1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/MC/MCAsmInfo.h"
83 #include "llvm/MC/MCContext.h"
84 #include "llvm/MC/MCDirectives.h"
85 #include "llvm/MC/MCDwarf.h"
86 #include "llvm/MC/MCExpr.h"
87 #include "llvm/MC/MCInst.h"
88 #include "llvm/MC/MCSection.h"
89 #include "llvm/MC/MCSectionCOFF.h"
90 #include "llvm/MC/MCSectionELF.h"
91 #include "llvm/MC/MCSectionMachO.h"
92 #include "llvm/MC/MCSectionXCOFF.h"
93 #include "llvm/MC/MCStreamer.h"
94 #include "llvm/MC/MCSubtargetInfo.h"
95 #include "llvm/MC/MCSymbol.h"
96 #include "llvm/MC/MCSymbolELF.h"
97 #include "llvm/MC/MCSymbolXCOFF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Remarks/RemarkFormat.h"
104 #include "llvm/Remarks/RemarkStreamer.h"
105 #include "llvm/Remarks/RemarkStringTable.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/Format.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/Path.h"
113 #include "llvm/Support/TargetRegistry.h"
114 #include "llvm/Support/Timer.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetLoweringObjectFile.h"
117 #include "llvm/Target/TargetMachine.h"
118 #include "llvm/Target/TargetOptions.h"
119 #include <algorithm>
120 #include <cassert>
121 #include <cinttypes>
122 #include <cstdint>
123 #include <iterator>
124 #include <limits>
125 #include <memory>
126 #include <string>
127 #include <utility>
128 #include <vector>
129 
130 using namespace llvm;
131 
132 #define DEBUG_TYPE "asm-printer"
133 
134 static const char *const DWARFGroupName = "dwarf";
135 static const char *const DWARFGroupDescription = "DWARF Emission";
136 static const char *const DbgTimerName = "emit";
137 static const char *const DbgTimerDescription = "Debug Info Emission";
138 static const char *const EHTimerName = "write_exception";
139 static const char *const EHTimerDescription = "DWARF Exception Writer";
140 static const char *const CFGuardName = "Control Flow Guard";
141 static const char *const CFGuardDescription = "Control Flow Guard";
142 static const char *const CodeViewLineTablesGroupName = "linetables";
143 static const char *const CodeViewLineTablesGroupDescription =
144   "CodeView Line Tables";
145 
146 STATISTIC(EmittedInsts, "Number of machine instrs printed");
147 
148 char AsmPrinter::ID = 0;
149 
150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
151 
152 static gcp_map_type &getGCMap(void *&P) {
153   if (!P)
154     P = new gcp_map_type();
155   return *(gcp_map_type*)P;
156 }
157 
158 /// getGVAlignment - Return the alignment to use for the specified global
159 /// value.  This rounds up to the preferred alignment if possible and legal.
160 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
161                                  Align InAlign) {
162   Align Alignment;
163   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
164     Alignment = DL.getPreferredAlign(GVar);
165 
166   // If InAlign is specified, round it to it.
167   if (InAlign > Alignment)
168     Alignment = InAlign;
169 
170   // If the GV has a specified alignment, take it into account.
171   const MaybeAlign GVAlign(GV->getAlignment());
172   if (!GVAlign)
173     return Alignment;
174 
175   assert(GVAlign && "GVAlign must be set");
176 
177   // If the GVAlign is larger than NumBits, or if we are required to obey
178   // NumBits because the GV has an assigned section, obey it.
179   if (*GVAlign > Alignment || GV->hasSection())
180     Alignment = *GVAlign;
181   return Alignment;
182 }
183 
184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
185     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
186       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
187   VerboseAsm = OutStreamer->isVerboseAsm();
188 }
189 
190 AsmPrinter::~AsmPrinter() {
191   assert(!DD && Handlers.size() == NumUserHandlers &&
192          "Debug/EH info didn't get finalized");
193 
194   if (GCMetadataPrinters) {
195     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
196 
197     delete &GCMap;
198     GCMetadataPrinters = nullptr;
199   }
200 }
201 
202 bool AsmPrinter::isPositionIndependent() const {
203   return TM.isPositionIndependent();
204 }
205 
206 /// getFunctionNumber - Return a unique ID for the current function.
207 unsigned AsmPrinter::getFunctionNumber() const {
208   return MF->getFunctionNumber();
209 }
210 
211 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
212   return *TM.getObjFileLowering();
213 }
214 
215 const DataLayout &AsmPrinter::getDataLayout() const {
216   return MMI->getModule()->getDataLayout();
217 }
218 
219 // Do not use the cached DataLayout because some client use it without a Module
220 // (dsymutil, llvm-dwarfdump).
221 unsigned AsmPrinter::getPointerSize() const {
222   return TM.getPointerSize(0); // FIXME: Default address space
223 }
224 
225 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
226   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
227   return MF->getSubtarget<MCSubtargetInfo>();
228 }
229 
230 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
231   S.emitInstruction(Inst, getSubtargetInfo());
232 }
233 
234 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
235   assert(DD && "Dwarf debug file is not defined.");
236   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
237   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
238 }
239 
240 /// getCurrentSection() - Return the current section we are emitting to.
241 const MCSection *AsmPrinter::getCurrentSection() const {
242   return OutStreamer->getCurrentSectionOnly();
243 }
244 
245 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
246   AU.setPreservesAll();
247   MachineFunctionPass::getAnalysisUsage(AU);
248   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
249   AU.addRequired<GCModuleInfo>();
250 }
251 
252 bool AsmPrinter::doInitialization(Module &M) {
253   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
254   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
255 
256   // Initialize TargetLoweringObjectFile.
257   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
258     .Initialize(OutContext, TM);
259 
260   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
261       .getModuleMetadata(M);
262 
263   OutStreamer->InitSections(false);
264 
265   // Emit the version-min deployment target directive if needed.
266   //
267   // FIXME: If we end up with a collection of these sorts of Darwin-specific
268   // or ELF-specific things, it may make sense to have a platform helper class
269   // that will work with the target helper class. For now keep it here, as the
270   // alternative is duplicated code in each of the target asm printers that
271   // use the directive, where it would need the same conditionalization
272   // anyway.
273   const Triple &Target = TM.getTargetTriple();
274   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
275 
276   // Allow the target to emit any magic that it wants at the start of the file.
277   emitStartOfAsmFile(M);
278 
279   // Very minimal debug info. It is ignored if we emit actual debug info. If we
280   // don't, this at least helps the user find where a global came from.
281   if (MAI->hasSingleParameterDotFile()) {
282     // .file "foo.c"
283     OutStreamer->emitFileDirective(
284         llvm::sys::path::filename(M.getSourceFileName()));
285   }
286 
287   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
288   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
289   for (auto &I : *MI)
290     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
291       MP->beginAssembly(M, *MI, *this);
292 
293   // Emit module-level inline asm if it exists.
294   if (!M.getModuleInlineAsm().empty()) {
295     // We're at the module level. Construct MCSubtarget from the default CPU
296     // and target triple.
297     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
298         TM.getTargetTriple().str(), TM.getTargetCPU(),
299         TM.getTargetFeatureString()));
300     OutStreamer->AddComment("Start of file scope inline assembly");
301     OutStreamer->AddBlankLine();
302     emitInlineAsm(M.getModuleInlineAsm() + "\n",
303                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
304     OutStreamer->AddComment("End of file scope inline assembly");
305     OutStreamer->AddBlankLine();
306   }
307 
308   if (MAI->doesSupportDebugInformation()) {
309     bool EmitCodeView = M.getCodeViewFlag();
310     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
311       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
312                             DbgTimerName, DbgTimerDescription,
313                             CodeViewLineTablesGroupName,
314                             CodeViewLineTablesGroupDescription);
315     }
316     if (!EmitCodeView || M.getDwarfVersion()) {
317       DD = new DwarfDebug(this);
318       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
319                             DbgTimerDescription, DWARFGroupName,
320                             DWARFGroupDescription);
321     }
322   }
323 
324   switch (MAI->getExceptionHandlingType()) {
325   case ExceptionHandling::SjLj:
326   case ExceptionHandling::DwarfCFI:
327   case ExceptionHandling::ARM:
328     isCFIMoveForDebugging = true;
329     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
330       break;
331     for (auto &F: M.getFunctionList()) {
332       // If the module contains any function with unwind data,
333       // .eh_frame has to be emitted.
334       // Ignore functions that won't get emitted.
335       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
336         isCFIMoveForDebugging = false;
337         break;
338       }
339     }
340     break;
341   default:
342     isCFIMoveForDebugging = false;
343     break;
344   }
345 
346   EHStreamer *ES = nullptr;
347   switch (MAI->getExceptionHandlingType()) {
348   case ExceptionHandling::None:
349     break;
350   case ExceptionHandling::SjLj:
351   case ExceptionHandling::DwarfCFI:
352     ES = new DwarfCFIException(this);
353     break;
354   case ExceptionHandling::ARM:
355     ES = new ARMException(this);
356     break;
357   case ExceptionHandling::WinEH:
358     switch (MAI->getWinEHEncodingType()) {
359     default: llvm_unreachable("unsupported unwinding information encoding");
360     case WinEH::EncodingType::Invalid:
361       break;
362     case WinEH::EncodingType::X86:
363     case WinEH::EncodingType::Itanium:
364       ES = new WinException(this);
365       break;
366     }
367     break;
368   case ExceptionHandling::Wasm:
369     ES = new WasmException(this);
370     break;
371   }
372   if (ES)
373     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
374                           EHTimerDescription, DWARFGroupName,
375                           DWARFGroupDescription);
376 
377   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
378   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
379     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
380                           CFGuardDescription, DWARFGroupName,
381                           DWARFGroupDescription);
382 
383   for (const HandlerInfo &HI : Handlers) {
384     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
385                        HI.TimerGroupDescription, TimePassesIsEnabled);
386     HI.Handler->beginModule(&M);
387   }
388 
389   return false;
390 }
391 
392 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
393   if (!MAI.hasWeakDefCanBeHiddenDirective())
394     return false;
395 
396   return GV->canBeOmittedFromSymbolTable();
397 }
398 
399 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
400   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
401   switch (Linkage) {
402   case GlobalValue::CommonLinkage:
403   case GlobalValue::LinkOnceAnyLinkage:
404   case GlobalValue::LinkOnceODRLinkage:
405   case GlobalValue::WeakAnyLinkage:
406   case GlobalValue::WeakODRLinkage:
407     if (MAI->hasWeakDefDirective()) {
408       // .globl _foo
409       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
410 
411       if (!canBeHidden(GV, *MAI))
412         // .weak_definition _foo
413         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
414       else
415         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
416     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
417       // .globl _foo
418       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
419       //NOTE: linkonce is handled by the section the symbol was assigned to.
420     } else {
421       // .weak _foo
422       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
423     }
424     return;
425   case GlobalValue::ExternalLinkage:
426     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
427     return;
428   case GlobalValue::PrivateLinkage:
429   case GlobalValue::InternalLinkage:
430     return;
431   case GlobalValue::ExternalWeakLinkage:
432   case GlobalValue::AvailableExternallyLinkage:
433   case GlobalValue::AppendingLinkage:
434     llvm_unreachable("Should never emit this");
435   }
436   llvm_unreachable("Unknown linkage type!");
437 }
438 
439 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
440                                    const GlobalValue *GV) const {
441   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
442 }
443 
444 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
445   return TM.getSymbol(GV);
446 }
447 
448 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
449   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
450   // exact definion (intersection of GlobalValue::hasExactDefinition() and
451   // !isInterposable()). These linkages include: external, appending, internal,
452   // private. It may be profitable to use a local alias for external. The
453   // assembler would otherwise be conservative and assume a global default
454   // visibility symbol can be interposable, even if the code generator already
455   // assumed it.
456   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
457     const Module &M = *GV.getParent();
458     if (TM.getRelocationModel() != Reloc::Static &&
459         M.getPIELevel() == PIELevel::Default)
460       if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() &&
461                               GV.getParent()->noSemanticInterposition()))
462         return getSymbolWithGlobalValueBase(&GV, "$local");
463   }
464   return TM.getSymbol(&GV);
465 }
466 
467 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
468 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
469   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
470   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
471          "No emulated TLS variables in the common section");
472 
473   // Never emit TLS variable xyz in emulated TLS model.
474   // The initialization value is in __emutls_t.xyz instead of xyz.
475   if (IsEmuTLSVar)
476     return;
477 
478   if (GV->hasInitializer()) {
479     // Check to see if this is a special global used by LLVM, if so, emit it.
480     if (emitSpecialLLVMGlobal(GV))
481       return;
482 
483     // Skip the emission of global equivalents. The symbol can be emitted later
484     // on by emitGlobalGOTEquivs in case it turns out to be needed.
485     if (GlobalGOTEquivs.count(getSymbol(GV)))
486       return;
487 
488     if (isVerbose()) {
489       // When printing the control variable __emutls_v.*,
490       // we don't need to print the original TLS variable name.
491       GV->printAsOperand(OutStreamer->GetCommentOS(),
492                      /*PrintType=*/false, GV->getParent());
493       OutStreamer->GetCommentOS() << '\n';
494     }
495   }
496 
497   MCSymbol *GVSym = getSymbol(GV);
498   MCSymbol *EmittedSym = GVSym;
499 
500   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
501   // attributes.
502   // GV's or GVSym's attributes will be used for the EmittedSym.
503   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
504 
505   if (!GV->hasInitializer())   // External globals require no extra code.
