1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AsmPrinterHandler.h"
15 #include "CodeViewDebug.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "WinException.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/ObjectUtils.h"
32 #include "llvm/CodeGen/Analysis.h"
33 #include "llvm/CodeGen/AsmPrinter.h"
34 #include "llvm/CodeGen/GCMetadata.h"
35 #include "llvm/CodeGen/GCMetadataPrinter.h"
36 #include "llvm/CodeGen/GCStrategy.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineConstantPool.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBundle.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugInfoMetadata.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalAlias.h"
58 #include "llvm/IR/GlobalIFunc.h"
59 #include "llvm/IR/GlobalIndirectSymbol.h"
60 #include "llvm/IR/GlobalObject.h"
61 #include "llvm/IR/GlobalValue.h"
62 #include "llvm/IR/GlobalVariable.h"
63 #include "llvm/IR/Mangler.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/MC/MCAsmInfo.h"
69 #include "llvm/MC/MCContext.h"
70 #include "llvm/MC/MCDirectives.h"
71 #include "llvm/MC/MCExpr.h"
72 #include "llvm/MC/MCInst.h"
73 #include "llvm/MC/MCSection.h"
74 #include "llvm/MC/MCSectionELF.h"
75 #include "llvm/MC/MCSectionMachO.h"
76 #include "llvm/MC/MCStreamer.h"
77 #include "llvm/MC/MCSubtargetInfo.h"
78 #include "llvm/MC/MCSymbol.h"
79 #include "llvm/MC/MCTargetOptions.h"
80 #include "llvm/MC/MCValue.h"
81 #include "llvm/MC/SectionKind.h"
82 #include "llvm/Pass.h"
83 #include "llvm/Support/Casting.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Dwarf.h"
86 #include "llvm/Support/ELF.h"
87 #include "llvm/Support/ErrorHandling.h"
88 #include "llvm/Support/Format.h"
89 #include "llvm/Support/MathExtras.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include "llvm/Support/TargetRegistry.h"
92 #include "llvm/Support/Timer.h"
93 #include "llvm/Target/TargetFrameLowering.h"
94 #include "llvm/Target/TargetInstrInfo.h"
95 #include "llvm/Target/TargetLowering.h"
96 #include "llvm/Target/TargetLoweringObjectFile.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetRegisterInfo.h"
99 #include "llvm/Target/TargetSubtargetInfo.h"
100 #include <algorithm>
101 #include <cassert>
102 #include <cinttypes>
103 #include <cstdint>
104 #include <limits>
105 #include <memory>
106 #include <string>
107 #include <utility>
108 #include <vector>
109 
110 using namespace llvm;
111 
112 #define DEBUG_TYPE "asm-printer"
113 
114 static const char *const DWARFGroupName = "dwarf";
115 static const char *const DWARFGroupDescription = "DWARF Emission";
116 static const char *const DbgTimerName = "emit";
117 static const char *const DbgTimerDescription = "Debug Info Emission";
118 static const char *const EHTimerName = "write_exception";
119 static const char *const EHTimerDescription = "DWARF Exception Writer";
120 static const char *const CodeViewLineTablesGroupName = "linetables";
121 static const char *const CodeViewLineTablesGroupDescription =
122   "CodeView Line Tables";
123 
124 STATISTIC(EmittedInsts, "Number of machine instrs printed");
125 
126 static cl::opt<bool>
127     PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
128                   cl::desc("Print 'sched: [latency:throughput]' in .s output"));
129 
130 char AsmPrinter::ID = 0;
131 
132 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
133 static gcp_map_type &getGCMap(void *&P) {
134   if (!P)
135     P = new gcp_map_type();
136   return *(gcp_map_type*)P;
137 }
138 
139 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
140 /// value in log2 form.  This rounds up to the preferred alignment if possible
141 /// and legal.
142 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
143                                    unsigned InBits = 0) {
144   unsigned NumBits = 0;
145   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
146     NumBits = DL.getPreferredAlignmentLog(GVar);
147 
148   // If InBits is specified, round it to it.
149   if (InBits > NumBits)
150     NumBits = InBits;
151 
152   // If the GV has a specified alignment, take it into account.
153   if (GV->getAlignment() == 0)
154     return NumBits;
155 
156   unsigned GVAlign = Log2_32(GV->getAlignment());
157 
158   // If the GVAlign is larger than NumBits, or if we are required to obey
159   // NumBits because the GV has an assigned section, obey it.
160   if (GVAlign > NumBits || GV->hasSection())
161     NumBits = GVAlign;
162   return NumBits;
163 }
164 
165 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
166     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
167       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
168   VerboseAsm = OutStreamer->isVerboseAsm();
169 }
170 
171 AsmPrinter::~AsmPrinter() {
172   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
173 
174   if (GCMetadataPrinters) {
175     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
176 
177     delete &GCMap;
178     GCMetadataPrinters = nullptr;
179   }
180 }
181 
182 bool AsmPrinter::isPositionIndependent() const {
183   return TM.isPositionIndependent();
184 }
185 
186 /// getFunctionNumber - Return a unique ID for the current function.
187 ///
188 unsigned AsmPrinter::getFunctionNumber() const {
189   return MF->getFunctionNumber();
190 }
191 
192 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
193   return *TM.getObjFileLowering();
194 }
195 
196 const DataLayout &AsmPrinter::getDataLayout() const {
197   return MMI->getModule()->getDataLayout();
198 }
199 
200 // Do not use the cached DataLayout because some client use it without a Module
201 // (llvm-dsymutil, llvm-dwarfdump).
202 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
203 
204 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
205   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
206   return MF->getSubtarget<MCSubtargetInfo>();
207 }
208 
209 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
210   S.EmitInstruction(Inst, getSubtargetInfo());
211 }
212 
213 /// getCurrentSection() - Return the current section we are emitting to.
214 const MCSection *AsmPrinter::getCurrentSection() const {
215   return OutStreamer->getCurrentSectionOnly();
216 }
217 
218 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
219   AU.setPreservesAll();
220   MachineFunctionPass::getAnalysisUsage(AU);
221   AU.addRequired<MachineModuleInfo>();
222   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
223   AU.addRequired<GCModuleInfo>();
224   if (isVerbose())
225     AU.addRequired<MachineLoopInfo>();
226 }
227 
228 bool AsmPrinter::doInitialization(Module &M) {
229   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
230 
231   // Initialize TargetLoweringObjectFile.
232   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
233     .Initialize(OutContext, TM);
234 
235   OutStreamer->InitSections(false);
236 
237   // Emit the version-min deplyment target directive if needed.
238   //
239   // FIXME: If we end up with a collection of these sorts of Darwin-specific
240   // or ELF-specific things, it may make sense to have a platform helper class
241   // that will work with the target helper class. For now keep it here, as the
242   // alternative is duplicated code in each of the target asm printers that
243   // use the directive, where it would need the same conditionalization
244   // anyway.
245   const Triple &TT = TM.getTargetTriple();
246   // If there is a version specified, Major will be non-zero.
247   if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) {
248     unsigned Major, Minor, Update;
249     MCVersionMinType VersionType;
250     if (TT.isWatchOS()) {
251       VersionType = MCVM_WatchOSVersionMin;
252       TT.getWatchOSVersion(Major, Minor, Update);
253     } else if (TT.isTvOS()) {
254       VersionType = MCVM_TvOSVersionMin;
255       TT.getiOSVersion(Major, Minor, Update);
256     } else if (TT.isMacOSX()) {
257       VersionType = MCVM_OSXVersionMin;
258       if (!TT.getMacOSXVersion(Major, Minor, Update))
259         Major = 0;
260     } else {
261       VersionType = MCVM_IOSVersionMin;
262       TT.getiOSVersion(Major, Minor, Update);
263     }
264     if (Major != 0)
265       OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
266   }
267 
268   // Allow the target to emit any magic that it wants at the start of the file.
269   EmitStartOfAsmFile(M);
270 
271   // Very minimal debug info. It is ignored if we emit actual debug info. If we
272   // don't, this at least helps the user find where a global came from.
273   if (MAI->hasSingleParameterDotFile()) {
274     // .file "foo.c"
275     OutStreamer->EmitFileDirective(M.getSourceFileName());
276   }
277 
278   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
279   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
280   for (auto &I : *MI)
281     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
282       MP->beginAssembly(M, *MI, *this);
283 
284   // Emit module-level inline asm if it exists.
285   if (!M.getModuleInlineAsm().empty()) {
286     // We're at the module level. Construct MCSubtarget from the default CPU
287     // and target triple.
288     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
289         TM.getTargetTriple().str(), TM.getTargetCPU(),
290         TM.getTargetFeatureString()));
291     OutStreamer->AddComment("Start of file scope inline assembly");
292     OutStreamer->AddBlankLine();
293     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
294                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
295     OutStreamer->AddComment("End of file scope inline assembly");
296     OutStreamer->AddBlankLine();
297   }
298 
299   if (MAI->doesSupportDebugInformation()) {
300     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
301     if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() ||
302                          TM.getTargetTriple().isWindowsItaniumEnvironment())) {
303       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
304                                      DbgTimerName, DbgTimerDescription,
305                                      CodeViewLineTablesGroupName,
306                                      CodeViewLineTablesGroupDescription));
307     }
308     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
309       DD = new DwarfDebug(this, &M);
310       DD->beginModule();
311       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
312                                      DWARFGroupName, DWARFGroupDescription));
313     }
314   }
315 
316   switch (MAI->getExceptionHandlingType()) {
317   case ExceptionHandling::SjLj:
318   case ExceptionHandling::DwarfCFI:
319   case ExceptionHandling::ARM:
320     isCFIMoveForDebugging = true;
321     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
322       break;
323     for (auto &F: M.getFunctionList()) {
324       // If the module contains any function with unwind data,
325       // .eh_frame has to be emitted.
326       // Ignore functions that won't get emitted.
327       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
328         isCFIMoveForDebugging = false;
329         break;
330       }
331     }
332     break;
333   default:
334     isCFIMoveForDebugging = false;
335     break;
336   }
337 
338   EHStreamer *ES = nullptr;
339   switch (MAI->getExceptionHandlingType()) {
340   case ExceptionHandling::None:
341     break;
342   case ExceptionHandling::SjLj:
343   case ExceptionHandling::DwarfCFI:
344     ES = new DwarfCFIException(this);
345     break;
346   case ExceptionHandling::ARM:
347     ES = new ARMException(this);
348     break;
349   case ExceptionHandling::WinEH:
350     switch (MAI->getWinEHEncodingType()) {
351     default: llvm_unreachable("unsupported unwinding information encoding");
352     case WinEH::EncodingType::Invalid:
353       break;
354     case WinEH::EncodingType::X86:
355     case WinEH::EncodingType::Itanium:
356       ES = new WinException(this);
357       break;
358     }
359     break;
360   }
361   if (ES)
362     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
363                                    DWARFGroupName, DWARFGroupDescription));
364   return false;
365 }
366 
367 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
368   if (!MAI.hasWeakDefCanBeHiddenDirective())
369     return false;
370 
371   return canBeOmittedFromSymbolTable(GV);
372 }
373 
374 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
375   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
376   switch (Linkage) {
377   case GlobalValue::CommonLinkage:
378   case GlobalValue::LinkOnceAnyLinkage:
379   case GlobalValue::LinkOnceODRLinkage:
380   case GlobalValue::WeakAnyLinkage:
381   case GlobalValue::WeakODRLinkage:
382     if (MAI->hasWeakDefDirective()) {
383       // .globl _foo
384       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
385 
386       if (!canBeHidden(GV, *MAI))
387         // .weak_definition _foo
388         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
389       else
390         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
391     } else if (MAI->hasLinkOnceDirective()) {
392       // .globl _foo
393       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
394       //NOTE: linkonce is handled by the section the symbol was assigned to.
