316 return false; 1317 }); 1318 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1319 for (auto &KV : MnemonicVec) { 1320 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1321 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1322 } 1323 ORE->emit(R); 1324 } 1325 } 1326 1327 EmittedInsts += NumInstsInFunction; 1328 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1329 MF->getFunction().getSubprogram(), 1330 &MF->front()); 1331 R << ore::NV("NumInstructions", NumInstsInFunction) 1332 << " instructions in function"; 1333 ORE->emit(R); 1334 1335 // If the function is empty and the object file uses .subsections_via_symbols, 1336 // then we need to emit *something* to the function body to prevent the 1337 // labels from collapsing together. Just emit a noop. 1338 // Similarly, don't emit empty functions on Windows either. It can lead to 1339 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1340 // after linking, causing the kernel not to load the binary: 1341 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1342 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1343 const Triple &TT = TM.getTargetTriple(); 1344 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1345 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1346 MCInst Noop; 1347 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1348 1349 // Targets can opt-out of emitting the noop here by leaving the opcode 1350 // unspecified. 1351 if (Noop.getOpcode()) { 1352 OutStreamer->AddComment("avoids zero-length function"); 1353 emitNops(1); 1354 } 1355 } 1356 1357 // Switch to the original section in case basic block sections was used. 1358 OutStreamer->SwitchSection(MF->getSection()); 1359 1360 const Function &F = MF->getFunction(); 1361 for (const auto &BB : F) { 1362 if (!BB.hasAddressTaken()) 1363 continue; 1364 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1365 if (Sym->isDefined()) 1366 continue; 1367 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1368 OutStreamer->emitLabel(Sym); 1369 } 1370 1371 // Emit target-specific gunk after the function body. 1372 emitFunctionBodyEnd(); 1373 1374 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1375 MAI->hasDotTypeDotSizeDirective()) { 1376 // Create a symbol for the end of function. 1377 CurrentFnEnd = createTempSymbol("func_end"); 1378 OutStreamer->emitLabel(CurrentFnEnd); 1379 } 1380 1381 // If the target wants a .size directive for the size of the function, emit 1382 // it. 1383 if (MAI->hasDotTypeDotSizeDirective()) { 1384 // We can get the size as difference between the function label and the 1385 // temp label. 1386 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1387 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1388 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1389 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1390 } 1391 1392 for (const HandlerInfo &HI : Handlers) { 1393 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1394 HI.TimerGroupDescription, TimePassesIsEnabled); 1395 HI.Handler->markFunctionEnd(); 1396 } 1397 1398 MBBSectionRanges[MF->front().getSectionIDNum()] = 1399 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1400 1401 // Print out jump tables referenced by the function. 1402 emitJumpTableInfo(); 1403 1404 // Emit post-function debug and/or EH information. 1405 for (const HandlerInfo &HI : Handlers) { 1406 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1407 HI.TimerGroupDescription, TimePassesIsEnabled); 1408 HI.Handler->endFunction(MF); 1409 } 1410 1411 // Emit section containing BB address offsets and their metadata, when 1412 // BB labels are requested for this function. 1413 if (MF->hasBBLabels()) 1414 emitBBAddrMapSection(*MF); 1415 1416 // Emit section containing stack size metadata. 1417 emitStackSizeSection(*MF); 1418 1419 emitPatchableFunctionEntries(); 1420 1421 if (isVerbose()) 1422 OutStreamer->GetCommentOS() << "-- End function\n"; 1423 1424 OutStreamer->AddBlankLine(); 1425 } 1426 1427 /// Compute the number of Global Variables that uses a Constant. 1428 static unsigned getNumGlobalVariableUses(const Constant *C) { 1429 if (!C) 1430 return 0; 1431 1432 if (isa<GlobalVariable>(C)) 1433 return 1; 1434 1435 unsigned NumUses = 0; 1436 for (auto *CU : C->users()) 1437 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1438 1439 return NumUses; 1440 } 1441 1442 /// Only consider global GOT equivalents if at least one user is a 1443 /// cstexpr inside an initializer of another global variables. Also, don't 1444 /// handle cstexpr inside instructions. During global variable emission, 1445 /// candidates are skipped and are emitted later in case at least one cstexpr 1446 /// isn't replaced by a PC relative GOT entry access. 1447 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1448 unsigned &NumGOTEquivUsers) { 1449 // Global GOT equivalents are unnamed private globals with a constant 1450 // pointer initializer to another global symbol. They must point to a 1451 // GlobalVariable or Function, i.e., as GlobalValue. 1452 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1453 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1454 !isa<GlobalValue>(GV->getOperand(0))) 1455 return false; 1456 1457 // To be a got equivalent, at least one of its users need to be a constant 1458 // expression used by another global variable. 1459 for (auto *U : GV->users()) 1460 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1461 1462 return NumGOTEquivUsers > 0; 1463 } 1464 1465 /// Unnamed constant global variables solely contaning a pointer to 1466 /// another globals variable is equivalent to a GOT table entry; it contains the 1467 /// the address of another symbol. Optimize it and replace accesses to these 1468 /// "GOT equivalents" by using the GOT entry for the final global instead. 1469 /// Compute GOT equivalent candidates among all global variables to avoid 1470 /// emitting them if possible later on, after it use is replaced by a GOT entry 1471 /// access. 1472 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1473 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1474 return; 1475 1476 for (const auto &G : M.globals()) { 1477 unsigned NumGOTEquivUsers = 0; 1478 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1479 continue; 1480 1481 const MCSymbol *GOTEquivSym = getSymbol(&G); 1482 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1483 } 1484 } 1485 1486 /// Constant expressions using GOT equivalent globals may not be eligible 1487 /// for PC relative GOT entry conversion, in such cases we need to emit such 1488 /// globals we previously omitted in EmitGlobalVariable. 1489 void AsmPrinter::emitGlobalGOTEquivs() { 1490 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1491 return; 1492 1493 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1494 for (auto &I : GlobalGOTEquivs) { 1495 const GlobalVariable *GV = I.second.first; 1496 unsigned Cnt = I.second.second; 1497 if (Cnt) 1498 FailedCandidates.push_back(GV); 1499 } 1500 GlobalGOTEquivs.clear(); 1501 1502 for (auto *GV : FailedCandidates) 1503 emitGlobalVariable(GV); 1504 } 1505 1506 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1507 const GlobalIndirectSymbol& GIS) { 1508 MCSymbol *Name = getSymbol(&GIS); 1509 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1510 // Treat bitcasts of functions as functions also. This is important at least 1511 // on WebAssembly where object and function addresses can't alias each other. 1512 if (!IsFunction) 1513 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1514 if (CE->getOpcode() == Instruction::BitCast) 1515 IsFunction = 1516 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1517 1518 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1519 // so AIX has to use the extra-label-at-definition strategy. At this 1520 // point, all the extra label is emitted, we just have to emit linkage for 1521 // those labels. 1522 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1523 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1524 assert(MAI->hasVisibilityOnlyWithLinkage() && 1525 "Visibility should be handled with emitLinkage() on AIX."); 1526 emitLinkage(&GIS, Name); 1527 // If it's a function, also emit linkage for aliases of function entry 1528 // point. 1529 if (IsFunction) 1530 emitLinkage(&GIS, 1531 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1532 return; 1533 } 1534 1535 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1536 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1537 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1538 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1539 else 1540 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1541 1542 // Set the symbol type to function if the alias has a function type. 1543 // This affects codegen when the aliasee is not a function. 1544 if (IsFunction) 1545 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1546 ? MCSA_ELF_TypeIndFunction 1547 : MCSA_ELF_TypeFunction); 1548 1549 emitVisibility(Name, GIS.getVisibility()); 1550 1551 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1552 1553 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1554 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1555 1556 // Emit the directives as assignments aka .set: 1557 OutStreamer->emitAssignment(Name, Expr); 1558 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1559 if (LocalAlias != Name) 1560 OutStreamer->emitAssignment(LocalAlias, Expr); 1561 1562 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1563 // If the aliasee does not correspond to a symbol in the output, i.e. the 1564 // alias is not of an object or the aliased object is private, then set the 1565 // size of the alias symbol from the type of the alias. We don't do this in 1566 // other situations as the alias and aliasee having differing types but same 1567 // size may be intentional. 