506     return;
507 
508   GVSym->redefineIfPossible();
509   if (GVSym->isDefined() || GVSym->isVariable())
510     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
511                        "' is already defined");
512 
513   if (MAI->hasDotTypeDotSizeDirective())
514     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
515 
516   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
517 
518   const DataLayout &DL = GV->getParent()->getDataLayout();
519   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
520 
521   // If the alignment is specified, we *must* obey it.  Overaligning a global
522   // with a specified alignment is a prompt way to break globals emitted to
523   // sections and expected to be contiguous (e.g. ObjC metadata).
524   const Align Alignment = getGVAlignment(GV, DL);
525 
526   for (const HandlerInfo &HI : Handlers) {
527     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
528                        HI.TimerGroupName, HI.TimerGroupDescription,
529                        TimePassesIsEnabled);
530     HI.Handler->setSymbolSize(GVSym, Size);
531   }
532 
533   // Handle common symbols
534   if (GVKind.isCommon()) {
535     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
536     // .comm _foo, 42, 4
537     const bool SupportsAlignment =
538         getObjFileLowering().getCommDirectiveSupportsAlignment();
539     OutStreamer->emitCommonSymbol(GVSym, Size,
540                                   SupportsAlignment ? Alignment.value() : 0);
541     return;
542   }
543 
544   // Determine to which section this global should be emitted.
545   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
546 
547   // If we have a bss global going to a section that supports the
548   // zerofill directive, do so here.
549   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
550       TheSection->isVirtualSection()) {
551     if (Size == 0)
552       Size = 1; // zerofill of 0 bytes is undefined.
553     emitLinkage(GV, GVSym);
554     // .zerofill __DATA, __bss, _foo, 400, 5
555     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
556     return;
557   }
558 
559   // If this is a BSS local symbol and we are emitting in the BSS
560   // section use .lcomm/.comm directive.
561   if (GVKind.isBSSLocal() &&
562       getObjFileLowering().getBSSSection() == TheSection) {
563     if (Size == 0)
564       Size = 1; // .comm Foo, 0 is undefined, avoid it.
565 
566     // Use .lcomm only if it supports user-specified alignment.
567     // Otherwise, while it would still be correct to use .lcomm in some
568     // cases (e.g. when Align == 1), the external assembler might enfore
569     // some -unknown- default alignment behavior, which could cause
570     // spurious differences between external and integrated assembler.
571     // Prefer to simply fall back to .local / .comm in this case.
572     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
573       // .lcomm _foo, 42
574       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
575       return;
576     }
577 
578     // .local _foo
579     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
580     // .comm _foo, 42, 4
581     const bool SupportsAlignment =
582         getObjFileLowering().getCommDirectiveSupportsAlignment();
583     OutStreamer->emitCommonSymbol(GVSym, Size,
584                                   SupportsAlignment ? Alignment.value() : 0);
585     return;
586   }
587 
588   // Handle thread local data for mach-o which requires us to output an
589   // additional structure of data and mangle the original symbol so that we
590   // can reference it later.
591   //
592   // TODO: This should become an "emit thread local global" method on TLOF.
593   // All of this macho specific stuff should be sunk down into TLOFMachO and
594   // stuff like "TLSExtraDataSection" should no longer be part of the parent
595   // TLOF class.  This will also make it more obvious that stuff like
596   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
597   // specific code.
598   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
599     // Emit the .tbss symbol
600     MCSymbol *MangSym =
601         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
602 
603     if (GVKind.isThreadBSS()) {
604       TheSection = getObjFileLowering().getTLSBSSSection();
605       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
606     } else if (GVKind.isThreadData()) {
607       OutStreamer->SwitchSection(TheSection);
608 
609       emitAlignment(Alignment, GV);
610       OutStreamer->emitLabel(MangSym);
611 
612       emitGlobalConstant(GV->getParent()->getDataLayout(),
613                          GV->getInitializer());
614     }
615 
616     OutStreamer->AddBlankLine();
617 
618     // Emit the variable struct for the runtime.
619     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
620 
621     OutStreamer->SwitchSection(TLVSect);
622     // Emit the linkage here.
623     emitLinkage(GV, GVSym);
624     OutStreamer->emitLabel(GVSym);
625 
626     // Three pointers in size:
627     //   - __tlv_bootstrap - used to make sure support exists
628     //   - spare pointer, used when mapped by the runtime
629     //   - pointer to mangled symbol above with initializer
630     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
631     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
632                                 PtrSize);
633     OutStreamer->emitIntValue(0, PtrSize);
634     OutStreamer->emitSymbolValue(MangSym, PtrSize);
635 
636     OutStreamer->AddBlankLine();
637     return;
638   }
639 
640   MCSymbol *EmittedInitSym = GVSym;
641 
642   OutStreamer->SwitchSection(TheSection);
643 
644   emitLinkage(GV, EmittedInitSym);
645   emitAlignment(Alignment, GV);
646 
647   OutStreamer->emitLabel(EmittedInitSym);
648   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
649   if (LocalAlias != EmittedInitSym)
650     OutStreamer->emitLabel(LocalAlias);
651 
652   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
653 
654   if (MAI->hasDotTypeDotSizeDirective())
655     // .size foo, 42
656     OutStreamer->emitELFSize(EmittedInitSym,
657                              MCConstantExpr::create(Size, OutContext));
658 
659   OutStreamer->AddBlankLine();
660 }
661 
662 /// Emit the directive and value for debug thread local expression
663 ///
664 /// \p Value - The value to emit.
665 /// \p Size - The size of the integer (in bytes) to emit.
666 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
667   OutStreamer->emitValue(Value, Size);
668 }
669 
670 void AsmPrinter::emitFunctionHeaderComment() {}
671 
672 /// EmitFunctionHeader - This method emits the header for the current
673 /// function.
674 void AsmPrinter::emitFunctionHeader() {
675   const Function &F = MF->getFunction();
676 
677   if (isVerbose())
678     OutStreamer->GetCommentOS()
679         << "-- Begin function "
680         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
681 
682   // Print out constants referenced by the function
683   emitConstantPool();
684 
685   // Print the 'header' of function.
686   MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
687   OutStreamer->SwitchSection(MF->getSection());
688 
689   if (!MAI->hasVisibilityOnlyWithLinkage())
690     emitVisibility(CurrentFnSym, F.getVisibility());
691 
692   if (MAI->needsFunctionDescriptors())
693     emitLinkage(&F, CurrentFnDescSym);
694 
695   emitLinkage(&F, CurrentFnSym);
696   if (MAI->hasFunctionAlignment())
697     emitAlignment(MF->getAlignment(), &F);
698 
699   if (MAI->hasDotTypeDotSizeDirective())
700     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
701 
702   if (F.hasFnAttribute(Attribute::Cold))
703     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
704 
705   if (isVerbose()) {
706     F.printAsOperand(OutStreamer->GetCommentOS(),
707                    /*PrintType=*/false, F.getParent());
708     emitFunctionHeaderComment();
709     OutStreamer->GetCommentOS() << '\n';
710   }
711 
712   // Emit the prefix data.
713   if (F.hasPrefixData()) {
714     if (MAI->hasSubsectionsViaSymbols()) {
715       // Preserving prefix data on platforms which use subsections-via-symbols
716       // is a bit tricky. Here we introduce a symbol for the prefix data
717       // and use the .alt_entry attribute to mark the function's real entry point
718       // as an alternative entry point to the prefix-data symbol.
719       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
720       OutStreamer->emitLabel(PrefixSym);
721 
722       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
723 
724       // Emit an .alt_entry directive for the actual function symbol.
725       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
726     } else {
727       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
728     }
729   }
730 
731   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
732   // place prefix data before NOPs.
733   unsigned PatchableFunctionPrefix = 0;
734   unsigned PatchableFunctionEntry = 0;
735   (void)F.getFnAttribute("patchable-function-prefix")
736       .getValueAsString()
737       .getAsInteger(10, PatchableFunctionPrefix);
738   (void)F.getFnAttribute("patchable-function-entry")
739       .getValueAsString()
740       .getAsInteger(10, PatchableFunctionEntry);
741   if (PatchableFunctionPrefix) {
742     CurrentPatchableFunctionEntrySym =
743         OutContext.createLinkerPrivateTempSymbol();
744     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
745     emitNops(PatchableFunctionPrefix);
746   } else if (PatchableFunctionEntry) {
747     // May be reassigned when emitting the body, to reference the label after
748     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
749     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
750   }
751 
752   // Emit the function descriptor. This is a virtual function to allow targets
753   // to emit their specific function descriptor. Right now it is only used by
754   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
755   // descriptors and should be converted to use this hook as well.
756   if (MAI->needsFunctionDescriptors())
757     emitFunctionDescriptor();
758 
759   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
760   // their wild and crazy things as required.
761   emitFunctionEntryLabel();
762 
763   if (CurrentFnBegin) {
764     if (MAI->useAssignmentForEHBegin()) {
765       MCSymbol *CurPos = OutContext.createTempSymbol();
766       OutStreamer->emitLabel(CurPos);
767       OutStreamer->emitAssignment(CurrentFnBegin,
768                                  MCSymbolRefExpr::create(CurPos, OutContext));
769     } else {
770       OutStreamer->emitLabel(CurrentFnBegin);
771     }
772   }
773 
774   // Emit pre-function debug and/or EH information.
775   for (const HandlerInfo &HI : Handlers) {
776     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
777                        HI.TimerGroupDescription, TimePassesIsEnabled);
778     HI.Handler->beginFunction(MF);
779   }
780 
781   // Emit the prologue data.
782   if (F.hasPrologueData())
783     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
784 }
785 
786 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
787 /// function.  This can be overridden by targets as required to do custom stuff.
788 void AsmPrinter::emitFunctionEntryLabel() {
789   CurrentFnSym->redefineIfPossible();
790 
791   // The function label could have already been emitted if two symbols end up
792   // conflicting due to asm renaming.  Detect this and emit an error.
793   if (CurrentFnSym->isVariable())
794     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
795                        "' is a protected alias");
796   if (CurrentFnSym->isDefined())
797     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
798                        "' label emitted multiple times to assembly file");
799 
800   OutStreamer->emitLabel(CurrentFnSym);
801 
802   if (TM.getTargetTriple().isOSBinFormatELF()) {
803     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
804     if (Sym != CurrentFnSym)
805       OutStreamer->emitLabel(Sym);
806   }
807 }
808 
809 /// emitComments - Pretty-print comments for instructions.
810 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
811   const MachineFunction *MF = MI.getMF();
812   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
813 
814   // Check for spills and reloads
815 
816   // We assume a single instruction only has a spill or reload, not
817   // both.
818   Optional<unsigned> Size;
819   if ((Size = MI.getRestoreSize(TII))) {
820     CommentOS << *Size << "-byte Reload\n";
821   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
822     if (*Size)
823       CommentOS << *Size << "-byte Folded Reload\n";
824   } else if ((Size = MI.getSpillSize(TII))) {
825     CommentOS << *Size << "-byte Spill\n";
826   } else if ((Size = MI.getFoldedSpillSize(TII))) {
827     if (*Size)
828       CommentOS << *Size << "-byte Folded Spill\n";
829   }
830 
831   // Check for spill-induced copies
832   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
833     CommentOS << " Reload Reuse\n";
834 }
835 
836 /// emitImplicitDef - This method emits the specified machine instruction
837 /// that is an implicit def.
838 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
839   Register RegNo = MI->getOperand(0).getReg();
840 
841   SmallString<128> Str;
842   raw_svector_ostream OS(Str);
843   OS << "implicit-def: "
844      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
845 
846   OutStreamer->AddComment(OS.str());
847   OutStreamer->AddBlankLine();
848 }
849 
850 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
851   std::string Str;
852   raw_string_ostream OS(Str);
853   OS << "kill:";
854   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
855     const MachineOperand &Op = MI->getOperand(i);
856     assert(Op.isReg() && "KILL instruction must have only register operands");
857     OS << ' ' << (Op.isDef() ? "def " : "killed ")
858        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
859   }
860   AP.OutStreamer->AddComment(OS.str());
861   AP.OutStreamer->AddBlankLine();
862 }
863 
864 /// emitDebugValueComment - This method handles the target-independent form
865 /// of DBG_VALUE, returning true if it was able to do so.  A false return
866 /// means the target will need to handle MI in EmitInstruction.
867 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
868   // This code handles only the 4-operand target-independent form.
869   if (MI->getNumOperands() != 4)
870     return false;
871 
872   SmallString<128> Str;
873   raw_svector_ostream OS(Str);
874   OS << "DEBUG_VALUE: ";
875 
876   const DILocalVariable *V = MI->getDebugVariable();
877   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
878     StringRef Name = SP->getName();
879     if (!Name.empty())
880       OS << Name << ":";
881   }
882   OS << V->getName();
883   OS << " <- ";
884 
885   // The second operand is only an offset if it's an immediate.
886   bool MemLoc = MI->isIndirectDebugValue();
887   auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0);
888   const DIExpression *Expr = MI->getDebugExpression();
889   if (Expr->getNumElements()) {
890     OS << '[';
891     bool NeedSep = false;
892     for (auto Op : Expr->expr_ops()) {
893       if (NeedSep)
894         OS << ", ";
895       else
896         NeedSep = true;
897       OS << dwarf::OperationEncodingString(Op.getOp());
898       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
899         OS << ' ' << Op.getArg(I);
900     }
901     OS << "] ";
902   }
903 
904   // Register or immediate value. Register 0 means undef.
