1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AsmPrinterHandler.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WinException.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/ConstantFolding.h" 31 #include "llvm/Analysis/ObjectUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AsmPrinter.h" 34 #include "llvm/CodeGen/GCMetadata.h" 35 #include "llvm/CodeGen/GCMetadataPrinter.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineConstantPool.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBundle.h" 44 #include "llvm/CodeGen/MachineJumpTableInfo.h" 45 #include "llvm/CodeGen/MachineLoopInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/Constant.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugInfoMetadata.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GlobalAlias.h" 58 #include "llvm/IR/GlobalIFunc.h" 59 #include "llvm/IR/GlobalIndirectSymbol.h" 60 #include "llvm/IR/GlobalObject.h" 61 #include "llvm/IR/GlobalValue.h" 62 #include "llvm/IR/GlobalVariable.h" 63 #include "llvm/IR/Mangler.h" 64 #include "llvm/IR/Metadata.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/MC/MCAsmInfo.h" 69 #include "llvm/MC/MCContext.h" 70 #include "llvm/MC/MCDirectives.h" 71 #include "llvm/MC/MCExpr.h" 72 #include "llvm/MC/MCInst.h" 73 #include "llvm/MC/MCSection.h" 74 #include "llvm/MC/MCSectionELF.h" 75 #include "llvm/MC/MCSectionMachO.h" 76 #include "llvm/MC/MCStreamer.h" 77 #include "llvm/MC/MCSubtargetInfo.h" 78 #include "llvm/MC/MCSymbol.h" 79 #include "llvm/MC/MCTargetOptions.h" 80 #include "llvm/MC/MCValue.h" 81 #include "llvm/MC/SectionKind.h" 82 #include "llvm/Pass.h" 83 #include "llvm/Support/Casting.h" 84 #include "llvm/Support/Compiler.h" 85 #include "llvm/Support/Dwarf.h" 86 #include "llvm/Support/ELF.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/Format.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/TargetRegistry.h" 92 #include "llvm/Support/Timer.h" 93 #include "llvm/Target/TargetFrameLowering.h" 94 #include "llvm/Target/TargetInstrInfo.h" 95 #include "llvm/Target/TargetLowering.h" 96 #include "llvm/Target/TargetLoweringObjectFile.h" 97 #include "llvm/Target/TargetMachine.h" 98 #include "llvm/Target/TargetRegisterInfo.h" 99 #include "llvm/Target/TargetSubtargetInfo.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cinttypes> 103 #include <cstdint> 104 #include <limits> 105 #include <memory> 106 #include <string> 107 #include <utility> 108 #include <vector> 109 110 using namespace llvm; 111 112 #define DEBUG_TYPE "asm-printer" 113 114 static const char *const DWARFGroupName = "dwarf"; 115 static const char *const DWARFGroupDescription = "DWARF Emission"; 116 static const char *const DbgTimerName = "emit"; 117 static const char *const DbgTimerDescription = "Debug Info Emission"; 118 static const char *const EHTimerName = "write_exception"; 119 static const char *const EHTimerDescription = "DWARF Exception Writer"; 120 static const char *const CodeViewLineTablesGroupName = "linetables"; 121 static const char *const CodeViewLineTablesGroupDescription = 122 "CodeView Line Tables"; 123 124 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 125 126 static cl::opt<bool> 127 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 128 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 129 130 char AsmPrinter::ID = 0; 131 132 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 133 static gcp_map_type &getGCMap(void *&P) { 134 if (!P) 135 P = new gcp_map_type(); 136 return *(gcp_map_type*)P; 137 } 138 139 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 140 /// value in log2 form. This rounds up to the preferred alignment if possible 141 /// and legal. 142 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 143 unsigned InBits = 0) { 144 unsigned NumBits = 0; 145 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 146 NumBits = DL.getPreferredAlignmentLog(GVar); 147 148 // If InBits is specified, round it to it. 149 if (InBits > NumBits) 150 NumBits = InBits; 151 152 // If the GV has a specified alignment, take it into account. 153 if (GV->getAlignment() == 0) 154 return NumBits; 155 156 unsigned GVAlign = Log2_32(GV->getAlignment()); 157 158 // If the GVAlign is larger than NumBits, or if we are required to obey 159 // NumBits because the GV has an assigned section, obey it. 160 if (GVAlign > NumBits || GV->hasSection()) 161 NumBits = GVAlign; 162 return NumBits; 163 } 164 165 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 166 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 167 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 168 VerboseAsm = OutStreamer->isVerboseAsm(); 169 } 170 171 AsmPrinter::~AsmPrinter() { 172 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 173 174 if (GCMetadataPrinters) { 175 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 176 177 delete &GCMap; 178 GCMetadataPrinters = nullptr; 179 } 180 } 181 182 bool AsmPrinter::isPositionIndependent() const { 183 return TM.isPositionIndependent(); 184 } 185 186 /// getFunctionNumber - Return a unique ID for the current function. 187 /// 188 unsigned AsmPrinter::getFunctionNumber() const { 189 return MF->getFunctionNumber(); 190 } 191 192 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 193 return *TM.getObjFileLowering(); 194 } 195 196 const DataLayout &AsmPrinter::getDataLayout() const { 197 return MMI->getModule()->getDataLayout(); 198 } 199 200 // Do not use the cached DataLayout because some client use it without a Module 201 // (llvm-dsymutil, llvm-dwarfdump). 202 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 203 204 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 205 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 206 return MF->getSubtarget<MCSubtargetInfo>(); 207 } 208 209 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 210 S.EmitInstruction(Inst, getSubtargetInfo()); 211 } 212 213 /// getCurrentSection() - Return the current section we are emitting to. 214 const MCSection *AsmPrinter::getCurrentSection() const { 215 return OutStreamer->getCurrentSectionOnly(); 216 } 217 218 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 219 AU.setPreservesAll(); 220 MachineFunctionPass::getAnalysisUsage(AU); 221 AU.addRequired<MachineModuleInfo>(); 222 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 223 AU.addRequired<GCModuleInfo>(); 224 if (isVerbose()) 225 AU.addRequired<MachineLoopInfo>(); 226 } 227 228 bool AsmPrinter::doInitialization(Module &M) { 229 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 230 231 // Initialize TargetLoweringObjectFile. 232 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 233 .Initialize(OutContext, TM); 234 235 OutStreamer->InitSections(false); 236 237 // Emit the version-min deplyment target directive if needed. 238 // 239 // FIXME: If we end up with a collection of these sorts of Darwin-specific 240 // or ELF-specific things, it may make sense to have a platform helper class 241 // that will work with the target helper class. For now keep it here, as the 242 // alternative is duplicated code in each of the target asm printers that 243 // use the directive, where it would need the same conditionalization 244 // anyway. 245 const Triple &TT = TM.getTargetTriple(); 246 // If there is a version specified, Major will be non-zero. 247 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 248 unsigned Major, Minor, Update; 249 MCVersionMinType VersionType; 250 if (TT.isWatchOS()) { 251 VersionType = MCVM_WatchOSVersionMin; 252 TT.getWatchOSVersion(Major, Minor, Update); 253 } else if (TT.isTvOS()) { 254 VersionType = MCVM_TvOSVersionMin; 255 TT.getiOSVersion(Major, Minor, Update); 256 } else if (TT.isMacOSX()) { 257 VersionType = MCVM_OSXVersionMin; 258 if (!TT.getMacOSXVersion(Major, Minor, Update)) 259 Major = 0; 260 } else { 261 VersionType = MCVM_IOSVersionMin; 262 TT.getiOSVersion(Major, Minor, Update); 263 } 264 if (Major != 0) 265 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 266 } 267 268 // Allow the target to emit any magic that it wants at the start of the file. 269 EmitStartOfAsmFile(M); 270 271 // Very minimal debug info. It is ignored if we emit actual debug info. If we 272 // don't, this at least helps the user find where a global came from. 273 if (MAI->hasSingleParameterDotFile()) { 274 // .file "foo.c" 275 OutStreamer->EmitFileDirective(M.getSourceFileName()); 276 } 277 278 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 279 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 280 for (auto &I : *MI) 281 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 282 MP->beginAssembly(M, *MI, *this); 283 284 // Emit module-level inline asm if it exists. 285 if (!M.getModuleInlineAsm().empty()) { 286 // We're at the module level. Construct MCSubtarget from the default CPU 287 // and target triple. 288 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 289 TM.getTargetTriple().str(), TM.getTargetCPU(), 290 TM.getTargetFeatureString())); 291 OutStreamer->AddComment("Start of file scope inline assembly"); 292 OutStreamer->AddBlankLine(); 293 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 294 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 295 OutStreamer->AddComment("End of file scope inline assembly"); 296 OutStreamer->AddBlankLine(); 297 } 298 299 if (MAI->doesSupportDebugInformation()) { 300 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 301 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 302 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 303 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 304 DbgTimerName, DbgTimerDescription, 305 CodeViewLineTablesGroupName, 306 CodeViewLineTablesGroupDescription)); 307 } 308 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 309 DD = new DwarfDebug(this, &M); 310 DD->beginModule(); 311 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 312 DWARFGroupName, DWARFGroupDescription)); 313 } 314 } 315 316 switch (MAI->getExceptionHandlingType()) { 317 case ExceptionHandling::SjLj: 318 case ExceptionHandling::DwarfCFI: 319 case ExceptionHandling::ARM: 320 isCFIMoveForDebugging = true; 321 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 322 break; 323 for (auto &F: M.getFunctionList()) { 324 // If the module contains any function with unwind data, 325 // .eh_frame has to be emitted. 326 // Ignore functions that won't get emitted. 327 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 328 isCFIMoveForDebugging = false; 329 break; 330 } 331 } 332 break; 333 default: 334 isCFIMoveForDebugging = false; 335 break; 336 } 337 338 EHStreamer *ES = nullptr; 339 switch (MAI->getExceptionHandlingType()) { 340 case ExceptionHandling::None: 341 break; 342 case ExceptionHandling::SjLj: 343 case ExceptionHandling::DwarfCFI: 344 ES = new DwarfCFIException(this); 345 break; 346 case ExceptionHandling::ARM: 347 ES = new ARMException(this); 348 break; 349 case ExceptionHandling::WinEH: 350 switch (MAI->getWinEHEncodingType()) { 351 default: llvm_unreachable("unsupported unwinding information encoding"); 352 case WinEH::EncodingType::Invalid: 353 break; 354 case WinEH::EncodingType::X86: 355 case WinEH::EncodingType::Itanium: 356 ES = new WinException(this); 357 break; 358 } 359 break; 360 } 361 if (ES) 362 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 363 DWARFGroupName, DWARFGroupDescription)); 364 return false; 365 } 366 367 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 368 if (!MAI.hasWeakDefCanBeHiddenDirective()) 369 return false; 370 371 return canBeOmittedFromSymbolTable(GV); 372 } 373 374 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 375 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 376 switch (Linkage) { 377 case GlobalValue::CommonLinkage: 378 case GlobalValue::LinkOnceAnyLinkage: 379 case GlobalValue::LinkOnceODRLinkage: 380 case GlobalValue::WeakAnyLinkage: 381 case GlobalValue::WeakODRLinkage: 382 if (MAI->hasWeakDefDirective()) { 383 // .globl _foo 384 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 385 386 if (!canBeHidden(GV, *MAI)) 387 // .weak_definition _foo 388 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 389 else 390 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 391 } else if (MAI->hasLinkOnceDirective()) { 392 // .globl _foo 393 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 394 //NOTE: linkonce is handled by the section the symbol was assigned to. 395 } else { 396 // .weak _foo 397 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 398 } 399 return; 400 case GlobalValue::ExternalLinkage: 401 // If external, declare as a global symbol: .globl _foo 402 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 403 return; 404 case GlobalValue::PrivateLinkage: 405 case GlobalValue::InternalLinkage: 406 return; 407 case GlobalValue::AppendingLinkage: 408 case GlobalValue::AvailableExternallyLinkage: 409 case GlobalValue::ExternalWeakLinkage: 410 llvm_unreachable("Should never emit this"); 411 } 412 llvm_unreachable("Unknown linkage type!"); 413 } 414 415 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 416 const GlobalValue *GV) const { 417 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 418 } 419 420 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 421 return TM.getSymbol(GV); 422 } 423 424 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 425 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 426 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 427 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 428 "No emulated TLS variables in the common section"); 429 430 // Never emit TLS variable xyz in emulated TLS model. 