1568 const GlobalObject *BaseObject = GA->getBaseObject(); 1569 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1570 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1571 const DataLayout &DL = M.getDataLayout(); 1572 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1573 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1574 } 1575 } 1576 } 1577 1578 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1579 if (!RS.needsSection()) 1580 return; 1581 1582 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1583 1584 Optional<SmallString<128>> Filename; 1585 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1586 Filename = *FilenameRef; 1587 sys::fs::make_absolute(*Filename); 1588 assert(!Filename->empty() && "The filename can't be empty."); 1589 } 1590 1591 std::string Buf; 1592 raw_string_ostream OS(Buf); 1593 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1594 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1595 : RemarkSerializer.metaSerializer(OS); 1596 MetaSerializer->emit(); 1597 1598 // Switch to the remarks section. 1599 MCSection *RemarksSection = 1600 OutContext.getObjectFileInfo()->getRemarksSection(); 1601 OutStreamer->SwitchSection(RemarksSection); 1602 1603 OutStreamer->emitBinaryData(OS.str()); 1604 } 1605 1606 bool AsmPrinter::doFinalization(Module &M) { 1607 // Set the MachineFunction to nullptr so that we can catch attempted 1608 // accesses to MF specific features at the module level and so that 1609 // we can conditionalize accesses based on whether or not it is nullptr. 1610 MF = nullptr; 1611 1612 // Gather all GOT equivalent globals in the module. We really need two 1613 // passes over the globals: one to compute and another to avoid its emission 1614 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1615 // where the got equivalent shows up before its use. 1616 computeGlobalGOTEquivs(M); 1617 1618 // Emit global variables. 1619 for (const auto &G : M.globals()) 1620 emitGlobalVariable(&G); 1621 1622 // Emit remaining GOT equivalent globals. 1623 emitGlobalGOTEquivs(); 1624 1625 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1626 1627 // Emit linkage(XCOFF) and visibility info for declarations 1628 for (const Function &F : M) { 1629 if (!F.isDeclarationForLinker()) 1630 continue; 1631 1632 MCSymbol *Name = getSymbol(&F); 1633 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1634 1635 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1636 GlobalValue::VisibilityTypes V = F.getVisibility(); 1637 if (V == GlobalValue::DefaultVisibility) 1638 continue; 1639 1640 emitVisibility(Name, V, false); 1641 continue; 1642 } 1643 1644 if (F.isIntrinsic()) 1645 continue; 1646 1647 // Handle the XCOFF case. 1648 // Variable `Name` is the function descriptor symbol (see above). Get the 1649 // function entry point symbol. 1650 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1651 // Emit linkage for the function entry point. 1652 emitLinkage(&F, FnEntryPointSym); 1653 1654 // Emit linkage for the function descriptor. 1655 emitLinkage(&F, Name); 1656 } 1657 1658 // Emit the remarks section contents. 1659 // FIXME: Figure out when is the safest time to emit this section. It should 1660 // not come after debug info. 1661 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1662 emitRemarksSection(*RS); 1663 1664 TLOF.emitModuleMetadata(*OutStreamer, M); 1665 1666 if (TM.getTargetTriple().isOSBinFormatELF()) { 1667 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1668 1669 // Output stubs for external and common global variables. 1670 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1671 if (!Stubs.empty()) { 1672 OutStreamer->SwitchSection(TLOF.getDataSection()); 1673 const DataLayout &DL = M.getDataLayout(); 1674 1675 emitAlignment(Align(DL.getPointerSize())); 1676 for (const auto &Stub : Stubs) { 1677 OutStreamer->emitLabel(Stub.first); 1678 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1679 DL.getPointerSize()); 1680 } 1681 } 1682 } 1683 1684 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1685 MachineModuleInfoCOFF &MMICOFF = 1686 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1687 1688 // Output stubs for external and common global variables. 1689 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1690 if (!Stubs.empty()) { 1691 const DataLayout &DL = M.getDataLayout(); 1692 1693 for (const auto &Stub : Stubs) { 1694 SmallString<256> SectionName = StringRef(".rdata$"); 1695 SectionName += Stub.first->getName(); 1696 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1697 SectionName, 1698 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1699 COFF::IMAGE_SCN_LNK_COMDAT, 1700 SectionKind::getReadOnly(), Stub.first->getName(), 1701 COFF::IMAGE_COMDAT_SELECT_ANY)); 1702 emitAlignment(Align(DL.getPointerSize())); 1703 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1704 OutStreamer->emitLabel(Stub.first); 1705 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1706 DL.getPointerSize()); 1707 } 1708 } 1709 } 1710 1711 // Finalize debug and EH information. 1712 for (const HandlerInfo &HI : Handlers) { 1713 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1714 HI.TimerGroupDescription, TimePassesIsEnabled); 1715 HI.Handler->endModule(); 1716 } 1717 1718 // This deletes all the ephemeral handlers that AsmPrinter added, while 1719 // keeping all the user-added handlers alive until the AsmPrinter is 1720 // destroyed. 1721 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1722 DD = nullptr; 1723 1724 // If the target wants to know about weak references, print them all. 1725 if (MAI->getWeakRefDirective()) { 1726 // FIXME: This is not lazy, it would be nice to only print weak references 1727 // to stuff that is actually used. Note that doing so would require targets 1728 // to notice uses in operands (due to constant exprs etc). This should 1729 // happen with the MC stuff eventually. 1730 1731 // Print out module-level global objects here. 1732 for (const auto &GO : M.global_objects()) { 1733 if (!GO.hasExternalWeakLinkage()) 1734 continue; 1735 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1736 } 1737 } 1738 1739 // Print aliases in topological order, that is, for each alias a = b, 1740 // b must be printed before a. 1741 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1742 // such an order to generate correct TOC information. 1743 SmallVector<const GlobalAlias *, 16> AliasStack; 1744 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1745 for (const auto &Alias : M.aliases()) { 1746 for (const GlobalAlias *Cur = &Alias; Cur; 1747 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1748 if (!AliasVisited.insert(Cur).second) 1749 break; 1750 AliasStack.push_back(Cur); 1751 } 1752 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1753 emitGlobalIndirectSymbol(M, *AncestorAlias); 1754 AliasStack.clear(); 1755 } 1756 for (const auto &IFunc : M.ifuncs()) 1757 emitGlobalIndirectSymbol(M, IFunc); 1758 1759 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1760 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1761 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1762 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1763 MP->finishAssembly(M, *MI, *this); 1764 1765 // Emit llvm.ident metadata in an '.ident' directive. 1766 emitModuleIdents(M); 1767 1768 // Emit bytes for llvm.commandline metadata. 1769 emitModuleCommandLines(M); 1770 1771 // Emit __morestack address if needed for indirect calls. 1772 if (MMI->usesMorestackAddr()) { 1773 Align Alignment(1); 1774 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1775 getDataLayout(), SectionKind::getReadOnly(), 1776 /*C=*/nullptr, Alignment); 1777 OutStreamer->SwitchSection(ReadOnlySection); 1778 1779 MCSymbol *AddrSymbol = 1780 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1781 OutStreamer->emitLabel(AddrSymbol); 1782 1783 unsigned PtrSize = MAI->getCodePointerSize(); 1784 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1785 PtrSize); 1786 } 1787 1788 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1789 // split-stack is used. 1790 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1791 OutStreamer->SwitchSection( 1792 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1793 if (MMI->hasNosplitStack()) 1794 OutStreamer->SwitchSection( 1795 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1796 } 1797 1798 // If we don't have any trampolines, then we don't require stack memory 1799 // to be executable. Some targets have a directive to declare this. 1800 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1801 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1802 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1803 OutStreamer->SwitchSection(S); 1804 1805 if (TM.Options.EmitAddrsig) { 1806 // Emit address-significance attributes for all globals. 1807 OutStreamer->emitAddrsig(); 1808 for (const GlobalValue &GV : M.global_values()) 1809 if (!GV.use_empty() && !GV.isThreadLocal() && 1810 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1811 !GV.hasAtLeastLocalUnnamedAddr()) 1812 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1813 } 1814 1815 // Emit symbol partition specifications (ELF only). 1816 if (TM.getTargetTriple().isOSBinFormatELF()) { 1817 unsigned UniqueID = 0; 1818 for (const GlobalValue &GV : M.global_values()) { 1819 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1820 GV.getVisibility() != GlobalValue::DefaultVisibility) 1821 continue; 1822 1823 OutStreamer->SwitchSection( 1824 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1825 "", ++UniqueID, nullptr)); 1826 OutStreamer->emitBytes(GV.getPartition()); 1827 OutStreamer->emitZeros(1); 1828 OutStreamer->emitValue( 1829 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1830 MAI->getCodePointerSize()); 1831 } 1832 } 1833 1834 // Allow the target to emit any magic that it wants at the end of the file, 1835 // after everything else has gone out. 1836 emitEndOfAsmFile(M); 1837 1838 MMI = nullptr; 1839 1840 OutStreamer->Finish(); 1841 OutStreamer->reset(); 1842 OwnedMLI.reset(); 1843 OwnedMDT.reset(); 1844 1845 return false; 1846 } 1847 1848 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1849 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1850 if (Res.second) 1851 Res.first->second = createTempSymbol("exception"); 1852 return Res.first->second; 1853 } 1854 1855 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1856 this->MF = &MF; 1857 const Function &F = MF.getFunction(); 1858 1859 // Get the function symbol. 