395     } else {
396       // .weak _foo
397       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
398     }
399     return;
400   case GlobalValue::ExternalLinkage:
401     // If external, declare as a global symbol: .globl _foo
402     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
403     return;
404   case GlobalValue::PrivateLinkage:
405   case GlobalValue::InternalLinkage:
406     return;
407   case GlobalValue::AppendingLinkage:
408   case GlobalValue::AvailableExternallyLinkage:
409   case GlobalValue::ExternalWeakLinkage:
410     llvm_unreachable("Should never emit this");
411   }
412   llvm_unreachable("Unknown linkage type!");
413 }
414 
415 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
416                                    const GlobalValue *GV) const {
417   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
418 }
419 
420 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
421   return TM.getSymbol(GV);
422 }
423 
424 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
425 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
426   bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
427   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
428          "No emulated TLS variables in the common section");
429 
430   // Never emit TLS variable xyz in emulated TLS model.
431   // The initialization value is in __emutls_t.xyz instead of xyz.
432   if (IsEmuTLSVar)
433     return;
434 
435   if (GV->hasInitializer()) {
436     // Check to see if this is a special global used by LLVM, if so, emit it.
437     if (EmitSpecialLLVMGlobal(GV))
438       return;
439 
440     // Skip the emission of global equivalents. The symbol can be emitted later
441     // on by emitGlobalGOTEquivs in case it turns out to be needed.
442     if (GlobalGOTEquivs.count(getSymbol(GV)))
443       return;
444 
445     if (isVerbose()) {
446       // When printing the control variable __emutls_v.*,
447       // we don't need to print the original TLS variable name.
448       GV->printAsOperand(OutStreamer->GetCommentOS(),
449                      /*PrintType=*/false, GV->getParent());
450       OutStreamer->GetCommentOS() << '\n';
451     }
452   }
453 
454   MCSymbol *GVSym = getSymbol(GV);
455   MCSymbol *EmittedSym = GVSym;
456 
457   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
458   // attributes.
459   // GV's or GVSym's attributes will be used for the EmittedSym.
460   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
461 
462   if (!GV->hasInitializer())   // External globals require no extra code.
463     return;
464 
465   GVSym->redefineIfPossible();
466   if (GVSym->isDefined() || GVSym->isVariable())
467     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
468                        "' is already defined");
469 
470   if (MAI->hasDotTypeDotSizeDirective())
471     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
472 
473   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
474 
475   const DataLayout &DL = GV->getParent()->getDataLayout();
476   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
477 
478   // If the alignment is specified, we *must* obey it.  Overaligning a global
479   // with a specified alignment is a prompt way to break globals emitted to
480   // sections and expected to be contiguous (e.g. ObjC metadata).
481   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
482 
483   for (const HandlerInfo &HI : Handlers) {
484     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
485                        HI.TimerGroupName, HI.TimerGroupDescription,
486                        TimePassesIsEnabled);
487     HI.Handler->setSymbolSize(GVSym, Size);
488   }
489 
490   // Handle common symbols
491   if (GVKind.isCommon()) {
492     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
493     unsigned Align = 1 << AlignLog;
494     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
495       Align = 0;
496 
497     // .comm _foo, 42, 4
498     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
499     return;
500   }
501 
502   // Determine to which section this global should be emitted.
503   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
504 
505   // If we have a bss global going to a section that supports the
506   // zerofill directive, do so here.
507   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
508       TheSection->isVirtualSection()) {
509     if (Size == 0)
510       Size = 1; // zerofill of 0 bytes is undefined.
511     unsigned Align = 1 << AlignLog;
512     EmitLinkage(GV, GVSym);
513     // .zerofill __DATA, __bss, _foo, 400, 5
514     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
515     return;
516   }
517 
518   // If this is a BSS local symbol and we are emitting in the BSS
519   // section use .lcomm/.comm directive.
520   if (GVKind.isBSSLocal() &&
521       getObjFileLowering().getBSSSection() == TheSection) {
522     if (Size == 0)
523       Size = 1; // .comm Foo, 0 is undefined, avoid it.
524     unsigned Align = 1 << AlignLog;
525 
526     // Use .lcomm only if it supports user-specified alignment.
527     // Otherwise, while it would still be correct to use .lcomm in some
528     // cases (e.g. when Align == 1), the external assembler might enfore
529     // some -unknown- default alignment behavior, which could cause
530     // spurious differences between external and integrated assembler.
531     // Prefer to simply fall back to .local / .comm in this case.
532     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
533       // .lcomm _foo, 42
534       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
535       return;
536     }
537 
538     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
539       Align = 0;
540 
541     // .local _foo
542     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
543     // .comm _foo, 42, 4
544     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
545     return;
546   }
547 
548   // Handle thread local data for mach-o which requires us to output an
549   // additional structure of data and mangle the original symbol so that we
550   // can reference it later.
551   //
552   // TODO: This should become an "emit thread local global" method on TLOF.
553   // All of this macho specific stuff should be sunk down into TLOFMachO and
554   // stuff like "TLSExtraDataSection" should no longer be part of the parent
555   // TLOF class.  This will also make it more obvious that stuff like
556   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
557   // specific code.
558   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
559     // Emit the .tbss symbol
560     MCSymbol *MangSym =
561         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
562 
563     if (GVKind.isThreadBSS()) {
564       TheSection = getObjFileLowering().getTLSBSSSection();
565       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
566     } else if (GVKind.isThreadData()) {
567       OutStreamer->SwitchSection(TheSection);
568 
569       EmitAlignment(AlignLog, GV);
570       OutStreamer->EmitLabel(MangSym);
571 
572       EmitGlobalConstant(GV->getParent()->getDataLayout(),
573                          GV->getInitializer());
574     }
575 
576     OutStreamer->AddBlankLine();
577 
578     // Emit the variable struct for the runtime.
579     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
580 
581     OutStreamer->SwitchSection(TLVSect);
582     // Emit the linkage here.
583     EmitLinkage(GV, GVSym);
584     OutStreamer->EmitLabel(GVSym);
585 
586     // Three pointers in size:
587     //   - __tlv_bootstrap - used to make sure support exists
588     //   - spare pointer, used when mapped by the runtime
589     //   - pointer to mangled symbol above with initializer
590     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
591     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
592                                 PtrSize);
593     OutStreamer->EmitIntValue(0, PtrSize);
594     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
595 
596     OutStreamer->AddBlankLine();
597     return;
598   }
599 
600   MCSymbol *EmittedInitSym = GVSym;
601 
602   OutStreamer->SwitchSection(TheSection);
603 
604   EmitLinkage(GV, EmittedInitSym);
605   EmitAlignment(AlignLog, GV);
606 
607   OutStreamer->EmitLabel(EmittedInitSym);
608 
609   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
610 
611   if (MAI->hasDotTypeDotSizeDirective())
612     // .size foo, 42
613     OutStreamer->emitELFSize(EmittedInitSym,
614                              MCConstantExpr::create(Size, OutContext));
615 
616   OutStreamer->AddBlankLine();
617 }
618 
619 /// Emit the directive and value for debug thread local expression
620 ///
621 /// \p Value - The value to emit.
622 /// \p Size - The size of the integer (in bytes) to emit.
623 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
624                                       unsigned Size) const {
625   OutStreamer->EmitValue(Value, Size);
626 }
627 
628 /// EmitFunctionHeader - This method emits the header for the current
629 /// function.
630 void AsmPrinter::EmitFunctionHeader() {
631   // Print out constants referenced by the function
632   EmitConstantPool();
633 
634   // Print the 'header' of function.
635   const Function *F = MF->getFunction();
636 
637   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM));
638   EmitVisibility(CurrentFnSym, F->getVisibility());
639 
640   EmitLinkage(F, CurrentFnSym);
641   if (MAI->hasFunctionAlignment())
642     EmitAlignment(MF->getAlignment(), F);
643 
644   if (MAI->hasDotTypeDotSizeDirective())
645     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
646 
647   if (isVerbose()) {
648     F->printAsOperand(OutStreamer->GetCommentOS(),
649                    /*PrintType=*/false, F->getParent());
650     OutStreamer->GetCommentOS() << '\n';
651   }
652 
653   // Emit the prefix data.
654   if (F->hasPrefixData()) {
655     if (MAI->hasSubsectionsViaSymbols()) {
656       // Preserving prefix data on platforms which use subsections-via-symbols
657       // is a bit tricky. Here we introduce a symbol for the prefix data
658       // and use the .alt_entry attribute to mark the function's real entry point
659       // as an alternative entry point to the prefix-data symbol.
660       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
661       OutStreamer->EmitLabel(PrefixSym);
662 
663       EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
664 
665       // Emit an .alt_entry directive for the actual function symbol.
666       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
667     } else {
668       EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
669     }
670   }
671 
672   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
673   // do their wild and crazy things as required.
674   EmitFunctionEntryLabel();
675 
676   // If the function had address-taken blocks that got deleted, then we have
677   // references to the dangling symbols.  Emit them at the start of the function
678   // so that we don't get references to undefined symbols.
679   std::vector<MCSymbol*> DeadBlockSyms;
680   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
681   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
682     OutStreamer->AddComment("Address taken block that was later removed");
683     OutStreamer->EmitLabel(DeadBlockSyms[i]);
684   }
685 
686   if (CurrentFnBegin) {
687     if (MAI->useAssignmentForEHBegin()) {
688       MCSymbol *CurPos = OutContext.createTempSymbol();
689       OutStreamer->EmitLabel(CurPos);
690       OutStreamer->EmitAssignment(CurrentFnBegin,
691                                  MCSymbolRefExpr::create(CurPos, OutContext));
692     } else {
693       OutStreamer->EmitLabel(CurrentFnBegin);
694     }
695   }
696 
697   // Emit pre-function debug and/or EH information.
698   for (const HandlerInfo &HI : Handlers) {
699     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
700                        HI.TimerGroupDescription, TimePassesIsEnabled);
701     HI.Handler->beginFunction(MF);
702   }
703 
704   // Emit the prologue data.
705   if (F->hasPrologueData())
706     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
707 }
708 
709 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
710 /// function.  This can be overridden by targets as required to do custom stuff.
711 void AsmPrinter::EmitFunctionEntryLabel() {
712   CurrentFnSym->redefineIfPossible();
713 
714   // The function label could have already been emitted if two symbols end up
715   // conflicting due to asm renaming.  Detect this and emit an error.