431 // The initialization value is in __emutls_t.xyz instead of xyz. 432 if (IsEmuTLSVar) 433 return; 434 435 if (GV->hasInitializer()) { 436 // Check to see if this is a special global used by LLVM, if so, emit it. 437 if (EmitSpecialLLVMGlobal(GV)) 438 return; 439 440 // Skip the emission of global equivalents. The symbol can be emitted later 441 // on by emitGlobalGOTEquivs in case it turns out to be needed. 442 if (GlobalGOTEquivs.count(getSymbol(GV))) 443 return; 444 445 if (isVerbose()) { 446 // When printing the control variable __emutls_v.*, 447 // we don't need to print the original TLS variable name. 448 GV->printAsOperand(OutStreamer->GetCommentOS(), 449 /*PrintType=*/false, GV->getParent()); 450 OutStreamer->GetCommentOS() << '\n'; 451 } 452 } 453 454 MCSymbol *GVSym = getSymbol(GV); 455 MCSymbol *EmittedSym = GVSym; 456 457 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 458 // attributes. 459 // GV's or GVSym's attributes will be used for the EmittedSym. 460 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 461 462 if (!GV->hasInitializer()) // External globals require no extra code. 463 return; 464 465 GVSym->redefineIfPossible(); 466 if (GVSym->isDefined() || GVSym->isVariable()) 467 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 468 "' is already defined"); 469 470 if (MAI->hasDotTypeDotSizeDirective()) 471 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 472 473 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 474 475 const DataLayout &DL = GV->getParent()->getDataLayout(); 476 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 477 478 // If the alignment is specified, we *must* obey it. Overaligning a global 479 // with a specified alignment is a prompt way to break globals emitted to 480 // sections and expected to be contiguous (e.g. ObjC metadata). 481 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 482 483 for (const HandlerInfo &HI : Handlers) { 484 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 485 HI.TimerGroupName, HI.TimerGroupDescription, 486 TimePassesIsEnabled); 487 HI.Handler->setSymbolSize(GVSym, Size); 488 } 489 490 // Handle common symbols 491 if (GVKind.isCommon()) { 492 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 493 unsigned Align = 1 << AlignLog; 494 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 495 Align = 0; 496 497 // .comm _foo, 42, 4 498 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 499 return; 500 } 501 502 // Determine to which section this global should be emitted. 503 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 504 505 // If we have a bss global going to a section that supports the 506 // zerofill directive, do so here. 507 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 508 TheSection->isVirtualSection()) { 509 if (Size == 0) 510 Size = 1; // zerofill of 0 bytes is undefined. 511 unsigned Align = 1 << AlignLog; 512 EmitLinkage(GV, GVSym); 513 // .zerofill __DATA, __bss, _foo, 400, 5 514 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 515 return; 516 } 517 518 // If this is a BSS local symbol and we are emitting in the BSS 519 // section use .lcomm/.comm directive. 520 if (GVKind.isBSSLocal() && 521 getObjFileLowering().getBSSSection() == TheSection) { 522 if (Size == 0) 523 Size = 1; // .comm Foo, 0 is undefined, avoid it. 524 unsigned Align = 1 << AlignLog; 525 526 // Use .lcomm only if it supports user-specified alignment. 527 // Otherwise, while it would still be correct to use .lcomm in some 528 // cases (e.g. when Align == 1), the external assembler might enfore 529 // some -unknown- default alignment behavior, which could cause 530 // spurious differences between external and integrated assembler. 531 // Prefer to simply fall back to .local / .comm in this case. 532 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 533 // .lcomm _foo, 42 534 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 535 return; 536 } 537 538 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 539 Align = 0; 540 541 // .local _foo 542 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 543 // .comm _foo, 42, 4 544 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 545 return; 546 } 547 548 // Handle thread local data for mach-o which requires us to output an 549 // additional structure of data and mangle the original symbol so that we 550 // can reference it later. 551 // 552 // TODO: This should become an "emit thread local global" method on TLOF. 553 // All of this macho specific stuff should be sunk down into TLOFMachO and 554 // stuff like "TLSExtraDataSection" should no longer be part of the parent 555 // TLOF class. This will also make it more obvious that stuff like 556 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 557 // specific code. 558 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 559 // Emit the .tbss symbol 560 MCSymbol *MangSym = 561 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 562 563 if (GVKind.isThreadBSS()) { 564 TheSection = getObjFileLowering().getTLSBSSSection(); 565 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 566 } else if (GVKind.isThreadData()) { 567 OutStreamer->SwitchSection(TheSection); 568 569 EmitAlignment(AlignLog, GV); 570 OutStreamer->EmitLabel(MangSym); 571 572 EmitGlobalConstant(GV->getParent()->getDataLayout(), 573 GV->getInitializer()); 574 } 575 576 OutStreamer->AddBlankLine(); 577 578 // Emit the variable struct for the runtime. 579 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 580 581 OutStreamer->SwitchSection(TLVSect); 582 // Emit the linkage here. 583 EmitLinkage(GV, GVSym); 584 OutStreamer->EmitLabel(GVSym); 585 586 // Three pointers in size: 587 // - __tlv_bootstrap - used to make sure support exists 588 // - spare pointer, used when mapped by the runtime 589 // - pointer to mangled symbol above with initializer 590 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 591 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 592 PtrSize); 593 OutStreamer->EmitIntValue(0, PtrSize); 594 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 595 596 OutStreamer->AddBlankLine(); 597 return; 598 } 599 600 MCSymbol *EmittedInitSym = GVSym; 601 602 OutStreamer->SwitchSection(TheSection); 603 604 EmitLinkage(GV, EmittedInitSym); 605 EmitAlignment(AlignLog, GV); 606 607 OutStreamer->EmitLabel(EmittedInitSym); 608 609 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 610 611 if (MAI->hasDotTypeDotSizeDirective()) 612 // .size foo, 42 613 OutStreamer->emitELFSize(EmittedInitSym, 614 MCConstantExpr::create(Size, OutContext)); 615 616 OutStreamer->AddBlankLine(); 617 } 618 619 /// Emit the directive and value for debug thread local expression 620 /// 621 /// \p Value - The value to emit. 622 /// \p Size - The size of the integer (in bytes) to emit. 623 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 624 unsigned Size) const { 625 OutStreamer->EmitValue(Value, Size); 626 } 627 628 /// EmitFunctionHeader - This method emits the header for the current 629 /// function. 630 void AsmPrinter::EmitFunctionHeader() { 631 // Print out constants referenced by the function 632 EmitConstantPool(); 633 634 // Print the 'header' of function. 635 const Function *F = MF->getFunction(); 636 637 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 638 EmitVisibility(CurrentFnSym, F->getVisibility()); 639 640 EmitLinkage(F, CurrentFnSym); 641 if (MAI->hasFunctionAlignment()) 642 EmitAlignment(MF->getAlignment(), F); 643 644 if (MAI->hasDotTypeDotSizeDirective()) 645 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 646 647 if (isVerbose()) { 648 F->printAsOperand(OutStreamer->GetCommentOS(), 649 /*PrintType=*/false, F->getParent()); 650 OutStreamer->GetCommentOS() << '\n'; 651 } 652 653 // Emit the prefix data. 654 if (F->hasPrefixData()) { 655 if (MAI->hasSubsectionsViaSymbols()) { 656 // Preserving prefix data on platforms which use subsections-via-symbols 657 // is a bit tricky. Here we introduce a symbol for the prefix data 658 // and use the .alt_entry attribute to mark the function's real entry point 659 // as an alternative entry point to the prefix-data symbol. 660 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 661 OutStreamer->EmitLabel(PrefixSym); 662 663 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 664 665 // Emit an .alt_entry directive for the actual function symbol. 666 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 667 } else { 668 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 669 } 670 } 671 672 // Emit the CurrentFnSym. This is a virtual function to allow targets to 673 // do their wild and crazy things as required. 674 EmitFunctionEntryLabel(); 675 676 // If the function had address-taken blocks that got deleted, then we have 677 // references to the dangling symbols. Emit them at the start of the function 678 // so that we don't get references to undefined symbols. 679 std::vector<MCSymbol*> DeadBlockSyms; 680 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 681 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 682 OutStreamer->AddComment("Address taken block that was later removed"); 683 OutStreamer->EmitLabel(DeadBlockSyms[i]); 684 } 685 686 if (CurrentFnBegin) { 687 if (MAI->useAssignmentForEHBegin()) { 688 MCSymbol *CurPos = OutContext.createTempSymbol(); 689 OutStreamer->EmitLabel(CurPos); 690 OutStreamer->EmitAssignment(CurrentFnBegin, 691 MCSymbolRefExpr::create(CurPos, OutContext)); 692 } else { 693 OutStreamer->EmitLabel(CurrentFnBegin); 694 } 695 } 696 697 // Emit pre-function debug and/or EH information. 698 for (const HandlerInfo &HI : Handlers) { 699 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 700 HI.TimerGroupDescription, TimePassesIsEnabled); 701 HI.Handler->beginFunction(MF); 702 } 703 704 // Emit the prologue data. 705 if (F->hasPrologueData()) 706 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 707 } 708 709 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 710 /// function. This can be overridden by targets as required to do custom stuff. 711 void AsmPrinter::EmitFunctionEntryLabel() { 712 CurrentFnSym->redefineIfPossible(); 713 714 // The function label could have already been emitted if two symbols end up 715 // conflicting due to asm renaming. Detect this and emit an error. 716 if (CurrentFnSym->isVariable()) 717 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 718 "' is a protected alias"); 719 if (CurrentFnSym->isDefined()) 720 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 721 "' label emitted multiple times to assembly file"); 722 723 return OutStreamer->EmitLabel(CurrentFnSym); 724 } 725 726 /// emitComments - Pretty-print comments for instructions. 