1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "asm-printer" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "llvm/Module.h" 19 #include "llvm/CodeGen/GCMetadataPrinter.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineLoopInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DebugInfo.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCSection.h" 33 #include "llvm/MC/MCStreamer.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Target/Mangler.h" 36 #include "llvm/Target/TargetData.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetLoweringObjectFile.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Assembly/Writer.h" 43 #include "llvm/ADT/SmallString.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/Timer.h" 49 using namespace llvm; 50 51 static const char *DWARFGroupName = "DWARF Emission"; 52 static const char *DbgTimerName = "DWARF Debug Writer"; 53 static const char *EHTimerName = "DWARF Exception Writer"; 54 55 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 56 57 char AsmPrinter::ID = 0; 58 59 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 60 static gcp_map_type &getGCMap(void *&P) { 61 if (P == 0) 62 P = new gcp_map_type(); 63 return *(gcp_map_type*)P; 64 } 65 66 67 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 68 /// value in log2 form. This rounds up to the preferred alignment if possible 69 /// and legal. 70 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD, 71 unsigned InBits = 0) { 72 unsigned NumBits = 0; 73 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 74 NumBits = TD.getPreferredAlignmentLog(GVar); 75 76 // If InBits is specified, round it to it. 77 if (InBits > NumBits) 78 NumBits = InBits; 79 80 // If the GV has a specified alignment, take it into account. 81 if (GV->getAlignment() == 0) 82 return NumBits; 83 84 unsigned GVAlign = Log2_32(GV->getAlignment()); 85 86 // If the GVAlign is larger than NumBits, or if we are required to obey 87 // NumBits because the GV has an assigned section, obey it. 88 if (GVAlign > NumBits || GV->hasSection()) 89 NumBits = GVAlign; 90 return NumBits; 91 } 92 93 94 95 96 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 97 : MachineFunctionPass(ID), 98 TM(tm), MAI(tm.getMCAsmInfo()), 99 OutContext(Streamer.getContext()), 100 OutStreamer(Streamer), 101 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 102 DD = 0; DE = 0; MMI = 0; LI = 0; 103 GCMetadataPrinters = 0; 104 VerboseAsm = Streamer.isVerboseAsm(); 105 } 106 107 AsmPrinter::~AsmPrinter() { 108 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 109 110 if (GCMetadataPrinters != 0) { 111 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 112 113 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 114 delete I->second; 115 delete &GCMap; 116 GCMetadataPrinters = 0; 117 } 118 119 delete &OutStreamer; 120 } 121 122 /// getFunctionNumber - Return a unique ID for the current function. 123 /// 124 unsigned AsmPrinter::getFunctionNumber() const { 125 return MF->getFunctionNumber(); 126 } 127 128 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 129 return TM.getTargetLowering()->getObjFileLowering(); 130 } 131 132 133 /// getTargetData - Return information about data layout. 134 const TargetData &AsmPrinter::getTargetData() const { 135 return *TM.getTargetData(); 136 } 137 138 /// getCurrentSection() - Return the current section we are emitting to. 139 const MCSection *AsmPrinter::getCurrentSection() const { 140 return OutStreamer.getCurrentSection(); 141 } 142 143 144 145 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 146 AU.setPreservesAll(); 147 MachineFunctionPass::getAnalysisUsage(AU); 148 AU.addRequired<MachineModuleInfo>(); 149 AU.addRequired<GCModuleInfo>(); 150 if (isVerbose()) 151 AU.addRequired<MachineLoopInfo>(); 152 } 153 154 bool AsmPrinter::doInitialization(Module &M) { 155 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 156 MMI->AnalyzeModule(M); 157 158 // Initialize TargetLoweringObjectFile. 159 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 160 .Initialize(OutContext, TM); 161 162 Mang = new Mangler(OutContext, *TM.getTargetData()); 163 164 // Allow the target to emit any magic that it wants at the start of the file. 165 EmitStartOfAsmFile(M); 166 167 // Very minimal debug info. It is ignored if we emit actual debug info. If we 168 // don't, this at least helps the user find where a global came from. 169 if (MAI->hasSingleParameterDotFile()) { 170 // .file "foo.c" 171 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 172 } 173 174 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 175 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 176 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 177 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 178 MP->beginAssembly(*this); 179 180 // Emit module-level inline asm if it exists. 181 if (!M.getModuleInlineAsm().empty()) { 182 OutStreamer.AddComment("Start of file scope inline assembly"); 183 OutStreamer.AddBlankLine(); 184 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 185 OutStreamer.AddComment("End of file scope inline assembly"); 186 OutStreamer.AddBlankLine(); 187 } 188 189 if (MAI->doesSupportDebugInformation()) 190 DD = new DwarfDebug(this, &M); 191 192 switch (MAI->getExceptionHandlingType()) { 193 case ExceptionHandling::None: 194 return false; 195 case ExceptionHandling::SjLj: 196 case ExceptionHandling::DwarfCFI: 197 DE = new DwarfCFIException(this); 198 return false; 199 case ExceptionHandling::ARM: 200 DE = new ARMException(this); 201 return false; 202 case ExceptionHandling::Win64: 203 DE = new Win64Exception(this); 204 return false; 205 } 206 207 llvm_unreachable("Unknown exception type."); 208 } 209 210 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 211 switch ((GlobalValue::LinkageTypes)Linkage) { 212 case GlobalValue::CommonLinkage: 213 case GlobalValue::LinkOnceAnyLinkage: 214 case GlobalValue::LinkOnceODRLinkage: 215 case GlobalValue::WeakAnyLinkage: 216 case GlobalValue::WeakODRLinkage: 217 case GlobalValue::LinkerPrivateWeakLinkage: 218 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 219 if (MAI->getWeakDefDirective() != 0) { 220 // .globl _foo 221 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 222 223 if ((GlobalValue::LinkageTypes)Linkage != 224 GlobalValue::LinkerPrivateWeakDefAutoLinkage) 225 // .weak_definition _foo 226 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 227 else 228 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 229 } else if (MAI->getLinkOnceDirective() != 0) { 230 // .globl _foo 231 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 232 //NOTE: linkonce is handled by the section the symbol was assigned to. 233 } else { 234 // .weak _foo 235 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 236 } 237 break; 238 case GlobalValue::DLLExportLinkage: 239 case GlobalValue::AppendingLinkage: 240 // FIXME: appending linkage variables should go into a section of 241 // their name or something. For now, just emit them as external. 242 case GlobalValue::ExternalLinkage: 243 // If external or appending, declare as a global symbol. 244 // .globl _foo 245 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 246 break; 247 case GlobalValue::PrivateLinkage: 248 case GlobalValue::InternalLinkage: 249 case GlobalValue::LinkerPrivateLinkage: 250 break; 251 default: 252 llvm_unreachable("Unknown linkage type!"); 253 } 254 } 255 256 257 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 258 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 259 if (GV->hasInitializer()) { 260 // Check to see if this is a special global used by LLVM, if so, emit it. 261 if (EmitSpecialLLVMGlobal(GV)) 262 return; 263 264 if (isVerbose()) { 265 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 266 /*PrintType=*/false, GV->getParent()); 267 OutStreamer.GetCommentOS() << '\n'; 268 } 269 } 270 271 MCSymbol *GVSym = Mang->getSymbol(GV); 272 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 273 274 if (!GV->hasInitializer()) // External globals require no extra code. 275 return; 276 277 if (MAI->hasDotTypeDotSizeDirective()) 278 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 279 280 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 281 282 const TargetData *TD = TM.getTargetData(); 283 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 284 285 // If the alignment is specified, we *must* obey it. Overaligning a global 286 // with a specified alignment is a prompt way to break globals emitted to 287 // sections and expected to be contiguous (e.g. ObjC metadata). 288 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 289 290 // Handle common and BSS local symbols (.lcomm). 291 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 292 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 293 unsigned Align = 1 << AlignLog; 294 295 // Handle common symbols. 296 if (GVKind.isCommon()) { 297 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 298 Align = 0; 299 300 // .comm _foo, 42, 4 301 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 302 return; 303 } 304 305 // Handle local BSS symbols. 