905   if (MI->getDebugOperand(0).isFPImm()) {
906     APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF());
907     if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) {
908       OS << (double)APF.convertToFloat();
909     } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) {
910       OS << APF.convertToDouble();
911     } else {
912       // There is no good way to print long double.  Convert a copy to
913       // double.  Ah well, it's only a comment.
914       bool ignored;
915       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
916                   &ignored);
917       OS << "(long double) " << APF.convertToDouble();
918     }
919   } else if (MI->getDebugOperand(0).isImm()) {
920     OS << MI->getDebugOperand(0).getImm();
921   } else if (MI->getDebugOperand(0).isCImm()) {
922     MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
923   } else if (MI->getDebugOperand(0).isTargetIndex()) {
924     auto Op = MI->getDebugOperand(0);
925     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
926     return true;
927   } else {
928     Register Reg;
929     if (MI->getDebugOperand(0).isReg()) {
930       Reg = MI->getDebugOperand(0).getReg();
931     } else {
932       assert(MI->getDebugOperand(0).isFI() && "Unknown operand type");
933       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
934       Offset += TFI->getFrameIndexReference(
935           *AP.MF, MI->getDebugOperand(0).getIndex(), Reg);
936       MemLoc = true;
937     }
938     if (Reg == 0) {
939       // Suppress offset, it is not meaningful here.
940       OS << "undef";
941       // NOTE: Want this comment at start of line, don't emit with AddComment.
942       AP.OutStreamer->emitRawComment(OS.str());
943       return true;
944     }
945     if (MemLoc)
946       OS << '[';
947     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
948   }
949 
950   if (MemLoc)
951     OS << '+' << Offset.getFixed() << ']';
952 
953   // NOTE: Want this comment at start of line, don't emit with AddComment.
954   AP.OutStreamer->emitRawComment(OS.str());
955   return true;
956 }
957 
958 /// This method handles the target-independent form of DBG_LABEL, returning
959 /// true if it was able to do so.  A false return means the target will need
960 /// to handle MI in EmitInstruction.
961 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
962   if (MI->getNumOperands() != 1)
963     return false;
964 
965   SmallString<128> Str;
966   raw_svector_ostream OS(Str);
967   OS << "DEBUG_LABEL: ";
968 
969   const DILabel *V = MI->getDebugLabel();
970   if (auto *SP = dyn_cast<DISubprogram>(
971           V->getScope()->getNonLexicalBlockFileScope())) {
972     StringRef Name = SP->getName();
973     if (!Name.empty())
974       OS << Name << ":";
975   }
976   OS << V->getName();
977 
978   // NOTE: Want this comment at start of line, don't emit with AddComment.
979   AP.OutStreamer->emitRawComment(OS.str());
980   return true;
981 }
982 
983 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
984   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
985       MF->getFunction().needsUnwindTableEntry())
986     return CFI_M_EH;
987 
988   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
989     return CFI_M_Debug;
990 
991   return CFI_M_None;
992 }
993 
994 bool AsmPrinter::needsSEHMoves() {
995   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
996 }
997 
998 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
999   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1000   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1001       ExceptionHandlingType != ExceptionHandling::ARM)
1002     return;
1003 
1004   if (needsCFIMoves() == CFI_M_None)
1005     return;
1006 
1007   // If there is no "real" instruction following this CFI instruction, skip
1008   // emitting it; it would be beyond the end of the function's FDE range.
1009   auto *MBB = MI.getParent();
1010   auto I = std::next(MI.getIterator());
1011   while (I != MBB->end() && I->isTransient())
1012     ++I;
1013   if (I == MBB->instr_end() &&
1014       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1015     return;
1016 
1017   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1018   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1019   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1020   emitCFIInstruction(CFI);
1021 }
1022 
1023 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1024   // The operands are the MCSymbol and the frame offset of the allocation.
1025   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1026   int FrameOffset = MI.getOperand(1).getImm();
1027 
1028   // Emit a symbol assignment.
1029   OutStreamer->emitAssignment(FrameAllocSym,
1030                              MCConstantExpr::create(FrameOffset, OutContext));
1031 }
1032 
1033 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1034 /// given basic block. This can be used to capture more precise profile
1035 /// information. We use the last 3 bits (LSBs) to ecnode the following
1036 /// information:
1037 ///  * (1): set if return block (ret or tail call).
1038 ///  * (2): set if ends with a tail call.
1039 ///  * (3): set if exception handling (EH) landing pad.
1040 /// The remaining bits are zero.
1041 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1042   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1043   return ((unsigned)MBB.isReturnBlock()) |
1044          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1045          (MBB.isEHPad() << 2);
1046 }
1047 
1048 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1049   MCSection *BBAddrMapSection =
1050       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1051   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1052 
1053   const MCSymbol *FunctionSymbol = getFunctionBegin();
1054 
1055   OutStreamer->PushSection();
1056   OutStreamer->SwitchSection(BBAddrMapSection);
1057   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1058   // Emit the total number of basic blocks in this function.
1059   OutStreamer->emitULEB128IntValue(MF.size());
1060   // Emit BB Information for each basic block in the funciton.
1061   for (const MachineBasicBlock &MBB : MF) {
1062     const MCSymbol *MBBSymbol =
1063         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1064     // Emit the basic block offset.
1065     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1066     // Emit the basic block size. When BBs have alignments, their size cannot
1067     // always be computed from their offsets.
1068     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1069     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1070   }
1071   OutStreamer->PopSection();
1072 }
1073 
1074 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1075   if (!MF.getTarget().Options.EmitStackSizeSection)
1076     return;
1077 
1078   MCSection *StackSizeSection =
1079       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1080   if (!StackSizeSection)
1081     return;
1082 
1083   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1084   // Don't emit functions with dynamic stack allocations.
1085   if (FrameInfo.hasVarSizedObjects())
1086     return;
1087 
1088   OutStreamer->PushSection();
1089   OutStreamer->SwitchSection(StackSizeSection);
1090 
1091   const MCSymbol *FunctionSymbol = getFunctionBegin();
1092   uint64_t StackSize = FrameInfo.getStackSize();
1093   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1094   OutStreamer->emitULEB128IntValue(StackSize);
1095 
1096   OutStreamer->PopSection();
1097 }
1098 
1099 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1100   MachineModuleInfo &MMI = MF.getMMI();
1101   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1102     return true;
1103 
1104   // We might emit an EH table that uses function begin and end labels even if
1105   // we don't have any landingpads.
1106   if (!MF.getFunction().hasPersonalityFn())
1107     return false;
1108   return !isNoOpWithoutInvoke(
1109       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1110 }
1111 
1112 /// EmitFunctionBody - This method emits the body and trailer for a
1113 /// function.
1114 void AsmPrinter::emitFunctionBody() {
1115   emitFunctionHeader();
1116 
1117   // Emit target-specific gunk before the function body.
1118   emitFunctionBodyStart();
1119 
1120   if (isVerbose()) {
1121     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1122     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1123     if (!MDT) {
1124       OwnedMDT = std::make_unique<MachineDominatorTree>();
1125       OwnedMDT->getBase().recalculate(*MF);
1126       MDT = OwnedMDT.get();
1127     }
1128 
1129     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1130     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1131     if (!MLI) {
1132       OwnedMLI = std::make_unique<MachineLoopInfo>();
1133       OwnedMLI->getBase().analyze(MDT->getBase());
1134       MLI = OwnedMLI.get();
1135     }
1136   }
1137 
1138   // Print out code for the function.
1139   bool HasAnyRealCode = false;
1140   int NumInstsInFunction = 0;
1141 
1142   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1143   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1144   for (auto &MBB : *MF) {
1145     // Print a label for the basic block.
1146     emitBasicBlockStart(MBB);
1147     DenseMap<unsigned, unsigned> OpcodeCounts;
1148     for (auto &MI : MBB) {
1149       // Print the assembly for the instruction.
1150       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1151           !MI.isDebugInstr()) {
1152         HasAnyRealCode = true;
1153         ++NumInstsInFunction;
1154       }
1155 
1156       // If there is a pre-instruction symbol, emit a label for it here.
1157       if (MCSymbol *S = MI.getPreInstrSymbol())
1158         OutStreamer->emitLabel(S);
1159 
1160       for (const HandlerInfo &HI : Handlers) {
1161         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1162                            HI.TimerGroupDescription, TimePassesIsEnabled);
1163         HI.Handler->beginInstruction(&MI);
1164       }
1165 
1166       if (isVerbose())
1167         emitComments(MI, OutStreamer->GetCommentOS());
1168 
1169       switch (MI.getOpcode()) {
1170       case TargetOpcode::CFI_INSTRUCTION:
1171         emitCFIInstruction(MI);
1172         break;
1173       case TargetOpcode::LOCAL_ESCAPE:
1174         emitFrameAlloc(MI);
1175         break;
1176       case TargetOpcode::ANNOTATION_LABEL:
1177       case TargetOpcode::EH_LABEL:
1178       case TargetOpcode::GC_LABEL:
1179         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1180         break;
1181       case TargetOpcode::INLINEASM:
1182       case TargetOpcode::INLINEASM_BR:
1183         emitInlineAsm(&MI);
1184         break;
1185       case TargetOpcode::DBG_VALUE:
1186         if (isVerbose()) {
1187           if (!emitDebugValueComment(&MI, *this))
1188             emitInstruction(&MI);
1189         }
1190         break;
1191       case TargetOpcode::DBG_INSTR_REF:
1192         // This instruction reference will have been resolved to a machine
1193         // location, and a nearby DBG_VALUE created. We can safely ignore
1194         // the instruction reference.
1195         break;
1196       case TargetOpcode::DBG_LABEL:
1197         if (isVerbose()) {
1198           if (!emitDebugLabelComment(&MI, *this))
1199             emitInstruction(&MI);
1200         }
1201         break;
1202       case TargetOpcode::IMPLICIT_DEF:
1203         if (isVerbose()) emitImplicitDef(&MI);
1204         break;
1205       case TargetOpcode::KILL:
1206         if (isVerbose()) emitKill(&MI, *this);
1207         break;
1208       default:
1209         emitInstruction(&MI);
1210         if (CanDoExtraAnalysis) {
1211           auto I = OpcodeCounts.insert({MI.getOpcode(), 0u});
1212           I.first->second++;
1213         }
1214         break;
1215       }
1216 
1217       // If there is a post-instruction symbol, emit a label for it here.
1218       if (MCSymbol *S = MI.getPostInstrSymbol())
1219         OutStreamer->emitLabel(S);
1220 
1221       for (const HandlerInfo &HI : Handlers) {
1222         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1223                            HI.TimerGroupDescription, TimePassesIsEnabled);
1224         HI.Handler->endInstruction();
1225       }
1226     }
1227 
1228     // We must emit temporary symbol for the end of this basic block, if either
1229     // we have BBLabels enabled or if this basic blocks marks the end of a
1230     // section (except the section containing the entry basic block as the end
1231     // symbol for that section is CurrentFnEnd).
1232     if (MF->hasBBLabels() ||
1233         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1234          !MBB.sameSection(&MF->front())))
1235       OutStreamer->emitLabel(MBB.getEndSymbol());
1236 
1237     if (MBB.isEndSection()) {
1238       // The size directive for the section containing the entry block is
1239       // handled separately by the function section.
1240       if (!MBB.sameSection(&MF->front())) {
1241         if (MAI->hasDotTypeDotSizeDirective()) {
1242           // Emit the size directive for the basic block section.
1243           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1244               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1245               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1246               OutContext);
1247           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1248         }
1249         MBBSectionRanges[MBB.getSectionIDNum()] =
1250             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1251       }
1252     }
1253     emitBasicBlockEnd(MBB);
1254 
1255     if (CanDoExtraAnalysis) {
1256       // Skip empty blocks.
1257       if (MBB.empty())
1258         continue;
1259 
1260       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1261                                           MBB.begin()->getDebugLoc(), &MBB);
1262 
1263       // Generate instruction mix remark. First, convert opcodes to string
1264       // names, then sort them in descending order by count and name.
1265       SmallVector<std::pair<std::string, unsigned>, 128> OpcodeCountsVec;
1266       for (auto &KV : OpcodeCounts) {
1267         auto Name = (Twine("INST_") + TII->getName(KV.first)).str();
1268         OpcodeCountsVec.emplace_back(Name, KV.second);
1269       }
1270       sort(OpcodeCountsVec, [](const std::pair<std::string, unsigned> &A,
1271                                const std::pair<std::string, unsigned> &B) {
1272         if (A.second > B.second)
1273           return true;
1274         if (A.second == B.second)
1275           return A.first < B.first;
1276         return false;
1277       });
1278       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1279       for (auto &KV : OpcodeCountsVec)
1280         R << KV.first << ": " << ore::NV(KV.first, KV.second) << "\n";
1281       ORE->emit(R);
1282     }
1283   }
1284 
1285   EmittedInsts += NumInstsInFunction;
1286   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1287                                       MF->getFunction().getSubprogram(),
1288                                       &MF->front());
1289   R << ore::NV("NumInstructions", NumInstsInFunction)
1290     << " instructions in function";
1291   ORE->emit(R);
1292 
1293   // If the function is empty and the object file uses .subsections_via_symbols,
1294   // then we need to emit *something* to the function body to prevent the
1295   // labels from collapsing together.  Just emit a noop.