727 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 728 AsmPrinter *AP) { 729 const MachineFunction *MF = MI.getParent()->getParent(); 730 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 731 732 // Check for spills and reloads 733 int FI; 734 735 const MachineFrameInfo &MFI = MF->getFrameInfo(); 736 bool Commented = false; 737 738 // We assume a single instruction only has a spill or reload, not 739 // both. 740 const MachineMemOperand *MMO; 741 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 742 if (MFI.isSpillSlotObjectIndex(FI)) { 743 MMO = *MI.memoperands_begin(); 744 CommentOS << MMO->getSize() << "-byte Reload"; 745 Commented = true; 746 } 747 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 748 if (MFI.isSpillSlotObjectIndex(FI)) { 749 CommentOS << MMO->getSize() << "-byte Folded Reload"; 750 Commented = true; 751 } 752 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 753 if (MFI.isSpillSlotObjectIndex(FI)) { 754 MMO = *MI.memoperands_begin(); 755 CommentOS << MMO->getSize() << "-byte Spill"; 756 Commented = true; 757 } 758 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 759 if (MFI.isSpillSlotObjectIndex(FI)) { 760 CommentOS << MMO->getSize() << "-byte Folded Spill"; 761 Commented = true; 762 } 763 } 764 765 // Check for spill-induced copies 766 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 767 Commented = true; 768 CommentOS << " Reload Reuse"; 769 } 770 771 if (Commented && AP->EnablePrintSchedInfo) 772 // If any comment was added above and we need sched info comment then 773 // add this new comment just after the above comment w/o "\n" between them. 774 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 775 else if (Commented) 776 CommentOS << "\n"; 777 } 778 779 /// emitImplicitDef - This method emits the specified machine instruction 780 /// that is an implicit def. 781 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 782 unsigned RegNo = MI->getOperand(0).getReg(); 783 784 SmallString<128> Str; 785 raw_svector_ostream OS(Str); 786 OS << "implicit-def: " 787 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 788 789 OutStreamer->AddComment(OS.str()); 790 OutStreamer->AddBlankLine(); 791 } 792 793 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 794 std::string Str; 795 raw_string_ostream OS(Str); 796 OS << "kill:"; 797 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 798 const MachineOperand &Op = MI->getOperand(i); 799 assert(Op.isReg() && "KILL instruction must have only register operands"); 800 OS << ' ' 801 << PrintReg(Op.getReg(), 802 AP.MF->getSubtarget().getRegisterInfo()) 803 << (Op.isDef() ? "<def>" : "<kill>"); 804 } 805 AP.OutStreamer->AddComment(OS.str()); 806 AP.OutStreamer->AddBlankLine(); 807 } 808 809 /// emitDebugValueComment - This method handles the target-independent form 810 /// of DBG_VALUE, returning true if it was able to do so. A false return 811 /// means the target will need to handle MI in EmitInstruction. 812 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 813 // This code handles only the 4-operand target-independent form. 814 if (MI->getNumOperands() != 4) 815 return false; 816 817 SmallString<128> Str; 818 raw_svector_ostream OS(Str); 819 OS << "DEBUG_VALUE: "; 820 821 const DILocalVariable *V = MI->getDebugVariable(); 822 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 823 StringRef Name = SP->getName(); 824 if (!Name.empty()) 825 OS << Name << ":"; 826 } 827 OS << V->getName(); 828 OS << " <- "; 829 830 // The second operand is only an offset if it's an immediate. 831 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 832 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 833 const DIExpression *Expr = MI->getDebugExpression(); 834 if (Expr->getNumElements()) { 835 OS << '['; 836 bool NeedSep = false; 837 for (auto Op : Expr->expr_ops()) { 838 if (NeedSep) 839 OS << ", "; 840 else 841 NeedSep = true; 842 OS << dwarf::OperationEncodingString(Op.getOp()); 843 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 844 OS << ' ' << Op.getArg(I); 845 } 846 OS << "] "; 847 } 848 849 // Register or immediate value. Register 0 means undef. 850 if (MI->getOperand(0).isFPImm()) { 851 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 852 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 853 OS << (double)APF.convertToFloat(); 854 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 855 OS << APF.convertToDouble(); 856 } else { 857 // There is no good way to print long double. Convert a copy to 858 // double. Ah well, it's only a comment. 859 bool ignored; 860 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 861 &ignored); 862 OS << "(long double) " << APF.convertToDouble(); 863 } 864 } else if (MI->getOperand(0).isImm()) { 865 OS << MI->getOperand(0).getImm(); 866 } else if (MI->getOperand(0).isCImm()) { 867 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 868 } else { 869 unsigned Reg; 870 if (MI->getOperand(0).isReg()) { 871 Reg = MI->getOperand(0).getReg(); 872 } else { 873 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 874 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 875 Offset += TFI->getFrameIndexReference(*AP.MF, 876 MI->getOperand(0).getIndex(), Reg); 877 MemLoc = true; 878 } 879 if (Reg == 0) { 880 // Suppress offset, it is not meaningful here. 881 OS << "undef"; 882 // NOTE: Want this comment at start of line, don't emit with AddComment. 883 AP.OutStreamer->emitRawComment(OS.str()); 884 return true; 885 } 886 if (MemLoc) 887 OS << '['; 888 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 889 } 890 891 if (MemLoc) 892 OS << '+' << Offset << ']'; 893 894 // NOTE: Want this comment at start of line, don't emit with AddComment. 895 AP.OutStreamer->emitRawComment(OS.str()); 896 return true; 897 } 898 899 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 900 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 901 MF->getFunction()->needsUnwindTableEntry()) 902 return CFI_M_EH; 903 904 if (MMI->hasDebugInfo()) 905 return CFI_M_Debug; 906 907 return CFI_M_None; 908 } 909 910 bool AsmPrinter::needsSEHMoves() { 911 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 912 } 913 914 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 915 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 916 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 917 ExceptionHandlingType != ExceptionHandling::ARM) 918 return; 919 920 if (needsCFIMoves() == CFI_M_None) 921 return; 922 923 // If there is no "real" instruction following this CFI instruction, skip 924 // emitting it; it would be beyond the end of the function's FDE range. 925 auto *MBB = MI.getParent(); 926 auto I = std::next(MI.getIterator()); 927 while (I != MBB->end() && I->isTransient()) 928 ++I; 929 if (I == MBB->instr_end() && 930 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 931 return; 932 933 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 934 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 935 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 936 emitCFIInstruction(CFI); 937 } 938 939 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 940 // The operands are the MCSymbol and the frame offset of the allocation. 941 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 942 int FrameOffset = MI.getOperand(1).getImm(); 943 944 // Emit a symbol assignment. 945 OutStreamer->EmitAssignment(FrameAllocSym, 946 MCConstantExpr::create(FrameOffset, OutContext)); 947 } 948 949 /// EmitFunctionBody - This method emits the body and trailer for a 950 /// function. 951 void AsmPrinter::EmitFunctionBody() { 952 EmitFunctionHeader(); 953 954 // Emit target-specific gunk before the function body. 955 EmitFunctionBodyStart(); 956 957 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 958 959 // Print out code for the function. 960 bool HasAnyRealCode = false; 961 int NumInstsInFunction = 0; 962 for (auto &MBB : *MF) { 963 // Print a label for the basic block. 964 EmitBasicBlockStart(MBB); 965 for (auto &MI : MBB) { 966 967 // Print the assembly for the instruction. 968 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 969 !MI.isDebugValue()) { 970 HasAnyRealCode = true; 971 ++NumInstsInFunction; 972 } 973 974 if (ShouldPrintDebugScopes) { 975 for (const HandlerInfo &HI : Handlers) { 976 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 977 HI.TimerGroupName, HI.TimerGroupDescription, 978 TimePassesIsEnabled); 979 HI.Handler->beginInstruction(&MI); 980 } 981 } 982 983 if (isVerbose()) 984 emitComments(MI, OutStreamer->GetCommentOS(), this); 985 986 switch (MI.getOpcode()) { 987 case TargetOpcode::CFI_INSTRUCTION: 988 emitCFIInstruction(MI); 989 break; 990 991 case TargetOpcode::LOCAL_ESCAPE: 992 emitFrameAlloc(MI); 993 break; 994 995 case TargetOpcode::EH_LABEL: 996 case TargetOpcode::GC_LABEL: 997 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 998 break; 999 case TargetOpcode::INLINEASM: 1000 EmitInlineAsm(&MI); 1001 break; 1002 case TargetOpcode::DBG_VALUE: 1003 if (isVerbose()) { 1004 if (!emitDebugValueComment(&MI, *this)) 1005 EmitInstruction(&MI); 1006 } 1007 break; 1008 case TargetOpcode::IMPLICIT_DEF: 1009 if (isVerbose()) emitImplicitDef(&MI); 1010 break; 1011 case TargetOpcode::KILL: 1012 if (isVerbose()) emitKill(&MI, *this); 1013 break; 1014 default: 1015 EmitInstruction(&MI); 1016 break; 1017 } 1018 1019 if (ShouldPrintDebugScopes) { 1020 for (const HandlerInfo &HI : Handlers) { 1021 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1022 HI.TimerGroupName, HI.TimerGroupDescription, 1023 TimePassesIsEnabled); 1024 HI.Handler->endInstruction(); 1025 } 1026 } 1027 } 1028 1029 EmitBasicBlockEnd(MBB); 1030 } 1031 1032 EmittedInsts += NumInstsInFunction; 1033 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1034 MF->getFunction()->getSubprogram(), 1035 &MF->front()); 1036 R << ore::NV("NumInstructions", NumInstsInFunction) 1037 << " instructions in function"; 1038 ORE->emit(R); 1039 1040 // If the function is empty and the object file uses .subsections_via_symbols, 1041 // then we need to emit *something* to the function body to prevent the 1042 // labels from collapsing together. Just emit a noop. 1043 // Similarly, don't emit empty functions on Windows either. It can lead to 1044 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1045 // after linking, causing the kernel not to load the binary: 1046 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1047 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1048 const Triple &TT = TM.getTargetTriple(); 1049 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1050 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1051 MCInst Noop; 1052 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1053 1054 // Targets can opt-out of emitting the noop here by leaving the opcode 1055 // unspecified. 1056 if (Noop.getOpcode()) { 1057 OutStreamer->AddComment("avoids zero-length function"); 1058 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1059 } 1060 } 1061 1062 const Function *F = MF->getFunction(); 1063 for (const auto &BB : *F) { 1064 if (!BB.hasAddressTaken()) 1065 continue; 1066 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1067 if (Sym->isDefined()) 1068 continue; 1069 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1070 OutStreamer->EmitLabel(Sym); 1071 } 1072 1073 // Emit target-specific gunk after the function body. 1074 EmitFunctionBodyEnd(); 1075 1076 if (!MF->getLandingPads().empty() || MMI->hasDebugInfo() || 1077 MF->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 1078 // Create a symbol for the end of function. 1079 CurrentFnEnd = createTempSymbol("func_end"); 1080 OutStreamer->EmitLabel(CurrentFnEnd); 1081 } 1082 1083 // If the target wants a .size directive for the size of the function, emit 1084 // it. 1085 if (MAI->hasDotTypeDotSizeDirective()) { 1086 // We can get the size as difference between the function label and the 1087 // temp label. 1088 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1089 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1090 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1091 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1092 } 1093 1094 for (const HandlerInfo &HI : Handlers) { 1095 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1096 HI.TimerGroupDescription, TimePassesIsEnabled); 1097 HI.Handler->markFunctionEnd(); 1098 } 1099 1100 // Print out jump tables referenced by the function. 1101 EmitJumpTableInfo(); 1102 1103 // Emit post-function debug and/or EH information. 1104 for (const HandlerInfo &HI : Handlers) { 1105 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1106 HI.TimerGroupDescription, TimePassesIsEnabled); 1107 HI.Handler->endFunction(MF); 1108 } 1109 1110 OutStreamer->AddBlankLine(); 1111 } 1112 1113 /// \brief Compute the number of Global Variables that uses a Constant. 1114 static unsigned getNumGlobalVariableUses(const Constant *C) { 1115 if (!C) 1116 return 0; 1117 1118 if (isa<GlobalVariable>(C)) 1119 return 1; 1120 1121 unsigned NumUses = 0; 1122 for (auto *CU : C->users()) 1123 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1124 1125 return NumUses; 1126 } 1127 1128 /// \brief Only consider global GOT equivalents if at least one user is a 1129 /// cstexpr inside an initializer of another global variables. Also, don't 1130 /// handle cstexpr inside instructions. During global variable emission, 1131 /// candidates are skipped and are emitted later in case at least one cstexpr 1132 /// isn't replaced by a PC relative GOT entry access. 1133 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1134 unsigned &NumGOTEquivUsers) { 1135 // Global GOT equivalents are unnamed private globals with a constant 1136 // pointer initializer to another global symbol. They must point to a 1137 // GlobalVariable or Function, i.e., as GlobalValue. 