1860 if (!MAI->needsFunctionDescriptors()) { 1861 CurrentFnSym = getSymbol(&MF.getFunction()); 1862 } else { 1863 assert(TM.getTargetTriple().isOSAIX() && 1864 "Only AIX uses the function descriptor hooks."); 1865 // AIX is unique here in that the name of the symbol emitted for the 1866 // function body does not have the same name as the source function's 1867 // C-linkage name. 1868 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1869 " initalized first."); 1870 1871 // Get the function entry point symbol. 1872 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1873 } 1874 1875 CurrentFnSymForSize = CurrentFnSym; 1876 CurrentFnBegin = nullptr; 1877 CurrentSectionBeginSym = nullptr; 1878 MBBSectionRanges.clear(); 1879 MBBSectionExceptionSyms.clear(); 1880 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1881 if (F.hasFnAttribute("patchable-function-entry") || 1882 F.hasFnAttribute("function-instrument") || 1883 F.hasFnAttribute("xray-instruction-threshold") || 1884 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1885 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1886 CurrentFnBegin = createTempSymbol("func_begin"); 1887 if (NeedsLocalForSize) 1888 CurrentFnSymForSize = CurrentFnBegin; 1889 } 1890 1891 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1892 } 1893 1894 namespace { 1895 1896 // Keep track the alignment, constpool entries per Section. 1897 struct SectionCPs { 1898 MCSection *S; 1899 Align Alignment; 1900 SmallVector<unsigned, 4> CPEs; 1901 1902 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1903 }; 1904 1905 } // end anonymous namespace 1906 1907 /// EmitConstantPool - Print to the current output stream assembly 1908 /// representations of the constants in the constant pool MCP. This is 1909 /// used to print out constants which have been "spilled to memory" by 1910 /// the code generator. 1911 void AsmPrinter::emitConstantPool() { 1912 const MachineConstantPool *MCP = MF->getConstantPool(); 1913 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1914 if (CP.empty()) return; 1915 1916 // Calculate sections for constant pool entries. We collect entries to go into 1917 // the same section together to reduce amount of section switch statements. 1918 SmallVector<SectionCPs, 4> CPSections; 1919 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1920 const MachineConstantPoolEntry &CPE = CP[i]; 1921 Align Alignment = CPE.getAlign(); 1922 1923 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1924 1925 const Constant *C = nullptr; 1926 if (!CPE.isMachineConstantPoolEntry()) 1927 C = CPE.Val.ConstVal; 1928 1929 MCSection *S = getObjFileLowering().getSectionForConstant( 1930 getDataLayout(), Kind, C, Alignment); 1931 1932 // The number of sections are small, just do a linear search from the 1933 // last section to the first. 1934 bool Found = false; 1935 unsigned SecIdx = CPSections.size(); 1936 while (SecIdx != 0) { 1937 if (CPSections[--SecIdx].S == S) { 1938 Found = true; 1939 break; 1940 } 1941 } 1942 if (!Found) { 1943 SecIdx = CPSections.size(); 1944 CPSections.push_back(SectionCPs(S, Alignment)); 1945 } 1946 1947 if (Alignment > CPSections[SecIdx].Alignment) 1948 CPSections[SecIdx].Alignment = Alignment; 1949 CPSections[SecIdx].CPEs.push_back(i); 1950 } 1951 1952 // Now print stuff into the calculated sections. 1953 const MCSection *CurSection = nullptr; 1954 unsigned Offset = 0; 1955 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1956 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1957 unsigned CPI = CPSections[i].CPEs[j]; 1958 MCSymbol *Sym = GetCPISymbol(CPI); 1959 if (!Sym->isUndefined()) 1960 continue; 1961 1962 if (CurSection != CPSections[i].S) { 1963 OutStreamer->SwitchSection(CPSections[i].S); 1964 emitAlignment(Align(CPSections[i].Alignment)); 1965 CurSection = CPSections[i].S; 1966 Offset = 0; 1967 } 1968 1969 MachineConstantPoolEntry CPE = CP[CPI]; 1970 1971 // Emit inter-object padding for alignment. 1972 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1973 OutStreamer->emitZeros(NewOffset - Offset); 1974 1975 Type *Ty = CPE.getType(); 1976 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1977 1978 OutStreamer->emitLabel(Sym); 1979 if (CPE.isMachineConstantPoolEntry()) 1980 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1981 else 1982 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1983 } 1984 } 1985 } 1986 1987 // Print assembly representations of the jump tables used by the current 1988 // function. 1989 void AsmPrinter::emitJumpTableInfo() { 1990 const DataLayout &DL = MF->getDataLayout(); 1991 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1992 if (!MJTI) return; 1993 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1994 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1995 if (JT.empty()) return; 1996 1997 // Pick the directive to use to print the jump table entries, and switch to 1998 // the appropriate section. 1999 const Function &F = MF->getFunction(); 2000 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2001 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2002 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2003 F); 2004 if (JTInDiffSection) { 2005 // Drop it in the readonly section. 2006 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2007 OutStreamer->SwitchSection(ReadOnlySection); 2008 } 2009 2010 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2011 2012 // Jump tables in code sections are marked with a data_region directive 2013 // where that's supported. 2014 if (!JTInDiffSection) 2015 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2016 2017 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2018 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2019 2020 // If this jump table was deleted, ignore it. 2021 if (JTBBs.empty()) continue; 2022 2023 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2024 /// emit a .set directive for each unique entry. 2025 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2026 MAI->doesSetDirectiveSuppressReloc()) { 2027 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2028 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2029 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2030 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2031 const MachineBasicBlock *MBB = JTBBs[ii]; 2032 if (!EmittedSets.insert(MBB).second) 2033 continue; 2034 2035 // .set LJTSet, LBB32-base 2036 const MCExpr *LHS = 2037 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2038 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2039 MCBinaryExpr::createSub(LHS, Base, 2040 OutContext)); 2041 } 2042 } 2043 2044 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2045 // before each jump table. The first label is never referenced, but tells 2046 // the assembler and linker the extents of the jump table object. The 2047 // second label is actually referenced by the code. 2048 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2049 // FIXME: This doesn't have to have any specific name, just any randomly 2050 // named and numbered local label started with 'l' would work. Simplify 2051 // GetJTISymbol. 2052 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2053 2054 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2055 OutStreamer->emitLabel(JTISymbol); 2056 2057 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2058 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2059 } 2060 if (!JTInDiffSection) 2061 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2062 } 2063 2064 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2065 /// current stream. 2066 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2067 const MachineBasicBlock *MBB, 2068 unsigned UID) const { 2069 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2070 const MCExpr *Value = nullptr; 2071 switch (MJTI->getEntryKind()) { 2072 case MachineJumpTableInfo::EK_Inline: 2073 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2074 case MachineJumpTableInfo::EK_Custom32: 2075 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2076 MJTI, MBB, UID, OutContext); 2077 break; 2078 case MachineJumpTableInfo::EK_BlockAddress: 2079 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2080 // .word LBB123 2081 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2082 break; 2083 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2084 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2085 // with a relocation as gp-relative, e.g.: 2086 // .gprel32 LBB123 2087 MCSymbol *MBBSym = MBB->getSymbol(); 2088 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2089 return; 2090 } 2091 2092 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2093 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2094 // with a relocation as gp-relative, e.g.: 2095 // .gpdword LBB123 2096 MCSymbol *MBBSym = MBB->getSymbol(); 2097 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2098 return; 2099 } 2100 2101 case MachineJumpTableInfo::EK_LabelDifference32: { 2102 // Each entry is the address of the block minus the address of the jump 2103 // table. This is used for PIC jump tables where gprel32 is not supported. 2104 // e.g.: 2105 // .word LBB123 - LJTI1_2 2106 // If the .set directive avoids relocations, this is emitted as: 2107 // .set L4_5_set_123, LBB123 - LJTI1_2 2108 // .word L4_5_set_123 2109 if (MAI->doesSetDirectiveSuppressReloc()) { 2110 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2111 OutContext); 2112 break; 2113 } 2114 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2115 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2116 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2117 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2118 break; 2119 } 2120 } 2121 2122 assert(Value && "Unknown entry kind!"); 2123 2124 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2125 OutStreamer->emitValue(Value, EntrySize); 2126 } 2127 2128 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2129 /// special global used by LLVM. If so, emit it and return true, otherwise 2130 /// do nothing and return false. 