1296   // Similarly, don't emit empty functions on Windows either. It can lead to
1297   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1298   // after linking, causing the kernel not to load the binary:
1299   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1300   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1301   const Triple &TT = TM.getTargetTriple();
1302   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1303                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1304     MCInst Noop;
1305     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1306 
1307     // Targets can opt-out of emitting the noop here by leaving the opcode
1308     // unspecified.
1309     if (Noop.getOpcode()) {
1310       OutStreamer->AddComment("avoids zero-length function");
1311       emitNops(1);
1312     }
1313   }
1314 
1315   // Switch to the original section in case basic block sections was used.
1316   OutStreamer->SwitchSection(MF->getSection());
1317 
1318   const Function &F = MF->getFunction();
1319   for (const auto &BB : F) {
1320     if (!BB.hasAddressTaken())
1321       continue;
1322     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1323     if (Sym->isDefined())
1324       continue;
1325     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1326     OutStreamer->emitLabel(Sym);
1327   }
1328 
1329   // Emit target-specific gunk after the function body.
1330   emitFunctionBodyEnd();
1331 
1332   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1333       MAI->hasDotTypeDotSizeDirective()) {
1334     // Create a symbol for the end of function.
1335     CurrentFnEnd = createTempSymbol("func_end");
1336     OutStreamer->emitLabel(CurrentFnEnd);
1337   }
1338 
1339   // If the target wants a .size directive for the size of the function, emit
1340   // it.
1341   if (MAI->hasDotTypeDotSizeDirective()) {
1342     // We can get the size as difference between the function label and the
1343     // temp label.
1344     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1345         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1346         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1347     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1348   }
1349 
1350   for (const HandlerInfo &HI : Handlers) {
1351     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1352                        HI.TimerGroupDescription, TimePassesIsEnabled);
1353     HI.Handler->markFunctionEnd();
1354   }
1355 
1356   MBBSectionRanges[MF->front().getSectionIDNum()] =
1357       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1358 
1359   // Print out jump tables referenced by the function.
1360   emitJumpTableInfo();
1361 
1362   // Emit post-function debug and/or EH information.
1363   for (const HandlerInfo &HI : Handlers) {
1364     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1365                        HI.TimerGroupDescription, TimePassesIsEnabled);
1366     HI.Handler->endFunction(MF);
1367   }
1368 
1369   // Emit section containing BB address offsets and their metadata, when
1370   // BB labels are requested for this function.
1371   if (MF->hasBBLabels())
1372     emitBBAddrMapSection(*MF);
1373 
1374   // Emit section containing stack size metadata.
1375   emitStackSizeSection(*MF);
1376 
1377   emitPatchableFunctionEntries();
1378 
1379   if (isVerbose())
1380     OutStreamer->GetCommentOS() << "-- End function\n";
1381 
1382   OutStreamer->AddBlankLine();
1383 }
1384 
1385 /// Compute the number of Global Variables that uses a Constant.
1386 static unsigned getNumGlobalVariableUses(const Constant *C) {
1387   if (!C)
1388     return 0;
1389 
1390   if (isa<GlobalVariable>(C))
1391     return 1;
1392 
1393   unsigned NumUses = 0;
1394   for (auto *CU : C->users())
1395     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1396 
1397   return NumUses;
1398 }
1399 
1400 /// Only consider global GOT equivalents if at least one user is a
1401 /// cstexpr inside an initializer of another global variables. Also, don't
1402 /// handle cstexpr inside instructions. During global variable emission,
1403 /// candidates are skipped and are emitted later in case at least one cstexpr
1404 /// isn't replaced by a PC relative GOT entry access.
1405 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1406                                      unsigned &NumGOTEquivUsers) {
1407   // Global GOT equivalents are unnamed private globals with a constant
1408   // pointer initializer to another global symbol. They must point to a
1409   // GlobalVariable or Function, i.e., as GlobalValue.
1410   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1411       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1412       !isa<GlobalValue>(GV->getOperand(0)))
1413     return false;
1414 
1415   // To be a got equivalent, at least one of its users need to be a constant
1416   // expression used by another global variable.
1417   for (auto *U : GV->users())
1418     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1419 
1420   return NumGOTEquivUsers > 0;
1421 }
1422 
1423 /// Unnamed constant global variables solely contaning a pointer to
1424 /// another globals variable is equivalent to a GOT table entry; it contains the
1425 /// the address of another symbol. Optimize it and replace accesses to these
1426 /// "GOT equivalents" by using the GOT entry for the final global instead.
1427 /// Compute GOT equivalent candidates among all global variables to avoid
1428 /// emitting them if possible later on, after it use is replaced by a GOT entry
1429 /// access.
1430 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1431   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1432     return;
1433 
1434   for (const auto &G : M.globals()) {
1435     unsigned NumGOTEquivUsers = 0;
1436     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1437       continue;
1438 
1439     const MCSymbol *GOTEquivSym = getSymbol(&G);
1440     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1441   }
1442 }
1443 
1444 /// Constant expressions using GOT equivalent globals may not be eligible
1445 /// for PC relative GOT entry conversion, in such cases we need to emit such
1446 /// globals we previously omitted in EmitGlobalVariable.
1447 void AsmPrinter::emitGlobalGOTEquivs() {
1448   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1449     return;
1450 
1451   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1452   for (auto &I : GlobalGOTEquivs) {
1453     const GlobalVariable *GV = I.second.first;
1454     unsigned Cnt = I.second.second;
1455     if (Cnt)
1456       FailedCandidates.push_back(GV);
1457   }
1458   GlobalGOTEquivs.clear();
1459 
1460   for (auto *GV : FailedCandidates)
1461     emitGlobalVariable(GV);
1462 }
1463 
1464 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1465                                           const GlobalIndirectSymbol& GIS) {
1466   MCSymbol *Name = getSymbol(&GIS);
1467   bool IsFunction = GIS.getValueType()->isFunctionTy();
1468   // Treat bitcasts of functions as functions also. This is important at least
1469   // on WebAssembly where object and function addresses can't alias each other.
1470   if (!IsFunction)
1471     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1472       if (CE->getOpcode() == Instruction::BitCast)
1473         IsFunction =
1474           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1475 
1476   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1477   // so AIX has to use the extra-label-at-definition strategy. At this
1478   // point, all the extra label is emitted, we just have to emit linkage for
1479   // those labels.
1480   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1481     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1482     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1483            "Visibility should be handled with emitLinkage() on AIX.");
1484     emitLinkage(&GIS, Name);
1485     // If it's a function, also emit linkage for aliases of function entry
1486     // point.
1487     if (IsFunction)
1488       emitLinkage(&GIS,
1489                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1490     return;
1491   }
1492 
1493   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1494     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1495   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1496     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1497   else
1498     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1499 
1500   // Set the symbol type to function if the alias has a function type.
1501   // This affects codegen when the aliasee is not a function.
1502   if (IsFunction)
1503     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1504                                                ? MCSA_ELF_TypeIndFunction
1505                                                : MCSA_ELF_TypeFunction);
1506 
1507   emitVisibility(Name, GIS.getVisibility());
1508 
1509   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1510 
1511   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1512     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1513 
1514   // Emit the directives as assignments aka .set:
1515   OutStreamer->emitAssignment(Name, Expr);
1516   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1517   if (LocalAlias != Name)
1518     OutStreamer->emitAssignment(LocalAlias, Expr);
1519 
1520   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1521     // If the aliasee does not correspond to a symbol in the output, i.e. the
1522     // alias is not of an object or the aliased object is private, then set the
1523     // size of the alias symbol from the type of the alias. We don't do this in
1524     // other situations as the alias and aliasee having differing types but same
1525     // size may be intentional.
1526     const GlobalObject *BaseObject = GA->getBaseObject();
1527     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1528         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1529       const DataLayout &DL = M.getDataLayout();
1530       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1531       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1532     }
1533   }
1534 }
1535 
1536 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1537   if (!RS.needsSection())
1538     return;
1539 
1540   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1541 
1542   Optional<SmallString<128>> Filename;
1543   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1544     Filename = *FilenameRef;
1545     sys::fs::make_absolute(*Filename);
1546     assert(!Filename->empty() && "The filename can't be empty.");
1547   }
1548 
1549   std::string Buf;
1550   raw_string_ostream OS(Buf);
1551   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1552       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1553                : RemarkSerializer.metaSerializer(OS);
1554   MetaSerializer->emit();
1555 
1556   // Switch to the remarks section.
1557   MCSection *RemarksSection =
1558       OutContext.getObjectFileInfo()->getRemarksSection();
1559   OutStreamer->SwitchSection(RemarksSection);
1560 
1561   OutStreamer->emitBinaryData(OS.str());
1562 }
1563 
1564 bool AsmPrinter::doFinalization(Module &M) {
1565   // Set the MachineFunction to nullptr so that we can catch attempted
1566   // accesses to MF specific features at the module level and so that
1567   // we can conditionalize accesses based on whether or not it is nullptr.
1568   MF = nullptr;
1569 
1570   // Gather all GOT equivalent globals in the module. We really need two
1571   // passes over the globals: one to compute and another to avoid its emission
1572   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1573   // where the got equivalent shows up before its use.
1574   computeGlobalGOTEquivs(M);
1575 
1576   // Emit global variables.
1577   for (const auto &G : M.globals())
1578     emitGlobalVariable(&G);
1579 
1580   // Emit remaining GOT equivalent globals.
1581   emitGlobalGOTEquivs();
1582 
1583   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1584 
1585   // Emit linkage(XCOFF) and visibility info for declarations
1586   for (const Function &F : M) {
1587     if (!F.isDeclarationForLinker())
1588       continue;
1589 
1590     MCSymbol *Name = getSymbol(&F);
1591     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1592 
1593     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1594       GlobalValue::VisibilityTypes V = F.getVisibility();
1595       if (V == GlobalValue::DefaultVisibility)
1596         continue;
1597 
1598       emitVisibility(Name, V, false);
1599       continue;
1600     }
1601 
1602     if (F.isIntrinsic())
1603       continue;
1604 
1605     // Handle the XCOFF case.
1606     // Variable `Name` is the function descriptor symbol (see above). Get the
1607     // function entry point symbol.
1608     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1609     // Emit linkage for the function entry point.
1610     emitLinkage(&F, FnEntryPointSym);
1611 
1612     // Emit linkage for the function descriptor.
1613     emitLinkage(&F, Name);
1614   }
1615 
1616   // Emit the remarks section contents.
1617   // FIXME: Figure out when is the safest time to emit this section. It should
1618   // not come after debug info.
1619   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1620     emitRemarksSection(*RS);
1621 
1622   TLOF.emitModuleMetadata(*OutStreamer, M);
1623 
1624   if (TM.getTargetTriple().isOSBinFormatELF()) {
1625     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1626 
1627     // Output stubs for external and common global variables.
1628     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1629     if (!Stubs.empty()) {
1630       OutStreamer->SwitchSection(TLOF.getDataSection());
1631       const DataLayout &DL = M.getDataLayout();
1632 
1633       emitAlignment(Align(DL.getPointerSize()));
1634       for (const auto &Stub : Stubs) {
1635         OutStreamer->emitLabel(Stub.first);
1636         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1637                                      DL.getPointerSize());
1638       }
1639     }
1640   }
1641 
1642   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1643     MachineModuleInfoCOFF &MMICOFF =
1644         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1645 
1646     // Output stubs for external and common global variables.
1647     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1648     if (!Stubs.empty()) {
1649       const DataLayout &DL = M.getDataLayout();
1650 
1651       for (const auto &Stub : Stubs) {
1652         SmallString<256> SectionName = StringRef(".rdata$");
1653         SectionName += Stub.first->getName();
1654         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1655             SectionName,
1656             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1657                 COFF::IMAGE_SCN_LNK_COMDAT,
1658             SectionKind::getReadOnly(), Stub.first->getName(),
1659             COFF::IMAGE_COMDAT_SELECT_ANY));
1660         emitAlignment(Align(DL.getPointerSize()));
1661         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1662         OutStreamer->emitLabel(Stub.first);
1663         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1664                                      DL.getPointerSize());
1665       }
1666     }
1667   }
1668 
1669   // Finalize debug and EH information.
1670   for (const HandlerInfo &HI : Handlers) {
1671     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1672                        HI.TimerGroupDescription, TimePassesIsEnabled);
1673     HI.Handler->endModule();
1674   }
1675 
1676   // This deletes all the ephemeral handlers that AsmPrinter added, while
1677   // keeping all the user-added handlers alive until the AsmPrinter is
1678   // destroyed.
1679   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1680   DD = nullptr;
1681 
1682   // If the target wants to know about weak references, print them all.
1683   if (MAI->getWeakRefDirective()) {
1684     // FIXME: This is not lazy, it would be nice to only print weak references
1685     // to stuff that is actually used.  Note that doing so would require targets
1686     // to notice uses in operands (due to constant exprs etc).  This should
1687     // happen with the MC stuff eventually.
1688 
1689     // Print out module-level global objects here.
1690     for (const auto &GO : M.global_objects()) {
1691       if (!GO.hasExternalWeakLinkage())
1692         continue;
1693       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1694     }
1695   }
1696 
1697   // Print aliases in topological order, that is, for each alias a = b,
1698   // b must be printed before a.
1699   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1700   // such an order to generate correct TOC information.