1138 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1139 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1140 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1141 return false; 1142 1143 // To be a got equivalent, at least one of its users need to be a constant 1144 // expression used by another global variable. 1145 for (auto *U : GV->users()) 1146 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1147 1148 return NumGOTEquivUsers > 0; 1149 } 1150 1151 /// \brief Unnamed constant global variables solely contaning a pointer to 1152 /// another globals variable is equivalent to a GOT table entry; it contains the 1153 /// the address of another symbol. Optimize it and replace accesses to these 1154 /// "GOT equivalents" by using the GOT entry for the final global instead. 1155 /// Compute GOT equivalent candidates among all global variables to avoid 1156 /// emitting them if possible later on, after it use is replaced by a GOT entry 1157 /// access. 1158 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1159 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1160 return; 1161 1162 for (const auto &G : M.globals()) { 1163 unsigned NumGOTEquivUsers = 0; 1164 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1165 continue; 1166 1167 const MCSymbol *GOTEquivSym = getSymbol(&G); 1168 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1169 } 1170 } 1171 1172 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1173 /// for PC relative GOT entry conversion, in such cases we need to emit such 1174 /// globals we previously omitted in EmitGlobalVariable. 1175 void AsmPrinter::emitGlobalGOTEquivs() { 1176 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1177 return; 1178 1179 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1180 for (auto &I : GlobalGOTEquivs) { 1181 const GlobalVariable *GV = I.second.first; 1182 unsigned Cnt = I.second.second; 1183 if (Cnt) 1184 FailedCandidates.push_back(GV); 1185 } 1186 GlobalGOTEquivs.clear(); 1187 1188 for (auto *GV : FailedCandidates) 1189 EmitGlobalVariable(GV); 1190 } 1191 1192 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1193 const GlobalIndirectSymbol& GIS) { 1194 MCSymbol *Name = getSymbol(&GIS); 1195 1196 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1197 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1198 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1199 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1200 else 1201 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1202 1203 // Set the symbol type to function if the alias has a function type. 1204 // This affects codegen when the aliasee is not a function. 1205 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1206 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1207 if (isa<GlobalIFunc>(GIS)) 1208 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1209 } 1210 1211 EmitVisibility(Name, GIS.getVisibility()); 1212 1213 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1214 1215 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1216 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1217 1218 // Emit the directives as assignments aka .set: 1219 OutStreamer->EmitAssignment(Name, Expr); 1220 1221 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1222 // If the aliasee does not correspond to a symbol in the output, i.e. the 1223 // alias is not of an object or the aliased object is private, then set the 1224 // size of the alias symbol from the type of the alias. We don't do this in 1225 // other situations as the alias and aliasee having differing types but same 1226 // size may be intentional. 1227 const GlobalObject *BaseObject = GA->getBaseObject(); 1228 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1229 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1230 const DataLayout &DL = M.getDataLayout(); 1231 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1232 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1233 } 1234 } 1235 } 1236 1237 bool AsmPrinter::doFinalization(Module &M) { 1238 // Set the MachineFunction to nullptr so that we can catch attempted 1239 // accesses to MF specific features at the module level and so that 1240 // we can conditionalize accesses based on whether or not it is nullptr. 1241 MF = nullptr; 1242 1243 // Gather all GOT equivalent globals in the module. We really need two 1244 // passes over the globals: one to compute and another to avoid its emission 1245 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1246 // where the got equivalent shows up before its use. 1247 computeGlobalGOTEquivs(M); 1248 1249 // Emit global variables. 1250 for (const auto &G : M.globals()) 1251 EmitGlobalVariable(&G); 1252 1253 // Emit remaining GOT equivalent globals. 1254 emitGlobalGOTEquivs(); 1255 1256 // Emit visibility info for declarations 1257 for (const Function &F : M) { 1258 if (!F.isDeclarationForLinker()) 1259 continue; 1260 GlobalValue::VisibilityTypes V = F.getVisibility(); 1261 if (V == GlobalValue::DefaultVisibility) 1262 continue; 1263 1264 MCSymbol *Name = getSymbol(&F); 1265 EmitVisibility(Name, V, false); 1266 } 1267 1268 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1269 1270 // Emit module flags. 1271 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1272 M.getModuleFlagsMetadata(ModuleFlags); 1273 if (!ModuleFlags.empty()) 1274 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM); 1275 1276 if (TM.getTargetTriple().isOSBinFormatELF()) { 1277 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1278 1279 // Output stubs for external and common global variables. 1280 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1281 if (!Stubs.empty()) { 1282 OutStreamer->SwitchSection(TLOF.getDataSection()); 1283 const DataLayout &DL = M.getDataLayout(); 1284 1285 for (const auto &Stub : Stubs) { 1286 OutStreamer->EmitLabel(Stub.first); 1287 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1288 DL.getPointerSize()); 1289 } 1290 } 1291 } 1292 1293 // Finalize debug and EH information. 1294 for (const HandlerInfo &HI : Handlers) { 1295 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1296 HI.TimerGroupDescription, TimePassesIsEnabled); 1297 HI.Handler->endModule(); 1298 delete HI.Handler; 1299 } 1300 Handlers.clear(); 1301 DD = nullptr; 1302 1303 // If the target wants to know about weak references, print them all. 1304 if (MAI->getWeakRefDirective()) { 1305 // FIXME: This is not lazy, it would be nice to only print weak references 1306 // to stuff that is actually used. Note that doing so would require targets 1307 // to notice uses in operands (due to constant exprs etc). This should 1308 // happen with the MC stuff eventually. 1309 1310 // Print out module-level global objects here. 1311 for (const auto &GO : M.global_objects()) { 1312 if (!GO.hasExternalWeakLinkage()) 1313 continue; 1314 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1315 } 1316 } 1317 1318 OutStreamer->AddBlankLine(); 1319 1320 // Print aliases in topological order, that is, for each alias a = b, 1321 // b must be printed before a. 1322 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1323 // such an order to generate correct TOC information. 1324 SmallVector<const GlobalAlias *, 16> AliasStack; 1325 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1326 for (const auto &Alias : M.aliases()) { 1327 for (const GlobalAlias *Cur = &Alias; Cur; 1328 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1329 if (!AliasVisited.insert(Cur).second) 1330 break; 1331 AliasStack.push_back(Cur); 1332 } 1333 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1334 emitGlobalIndirectSymbol(M, *AncestorAlias); 1335 AliasStack.clear(); 1336 } 1337 for (const auto &IFunc : M.ifuncs()) 1338 emitGlobalIndirectSymbol(M, IFunc); 1339 1340 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1341 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1342 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1343 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1344 MP->finishAssembly(M, *MI, *this); 1345 1346 // Emit llvm.ident metadata in an '.ident' directive. 1347 EmitModuleIdents(M); 1348 1349 // Emit __morestack address if needed for indirect calls. 1350 if (MMI->usesMorestackAddr()) { 1351 unsigned Align = 1; 1352 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1353 getDataLayout(), SectionKind::getReadOnly(), 1354 /*C=*/nullptr, Align); 1355 OutStreamer->SwitchSection(ReadOnlySection); 1356 1357 MCSymbol *AddrSymbol = 1358 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1359 OutStreamer->EmitLabel(AddrSymbol); 1360 1361 unsigned PtrSize = MAI->getCodePointerSize(); 1362 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1363 PtrSize); 1364 } 1365 1366 // If we don't have any trampolines, then we don't require stack memory 1367 // to be executable. Some targets have a directive to declare this. 1368 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1369 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1370 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1371 OutStreamer->SwitchSection(S); 1372 1373 // Allow the target to emit any magic that it wants at the end of the file, 1374 // after everything else has gone out. 1375 EmitEndOfAsmFile(M); 1376 1377 MMI = nullptr; 1378 1379 OutStreamer->Finish(); 1380 OutStreamer->reset(); 1381 1382 return false; 1383 } 1384 1385 MCSymbol *AsmPrinter::getCurExceptionSym() { 1386 if (!CurExceptionSym) 1387 CurExceptionSym = createTempSymbol("exception"); 1388 return CurExceptionSym; 1389 } 1390 1391 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1392 this->MF = &MF; 1393 // Get the function symbol. 1394 CurrentFnSym = getSymbol(MF.getFunction()); 1395 CurrentFnSymForSize = CurrentFnSym; 1396 CurrentFnBegin = nullptr; 1397 CurExceptionSym = nullptr; 1398 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1399 if (!MF.getLandingPads().empty() || MMI->hasDebugInfo() || 1400 MF.hasEHFunclets() || NeedsLocalForSize) { 1401 CurrentFnBegin = createTempSymbol("func_begin"); 1402 if (NeedsLocalForSize) 1403 CurrentFnSymForSize = CurrentFnBegin; 1404 } 1405 1406 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1407 if (isVerbose()) 1408 LI = &getAnalysis<MachineLoopInfo>(); 1409 1410 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1411 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1412 ? PrintSchedule 1413 : STI.supportPrintSchedInfo(); 1414 } 1415 1416 namespace { 1417 1418 // Keep track the alignment, constpool entries per Section. 1419 struct SectionCPs { 1420 MCSection *S; 1421 unsigned Alignment; 1422 SmallVector<unsigned, 4> CPEs; 1423 1424 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1425 }; 1426 1427 } // end anonymous namespace 1428 1429 /// EmitConstantPool - Print to the current output stream assembly 1430 /// representations of the constants in the constant pool MCP. This is 1431 /// used to print out constants which have been "spilled to memory" by 1432 /// the code generator. 1433 /// 1434 void AsmPrinter::EmitConstantPool() { 1435 const MachineConstantPool *MCP = MF->getConstantPool(); 1436 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1437 if (CP.empty()) return; 1438 1439 // Calculate sections for constant pool entries. We collect entries to go into 1440 // the same section together to reduce amount of section switch statements. 1441 SmallVector<SectionCPs, 4> CPSections; 1442 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1443 const MachineConstantPoolEntry &CPE = CP[i]; 1444 unsigned Align = CPE.getAlignment(); 1445 1446 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1447 1448 const Constant *C = nullptr; 1449 if (!CPE.isMachineConstantPoolEntry()) 1450 C = CPE.Val.ConstVal; 1451 1452 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1453 Kind, C, Align); 1454 1455 // The number of sections are small, just do a linear search from the 1456 // last section to the first. 1457 bool Found = false; 1458 unsigned SecIdx = CPSections.size(); 1459 while (SecIdx != 0) { 1460 if (CPSections[--SecIdx].S == S) { 1461 Found = true; 1462 break; 1463 } 1464 } 1465 if (!Found) { 1466 SecIdx = CPSections.size(); 1467 CPSections.push_back(SectionCPs(S, Align)); 1468 } 1469 1470 if (Align > CPSections[SecIdx].Alignment) 1471 CPSections[SecIdx].Alignment = Align; 1472 CPSections[SecIdx].CPEs.push_back(i); 1473 } 1474 1475 // Now print stuff into the calculated sections. 