306 if (MAI->hasMachoZeroFillDirective()) { 307 const MCSection *TheSection = 308 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 309 // .zerofill __DATA, __bss, _foo, 400, 5 310 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 311 return; 312 } 313 314 if (MAI->getLCOMMDirectiveType() != LCOMM::None && 315 (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) { 316 // .lcomm _foo, 42 317 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 318 return; 319 } 320 321 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 322 Align = 0; 323 324 // .local _foo 325 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 326 // .comm _foo, 42, 4 327 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 328 return; 329 } 330 331 const MCSection *TheSection = 332 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 333 334 // Handle the zerofill directive on darwin, which is a special form of BSS 335 // emission. 336 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 337 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 338 339 // .globl _foo 340 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 341 // .zerofill __DATA, __common, _foo, 400, 5 342 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 343 return; 344 } 345 346 // Handle thread local data for mach-o which requires us to output an 347 // additional structure of data and mangle the original symbol so that we 348 // can reference it later. 349 // 350 // TODO: This should become an "emit thread local global" method on TLOF. 351 // All of this macho specific stuff should be sunk down into TLOFMachO and 352 // stuff like "TLSExtraDataSection" should no longer be part of the parent 353 // TLOF class. This will also make it more obvious that stuff like 354 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 355 // specific code. 356 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 357 // Emit the .tbss symbol 358 MCSymbol *MangSym = 359 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 360 361 if (GVKind.isThreadBSS()) 362 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 363 else if (GVKind.isThreadData()) { 364 OutStreamer.SwitchSection(TheSection); 365 366 EmitAlignment(AlignLog, GV); 367 OutStreamer.EmitLabel(MangSym); 368 369 EmitGlobalConstant(GV->getInitializer()); 370 } 371 372 OutStreamer.AddBlankLine(); 373 374 // Emit the variable struct for the runtime. 375 const MCSection *TLVSect 376 = getObjFileLowering().getTLSExtraDataSection(); 377 378 OutStreamer.SwitchSection(TLVSect); 379 // Emit the linkage here. 380 EmitLinkage(GV->getLinkage(), GVSym); 381 OutStreamer.EmitLabel(GVSym); 382 383 // Three pointers in size: 384 // - __tlv_bootstrap - used to make sure support exists 385 // - spare pointer, used when mapped by the runtime 386 // - pointer to mangled symbol above with initializer 387 unsigned PtrSize = TD->getPointerSizeInBits()/8; 388 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 389 PtrSize, 0); 390 OutStreamer.EmitIntValue(0, PtrSize, 0); 391 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0); 392 393 OutStreamer.AddBlankLine(); 394 return; 395 } 396 397 OutStreamer.SwitchSection(TheSection); 398 399 EmitLinkage(GV->getLinkage(), GVSym); 400 EmitAlignment(AlignLog, GV); 401 402 OutStreamer.EmitLabel(GVSym); 403 404 EmitGlobalConstant(GV->getInitializer()); 405 406 if (MAI->hasDotTypeDotSizeDirective()) 407 // .size foo, 42 408 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 409 410 OutStreamer.AddBlankLine(); 411 } 412 413 /// EmitFunctionHeader - This method emits the header for the current 414 /// function. 415 void AsmPrinter::EmitFunctionHeader() { 416 // Print out constants referenced by the function 417 EmitConstantPool(); 418 419 // Print the 'header' of function. 420 const Function *F = MF->getFunction(); 421 422 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 423 EmitVisibility(CurrentFnSym, F->getVisibility()); 424 425 EmitLinkage(F->getLinkage(), CurrentFnSym); 426 EmitAlignment(MF->getAlignment(), F); 427 428 if (MAI->hasDotTypeDotSizeDirective()) 429 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 430 431 if (isVerbose()) { 432 WriteAsOperand(OutStreamer.GetCommentOS(), F, 433 /*PrintType=*/false, F->getParent()); 434 OutStreamer.GetCommentOS() << '\n'; 435 } 436 437 // Emit the CurrentFnSym. This is a virtual function to allow targets to 438 // do their wild and crazy things as required. 439 EmitFunctionEntryLabel(); 440 441 // If the function had address-taken blocks that got deleted, then we have 442 // references to the dangling symbols. Emit them at the start of the function 443 // so that we don't get references to undefined symbols. 444 std::vector<MCSymbol*> DeadBlockSyms; 445 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 446 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 447 OutStreamer.AddComment("Address taken block that was later removed"); 448 OutStreamer.EmitLabel(DeadBlockSyms[i]); 449 } 450 451 // Add some workaround for linkonce linkage on Cygwin\MinGW. 452 if (MAI->getLinkOnceDirective() != 0 && 453 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 454 // FIXME: What is this? 455 MCSymbol *FakeStub = 456 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 457 CurrentFnSym->getName()); 458 OutStreamer.EmitLabel(FakeStub); 459 } 460 461 // Emit pre-function debug and/or EH information. 462 if (DE) { 463 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 464 DE->BeginFunction(MF); 465 } 466 if (DD) { 467 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 468 DD->beginFunction(MF); 469 } 470 } 471 472 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 473 /// function. This can be overridden by targets as required to do custom stuff. 474 void AsmPrinter::EmitFunctionEntryLabel() { 475 // The function label could have already been emitted if two symbols end up 476 // conflicting due to asm renaming. Detect this and emit an error. 477 if (CurrentFnSym->isUndefined()) { 478 OutStreamer.ForceCodeRegion(); 479 return OutStreamer.EmitLabel(CurrentFnSym); 480 } 481 482 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 483 "' label emitted multiple times to assembly file"); 484 } 485 486 487 /// EmitComments - Pretty-print comments for instructions. 488 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 489 const MachineFunction *MF = MI.getParent()->getParent(); 490 const TargetMachine &TM = MF->getTarget(); 491 492 // Check for spills and reloads 493 int FI; 494 495 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 496 497 // We assume a single instruction only has a spill or reload, not 498 // both. 499 const MachineMemOperand *MMO; 500 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 501 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 502 MMO = *MI.memoperands_begin(); 503 CommentOS << MMO->getSize() << "-byte Reload\n"; 504 } 505 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 506 if (FrameInfo->isSpillSlotObjectIndex(FI)) 507 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 508 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 509 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 510 MMO = *MI.memoperands_begin(); 511 CommentOS << MMO->getSize() << "-byte Spill\n"; 512 } 513 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 514 if (FrameInfo->isSpillSlotObjectIndex(FI)) 515 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 516 } 517 518 // Check for spill-induced copies 519 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 520 CommentOS << " Reload Reuse\n"; 521 } 522 523 /// EmitImplicitDef - This method emits the specified machine instruction 524 /// that is an implicit def. 525 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 526 unsigned RegNo = MI->getOperand(0).getReg(); 527 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 528 AP.TM.getRegisterInfo()->getName(RegNo)); 529 AP.OutStreamer.AddBlankLine(); 530 } 531 532 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) { 533 std::string Str = "kill:"; 534 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 535 const MachineOperand &Op = MI->getOperand(i); 536 assert(Op.isReg() && "KILL instruction must have only register operands"); 537 Str += ' '; 538 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 539 Str += (Op.isDef() ? "<def>" : "<kill>"); 540 } 541 AP.OutStreamer.AddComment(Str); 542 AP.OutStreamer.AddBlankLine(); 543 } 544 545 /// EmitDebugValueComment - This method handles the target-independent form 546 /// of DBG_VALUE, returning true if it was able to do so. A false return 547 /// means the target will need to handle MI in EmitInstruction. 548 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 549 // This code handles only the 3-operand target-independent form. 550 if (MI->getNumOperands() != 3) 551 return false; 552 553 SmallString<128> Str; 554 raw_svector_ostream OS(Str); 555 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 556 557 // cast away const; DIetc do not take const operands for some reason. 558 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 559 if (V.getContext().isSubprogram()) 560 OS << DISubprogram(V.getContext()).getDisplayName() << ":"; 561 OS << V.getName() << " <- "; 562 563 // Register or immediate value. Register 0 means undef. 564 if (MI->getOperand(0).isFPImm()) { 565 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 566 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 567 OS << (double)APF.convertToFloat(); 568 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 569 OS << APF.convertToDouble(); 570 } else { 571 // There is no good way to print long double. Convert a copy to 572 // double. Ah well, it's only a comment. 