716   if (CurrentFnSym->isVariable())
717     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
718                        "' is a protected alias");
719   if (CurrentFnSym->isDefined())
720     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
721                        "' label emitted multiple times to assembly file");
722 
723   return OutStreamer->EmitLabel(CurrentFnSym);
724 }
725 
726 /// emitComments - Pretty-print comments for instructions.
727 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
728                          AsmPrinter *AP) {
729   const MachineFunction *MF = MI.getParent()->getParent();
730   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
731 
732   // Check for spills and reloads
733   int FI;
734 
735   const MachineFrameInfo &MFI = MF->getFrameInfo();
736   bool Commented = false;
737 
738   // We assume a single instruction only has a spill or reload, not
739   // both.
740   const MachineMemOperand *MMO;
741   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
742     if (MFI.isSpillSlotObjectIndex(FI)) {
743       MMO = *MI.memoperands_begin();
744       CommentOS << MMO->getSize() << "-byte Reload";
745       Commented = true;
746     }
747   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
748     if (MFI.isSpillSlotObjectIndex(FI)) {
749       CommentOS << MMO->getSize() << "-byte Folded Reload";
750       Commented = true;
751     }
752   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
753     if (MFI.isSpillSlotObjectIndex(FI)) {
754       MMO = *MI.memoperands_begin();
755       CommentOS << MMO->getSize() << "-byte Spill";
756       Commented = true;
757     }
758   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
759     if (MFI.isSpillSlotObjectIndex(FI)) {
760       CommentOS << MMO->getSize() << "-byte Folded Spill";
761       Commented = true;
762     }
763   }
764 
765   // Check for spill-induced copies
766   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
767     Commented = true;
768     CommentOS << " Reload Reuse";
769   }
770 
771   if (Commented && AP->EnablePrintSchedInfo)
772     // If any comment was added above and we need sched info comment then
773     // add this new comment just after the above comment w/o "\n" between them.
774     CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
775   else if (Commented)
776     CommentOS << "\n";
777 }
778 
779 /// emitImplicitDef - This method emits the specified machine instruction
780 /// that is an implicit def.
781 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
782   unsigned RegNo = MI->getOperand(0).getReg();
783 
784   SmallString<128> Str;
785   raw_svector_ostream OS(Str);
786   OS << "implicit-def: "
787      << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo());
788 
789   OutStreamer->AddComment(OS.str());
790   OutStreamer->AddBlankLine();
791 }
792 
793 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
794   std::string Str;
795   raw_string_ostream OS(Str);
796   OS << "kill:";
797   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
798     const MachineOperand &Op = MI->getOperand(i);
799     assert(Op.isReg() && "KILL instruction must have only register operands");
800     OS << ' '
801        << PrintReg(Op.getReg(),
802                    AP.MF->getSubtarget().getRegisterInfo())
803        << (Op.isDef() ? "<def>" : "<kill>");
804   }
805   AP.OutStreamer->AddComment(OS.str());
806   AP.OutStreamer->AddBlankLine();
807 }
808 
809 /// emitDebugValueComment - This method handles the target-independent form
810 /// of DBG_VALUE, returning true if it was able to do so.  A false return
811 /// means the target will need to handle MI in EmitInstruction.
812 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
813   // This code handles only the 4-operand target-independent form.
814   if (MI->getNumOperands() != 4)
815     return false;
816 
817   SmallString<128> Str;
818   raw_svector_ostream OS(Str);
819   OS << "DEBUG_VALUE: ";
820 
821   const DILocalVariable *V = MI->getDebugVariable();
822   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
823     StringRef Name = SP->getName();
824     if (!Name.empty())
825       OS << Name << ":";
826   }
827   OS << V->getName();
828   OS << " <- ";
829 
830   // The second operand is only an offset if it's an immediate.
831   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
832   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
833   const DIExpression *Expr = MI->getDebugExpression();
834   if (Expr->getNumElements()) {
835     OS << '[';
836     bool NeedSep = false;
837     for (auto Op : Expr->expr_ops()) {
838       if (NeedSep)
839         OS << ", ";
840       else
841         NeedSep = true;
842       OS << dwarf::OperationEncodingString(Op.getOp());
843       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
844         OS << ' ' << Op.getArg(I);
845     }
846     OS << "] ";
847   }
848 
849   // Register or immediate value. Register 0 means undef.
850   if (MI->getOperand(0).isFPImm()) {
851     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
852     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
853       OS << (double)APF.convertToFloat();
854     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
855       OS << APF.convertToDouble();
856     } else {
857       // There is no good way to print long double.  Convert a copy to
858       // double.  Ah well, it's only a comment.
859       bool ignored;
860       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
861                   &ignored);
862       OS << "(long double) " << APF.convertToDouble();
863     }
864   } else if (MI->getOperand(0).isImm()) {
865     OS << MI->getOperand(0).getImm();
866   } else if (MI->getOperand(0).isCImm()) {
867     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
868   } else {
869     unsigned Reg;
870     if (MI->getOperand(0).isReg()) {
871       Reg = MI->getOperand(0).getReg();
872     } else {
873       assert(MI->getOperand(0).isFI() && "Unknown operand type");
874       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
875       Offset += TFI->getFrameIndexReference(*AP.MF,
876                                             MI->getOperand(0).getIndex(), Reg);
877       MemLoc = true;
878     }
879     if (Reg == 0) {
880       // Suppress offset, it is not meaningful here.
881       OS << "undef";
882       // NOTE: Want this comment at start of line, don't emit with AddComment.
883       AP.OutStreamer->emitRawComment(OS.str());
884       return true;
885     }
886     if (MemLoc)
887       OS << '[';
888     OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
889   }
890 
891   if (MemLoc)
892     OS << '+' << Offset << ']';
893 
894   // NOTE: Want this comment at start of line, don't emit with AddComment.
895   AP.OutStreamer->emitRawComment(OS.str());
896   return true;
897 }
898 
899 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
900   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
901       MF->getFunction()->needsUnwindTableEntry())
902     return CFI_M_EH;
903 
904   if (MMI->hasDebugInfo())
905     return CFI_M_Debug;
906 
907   return CFI_M_None;
908 }
909 
910 bool AsmPrinter::needsSEHMoves() {
911   return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
912 }
913 
914 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
915   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
916   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
917       ExceptionHandlingType != ExceptionHandling::ARM)
918     return;
919 
920   if (needsCFIMoves() == CFI_M_None)
921     return;
922 
923   // If there is no "real" instruction following this CFI instruction, skip
924   // emitting it; it would be beyond the end of the function's FDE range.
925   auto *MBB = MI.getParent();
926   auto I = std::next(MI.getIterator());
927   while (I != MBB->end() && I->isTransient())
928     ++I;
929   if (I == MBB->instr_end() &&
930       MBB->getReverseIterator() == MBB->getParent()->rbegin())
931     return;
932 
933   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
934   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
935   const MCCFIInstruction &CFI = Instrs[CFIIndex];
936   emitCFIInstruction(CFI);
937 }
938 
939 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
940   // The operands are the MCSymbol and the frame offset of the allocation.
941   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
942   int FrameOffset = MI.getOperand(1).getImm();
943 
944   // Emit a symbol assignment.
945   OutStreamer->EmitAssignment(FrameAllocSym,
946                              MCConstantExpr::create(FrameOffset, OutContext));
947 }
948 
949 /// EmitFunctionBody - This method emits the body and trailer for a
950 /// function.
951 void AsmPrinter::EmitFunctionBody() {
952   EmitFunctionHeader();
953 
954   // Emit target-specific gunk before the function body.
955   EmitFunctionBodyStart();
956 
957   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
958 
959   // Print out code for the function.
960   bool HasAnyRealCode = false;
961   int NumInstsInFunction = 0;
962   for (auto &MBB : *MF) {
963     // Print a label for the basic block.
964     EmitBasicBlockStart(MBB);
965     for (auto &MI : MBB) {
966 
967       // Print the assembly for the instruction.
968       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
969           !MI.isDebugValue()) {
970         HasAnyRealCode = true;
971         ++NumInstsInFunction;
972       }
973 
974       if (ShouldPrintDebugScopes) {
975         for (const HandlerInfo &HI : Handlers) {
976           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
977                              HI.TimerGroupName, HI.TimerGroupDescription,
978                              TimePassesIsEnabled);
979           HI.Handler->beginInstruction(&MI);
980         }
981       }
982 
983       if (isVerbose())
984         emitComments(MI, OutStreamer->GetCommentOS(), this);
985 
986       switch (MI.getOpcode()) {
987       case TargetOpcode::CFI_INSTRUCTION:
988         emitCFIInstruction(MI);
989         break;
990 
991       case TargetOpcode::LOCAL_ESCAPE:
992         emitFrameAlloc(MI);
993         break;
994 
995       case TargetOpcode::EH_LABEL:
996       case TargetOpcode::GC_LABEL:
997         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
998         break;
999       case TargetOpcode::INLINEASM:
1000         EmitInlineAsm(&MI);
1001         break;
1002       case TargetOpcode::DBG_VALUE:
1003         if (isVerbose()) {
1004           if (!emitDebugValueComment(&MI, *this))
1005             EmitInstruction(&MI);
1006         }
1007         break;
1008       case TargetOpcode::IMPLICIT_DEF:
1009         if (isVerbose()) emitImplicitDef(&MI);
1010         break;
1011       case TargetOpcode::KILL:
1012         if (isVerbose()) emitKill(&MI, *this);
1013         break;
1014       default:
1015         EmitInstruction(&MI);
1016         break;
1017       }
1018 
1019       if (ShouldPrintDebugScopes) {
1020         for (const HandlerInfo &HI : Handlers) {
1021           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1022                              HI.TimerGroupName, HI.TimerGroupDescription,
1023                              TimePassesIsEnabled);
1024           HI.Handler->endInstruction();
1025         }
1026       }
1027     }
1028 
1029     EmitBasicBlockEnd(MBB);
1030   }
1031 
1032   EmittedInsts += NumInstsInFunction;
1033   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1034                                       MF->getFunction()->getSubprogram(),
1035                                       &MF->front());
1036   R << ore::NV("NumInstructions", NumInstsInFunction)
1037     << " instructions in function";
1038   ORE->emit(R);
1039 
1040   // If the function is empty and the object file uses .subsections_via_symbols,
1041   // then we need to emit *something* to the function body to prevent the
1042   // labels from collapsing together.  Just emit a noop.
1043   // Similarly, don't emit empty functions on Windows either. It can lead to
1044   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1045   // after linking, causing the kernel not to load the binary:
1046   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1047   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1048   const Triple &TT = TM.getTargetTriple();
1049   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1050                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1051     MCInst Noop;
1052     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1053 
1054     // Targets can opt-out of emitting the noop here by leaving the opcode
1055     // unspecified.
1056     if (Noop.getOpcode()) {
1057       OutStreamer->AddComment("avoids zero-length function");
1058       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1059     }
1060   }
1061 
1062   const Function *F = MF->getFunction();
1063   for (const auto &BB : *F) {
1064     if (!BB.hasAddressTaken())
1065       continue;
1066     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1067     if (Sym->isDefined())
1068       continue;
1069     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1070     OutStreamer->EmitLabel(Sym);
1071   }
1072 
1073   // Emit target-specific gunk after the function body.