1701   SmallVector<const GlobalAlias *, 16> AliasStack;
1702   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1703   for (const auto &Alias : M.aliases()) {
1704     for (const GlobalAlias *Cur = &Alias; Cur;
1705          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1706       if (!AliasVisited.insert(Cur).second)
1707         break;
1708       AliasStack.push_back(Cur);
1709     }
1710     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1711       emitGlobalIndirectSymbol(M, *AncestorAlias);
1712     AliasStack.clear();
1713   }
1714   for (const auto &IFunc : M.ifuncs())
1715     emitGlobalIndirectSymbol(M, IFunc);
1716 
1717   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1718   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1719   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1720     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1721       MP->finishAssembly(M, *MI, *this);
1722 
1723   // Emit llvm.ident metadata in an '.ident' directive.
1724   emitModuleIdents(M);
1725 
1726   // Emit bytes for llvm.commandline metadata.
1727   emitModuleCommandLines(M);
1728 
1729   // Emit __morestack address if needed for indirect calls.
1730   if (MMI->usesMorestackAddr()) {
1731     Align Alignment(1);
1732     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1733         getDataLayout(), SectionKind::getReadOnly(),
1734         /*C=*/nullptr, Alignment);
1735     OutStreamer->SwitchSection(ReadOnlySection);
1736 
1737     MCSymbol *AddrSymbol =
1738         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1739     OutStreamer->emitLabel(AddrSymbol);
1740 
1741     unsigned PtrSize = MAI->getCodePointerSize();
1742     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1743                                  PtrSize);
1744   }
1745 
1746   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1747   // split-stack is used.
1748   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1749     OutStreamer->SwitchSection(
1750         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1751     if (MMI->hasNosplitStack())
1752       OutStreamer->SwitchSection(
1753           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1754   }
1755 
1756   // If we don't have any trampolines, then we don't require stack memory
1757   // to be executable. Some targets have a directive to declare this.
1758   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1759   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1760     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1761       OutStreamer->SwitchSection(S);
1762 
1763   if (TM.Options.EmitAddrsig) {
1764     // Emit address-significance attributes for all globals.
1765     OutStreamer->emitAddrsig();
1766     for (const GlobalValue &GV : M.global_values())
1767       if (!GV.use_empty() && !GV.isThreadLocal() &&
1768           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1769           !GV.hasAtLeastLocalUnnamedAddr())
1770         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1771   }
1772 
1773   // Emit symbol partition specifications (ELF only).
1774   if (TM.getTargetTriple().isOSBinFormatELF()) {
1775     unsigned UniqueID = 0;
1776     for (const GlobalValue &GV : M.global_values()) {
1777       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1778           GV.getVisibility() != GlobalValue::DefaultVisibility)
1779         continue;
1780 
1781       OutStreamer->SwitchSection(
1782           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1783                                    "", ++UniqueID, nullptr));
1784       OutStreamer->emitBytes(GV.getPartition());
1785       OutStreamer->emitZeros(1);
1786       OutStreamer->emitValue(
1787           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1788           MAI->getCodePointerSize());
1789     }
1790   }
1791 
1792   // Allow the target to emit any magic that it wants at the end of the file,
1793   // after everything else has gone out.
1794   emitEndOfAsmFile(M);
1795 
1796   MMI = nullptr;
1797 
1798   OutStreamer->Finish();
1799   OutStreamer->reset();
1800   OwnedMLI.reset();
1801   OwnedMDT.reset();
1802 
1803   return false;
1804 }
1805 
1806 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1807   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1808   if (Res.second)
1809     Res.first->second = createTempSymbol("exception");
1810   return Res.first->second;
1811 }
1812 
1813 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1814   this->MF = &MF;
1815   const Function &F = MF.getFunction();
1816 
1817   // Get the function symbol.
1818   if (!MAI->needsFunctionDescriptors()) {
1819     CurrentFnSym = getSymbol(&MF.getFunction());
1820   } else {
1821     assert(TM.getTargetTriple().isOSAIX() &&
1822            "Only AIX uses the function descriptor hooks.");
1823     // AIX is unique here in that the name of the symbol emitted for the
1824     // function body does not have the same name as the source function's
1825     // C-linkage name.
1826     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1827                                " initalized first.");
1828 
1829     // Get the function entry point symbol.
1830     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1831   }
1832 
1833   CurrentFnSymForSize = CurrentFnSym;
1834   CurrentFnBegin = nullptr;
1835   CurrentSectionBeginSym = nullptr;
1836   MBBSectionRanges.clear();
1837   MBBSectionExceptionSyms.clear();
1838   bool NeedsLocalForSize = MAI->needsLocalForSize();
1839   if (F.hasFnAttribute("patchable-function-entry") ||
1840       F.hasFnAttribute("function-instrument") ||
1841       F.hasFnAttribute("xray-instruction-threshold") ||
1842       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1843       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1844     CurrentFnBegin = createTempSymbol("func_begin");
1845     if (NeedsLocalForSize)
1846       CurrentFnSymForSize = CurrentFnBegin;
1847   }
1848 
1849   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1850 }
1851 
1852 namespace {
1853 
1854 // Keep track the alignment, constpool entries per Section.
1855   struct SectionCPs {
1856     MCSection *S;
1857     Align Alignment;
1858     SmallVector<unsigned, 4> CPEs;
1859 
1860     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1861   };
1862 
1863 } // end anonymous namespace
1864 
1865 /// EmitConstantPool - Print to the current output stream assembly
1866 /// representations of the constants in the constant pool MCP. This is
1867 /// used to print out constants which have been "spilled to memory" by
1868 /// the code generator.
1869 void AsmPrinter::emitConstantPool() {
1870   const MachineConstantPool *MCP = MF->getConstantPool();
1871   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1872   if (CP.empty()) return;
1873 
1874   // Calculate sections for constant pool entries. We collect entries to go into
1875   // the same section together to reduce amount of section switch statements.
1876   SmallVector<SectionCPs, 4> CPSections;
1877   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1878     const MachineConstantPoolEntry &CPE = CP[i];
1879     Align Alignment = CPE.getAlign();
1880 
1881     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1882 
1883     const Constant *C = nullptr;
1884     if (!CPE.isMachineConstantPoolEntry())
1885       C = CPE.Val.ConstVal;
1886 
1887     MCSection *S = getObjFileLowering().getSectionForConstant(
1888         getDataLayout(), Kind, C, Alignment);
1889 
1890     // The number of sections are small, just do a linear search from the
1891     // last section to the first.
1892     bool Found = false;
1893     unsigned SecIdx = CPSections.size();
1894     while (SecIdx != 0) {
1895       if (CPSections[--SecIdx].S == S) {
1896         Found = true;
1897         break;
1898       }
1899     }
1900     if (!Found) {
1901       SecIdx = CPSections.size();
1902       CPSections.push_back(SectionCPs(S, Alignment));
1903     }
1904 
1905     if (Alignment > CPSections[SecIdx].Alignment)
1906       CPSections[SecIdx].Alignment = Alignment;
1907     CPSections[SecIdx].CPEs.push_back(i);
1908   }
1909 
1910   // Now print stuff into the calculated sections.
1911   const MCSection *CurSection = nullptr;
1912   unsigned Offset = 0;
1913   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1914     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1915       unsigned CPI = CPSections[i].CPEs[j];
1916       MCSymbol *Sym = GetCPISymbol(CPI);
1917       if (!Sym->isUndefined())
1918         continue;
1919 
1920       if (CurSection != CPSections[i].S) {
1921         OutStreamer->SwitchSection(CPSections[i].S);
1922         emitAlignment(Align(CPSections[i].Alignment));
1923         CurSection = CPSections[i].S;
1924         Offset = 0;
1925       }
1926 
1927       MachineConstantPoolEntry CPE = CP[CPI];
1928 
1929       // Emit inter-object padding for alignment.
1930       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
1931       OutStreamer->emitZeros(NewOffset - Offset);
1932 
1933       Type *Ty = CPE.getType();
1934       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1935 
1936       OutStreamer->emitLabel(Sym);
1937       if (CPE.isMachineConstantPoolEntry())
1938         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1939       else
1940         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1941     }
1942   }
1943 }
1944 
1945 // Print assembly representations of the jump tables used by the current
1946 // function.
1947 void AsmPrinter::emitJumpTableInfo() {
1948   const DataLayout &DL = MF->getDataLayout();
1949   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1950   if (!MJTI) return;
1951   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1952   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1953   if (JT.empty()) return;
1954 
1955   // Pick the directive to use to print the jump table entries, and switch to
1956   // the appropriate section.
1957   const Function &F = MF->getFunction();
1958   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1959   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1960       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1961       F);
1962   if (JTInDiffSection) {
1963     // Drop it in the readonly section.
1964     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1965     OutStreamer->SwitchSection(ReadOnlySection);
1966   }
1967 
1968   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
1969 
1970   // Jump tables in code sections are marked with a data_region directive
1971   // where that's supported.
1972   if (!JTInDiffSection)
1973     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
1974 
1975   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1976     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1977 
1978     // If this jump table was deleted, ignore it.
1979     if (JTBBs.empty()) continue;
1980 
1981     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1982     /// emit a .set directive for each unique entry.
1983     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1984         MAI->doesSetDirectiveSuppressReloc()) {
1985       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1986       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1987       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1988       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1989         const MachineBasicBlock *MBB = JTBBs[ii];
1990         if (!EmittedSets.insert(MBB).second)
1991           continue;
1992 
1993         // .set LJTSet, LBB32-base
1994         const MCExpr *LHS =
1995           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1996         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1997                                     MCBinaryExpr::createSub(LHS, Base,
1998                                                             OutContext));
1999       }
2000     }
2001 
2002     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2003     // before each jump table.  The first label is never referenced, but tells
2004     // the assembler and linker the extents of the jump table object.  The
2005     // second label is actually referenced by the code.
2006     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2007       // FIXME: This doesn't have to have any specific name, just any randomly
2008       // named and numbered local label started with 'l' would work.  Simplify
2009       // GetJTISymbol.
2010       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2011 
2012     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2013     OutStreamer->emitLabel(JTISymbol);
2014 
2015     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2016       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2017   }
2018   if (!JTInDiffSection)
2019     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2020 }
2021 
2022 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2023 /// current stream.
2024 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2025                                     const MachineBasicBlock *MBB,
2026                                     unsigned UID) const {
2027   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2028   const MCExpr *Value = nullptr;
2029   switch (MJTI->getEntryKind()) {
2030   case MachineJumpTableInfo::EK_Inline:
2031     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2032   case MachineJumpTableInfo::EK_Custom32:
2033     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2034         MJTI, MBB, UID, OutContext);
2035     break;
2036   case MachineJumpTableInfo::EK_BlockAddress:
2037     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2038     //     .word LBB123
2039     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2040     break;
2041   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2042     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2043     // with a relocation as gp-relative, e.g.:
2044     //     .gprel32 LBB123
2045     MCSymbol *MBBSym = MBB->getSymbol();
2046     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2047     return;
2048   }
2049 
2050   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2051     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2052     // with a relocation as gp-relative, e.g.:
2053     //     .gpdword LBB123
2054     MCSymbol *MBBSym = MBB->getSymbol();
2055     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2056     return;
2057   }
2058 
2059   case MachineJumpTableInfo::EK_LabelDifference32: {
2060     // Each entry is the address of the block minus the address of the jump
2061     // table. This is used for PIC jump tables where gprel32 is not supported.
2062     // e.g.:
2063     //      .word LBB123 - LJTI1_2
2064     // If the .set directive avoids relocations, this is emitted as:
2065     //      .set L4_5_set_123, LBB123 - LJTI1_2
2066     //      .word L4_5_set_123
2067     if (MAI->doesSetDirectiveSuppressReloc()) {
2068       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2069                                       OutContext);
2070       break;
2071     }
2072     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2073     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2074     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2075     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2076     break;
2077   }
2078   }
2079 
2080   assert(Value && "Unknown entry kind!");
2081 
2082   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2083   OutStreamer->emitValue(Value, EntrySize);
2084 }
2085 
2086 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2087 /// special global used by LLVM.  If so, emit it and return true, otherwise
2088 /// do nothing and return false.
2089 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2090   if (GV->getName() == "llvm.used") {
2091     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2092       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2093     return true;
2094   }
2095 
2096   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2097   if (GV->getSection() == "llvm.metadata" ||
2098       GV->hasAvailableExternallyLinkage())
2099     return true;
2100 
2101   if (!GV->hasAppendingLinkage()) return false;
2102 
2103   assert(GV->hasInitializer() && "Not a special LLVM global!");
2104 
2105   if (GV->getName() == "llvm.global_ctors") {
2106     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2107                        /* isCtor */ true);
2108 
2109     return true;
2110   }
2111 
2112   if (GV->getName() == "llvm.global_dtors") {
2113     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2114                        /* isCtor */ false);
2115 
2116     return true;
2117   }
2118 
2119   report_fatal_error("unknown special variable");
2120 }
2121 
2122 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2123 /// global in the specified llvm.used list.
2124 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2125   // Should be an array of 'i8*'.
2126   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2127     const GlobalValue *GV =
2128       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2129     if (GV)
2130       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2131   }
2132 }
2133 
2134 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2135                                           const Constant *List,
2136                                           SmallVector<Structor, 8> &Structors) {
2137   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2138   // the init priority.
2139   if (!isa<ConstantArray>(List))
2140     return;
2141 
2142   // Gather the structors in a form that's convenient for sorting by priority.
2143   for (Value *O : cast<ConstantArray>(List)->operands()) {
2144     auto *CS = cast<ConstantStruct>(O);
2145     if (CS->getOperand(1)->isNullValue())
2146       break; // Found a null terminator, skip the rest.
2147     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2148     if (!Priority)
2149       continue; // Malformed.