2131 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2132 if (GV->getName() == "llvm.used") { 2133 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2134 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2135 return true; 2136 } 2137 2138 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2139 if (GV->getSection() == "llvm.metadata" || 2140 GV->hasAvailableExternallyLinkage()) 2141 return true; 2142 2143 if (!GV->hasAppendingLinkage()) return false; 2144 2145 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2146 2147 if (GV->getName() == "llvm.global_ctors") { 2148 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2149 /* isCtor */ true); 2150 2151 return true; 2152 } 2153 2154 if (GV->getName() == "llvm.global_dtors") { 2155 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2156 /* isCtor */ false); 2157 2158 return true; 2159 } 2160 2161 report_fatal_error("unknown special variable"); 2162 } 2163 2164 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2165 /// global in the specified llvm.used list. 2166 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2167 // Should be an array of 'i8*'. 2168 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2169 const GlobalValue *GV = 2170 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2171 if (GV) 2172 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2173 } 2174 } 2175 2176 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2177 const Constant *List, 2178 SmallVector<Structor, 8> &Structors) { 2179 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2180 // the init priority. 2181 if (!isa<ConstantArray>(List)) 2182 return; 2183 2184 // Gather the structors in a form that's convenient for sorting by priority. 2185 for (Value *O : cast<ConstantArray>(List)->operands()) { 2186 auto *CS = cast<ConstantStruct>(O); 2187 if (CS->getOperand(1)->isNullValue()) 2188 break; // Found a null terminator, skip the rest. 2189 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2190 if (!Priority) 2191 continue; // Malformed. 2192 Structors.push_back(Structor()); 2193 Structor &S = Structors.back(); 2194 S.Priority = Priority->getLimitedValue(65535); 2195 S.Func = CS->getOperand(1); 2196 if (!CS->getOperand(2)->isNullValue()) { 2197 if (TM.getTargetTriple().isOSAIX()) 2198 llvm::report_fatal_error( 2199 "associated data of XXStructor list is not yet supported on AIX"); 2200 S.ComdatKey = 2201 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2202 } 2203 } 2204 2205 // Emit the function pointers in the target-specific order 2206 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2207 return L.Priority < R.Priority; 2208 }); 2209 } 2210 2211 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2212 /// priority. 2213 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2214 bool IsCtor) { 2215 SmallVector<Structor, 8> Structors; 2216 preprocessXXStructorList(DL, List, Structors); 2217 if (Structors.empty()) 2218 return; 2219 2220 const Align Align = DL.getPointerPrefAlignment(); 2221 for (Structor &S : Structors) { 2222 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2223 const MCSymbol *KeySym = nullptr; 2224 if (GlobalValue *GV = S.ComdatKey) { 2225 if (GV->isDeclarationForLinker()) 2226 // If the associated variable is not defined in this module 2227 // (it might be available_externally, or have been an 2228 // available_externally definition that was dropped by the 2229 // EliminateAvailableExternally pass), some other TU 2230 // will provide its dynamic initializer. 2231 continue; 2232 2233 KeySym = getSymbol(GV); 2234 } 2235 2236 MCSection *OutputSection = 2237 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2238 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2239 OutStreamer->SwitchSection(OutputSection); 2240 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2241 emitAlignment(Align); 2242 emitXXStructor(DL, S.Func); 2243 } 2244 } 2245 2246 void AsmPrinter::emitModuleIdents(Module &M) { 2247 if (!MAI->hasIdentDirective()) 2248 return; 2249 2250 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2251 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2252 const MDNode *N = NMD->getOperand(i); 2253 assert(N->getNumOperands() == 1 && 2254 "llvm.ident metadata entry can have only one operand"); 2255 const MDString *S = cast<MDString>(N->getOperand(0)); 2256 OutStreamer->emitIdent(S->getString()); 2257 } 2258 } 2259 } 2260 2261 void AsmPrinter::emitModuleCommandLines(Module &M) { 2262 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2263 if (!CommandLine) 2264 return; 2265 2266 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2267 if (!NMD || !NMD->getNumOperands()) 2268 return; 2269 2270 OutStreamer->PushSection(); 2271 OutStreamer->SwitchSection(CommandLine); 2272 OutStreamer->emitZeros(1); 2273 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2274 const MDNode *N = NMD->getOperand(i); 2275 assert(N->getNumOperands() == 1 && 2276 "llvm.commandline metadata entry can have only one operand"); 2277 const MDString *S = cast<MDString>(N->getOperand(0)); 2278 OutStreamer->emitBytes(S->getString()); 2279 OutStreamer->emitZeros(1); 2280 } 2281 OutStreamer->PopSection(); 2282 } 2283 2284 //===--------------------------------------------------------------------===// 2285 // Emission and print routines 2286 // 2287 2288 /// Emit a byte directive and value. 2289 /// 2290 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2291 2292 /// Emit a short directive and value. 2293 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2294 2295 /// Emit a long directive and value. 2296 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2297 2298 /// Emit a long long directive and value. 2299 void AsmPrinter::emitInt64(uint64_t Value) const { 2300 OutStreamer->emitInt64(Value); 2301 } 2302 2303 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2304 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2305 /// .set if it avoids relocations. 2306 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2307 unsigned Size) const { 2308 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2309 } 2310 2311 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2312 /// where the size in bytes of the directive is specified by Size and Label 2313 /// specifies the label. This implicitly uses .set if it is available. 2314 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2315 unsigned Size, 2316 bool IsSectionRelative) const { 2317 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2318 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2319 if (Size > 4) 2320 OutStreamer->emitZeros(Size - 4); 2321 return; 2322 } 2323 2324 // Emit Label+Offset (or just Label if Offset is zero) 2325 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2326 if (Offset) 2327 Expr = MCBinaryExpr::createAdd( 2328 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2329 2330 OutStreamer->emitValue(Expr, Size); 2331 } 2332 2333 //===----------------------------------------------------------------------===// 2334 2335 // EmitAlignment - Emit an alignment directive to the specified power of 2336 // two boundary. If a global value is specified, and if that global has 2337 // an explicit alignment requested, it will override the alignment request 2338 // if required for correctness. 2339 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2340 if (GV) 2341 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2342 2343 if (Alignment == Align(1)) 2344 return; // 1-byte aligned: no need to emit alignment. 2345 2346 if (getCurrentSection()->getKind().isText()) 2347 OutStreamer->emitCodeAlignment(Alignment.value()); 2348 else 2349 OutStreamer->emitValueToAlignment(Alignment.value()); 2350 } 2351 2352 //===----------------------------------------------------------------------===// 2353 // Constant emission. 2354 //===----------------------------------------------------------------------===// 2355 2356 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2357 MCContext &Ctx = OutContext; 2358 2359 if (CV->isNullValue() || isa<UndefValue>(CV)) 2360 return MCConstantExpr::create(0, Ctx); 2361 2362 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2363 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2364 2365 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2366 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2367 2368 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2369 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2370 2371 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2372 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2373 2374 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2375 if (!CE) { 2376 llvm_unreachable("Unknown constant value to lower!"); 2377 } 2378 2379 switch (CE->getOpcode()) { 2380 case Instruction::AddrSpaceCast: { 2381 const Constant *Op = CE->getOperand(0); 2382 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2383 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2384 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2385 return lowerConstant(Op); 2386 2387 // Fallthrough to error. 2388 LLVM_FALLTHROUGH; 2389 } 2390 default: { 2391 // If the code isn't optimized, there may be outstanding folding 2392 // opportunities. Attempt to fold the expression using DataLayout as a 2393 // last resort before giving up. 2394 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2395 if (C != CE) 2396 return lowerConstant(C); 2397 2398 // Otherwise report the problem to the user. 2399 std::string S; 2400 raw_string_ostream OS(S); 2401 OS << "Unsupported expression in static initializer: "; 2402 CE->printAsOperand(OS, /*PrintType=*/false, 2403 !MF ? nullptr : MF->getFunction().getParent()); 2404 report_fatal_error(OS.str()); 2405 } 2406 case Instruction::GetElementPtr: { 2407 // Generate a symbolic expression for the byte address 2408 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2409 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2410 2411 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2412 if (!OffsetAI) 2413 return Base; 2414 2415 int64_t Offset = OffsetAI.getSExtValue(); 2416 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2417 Ctx); 2418 } 2419 2420 case Instruction::Trunc: 2421 // We emit the value and depend on the assembler to truncate the generated 2422 // expression properly. This is important for differences between 2423 // blockaddress labels. Since the two labels are in the same function, it 2424 // is reasonable to treat their delta as a 32-bit value. 