1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "CodeViewDebug.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "WinException.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/GCMetadataPrinter.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineLoopInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCContext.h"
37 #include "llvm/MC/MCExpr.h"
38 #include "llvm/MC/MCInst.h"
39 #include "llvm/MC/MCSection.h"
40 #include "llvm/MC/MCStreamer.h"
41 #include "llvm/MC/MCSymbolELF.h"
42 #include "llvm/MC/MCValue.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/Format.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Support/Timer.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetLoweringObjectFile.h"
52 #include "llvm/Target/TargetRegisterInfo.h"
53 #include "llvm/Target/TargetSubtargetInfo.h"
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "asm-printer"
57 
58 static const char *const DWARFGroupName = "dwarf";
59 static const char *const DWARFGroupDescription = "DWARF Emission";
60 static const char *const DbgTimerName = "emit";
61 static const char *const DbgTimerDescription = "Debug Info Emission";
62 static const char *const EHTimerName = "write_exception";
63 static const char *const EHTimerDescription = "DWARF Exception Writer";
64 static const char *const CodeViewLineTablesGroupName = "linetables";
65 static const char *const CodeViewLineTablesGroupDescription =
66   "CodeView Line Tables";
67 
68 STATISTIC(EmittedInsts, "Number of machine instrs printed");
69 
70 char AsmPrinter::ID = 0;
71 
72 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
73 static gcp_map_type &getGCMap(void *&P) {
74   if (!P)
75     P = new gcp_map_type();
76   return *(gcp_map_type*)P;
77 }
78 
79 
80 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
81 /// value in log2 form.  This rounds up to the preferred alignment if possible
82 /// and legal.
83 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
84                                    unsigned InBits = 0) {
85   unsigned NumBits = 0;
86   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
87     NumBits = DL.getPreferredAlignmentLog(GVar);
88 
89   // If InBits is specified, round it to it.
90   if (InBits > NumBits)
91     NumBits = InBits;
92 
93   // If the GV has a specified alignment, take it into account.
94   if (GV->getAlignment() == 0)
95     return NumBits;
96 
97   unsigned GVAlign = Log2_32(GV->getAlignment());
98 
99   // If the GVAlign is larger than NumBits, or if we are required to obey
100   // NumBits because the GV has an assigned section, obey it.
101   if (GVAlign > NumBits || GV->hasSection())
102     NumBits = GVAlign;
103   return NumBits;
104 }
105 
106 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
107     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
108       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
109       LastMI(nullptr), LastFn(0), Counter(~0U) {
110   DD = nullptr;
111   MMI = nullptr;
112   LI = nullptr;
113   MF = nullptr;
114   CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr;
115   CurrentFnBegin = nullptr;
116   CurrentFnEnd = nullptr;
117   GCMetadataPrinters = nullptr;
118   VerboseAsm = OutStreamer->isVerboseAsm();
119 }
120 
121 AsmPrinter::~AsmPrinter() {
122   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
123 
124   if (GCMetadataPrinters) {
125     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
126 
127     delete &GCMap;
128     GCMetadataPrinters = nullptr;
129   }
130 }
131 
132 bool AsmPrinter::isPositionIndependent() const {
133   return TM.isPositionIndependent();
134 }
135 
136 /// getFunctionNumber - Return a unique ID for the current function.
137 ///
138 unsigned AsmPrinter::getFunctionNumber() const {
139   return MF->getFunctionNumber();
140 }
141 
142 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
143   return *TM.getObjFileLowering();
144 }
145 
146 const DataLayout &AsmPrinter::getDataLayout() const {
147   return MMI->getModule()->getDataLayout();
148 }
149 
150 // Do not use the cached DataLayout because some client use it without a Module
151 // (llvm-dsymutil, llvm-dwarfdump).
152 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
153 
154 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
155   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
156   return MF->getSubtarget<MCSubtargetInfo>();
157 }
158 
159 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
160   S.EmitInstruction(Inst, getSubtargetInfo());
161 }
162 
163 /// getCurrentSection() - Return the current section we are emitting to.
164 const MCSection *AsmPrinter::getCurrentSection() const {
165   return OutStreamer->getCurrentSectionOnly();
166 }
167 
168 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
169   AU.setPreservesAll();
170   MachineFunctionPass::getAnalysisUsage(AU);
171   AU.addRequired<MachineModuleInfo>();
172   AU.addRequired<GCModuleInfo>();
173   if (isVerbose())
174     AU.addRequired<MachineLoopInfo>();
175 }
176 
177 bool AsmPrinter::doInitialization(Module &M) {
178   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
179 
180   // Initialize TargetLoweringObjectFile.