1074   EmitFunctionBodyEnd();
1075 
1076   if (!MF->getLandingPads().empty() || MMI->hasDebugInfo() ||
1077       MF->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) {
1078     // Create a symbol for the end of function.
1079     CurrentFnEnd = createTempSymbol("func_end");
1080     OutStreamer->EmitLabel(CurrentFnEnd);
1081   }
1082 
1083   // If the target wants a .size directive for the size of the function, emit
1084   // it.
1085   if (MAI->hasDotTypeDotSizeDirective()) {
1086     // We can get the size as difference between the function label and the
1087     // temp label.
1088     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1089         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1090         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1091     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1092   }
1093 
1094   for (const HandlerInfo &HI : Handlers) {
1095     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1096                        HI.TimerGroupDescription, TimePassesIsEnabled);
1097     HI.Handler->markFunctionEnd();
1098   }
1099 
1100   // Print out jump tables referenced by the function.
1101   EmitJumpTableInfo();
1102 
1103   // Emit post-function debug and/or EH information.
1104   for (const HandlerInfo &HI : Handlers) {
1105     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1106                        HI.TimerGroupDescription, TimePassesIsEnabled);
1107     HI.Handler->endFunction(MF);
1108   }
1109 
1110   OutStreamer->AddBlankLine();
1111 }
1112 
1113 /// \brief Compute the number of Global Variables that uses a Constant.
1114 static unsigned getNumGlobalVariableUses(const Constant *C) {
1115   if (!C)
1116     return 0;
1117 
1118   if (isa<GlobalVariable>(C))
1119     return 1;
1120 
1121   unsigned NumUses = 0;
1122   for (auto *CU : C->users())
1123     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1124 
1125   return NumUses;
1126 }
1127 
1128 /// \brief Only consider global GOT equivalents if at least one user is a
1129 /// cstexpr inside an initializer of another global variables. Also, don't
1130 /// handle cstexpr inside instructions. During global variable emission,
1131 /// candidates are skipped and are emitted later in case at least one cstexpr
1132 /// isn't replaced by a PC relative GOT entry access.
1133 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1134                                      unsigned &NumGOTEquivUsers) {
1135   // Global GOT equivalents are unnamed private globals with a constant
1136   // pointer initializer to another global symbol. They must point to a
1137   // GlobalVariable or Function, i.e., as GlobalValue.
1138   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1139       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1140       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1141     return false;
1142 
1143   // To be a got equivalent, at least one of its users need to be a constant
1144   // expression used by another global variable.
1145   for (auto *U : GV->users())
1146     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1147 
1148   return NumGOTEquivUsers > 0;
1149 }
1150 
1151 /// \brief Unnamed constant global variables solely contaning a pointer to
1152 /// another globals variable is equivalent to a GOT table entry; it contains the
1153 /// the address of another symbol. Optimize it and replace accesses to these
1154 /// "GOT equivalents" by using the GOT entry for the final global instead.
1155 /// Compute GOT equivalent candidates among all global variables to avoid
1156 /// emitting them if possible later on, after it use is replaced by a GOT entry
1157 /// access.
1158 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1159   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1160     return;
1161 
1162   for (const auto &G : M.globals()) {
1163     unsigned NumGOTEquivUsers = 0;
1164     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1165       continue;
1166 
1167     const MCSymbol *GOTEquivSym = getSymbol(&G);
1168     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1169   }
1170 }
1171 
1172 /// \brief Constant expressions using GOT equivalent globals may not be eligible
1173 /// for PC relative GOT entry conversion, in such cases we need to emit such
1174 /// globals we previously omitted in EmitGlobalVariable.
1175 void AsmPrinter::emitGlobalGOTEquivs() {
1176   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1177     return;
1178 
1179   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1180   for (auto &I : GlobalGOTEquivs) {
1181     const GlobalVariable *GV = I.second.first;
1182     unsigned Cnt = I.second.second;
1183     if (Cnt)
1184       FailedCandidates.push_back(GV);
1185   }
1186   GlobalGOTEquivs.clear();
1187 
1188   for (auto *GV : FailedCandidates)
1189     EmitGlobalVariable(GV);
1190 }
1191 
1192 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1193                                           const GlobalIndirectSymbol& GIS) {
1194   MCSymbol *Name = getSymbol(&GIS);
1195 
1196   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1197     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1198   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1199     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1200   else
1201     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1202 
1203   // Set the symbol type to function if the alias has a function type.
1204   // This affects codegen when the aliasee is not a function.
1205   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1206     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1207     if (isa<GlobalIFunc>(GIS))
1208       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1209   }
1210 
1211   EmitVisibility(Name, GIS.getVisibility());
1212 
1213   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1214 
1215   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1216     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1217 
1218   // Emit the directives as assignments aka .set:
1219   OutStreamer->EmitAssignment(Name, Expr);
1220 
1221   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1222     // If the aliasee does not correspond to a symbol in the output, i.e. the
1223     // alias is not of an object or the aliased object is private, then set the
1224     // size of the alias symbol from the type of the alias. We don't do this in
1225     // other situations as the alias and aliasee having differing types but same
1226     // size may be intentional.
1227     const GlobalObject *BaseObject = GA->getBaseObject();
1228     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1229         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1230       const DataLayout &DL = M.getDataLayout();
1231       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1232       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1233     }
1234   }
1235 }
1236 
1237 bool AsmPrinter::doFinalization(Module &M) {
1238   // Set the MachineFunction to nullptr so that we can catch attempted
1239   // accesses to MF specific features at the module level and so that
1240   // we can conditionalize accesses based on whether or not it is nullptr.
1241   MF = nullptr;
1242 
1243   // Gather all GOT equivalent globals in the module. We really need two
1244   // passes over the globals: one to compute and another to avoid its emission
1245   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1246   // where the got equivalent shows up before its use.
1247   computeGlobalGOTEquivs(M);
1248 
1249   // Emit global variables.
1250   for (const auto &G : M.globals())
1251     EmitGlobalVariable(&G);
1252 
1253   // Emit remaining GOT equivalent globals.
1254   emitGlobalGOTEquivs();
1255 
1256   // Emit visibility info for declarations
1257   for (const Function &F : M) {
1258     if (!F.isDeclarationForLinker())
1259       continue;
1260     GlobalValue::VisibilityTypes V = F.getVisibility();
1261     if (V == GlobalValue::DefaultVisibility)
1262       continue;
1263 
1264     MCSymbol *Name = getSymbol(&F);
1265     EmitVisibility(Name, V, false);
1266   }
1267 
1268   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1269 
1270   // Emit module flags.
1271   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
1272   M.getModuleFlagsMetadata(ModuleFlags);
1273   if (!ModuleFlags.empty())
1274     TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM);
1275 
1276   if (TM.getTargetTriple().isOSBinFormatELF()) {
1277     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1278 
1279     // Output stubs for external and common global variables.
1280     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1281     if (!Stubs.empty()) {
1282       OutStreamer->SwitchSection(TLOF.getDataSection());
1283       const DataLayout &DL = M.getDataLayout();
1284 
1285       for (const auto &Stub : Stubs) {
1286         OutStreamer->EmitLabel(Stub.first);
1287         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1288                                      DL.getPointerSize());
1289       }
1290     }
1291   }
1292 
1293   // Finalize debug and EH information.
1294   for (const HandlerInfo &HI : Handlers) {
1295     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1296                        HI.TimerGroupDescription, TimePassesIsEnabled);
1297     HI.Handler->endModule();
1298     delete HI.Handler;
1299   }
1300   Handlers.clear();
1301   DD = nullptr;
1302 
1303   // If the target wants to know about weak references, print them all.
1304   if (MAI->getWeakRefDirective()) {
1305     // FIXME: This is not lazy, it would be nice to only print weak references
1306     // to stuff that is actually used.  Note that doing so would require targets
1307     // to notice uses in operands (due to constant exprs etc).  This should
1308     // happen with the MC stuff eventually.
1309 
1310     // Print out module-level global objects here.
1311     for (const auto &GO : M.global_objects()) {
1312       if (!GO.hasExternalWeakLinkage())
1313         continue;
1314       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1315     }
1316   }
1317 
1318   OutStreamer->AddBlankLine();
1319 
1320   // Print aliases in topological order, that is, for each alias a = b,
1321   // b must be printed before a.
1322   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1323   // such an order to generate correct TOC information.
1324   SmallVector<const GlobalAlias *, 16> AliasStack;
1325   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1326   for (const auto &Alias : M.aliases()) {
1327     for (const GlobalAlias *Cur = &Alias; Cur;
1328          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1329       if (!AliasVisited.insert(Cur).second)
1330         break;
1331       AliasStack.push_back(Cur);
1332     }
1333     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1334       emitGlobalIndirectSymbol(M, *AncestorAlias);
1335     AliasStack.clear();
1336   }
1337   for (const auto &IFunc : M.ifuncs())
1338     emitGlobalIndirectSymbol(M, IFunc);
1339 
1340   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1341   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1342   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1343     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1344       MP->finishAssembly(M, *MI, *this);
1345 
1346   // Emit llvm.ident metadata in an '.ident' directive.
1347   EmitModuleIdents(M);
1348 
1349   // Emit __morestack address if needed for indirect calls.
1350   if (MMI->usesMorestackAddr()) {
1351     unsigned Align = 1;
1352     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1353         getDataLayout(), SectionKind::getReadOnly(),
1354         /*C=*/nullptr, Align);
1355     OutStreamer->SwitchSection(ReadOnlySection);
1356 
1357     MCSymbol *AddrSymbol =
1358         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1359     OutStreamer->EmitLabel(AddrSymbol);
1360 
1361     unsigned PtrSize = MAI->getCodePointerSize();
1362     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1363                                  PtrSize);
1364   }
1365 
1366   // If we don't have any trampolines, then we don't require stack memory
1367   // to be executable. Some targets have a directive to declare this.
1368   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1369   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1370     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1371       OutStreamer->SwitchSection(S);
1372 
1373   // Allow the target to emit any magic that it wants at the end of the file,
1374   // after everything else has gone out.
1375   EmitEndOfAsmFile(M);
1376 
1377   MMI = nullptr;
1378 
1379   OutStreamer->Finish();
1380   OutStreamer->reset();
1381 
1382   return false;
1383 }
1384 
1385 MCSymbol *AsmPrinter::getCurExceptionSym() {
1386   if (!CurExceptionSym)
1387     CurExceptionSym = createTempSymbol("exception");
1388   return CurExceptionSym;
1389 }
1390 
1391 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1392   this->MF = &MF;
1393   // Get the function symbol.
1394   CurrentFnSym = getSymbol(MF.getFunction());
1395   CurrentFnSymForSize = CurrentFnSym;
1396   CurrentFnBegin = nullptr;
1397   CurExceptionSym = nullptr;
1398   bool NeedsLocalForSize = MAI->needsLocalForSize();
1399   if (!MF.getLandingPads().empty() || MMI->hasDebugInfo() ||
1400       MF.hasEHFunclets() || NeedsLocalForSize) {
1401     CurrentFnBegin = createTempSymbol("func_begin");
1402     if (NeedsLocalForSize)
1403       CurrentFnSymForSize = CurrentFnBegin;
1404   }
1405 
1406   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1407   if (isVerbose())
1408     LI = &getAnalysis<MachineLoopInfo>();
1409 
1410   const TargetSubtargetInfo &STI = MF.getSubtarget();
1411   EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1412                              ? PrintSchedule
1413                              : STI.supportPrintSchedInfo();
1414 }
1415 
1416 namespace {
1417 
1418 // Keep track the alignment, constpool entries per Section.