2425 LLVM_FALLTHROUGH; 2426 case Instruction::BitCast: 2427 return lowerConstant(CE->getOperand(0)); 2428 2429 case Instruction::IntToPtr: { 2430 const DataLayout &DL = getDataLayout(); 2431 2432 // Handle casts to pointers by changing them into casts to the appropriate 2433 // integer type. This promotes constant folding and simplifies this code. 2434 Constant *Op = CE->getOperand(0); 2435 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2436 false/*ZExt*/); 2437 return lowerConstant(Op); 2438 } 2439 2440 case Instruction::PtrToInt: { 2441 const DataLayout &DL = getDataLayout(); 2442 2443 // Support only foldable casts to/from pointers that can be eliminated by 2444 // changing the pointer to the appropriately sized integer type. 2445 Constant *Op = CE->getOperand(0); 2446 Type *Ty = CE->getType(); 2447 2448 const MCExpr *OpExpr = lowerConstant(Op); 2449 2450 // We can emit the pointer value into this slot if the slot is an 2451 // integer slot equal to the size of the pointer. 2452 // 2453 // If the pointer is larger than the resultant integer, then 2454 // as with Trunc just depend on the assembler to truncate it. 2455 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2456 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2457 return OpExpr; 2458 2459 // Otherwise the pointer is smaller than the resultant integer, mask off 2460 // the high bits so we are sure to get a proper truncation if the input is 2461 // a constant expr. 2462 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2463 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2464 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2465 } 2466 2467 case Instruction::Sub: { 2468 GlobalValue *LHSGV; 2469 APInt LHSOffset; 2470 DSOLocalEquivalent *DSOEquiv; 2471 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2472 getDataLayout(), &DSOEquiv)) { 2473 GlobalValue *RHSGV; 2474 APInt RHSOffset; 2475 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2476 getDataLayout())) { 2477 const MCExpr *RelocExpr = 2478 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2479 if (!RelocExpr) { 2480 const MCExpr *LHSExpr = 2481 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2482 if (DSOEquiv && 2483 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2484 LHSExpr = 2485 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2486 RelocExpr = MCBinaryExpr::createSub( 2487 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2488 } 2489 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2490 if (Addend != 0) 2491 RelocExpr = MCBinaryExpr::createAdd( 2492 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2493 return RelocExpr; 2494 } 2495 } 2496 } 2497 // else fallthrough 2498 LLVM_FALLTHROUGH; 2499 2500 // The MC library also has a right-shift operator, but it isn't consistently 2501 // signed or unsigned between different targets. 2502 case Instruction::Add: 2503 case Instruction::Mul: 2504 case Instruction::SDiv: 2505 case Instruction::SRem: 2506 case Instruction::Shl: 2507 case Instruction::And: 2508 case Instruction::Or: 2509 case Instruction::Xor: { 2510 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2511 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2512 switch (CE->getOpcode()) { 2513 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2514 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2515 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2516 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2517 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2518 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2519 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2520 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2521 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2522 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2523 } 2524 } 2525 } 2526 } 2527 2528 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2529 AsmPrinter &AP, 2530 const Constant *BaseCV = nullptr, 2531 uint64_t Offset = 0); 2532 2533 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2534 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2535 2536 /// isRepeatedByteSequence - Determine whether the given value is 2537 /// composed of a repeated sequence of identical bytes and return the 2538 /// byte value. If it is not a repeated sequence, return -1. 2539 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2540 StringRef Data = V->getRawDataValues(); 2541 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2542 char C = Data[0]; 2543 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2544 if (Data[i] != C) return -1; 2545 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2546 } 2547 2548 /// isRepeatedByteSequence - Determine whether the given value is 2549 /// composed of a repeated sequence of identical bytes and return the 2550 /// byte value. If it is not a repeated sequence, return -1. 2551 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2552 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2553 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2554 assert(Size % 8 == 0); 2555 2556 // Extend the element to take zero padding into account. 2557 APInt Value = CI->getValue().zextOrSelf(Size); 2558 if (!Value.isSplat(8)) 2559 return -1; 2560 2561 return Value.zextOrTrunc(8).getZExtValue(); 2562 } 2563 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2564 // Make sure all array elements are sequences of the same repeated 2565 // byte. 2566 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2567 Constant *Op0 = CA->getOperand(0); 2568 int Byte = isRepeatedByteSequence(Op0, DL); 2569 if (Byte == -1) 2570 return -1; 2571 2572 // All array elements must be equal. 2573 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2574 if (CA->getOperand(i) != Op0) 2575 return -1; 2576 return Byte; 2577 } 2578 2579 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2580 return isRepeatedByteSequence(CDS); 2581 2582 return -1; 2583 } 2584 2585 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2586 const ConstantDataSequential *CDS, 2587 AsmPrinter &AP) { 2588 // See if we can aggregate this into a .fill, if so, emit it as such. 2589 int Value = isRepeatedByteSequence(CDS, DL); 2590 if (Value != -1) { 2591 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2592 // Don't emit a 1-byte object as a .fill. 2593 if (Bytes > 1) 2594 return AP.OutStreamer->emitFill(Bytes, Value); 2595 } 2596 2597 // If this can be emitted with .ascii/.asciz, emit it as such. 2598 if (CDS->isString()) 2599 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2600 2601 // Otherwise, emit the values in successive locations. 2602 unsigned ElementByteSize = CDS->getElementByteSize(); 2603 if (isa<IntegerType>(CDS->getElementType())) { 2604 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2605 if (AP.isVerbose()) 2606 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2607 CDS->getElementAsInteger(i)); 2608 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2609 ElementByteSize); 2610 } 2611 } else { 2612 Type *ET = CDS->getElementType(); 2613 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2614 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2615 } 2616 2617 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2618 unsigned EmittedSize = 2619 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2620 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2621 if (unsigned Padding = Size - EmittedSize) 2622 AP.OutStreamer->emitZeros(Padding); 2623 } 2624 2625 static void emitGlobalConstantArray(const DataLayout &DL, 2626 const ConstantArray *CA, AsmPrinter &AP, 2627 const Constant *BaseCV, uint64_t Offset) { 2628 // See if we can aggregate some values. Make sure it can be 2629 // represented as a series of bytes of the constant value. 2630 int Value = isRepeatedByteSequence(CA, DL); 2631 2632 if (Value != -1) { 2633 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2634 AP.OutStreamer->emitFill(Bytes, Value); 2635 } 2636 else { 2637 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2638 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2639 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2640 } 2641 } 2642 } 2643 2644 static void emitGlobalConstantVector(const DataLayout &DL, 2645 const ConstantVector *CV, AsmPrinter &AP) { 2646 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2647 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2648 2649 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2650 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2651 CV->getType()->getNumElements(); 2652 if (unsigned Padding = Size - EmittedSize) 2653 AP.OutStreamer->emitZeros(Padding); 2654 } 2655 2656 static void emitGlobalConstantStruct(const DataLayout &DL, 2657 const ConstantStruct *CS, AsmPrinter &AP, 2658 const Constant *BaseCV, uint64_t Offset) { 2659 // Print the fields in successive locations. Pad to align if needed! 2660 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2661 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2662 uint64_t SizeSoFar = 0; 2663 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2664 const Constant *Field = CS->getOperand(i); 2665 2666 // Print the actual field value. 2667 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2668 2669 // Check if padding is needed and insert one or more 0s. 2670 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2671 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2672 - Layout->getElementOffset(i)) - FieldSize; 2673 SizeSoFar += FieldSize + PadSize; 2674 2675 // Insert padding - this may include padding to increase the size of the 2676 // current field up to the ABI size (if the struct is not packed) as well 2677 // as padding to ensure that the next field starts at the right offset. 