573 bool ignored; 574 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 575 &ignored); 576 OS << "(long double) " << APF.convertToDouble(); 577 } 578 } else if (MI->getOperand(0).isImm()) { 579 OS << MI->getOperand(0).getImm(); 580 } else if (MI->getOperand(0).isCImm()) { 581 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 582 } else { 583 assert(MI->getOperand(0).isReg() && "Unknown operand type"); 584 if (MI->getOperand(0).getReg() == 0) { 585 // Suppress offset, it is not meaningful here. 586 OS << "undef"; 587 // NOTE: Want this comment at start of line, don't emit with AddComment. 588 AP.OutStreamer.EmitRawText(OS.str()); 589 return true; 590 } 591 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); 592 } 593 594 OS << '+' << MI->getOperand(1).getImm(); 595 // NOTE: Want this comment at start of line, don't emit with AddComment. 596 AP.OutStreamer.EmitRawText(OS.str()); 597 return true; 598 } 599 600 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 601 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 602 MF->getFunction()->needsUnwindTableEntry()) 603 return CFI_M_EH; 604 605 if (MMI->hasDebugInfo()) 606 return CFI_M_Debug; 607 608 return CFI_M_None; 609 } 610 611 bool AsmPrinter::needsSEHMoves() { 612 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 613 MF->getFunction()->needsUnwindTableEntry(); 614 } 615 616 bool AsmPrinter::needsRelocationsForDwarfStringPool() const { 617 return MAI->doesDwarfUseRelocationsForStringPool(); 618 } 619 620 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 621 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 622 623 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 624 return; 625 626 if (needsCFIMoves() == CFI_M_None) 627 return; 628 629 if (MMI->getCompactUnwindEncoding() != 0) 630 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 631 632 MachineModuleInfo &MMI = MF->getMMI(); 633 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 634 bool FoundOne = false; 635 (void)FoundOne; 636 for (std::vector<MachineMove>::iterator I = Moves.begin(), 637 E = Moves.end(); I != E; ++I) { 638 if (I->getLabel() == Label) { 639 EmitCFIFrameMove(*I); 640 FoundOne = true; 641 } 642 } 643 assert(FoundOne); 644 } 645 646 /// EmitFunctionBody - This method emits the body and trailer for a 647 /// function. 648 void AsmPrinter::EmitFunctionBody() { 649 // Emit target-specific gunk before the function body. 650 EmitFunctionBodyStart(); 651 652 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 653 654 // Print out code for the function. 655 bool HasAnyRealCode = false; 656 const MachineInstr *LastMI = 0; 657 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 658 I != E; ++I) { 659 // Print a label for the basic block. 660 EmitBasicBlockStart(I); 661 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 662 II != IE; ++II) { 663 LastMI = II; 664 665 // Print the assembly for the instruction. 666 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 667 !II->isDebugValue()) { 668 HasAnyRealCode = true; 669 ++EmittedInsts; 670 } 671 672 if (ShouldPrintDebugScopes) { 673 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 674 DD->beginInstruction(II); 675 } 676 677 if (isVerbose()) 678 EmitComments(*II, OutStreamer.GetCommentOS()); 679 680 switch (II->getOpcode()) { 681 case TargetOpcode::PROLOG_LABEL: 682 emitPrologLabel(*II); 683 break; 684 685 case TargetOpcode::EH_LABEL: 686 case TargetOpcode::GC_LABEL: 687 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 688 break; 689 case TargetOpcode::INLINEASM: 690 EmitInlineAsm(II); 691 break; 692 case TargetOpcode::DBG_VALUE: 693 if (isVerbose()) { 694 if (!EmitDebugValueComment(II, *this)) 695 EmitInstruction(II); 696 } 697 break; 698 case TargetOpcode::IMPLICIT_DEF: 699 if (isVerbose()) EmitImplicitDef(II, *this); 700 break; 701 case TargetOpcode::KILL: 702 if (isVerbose()) EmitKill(II, *this); 703 break; 704 default: 705 if (!TM.hasMCUseLoc()) 706 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 707 708 EmitInstruction(II); 709 break; 710 } 711 712 if (ShouldPrintDebugScopes) { 713 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 714 DD->endInstruction(II); 715 } 716 } 717 } 718 719 // If the last instruction was a prolog label, then we have a situation where 720 // we emitted a prolog but no function body. This results in the ending prolog 721 // label equaling the end of function label and an invalid "row" in the 722 // FDE. We need to emit a noop in this situation so that the FDE's rows are 723 // valid. 724 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 725 726 // If the function is empty and the object file uses .subsections_via_symbols, 727 // then we need to emit *something* to the function body to prevent the 728 // labels from collapsing together. Just emit a noop. 729 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 730 MCInst Noop; 731 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 732 if (Noop.getOpcode()) { 733 OutStreamer.AddComment("avoids zero-length function"); 734 OutStreamer.EmitInstruction(Noop); 735 } else // Target not mc-ized yet. 736 OutStreamer.EmitRawText(StringRef("\tnop\n")); 737 } 738 739 const Function *F = MF->getFunction(); 740 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { 741 const BasicBlock *BB = i; 742 if (!BB->hasAddressTaken()) 743 continue; 744 MCSymbol *Sym = GetBlockAddressSymbol(BB); 745 if (Sym->isDefined()) 746 continue; 747 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 748 OutStreamer.EmitLabel(Sym); 749 } 750 751 // Emit target-specific gunk after the function body. 752 EmitFunctionBodyEnd(); 753 754 // If the target wants a .size directive for the size of the function, emit 755 // it. 756 if (MAI->hasDotTypeDotSizeDirective()) { 757 // Create a symbol for the end of function, so we can get the size as 758 // difference between the function label and the temp label. 759 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 760 OutStreamer.EmitLabel(FnEndLabel); 761 762 const MCExpr *SizeExp = 763 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 764 MCSymbolRefExpr::Create(CurrentFnSym, OutContext), 765 OutContext); 766 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 767 } 768 769 // Emit post-function debug information. 770 if (DD) { 771 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 772 DD->endFunction(MF); 773 } 774 if (DE) { 775 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 776 DE->EndFunction(); 777 } 778 MMI->EndFunction(); 779 780 // Print out jump tables referenced by the function. 781 EmitJumpTableInfo(); 782 783 OutStreamer.AddBlankLine(); 784 } 785 786 /// getDebugValueLocation - Get location information encoded by DBG_VALUE 787 /// operands. 788 MachineLocation AsmPrinter:: 789 getDebugValueLocation(const MachineInstr *MI) const { 790 // Target specific DBG_VALUE instructions are handled by each target. 791 return MachineLocation(); 792 } 793 794 /// EmitDwarfRegOp - Emit dwarf register operation. 795 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { 796 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 797 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 798 799 for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg()); 800 *SR && Reg < 0; ++SR) { 801 Reg = TRI->getDwarfRegNum(*SR, false); 802 // FIXME: Get the bit range this register uses of the superregister 803 // so that we can produce a DW_OP_bit_piece 804 } 805 806 // FIXME: Handle cases like a super register being encoded as 807 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 808 809 // FIXME: We have no reasonable way of handling errors in here. The 810 // caller might be in the middle of an dwarf expression. We should 811 // probably assert that Reg >= 0 once debug info generation is more mature. 812 813 if (int Offset = MLoc.getOffset()) { 814 if (Reg < 32) { 815 OutStreamer.AddComment( 816 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 817 EmitInt8(dwarf::DW_OP_breg0 + Reg); 818 } else { 819 OutStreamer.AddComment("DW_OP_bregx"); 820 EmitInt8(dwarf::DW_OP_bregx); 821 OutStreamer.AddComment(Twine(Reg)); 822 EmitULEB128(Reg); 823 } 824 EmitSLEB128(Offset); 825 } else { 826 if (Reg < 32) { 827 OutStreamer.AddComment( 828 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 829 EmitInt8(dwarf::DW_OP_reg0 + Reg); 830 } else { 831 OutStreamer.AddComment("DW_OP_regx"); 832 EmitInt8(dwarf::DW_OP_regx); 833 OutStreamer.AddComment(Twine(Reg)); 834 EmitULEB128(Reg); 835 } 836 } 837 838 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 839 } 840 841 bool AsmPrinter::doFinalization(Module &M) { 842 // Emit global variables. 843 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 844 I != E; ++I) 845 EmitGlobalVariable(I); 846 847 // Emit visibility info for declarations 848 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 849 const Function &F = *I; 850 if (!F.isDeclaration()) 851 continue; 852 GlobalValue::VisibilityTypes V = F.getVisibility(); 853 if (V == GlobalValue::DefaultVisibility) 854 continue; 855 856 MCSymbol *Name = Mang->getSymbol(&F); 857 EmitVisibility(Name, V, false); 858 } 859 860 // Finalize debug and EH information. 