1419   struct SectionCPs {
1420     MCSection *S;
1421     unsigned Alignment;
1422     SmallVector<unsigned, 4> CPEs;
1423 
1424     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1425   };
1426 
1427 } // end anonymous namespace
1428 
1429 /// EmitConstantPool - Print to the current output stream assembly
1430 /// representations of the constants in the constant pool MCP. This is
1431 /// used to print out constants which have been "spilled to memory" by
1432 /// the code generator.
1433 ///
1434 void AsmPrinter::EmitConstantPool() {
1435   const MachineConstantPool *MCP = MF->getConstantPool();
1436   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1437   if (CP.empty()) return;
1438 
1439   // Calculate sections for constant pool entries. We collect entries to go into
1440   // the same section together to reduce amount of section switch statements.
1441   SmallVector<SectionCPs, 4> CPSections;
1442   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1443     const MachineConstantPoolEntry &CPE = CP[i];
1444     unsigned Align = CPE.getAlignment();
1445 
1446     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1447 
1448     const Constant *C = nullptr;
1449     if (!CPE.isMachineConstantPoolEntry())
1450       C = CPE.Val.ConstVal;
1451 
1452     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1453                                                               Kind, C, Align);
1454 
1455     // The number of sections are small, just do a linear search from the
1456     // last section to the first.
1457     bool Found = false;
1458     unsigned SecIdx = CPSections.size();
1459     while (SecIdx != 0) {
1460       if (CPSections[--SecIdx].S == S) {
1461         Found = true;
1462         break;
1463       }
1464     }
1465     if (!Found) {
1466       SecIdx = CPSections.size();
1467       CPSections.push_back(SectionCPs(S, Align));
1468     }
1469 
1470     if (Align > CPSections[SecIdx].Alignment)
1471       CPSections[SecIdx].Alignment = Align;
1472     CPSections[SecIdx].CPEs.push_back(i);
1473   }
1474 
1475   // Now print stuff into the calculated sections.
1476   const MCSection *CurSection = nullptr;
1477   unsigned Offset = 0;
1478   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1479     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1480       unsigned CPI = CPSections[i].CPEs[j];
1481       MCSymbol *Sym = GetCPISymbol(CPI);
1482       if (!Sym->isUndefined())
1483         continue;
1484 
1485       if (CurSection != CPSections[i].S) {
1486         OutStreamer->SwitchSection(CPSections[i].S);
1487         EmitAlignment(Log2_32(CPSections[i].Alignment));
1488         CurSection = CPSections[i].S;
1489         Offset = 0;
1490       }
1491 
1492       MachineConstantPoolEntry CPE = CP[CPI];
1493 
1494       // Emit inter-object padding for alignment.
1495       unsigned AlignMask = CPE.getAlignment() - 1;
1496       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1497       OutStreamer->EmitZeros(NewOffset - Offset);
1498 
1499       Type *Ty = CPE.getType();
1500       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1501 
1502       OutStreamer->EmitLabel(Sym);
1503       if (CPE.isMachineConstantPoolEntry())
1504         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1505       else
1506         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1507     }
1508   }
1509 }
1510 
1511 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1512 /// by the current function to the current output stream.
1513 ///
1514 void AsmPrinter::EmitJumpTableInfo() {
1515   const DataLayout &DL = MF->getDataLayout();
1516   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1517   if (!MJTI) return;
1518   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1519   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1520   if (JT.empty()) return;
1521 
1522   // Pick the directive to use to print the jump table entries, and switch to
1523   // the appropriate section.
1524   const Function *F = MF->getFunction();
1525   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1526   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1527       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1528       *F);
1529   if (JTInDiffSection) {
1530     // Drop it in the readonly section.
1531     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM);
1532     OutStreamer->SwitchSection(ReadOnlySection);
1533   }
1534 
1535   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1536 
1537   // Jump tables in code sections are marked with a data_region directive
1538   // where that's supported.
1539   if (!JTInDiffSection)
1540     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1541 
1542   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1543     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1544 
1545     // If this jump table was deleted, ignore it.
1546     if (JTBBs.empty()) continue;
1547 
1548     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1549     /// emit a .set directive for each unique entry.
1550     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1551         MAI->doesSetDirectiveSuppressReloc()) {
1552       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1553       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1554       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1555       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1556         const MachineBasicBlock *MBB = JTBBs[ii];
1557         if (!EmittedSets.insert(MBB).second)
1558           continue;
1559 
1560         // .set LJTSet, LBB32-base
1561         const MCExpr *LHS =
1562           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1563         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1564                                     MCBinaryExpr::createSub(LHS, Base,
1565                                                             OutContext));
1566       }
1567     }
1568 
1569     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1570     // before each jump table.  The first label is never referenced, but tells
1571     // the assembler and linker the extents of the jump table object.  The
1572     // second label is actually referenced by the code.
1573     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1574       // FIXME: This doesn't have to have any specific name, just any randomly
1575       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1576       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1577 
1578     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1579 
1580     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1581       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1582   }
1583   if (!JTInDiffSection)
1584     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1585 }
1586 
1587 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1588 /// current stream.
1589 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1590                                     const MachineBasicBlock *MBB,
1591                                     unsigned UID) const {
1592   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1593   const MCExpr *Value = nullptr;
1594   switch (MJTI->getEntryKind()) {
1595   case MachineJumpTableInfo::EK_Inline:
1596     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1597   case MachineJumpTableInfo::EK_Custom32:
1598     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1599         MJTI, MBB, UID, OutContext);
1600     break;
1601   case MachineJumpTableInfo::EK_BlockAddress:
1602     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1603     //     .word LBB123
1604     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1605     break;
1606   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1607     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1608     // with a relocation as gp-relative, e.g.:
1609     //     .gprel32 LBB123
1610     MCSymbol *MBBSym = MBB->getSymbol();
1611     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1612     return;
1613   }
1614 
1615   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1616     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1617     // with a relocation as gp-relative, e.g.:
1618     //     .gpdword LBB123
1619     MCSymbol *MBBSym = MBB->getSymbol();
1620     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1621     return;
1622   }
1623 
1624   case MachineJumpTableInfo::EK_LabelDifference32: {
1625     // Each entry is the address of the block minus the address of the jump
1626     // table. This is used for PIC jump tables where gprel32 is not supported.
1627     // e.g.:
1628     //      .word LBB123 - LJTI1_2
1629     // If the .set directive avoids relocations, this is emitted as:
1630     //      .set L4_5_set_123, LBB123 - LJTI1_2
1631     //      .word L4_5_set_123
1632     if (MAI->doesSetDirectiveSuppressReloc()) {
1633       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1634                                       OutContext);
1635       break;
1636     }
1637     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1638     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1639     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1640     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1641     break;
1642   }
1643   }
1644 
1645   assert(Value && "Unknown entry kind!");
1646 
1647   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1648   OutStreamer->EmitValue(Value, EntrySize);
1649 }
1650 
1651 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1652 /// special global used by LLVM.  If so, emit it and return true, otherwise
1653 /// do nothing and return false.
1654 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1655   if (GV->getName() == "llvm.used") {
1656     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1657       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1658     return true;
1659   }
1660 
1661   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1662   if (GV->getSection() == "llvm.metadata" ||
1663       GV->hasAvailableExternallyLinkage())
1664     return true;
1665 
1666   if (!GV->hasAppendingLinkage()) return false;
1667 
1668   assert(GV->hasInitializer() && "Not a special LLVM global!");
1669 
1670   if (GV->getName() == "llvm.global_ctors") {
1671     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1672                        /* isCtor */ true);
1673 
1674     return true;
1675   }
1676 
1677   if (GV->getName() == "llvm.global_dtors") {
1678     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1679                        /* isCtor */ false);
1680 
1681     return true;
1682   }
1683 
1684   report_fatal_error("unknown special variable");
1685 }
1686 
1687 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1688 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1689 /// is true, as being used with this directive.
1690 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1691   // Should be an array of 'i8*'.
1692   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1693     const GlobalValue *GV =
1694       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1695     if (GV)
1696       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1697   }
1698 }
1699 
1700 namespace {
1701 
1702 struct Structor {
1703   int Priority = 0;
1704   Constant *Func = nullptr;
1705   GlobalValue *ComdatKey = nullptr;
1706 
1707   Structor() = default;
1708 };
1709 
1710 }  // end anonymous namespace
1711 
1712 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1713 /// priority.
1714 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1715                                     bool isCtor) {
1716   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1717   // init priority.
1718   if (!isa<ConstantArray>(List)) return;
1719 
1720   // Sanity check the structors list.
1721   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1722   if (!InitList) return; // Not an array!
1723   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1724   // FIXME: Only allow the 3-field form in LLVM 4.0.
1725   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1726     return; // Not an array of two or three elements!
1727   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1728       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1729   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1730     return; // Not (int, ptr, ptr).
1731 
1732   // Gather the structors in a form that's convenient for sorting by priority.
1733   SmallVector<Structor, 8> Structors;
1734   for (Value *O : InitList->operands()) {
1735     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1736     if (!CS) continue; // Malformed.
1737     if (CS->getOperand(1)->isNullValue())
1738       break;  // Found a null terminator, skip the rest.
1739     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1740     if (!Priority) continue; // Malformed.
1741     Structors.push_back(Structor());
1742     Structor &S = Structors.back();
1743     S.Priority = Priority->getLimitedValue(65535);
1744     S.Func = CS->getOperand(1);
1745     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1746       S.ComdatKey =
1747           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1748   }
1749 
1750   // Emit the function pointers in the target-specific order
1751   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1752   std::stable_sort(Structors.begin(), Structors.end(),
1753                    [](const Structor &L,
1754                       const Structor &R) { return L.Priority < R.Priority; });
1755   for (Structor &S : Structors) {
1756     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1757     const MCSymbol *KeySym = nullptr;
1758     if (GlobalValue *GV = S.ComdatKey) {
1759       if (GV->isDeclarationForLinker())
1760         // If the associated variable is not defined in this module
1761         // (it might be available_externally, or have been an
1762         // available_externally definition that was dropped by the
1763         // EliminateAvailableExternally pass), some other TU
1764         // will provide its dynamic initializer.
1765         continue;
1766 
1767       KeySym = getSymbol(GV);
1768     }
1769     MCSection *OutputSection =
1770         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1771                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1772     OutStreamer->SwitchSection(OutputSection);
1773     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1774       EmitAlignment(Align);
1775     EmitXXStructor(DL, S.Func);
1776   }
1777 }
1778 
1779 void AsmPrinter::EmitModuleIdents(Module &M) {
1780   if (!MAI->hasIdentDirective())
1781     return;
1782 
1783   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1784     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1785       const MDNode *N = NMD->getOperand(i);
1786       assert(N->getNumOperands() == 1 &&
1787              "llvm.ident metadata entry can have only one operand");
1788       const MDString *S = cast<MDString>(N->getOperand(0));
1789       OutStreamer->EmitIdent(S->getString());
1790     }
1791   }
1792 }
1793 
1794 //===--------------------------------------------------------------------===//
1795 // Emission and print routines
1796 //
1797 
1798 /// EmitInt8 - Emit a byte directive and value.