181   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
182     .Initialize(OutContext, TM);
183 
184   OutStreamer->InitSections(false);
185 
186   // Emit the version-min deplyment target directive if needed.
187   //
188   // FIXME: If we end up with a collection of these sorts of Darwin-specific
189   // or ELF-specific things, it may make sense to have a platform helper class
190   // that will work with the target helper class. For now keep it here, as the
191   // alternative is duplicated code in each of the target asm printers that
192   // use the directive, where it would need the same conditionalization
193   // anyway.
194   const Triple &TT = TM.getTargetTriple();
195   // If there is a version specified, Major will be non-zero.
196   if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) {
197     unsigned Major, Minor, Update;
198     MCVersionMinType VersionType;
199     if (TT.isWatchOS()) {
200       VersionType = MCVM_WatchOSVersionMin;
201       TT.getWatchOSVersion(Major, Minor, Update);
202     } else if (TT.isTvOS()) {
203       VersionType = MCVM_TvOSVersionMin;
204       TT.getiOSVersion(Major, Minor, Update);
205     } else if (TT.isMacOSX()) {
206       VersionType = MCVM_OSXVersionMin;
207       if (!TT.getMacOSXVersion(Major, Minor, Update))
208         Major = 0;
209     } else {
210       VersionType = MCVM_IOSVersionMin;
211       TT.getiOSVersion(Major, Minor, Update);
212     }
213     if (Major != 0)
214       OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
215   }
216 
217   // Allow the target to emit any magic that it wants at the start of the file.
218   EmitStartOfAsmFile(M);
219 
220   // Very minimal debug info. It is ignored if we emit actual debug info. If we
221   // don't, this at least helps the user find where a global came from.
222   if (MAI->hasSingleParameterDotFile()) {
223     // .file "foo.c"
224     OutStreamer->EmitFileDirective(M.getModuleIdentifier());
225   }
226 
227   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
228   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
229   for (auto &I : *MI)
230     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
231       MP->beginAssembly(M, *MI, *this);
232 
233   // Emit module-level inline asm if it exists.
234   if (!M.getModuleInlineAsm().empty()) {
235     // We're at the module level. Construct MCSubtarget from the default CPU
236     // and target triple.
237     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
238         TM.getTargetTriple().str(), TM.getTargetCPU(),
239         TM.getTargetFeatureString()));
240     OutStreamer->AddComment("Start of file scope inline assembly");
241     OutStreamer->AddBlankLine();
242     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
243                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
244     OutStreamer->AddComment("End of file scope inline assembly");
245     OutStreamer->AddBlankLine();
246   }
247 
248   if (MAI->doesSupportDebugInformation()) {
249     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
250     if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() ||
251                          TM.getTargetTriple().isWindowsItaniumEnvironment())) {
252       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
253                                      DbgTimerName, DbgTimerDescription,
254                                      CodeViewLineTablesGroupName,
255                                      CodeViewLineTablesGroupDescription));
256     }
257     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
258       DD = new DwarfDebug(this, &M);
259       DD->beginModule();
260       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
261                                      DWARFGroupName, DWARFGroupDescription));
262     }
263   }
264 
265   EHStreamer *ES = nullptr;
266   switch (MAI->getExceptionHandlingType()) {
267   case ExceptionHandling::None:
268     break;
269   case ExceptionHandling::SjLj:
270   case ExceptionHandling::DwarfCFI:
271     ES = new DwarfCFIException(this);
272     break;
273   case ExceptionHandling::ARM:
274     ES = new ARMException(this);
275     break;
276   case ExceptionHandling::WinEH:
277     switch (MAI->getWinEHEncodingType()) {
278     default: llvm_unreachable("unsupported unwinding information encoding");
279     case WinEH::EncodingType::Invalid:
280       break;
281     case WinEH::EncodingType::X86:
282     case WinEH::EncodingType::Itanium:
283       ES = new WinException(this);
284       break;
285     }
286     break;
287   }
288   if (ES)
289     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
290                                    DWARFGroupName, DWARFGroupDescription));
291   return false;
292 }
293 
294 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
295   if (!MAI.hasWeakDefCanBeHiddenDirective())
296     return false;
297 
298   return canBeOmittedFromSymbolTable(GV);
299 }
300 
301 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
302   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
303   switch (Linkage) {
304   case GlobalValue::CommonLinkage:
305   case GlobalValue::LinkOnceAnyLinkage:
306   case GlobalValue::LinkOnceODRLinkage:
307   case GlobalValue::WeakAnyLinkage:
308   case GlobalValue::WeakODRLinkage:
309     if (MAI->hasWeakDefDirective()) {
310       // .globl _foo
311       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
312 
313       if (!canBeHidden(GV, *MAI))
314         // .weak_definition _foo
315         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
316       else
317         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
318     } else if (MAI->hasLinkOnceDirective()) {
319       // .globl _foo
320       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
321       //NOTE: linkonce is handled by the section the symbol was assigned to.