1476 const MCSection *CurSection = nullptr; 1477 unsigned Offset = 0; 1478 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1479 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1480 unsigned CPI = CPSections[i].CPEs[j]; 1481 MCSymbol *Sym = GetCPISymbol(CPI); 1482 if (!Sym->isUndefined()) 1483 continue; 1484 1485 if (CurSection != CPSections[i].S) { 1486 OutStreamer->SwitchSection(CPSections[i].S); 1487 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1488 CurSection = CPSections[i].S; 1489 Offset = 0; 1490 } 1491 1492 MachineConstantPoolEntry CPE = CP[CPI]; 1493 1494 // Emit inter-object padding for alignment. 1495 unsigned AlignMask = CPE.getAlignment() - 1; 1496 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1497 OutStreamer->EmitZeros(NewOffset - Offset); 1498 1499 Type *Ty = CPE.getType(); 1500 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1501 1502 OutStreamer->EmitLabel(Sym); 1503 if (CPE.isMachineConstantPoolEntry()) 1504 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1505 else 1506 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1507 } 1508 } 1509 } 1510 1511 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1512 /// by the current function to the current output stream. 1513 /// 1514 void AsmPrinter::EmitJumpTableInfo() { 1515 const DataLayout &DL = MF->getDataLayout(); 1516 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1517 if (!MJTI) return; 1518 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1519 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1520 if (JT.empty()) return; 1521 1522 // Pick the directive to use to print the jump table entries, and switch to 1523 // the appropriate section. 1524 const Function *F = MF->getFunction(); 1525 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1526 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1527 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1528 *F); 1529 if (JTInDiffSection) { 1530 // Drop it in the readonly section. 1531 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1532 OutStreamer->SwitchSection(ReadOnlySection); 1533 } 1534 1535 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1536 1537 // Jump tables in code sections are marked with a data_region directive 1538 // where that's supported. 1539 if (!JTInDiffSection) 1540 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1541 1542 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1543 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1544 1545 // If this jump table was deleted, ignore it. 1546 if (JTBBs.empty()) continue; 1547 1548 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1549 /// emit a .set directive for each unique entry. 1550 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1551 MAI->doesSetDirectiveSuppressReloc()) { 1552 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1553 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1554 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1555 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1556 const MachineBasicBlock *MBB = JTBBs[ii]; 1557 if (!EmittedSets.insert(MBB).second) 1558 continue; 1559 1560 // .set LJTSet, LBB32-base 1561 const MCExpr *LHS = 1562 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1563 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1564 MCBinaryExpr::createSub(LHS, Base, 1565 OutContext)); 1566 } 1567 } 1568 1569 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1570 // before each jump table. The first label is never referenced, but tells 1571 // the assembler and linker the extents of the jump table object. The 1572 // second label is actually referenced by the code. 1573 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1574 // FIXME: This doesn't have to have any specific name, just any randomly 1575 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1576 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1577 1578 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1579 1580 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1581 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1582 } 1583 if (!JTInDiffSection) 1584 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1585 } 1586 1587 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1588 /// current stream. 1589 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1590 const MachineBasicBlock *MBB, 1591 unsigned UID) const { 1592 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1593 const MCExpr *Value = nullptr; 1594 switch (MJTI->getEntryKind()) { 1595 case MachineJumpTableInfo::EK_Inline: 1596 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1597 case MachineJumpTableInfo::EK_Custom32: 1598 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1599 MJTI, MBB, UID, OutContext); 1600 break; 1601 case MachineJumpTableInfo::EK_BlockAddress: 1602 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1603 // .word LBB123 1604 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1605 break; 1606 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1607 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1608 // with a relocation as gp-relative, e.g.: 1609 // .gprel32 LBB123 1610 MCSymbol *MBBSym = MBB->getSymbol(); 1611 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1612 return; 1613 } 1614 1615 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1616 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1617 // with a relocation as gp-relative, e.g.: 1618 // .gpdword LBB123 1619 MCSymbol *MBBSym = MBB->getSymbol(); 1620 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1621 return; 1622 } 1623 1624 case MachineJumpTableInfo::EK_LabelDifference32: { 1625 // Each entry is the address of the block minus the address of the jump 1626 // table. This is used for PIC jump tables where gprel32 is not supported. 1627 // e.g.: 1628 // .word LBB123 - LJTI1_2 1629 // If the .set directive avoids relocations, this is emitted as: 1630 // .set L4_5_set_123, LBB123 - LJTI1_2 1631 // .word L4_5_set_123 1632 if (MAI->doesSetDirectiveSuppressReloc()) { 1633 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1634 OutContext); 1635 break; 1636 } 1637 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1638 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1639 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1640 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1641 break; 1642 } 1643 } 1644 1645 assert(Value && "Unknown entry kind!"); 1646 1647 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1648 OutStreamer->EmitValue(Value, EntrySize); 1649 } 1650 1651 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1652 /// special global used by LLVM. If so, emit it and return true, otherwise 1653 /// do nothing and return false. 1654 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1655 if (GV->getName() == "llvm.used") { 1656 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1657 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1658 return true; 1659 } 1660 1661 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1662 if (GV->getSection() == "llvm.metadata" || 1663 GV->hasAvailableExternallyLinkage()) 1664 return true; 1665 1666 if (!GV->hasAppendingLinkage()) return false; 1667 1668 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1669 1670 if (GV->getName() == "llvm.global_ctors") { 1671 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1672 /* isCtor */ true); 1673 1674 return true; 1675 } 1676 1677 if (GV->getName() == "llvm.global_dtors") { 1678 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1679 /* isCtor */ false); 1680 1681 return true; 1682 } 1683 1684 report_fatal_error("unknown special variable"); 1685 } 1686 1687 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1688 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1689 /// is true, as being used with this directive. 1690 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1691 // Should be an array of 'i8*'. 1692 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1693 const GlobalValue *GV = 1694 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1695 if (GV) 1696 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1697 } 1698 } 1699 1700 namespace { 1701 1702 struct Structor { 1703 int Priority = 0; 1704 Constant *Func = nullptr; 1705 GlobalValue *ComdatKey = nullptr; 1706 1707 Structor() = default; 1708 }; 1709 1710 } // end anonymous namespace 1711 1712 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1713 /// priority. 1714 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1715 bool isCtor) { 1716 // Should be an array of '{ int, void ()* }' structs. The first value is the 1717 // init priority. 1718 if (!isa<ConstantArray>(List)) return; 1719 1720 // Sanity check the structors list. 1721 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1722 if (!InitList) return; // Not an array! 1723 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1724 // FIXME: Only allow the 3-field form in LLVM 4.0. 1725 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1726 return; // Not an array of two or three elements! 1727 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1728 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1729 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1730 return; // Not (int, ptr, ptr). 1731 1732 // Gather the structors in a form that's convenient for sorting by priority. 1733 SmallVector<Structor, 8> Structors; 1734 for (Value *O : InitList->operands()) { 1735 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1736 if (!CS) continue; // Malformed. 1737 if (CS->getOperand(1)->isNullValue()) 1738 break; // Found a null terminator, skip the rest. 1739 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1740 if (!Priority) continue; // Malformed. 1741 Structors.push_back(Structor()); 1742 Structor &S = Structors.back(); 1743 S.Priority = Priority->getLimitedValue(65535); 1744 S.Func = CS->getOperand(1); 1745 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1746 S.ComdatKey = 1747 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1748 } 1749 1750 // Emit the function pointers in the target-specific order 1751 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1752 std::stable_sort(Structors.begin(), Structors.end(), 1753 [](const Structor &L, 1754 const Structor &R) { return L.Priority < R.Priority; }); 1755 for (Structor &S : Structors) { 1756 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1757 const MCSymbol *KeySym = nullptr; 1758 if (GlobalValue *GV = S.ComdatKey) { 1759 if (GV->isDeclarationForLinker()) 1760 // If the associated variable is not defined in this module 1761 // (it might be available_externally, or have been an 1762 // available_externally definition that was dropped by the 1763 // EliminateAvailableExternally pass), some other TU 1764 // will provide its dynamic initializer. 1765 continue; 1766 1767 KeySym = getSymbol(GV); 1768 } 1769 MCSection *OutputSection = 1770 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1771 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1772 OutStreamer->SwitchSection(OutputSection); 1773 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1774 EmitAlignment(Align); 1775 EmitXXStructor(DL, S.Func); 1776 } 1777 } 1778 1779 void AsmPrinter::EmitModuleIdents(Module &M) { 1780 if (!MAI->hasIdentDirective()) 1781 return; 1782 1783 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1784 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1785 const MDNode *N = NMD->getOperand(i); 1786 assert(N->getNumOperands() == 1 && 1787 "llvm.ident metadata entry can have only one operand"); 1788 const MDString *S = cast<MDString>(N->getOperand(0)); 1789 OutStreamer->EmitIdent(S->getString()); 1790 } 1791 } 1792 } 1793 1794 //===--------------------------------------------------------------------===// 1795 // Emission and print routines 1796 // 1797 1798 /// EmitInt8 - Emit a byte directive and value. 1799 /// 1800 void AsmPrinter::EmitInt8(int Value) const { 1801 OutStreamer->EmitIntValue(Value, 1); 1802 } 1803 1804 /// EmitInt16 - Emit a short directive and value. 1805 /// 1806 void AsmPrinter::EmitInt16(int Value) const { 1807 OutStreamer->EmitIntValue(Value, 2); 1808 } 1809 1810 /// EmitInt32 - Emit a long directive and value. 1811 /// 1812 void AsmPrinter::EmitInt32(int Value) const { 1813 OutStreamer->EmitIntValue(Value, 4); 1814 } 1815 1816 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1817 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1818 /// .set if it avoids relocations. 1819 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1820 unsigned Size) const { 1821 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1822 } 1823 1824 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1825 /// where the size in bytes of the directive is specified by Size and Label 1826 /// specifies the label. This implicitly uses .set if it is available. 