2150     Structors.push_back(Structor());
2151     Structor &S = Structors.back();
2152     S.Priority = Priority->getLimitedValue(65535);
2153     S.Func = CS->getOperand(1);
2154     if (!CS->getOperand(2)->isNullValue()) {
2155       if (TM.getTargetTriple().isOSAIX())
2156         llvm::report_fatal_error(
2157             "associated data of XXStructor list is not yet supported on AIX");
2158       S.ComdatKey =
2159           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2160     }
2161   }
2162 
2163   // Emit the function pointers in the target-specific order
2164   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2165     return L.Priority < R.Priority;
2166   });
2167 }
2168 
2169 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2170 /// priority.
2171 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2172                                     bool IsCtor) {
2173   SmallVector<Structor, 8> Structors;
2174   preprocessXXStructorList(DL, List, Structors);
2175   if (Structors.empty())
2176     return;
2177 
2178   const Align Align = DL.getPointerPrefAlignment();
2179   for (Structor &S : Structors) {
2180     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2181     const MCSymbol *KeySym = nullptr;
2182     if (GlobalValue *GV = S.ComdatKey) {
2183       if (GV->isDeclarationForLinker())
2184         // If the associated variable is not defined in this module
2185         // (it might be available_externally, or have been an
2186         // available_externally definition that was dropped by the
2187         // EliminateAvailableExternally pass), some other TU
2188         // will provide its dynamic initializer.
2189         continue;
2190 
2191       KeySym = getSymbol(GV);
2192     }
2193 
2194     MCSection *OutputSection =
2195         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2196                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2197     OutStreamer->SwitchSection(OutputSection);
2198     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2199       emitAlignment(Align);
2200     emitXXStructor(DL, S.Func);
2201   }
2202 }
2203 
2204 void AsmPrinter::emitModuleIdents(Module &M) {
2205   if (!MAI->hasIdentDirective())
2206     return;
2207 
2208   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2209     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2210       const MDNode *N = NMD->getOperand(i);
2211       assert(N->getNumOperands() == 1 &&
2212              "llvm.ident metadata entry can have only one operand");
2213       const MDString *S = cast<MDString>(N->getOperand(0));
2214       OutStreamer->emitIdent(S->getString());
2215     }
2216   }
2217 }
2218 
2219 void AsmPrinter::emitModuleCommandLines(Module &M) {
2220   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2221   if (!CommandLine)
2222     return;
2223 
2224   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2225   if (!NMD || !NMD->getNumOperands())
2226     return;
2227 
2228   OutStreamer->PushSection();
2229   OutStreamer->SwitchSection(CommandLine);
2230   OutStreamer->emitZeros(1);
2231   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2232     const MDNode *N = NMD->getOperand(i);
2233     assert(N->getNumOperands() == 1 &&
2234            "llvm.commandline metadata entry can have only one operand");
2235     const MDString *S = cast<MDString>(N->getOperand(0));
2236     OutStreamer->emitBytes(S->getString());
2237     OutStreamer->emitZeros(1);
2238   }
2239   OutStreamer->PopSection();
2240 }
2241 
2242 //===--------------------------------------------------------------------===//
2243 // Emission and print routines
2244 //
2245 
2246 /// Emit a byte directive and value.
2247 ///
2248 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2249 
2250 /// Emit a short directive and value.
2251 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2252 
2253 /// Emit a long directive and value.
2254 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2255 
2256 /// Emit a long long directive and value.
2257 void AsmPrinter::emitInt64(uint64_t Value) const {
2258   OutStreamer->emitInt64(Value);
2259 }
2260 
2261 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2262 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2263 /// .set if it avoids relocations.
2264 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2265                                      unsigned Size) const {
2266   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2267 }
2268 
2269 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2270 /// where the size in bytes of the directive is specified by Size and Label
2271 /// specifies the label.  This implicitly uses .set if it is available.
2272 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2273                                      unsigned Size,
2274                                      bool IsSectionRelative) const {
2275   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2276     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2277     if (Size > 4)
2278       OutStreamer->emitZeros(Size - 4);
2279     return;
2280   }
2281 
2282   // Emit Label+Offset (or just Label if Offset is zero)
2283   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2284   if (Offset)
2285     Expr = MCBinaryExpr::createAdd(
2286         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2287 
2288   OutStreamer->emitValue(Expr, Size);
2289 }
2290 
2291 //===----------------------------------------------------------------------===//
2292 
2293 // EmitAlignment - Emit an alignment directive to the specified power of
2294 // two boundary.  If a global value is specified, and if that global has
2295 // an explicit alignment requested, it will override the alignment request
2296 // if required for correctness.
2297 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2298   if (GV)
2299     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2300 
2301   if (Alignment == Align(1))
2302     return; // 1-byte aligned: no need to emit alignment.
2303 
2304   if (getCurrentSection()->getKind().isText())
2305     OutStreamer->emitCodeAlignment(Alignment.value());
2306   else
2307     OutStreamer->emitValueToAlignment(Alignment.value());
2308 }
2309 
2310 //===----------------------------------------------------------------------===//
2311 // Constant emission.
2312 //===----------------------------------------------------------------------===//
2313 
2314 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2315   MCContext &Ctx = OutContext;
2316 
2317   if (CV->isNullValue() || isa<UndefValue>(CV))
2318     return MCConstantExpr::create(0, Ctx);
2319 
2320   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2321     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2322 
2323   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2324     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2325 
2326   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2327     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2328 
2329   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2330   if (!CE) {
2331     llvm_unreachable("Unknown constant value to lower!");
2332   }
2333 
2334   switch (CE->getOpcode()) {
2335   case Instruction::AddrSpaceCast: {
2336     const Constant *Op = CE->getOperand(0);
2337     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2338     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2339     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2340       return lowerConstant(Op);
2341 
2342     // Fallthrough to error.
2343     LLVM_FALLTHROUGH;
2344   }
2345   default: {
2346     // If the code isn't optimized, there may be outstanding folding
2347     // opportunities. Attempt to fold the expression using DataLayout as a
2348     // last resort before giving up.
2349     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2350     if (C != CE)
2351       return lowerConstant(C);
2352 
2353     // Otherwise report the problem to the user.
2354     std::string S;
2355     raw_string_ostream OS(S);
2356     OS << "Unsupported expression in static initializer: ";
2357     CE->printAsOperand(OS, /*PrintType=*/false,
2358                    !MF ? nullptr : MF->getFunction().getParent());
2359     report_fatal_error(OS.str());
2360   }
2361   case Instruction::GetElementPtr: {
2362     // Generate a symbolic expression for the byte address
2363     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2364     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2365 
2366     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2367     if (!OffsetAI)
2368       return Base;
2369 
2370     int64_t Offset = OffsetAI.getSExtValue();
2371     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2372                                    Ctx);
2373   }
2374 
2375   case Instruction::Trunc:
2376     // We emit the value and depend on the assembler to truncate the generated
2377     // expression properly.  This is important for differences between
2378     // blockaddress labels.  Since the two labels are in the same function, it
2379     // is reasonable to treat their delta as a 32-bit value.
2380     LLVM_FALLTHROUGH;
2381   case Instruction::BitCast:
2382     return lowerConstant(CE->getOperand(0));
2383 
2384   case Instruction::IntToPtr: {
2385     const DataLayout &DL = getDataLayout();
2386 
2387     // Handle casts to pointers by changing them into casts to the appropriate
2388     // integer type.  This promotes constant folding and simplifies this code.
2389     Constant *Op = CE->getOperand(0);
2390     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2391                                       false/*ZExt*/);
2392     return lowerConstant(Op);
2393   }
2394 
2395   case Instruction::PtrToInt: {
2396     const DataLayout &DL = getDataLayout();
2397 
2398     // Support only foldable casts to/from pointers that can be eliminated by
2399     // changing the pointer to the appropriately sized integer type.
2400     Constant *Op = CE->getOperand(0);
2401     Type *Ty = CE->getType();
2402 
2403     const MCExpr *OpExpr = lowerConstant(Op);
2404 
2405     // We can emit the pointer value into this slot if the slot is an
2406     // integer slot equal to the size of the pointer.
2407     //
2408     // If the pointer is larger than the resultant integer, then
2409     // as with Trunc just depend on the assembler to truncate it.
2410     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2411         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2412       return OpExpr;
2413 
2414     // Otherwise the pointer is smaller than the resultant integer, mask off
2415     // the high bits so we are sure to get a proper truncation if the input is
2416     // a constant expr.
2417     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2418     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2419     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2420   }
2421 
2422   case Instruction::Sub: {
2423     GlobalValue *LHSGV;
2424     APInt LHSOffset;
2425     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2426                                    getDataLayout())) {
2427       GlobalValue *RHSGV;
2428       APInt RHSOffset;
2429       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2430                                      getDataLayout())) {
2431         const MCExpr *RelocExpr =
2432             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2433         if (!RelocExpr)
2434           RelocExpr = MCBinaryExpr::createSub(
2435               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2436               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2437         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2438         if (Addend != 0)
2439           RelocExpr = MCBinaryExpr::createAdd(
2440               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2441         return RelocExpr;
2442       }
2443     }
2444   }
2445   // else fallthrough
2446   LLVM_FALLTHROUGH;
2447 
2448   // The MC library also has a right-shift operator, but it isn't consistently
2449   // signed or unsigned between different targets.
2450   case Instruction::Add:
2451   case Instruction::Mul:
2452   case Instruction::SDiv:
2453   case Instruction::SRem:
2454   case Instruction::Shl:
2455   case Instruction::And:
2456   case Instruction::Or:
2457   case Instruction::Xor: {
2458     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2459     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2460     switch (CE->getOpcode()) {
2461     default: llvm_unreachable("Unknown binary operator constant cast expr");
2462     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2463     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2464     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2465     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2466     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2467     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2468     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2469     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2470     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2471     }
2472   }
2473   }
2474 }
2475 
2476 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2477                                    AsmPrinter &AP,
2478                                    const Constant *BaseCV = nullptr,
2479                                    uint64_t Offset = 0);
2480 
2481 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2482 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2483 
2484 /// isRepeatedByteSequence - Determine whether the given value is
2485 /// composed of a repeated sequence of identical bytes and return the
2486 /// byte value.  If it is not a repeated sequence, return -1.
2487 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2488   StringRef Data = V->getRawDataValues();
2489   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2490   char C = Data[0];
2491   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2492     if (Data[i] != C) return -1;
2493   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2494 }
2495 
2496 /// isRepeatedByteSequence - Determine whether the given value is
2497 /// composed of a repeated sequence of identical bytes and return the
2498 /// byte value.  If it is not a repeated sequence, return -1.
2499 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2500   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2501     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2502     assert(Size % 8 == 0);
2503 
2504     // Extend the element to take zero padding into account.
2505     APInt Value = CI->getValue().zextOrSelf(Size);
2506     if (!Value.isSplat(8))
2507       return -1;
2508 
2509     return Value.zextOrTrunc(8).getZExtValue();
2510   }
2511   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2512     // Make sure all array elements are sequences of the same repeated
2513     // byte.
2514     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2515     Constant *Op0 = CA->getOperand(0);
2516     int Byte = isRepeatedByteSequence(Op0, DL);
2517     if (Byte == -1)
2518       return -1;
2519 
2520     // All array elements must be equal.
2521     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2522       if (CA->getOperand(i) != Op0)
2523         return -1;
2524     return Byte;
2525   }
2526 
2527   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2528     return isRepeatedByteSequence(CDS);
2529 
2530   return -1;
2531 }
2532 
2533 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2534                                              const ConstantDataSequential *CDS,
2535                                              AsmPrinter &AP) {
2536   // See if we can aggregate this into a .fill, if so, emit it as such.
2537   int Value = isRepeatedByteSequence(CDS, DL);
2538   if (Value != -1) {
2539     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2540     // Don't emit a 1-byte object as a .fill.
2541     if (Bytes > 1)
2542       return AP.OutStreamer->emitFill(Bytes, Value);
2543   }
2544 
2545   // If this can be emitted with .ascii/.asciz, emit it as such.
2546   if (CDS->isString())
2547     return AP.OutStreamer->emitBytes(CDS->getAsString());
2548 
2549   // Otherwise, emit the values in successive locations.
2550   unsigned ElementByteSize = CDS->getElementByteSize();
2551   if (isa<IntegerType>(CDS->getElementType())) {
2552     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2553       if (AP.isVerbose())
2554         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2555                                                  CDS->getElementAsInteger(i));
2556       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2557                                    ElementByteSize);
2558     }
2559   } else {
2560     Type *ET = CDS->getElementType();
2561     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2562       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2563   }
2564 
2565   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2566   unsigned EmittedSize =
2567       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2568   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2569   if (unsigned Padding = Size - EmittedSize)
2570     AP.OutStreamer->emitZeros(Padding);
2571 }
2572 
2573 static void emitGlobalConstantArray(const DataLayout &DL,
2574                                     const ConstantArray *CA, AsmPrinter &AP,
2575                                     const Constant *BaseCV, uint64_t Offset) {
2576   // See if we can aggregate some values.  Make sure it can be
2577   // represented as a series of bytes of the constant value.