861 if (DE) { 862 { 863 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 864 DE->EndModule(); 865 } 866 delete DE; DE = 0; 867 } 868 if (DD) { 869 { 870 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 871 DD->endModule(); 872 } 873 delete DD; DD = 0; 874 } 875 876 // If the target wants to know about weak references, print them all. 877 if (MAI->getWeakRefDirective()) { 878 // FIXME: This is not lazy, it would be nice to only print weak references 879 // to stuff that is actually used. Note that doing so would require targets 880 // to notice uses in operands (due to constant exprs etc). This should 881 // happen with the MC stuff eventually. 882 883 // Print out module-level global variables here. 884 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 885 I != E; ++I) { 886 if (!I->hasExternalWeakLinkage()) continue; 887 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 888 } 889 890 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 891 if (!I->hasExternalWeakLinkage()) continue; 892 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 893 } 894 } 895 896 if (MAI->hasSetDirective()) { 897 OutStreamer.AddBlankLine(); 898 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 899 I != E; ++I) { 900 MCSymbol *Name = Mang->getSymbol(I); 901 902 const GlobalValue *GV = I->getAliasedGlobal(); 903 MCSymbol *Target = Mang->getSymbol(GV); 904 905 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 906 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 907 else if (I->hasWeakLinkage()) 908 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 909 else 910 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 911 912 EmitVisibility(Name, I->getVisibility()); 913 914 // Emit the directives as assignments aka .set: 915 OutStreamer.EmitAssignment(Name, 916 MCSymbolRefExpr::Create(Target, OutContext)); 917 } 918 } 919 920 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 921 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 922 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 923 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 924 MP->finishAssembly(*this); 925 926 // If we don't have any trampolines, then we don't require stack memory 927 // to be executable. Some targets have a directive to declare this. 928 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 929 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 930 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 931 OutStreamer.SwitchSection(S); 932 933 // Allow the target to emit any magic that it wants at the end of the file, 934 // after everything else has gone out. 935 EmitEndOfAsmFile(M); 936 937 delete Mang; Mang = 0; 938 MMI = 0; 939 940 OutStreamer.Finish(); 941 return false; 942 } 943 944 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 945 this->MF = &MF; 946 // Get the function symbol. 947 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 948 949 if (isVerbose()) 950 LI = &getAnalysis<MachineLoopInfo>(); 951 } 952 953 namespace { 954 // SectionCPs - Keep track the alignment, constpool entries per Section. 955 struct SectionCPs { 956 const MCSection *S; 957 unsigned Alignment; 958 SmallVector<unsigned, 4> CPEs; 959 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 960 }; 961 } 962 963 /// EmitConstantPool - Print to the current output stream assembly 964 /// representations of the constants in the constant pool MCP. This is 965 /// used to print out constants which have been "spilled to memory" by 966 /// the code generator. 967 /// 968 void AsmPrinter::EmitConstantPool() { 969 const MachineConstantPool *MCP = MF->getConstantPool(); 970 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 971 if (CP.empty()) return; 972 973 // Calculate sections for constant pool entries. We collect entries to go into 974 // the same section together to reduce amount of section switch statements. 975 SmallVector<SectionCPs, 4> CPSections; 976 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 977 const MachineConstantPoolEntry &CPE = CP[i]; 978 unsigned Align = CPE.getAlignment(); 979 980 SectionKind Kind; 981 switch (CPE.getRelocationInfo()) { 982 default: llvm_unreachable("Unknown section kind"); 983 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 984 case 1: 985 Kind = SectionKind::getReadOnlyWithRelLocal(); 986 break; 987 case 0: 988 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 989 case 4: Kind = SectionKind::getMergeableConst4(); break; 990 case 8: Kind = SectionKind::getMergeableConst8(); break; 991 case 16: Kind = SectionKind::getMergeableConst16();break; 992 default: Kind = SectionKind::getMergeableConst(); break; 993 } 994 } 995 996 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 997 998 // The number of sections are small, just do a linear search from the 999 // last section to the first. 1000 bool Found = false; 1001 unsigned SecIdx = CPSections.size(); 1002 while (SecIdx != 0) { 1003 if (CPSections[--SecIdx].S == S) { 1004 Found = true; 1005 break; 1006 } 1007 } 1008 if (!Found) { 1009 SecIdx = CPSections.size(); 1010 CPSections.push_back(SectionCPs(S, Align)); 1011 } 1012 1013 if (Align > CPSections[SecIdx].Alignment) 1014 CPSections[SecIdx].Alignment = Align; 1015 CPSections[SecIdx].CPEs.push_back(i); 1016 } 1017 1018 // Now print stuff into the calculated sections. 1019 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1020 OutStreamer.SwitchSection(CPSections[i].S); 1021 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1022 1023 unsigned Offset = 0; 1024 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1025 unsigned CPI = CPSections[i].CPEs[j]; 1026 MachineConstantPoolEntry CPE = CP[CPI]; 1027 1028 // Emit inter-object padding for alignment. 1029 unsigned AlignMask = CPE.getAlignment() - 1; 1030 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1031 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 1032 1033 Type *Ty = CPE.getType(); 1034 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 1035 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1036 1037 if (CPE.isMachineConstantPoolEntry()) 1038 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1039 else 1040 EmitGlobalConstant(CPE.Val.ConstVal); 1041 } 1042 } 1043 } 1044 1045 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1046 /// by the current function to the current output stream. 1047 /// 1048 void AsmPrinter::EmitJumpTableInfo() { 1049 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1050 if (MJTI == 0) return; 1051 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1052 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1053 if (JT.empty()) return; 1054 1055 // Pick the directive to use to print the jump table entries, and switch to 1056 // the appropriate section. 1057 const Function *F = MF->getFunction(); 1058 bool JTInDiffSection = false; 1059 if (// In PIC mode, we need to emit the jump table to the same section as the 1060 // function body itself, otherwise the label differences won't make sense. 1061 // FIXME: Need a better predicate for this: what about custom entries? 1062 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1063 // We should also do if the section name is NULL or function is declared 1064 // in discardable section 1065 // FIXME: this isn't the right predicate, should be based on the MCSection 1066 // for the function. 1067 F->isWeakForLinker()) { 1068 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1069 } else { 1070 // Otherwise, drop it in the readonly section. 1071 const MCSection *ReadOnlySection = 1072 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1073 OutStreamer.SwitchSection(ReadOnlySection); 1074 JTInDiffSection = true; 1075 } 1076 1077 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData()))); 1078 1079 // If we know the form of the jump table, go ahead and tag it as such. 1080 if (!JTInDiffSection) { 1081 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32) { 1082 OutStreamer.EmitJumpTable32Region(); 1083 } else { 1084 OutStreamer.EmitDataRegion(); 1085 } 1086 } 1087 1088 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1089 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1090 1091 // If this jump table was deleted, ignore it. 1092 if (JTBBs.empty()) continue; 1093 1094 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1095 // .set directive for each unique entry. This reduces the number of 1096 // relocations the assembler will generate for the jump table. 1097 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1098 MAI->hasSetDirective()) { 1099 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1100 const TargetLowering *TLI = TM.getTargetLowering(); 1101 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1102 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1103 const MachineBasicBlock *MBB = JTBBs[ii]; 1104 if (!EmittedSets.insert(MBB)) continue; 1105 1106 // .set LJTSet, LBB32-base 1107 const MCExpr *LHS = 1108 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1109 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1110 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1111 } 1112 } 1113 1114 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1115 // before each jump table. The first label is never referenced, but tells 1116 // the assembler and linker the extents of the jump table object. The 1117 // second label is actually referenced by the code. 1118 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1119 // FIXME: This doesn't have to have any specific name, just any randomly 1120 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1121 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1122 1123 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1124 1125 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1126 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1127 } 1128 } 1129 1130 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1131 /// current stream. 