1827 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1828 unsigned Size, 1829 bool IsSectionRelative) const { 1830 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1831 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1832 if (Size > 4) 1833 OutStreamer->EmitZeros(Size - 4); 1834 return; 1835 } 1836 1837 // Emit Label+Offset (or just Label if Offset is zero) 1838 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1839 if (Offset) 1840 Expr = MCBinaryExpr::createAdd( 1841 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1842 1843 OutStreamer->EmitValue(Expr, Size); 1844 } 1845 1846 //===----------------------------------------------------------------------===// 1847 1848 // EmitAlignment - Emit an alignment directive to the specified power of 1849 // two boundary. For example, if you pass in 3 here, you will get an 8 1850 // byte alignment. If a global value is specified, and if that global has 1851 // an explicit alignment requested, it will override the alignment request 1852 // if required for correctness. 1853 // 1854 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1855 if (GV) 1856 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1857 1858 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1859 1860 assert(NumBits < 1861 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1862 "undefined behavior"); 1863 if (getCurrentSection()->getKind().isText()) 1864 OutStreamer->EmitCodeAlignment(1u << NumBits); 1865 else 1866 OutStreamer->EmitValueToAlignment(1u << NumBits); 1867 } 1868 1869 //===----------------------------------------------------------------------===// 1870 // Constant emission. 1871 //===----------------------------------------------------------------------===// 1872 1873 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1874 MCContext &Ctx = OutContext; 1875 1876 if (CV->isNullValue() || isa<UndefValue>(CV)) 1877 return MCConstantExpr::create(0, Ctx); 1878 1879 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1880 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1881 1882 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1883 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1884 1885 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1886 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1887 1888 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1889 if (!CE) { 1890 llvm_unreachable("Unknown constant value to lower!"); 1891 } 1892 1893 switch (CE->getOpcode()) { 1894 default: 1895 // If the code isn't optimized, there may be outstanding folding 1896 // opportunities. Attempt to fold the expression using DataLayout as a 1897 // last resort before giving up. 1898 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1899 if (C != CE) 1900 return lowerConstant(C); 1901 1902 // Otherwise report the problem to the user. 1903 { 1904 std::string S; 1905 raw_string_ostream OS(S); 1906 OS << "Unsupported expression in static initializer: "; 1907 CE->printAsOperand(OS, /*PrintType=*/false, 1908 !MF ? nullptr : MF->getFunction()->getParent()); 1909 report_fatal_error(OS.str()); 1910 } 1911 case Instruction::GetElementPtr: { 1912 // Generate a symbolic expression for the byte address 1913 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1914 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1915 1916 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1917 if (!OffsetAI) 1918 return Base; 1919 1920 int64_t Offset = OffsetAI.getSExtValue(); 1921 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1922 Ctx); 1923 } 1924 1925 case Instruction::Trunc: 1926 // We emit the value and depend on the assembler to truncate the generated 1927 // expression properly. This is important for differences between 1928 // blockaddress labels. Since the two labels are in the same function, it 1929 // is reasonable to treat their delta as a 32-bit value. 1930 LLVM_FALLTHROUGH; 1931 case Instruction::BitCast: 1932 return lowerConstant(CE->getOperand(0)); 1933 1934 case Instruction::IntToPtr: { 1935 const DataLayout &DL = getDataLayout(); 1936 1937 // Handle casts to pointers by changing them into casts to the appropriate 1938 // integer type. This promotes constant folding and simplifies this code. 1939 Constant *Op = CE->getOperand(0); 1940 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1941 false/*ZExt*/); 1942 return lowerConstant(Op); 1943 } 1944 1945 case Instruction::PtrToInt: { 1946 const DataLayout &DL = getDataLayout(); 1947 1948 // Support only foldable casts to/from pointers that can be eliminated by 1949 // changing the pointer to the appropriately sized integer type. 1950 Constant *Op = CE->getOperand(0); 1951 Type *Ty = CE->getType(); 1952 1953 const MCExpr *OpExpr = lowerConstant(Op); 1954 1955 // We can emit the pointer value into this slot if the slot is an 1956 // integer slot equal to the size of the pointer. 1957 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1958 return OpExpr; 1959 1960 // Otherwise the pointer is smaller than the resultant integer, mask off 1961 // the high bits so we are sure to get a proper truncation if the input is 1962 // a constant expr. 1963 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1964 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1965 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1966 } 1967 1968 case Instruction::Sub: { 1969 GlobalValue *LHSGV; 1970 APInt LHSOffset; 1971 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1972 getDataLayout())) { 1973 GlobalValue *RHSGV; 1974 APInt RHSOffset; 1975 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1976 getDataLayout())) { 1977 const MCExpr *RelocExpr = 1978 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 1979 if (!RelocExpr) 1980 RelocExpr = MCBinaryExpr::createSub( 1981 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 1982 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 1983 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 1984 if (Addend != 0) 1985 RelocExpr = MCBinaryExpr::createAdd( 1986 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 1987 return RelocExpr; 1988 } 1989 } 1990 } 1991 // else fallthrough 1992 1993 // The MC library also has a right-shift operator, but it isn't consistently 1994 // signed or unsigned between different targets. 1995 case Instruction::Add: 1996 case Instruction::Mul: 1997 case Instruction::SDiv: 1998 case Instruction::SRem: 1999 case Instruction::Shl: 2000 case Instruction::And: 2001 case Instruction::Or: 2002 case Instruction::Xor: { 2003 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2004 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2005 switch (CE->getOpcode()) { 2006 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2007 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2008 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2009 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2010 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2011 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2012 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2013 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2014 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2015 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2016 } 2017 } 2018 } 2019 } 2020 2021 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2022 AsmPrinter &AP, 2023 const Constant *BaseCV = nullptr, 2024 uint64_t Offset = 0); 2025 2026 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2027 2028 /// isRepeatedByteSequence - Determine whether the given value is 2029 /// composed of a repeated sequence of identical bytes and return the 2030 /// byte value. If it is not a repeated sequence, return -1. 2031 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2032 StringRef Data = V->getRawDataValues(); 2033 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2034 char C = Data[0]; 2035 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2036 if (Data[i] != C) return -1; 2037 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2038 } 2039 2040 /// isRepeatedByteSequence - Determine whether the given value is 2041 /// composed of a repeated sequence of identical bytes and return the 2042 /// byte value. If it is not a repeated sequence, return -1. 2043 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2044 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2045 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2046 assert(Size % 8 == 0); 2047 2048 // Extend the element to take zero padding into account. 2049 APInt Value = CI->getValue().zextOrSelf(Size); 2050 if (!Value.isSplat(8)) 2051 return -1; 2052 2053 return Value.zextOrTrunc(8).getZExtValue(); 2054 } 2055 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2056 // Make sure all array elements are sequences of the same repeated 2057 // byte. 2058 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2059 Constant *Op0 = CA->getOperand(0); 2060 int Byte = isRepeatedByteSequence(Op0, DL); 2061 if (Byte == -1) 2062 return -1; 2063 2064 // All array elements must be equal. 2065 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2066 if (CA->getOperand(i) != Op0) 2067 return -1; 2068 return Byte; 2069 } 2070 2071 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2072 return isRepeatedByteSequence(CDS); 2073 2074 return -1; 2075 } 2076 2077 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2078 const ConstantDataSequential *CDS, 2079 AsmPrinter &AP) { 2080 // See if we can aggregate this into a .fill, if so, emit it as such. 2081 int Value = isRepeatedByteSequence(CDS, DL); 2082 if (Value != -1) { 2083 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2084 // Don't emit a 1-byte object as a .fill. 2085 if (Bytes > 1) 2086 return AP.OutStreamer->emitFill(Bytes, Value); 2087 } 2088 2089 // If this can be emitted with .ascii/.asciz, emit it as such. 2090 if (CDS->isString()) 2091 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2092 2093 // Otherwise, emit the values in successive locations. 2094 unsigned ElementByteSize = CDS->getElementByteSize(); 2095 if (isa<IntegerType>(CDS->getElementType())) { 2096 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2097 if (AP.isVerbose()) 2098 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2099 CDS->getElementAsInteger(i)); 2100 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2101 ElementByteSize); 2102 } 2103 } else { 2104 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2105 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2106 } 2107 2108 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2109 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2110 CDS->getNumElements(); 2111 if (unsigned Padding = Size - EmittedSize) 2112 AP.OutStreamer->EmitZeros(Padding); 2113 } 2114 2115 static void emitGlobalConstantArray(const DataLayout &DL, 2116 const ConstantArray *CA, AsmPrinter &AP, 2117 const Constant *BaseCV, uint64_t Offset) { 2118 // See if we can aggregate some values. Make sure it can be 2119 // represented as a series of bytes of the constant value. 2120 int Value = isRepeatedByteSequence(CA, DL); 2121 2122 if (Value != -1) { 2123 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2124 AP.OutStreamer->emitFill(Bytes, Value); 2125 } 2126 else { 2127 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2128 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2129 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2130 } 2131 } 2132 } 2133 2134 static void emitGlobalConstantVector(const DataLayout &DL, 2135 const ConstantVector *CV, AsmPrinter &AP) { 2136 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2137 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2138 2139 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2140 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2141 CV->getType()->getNumElements(); 2142 if (unsigned Padding = Size - EmittedSize) 2143 AP.OutStreamer->EmitZeros(Padding); 2144 } 2145 2146 static void emitGlobalConstantStruct(const DataLayout &DL, 2147 const ConstantStruct *CS, AsmPrinter &AP, 2148 const Constant *BaseCV, uint64_t Offset) { 2149 // Print the fields in successive locations. Pad to align if needed! 2150 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2151 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2152 uint64_t SizeSoFar = 0; 2153 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2154 const Constant *Field = CS->getOperand(i); 2155 2156 // Print the actual field value. 