1799 ///
1800 void AsmPrinter::EmitInt8(int Value) const {
1801   OutStreamer->EmitIntValue(Value, 1);
1802 }
1803 
1804 /// EmitInt16 - Emit a short directive and value.
1805 ///
1806 void AsmPrinter::EmitInt16(int Value) const {
1807   OutStreamer->EmitIntValue(Value, 2);
1808 }
1809 
1810 /// EmitInt32 - Emit a long directive and value.
1811 ///
1812 void AsmPrinter::EmitInt32(int Value) const {
1813   OutStreamer->EmitIntValue(Value, 4);
1814 }
1815 
1816 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1817 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1818 /// .set if it avoids relocations.
1819 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1820                                      unsigned Size) const {
1821   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1822 }
1823 
1824 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1825 /// where the size in bytes of the directive is specified by Size and Label
1826 /// specifies the label.  This implicitly uses .set if it is available.
1827 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1828                                      unsigned Size,
1829                                      bool IsSectionRelative) const {
1830   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1831     OutStreamer->EmitCOFFSecRel32(Label, Offset);
1832     if (Size > 4)
1833       OutStreamer->EmitZeros(Size - 4);
1834     return;
1835   }
1836 
1837   // Emit Label+Offset (or just Label if Offset is zero)
1838   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1839   if (Offset)
1840     Expr = MCBinaryExpr::createAdd(
1841         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1842 
1843   OutStreamer->EmitValue(Expr, Size);
1844 }
1845 
1846 //===----------------------------------------------------------------------===//
1847 
1848 // EmitAlignment - Emit an alignment directive to the specified power of
1849 // two boundary.  For example, if you pass in 3 here, you will get an 8
1850 // byte alignment.  If a global value is specified, and if that global has
1851 // an explicit alignment requested, it will override the alignment request
1852 // if required for correctness.
1853 //
1854 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1855   if (GV)
1856     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1857 
1858   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1859 
1860   assert(NumBits <
1861              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1862          "undefined behavior");
1863   if (getCurrentSection()->getKind().isText())
1864     OutStreamer->EmitCodeAlignment(1u << NumBits);
1865   else
1866     OutStreamer->EmitValueToAlignment(1u << NumBits);
1867 }
1868 
1869 //===----------------------------------------------------------------------===//
1870 // Constant emission.
1871 //===----------------------------------------------------------------------===//
1872 
1873 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1874   MCContext &Ctx = OutContext;
1875 
1876   if (CV->isNullValue() || isa<UndefValue>(CV))
1877     return MCConstantExpr::create(0, Ctx);
1878 
1879   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1880     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1881 
1882   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1883     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1884 
1885   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1886     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1887 
1888   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1889   if (!CE) {
1890     llvm_unreachable("Unknown constant value to lower!");
1891   }
1892 
1893   switch (CE->getOpcode()) {
1894   default:
1895     // If the code isn't optimized, there may be outstanding folding
1896     // opportunities. Attempt to fold the expression using DataLayout as a
1897     // last resort before giving up.
1898     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
1899       if (C != CE)
1900         return lowerConstant(C);
1901 
1902     // Otherwise report the problem to the user.
1903     {
1904       std::string S;
1905       raw_string_ostream OS(S);
1906       OS << "Unsupported expression in static initializer: ";
1907       CE->printAsOperand(OS, /*PrintType=*/false,
1908                      !MF ? nullptr : MF->getFunction()->getParent());
1909       report_fatal_error(OS.str());
1910     }
1911   case Instruction::GetElementPtr: {
1912     // Generate a symbolic expression for the byte address
1913     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
1914     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
1915 
1916     const MCExpr *Base = lowerConstant(CE->getOperand(0));
1917     if (!OffsetAI)
1918       return Base;
1919 
1920     int64_t Offset = OffsetAI.getSExtValue();
1921     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
1922                                    Ctx);
1923   }
1924 
1925   case Instruction::Trunc:
1926     // We emit the value and depend on the assembler to truncate the generated
1927     // expression properly.  This is important for differences between
1928     // blockaddress labels.  Since the two labels are in the same function, it
1929     // is reasonable to treat their delta as a 32-bit value.
1930     LLVM_FALLTHROUGH;
1931   case Instruction::BitCast:
1932     return lowerConstant(CE->getOperand(0));
1933 
1934   case Instruction::IntToPtr: {
1935     const DataLayout &DL = getDataLayout();
1936 
1937     // Handle casts to pointers by changing them into casts to the appropriate
1938     // integer type.  This promotes constant folding and simplifies this code.
1939     Constant *Op = CE->getOperand(0);
1940     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1941                                       false/*ZExt*/);
1942     return lowerConstant(Op);
1943   }
1944 
1945   case Instruction::PtrToInt: {
1946     const DataLayout &DL = getDataLayout();
1947 
1948     // Support only foldable casts to/from pointers that can be eliminated by
1949     // changing the pointer to the appropriately sized integer type.
1950     Constant *Op = CE->getOperand(0);
1951     Type *Ty = CE->getType();
1952 
1953     const MCExpr *OpExpr = lowerConstant(Op);
1954 
1955     // We can emit the pointer value into this slot if the slot is an
1956     // integer slot equal to the size of the pointer.
1957     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1958       return OpExpr;
1959 
1960     // Otherwise the pointer is smaller than the resultant integer, mask off
1961     // the high bits so we are sure to get a proper truncation if the input is
1962     // a constant expr.
1963     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1964     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
1965     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
1966   }
1967 
1968   case Instruction::Sub: {
1969     GlobalValue *LHSGV;
1970     APInt LHSOffset;
1971     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
1972                                    getDataLayout())) {
1973       GlobalValue *RHSGV;
1974       APInt RHSOffset;
1975       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
1976                                      getDataLayout())) {
1977         const MCExpr *RelocExpr =
1978             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
1979         if (!RelocExpr)
1980           RelocExpr = MCBinaryExpr::createSub(
1981               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
1982               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
1983         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
1984         if (Addend != 0)
1985           RelocExpr = MCBinaryExpr::createAdd(
1986               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
1987         return RelocExpr;
1988       }
1989     }
1990   }
1991   // else fallthrough
1992 
1993   // The MC library also has a right-shift operator, but it isn't consistently
1994   // signed or unsigned between different targets.
1995   case Instruction::Add:
1996   case Instruction::Mul:
1997   case Instruction::SDiv:
1998   case Instruction::SRem:
1999   case Instruction::Shl:
2000   case Instruction::And:
2001   case Instruction::Or:
2002   case Instruction::Xor: {
2003     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2004     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2005     switch (CE->getOpcode()) {
2006     default: llvm_unreachable("Unknown binary operator constant cast expr");
2007     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2008     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2009     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2010     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2011     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2012     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2013     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2014     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2015     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2016     }
2017   }
2018   }
2019 }
2020 
2021 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2022                                    AsmPrinter &AP,
2023                                    const Constant *BaseCV = nullptr,
2024                                    uint64_t Offset = 0);
2025 
2026 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2027 
2028 /// isRepeatedByteSequence - Determine whether the given value is
2029 /// composed of a repeated sequence of identical bytes and return the
2030 /// byte value.  If it is not a repeated sequence, return -1.
2031 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2032   StringRef Data = V->getRawDataValues();
2033   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2034   char C = Data[0];
2035   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2036     if (Data[i] != C) return -1;
2037   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2038 }
2039 
2040 /// isRepeatedByteSequence - Determine whether the given value is
2041 /// composed of a repeated sequence of identical bytes and return the
2042 /// byte value.  If it is not a repeated sequence, return -1.
2043 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2044   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2045     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2046     assert(Size % 8 == 0);
2047 
2048     // Extend the element to take zero padding into account.
2049     APInt Value = CI->getValue().zextOrSelf(Size);
2050     if (!Value.isSplat(8))
2051       return -1;
2052 
2053     return Value.zextOrTrunc(8).getZExtValue();
2054   }
2055   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2056     // Make sure all array elements are sequences of the same repeated
2057     // byte.
2058     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2059     Constant *Op0 = CA->getOperand(0);
2060     int Byte = isRepeatedByteSequence(Op0, DL);
2061     if (Byte == -1)
2062       return -1;
2063 
2064     // All array elements must be equal.
2065     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2066       if (CA->getOperand(i) != Op0)
2067         return -1;
2068     return Byte;
2069   }
2070 
2071   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2072     return isRepeatedByteSequence(CDS);
2073 
2074   return -1;
2075 }
2076 
2077 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2078                                              const ConstantDataSequential *CDS,
2079                                              AsmPrinter &AP) {
2080   // See if we can aggregate this into a .fill, if so, emit it as such.
2081   int Value = isRepeatedByteSequence(CDS, DL);
2082   if (Value != -1) {
2083     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2084     // Don't emit a 1-byte object as a .fill.
2085     if (Bytes > 1)
2086       return AP.OutStreamer->emitFill(Bytes, Value);
2087   }
2088 
2089   // If this can be emitted with .ascii/.asciz, emit it as such.
2090   if (CDS->isString())
2091     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2092 
2093   // Otherwise, emit the values in successive locations.
2094   unsigned ElementByteSize = CDS->getElementByteSize();
2095   if (isa<IntegerType>(CDS->getElementType())) {
2096     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2097       if (AP.isVerbose())
2098         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2099                                                  CDS->getElementAsInteger(i));
2100       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2101                                    ElementByteSize);
2102     }
2103   } else {
2104     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2105       emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
2106   }
2107 
2108   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2109   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2110                         CDS->getNumElements();
2111   if (unsigned Padding = Size - EmittedSize)
2112     AP.OutStreamer->EmitZeros(Padding);
2113 }
2114 
2115 static void emitGlobalConstantArray(const DataLayout &DL,
2116                                     const ConstantArray *CA, AsmPrinter &AP,
2117                                     const Constant *BaseCV, uint64_t Offset) {
2118   // See if we can aggregate some values.  Make sure it can be
2119   // represented as a series of bytes of the constant value.
2120   int Value = isRepeatedByteSequence(CA, DL);
2121 
2122   if (Value != -1) {
2123     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2124     AP.OutStreamer->emitFill(Bytes, Value);
2125   }
2126   else {
2127     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2128       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2129       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2130     }
2131   }
2132 }
2133 
2134 static void emitGlobalConstantVector(const DataLayout &DL,
2135                                      const ConstantVector *CV, AsmPrinter &AP) {
2136   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2137     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2138 
2139   unsigned Size = DL.getTypeAllocSize(CV->getType());
2140   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2141                          CV->getType()->getNumElements();
2142   if (unsigned Padding = Size - EmittedSize)
2143     AP.OutStreamer->EmitZeros(Padding);
2144 }
2145 
2146 static void emitGlobalConstantStruct(const DataLayout &DL,
2147                                      const ConstantStruct *CS, AsmPrinter &AP,
2148                                      const Constant *BaseCV, uint64_t Offset) {
2149   // Print the fields in successive locations. Pad to align if needed!