1132 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1133 const MachineBasicBlock *MBB, 1134 unsigned UID) const { 1135 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1136 const MCExpr *Value = 0; 1137 switch (MJTI->getEntryKind()) { 1138 case MachineJumpTableInfo::EK_Inline: 1139 llvm_unreachable("Cannot emit EK_Inline jump table entry"); break; 1140 case MachineJumpTableInfo::EK_Custom32: 1141 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1142 OutContext); 1143 break; 1144 case MachineJumpTableInfo::EK_BlockAddress: 1145 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1146 // .word LBB123 1147 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1148 break; 1149 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1150 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1151 // with a relocation as gp-relative, e.g.: 1152 // .gprel32 LBB123 1153 MCSymbol *MBBSym = MBB->getSymbol(); 1154 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1155 return; 1156 } 1157 1158 case MachineJumpTableInfo::EK_LabelDifference32: { 1159 // EK_LabelDifference32 - Each entry is the address of the block minus 1160 // the address of the jump table. This is used for PIC jump tables where 1161 // gprel32 is not supported. e.g.: 1162 // .word LBB123 - LJTI1_2 1163 // If the .set directive is supported, this is emitted as: 1164 // .set L4_5_set_123, LBB123 - LJTI1_2 1165 // .word L4_5_set_123 1166 1167 // If we have emitted set directives for the jump table entries, print 1168 // them rather than the entries themselves. If we're emitting PIC, then 1169 // emit the table entries as differences between two text section labels. 1170 if (MAI->hasSetDirective()) { 1171 // If we used .set, reference the .set's symbol. 1172 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1173 OutContext); 1174 break; 1175 } 1176 // Otherwise, use the difference as the jump table entry. 1177 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1178 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1179 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1180 break; 1181 } 1182 } 1183 1184 assert(Value && "Unknown entry kind!"); 1185 1186 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData()); 1187 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0); 1188 } 1189 1190 1191 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1192 /// special global used by LLVM. If so, emit it and return true, otherwise 1193 /// do nothing and return false. 1194 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1195 if (GV->getName() == "llvm.used") { 1196 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1197 EmitLLVMUsedList(GV->getInitializer()); 1198 return true; 1199 } 1200 1201 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1202 if (GV->getSection() == "llvm.metadata" || 1203 GV->hasAvailableExternallyLinkage()) 1204 return true; 1205 1206 if (!GV->hasAppendingLinkage()) return false; 1207 1208 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1209 1210 const TargetData *TD = TM.getTargetData(); 1211 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 1212 if (GV->getName() == "llvm.global_ctors") { 1213 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 1214 EmitAlignment(Align); 1215 EmitXXStructorList(GV->getInitializer()); 1216 1217 if (TM.getRelocationModel() == Reloc::Static && 1218 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1219 StringRef Sym(".constructors_used"); 1220 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1221 MCSA_Reference); 1222 } 1223 return true; 1224 } 1225 1226 if (GV->getName() == "llvm.global_dtors") { 1227 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 1228 EmitAlignment(Align); 1229 EmitXXStructorList(GV->getInitializer()); 1230 1231 if (TM.getRelocationModel() == Reloc::Static && 1232 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1233 StringRef Sym(".destructors_used"); 1234 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1235 MCSA_Reference); 1236 } 1237 return true; 1238 } 1239 1240 return false; 1241 } 1242 1243 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1244 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1245 /// is true, as being used with this directive. 1246 void AsmPrinter::EmitLLVMUsedList(const Constant *List) { 1247 // Should be an array of 'i8*'. 1248 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1249 if (InitList == 0) return; 1250 1251 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1252 const GlobalValue *GV = 1253 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1254 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1255 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1256 } 1257 } 1258 1259 typedef std::pair<int, Constant*> Structor; 1260 1261 static bool priority_order(const Structor& lhs, const Structor& rhs) { 1262 return lhs.first < rhs.first; 1263 } 1264 1265 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1266 /// priority. 1267 void AsmPrinter::EmitXXStructorList(const Constant *List) { 1268 // Should be an array of '{ int, void ()* }' structs. The first value is the 1269 // init priority. 1270 if (!isa<ConstantArray>(List)) return; 1271 1272 // Sanity check the structors list. 1273 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1274 if (!InitList) return; // Not an array! 1275 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1276 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1277 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1278 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1279 1280 // Gather the structors in a form that's convenient for sorting by priority. 1281 SmallVector<Structor, 8> Structors; 1282 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1283 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1284 if (!CS) continue; // Malformed. 1285 if (CS->getOperand(1)->isNullValue()) 1286 break; // Found a null terminator, skip the rest. 1287 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1288 if (!Priority) continue; // Malformed. 1289 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1290 CS->getOperand(1))); 1291 } 1292 1293 // Emit the function pointers in reverse priority order. 1294 switch (getObjFileLowering().getStructorOutputOrder()) { 1295 case Structors::None: 1296 break; 1297 case Structors::PriorityOrder: 1298 std::sort(Structors.begin(), Structors.end(), priority_order); 1299 break; 1300 case Structors::ReversePriorityOrder: 1301 std::sort(Structors.rbegin(), Structors.rend(), priority_order); 1302 break; 1303 } 1304 for (unsigned i = 0, e = Structors.size(); i != e; ++i) 1305 EmitGlobalConstant(Structors[i].second); 1306 } 1307 1308 //===--------------------------------------------------------------------===// 1309 // Emission and print routines 1310 // 1311 1312 /// EmitInt8 - Emit a byte directive and value. 1313 /// 1314 void AsmPrinter::EmitInt8(int Value) const { 1315 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 1316 } 1317 1318 /// EmitInt16 - Emit a short directive and value. 1319 /// 1320 void AsmPrinter::EmitInt16(int Value) const { 1321 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 1322 } 1323 1324 /// EmitInt32 - Emit a long directive and value. 1325 /// 1326 void AsmPrinter::EmitInt32(int Value) const { 1327 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 1328 } 1329 1330 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1331 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1332 /// labels. This implicitly uses .set if it is available. 1333 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1334 unsigned Size) const { 1335 // Get the Hi-Lo expression. 1336 const MCExpr *Diff = 1337 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1338 MCSymbolRefExpr::Create(Lo, OutContext), 1339 OutContext); 1340 1341 if (!MAI->hasSetDirective()) { 1342 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/); 1343 return; 1344 } 1345 1346 // Otherwise, emit with .set (aka assignment). 1347 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1348 OutStreamer.EmitAssignment(SetLabel, Diff); 1349 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/); 1350 } 1351 1352 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1353 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1354 /// specify the labels. This implicitly uses .set if it is available. 1355 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1356 const MCSymbol *Lo, unsigned Size) 1357 const { 1358 1359 // Emit Hi+Offset - Lo 1360 // Get the Hi+Offset expression. 1361 const MCExpr *Plus = 1362 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1363 MCConstantExpr::Create(Offset, OutContext), 1364 OutContext); 1365 1366 // Get the Hi+Offset-Lo expression. 1367 const MCExpr *Diff = 1368 MCBinaryExpr::CreateSub(Plus, 1369 MCSymbolRefExpr::Create(Lo, OutContext), 1370 OutContext); 1371 1372 if (!MAI->hasSetDirective()) 1373 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/); 1374 else { 1375 // Otherwise, emit with .set (aka assignment). 