2578   int Value = isRepeatedByteSequence(CA, DL);
2579 
2580   if (Value != -1) {
2581     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2582     AP.OutStreamer->emitFill(Bytes, Value);
2583   }
2584   else {
2585     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2586       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2587       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2588     }
2589   }
2590 }
2591 
2592 static void emitGlobalConstantVector(const DataLayout &DL,
2593                                      const ConstantVector *CV, AsmPrinter &AP) {
2594   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2595     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2596 
2597   unsigned Size = DL.getTypeAllocSize(CV->getType());
2598   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2599                          CV->getType()->getNumElements();
2600   if (unsigned Padding = Size - EmittedSize)
2601     AP.OutStreamer->emitZeros(Padding);
2602 }
2603 
2604 static void emitGlobalConstantStruct(const DataLayout &DL,
2605                                      const ConstantStruct *CS, AsmPrinter &AP,
2606                                      const Constant *BaseCV, uint64_t Offset) {
2607   // Print the fields in successive locations. Pad to align if needed!
2608   unsigned Size = DL.getTypeAllocSize(CS->getType());
2609   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2610   uint64_t SizeSoFar = 0;
2611   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2612     const Constant *Field = CS->getOperand(i);
2613 
2614     // Print the actual field value.
2615     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2616 
2617     // Check if padding is needed and insert one or more 0s.
2618     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2619     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2620                         - Layout->getElementOffset(i)) - FieldSize;
2621     SizeSoFar += FieldSize + PadSize;
2622 
2623     // Insert padding - this may include padding to increase the size of the
2624     // current field up to the ABI size (if the struct is not packed) as well
2625     // as padding to ensure that the next field starts at the right offset.
2626     AP.OutStreamer->emitZeros(PadSize);
2627   }
2628   assert(SizeSoFar == Layout->getSizeInBytes() &&
2629          "Layout of constant struct may be incorrect!");
2630 }
2631 
2632 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2633   assert(ET && "Unknown float type");
2634   APInt API = APF.bitcastToAPInt();
2635 
2636   // First print a comment with what we think the original floating-point value
2637   // should have been.
2638   if (AP.isVerbose()) {
2639     SmallString<8> StrVal;
2640     APF.toString(StrVal);
2641     ET->print(AP.OutStreamer->GetCommentOS());
2642     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2643   }
2644 
2645   // Now iterate through the APInt chunks, emitting them in endian-correct
2646   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2647   // floats).
2648   unsigned NumBytes = API.getBitWidth() / 8;
2649   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2650   const uint64_t *p = API.getRawData();
2651 
2652   // PPC's long double has odd notions of endianness compared to how LLVM
2653   // handles it: p[0] goes first for *big* endian on PPC.
2654   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2655     int Chunk = API.getNumWords() - 1;
2656 
2657     if (TrailingBytes)
2658       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2659 
2660     for (; Chunk >= 0; --Chunk)
2661       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2662   } else {
2663     unsigned Chunk;
2664     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2665       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2666 
2667     if (TrailingBytes)
2668       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2669   }
2670 
2671   // Emit the tail padding for the long double.
2672   const DataLayout &DL = AP.getDataLayout();
2673   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2674 }
2675 
2676 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2677   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2678 }
2679 
2680 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2681   const DataLayout &DL = AP.getDataLayout();
2682   unsigned BitWidth = CI->getBitWidth();
2683 
2684   // Copy the value as we may massage the layout for constants whose bit width
2685   // is not a multiple of 64-bits.
2686   APInt Realigned(CI->getValue());
2687   uint64_t ExtraBits = 0;
2688   unsigned ExtraBitsSize = BitWidth & 63;
2689 
2690   if (ExtraBitsSize) {
2691     // The bit width of the data is not a multiple of 64-bits.
2692     // The extra bits are expected to be at the end of the chunk of the memory.
2693     // Little endian:
2694     // * Nothing to be done, just record the extra bits to emit.
2695     // Big endian:
2696     // * Record the extra bits to emit.
2697     // * Realign the raw data to emit the chunks of 64-bits.
2698     if (DL.isBigEndian()) {
2699       // Basically the structure of the raw data is a chunk of 64-bits cells:
2700       //    0        1         BitWidth / 64
2701       // [chunk1][chunk2] ... [chunkN].
2702       // The most significant chunk is chunkN and it should be emitted first.
2703       // However, due to the alignment issue chunkN contains useless bits.
2704       // Realign the chunks so that they contain only useful information:
2705       // ExtraBits     0       1       (BitWidth / 64) - 1
2706       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2707       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2708       ExtraBits = Realigned.getRawData()[0] &
2709         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2710       Realigned.lshrInPlace(ExtraBitsSize);
2711     } else
2712       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2713   }
2714 
2715   // We don't expect assemblers to support integer data directives
2716   // for more than 64 bits, so we emit the data in at most 64-bit
2717   // quantities at a time.
2718   const uint64_t *RawData = Realigned.getRawData();
2719   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2720     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2721     AP.OutStreamer->emitIntValue(Val, 8);
2722   }
2723 
2724   if (ExtraBitsSize) {
2725     // Emit the extra bits after the 64-bits chunks.
2726 
2727     // Emit a directive that fills the expected size.
2728     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2729     Size -= (BitWidth / 64) * 8;
2730     assert(Size && Size * 8 >= ExtraBitsSize &&
2731            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2732            == ExtraBits && "Directive too small for extra bits.");
2733     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2734   }
2735 }
2736 
2737 /// Transform a not absolute MCExpr containing a reference to a GOT
2738 /// equivalent global, by a target specific GOT pc relative access to the
2739 /// final symbol.
2740 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2741                                          const Constant *BaseCst,
2742                                          uint64_t Offset) {
2743   // The global @foo below illustrates a global that uses a got equivalent.
2744   //
2745   //  @bar = global i32 42
2746   //  @gotequiv = private unnamed_addr constant i32* @bar
2747   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2748   //                             i64 ptrtoint (i32* @foo to i64))
2749   //                        to i32)
2750   //
2751   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2752   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2753   // form:
2754   //
2755   //  foo = cstexpr, where
2756   //    cstexpr := <gotequiv> - "." + <cst>
2757   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2758   //
2759   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2760   //
2761   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2762   //    gotpcrelcst := <offset from @foo base> + <cst>
2763   MCValue MV;
2764   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2765     return;
2766   const MCSymbolRefExpr *SymA = MV.getSymA();
2767   if (!SymA)
2768     return;
2769 
2770   // Check that GOT equivalent symbol is cached.
2771   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2772   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2773     return;
2774 
2775   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2776   if (!BaseGV)
2777     return;
2778 
2779   // Check for a valid base symbol
2780   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2781   const MCSymbolRefExpr *SymB = MV.getSymB();
2782 
2783   if (!SymB || BaseSym != &SymB->getSymbol())
2784     return;
2785 
2786   // Make sure to match:
2787   //
2788   //    gotpcrelcst := <offset from @foo base> + <cst>
2789   //
2790   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2791   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2792   // if the target knows how to encode it.
2793   int64_t GOTPCRelCst = Offset + MV.getConstant();
2794   if (GOTPCRelCst < 0)
2795     return;
2796   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2797     return;
2798 
2799   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2800   //
2801   //  bar:
2802   //    .long 42
2803   //  gotequiv:
2804   //    .quad bar
2805   //  foo:
2806   //    .long gotequiv - "." + <cst>
2807   //
2808   // is replaced by the target specific equivalent to:
2809   //
2810   //  bar:
2811   //    .long 42
2812   //  foo:
2813   //    .long bar@GOTPCREL+<gotpcrelcst>
2814   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2815   const GlobalVariable *GV = Result.first;
2816   int NumUses = (int)Result.second;
2817   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2818   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2819   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2820       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2821 
2822   // Update GOT equivalent usage information
2823   --NumUses;
2824   if (NumUses >= 0)
2825     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2826 }
2827 
2828 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2829                                    AsmPrinter &AP, const Constant *BaseCV,
2830                                    uint64_t Offset) {
2831   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2832 
2833   // Globals with sub-elements such as combinations of arrays and structs
2834   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2835   // constant symbol base and the current position with BaseCV and Offset.
2836   if (!BaseCV && CV->hasOneUse())
2837     BaseCV = dyn_cast<Constant>(CV->user_back());
2838 
2839   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2840     return AP.OutStreamer->emitZeros(Size);
2841 
2842   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2843     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2844 
2845     if (StoreSize <= 8) {
2846       if (AP.isVerbose())
2847         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2848                                                  CI->getZExtValue());
2849       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2850     } else {
2851       emitGlobalConstantLargeInt(CI, AP);
2852     }
2853 
2854     // Emit tail padding if needed
2855     if (Size != StoreSize)
2856       AP.OutStreamer->emitZeros(Size - StoreSize);
2857 
2858     return;
2859   }
2860 
2861   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2862     return emitGlobalConstantFP(CFP, AP);
2863 
2864   if (isa<ConstantPointerNull>(CV)) {
2865     AP.OutStreamer->emitIntValue(0, Size);
2866     return;
2867   }
2868 
2869   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2870     return emitGlobalConstantDataSequential(DL, CDS, AP);
2871 
2872   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2873     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2874 
2875   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2876     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2877 
2878   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2879     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2880     // vectors).
2881     if (CE->getOpcode() == Instruction::BitCast)
2882       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2883 
2884     if (Size > 8) {
2885       // If the constant expression's size is greater than 64-bits, then we have
2886       // to emit the value in chunks. Try to constant fold the value and emit it
2887       // that way.
2888       Constant *New = ConstantFoldConstant(CE, DL);
2889       if (New != CE)
2890         return emitGlobalConstantImpl(DL, New, AP);
2891     }
2892   }
2893 
2894   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2895     return emitGlobalConstantVector(DL, V, AP);
2896 
2897   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2898   // thread the streamer with EmitValue.
2899   const MCExpr *ME = AP.lowerConstant(CV);
2900 
2901   // Since lowerConstant already folded and got rid of all IR pointer and
2902   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2903   // directly.
2904   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2905     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2906 
2907   AP.OutStreamer->emitValue(ME, Size);
2908 }
2909 
2910 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2911 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2912   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2913   if (Size)
2914     emitGlobalConstantImpl(DL, CV, *this);
2915   else if (MAI->hasSubsectionsViaSymbols()) {
2916     // If the global has zero size, emit a single byte so that two labels don't
2917     // look like they are at the same location.
2918     OutStreamer->emitIntValue(0, 1);
2919   }
2920 }
2921 
2922 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2923   // Target doesn't support this yet!
2924   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2925 }
2926 
2927 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2928   if (Offset > 0)
2929     OS << '+' << Offset;
2930   else if (Offset < 0)
2931     OS << Offset;
2932 }
2933 
2934 void AsmPrinter::emitNops(unsigned N) {
2935   MCInst Nop;
2936   MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2937   for (; N; --N)
2938     EmitToStreamer(*OutStreamer, Nop);
2939 }
2940 
2941 //===----------------------------------------------------------------------===//
2942 // Symbol Lowering Routines.
2943 //===----------------------------------------------------------------------===//
2944 
2945 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2946   return OutContext.createTempSymbol(Name, true);
2947 }
2948 
2949 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2950   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2951 }
2952 
2953 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2954   return MMI->getAddrLabelSymbol(BB);
2955 }
2956 
2957 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2958 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2959   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2960     const MachineConstantPoolEntry &CPE =
2961         MF->getConstantPool()->getConstants()[CPID];
2962     if (!CPE.isMachineConstantPoolEntry()) {
2963       const DataLayout &DL = MF->getDataLayout();
2964       SectionKind Kind = CPE.getSectionKind(&DL);
2965       const Constant *C = CPE.Val.ConstVal;
2966       Align Alignment = CPE.Alignment;
2967       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2968               getObjFileLowering().getSectionForConstant(DL, Kind, C,
2969                                                          Alignment))) {
2970         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2971           if (Sym->isUndefined())
2972             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
2973           return Sym;
2974         }
2975       }
2976     }
2977   }
2978 
2979   const DataLayout &DL = getDataLayout();
2980   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2981                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2982                                       Twine(CPID));
2983 }
2984 
2985 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2986 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2987   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2988 }
2989 
2990 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2991 /// FIXME: privatize to AsmPrinter.
2992 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2993   const DataLayout &DL = getDataLayout();
2994   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2995                                       Twine(getFunctionNumber()) + "_" +
2996                                       Twine(UID) + "_set_" + Twine(MBBID));
2997 }
2998 
2999 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3000                                                    StringRef Suffix) const {
3001   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3002 }
3003 
3004 /// Return the MCSymbol for the specified ExternalSymbol.
3005 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3006   SmallString<60> NameStr;
3007   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3008   return OutContext.getOrCreateSymbol(NameStr);
3009 }
3010 
3011 /// PrintParentLoopComment - Print comments about parent loops of this one.
3012 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3013                                    unsigned FunctionNumber) {
3014   if (!Loop) return;
3015   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3016   OS.indent(Loop->getLoopDepth()*2)
3017     << "Parent Loop BB" << FunctionNumber << "_"
3018     << Loop->getHeader()->getNumber()
3019     << " Depth=" << Loop->getLoopDepth() << '\n';
3020 }
3021 
3022 /// PrintChildLoopComment - Print comments about child loops within
3023 /// the loop for this basic block, with nesting.
3024 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3025                                   unsigned FunctionNumber) {
3026   // Add child loop information
3027   for (const MachineLoop *CL : *Loop) {
3028     OS.indent(CL->getLoopDepth()*2)
3029       << "Child Loop BB" << FunctionNumber << "_"
3030       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3031       << '\n';
3032     PrintChildLoopComment(OS, CL, FunctionNumber);
3033   }
3034 }
3035 
3036 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3037 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3038                                        const MachineLoopInfo *LI,
3039                                        const AsmPrinter &AP) {
3040   // Add loop depth information
3041   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3042   if (!Loop) return;
3043 
3044   MachineBasicBlock *Header = Loop->getHeader();
3045   assert(Header && "No header for loop");
3046 
3047   // If this block is not a loop header, just print out what is the loop header
3048   // and return.