322     } else {
323       // .weak _foo
324       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
325     }
326     return;
327   case GlobalValue::ExternalLinkage:
328     // If external, declare as a global symbol: .globl _foo
329     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
330     return;
331   case GlobalValue::PrivateLinkage:
332   case GlobalValue::InternalLinkage:
333     return;
334   case GlobalValue::AppendingLinkage:
335   case GlobalValue::AvailableExternallyLinkage:
336   case GlobalValue::ExternalWeakLinkage:
337     llvm_unreachable("Should never emit this");
338   }
339   llvm_unreachable("Unknown linkage type!");
340 }
341 
342 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
343                                    const GlobalValue *GV) const {
344   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
345 }
346 
347 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
348   return TM.getSymbol(GV);
349 }
350 
351 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
352 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
353   bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
354   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
355          "No emulated TLS variables in the common section");
356 
357   // Never emit TLS variable xyz in emulated TLS model.
358   // The initialization value is in __emutls_t.xyz instead of xyz.
359   if (IsEmuTLSVar)
360     return;
361 
362   if (GV->hasInitializer()) {
363     // Check to see if this is a special global used by LLVM, if so, emit it.
364     if (EmitSpecialLLVMGlobal(GV))
365       return;
366 
367     // Skip the emission of global equivalents. The symbol can be emitted later
368     // on by emitGlobalGOTEquivs in case it turns out to be needed.
369     if (GlobalGOTEquivs.count(getSymbol(GV)))
370       return;
371 
372     if (isVerbose()) {
373       // When printing the control variable __emutls_v.*,
374       // we don't need to print the original TLS variable name.
375       GV->printAsOperand(OutStreamer->GetCommentOS(),
376                      /*PrintType=*/false, GV->getParent());
377       OutStreamer->GetCommentOS() << '\n';
378     }
379   }
380 
381   MCSymbol *GVSym = getSymbol(GV);
382   MCSymbol *EmittedSym = GVSym;
383 
384   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
385   // attributes.
386   // GV's or GVSym's attributes will be used for the EmittedSym.
387   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
388 
389   if (!GV->hasInitializer())   // External globals require no extra code.
390     return;
391 
392   GVSym->redefineIfPossible();
393   if (GVSym->isDefined() || GVSym->isVariable())
394     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
395                        "' is already defined");
396 
397   if (MAI->hasDotTypeDotSizeDirective())
398     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
399 
400   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
401 
402   const DataLayout &DL = GV->getParent()->getDataLayout();
403   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
404 
405   // If the alignment is specified, we *must* obey it.  Overaligning a global
406   // with a specified alignment is a prompt way to break globals emitted to
407   // sections and expected to be contiguous (e.g. ObjC metadata).
408   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
409 
410   for (const HandlerInfo &HI : Handlers) {
411     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
412                        HI.TimerGroupName, HI.TimerGroupDescription,
413                        TimePassesIsEnabled);
414     HI.Handler->setSymbolSize(GVSym, Size);
415   }
416 
417   // Handle common symbols
418   if (GVKind.isCommon()) {
419     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
420     unsigned Align = 1 << AlignLog;
421     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
422       Align = 0;
423 
424     // .comm _foo, 42, 4
425     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
426     return;
427   }
428 
429   // Determine to which section this global should be emitted.
430   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
431 
432   // If we have a bss global going to a section that supports the
433   // zerofill directive, do so here.