1376 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1377 OutStreamer.EmitAssignment(SetLabel, Diff); 1378 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/); 1379 } 1380 } 1381 1382 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1383 /// where the size in bytes of the directive is specified by Size and Label 1384 /// specifies the label. This implicitly uses .set if it is available. 1385 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1386 unsigned Size) 1387 const { 1388 1389 // Emit Label+Offset 1390 const MCExpr *Plus = 1391 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext), 1392 MCConstantExpr::Create(Offset, OutContext), 1393 OutContext); 1394 1395 OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/); 1396 } 1397 1398 1399 //===----------------------------------------------------------------------===// 1400 1401 // EmitAlignment - Emit an alignment directive to the specified power of 1402 // two boundary. For example, if you pass in 3 here, you will get an 8 1403 // byte alignment. If a global value is specified, and if that global has 1404 // an explicit alignment requested, it will override the alignment request 1405 // if required for correctness. 1406 // 1407 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1408 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits); 1409 1410 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1411 1412 if (getCurrentSection()->getKind().isText()) 1413 OutStreamer.EmitCodeAlignment(1 << NumBits); 1414 else 1415 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1416 } 1417 1418 //===----------------------------------------------------------------------===// 1419 // Constant emission. 1420 //===----------------------------------------------------------------------===// 1421 1422 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr. 1423 /// 1424 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) { 1425 MCContext &Ctx = AP.OutContext; 1426 1427 if (CV->isNullValue() || isa<UndefValue>(CV)) 1428 return MCConstantExpr::Create(0, Ctx); 1429 1430 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1431 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1432 1433 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1434 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1435 1436 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1437 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1438 1439 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1440 if (CE == 0) { 1441 llvm_unreachable("Unknown constant value to lower!"); 1442 return MCConstantExpr::Create(0, Ctx); 1443 } 1444 1445 switch (CE->getOpcode()) { 1446 default: 1447 // If the code isn't optimized, there may be outstanding folding 1448 // opportunities. Attempt to fold the expression using TargetData as a 1449 // last resort before giving up. 1450 if (Constant *C = 1451 ConstantFoldConstantExpression(CE, AP.TM.getTargetData())) 1452 if (C != CE) 1453 return LowerConstant(C, AP); 1454 1455 // Otherwise report the problem to the user. 1456 { 1457 std::string S; 1458 raw_string_ostream OS(S); 1459 OS << "Unsupported expression in static initializer: "; 1460 WriteAsOperand(OS, CE, /*PrintType=*/false, 1461 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1462 report_fatal_error(OS.str()); 1463 } 1464 return MCConstantExpr::Create(0, Ctx); 1465 case Instruction::GetElementPtr: { 1466 const TargetData &TD = *AP.TM.getTargetData(); 1467 // Generate a symbolic expression for the byte address 1468 const Constant *PtrVal = CE->getOperand(0); 1469 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); 1470 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec); 1471 1472 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); 1473 if (Offset == 0) 1474 return Base; 1475 1476 // Truncate/sext the offset to the pointer size. 1477 if (TD.getPointerSizeInBits() != 64) { 1478 int SExtAmount = 64-TD.getPointerSizeInBits(); 1479 Offset = (Offset << SExtAmount) >> SExtAmount; 1480 } 1481 1482 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1483 Ctx); 1484 } 1485 1486 case Instruction::Trunc: 1487 // We emit the value and depend on the assembler to truncate the generated 1488 // expression properly. This is important for differences between 1489 // blockaddress labels. Since the two labels are in the same function, it 1490 // is reasonable to treat their delta as a 32-bit value. 1491 // FALL THROUGH. 1492 case Instruction::BitCast: 1493 return LowerConstant(CE->getOperand(0), AP); 1494 1495 case Instruction::IntToPtr: { 1496 const TargetData &TD = *AP.TM.getTargetData(); 1497 // Handle casts to pointers by changing them into casts to the appropriate 1498 // integer type. This promotes constant folding and simplifies this code. 1499 Constant *Op = CE->getOperand(0); 1500 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1501 false/*ZExt*/); 1502 return LowerConstant(Op, AP); 1503 } 1504 1505 case Instruction::PtrToInt: { 1506 const TargetData &TD = *AP.TM.getTargetData(); 1507 // Support only foldable casts to/from pointers that can be eliminated by 1508 // changing the pointer to the appropriately sized integer type. 1509 Constant *Op = CE->getOperand(0); 1510 Type *Ty = CE->getType(); 1511 1512 const MCExpr *OpExpr = LowerConstant(Op, AP); 1513 1514 // We can emit the pointer value into this slot if the slot is an 1515 // integer slot equal to the size of the pointer. 1516 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1517 return OpExpr; 1518 1519 // Otherwise the pointer is smaller than the resultant integer, mask off 1520 // the high bits so we are sure to get a proper truncation if the input is 1521 // a constant expr. 1522 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1523 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1524 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1525 } 1526 1527 // The MC library also has a right-shift operator, but it isn't consistently 1528 // signed or unsigned between different targets. 1529 case Instruction::Add: 1530 case Instruction::Sub: 1531 case Instruction::Mul: 1532 case Instruction::SDiv: 1533 case Instruction::SRem: 1534 case Instruction::Shl: 1535 case Instruction::And: 1536 case Instruction::Or: 1537 case Instruction::Xor: { 1538 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); 1539 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); 1540 switch (CE->getOpcode()) { 1541 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1542 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1543 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1544 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1545 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1546 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1547 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1548 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1549 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1550 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1551 } 1552 } 1553 } 1554 } 1555 1556 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, 1557 AsmPrinter &AP); 1558 1559 /// isRepeatedByteSequence - Determine whether the given value is 1560 /// composed of a repeated sequence of identical bytes and return the 1561 /// byte value. If it is not a repeated sequence, return -1. 1562 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1563 1564 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1565 if (CI->getBitWidth() > 64) return -1; 1566 1567 uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType()); 1568 uint64_t Value = CI->getZExtValue(); 1569 1570 // Make sure the constant is at least 8 bits long and has a power 1571 // of 2 bit width. This guarantees the constant bit width is 1572 // always a multiple of 8 bits, avoiding issues with padding out 1573 // to Size and other such corner cases. 1574 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1575 1576 uint8_t Byte = static_cast<uint8_t>(Value); 1577 1578 for (unsigned i = 1; i < Size; ++i) { 1579 Value >>= 8; 1580 if (static_cast<uint8_t>(Value) != Byte) return -1; 1581 } 1582 return Byte; 1583 } 1584 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1585 // Make sure all array elements are sequences of the same repeated 1586 // byte. 1587 if (CA->getNumOperands() == 0) return -1; 1588 1589 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1590 if (Byte == -1) return -1; 1591 1592 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1593 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1594 if (ThisByte == -1) return -1; 1595 if (Byte != ThisByte) return -1; 1596 } 1597 return Byte; 1598 } 1599 1600 return -1; 1601 } 1602 1603 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1604 AsmPrinter &AP) { 1605 if (AddrSpace != 0 || !CA->isString()) { 1606 // Not a string. Print the values in successive locations. 1607 1608 // See if we can aggregate some values. Make sure it can be 1609 // represented as a series of bytes of the constant value. 1610 int Value = isRepeatedByteSequence(CA, AP.TM); 1611 1612 if (Value != -1) { 1613 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType()); 1614 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1615 } 1616 else { 1617 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1618 EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); 1619 } 1620 return; 1621 } 1622 1623 // Otherwise, it can be emitted as .ascii. 