2157 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2158 2159 // Check if padding is needed and insert one or more 0s. 2160 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2161 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2162 - Layout->getElementOffset(i)) - FieldSize; 2163 SizeSoFar += FieldSize + PadSize; 2164 2165 // Insert padding - this may include padding to increase the size of the 2166 // current field up to the ABI size (if the struct is not packed) as well 2167 // as padding to ensure that the next field starts at the right offset. 2168 AP.OutStreamer->EmitZeros(PadSize); 2169 } 2170 assert(SizeSoFar == Layout->getSizeInBytes() && 2171 "Layout of constant struct may be incorrect!"); 2172 } 2173 2174 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2175 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2176 2177 // First print a comment with what we think the original floating-point value 2178 // should have been. 2179 if (AP.isVerbose()) { 2180 SmallString<8> StrVal; 2181 CFP->getValueAPF().toString(StrVal); 2182 2183 if (CFP->getType()) 2184 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2185 else 2186 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2187 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2188 } 2189 2190 // Now iterate through the APInt chunks, emitting them in endian-correct 2191 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2192 // floats). 2193 unsigned NumBytes = API.getBitWidth() / 8; 2194 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2195 const uint64_t *p = API.getRawData(); 2196 2197 // PPC's long double has odd notions of endianness compared to how LLVM 2198 // handles it: p[0] goes first for *big* endian on PPC. 2199 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2200 int Chunk = API.getNumWords() - 1; 2201 2202 if (TrailingBytes) 2203 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2204 2205 for (; Chunk >= 0; --Chunk) 2206 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2207 } else { 2208 unsigned Chunk; 2209 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2210 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2211 2212 if (TrailingBytes) 2213 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2214 } 2215 2216 // Emit the tail padding for the long double. 2217 const DataLayout &DL = AP.getDataLayout(); 2218 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2219 DL.getTypeStoreSize(CFP->getType())); 2220 } 2221 2222 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2223 const DataLayout &DL = AP.getDataLayout(); 2224 unsigned BitWidth = CI->getBitWidth(); 2225 2226 // Copy the value as we may massage the layout for constants whose bit width 2227 // is not a multiple of 64-bits. 2228 APInt Realigned(CI->getValue()); 2229 uint64_t ExtraBits = 0; 2230 unsigned ExtraBitsSize = BitWidth & 63; 2231 2232 if (ExtraBitsSize) { 2233 // The bit width of the data is not a multiple of 64-bits. 2234 // The extra bits are expected to be at the end of the chunk of the memory. 2235 // Little endian: 2236 // * Nothing to be done, just record the extra bits to emit. 2237 // Big endian: 2238 // * Record the extra bits to emit. 2239 // * Realign the raw data to emit the chunks of 64-bits. 2240 if (DL.isBigEndian()) { 2241 // Basically the structure of the raw data is a chunk of 64-bits cells: 2242 // 0 1 BitWidth / 64 2243 // [chunk1][chunk2] ... [chunkN]. 2244 // The most significant chunk is chunkN and it should be emitted first. 2245 // However, due to the alignment issue chunkN contains useless bits. 2246 // Realign the chunks so that they contain only useless information: 2247 // ExtraBits 0 1 (BitWidth / 64) - 1 2248 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2249 ExtraBits = Realigned.getRawData()[0] & 2250 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2251 Realigned.lshrInPlace(ExtraBitsSize); 2252 } else 2253 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2254 } 2255 2256 // We don't expect assemblers to support integer data directives 2257 // for more than 64 bits, so we emit the data in at most 64-bit 2258 // quantities at a time. 2259 const uint64_t *RawData = Realigned.getRawData(); 2260 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2261 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2262 AP.OutStreamer->EmitIntValue(Val, 8); 2263 } 2264 2265 if (ExtraBitsSize) { 2266 // Emit the extra bits after the 64-bits chunks. 2267 2268 // Emit a directive that fills the expected size. 2269 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2270 Size -= (BitWidth / 64) * 8; 2271 assert(Size && Size * 8 >= ExtraBitsSize && 2272 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2273 == ExtraBits && "Directive too small for extra bits."); 2274 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2275 } 2276 } 2277 2278 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2279 /// equivalent global, by a target specific GOT pc relative access to the 2280 /// final symbol. 2281 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2282 const Constant *BaseCst, 2283 uint64_t Offset) { 2284 // The global @foo below illustrates a global that uses a got equivalent. 2285 // 2286 // @bar = global i32 42 2287 // @gotequiv = private unnamed_addr constant i32* @bar 2288 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2289 // i64 ptrtoint (i32* @foo to i64)) 2290 // to i32) 2291 // 2292 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2293 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2294 // form: 2295 // 2296 // foo = cstexpr, where 2297 // cstexpr := <gotequiv> - "." + <cst> 2298 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2299 // 2300 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2301 // 2302 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2303 // gotpcrelcst := <offset from @foo base> + <cst> 2304 // 2305 MCValue MV; 2306 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2307 return; 2308 const MCSymbolRefExpr *SymA = MV.getSymA(); 2309 if (!SymA) 2310 return; 2311 2312 // Check that GOT equivalent symbol is cached. 2313 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2314 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2315 return; 2316 2317 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2318 if (!BaseGV) 2319 return; 2320 2321 // Check for a valid base symbol 2322 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2323 const MCSymbolRefExpr *SymB = MV.getSymB(); 2324 2325 if (!SymB || BaseSym != &SymB->getSymbol()) 2326 return; 2327 2328 // Make sure to match: 2329 // 2330 // gotpcrelcst := <offset from @foo base> + <cst> 2331 // 2332 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2333 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2334 // if the target knows how to encode it. 2335 // 2336 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2337 if (GOTPCRelCst < 0) 2338 return; 2339 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2340 return; 2341 2342 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2343 // 2344 // bar: 2345 // .long 42 2346 // gotequiv: 2347 // .quad bar 2348 // foo: 2349 // .long gotequiv - "." + <cst> 2350 // 2351 // is replaced by the target specific equivalent to: 2352 // 2353 // bar: 2354 // .long 42 2355 // foo: 2356 // .long bar@GOTPCREL+<gotpcrelcst> 2357 // 2358 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2359 const GlobalVariable *GV = Result.first; 2360 int NumUses = (int)Result.second; 2361 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2362 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2363 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2364 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2365 2366 // Update GOT equivalent usage information 2367 --NumUses; 2368 if (NumUses >= 0) 2369 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2370 } 2371 2372 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2373 AsmPrinter &AP, const Constant *BaseCV, 2374 uint64_t Offset) { 2375 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2376 2377 // Globals with sub-elements such as combinations of arrays and structs 2378 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2379 // constant symbol base and the current position with BaseCV and Offset. 2380 if (!BaseCV && CV->hasOneUse()) 2381 BaseCV = dyn_cast<Constant>(CV->user_back()); 2382 2383 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2384 return AP.OutStreamer->EmitZeros(Size); 2385 2386 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2387 switch (Size) { 2388 case 1: 2389 case 2: 2390 case 4: 2391 case 8: 2392 if (AP.isVerbose()) 2393 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2394 CI->getZExtValue()); 2395 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2396 return; 2397 default: 2398 emitGlobalConstantLargeInt(CI, AP); 2399 return; 2400 } 2401 } 2402 2403 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2404 return emitGlobalConstantFP(CFP, AP); 2405 2406 if (isa<ConstantPointerNull>(CV)) { 2407 AP.OutStreamer->EmitIntValue(0, Size); 2408 return; 2409 } 2410 2411 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2412 return emitGlobalConstantDataSequential(DL, CDS, AP); 2413 2414 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2415 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2416 2417 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2418 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2419 2420 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2421 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2422 // vectors). 2423 if (CE->getOpcode() == Instruction::BitCast) 2424 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2425 2426 if (Size > 8) { 2427 // If the constant expression's size is greater than 64-bits, then we have 2428 // to emit the value in chunks. Try to constant fold the value and emit it 2429 // that way. 2430 Constant *New = ConstantFoldConstant(CE, DL); 2431 if (New && New != CE) 2432 return emitGlobalConstantImpl(DL, New, AP); 2433 } 2434 } 2435 2436 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2437 return emitGlobalConstantVector(DL, V, AP); 2438 2439 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2440 // thread the streamer with EmitValue. 2441 const MCExpr *ME = AP.lowerConstant(CV); 2442 2443 // Since lowerConstant already folded and got rid of all IR pointer and 2444 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2445 // directly. 2446 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2447 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2448 2449 AP.OutStreamer->EmitValue(ME, Size); 2450 } 2451 2452 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2453 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2454 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2455 if (Size) 2456 emitGlobalConstantImpl(DL, CV, *this); 2457 else if (MAI->hasSubsectionsViaSymbols()) { 2458 // If the global has zero size, emit a single byte so that two labels don't 2459 // look like they are at the same location. 2460 OutStreamer->EmitIntValue(0, 1); 2461 } 2462 } 2463 2464 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2465 // Target doesn't support this yet! 2466 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2467 } 2468 2469 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2470 if (Offset > 0) 2471 OS << '+' << Offset; 2472 else if (Offset < 0) 2473 OS << Offset; 2474 } 2475 2476 //===----------------------------------------------------------------------===// 2477 // Symbol Lowering Routines. 2478 //===----------------------------------------------------------------------===// 2479 2480 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2481 return OutContext.createTempSymbol(Name, true); 2482 } 2483 2484 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2485 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2486 } 2487 2488 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2489 return MMI->getAddrLabelSymbol(BB); 2490 } 2491 2492 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2493 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2494 const DataLayout &DL = getDataLayout(); 2495 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2496 "CPI" + Twine(getFunctionNumber()) + "_" + 2497 Twine(CPID)); 2498 } 2499 2500 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2501 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2502 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2503 } 2504 2505 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2506 /// FIXME: privatize to AsmPrinter. 