2678 AP.OutStreamer->emitZeros(PadSize); 2679 } 2680 assert(SizeSoFar == Layout->getSizeInBytes() && 2681 "Layout of constant struct may be incorrect!"); 2682 } 2683 2684 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2685 assert(ET && "Unknown float type"); 2686 APInt API = APF.bitcastToAPInt(); 2687 2688 // First print a comment with what we think the original floating-point value 2689 // should have been. 2690 if (AP.isVerbose()) { 2691 SmallString<8> StrVal; 2692 APF.toString(StrVal); 2693 ET->print(AP.OutStreamer->GetCommentOS()); 2694 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2695 } 2696 2697 // Now iterate through the APInt chunks, emitting them in endian-correct 2698 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2699 // floats). 2700 unsigned NumBytes = API.getBitWidth() / 8; 2701 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2702 const uint64_t *p = API.getRawData(); 2703 2704 // PPC's long double has odd notions of endianness compared to how LLVM 2705 // handles it: p[0] goes first for *big* endian on PPC. 2706 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2707 int Chunk = API.getNumWords() - 1; 2708 2709 if (TrailingBytes) 2710 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2711 2712 for (; Chunk >= 0; --Chunk) 2713 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2714 } else { 2715 unsigned Chunk; 2716 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2717 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2718 2719 if (TrailingBytes) 2720 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2721 } 2722 2723 // Emit the tail padding for the long double. 2724 const DataLayout &DL = AP.getDataLayout(); 2725 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2726 } 2727 2728 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2729 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2730 } 2731 2732 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2733 const DataLayout &DL = AP.getDataLayout(); 2734 unsigned BitWidth = CI->getBitWidth(); 2735 2736 // Copy the value as we may massage the layout for constants whose bit width 2737 // is not a multiple of 64-bits. 2738 APInt Realigned(CI->getValue()); 2739 uint64_t ExtraBits = 0; 2740 unsigned ExtraBitsSize = BitWidth & 63; 2741 2742 if (ExtraBitsSize) { 2743 // The bit width of the data is not a multiple of 64-bits. 2744 // The extra bits are expected to be at the end of the chunk of the memory. 2745 // Little endian: 2746 // * Nothing to be done, just record the extra bits to emit. 2747 // Big endian: 2748 // * Record the extra bits to emit. 2749 // * Realign the raw data to emit the chunks of 64-bits. 2750 if (DL.isBigEndian()) { 2751 // Basically the structure of the raw data is a chunk of 64-bits cells: 2752 // 0 1 BitWidth / 64 2753 // [chunk1][chunk2] ... [chunkN]. 2754 // The most significant chunk is chunkN and it should be emitted first. 2755 // However, due to the alignment issue chunkN contains useless bits. 2756 // Realign the chunks so that they contain only useful information: 2757 // ExtraBits 0 1 (BitWidth / 64) - 1 2758 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2759 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2760 ExtraBits = Realigned.getRawData()[0] & 2761 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2762 Realigned.lshrInPlace(ExtraBitsSize); 2763 } else 2764 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2765 } 2766 2767 // We don't expect assemblers to support integer data directives 2768 // for more than 64 bits, so we emit the data in at most 64-bit 2769 // quantities at a time. 2770 const uint64_t *RawData = Realigned.getRawData(); 2771 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2772 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2773 AP.OutStreamer->emitIntValue(Val, 8); 2774 } 2775 2776 if (ExtraBitsSize) { 2777 // Emit the extra bits after the 64-bits chunks. 2778 2779 // Emit a directive that fills the expected size. 2780 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2781 Size -= (BitWidth / 64) * 8; 2782 assert(Size && Size * 8 >= ExtraBitsSize && 2783 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2784 == ExtraBits && "Directive too small for extra bits."); 2785 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2786 } 2787 } 2788 2789 /// Transform a not absolute MCExpr containing a reference to a GOT 2790 /// equivalent global, by a target specific GOT pc relative access to the 2791 /// final symbol. 2792 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2793 const Constant *BaseCst, 2794 uint64_t Offset) { 2795 // The global @foo below illustrates a global that uses a got equivalent. 2796 // 2797 // @bar = global i32 42 2798 // @gotequiv = private unnamed_addr constant i32* @bar 2799 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2800 // i64 ptrtoint (i32* @foo to i64)) 2801 // to i32) 2802 // 2803 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2804 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2805 // form: 2806 // 2807 // foo = cstexpr, where 2808 // cstexpr := <gotequiv> - "." + <cst> 2809 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2810 // 2811 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2812 // 2813 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2814 // gotpcrelcst := <offset from @foo base> + <cst> 2815 MCValue MV; 2816 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2817 return; 2818 const MCSymbolRefExpr *SymA = MV.getSymA(); 2819 if (!SymA) 2820 return; 2821 2822 // Check that GOT equivalent symbol is cached. 2823 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2824 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2825 return; 2826 2827 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2828 if (!BaseGV) 2829 return; 2830 2831 // Check for a valid base symbol 2832 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2833 const MCSymbolRefExpr *SymB = MV.getSymB(); 2834 2835 if (!SymB || BaseSym != &SymB->getSymbol()) 2836 return; 2837 2838 // Make sure to match: 2839 // 2840 // gotpcrelcst := <offset from @foo base> + <cst> 2841 // 2842 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2843 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2844 // if the target knows how to encode it. 2845 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2846 if (GOTPCRelCst < 0) 2847 return; 2848 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2849 return; 2850 2851 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2852 // 2853 // bar: 2854 // .long 42 2855 // gotequiv: 2856 // .quad bar 2857 // foo: 2858 // .long gotequiv - "." + <cst> 2859 // 2860 // is replaced by the target specific equivalent to: 2861 // 2862 // bar: 2863 // .long 42 2864 // foo: 2865 // .long bar@GOTPCREL+<gotpcrelcst> 2866 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2867 const GlobalVariable *GV = Result.first; 2868 int NumUses = (int)Result.second; 2869 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2870 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2871 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2872 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2873 2874 // Update GOT equivalent usage information 2875 --NumUses; 2876 if (NumUses >= 0) 2877 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2878 } 2879 2880 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2881 AsmPrinter &AP, const Constant *BaseCV, 2882 uint64_t Offset) { 2883 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2884 2885 // Globals with sub-elements such as combinations of arrays and structs 2886 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2887 // constant symbol base and the current position with BaseCV and Offset. 2888 if (!BaseCV && CV->hasOneUse()) 2889 BaseCV = dyn_cast<Constant>(CV->user_back()); 2890 2891 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2892 return AP.OutStreamer->emitZeros(Size); 2893 2894 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2895 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2896 2897 if (StoreSize <= 8) { 2898 if (AP.isVerbose()) 2899 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2900 CI->getZExtValue()); 2901 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2902 } else { 2903 emitGlobalConstantLargeInt(CI, AP); 2904 } 2905 2906 // Emit tail padding if needed 2907 if (Size != StoreSize) 2908 AP.OutStreamer->emitZeros(Size - StoreSize); 2909 2910 return; 2911 } 2912 2913 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2914 return emitGlobalConstantFP(CFP, AP); 2915 2916 if (isa<ConstantPointerNull>(CV)) { 2917 AP.OutStreamer->emitIntValue(0, Size); 2918 return; 2919 } 2920 2921 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2922 return emitGlobalConstantDataSequential(DL, CDS, AP); 2923 2924 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2925 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2926 2927 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2928 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2929 2930 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2931 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2932 // vectors). 2933 if (CE->getOpcode() == Instruction::BitCast) 2934 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2935 2936 if (Size > 8) { 2937 // If the constant expression's size is greater than 64-bits, then we have 2938 // to emit the value in chunks. Try to constant fold the value and emit it 2939 // that way. 2940 Constant *New = ConstantFoldConstant(CE, DL); 2941 if (New != CE) 2942 return emitGlobalConstantImpl(DL, New, AP); 2943 } 2944 } 2945 2946 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2947 return emitGlobalConstantVector(DL, V, AP); 2948 2949 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2950 // thread the streamer with EmitValue. 