1624 SmallVector<char, 128> TmpVec; 1625 TmpVec.reserve(CA->getNumOperands()); 1626 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1627 TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue()); 1628 1629 AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace); 1630 } 1631 1632 static void EmitGlobalConstantVector(const ConstantVector *CV, 1633 unsigned AddrSpace, AsmPrinter &AP) { 1634 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1635 EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); 1636 1637 const TargetData &TD = *AP.TM.getTargetData(); 1638 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1639 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1640 CV->getType()->getNumElements(); 1641 if (unsigned Padding = Size - EmittedSize) 1642 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1643 } 1644 1645 static void LowerVectorConstant(const Constant *CV, unsigned AddrSpace, 1646 AsmPrinter &AP) { 1647 // Look through bitcasts 1648 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) 1649 if (CE->getOpcode() == Instruction::BitCast) 1650 CV = CE->getOperand(0); 1651 1652 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1653 return EmitGlobalConstantVector(V, AddrSpace, AP); 1654 1655 // If we get here, we're stuck; report the problem to the user. 1656 // FIXME: Are there any other useful tricks for vectors? 1657 { 1658 std::string S; 1659 raw_string_ostream OS(S); 1660 OS << "Unsupported vector expression in static initializer: "; 1661 WriteAsOperand(OS, CV, /*PrintType=*/false, 1662 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1663 report_fatal_error(OS.str()); 1664 } 1665 } 1666 1667 static void EmitGlobalConstantStruct(const ConstantStruct *CS, 1668 unsigned AddrSpace, AsmPrinter &AP) { 1669 // Print the fields in successive locations. Pad to align if needed! 1670 const TargetData *TD = AP.TM.getTargetData(); 1671 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1672 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1673 uint64_t SizeSoFar = 0; 1674 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1675 const Constant *Field = CS->getOperand(i); 1676 1677 // Check if padding is needed and insert one or more 0s. 1678 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1679 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1680 - Layout->getElementOffset(i)) - FieldSize; 1681 SizeSoFar += FieldSize + PadSize; 1682 1683 // Now print the actual field value. 1684 EmitGlobalConstantImpl(Field, AddrSpace, AP); 1685 1686 // Insert padding - this may include padding to increase the size of the 1687 // current field up to the ABI size (if the struct is not packed) as well 1688 // as padding to ensure that the next field starts at the right offset. 1689 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1690 } 1691 assert(SizeSoFar == Layout->getSizeInBytes() && 1692 "Layout of constant struct may be incorrect!"); 1693 } 1694 1695 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1696 AsmPrinter &AP) { 1697 if (CFP->getType()->isHalfTy()) { 1698 if (AP.isVerbose()) { 1699 SmallString<10> Str; 1700 CFP->getValueAPF().toString(Str); 1701 AP.OutStreamer.GetCommentOS() << "half " << Str << '\n'; 1702 } 1703 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1704 AP.OutStreamer.EmitIntValue(Val, 2, AddrSpace); 1705 return; 1706 } 1707 1708 if (CFP->getType()->isFloatTy()) { 1709 if (AP.isVerbose()) { 1710 float Val = CFP->getValueAPF().convertToFloat(); 1711 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'; 1712 } 1713 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1714 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1715 return; 1716 } 1717 1718 // FP Constants are printed as integer constants to avoid losing 1719 // precision. 1720 if (CFP->getType()->isDoubleTy()) { 1721 if (AP.isVerbose()) { 1722 double Val = CFP->getValueAPF().convertToDouble(); 1723 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'; 1724 } 1725 1726 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1727 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1728 return; 1729 } 1730 1731 if (CFP->getType()->isX86_FP80Ty()) { 1732 // all long double variants are printed as hex 1733 // API needed to prevent premature destruction 1734 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1735 const uint64_t *p = API.getRawData(); 1736 if (AP.isVerbose()) { 1737 // Convert to double so we can print the approximate val as a comment. 1738 APFloat DoubleVal = CFP->getValueAPF(); 1739 bool ignored; 1740 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1741 &ignored); 1742 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " 1743 << DoubleVal.convertToDouble() << '\n'; 1744 } 1745 1746 if (AP.TM.getTargetData()->isBigEndian()) { 1747 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1748 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1749 } else { 1750 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1751 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1752 } 1753 1754 // Emit the tail padding for the long double. 1755 const TargetData &TD = *AP.TM.getTargetData(); 1756 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1757 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1758 return; 1759 } 1760 1761 assert(CFP->getType()->isPPC_FP128Ty() && 1762 "Floating point constant type not handled"); 1763 // All long double variants are printed as hex 1764 // API needed to prevent premature destruction. 1765 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1766 const uint64_t *p = API.getRawData(); 1767 if (AP.TM.getTargetData()->isBigEndian()) { 1768 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1769 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1770 } else { 1771 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1772 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1773 } 1774 } 1775 1776 static void EmitGlobalConstantLargeInt(const ConstantInt *CI, 1777 unsigned AddrSpace, AsmPrinter &AP) { 1778 const TargetData *TD = AP.TM.getTargetData(); 1779 unsigned BitWidth = CI->getBitWidth(); 1780 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1781 1782 // We don't expect assemblers to support integer data directives 1783 // for more than 64 bits, so we emit the data in at most 64-bit 1784 // quantities at a time. 1785 const uint64_t *RawData = CI->getValue().getRawData(); 1786 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1787 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1788 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1789 } 1790 } 1791 1792 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, 1793 AsmPrinter &AP) { 1794 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) { 1795 uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1796 return AP.OutStreamer.EmitZeros(Size, AddrSpace); 1797 } 1798 1799 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1800 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1801 switch (Size) { 1802 case 1: 1803 case 2: 1804 case 4: 1805 case 8: 1806 if (AP.isVerbose()) 1807 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1808 CI->getZExtValue()); 1809 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1810 return; 1811 default: 1812 EmitGlobalConstantLargeInt(CI, AddrSpace, AP); 1813 return; 1814 } 1815 } 1816 1817 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1818 return EmitGlobalConstantArray(CVA, AddrSpace, AP); 1819 1820 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1821 return EmitGlobalConstantStruct(CVS, AddrSpace, AP); 1822 1823 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1824 return EmitGlobalConstantFP(CFP, AddrSpace, AP); 1825 1826 if (isa<ConstantPointerNull>(CV)) { 1827 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1828 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); 1829 return; 1830 } 1831 1832 if (CV->getType()->isVectorTy()) 1833 return LowerVectorConstant(CV, AddrSpace, AP); 1834 1835 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1836 // thread the streamer with EmitValue. 1837 AP.OutStreamer.EmitValue(LowerConstant(CV, AP), 1838 AP.TM.getTargetData()->getTypeAllocSize(CV->getType()), 1839 AddrSpace); 1840 } 1841 1842 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1843 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1844 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1845 if (Size) 1846 EmitGlobalConstantImpl(CV, AddrSpace, *this); 1847 else if (MAI->hasSubsectionsViaSymbols()) { 1848 // If the global has zero size, emit a single byte so that two labels don't 1849 // look like they are at the same location. 1850 OutStreamer.EmitIntValue(0, 1, AddrSpace); 1851 } 1852 } 1853 1854 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1855 // Target doesn't support this yet! 1856 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1857 } 1858 1859 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1860 if (Offset > 0) 1861 OS << '+' << Offset; 1862 else if (Offset < 0) 1863 OS << Offset; 1864 } 1865 1866 //===----------------------------------------------------------------------===// 1867 // Symbol Lowering Routines. 