2507 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2508 const DataLayout &DL = getDataLayout(); 2509 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2510 Twine(getFunctionNumber()) + "_" + 2511 Twine(UID) + "_set_" + Twine(MBBID)); 2512 } 2513 2514 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2515 StringRef Suffix) const { 2516 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2517 } 2518 2519 /// Return the MCSymbol for the specified ExternalSymbol. 2520 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2521 SmallString<60> NameStr; 2522 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2523 return OutContext.getOrCreateSymbol(NameStr); 2524 } 2525 2526 /// PrintParentLoopComment - Print comments about parent loops of this one. 2527 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2528 unsigned FunctionNumber) { 2529 if (!Loop) return; 2530 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2531 OS.indent(Loop->getLoopDepth()*2) 2532 << "Parent Loop BB" << FunctionNumber << "_" 2533 << Loop->getHeader()->getNumber() 2534 << " Depth=" << Loop->getLoopDepth() << '\n'; 2535 } 2536 2537 2538 /// PrintChildLoopComment - Print comments about child loops within 2539 /// the loop for this basic block, with nesting. 2540 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2541 unsigned FunctionNumber) { 2542 // Add child loop information 2543 for (const MachineLoop *CL : *Loop) { 2544 OS.indent(CL->getLoopDepth()*2) 2545 << "Child Loop BB" << FunctionNumber << "_" 2546 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2547 << '\n'; 2548 PrintChildLoopComment(OS, CL, FunctionNumber); 2549 } 2550 } 2551 2552 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2553 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2554 const MachineLoopInfo *LI, 2555 const AsmPrinter &AP) { 2556 // Add loop depth information 2557 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2558 if (!Loop) return; 2559 2560 MachineBasicBlock *Header = Loop->getHeader(); 2561 assert(Header && "No header for loop"); 2562 2563 // If this block is not a loop header, just print out what is the loop header 2564 // and return. 2565 if (Header != &MBB) { 2566 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2567 Twine(AP.getFunctionNumber())+"_" + 2568 Twine(Loop->getHeader()->getNumber())+ 2569 " Depth="+Twine(Loop->getLoopDepth())); 2570 return; 2571 } 2572 2573 // Otherwise, it is a loop header. Print out information about child and 2574 // parent loops. 2575 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2576 2577 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2578 2579 OS << "=>"; 2580 OS.indent(Loop->getLoopDepth()*2-2); 2581 2582 OS << "This "; 2583 if (Loop->empty()) 2584 OS << "Inner "; 2585 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2586 2587 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2588 } 2589 2590 /// EmitBasicBlockStart - This method prints the label for the specified 2591 /// MachineBasicBlock, an alignment (if present) and a comment describing 2592 /// it if appropriate. 2593 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2594 // End the previous funclet and start a new one. 2595 if (MBB.isEHFuncletEntry()) { 2596 for (const HandlerInfo &HI : Handlers) { 2597 HI.Handler->endFunclet(); 2598 HI.Handler->beginFunclet(MBB); 2599 } 2600 } 2601 2602 // Emit an alignment directive for this block, if needed. 2603 if (unsigned Align = MBB.getAlignment()) 2604 EmitAlignment(Align); 2605 2606 // If the block has its address taken, emit any labels that were used to 2607 // reference the block. It is possible that there is more than one label 2608 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2609 // the references were generated. 2610 if (MBB.hasAddressTaken()) { 2611 const BasicBlock *BB = MBB.getBasicBlock(); 2612 if (isVerbose()) 2613 OutStreamer->AddComment("Block address taken"); 2614 2615 // MBBs can have their address taken as part of CodeGen without having 2616 // their corresponding BB's address taken in IR 2617 if (BB->hasAddressTaken()) 2618 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2619 OutStreamer->EmitLabel(Sym); 2620 } 2621 2622 // Print some verbose block comments. 2623 if (isVerbose()) { 2624 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2625 if (BB->hasName()) { 2626 BB->printAsOperand(OutStreamer->GetCommentOS(), 2627 /*PrintType=*/false, BB->getModule()); 2628 OutStreamer->GetCommentOS() << '\n'; 2629 } 2630 } 2631 emitBasicBlockLoopComments(MBB, LI, *this); 2632 } 2633 2634 // Print the main label for the block. 2635 if (MBB.pred_empty() || 2636 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2637 if (isVerbose()) { 2638 // NOTE: Want this comment at start of line, don't emit with AddComment. 2639 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2640 } 2641 } else { 2642 OutStreamer->EmitLabel(MBB.getSymbol()); 2643 } 2644 } 2645 2646 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2647 bool IsDefinition) const { 2648 MCSymbolAttr Attr = MCSA_Invalid; 2649 2650 switch (Visibility) { 2651 default: break; 2652 case GlobalValue::HiddenVisibility: 2653 if (IsDefinition) 2654 Attr = MAI->getHiddenVisibilityAttr(); 2655 else 2656 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2657 break; 2658 case GlobalValue::ProtectedVisibility: 2659 Attr = MAI->getProtectedVisibilityAttr(); 2660 break; 2661 } 2662 2663 if (Attr != MCSA_Invalid) 2664 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2665 } 2666 2667 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2668 /// exactly one predecessor and the control transfer mechanism between 2669 /// the predecessor and this block is a fall-through. 2670 bool AsmPrinter:: 2671 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2672 // If this is a landing pad, it isn't a fall through. If it has no preds, 2673 // then nothing falls through to it. 2674 if (MBB->isEHPad() || MBB->pred_empty()) 2675 return false; 2676 2677 // If there isn't exactly one predecessor, it can't be a fall through. 2678 if (MBB->pred_size() > 1) 2679 return false; 2680 2681 // The predecessor has to be immediately before this block. 2682 MachineBasicBlock *Pred = *MBB->pred_begin(); 2683 if (!Pred->isLayoutSuccessor(MBB)) 2684 return false; 2685 2686 // If the block is completely empty, then it definitely does fall through. 2687 if (Pred->empty()) 2688 return true; 2689 2690 // Check the terminators in the previous blocks 2691 for (const auto &MI : Pred->terminators()) { 2692 // If it is not a simple branch, we are in a table somewhere. 2693 if (!MI.isBranch() || MI.isIndirectBranch()) 2694 return false; 2695 2696 // If we are the operands of one of the branches, this is not a fall 2697 // through. Note that targets with delay slots will usually bundle 2698 // terminators with the delay slot instruction. 2699 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2700 if (OP->isJTI()) 2701 return false; 2702 if (OP->isMBB() && OP->getMBB() == MBB) 2703 return false; 2704 } 2705 } 2706 2707 return true; 2708 } 2709 2710 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2711 if (!S.usesMetadata()) 2712 return nullptr; 2713 2714 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2715 " stackmap formats, please see the documentation for a description of" 2716 " the default format. If you really need a custom serialized format," 2717 " please file a bug"); 2718 2719 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2720 gcp_map_type::iterator GCPI = GCMap.find(&S); 2721 if (GCPI != GCMap.end()) 2722 return GCPI->second.get(); 2723 2724 auto Name = S.getName(); 2725 2726 for (GCMetadataPrinterRegistry::iterator 2727 I = GCMetadataPrinterRegistry::begin(), 2728 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2729 if (Name == I->getName()) { 2730 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2731 GMP->S = &S; 2732 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2733 return IterBool.first->second.get(); 2734 } 2735 2736 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2737 } 2738 2739 /// Pin vtable to this file. 2740 AsmPrinterHandler::~AsmPrinterHandler() = default; 2741 2742 void AsmPrinterHandler::markFunctionEnd() {} 2743 2744 // In the binary's "xray_instr_map" section, an array of these function entries 2745 // describes each instrumentation point. When XRay patches your code, the index 2746 // into this table will be given to your handler as a patch point identifier. 2747 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2748 const MCSymbol *CurrentFnSym) const { 2749 Out->EmitSymbolValue(Sled, Bytes); 2750 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2751 auto Kind8 = static_cast<uint8_t>(Kind); 2752 Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2753 Out->EmitBytes( 2754 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2755 Out->EmitZeros(2 * Bytes - 2); // Pad the previous two entries 2756 } 2757 2758 void AsmPrinter::emitXRayTable() { 2759 if (Sleds.empty()) 2760 return; 2761 2762 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2763 auto Fn = MF->getFunction(); 2764 MCSection *InstMap = nullptr; 2765 MCSection *FnSledIndex = nullptr; 2766 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2767 if (Fn->hasComdat()) { 2768 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2769 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 2770 Fn->getComdat()->getName()); 2771 FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, 2772 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 2773 Fn->getComdat()->getName()); 2774 } else { 2775 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2776 ELF::SHF_ALLOC); 2777 FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, 2778 ELF::SHF_ALLOC); 2779 } 2780 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2781 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2782 SectionKind::getReadOnlyWithRel()); 2783 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2784 SectionKind::getReadOnlyWithRel()); 2785 } else { 2786 llvm_unreachable("Unsupported target"); 2787 } 2788 2789 // Before we switch over, we force a reference to a label inside the 2790 // xray_instr_map and xray_fn_idx sections. Since this function is always 2791 // called just before the function's end, we assume that this is happening 2792 // after the last return instruction. We also use the synthetic label in the 2793 // xray_inster_map as a delimeter for the range of sleds for this function in 2794 // the index. 2795 auto WordSizeBytes = MAI->getCodePointerSize(); 2796 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_synthetic_", true); 2797 MCSymbol *IdxRef = OutContext.createTempSymbol("xray_fn_idx_synth_", true); 2798 OutStreamer->EmitCodeAlignment(16); 2799 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 2800 OutStreamer->EmitSymbolValue(IdxRef, WordSizeBytes, false); 2801 2802 // Now we switch to the instrumentation map section. Because this is done 2803 // per-function, we are able to create an index entry that will represent the 2804 // range of sleds associated with a function. 2805 OutStreamer->SwitchSection(InstMap); 2806 OutStreamer->EmitLabel(SledsStart); 2807 for (const auto &Sled : Sleds) 2808 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2809 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_synthetic_end", true); 2810 OutStreamer->EmitLabel(SledsEnd); 2811 2812 // We then emit a single entry in the index per function. We use the symbols 2813 // that bound the instrumentation map as the range for a specific function. 2814 // Each entry here will be 2 * word size aligned, as we're writing down two 2815 // pointers. This should work for both 32-bit and 64-bit platforms. 2816 OutStreamer->SwitchSection(FnSledIndex); 2817 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2818 OutStreamer->EmitLabel(IdxRef); 2819 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes); 2820 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes); 2821 OutStreamer->SwitchSection(PrevSection); 2822 Sleds.clear(); 2823 } 2824 2825 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2826 SledKind Kind) { 2827 auto Fn = MI.getParent()->getParent()->getFunction(); 2828 auto Attr = Fn->getFnAttribute("function-instrument"); 2829 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2830 bool AlwaysInstrument = 2831 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2832 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2833 Kind = SledKind::LOG_ARGS_ENTER; 2834 Sleds.emplace_back( 2835 XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn }); 2836 } 2837 2838 uint16_t AsmPrinter::getDwarfVersion() const { 2839 return OutStreamer->getContext().getDwarfVersion(); 2840 } 2841 2842 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2843 OutStreamer->getContext().setDwarfVersion(Version); 2844 } 2845