434   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
435       TheSection->isVirtualSection()) {
436     if (Size == 0)
437       Size = 1; // zerofill of 0 bytes is undefined.
438     unsigned Align = 1 << AlignLog;
439     EmitLinkage(GV, GVSym);
440     // .zerofill __DATA, __bss, _foo, 400, 5
441     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
442     return;
443   }
444 
445   // If this is a BSS local symbol and we are emitting in the BSS
446   // section use .lcomm/.comm directive.
447   if (GVKind.isBSSLocal() &&
448       getObjFileLowering().getBSSSection() == TheSection) {
449     if (Size == 0)
450       Size = 1; // .comm Foo, 0 is undefined, avoid it.
451     unsigned Align = 1 << AlignLog;
452 
453     // Use .lcomm only if it supports user-specified alignment.
454     // Otherwise, while it would still be correct to use .lcomm in some
455     // cases (e.g. when Align == 1), the external assembler might enfore
456     // some -unknown- default alignment behavior, which could cause
457     // spurious differences between external and integrated assembler.
458     // Prefer to simply fall back to .local / .comm in this case.
459     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
460       // .lcomm _foo, 42
461       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
462       return;
463     }
464 
465     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
466       Align = 0;
467 
468     // .local _foo
469     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
470     // .comm _foo, 42, 4
471     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
472     return;
473   }
474 
475   // Handle thread local data for mach-o which requires us to output an
476   // additional structure of data and mangle the original symbol so that we
477   // can reference it later.
478   //
479   // TODO: This should become an "emit thread local global" method on TLOF.
480   // All of this macho specific stuff should be sunk down into TLOFMachO and
481   // stuff like "TLSExtraDataSection" should no longer be part of the parent
482   // TLOF class.  This will also make it more obvious that stuff like
483   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
484   // specific code.
485   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
486     // Emit the .tbss symbol
487     MCSymbol *MangSym =
488         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
489 
490     if (GVKind.isThreadBSS()) {
491       TheSection = getObjFileLowering().getTLSBSSSection();
492       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
493     } else if (GVKind.isThreadData()) {
494       OutStreamer->SwitchSection(TheSection);
495 
496       EmitAlignment(AlignLog, GV);
497       OutStreamer->EmitLabel(MangSym);
498 
499       EmitGlobalConstant(GV->getParent()->getDataLayout(),
500                          GV->getInitializer());
501     }
502 
503     OutStreamer->AddBlankLine();
504 
505     // Emit the variable struct for the runtime.
506     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
507 
508     OutStreamer->SwitchSection(TLVSect);
509     // Emit the linkage here.
510     EmitLinkage(GV, GVSym);
511     OutStreamer->EmitLabel(GVSym);
512 
513     // Three pointers in size:
514     //   - __tlv_bootstrap - used to make sure support exists
515     //   - spare pointer, used when mapped by the runtime
516     //   - pointer to mangled symbol above with initializer
517     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
518     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
519                                 PtrSize);
520     OutStreamer->EmitIntValue(0, PtrSize);
521     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
522 
523     OutStreamer->AddBlankLine();
524     return;
525   }
526 
527   MCSymbol *EmittedInitSym = GVSym;
528 
529   OutStreamer->SwitchSection(TheSection);
530 
531   EmitLinkage(GV, EmittedInitSym);
532   EmitAlignment(AlignLog, GV);
533 
534   OutStreamer->EmitLabel(EmittedInitSym);
535 
536   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
537 
538   if (MAI->hasDotTypeDotSizeDirective())
539     // .size foo, 42
540     OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym),
541                              MCConstantExpr::create(Size, OutContext));
542 
543   OutStreamer->AddBlankLine();
544 }
545 
546 /// EmitFunctionHeader - This method emits the header for the current
547 /// function.
548 void AsmPrinter::EmitFunctionHeader() {
549   // Print out constants referenced by the function
550   EmitConstantPool();
551 
552   // Print the 'header' of function.
553   const Function *F = MF->getFunction();
554 
555   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM));
556   EmitVisibility(CurrentFnSym, F->getVisibility());
557 
558   EmitLinkage(F, CurrentFnSym);
559   if (MAI->hasFunctionAlignment())
560     EmitAlignment(MF->getAlignment(), F);
561 
562   if (MAI->hasDotTypeDotSizeDirective())
563     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
564 
565   if (isVerbose()) {
566     F->printAsOperand(OutStreamer->GetCommentOS(),
567                    /*PrintType=*/false, F->getParent());
568     OutStreamer->GetCommentOS() << '\n';
569   }
570 
571   // Emit the prefix data.