2951 const MCExpr *ME = AP.lowerConstant(CV); 2952 2953 // Since lowerConstant already folded and got rid of all IR pointer and 2954 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2955 // directly. 2956 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2957 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2958 2959 AP.OutStreamer->emitValue(ME, Size); 2960 } 2961 2962 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2963 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2964 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2965 if (Size) 2966 emitGlobalConstantImpl(DL, CV, *this); 2967 else if (MAI->hasSubsectionsViaSymbols()) { 2968 // If the global has zero size, emit a single byte so that two labels don't 2969 // look like they are at the same location. 2970 OutStreamer->emitIntValue(0, 1); 2971 } 2972 } 2973 2974 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2975 // Target doesn't support this yet! 2976 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2977 } 2978 2979 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2980 if (Offset > 0) 2981 OS << '+' << Offset; 2982 else if (Offset < 0) 2983 OS << Offset; 2984 } 2985 2986 void AsmPrinter::emitNops(unsigned N) { 2987 MCInst Nop; 2988 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2989 for (; N; --N) 2990 EmitToStreamer(*OutStreamer, Nop); 2991 } 2992 2993 //===----------------------------------------------------------------------===// 2994 // Symbol Lowering Routines. 2995 //===----------------------------------------------------------------------===// 2996 2997 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2998 return OutContext.createTempSymbol(Name, true); 2999 } 3000 3001 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3002 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3003 } 3004 3005 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3006 return MMI->getAddrLabelSymbol(BB); 3007 } 3008 3009 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3010 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3011 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3012 const MachineConstantPoolEntry &CPE = 3013 MF->getConstantPool()->getConstants()[CPID]; 3014 if (!CPE.isMachineConstantPoolEntry()) { 3015 const DataLayout &DL = MF->getDataLayout(); 3016 SectionKind Kind = CPE.getSectionKind(&DL); 3017 const Constant *C = CPE.Val.ConstVal; 3018 Align Alignment = CPE.Alignment; 3019 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3020 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3021 Alignment))) { 3022 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3023 if (Sym->isUndefined()) 3024 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3025 return Sym; 3026 } 3027 } 3028 } 3029 } 3030 3031 const DataLayout &DL = getDataLayout(); 3032 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3033 "CPI" + Twine(getFunctionNumber()) + "_" + 3034 Twine(CPID)); 3035 } 3036 3037 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3038 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3039 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3040 } 3041 3042 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3043 /// FIXME: privatize to AsmPrinter. 3044 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3045 const DataLayout &DL = getDataLayout(); 3046 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3047 Twine(getFunctionNumber()) + "_" + 3048 Twine(UID) + "_set_" + Twine(MBBID)); 3049 } 3050 3051 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3052 StringRef Suffix) const { 3053 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3054 } 3055 3056 /// Return the MCSymbol for the specified ExternalSymbol. 3057 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3058 SmallString<60> NameStr; 3059 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3060 return OutContext.getOrCreateSymbol(NameStr); 3061 } 3062 3063 /// PrintParentLoopComment - Print comments about parent loops of this one. 3064 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3065 unsigned FunctionNumber) { 3066 if (!Loop) return; 3067 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3068 OS.indent(Loop->getLoopDepth()*2) 3069 << "Parent Loop BB" << FunctionNumber << "_" 3070 << Loop->getHeader()->getNumber() 3071 << " Depth=" << Loop->getLoopDepth() << '\n'; 3072 } 3073 3074 /// PrintChildLoopComment - Print comments about child loops within 3075 /// the loop for this basic block, with nesting. 3076 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3077 unsigned FunctionNumber) { 3078 // Add child loop information 3079 for (const MachineLoop *CL : *Loop) { 3080 OS.indent(CL->getLoopDepth()*2) 3081 << "Child Loop BB" << FunctionNumber << "_" 3082 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3083 << '\n'; 3084 PrintChildLoopComment(OS, CL, FunctionNumber); 3085 } 3086 } 3087 3088 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3089 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3090 const MachineLoopInfo *LI, 3091 const AsmPrinter &AP) { 3092 // Add loop depth information 3093 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3094 if (!Loop) return; 3095 3096 MachineBasicBlock *Header = Loop->getHeader(); 3097 assert(Header && "No header for loop"); 3098 3099 // If this block is not a loop header, just print out what is the loop header 3100 // and return. 3101 if (Header != &MBB) { 3102 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3103 Twine(AP.getFunctionNumber())+"_" + 3104 Twine(Loop->getHeader()->getNumber())+ 3105 " Depth="+Twine(Loop->getLoopDepth())); 3106 return; 3107 } 3108 3109 // Otherwise, it is a loop header. Print out information about child and 3110 // parent loops. 3111 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3112 3113 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3114 3115 OS << "=>"; 3116 OS.indent(Loop->getLoopDepth()*2-2); 3117 3118 OS << "This "; 3119 if (Loop->isInnermost()) 3120 OS << "Inner "; 3121 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3122 3123 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3124 } 3125 3126 /// emitBasicBlockStart - This method prints the label for the specified 3127 /// MachineBasicBlock, an alignment (if present) and a comment describing 3128 /// it if appropriate. 3129 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3130 // End the previous funclet and start a new one. 3131 if (MBB.isEHFuncletEntry()) { 3132 for (const HandlerInfo &HI : Handlers) { 3133 HI.Handler->endFunclet(); 3134 HI.Handler->beginFunclet(MBB); 3135 } 3136 } 3137 3138 // Emit an alignment directive for this block, if needed. 3139 const Align Alignment = MBB.getAlignment(); 3140 if (Alignment != Align(1)) 3141 emitAlignment(Alignment); 3142 3143 // Switch to a new section if this basic block must begin a section. The 3144 // entry block is always placed in the function section and is handled 3145 // separately. 3146 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3147 OutStreamer->SwitchSection( 3148 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3149 MBB, TM)); 3150 CurrentSectionBeginSym = MBB.getSymbol(); 3151 } 3152 3153 // If the block has its address taken, emit any labels that were used to 3154 // reference the block. It is possible that there is more than one label 3155 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3156 // the references were generated. 3157 if (MBB.hasAddressTaken()) { 3158 const BasicBlock *BB = MBB.getBasicBlock(); 3159 if (isVerbose()) 3160 OutStreamer->AddComment("Block address taken"); 3161 3162 // MBBs can have their address taken as part of CodeGen without having 3163 // their corresponding BB's address taken in IR 3164 if (BB->hasAddressTaken()) 3165 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3166 OutStreamer->emitLabel(Sym); 3167 } 3168 3169 // Print some verbose block comments. 3170 if (isVerbose()) { 3171 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3172 if (BB->hasName()) { 3173 BB->printAsOperand(OutStreamer->GetCommentOS(), 3174 /*PrintType=*/false, BB->getModule()); 3175 OutStreamer->GetCommentOS() << '\n'; 3176 } 3177 } 3178 3179 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3180 emitBasicBlockLoopComments(MBB, MLI, *this); 3181 } 3182 3183 // Print the main label for the block. 3184 if (shouldEmitLabelForBasicBlock(MBB)) { 3185 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3186 OutStreamer->AddComment("Label of block must be emitted"); 3187 OutStreamer->emitLabel(MBB.getSymbol()); 3188 } else { 3189 if (isVerbose()) { 3190 // NOTE: Want this comment at start of line, don't emit with AddComment. 3191 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3192 false); 3193 } 3194 } 3195 3196 // With BB sections, each basic block must handle CFI information on its own 3197 // if it begins a section (Entry block is handled separately by 3198 // AsmPrinterHandler::beginFunction). 3199 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3200 for (const HandlerInfo &HI : Handlers) 3201 HI.Handler->beginBasicBlock(MBB); 3202 } 3203 3204 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3205 // Check if CFI information needs to be updated for this MBB with basic block 3206 // sections. 3207 if (MBB.isEndSection()) 3208 for (const HandlerInfo &HI : Handlers) 3209 HI.Handler->endBasicBlock(MBB); 3210 } 3211 3212 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3213 bool IsDefinition) const { 3214 MCSymbolAttr Attr = MCSA_Invalid; 3215 3216 switch (Visibility) { 3217 default: break; 3218 case GlobalValue::HiddenVisibility: 3219 if (IsDefinition) 3220 Attr = MAI->getHiddenVisibilityAttr(); 3221 else 3222 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3223 break; 3224 case GlobalValue::ProtectedVisibility: 3225 Attr = MAI->getProtectedVisibilityAttr(); 3226 break; 3227 } 3228 3229 if (Attr != MCSA_Invalid) 3230 OutStreamer->emitSymbolAttribute(Sym, Attr); 3231 } 3232 3233 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3234 const MachineBasicBlock &MBB) const { 3235 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3236 // in the labels mode (option `=labels`) and every section beginning in the 3237 // sections mode (`=all` and `=list=`). 