2150   unsigned Size = DL.getTypeAllocSize(CS->getType());
2151   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2152   uint64_t SizeSoFar = 0;
2153   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2154     const Constant *Field = CS->getOperand(i);
2155 
2156     // Print the actual field value.
2157     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2158 
2159     // Check if padding is needed and insert one or more 0s.
2160     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2161     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2162                         - Layout->getElementOffset(i)) - FieldSize;
2163     SizeSoFar += FieldSize + PadSize;
2164 
2165     // Insert padding - this may include padding to increase the size of the
2166     // current field up to the ABI size (if the struct is not packed) as well
2167     // as padding to ensure that the next field starts at the right offset.
2168     AP.OutStreamer->EmitZeros(PadSize);
2169   }
2170   assert(SizeSoFar == Layout->getSizeInBytes() &&
2171          "Layout of constant struct may be incorrect!");
2172 }
2173 
2174 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2175   APInt API = CFP->getValueAPF().bitcastToAPInt();
2176 
2177   // First print a comment with what we think the original floating-point value
2178   // should have been.
2179   if (AP.isVerbose()) {
2180     SmallString<8> StrVal;
2181     CFP->getValueAPF().toString(StrVal);
2182 
2183     if (CFP->getType())
2184       CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2185     else
2186       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2187     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2188   }
2189 
2190   // Now iterate through the APInt chunks, emitting them in endian-correct
2191   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2192   // floats).
2193   unsigned NumBytes = API.getBitWidth() / 8;
2194   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2195   const uint64_t *p = API.getRawData();
2196 
2197   // PPC's long double has odd notions of endianness compared to how LLVM
2198   // handles it: p[0] goes first for *big* endian on PPC.
2199   if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2200     int Chunk = API.getNumWords() - 1;
2201 
2202     if (TrailingBytes)
2203       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2204 
2205     for (; Chunk >= 0; --Chunk)
2206       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2207   } else {
2208     unsigned Chunk;
2209     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2210       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2211 
2212     if (TrailingBytes)
2213       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2214   }
2215 
2216   // Emit the tail padding for the long double.
2217   const DataLayout &DL = AP.getDataLayout();
2218   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2219                             DL.getTypeStoreSize(CFP->getType()));
2220 }
2221 
2222 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2223   const DataLayout &DL = AP.getDataLayout();
2224   unsigned BitWidth = CI->getBitWidth();
2225 
2226   // Copy the value as we may massage the layout for constants whose bit width
2227   // is not a multiple of 64-bits.
2228   APInt Realigned(CI->getValue());
2229   uint64_t ExtraBits = 0;
2230   unsigned ExtraBitsSize = BitWidth & 63;
2231 
2232   if (ExtraBitsSize) {
2233     // The bit width of the data is not a multiple of 64-bits.
2234     // The extra bits are expected to be at the end of the chunk of the memory.
2235     // Little endian:
2236     // * Nothing to be done, just record the extra bits to emit.
2237     // Big endian:
2238     // * Record the extra bits to emit.
2239     // * Realign the raw data to emit the chunks of 64-bits.
2240     if (DL.isBigEndian()) {
2241       // Basically the structure of the raw data is a chunk of 64-bits cells:
2242       //    0        1         BitWidth / 64
2243       // [chunk1][chunk2] ... [chunkN].
2244       // The most significant chunk is chunkN and it should be emitted first.
2245       // However, due to the alignment issue chunkN contains useless bits.
2246       // Realign the chunks so that they contain only useless information:
2247       // ExtraBits     0       1       (BitWidth / 64) - 1
2248       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2249       ExtraBits = Realigned.getRawData()[0] &
2250         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2251       Realigned.lshrInPlace(ExtraBitsSize);
2252     } else
2253       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2254   }
2255 
2256   // We don't expect assemblers to support integer data directives
2257   // for more than 64 bits, so we emit the data in at most 64-bit
2258   // quantities at a time.
2259   const uint64_t *RawData = Realigned.getRawData();
2260   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2261     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2262     AP.OutStreamer->EmitIntValue(Val, 8);
2263   }
2264 
2265   if (ExtraBitsSize) {
2266     // Emit the extra bits after the 64-bits chunks.
2267 
2268     // Emit a directive that fills the expected size.
2269     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2270     Size -= (BitWidth / 64) * 8;
2271     assert(Size && Size * 8 >= ExtraBitsSize &&
2272            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2273            == ExtraBits && "Directive too small for extra bits.");
2274     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2275   }
2276 }
2277 
2278 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2279 /// equivalent global, by a target specific GOT pc relative access to the
2280 /// final symbol.
2281 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2282                                          const Constant *BaseCst,
2283                                          uint64_t Offset) {
2284   // The global @foo below illustrates a global that uses a got equivalent.
2285   //
2286   //  @bar = global i32 42
2287   //  @gotequiv = private unnamed_addr constant i32* @bar
2288   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2289   //                             i64 ptrtoint (i32* @foo to i64))
2290   //                        to i32)
2291   //
2292   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2293   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2294   // form:
2295   //
2296   //  foo = cstexpr, where
2297   //    cstexpr := <gotequiv> - "." + <cst>
2298   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2299   //
2300   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2301   //
2302   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2303   //    gotpcrelcst := <offset from @foo base> + <cst>
2304   //
2305   MCValue MV;
2306   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2307     return;
2308   const MCSymbolRefExpr *SymA = MV.getSymA();
2309   if (!SymA)
2310     return;
2311 
2312   // Check that GOT equivalent symbol is cached.
2313   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2314   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2315     return;
2316 
2317   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2318   if (!BaseGV)
2319     return;
2320 
2321   // Check for a valid base symbol
2322   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2323   const MCSymbolRefExpr *SymB = MV.getSymB();
2324 
2325   if (!SymB || BaseSym != &SymB->getSymbol())
2326     return;
2327 
2328   // Make sure to match:
2329   //
2330   //    gotpcrelcst := <offset from @foo base> + <cst>
2331   //
2332   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2333   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2334   // if the target knows how to encode it.
2335   //
2336   int64_t GOTPCRelCst = Offset + MV.getConstant();
2337   if (GOTPCRelCst < 0)
2338     return;
2339   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2340     return;
2341 
2342   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2343   //
2344   //  bar:
2345   //    .long 42
2346   //  gotequiv:
2347   //    .quad bar
2348   //  foo:
2349   //    .long gotequiv - "." + <cst>
2350   //
2351   // is replaced by the target specific equivalent to:
2352   //
2353   //  bar:
2354   //    .long 42
2355   //  foo:
2356   //    .long bar@GOTPCREL+<gotpcrelcst>
2357   //
2358   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2359   const GlobalVariable *GV = Result.first;
2360   int NumUses = (int)Result.second;
2361   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2362   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2363   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2364       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2365 
2366   // Update GOT equivalent usage information
2367   --NumUses;
2368   if (NumUses >= 0)
2369     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2370 }
2371 
2372 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2373                                    AsmPrinter &AP, const Constant *BaseCV,
2374                                    uint64_t Offset) {
2375   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2376 
2377   // Globals with sub-elements such as combinations of arrays and structs
2378   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2379   // constant symbol base and the current position with BaseCV and Offset.
2380   if (!BaseCV && CV->hasOneUse())
2381     BaseCV = dyn_cast<Constant>(CV->user_back());
2382 
2383   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2384     return AP.OutStreamer->EmitZeros(Size);
2385 
2386   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2387     switch (Size) {
2388     case 1:
2389     case 2:
2390     case 4:
2391     case 8:
2392       if (AP.isVerbose())
2393         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2394                                                  CI->getZExtValue());
2395       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2396       return;
2397     default:
2398       emitGlobalConstantLargeInt(CI, AP);
2399       return;
2400     }
2401   }
2402 
2403   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2404     return emitGlobalConstantFP(CFP, AP);
2405 
2406   if (isa<ConstantPointerNull>(CV)) {
2407     AP.OutStreamer->EmitIntValue(0, Size);
2408     return;
2409   }
2410 
2411   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2412     return emitGlobalConstantDataSequential(DL, CDS, AP);
2413 
2414   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2415     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2416 
2417   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2418     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2419 
2420   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2421     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2422     // vectors).
2423     if (CE->getOpcode() == Instruction::BitCast)
2424       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2425 
2426     if (Size > 8) {
2427       // If the constant expression's size is greater than 64-bits, then we have
2428       // to emit the value in chunks. Try to constant fold the value and emit it
2429       // that way.
2430       Constant *New = ConstantFoldConstant(CE, DL);
2431       if (New && New != CE)
2432         return emitGlobalConstantImpl(DL, New, AP);
2433     }
2434   }
2435 
2436   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2437     return emitGlobalConstantVector(DL, V, AP);
2438 
2439   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2440   // thread the streamer with EmitValue.
2441   const MCExpr *ME = AP.lowerConstant(CV);
2442 
2443   // Since lowerConstant already folded and got rid of all IR pointer and
2444   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2445   // directly.
2446   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2447     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2448 
2449   AP.OutStreamer->EmitValue(ME, Size);
2450 }
2451 
2452 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2453 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2454   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2455   if (Size)
2456     emitGlobalConstantImpl(DL, CV, *this);
2457   else if (MAI->hasSubsectionsViaSymbols()) {
2458     // If the global has zero size, emit a single byte so that two labels don't
2459     // look like they are at the same location.
2460     OutStreamer->EmitIntValue(0, 1);
2461   }
2462 }
2463 
2464 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2465   // Target doesn't support this yet!
2466   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2467 }
2468 
2469 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2470   if (Offset > 0)
2471     OS << '+' << Offset;
2472   else if (Offset < 0)
2473     OS << Offset;
2474 }
2475 
2476 //===----------------------------------------------------------------------===//
2477 // Symbol Lowering Routines.
2478 //===----------------------------------------------------------------------===//
2479 
2480 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2481   return OutContext.createTempSymbol(Name, true);
2482 }
2483 
2484 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2485   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2486 }
2487 
2488 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2489   return MMI->getAddrLabelSymbol(BB);
2490 }
2491 
2492 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2493 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2494   const DataLayout &DL = getDataLayout();
2495   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2496                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2497                                       Twine(CPID));
2498 }
2499 
2500 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2501 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2502   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2503 }
2504 
2505 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2506 /// FIXME: privatize to AsmPrinter.
2507 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2508   const DataLayout &DL = getDataLayout();
2509   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2510                                       Twine(getFunctionNumber()) + "_" +
2511                                       Twine(UID) + "_set_" + Twine(MBBID));
2512 }
2513 
2514 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2515                                                    StringRef Suffix) const {
2516   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2517 }
2518 
2519 /// Return the MCSymbol for the specified ExternalSymbol.
2520 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2521   SmallString<60> NameStr;
2522   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2523   return OutContext.getOrCreateSymbol(NameStr);
2524 }
2525 
2526 /// PrintParentLoopComment - Print comments about parent loops of this one.