1868 //===----------------------------------------------------------------------===// 1869 1870 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1871 /// temporary label with the specified stem and unique ID. 1872 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1873 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1874 Name + Twine(ID)); 1875 } 1876 1877 /// GetTempSymbol - Return an assembler temporary label with the specified 1878 /// stem. 1879 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1880 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1881 Name); 1882 } 1883 1884 1885 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1886 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1887 } 1888 1889 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1890 return MMI->getAddrLabelSymbol(BB); 1891 } 1892 1893 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 1894 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1895 return OutContext.GetOrCreateSymbol 1896 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1897 + "_" + Twine(CPID)); 1898 } 1899 1900 /// GetJTISymbol - Return the symbol for the specified jump table entry. 1901 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1902 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1903 } 1904 1905 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 1906 /// FIXME: privatize to AsmPrinter. 1907 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1908 return OutContext.GetOrCreateSymbol 1909 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1910 Twine(UID) + "_set_" + Twine(MBBID)); 1911 } 1912 1913 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1914 /// global value name as its base, with the specified suffix, and where the 1915 /// symbol is forced to have private linkage if ForcePrivate is true. 1916 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1917 StringRef Suffix, 1918 bool ForcePrivate) const { 1919 SmallString<60> NameStr; 1920 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1921 NameStr.append(Suffix.begin(), Suffix.end()); 1922 return OutContext.GetOrCreateSymbol(NameStr.str()); 1923 } 1924 1925 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1926 /// ExternalSymbol. 1927 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1928 SmallString<60> NameStr; 1929 Mang->getNameWithPrefix(NameStr, Sym); 1930 return OutContext.GetOrCreateSymbol(NameStr.str()); 1931 } 1932 1933 1934 1935 /// PrintParentLoopComment - Print comments about parent loops of this one. 1936 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1937 unsigned FunctionNumber) { 1938 if (Loop == 0) return; 1939 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 1940 OS.indent(Loop->getLoopDepth()*2) 1941 << "Parent Loop BB" << FunctionNumber << "_" 1942 << Loop->getHeader()->getNumber() 1943 << " Depth=" << Loop->getLoopDepth() << '\n'; 1944 } 1945 1946 1947 /// PrintChildLoopComment - Print comments about child loops within 1948 /// the loop for this basic block, with nesting. 1949 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1950 unsigned FunctionNumber) { 1951 // Add child loop information 1952 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 1953 OS.indent((*CL)->getLoopDepth()*2) 1954 << "Child Loop BB" << FunctionNumber << "_" 1955 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 1956 << '\n'; 1957 PrintChildLoopComment(OS, *CL, FunctionNumber); 1958 } 1959 } 1960 1961 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks. 1962 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB, 1963 const MachineLoopInfo *LI, 1964 const AsmPrinter &AP) { 1965 // Add loop depth information 1966 const MachineLoop *Loop = LI->getLoopFor(&MBB); 1967 if (Loop == 0) return; 1968 1969 MachineBasicBlock *Header = Loop->getHeader(); 1970 assert(Header && "No header for loop"); 1971 1972 // If this block is not a loop header, just print out what is the loop header 1973 // and return. 1974 if (Header != &MBB) { 1975 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 1976 Twine(AP.getFunctionNumber())+"_" + 1977 Twine(Loop->getHeader()->getNumber())+ 1978 " Depth="+Twine(Loop->getLoopDepth())); 1979 return; 1980 } 1981 1982 // Otherwise, it is a loop header. Print out information about child and 1983 // parent loops. 1984 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 1985 1986 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 1987 1988 OS << "=>"; 1989 OS.indent(Loop->getLoopDepth()*2-2); 1990 1991 OS << "This "; 1992 if (Loop->empty()) 1993 OS << "Inner "; 1994 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 1995 1996 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 1997 } 1998 1999 2000 /// EmitBasicBlockStart - This method prints the label for the specified 2001 /// MachineBasicBlock, an alignment (if present) and a comment describing 2002 /// it if appropriate. 2003 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 2004 // Emit an alignment directive for this block, if needed. 2005 if (unsigned Align = MBB->getAlignment()) 2006 EmitAlignment(Align); 2007 2008 // If the block has its address taken, emit any labels that were used to 2009 // reference the block. It is possible that there is more than one label 2010 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2011 // the references were generated. 2012 if (MBB->hasAddressTaken()) { 2013 const BasicBlock *BB = MBB->getBasicBlock(); 2014 if (isVerbose()) 2015 OutStreamer.AddComment("Block address taken"); 2016 2017 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 2018 2019 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 2020 OutStreamer.EmitLabel(Syms[i]); 2021 } 2022 2023 // Print the main label for the block. 2024 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 2025 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 2026 if (const BasicBlock *BB = MBB->getBasicBlock()) 2027 if (BB->hasName()) 2028 OutStreamer.AddComment("%" + BB->getName()); 2029 2030 EmitBasicBlockLoopComments(*MBB, LI, *this); 2031 2032 // NOTE: Want this comment at start of line, don't emit with AddComment. 2033 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 2034 Twine(MBB->getNumber()) + ":"); 2035 } 2036 } else { 2037 if (isVerbose()) { 2038 if (const BasicBlock *BB = MBB->getBasicBlock()) 2039 if (BB->hasName()) 2040 OutStreamer.AddComment("%" + BB->getName()); 2041 EmitBasicBlockLoopComments(*MBB, LI, *this); 2042 } 2043 2044 OutStreamer.EmitLabel(MBB->getSymbol()); 2045 } 2046 } 2047 2048 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2049 bool IsDefinition) const { 2050 MCSymbolAttr Attr = MCSA_Invalid; 2051 2052 switch (Visibility) { 2053 default: break; 2054 case GlobalValue::HiddenVisibility: 2055 if (IsDefinition) 2056 Attr = MAI->getHiddenVisibilityAttr(); 2057 else 2058 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2059 break; 2060 case GlobalValue::ProtectedVisibility: 2061 Attr = MAI->getProtectedVisibilityAttr(); 2062 break; 2063 } 2064 2065 if (Attr != MCSA_Invalid) 2066 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2067 } 2068 2069 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2070 /// exactly one predecessor and the control transfer mechanism between 2071 /// the predecessor and this block is a fall-through. 2072 bool AsmPrinter:: 2073 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2074 // If this is a landing pad, it isn't a fall through. If it has no preds, 2075 // then nothing falls through to it. 2076 if (MBB->isLandingPad() || MBB->pred_empty()) 2077 return false; 2078 2079 // If there isn't exactly one predecessor, it can't be a fall through. 2080 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2081 ++PI2; 2082 if (PI2 != MBB->pred_end()) 2083 return false; 2084 2085 // The predecessor has to be immediately before this block. 2086 MachineBasicBlock *Pred = *PI; 2087 2088 if (!Pred->isLayoutSuccessor(MBB)) 2089 return false; 2090 2091 // If the block is completely empty, then it definitely does fall through. 2092 if (Pred->empty()) 2093 return true; 2094 2095 // Check the terminators in the previous blocks 2096 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2097 IE = Pred->end(); II != IE; ++II) { 2098 MachineInstr &MI = *II; 2099 2100 // If it is not a simple branch, we are in a table somewhere. 2101 if (!MI.isBranch() || MI.isIndirectBranch()) 2102 return false; 2103 2104 // If we are the operands of one of the branches, this is not 2105 // a fall through. 2106 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 2107 OE = MI.operands_end(); OI != OE; ++OI) { 2108 const MachineOperand& OP = *OI; 2109 if (OP.isJTI()) 2110 return false; 2111 if (OP.isMBB() && OP.getMBB() == MBB) 2112 return false; 2113 } 2114 } 2115 2116 return true; 2117 } 2118 2119 2120 2121 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2122 if (!S->usesMetadata()) 2123 return 0; 2124 2125 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2126 gcp_map_type::iterator GCPI = GCMap.find(S); 2127 if (GCPI != GCMap.end()) 2128 return GCPI->second; 2129 2130 const char *Name = S->getName().c_str(); 2131 2132 for (GCMetadataPrinterRegistry::iterator 2133 I = GCMetadataPrinterRegistry::begin(), 2134 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2135 if (strcmp(Name, I->getName()) == 0) { 2136 GCMetadataPrinter *GMP = I->instantiate(); 2137 GMP->S = S; 2138 GCMap.insert(std::make_pair(S, GMP)); 2139 return GMP; 2140 } 2141 2142 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2143 return 0; 2144 } 2145