3238 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3239 return true; 3240 // A label is needed for any block with at least one predecessor (when that 3241 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3242 // entry, or if a label is forced). 3243 return !MBB.pred_empty() && 3244 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3245 MBB.hasLabelMustBeEmitted()); 3246 } 3247 3248 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3249 /// exactly one predecessor and the control transfer mechanism between 3250 /// the predecessor and this block is a fall-through. 3251 bool AsmPrinter:: 3252 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3253 // If this is a landing pad, it isn't a fall through. If it has no preds, 3254 // then nothing falls through to it. 3255 if (MBB->isEHPad() || MBB->pred_empty()) 3256 return false; 3257 3258 // If there isn't exactly one predecessor, it can't be a fall through. 3259 if (MBB->pred_size() > 1) 3260 return false; 3261 3262 // The predecessor has to be immediately before this block. 3263 MachineBasicBlock *Pred = *MBB->pred_begin(); 3264 if (!Pred->isLayoutSuccessor(MBB)) 3265 return false; 3266 3267 // If the block is completely empty, then it definitely does fall through. 3268 if (Pred->empty()) 3269 return true; 3270 3271 // Check the terminators in the previous blocks 3272 for (const auto &MI : Pred->terminators()) { 3273 // If it is not a simple branch, we are in a table somewhere. 3274 if (!MI.isBranch() || MI.isIndirectBranch()) 3275 return false; 3276 3277 // If we are the operands of one of the branches, this is not a fall 3278 // through. Note that targets with delay slots will usually bundle 3279 // terminators with the delay slot instruction. 3280 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3281 if (OP->isJTI()) 3282 return false; 3283 if (OP->isMBB() && OP->getMBB() == MBB) 3284 return false; 3285 } 3286 } 3287 3288 return true; 3289 } 3290 3291 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3292 if (!S.usesMetadata()) 3293 return nullptr; 3294 3295 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3296 gcp_map_type::iterator GCPI = GCMap.find(&S); 3297 if (GCPI != GCMap.end()) 3298 return GCPI->second.get(); 3299 3300 auto Name = S.getName(); 3301 3302 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3303 GCMetadataPrinterRegistry::entries()) 3304 if (Name == GCMetaPrinter.getName()) { 3305 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3306 GMP->S = &S; 3307 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3308 return IterBool.first->second.get(); 3309 } 3310 3311 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3312 } 3313 3314 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3315 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3316 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3317 bool NeedsDefault = false; 3318 if (MI->begin() == MI->end()) 3319 // No GC strategy, use the default format. 3320 NeedsDefault = true; 3321 else 3322 for (auto &I : *MI) { 3323 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3324 if (MP->emitStackMaps(SM, *this)) 3325 continue; 3326 // The strategy doesn't have printer or doesn't emit custom stack maps. 3327 // Use the default format. 3328 NeedsDefault = true; 3329 } 3330 3331 if (NeedsDefault) 3332 SM.serializeToStackMapSection(); 3333 } 3334 3335 /// Pin vtable to this file. 3336 AsmPrinterHandler::~AsmPrinterHandler() = default; 3337 3338 void AsmPrinterHandler::markFunctionEnd() {} 3339 3340 // In the binary's "xray_instr_map" section, an array of these function entries 3341 // describes each instrumentation point. When XRay patches your code, the index 3342 // into this table will be given to your handler as a patch point identifier. 3343 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3344 auto Kind8 = static_cast<uint8_t>(Kind); 3345 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3346 Out->emitBinaryData( 3347 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3348 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3349 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3350 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3351 Out->emitZeros(Padding); 3352 } 3353 3354 void AsmPrinter::emitXRayTable() { 3355 if (Sleds.empty()) 3356 return; 3357 3358 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3359 const Function &F = MF->getFunction(); 3360 MCSection *InstMap = nullptr; 3361 MCSection *FnSledIndex = nullptr; 3362 const Triple &TT = TM.getTargetTriple(); 3363 // Use PC-relative addresses on all targets. 3364 if (TT.isOSBinFormatELF()) { 3365 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3366 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3367 StringRef GroupName; 3368 if (F.hasComdat()) { 3369 Flags |= ELF::SHF_GROUP; 3370 GroupName = F.getComdat()->getName(); 3371 } 3372 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3373 Flags, 0, GroupName, 3374 MCSection::NonUniqueID, LinkedToSym); 3375 3376 if (!TM.Options.XRayOmitFunctionIndex) 3377 FnSledIndex = OutContext.getELFSection( 3378 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3379 GroupName, MCSection::NonUniqueID, LinkedToSym); 3380 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3381 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3382 SectionKind::getReadOnlyWithRel()); 3383 if (!TM.Options.XRayOmitFunctionIndex) 3384 FnSledIndex = OutContext.getMachOSection( 3385 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3386 } else { 3387 llvm_unreachable("Unsupported target"); 3388 } 3389 3390 auto WordSizeBytes = MAI->getCodePointerSize(); 3391 3392 // Now we switch to the instrumentation map section. Because this is done 3393 // per-function, we are able to create an index entry that will represent the 3394 // range of sleds associated with a function. 3395 auto &Ctx = OutContext; 3396 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3397 OutStreamer->SwitchSection(InstMap); 3398 OutStreamer->emitLabel(SledsStart); 3399 for (const auto &Sled : Sleds) { 3400 MCSymbol *Dot = Ctx.createTempSymbol(); 3401 OutStreamer->emitLabel(Dot); 3402 OutStreamer->emitValueImpl( 3403 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3404 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3405 WordSizeBytes); 3406 OutStreamer->emitValueImpl( 3407 MCBinaryExpr::createSub( 3408 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3409 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3410 MCConstantExpr::create(WordSizeBytes, Ctx), 3411 Ctx), 3412 Ctx), 3413 WordSizeBytes); 3414 Sled.emit(WordSizeBytes, OutStreamer.get()); 3415 } 3416 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3417 OutStreamer->emitLabel(SledsEnd); 3418 3419 // We then emit a single entry in the index per function. We use the symbols 3420 // that bound the instrumentation map as the range for a specific function. 3421 // Each entry here will be 2 * word size aligned, as we're writing down two 3422 // pointers. This should work for both 32-bit and 64-bit platforms. 3423 if (FnSledIndex) { 3424 OutStreamer->SwitchSection(FnSledIndex); 3425 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3426 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3427 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3428 OutStreamer->SwitchSection(PrevSection); 3429 } 3430 Sleds.clear(); 3431 } 3432 3433 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3434 SledKind Kind, uint8_t Version) { 3435 const Function &F = MI.getMF()->getFunction(); 3436 auto Attr = F.getFnAttribute("function-instrument"); 3437 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3438 bool AlwaysInstrument = 3439 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3440 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3441 Kind = SledKind::LOG_ARGS_ENTER; 3442 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3443 AlwaysInstrument, &F, Version}); 3444 } 3445 3446 void AsmPrinter::emitPatchableFunctionEntries() { 3447 const Function &F = MF->getFunction(); 3448 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3449 (void)F.getFnAttribute("patchable-function-prefix") 3450 .getValueAsString() 3451 .getAsInteger(10, PatchableFunctionPrefix); 3452 (void)F.getFnAttribute("patchable-function-entry") 3453 .getValueAsString() 3454 .getAsInteger(10, PatchableFunctionEntry); 3455 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3456 return; 3457 const unsigned PointerSize = getPointerSize(); 3458 if (TM.getTargetTriple().isOSBinFormatELF()) { 3459 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3460 const MCSymbolELF *LinkedToSym = nullptr; 3461 StringRef GroupName; 3462 3463 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3464 // if we are using the integrated assembler. 3465 if (MAI->useIntegratedAssembler()) { 3466 Flags |= ELF::SHF_LINK_ORDER; 3467 if (F.hasComdat()) { 3468 Flags |= ELF::SHF_GROUP; 3469 GroupName = F.getComdat()->getName(); 3470 } 3471 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3472 } 3473 OutStreamer->SwitchSection(OutContext.getELFSection( 3474 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3475 MCSection::NonUniqueID, LinkedToSym)); 3476 emitAlignment(Align(PointerSize)); 3477 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3478 } 3479 } 3480 3481 uint16_t AsmPrinter::getDwarfVersion() const { 3482 return OutStreamer->getContext().getDwarfVersion(); 3483 } 3484 3485 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3486 OutStreamer->getContext().setDwarfVersion(Version); 3487 } 3488 3489 bool AsmPrinter::isDwarf64() const { 3490 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3491 } 3492 3493 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3494 return dwarf::getDwarfOffsetByteSize( 3495 OutStreamer->getContext().getDwarfFormat()); 3496 } 3497 3498 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3499 return dwarf::getUnitLengthFieldByteSize( 3500 OutStreamer->getContext().getDwarfFormat()); 3501 } 3502