2527 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2528                                    unsigned FunctionNumber) {
2529   if (!Loop) return;
2530   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2531   OS.indent(Loop->getLoopDepth()*2)
2532     << "Parent Loop BB" << FunctionNumber << "_"
2533     << Loop->getHeader()->getNumber()
2534     << " Depth=" << Loop->getLoopDepth() << '\n';
2535 }
2536 
2537 
2538 /// PrintChildLoopComment - Print comments about child loops within
2539 /// the loop for this basic block, with nesting.
2540 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2541                                   unsigned FunctionNumber) {
2542   // Add child loop information
2543   for (const MachineLoop *CL : *Loop) {
2544     OS.indent(CL->getLoopDepth()*2)
2545       << "Child Loop BB" << FunctionNumber << "_"
2546       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2547       << '\n';
2548     PrintChildLoopComment(OS, CL, FunctionNumber);
2549   }
2550 }
2551 
2552 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2553 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2554                                        const MachineLoopInfo *LI,
2555                                        const AsmPrinter &AP) {
2556   // Add loop depth information
2557   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2558   if (!Loop) return;
2559 
2560   MachineBasicBlock *Header = Loop->getHeader();
2561   assert(Header && "No header for loop");
2562 
2563   // If this block is not a loop header, just print out what is the loop header
2564   // and return.
2565   if (Header != &MBB) {
2566     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2567                                Twine(AP.getFunctionNumber())+"_" +
2568                                Twine(Loop->getHeader()->getNumber())+
2569                                " Depth="+Twine(Loop->getLoopDepth()));
2570     return;
2571   }
2572 
2573   // Otherwise, it is a loop header.  Print out information about child and
2574   // parent loops.
2575   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2576 
2577   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2578 
2579   OS << "=>";
2580   OS.indent(Loop->getLoopDepth()*2-2);
2581 
2582   OS << "This ";
2583   if (Loop->empty())
2584     OS << "Inner ";
2585   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2586 
2587   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2588 }
2589 
2590 /// EmitBasicBlockStart - This method prints the label for the specified
2591 /// MachineBasicBlock, an alignment (if present) and a comment describing
2592 /// it if appropriate.
2593 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2594   // End the previous funclet and start a new one.
2595   if (MBB.isEHFuncletEntry()) {
2596     for (const HandlerInfo &HI : Handlers) {
2597       HI.Handler->endFunclet();
2598       HI.Handler->beginFunclet(MBB);
2599     }
2600   }
2601 
2602   // Emit an alignment directive for this block, if needed.
2603   if (unsigned Align = MBB.getAlignment())
2604     EmitAlignment(Align);
2605 
2606   // If the block has its address taken, emit any labels that were used to
2607   // reference the block.  It is possible that there is more than one label
2608   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2609   // the references were generated.
2610   if (MBB.hasAddressTaken()) {
2611     const BasicBlock *BB = MBB.getBasicBlock();
2612     if (isVerbose())
2613       OutStreamer->AddComment("Block address taken");
2614 
2615     // MBBs can have their address taken as part of CodeGen without having
2616     // their corresponding BB's address taken in IR
2617     if (BB->hasAddressTaken())
2618       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2619         OutStreamer->EmitLabel(Sym);
2620   }
2621 
2622   // Print some verbose block comments.
2623   if (isVerbose()) {
2624     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2625       if (BB->hasName()) {
2626         BB->printAsOperand(OutStreamer->GetCommentOS(),
2627                            /*PrintType=*/false, BB->getModule());
2628         OutStreamer->GetCommentOS() << '\n';
2629       }
2630     }
2631     emitBasicBlockLoopComments(MBB, LI, *this);
2632   }
2633 
2634   // Print the main label for the block.
2635   if (MBB.pred_empty() ||
2636       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2637     if (isVerbose()) {
2638       // NOTE: Want this comment at start of line, don't emit with AddComment.
2639       OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2640     }
2641   } else {
2642     OutStreamer->EmitLabel(MBB.getSymbol());
2643   }
2644 }
2645 
2646 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2647                                 bool IsDefinition) const {
2648   MCSymbolAttr Attr = MCSA_Invalid;
2649 
2650   switch (Visibility) {
2651   default: break;
2652   case GlobalValue::HiddenVisibility:
2653     if (IsDefinition)
2654       Attr = MAI->getHiddenVisibilityAttr();
2655     else
2656       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2657     break;
2658   case GlobalValue::ProtectedVisibility:
2659     Attr = MAI->getProtectedVisibilityAttr();
2660     break;
2661   }
2662 
2663   if (Attr != MCSA_Invalid)
2664     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2665 }
2666 
2667 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2668 /// exactly one predecessor and the control transfer mechanism between
2669 /// the predecessor and this block is a fall-through.
2670 bool AsmPrinter::
2671 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2672   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2673   // then nothing falls through to it.
2674   if (MBB->isEHPad() || MBB->pred_empty())
2675     return false;
2676 
2677   // If there isn't exactly one predecessor, it can't be a fall through.
2678   if (MBB->pred_size() > 1)
2679     return false;
2680 
2681   // The predecessor has to be immediately before this block.
2682   MachineBasicBlock *Pred = *MBB->pred_begin();
2683   if (!Pred->isLayoutSuccessor(MBB))
2684     return false;
2685 
2686   // If the block is completely empty, then it definitely does fall through.
2687   if (Pred->empty())
2688     return true;
2689 
2690   // Check the terminators in the previous blocks
2691   for (const auto &MI : Pred->terminators()) {
2692     // If it is not a simple branch, we are in a table somewhere.
2693     if (!MI.isBranch() || MI.isIndirectBranch())
2694       return false;
2695 
2696     // If we are the operands of one of the branches, this is not a fall
2697     // through. Note that targets with delay slots will usually bundle
2698     // terminators with the delay slot instruction.
2699     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2700       if (OP->isJTI())
2701         return false;
2702       if (OP->isMBB() && OP->getMBB() == MBB)
2703         return false;
2704     }
2705   }
2706 
2707   return true;
2708 }
2709 
2710 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2711   if (!S.usesMetadata())
2712     return nullptr;
2713 
2714   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2715          " stackmap formats, please see the documentation for a description of"
2716          " the default format.  If you really need a custom serialized format,"
2717          " please file a bug");
2718 
2719   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2720   gcp_map_type::iterator GCPI = GCMap.find(&S);
2721   if (GCPI != GCMap.end())
2722     return GCPI->second.get();
2723 
2724   auto Name = S.getName();
2725 
2726   for (GCMetadataPrinterRegistry::iterator
2727          I = GCMetadataPrinterRegistry::begin(),
2728          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2729     if (Name == I->getName()) {
2730       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2731       GMP->S = &S;
2732       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2733       return IterBool.first->second.get();
2734     }
2735 
2736   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2737 }
2738 
2739 /// Pin vtable to this file.
2740 AsmPrinterHandler::~AsmPrinterHandler() = default;
2741 
2742 void AsmPrinterHandler::markFunctionEnd() {}
2743 
2744 // In the binary's "xray_instr_map" section, an array of these function entries
2745 // describes each instrumentation point.  When XRay patches your code, the index
2746 // into this table will be given to your handler as a patch point identifier.
2747 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
2748                                          const MCSymbol *CurrentFnSym) const {
2749   Out->EmitSymbolValue(Sled, Bytes);
2750   Out->EmitSymbolValue(CurrentFnSym, Bytes);
2751   auto Kind8 = static_cast<uint8_t>(Kind);
2752   Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
2753   Out->EmitBytes(
2754       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
2755   Out->EmitZeros(2 * Bytes - 2);  // Pad the previous two entries
2756 }
2757 
2758 void AsmPrinter::emitXRayTable() {
2759   if (Sleds.empty())
2760     return;
2761 
2762   auto PrevSection = OutStreamer->getCurrentSectionOnly();
2763   auto Fn = MF->getFunction();
2764   MCSection *InstMap = nullptr;
2765   MCSection *FnSledIndex = nullptr;
2766   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
2767     if (Fn->hasComdat()) {
2768       InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
2769                                          ELF::SHF_ALLOC | ELF::SHF_GROUP, 0,
2770                                          Fn->getComdat()->getName());
2771       FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS,
2772                                              ELF::SHF_ALLOC | ELF::SHF_GROUP, 0,
2773                                              Fn->getComdat()->getName());
2774     } else {
2775       InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
2776                                          ELF::SHF_ALLOC);
2777       FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS,
2778                                              ELF::SHF_ALLOC);
2779     }
2780   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
2781     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
2782                                          SectionKind::getReadOnlyWithRel());
2783     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
2784                                              SectionKind::getReadOnlyWithRel());
2785   } else {
2786     llvm_unreachable("Unsupported target");
2787   }
2788 
2789   // Before we switch over, we force a reference to a label inside the
2790   // xray_instr_map and xray_fn_idx sections. Since this function is always
2791   // called just before the function's end, we assume that this is happening
2792   // after the last return instruction. We also use the synthetic label in the
2793   // xray_inster_map as a delimeter for the range of sleds for this function in
2794   // the index.
2795   auto WordSizeBytes = MAI->getCodePointerSize();
2796   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_synthetic_", true);
2797   MCSymbol *IdxRef = OutContext.createTempSymbol("xray_fn_idx_synth_", true);
2798   OutStreamer->EmitCodeAlignment(16);
2799   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
2800   OutStreamer->EmitSymbolValue(IdxRef, WordSizeBytes, false);
2801 
2802   // Now we switch to the instrumentation map section. Because this is done
2803   // per-function, we are able to create an index entry that will represent the
2804   // range of sleds associated with a function.
2805   OutStreamer->SwitchSection(InstMap);
2806   OutStreamer->EmitLabel(SledsStart);
2807   for (const auto &Sled : Sleds)
2808     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
2809   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_synthetic_end", true);
2810   OutStreamer->EmitLabel(SledsEnd);
2811 
2812   // We then emit a single entry in the index per function. We use the symbols
2813   // that bound the instrumentation map as the range for a specific function.
2814   // Each entry here will be 2 * word size aligned, as we're writing down two
2815   // pointers. This should work for both 32-bit and 64-bit platforms.
2816   OutStreamer->SwitchSection(FnSledIndex);
2817   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
2818   OutStreamer->EmitLabel(IdxRef);
2819   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes);
2820   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes);
2821   OutStreamer->SwitchSection(PrevSection);
2822   Sleds.clear();
2823 }
2824 
2825 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
2826   SledKind Kind) {
2827   auto Fn = MI.getParent()->getParent()->getFunction();
2828   auto Attr = Fn->getFnAttribute("function-instrument");
2829   bool LogArgs = Fn->hasFnAttribute("xray-log-args");
2830   bool AlwaysInstrument =
2831     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
2832   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
2833     Kind = SledKind::LOG_ARGS_ENTER;
2834   Sleds.emplace_back(
2835     XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn });
2836 }
2837 
2838 uint16_t AsmPrinter::getDwarfVersion() const {
2839   return OutStreamer->getContext().getDwarfVersion();
2840 }
2841 
2842 void AsmPrinter::setDwarfVersion(uint16_t Version) {
2843   OutStreamer->getContext().setDwarfVersion(Version);
2844 }
2845