3049   if (Header != &MBB) {
3050     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3051                                Twine(AP.getFunctionNumber())+"_" +
3052                                Twine(Loop->getHeader()->getNumber())+
3053                                " Depth="+Twine(Loop->getLoopDepth()));
3054     return;
3055   }
3056 
3057   // Otherwise, it is a loop header.  Print out information about child and
3058   // parent loops.
3059   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3060 
3061   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3062 
3063   OS << "=>";
3064   OS.indent(Loop->getLoopDepth()*2-2);
3065 
3066   OS << "This ";
3067   if (Loop->isInnermost())
3068     OS << "Inner ";
3069   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3070 
3071   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3072 }
3073 
3074 /// emitBasicBlockStart - This method prints the label for the specified
3075 /// MachineBasicBlock, an alignment (if present) and a comment describing
3076 /// it if appropriate.
3077 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3078   // End the previous funclet and start a new one.
3079   if (MBB.isEHFuncletEntry()) {
3080     for (const HandlerInfo &HI : Handlers) {
3081       HI.Handler->endFunclet();
3082       HI.Handler->beginFunclet(MBB);
3083     }
3084   }
3085 
3086   // Emit an alignment directive for this block, if needed.
3087   const Align Alignment = MBB.getAlignment();
3088   if (Alignment != Align(1))
3089     emitAlignment(Alignment);
3090 
3091   // Switch to a new section if this basic block must begin a section. The
3092   // entry block is always placed in the function section and is handled
3093   // separately.
3094   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3095     OutStreamer->SwitchSection(
3096         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3097                                                             MBB, TM));
3098     CurrentSectionBeginSym = MBB.getSymbol();
3099   }
3100 
3101   // If the block has its address taken, emit any labels that were used to
3102   // reference the block.  It is possible that there is more than one label
3103   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3104   // the references were generated.
3105   if (MBB.hasAddressTaken()) {
3106     const BasicBlock *BB = MBB.getBasicBlock();
3107     if (isVerbose())
3108       OutStreamer->AddComment("Block address taken");
3109 
3110     // MBBs can have their address taken as part of CodeGen without having
3111     // their corresponding BB's address taken in IR
3112     if (BB->hasAddressTaken())
3113       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3114         OutStreamer->emitLabel(Sym);
3115   }
3116 
3117   // Print some verbose block comments.
3118   if (isVerbose()) {
3119     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3120       if (BB->hasName()) {
3121         BB->printAsOperand(OutStreamer->GetCommentOS(),
3122                            /*PrintType=*/false, BB->getModule());
3123         OutStreamer->GetCommentOS() << '\n';
3124       }
3125     }
3126 
3127     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3128     emitBasicBlockLoopComments(MBB, MLI, *this);
3129   }
3130 
3131   // Print the main label for the block.
3132   if (shouldEmitLabelForBasicBlock(MBB)) {
3133     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3134       OutStreamer->AddComment("Label of block must be emitted");
3135     OutStreamer->emitLabel(MBB.getSymbol());
3136   } else {
3137     if (isVerbose()) {
3138       // NOTE: Want this comment at start of line, don't emit with AddComment.
3139       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3140                                   false);
3141     }
3142   }
3143 
3144   // With BB sections, each basic block must handle CFI information on its own
3145   // if it begins a section (Entry block is handled separately by
3146   // AsmPrinterHandler::beginFunction).
3147   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3148     for (const HandlerInfo &HI : Handlers)
3149       HI.Handler->beginBasicBlock(MBB);
3150 }
3151 
3152 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3153   // Check if CFI information needs to be updated for this MBB with basic block
3154   // sections.
3155   if (MBB.isEndSection())
3156     for (const HandlerInfo &HI : Handlers)
3157       HI.Handler->endBasicBlock(MBB);
3158 }
3159 
3160 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3161                                 bool IsDefinition) const {
3162   MCSymbolAttr Attr = MCSA_Invalid;
3163 
3164   switch (Visibility) {
3165   default: break;
3166   case GlobalValue::HiddenVisibility:
3167     if (IsDefinition)
3168       Attr = MAI->getHiddenVisibilityAttr();
3169     else
3170       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3171     break;
3172   case GlobalValue::ProtectedVisibility:
3173     Attr = MAI->getProtectedVisibilityAttr();
3174     break;
3175   }
3176 
3177   if (Attr != MCSA_Invalid)
3178     OutStreamer->emitSymbolAttribute(Sym, Attr);
3179 }
3180 
3181 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3182     const MachineBasicBlock &MBB) const {
3183   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3184   // in the labels mode (option `=labels`) and every section beginning in the
3185   // sections mode (`=all` and `=list=`).
3186   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3187     return true;
3188   // A label is needed for any block with at least one predecessor (when that
3189   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3190   // entry, or if a label is forced).
3191   return !MBB.pred_empty() &&
3192          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3193           MBB.hasLabelMustBeEmitted());
3194 }
3195 
3196 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3197 /// exactly one predecessor and the control transfer mechanism between
3198 /// the predecessor and this block is a fall-through.
3199 bool AsmPrinter::
3200 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3201   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3202   // then nothing falls through to it.
3203   if (MBB->isEHPad() || MBB->pred_empty())
3204     return false;
3205 
3206   // If there isn't exactly one predecessor, it can't be a fall through.
3207   if (MBB->pred_size() > 1)
3208     return false;
3209 
3210   // The predecessor has to be immediately before this block.
3211   MachineBasicBlock *Pred = *MBB->pred_begin();
3212   if (!Pred->isLayoutSuccessor(MBB))
3213     return false;
3214 
3215   // If the block is completely empty, then it definitely does fall through.
3216   if (Pred->empty())
3217     return true;
3218 
3219   // Check the terminators in the previous blocks
3220   for (const auto &MI : Pred->terminators()) {
3221     // If it is not a simple branch, we are in a table somewhere.
3222     if (!MI.isBranch() || MI.isIndirectBranch())
3223       return false;
3224 
3225     // If we are the operands of one of the branches, this is not a fall
3226     // through. Note that targets with delay slots will usually bundle
3227     // terminators with the delay slot instruction.
3228     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3229       if (OP->isJTI())
3230         return false;
3231       if (OP->isMBB() && OP->getMBB() == MBB)
3232         return false;
3233     }
3234   }
3235 
3236   return true;
3237 }
3238 
3239 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3240   if (!S.usesMetadata())
3241     return nullptr;
3242 
3243   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3244   gcp_map_type::iterator GCPI = GCMap.find(&S);
3245   if (GCPI != GCMap.end())
3246     return GCPI->second.get();
3247 
3248   auto Name = S.getName();
3249 
3250   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3251        GCMetadataPrinterRegistry::entries())
3252     if (Name == GCMetaPrinter.getName()) {
3253       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3254       GMP->S = &S;
3255       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3256       return IterBool.first->second.get();
3257     }
3258 
3259   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3260 }
3261 
3262 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3263   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3264   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3265   bool NeedsDefault = false;
3266   if (MI->begin() == MI->end())
3267     // No GC strategy, use the default format.
3268     NeedsDefault = true;
3269   else
3270     for (auto &I : *MI) {
3271       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3272         if (MP->emitStackMaps(SM, *this))
3273           continue;
3274       // The strategy doesn't have printer or doesn't emit custom stack maps.
3275       // Use the default format.
3276       NeedsDefault = true;
3277     }
3278 
3279   if (NeedsDefault)
3280     SM.serializeToStackMapSection();
3281 }
3282 
3283 /// Pin vtable to this file.
3284 AsmPrinterHandler::~AsmPrinterHandler() = default;
3285 
3286 void AsmPrinterHandler::markFunctionEnd() {}
3287 
3288 // In the binary's "xray_instr_map" section, an array of these function entries
3289 // describes each instrumentation point.  When XRay patches your code, the index
3290 // into this table will be given to your handler as a patch point identifier.
3291 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3292   auto Kind8 = static_cast<uint8_t>(Kind);
3293   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3294   Out->emitBinaryData(
3295       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3296   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3297   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3298   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3299   Out->emitZeros(Padding);
3300 }
3301 
3302 void AsmPrinter::emitXRayTable() {
3303   if (Sleds.empty())
3304     return;
3305 
3306   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3307   const Function &F = MF->getFunction();
3308   MCSection *InstMap = nullptr;
3309   MCSection *FnSledIndex = nullptr;
3310   const Triple &TT = TM.getTargetTriple();
3311   // Use PC-relative addresses on all targets.
3312   if (TT.isOSBinFormatELF()) {
3313     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3314     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3315     StringRef GroupName;
3316     if (F.hasComdat()) {
3317       Flags |= ELF::SHF_GROUP;
3318       GroupName = F.getComdat()->getName();
3319     }
3320     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3321                                        Flags, 0, GroupName,
3322                                        MCSection::NonUniqueID, LinkedToSym);
3323 
3324     if (!TM.Options.XRayOmitFunctionIndex)
3325       FnSledIndex = OutContext.getELFSection(
3326           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3327           GroupName, MCSection::NonUniqueID, LinkedToSym);
3328   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3329     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3330                                          SectionKind::getReadOnlyWithRel());
3331     if (!TM.Options.XRayOmitFunctionIndex)
3332       FnSledIndex = OutContext.getMachOSection(
3333           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3334   } else {
3335     llvm_unreachable("Unsupported target");
3336   }
3337 
3338   auto WordSizeBytes = MAI->getCodePointerSize();
3339 
3340   // Now we switch to the instrumentation map section. Because this is done
3341   // per-function, we are able to create an index entry that will represent the
3342   // range of sleds associated with a function.
3343   auto &Ctx = OutContext;
3344   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3345   OutStreamer->SwitchSection(InstMap);
3346   OutStreamer->emitLabel(SledsStart);
3347   for (const auto &Sled : Sleds) {
3348     MCSymbol *Dot = Ctx.createTempSymbol();
3349     OutStreamer->emitLabel(Dot);
3350     OutStreamer->emitValueImpl(
3351         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3352                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3353         WordSizeBytes);
3354     OutStreamer->emitValueImpl(
3355         MCBinaryExpr::createSub(
3356             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3357             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3358                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3359                                     Ctx),
3360             Ctx),
3361         WordSizeBytes);
3362     Sled.emit(WordSizeBytes, OutStreamer.get());
3363   }
3364   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3365   OutStreamer->emitLabel(SledsEnd);
3366 
3367   // We then emit a single entry in the index per function. We use the symbols
3368   // that bound the instrumentation map as the range for a specific function.
3369   // Each entry here will be 2 * word size aligned, as we're writing down two
3370   // pointers. This should work for both 32-bit and 64-bit platforms.
3371   if (FnSledIndex) {
3372     OutStreamer->SwitchSection(FnSledIndex);
3373     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3374     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3375     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3376     OutStreamer->SwitchSection(PrevSection);
3377   }
3378   Sleds.clear();
3379 }
3380 
3381 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3382                             SledKind Kind, uint8_t Version) {
3383   const Function &F = MI.getMF()->getFunction();
3384   auto Attr = F.getFnAttribute("function-instrument");
3385   bool LogArgs = F.hasFnAttribute("xray-log-args");
3386   bool AlwaysInstrument =
3387     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3388   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3389     Kind = SledKind::LOG_ARGS_ENTER;
3390   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3391                                        AlwaysInstrument, &F, Version});
3392 }
3393 
3394 void AsmPrinter::emitPatchableFunctionEntries() {
3395   const Function &F = MF->getFunction();
3396   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3397   (void)F.getFnAttribute("patchable-function-prefix")
3398       .getValueAsString()
3399       .getAsInteger(10, PatchableFunctionPrefix);
3400   (void)F.getFnAttribute("patchable-function-entry")
3401       .getValueAsString()
3402       .getAsInteger(10, PatchableFunctionEntry);
3403   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3404     return;
3405   const unsigned PointerSize = getPointerSize();
3406   if (TM.getTargetTriple().isOSBinFormatELF()) {
3407     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3408     const MCSymbolELF *LinkedToSym = nullptr;
3409     StringRef GroupName;
3410 
3411     // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only
3412     // if we are using the integrated assembler.
3413     if (MAI->useIntegratedAssembler()) {
3414       Flags |= ELF::SHF_LINK_ORDER;
3415       if (F.hasComdat()) {
3416         Flags |= ELF::SHF_GROUP;
3417         GroupName = F.getComdat()->getName();
3418       }
3419       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3420     }
3421     OutStreamer->SwitchSection(OutContext.getELFSection(
3422         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3423         MCSection::NonUniqueID, LinkedToSym));
3424     emitAlignment(Align(PointerSize));
3425     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3426   }
3427 }
3428 
3429 uint16_t AsmPrinter::getDwarfVersion() const {
3430   return OutStreamer->getContext().getDwarfVersion();
3431 }
3432 
3433 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3434   OutStreamer->getContext().setDwarfVersion(Version);
3435 }
3436 
3437 bool AsmPrinter::isDwarf64() const {
3438   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3439 }
3440 
3441 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3442   return dwarf::getDwarfOffsetByteSize(
3443       OutStreamer->getContext().getDwarfFormat());
3444 }
3445 
3446 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3447   return dwarf::getUnitLengthFieldByteSize(
3448       OutStreamer->getContext().getDwarfFormat());
3449 }
3450