572   if (F->hasPrefixData())
573     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
574 
575   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
576   // do their wild and crazy things as required.
577   EmitFunctionEntryLabel();
578 
579   // If the function had address-taken blocks that got deleted, then we have
580   // references to the dangling symbols.  Emit them at the start of the function
581   // so that we don't get references to undefined symbols.
582   std::vector<MCSymbol*> DeadBlockSyms;
583   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
584   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
585     OutStreamer->AddComment("Address taken block that was later removed");
586     OutStreamer->EmitLabel(DeadBlockSyms[i]);
587   }
588 
589   if (CurrentFnBegin) {
590     if (MAI->useAssignmentForEHBegin()) {
591       MCSymbol *CurPos = OutContext.createTempSymbol();
592       OutStreamer->EmitLabel(CurPos);
593       OutStreamer->EmitAssignment(CurrentFnBegin,
594                                  MCSymbolRefExpr::create(CurPos, OutContext));
595     } else {
596       OutStreamer->EmitLabel(CurrentFnBegin);
597     }
598   }
599 
600   // Emit pre-function debug and/or EH information.
601   for (const HandlerInfo &HI : Handlers) {
602     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
603                        HI.TimerGroupDescription, TimePassesIsEnabled);
604     HI.Handler->beginFunction(MF);
605   }
606 
607   // Emit the prologue data.
608   if (F->hasPrologueData())
609     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
610 }
611 
612 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
613 /// function.  This can be overridden by targets as required to do custom stuff.
614 void AsmPrinter::EmitFunctionEntryLabel() {
615   CurrentFnSym->redefineIfPossible();
616 
617   // The function label could have already been emitted if two symbols end up
618   // conflicting due to asm renaming.  Detect this and emit an error.
619   if (CurrentFnSym->isVariable())
620     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
621                        "' is a protected alias");
622   if (CurrentFnSym->isDefined())
623     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
624                        "' label emitted multiple times to assembly file");
625 
626   return OutStreamer->EmitLabel(CurrentFnSym);
627 }
628 
629 /// emitComments - Pretty-print comments for instructions.
630 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
631   const MachineFunction *MF = MI.getParent()->getParent();
632   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
633 
634   // Check for spills and reloads
635   int FI;
636 
637   const MachineFrameInfo &MFI = MF->getFrameInfo();
638 
639   // We assume a single instruction only has a spill or reload, not
640   // both.
641   const MachineMemOperand *MMO;
642   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
643     if (MFI.isSpillSlotObjectIndex(FI)) {
644       MMO = *MI.memoperands_begin();
645       CommentOS << MMO->getSize() << "-byte Reload\n";
646     }
647   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
648     if (MFI.isSpillSlotObjectIndex(FI))
649       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
650   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
651     if (MFI.isSpillSlotObjectIndex(FI)) {
652       MMO = *MI.memoperands_begin();
653       CommentOS << MMO->getSize() << "-byte Spill\n";
654     }
655   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
656     if (MFI.isSpillSlotObjectIndex(FI))
657       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
658   }
659 
660   // Check for spill-induced copies
661   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
662     CommentOS << " Reload Reuse\n";
663 }
664 
665 /// emitImplicitDef - This method emits the specified machine instruction
666 /// that is an implicit def.
667 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
668   unsigned RegNo = MI->getOperand(0).getReg();
669 
670   SmallString<128> Str;
671   raw_svector_ostream OS(Str);
672   OS << "implicit-def: "
673      << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo());
674 
675   OutStreamer->AddComment(OS.str());
676   OutStreamer->AddBlankLine();
677 }
678 
679 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
680   std::string Str;
681   raw_string_ostream OS(Str);
682   OS << "kill:";
683   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
684     const MachineOperand &Op = MI->getOperand(i);
685     assert(Op.isReg() && "KILL instruction must have only register operands");
686     OS << ' '
687        << PrintReg(Op.getReg(),
688                    AP.MF->getSubtarget().getRegisterInfo())
689        << (Op.isDef() ? "<def>" : "<kill>");
690   }
691   AP.OutStreamer->AddComment(OS.str());
692   AP.OutStreamer->AddBlankLine();
693 }
694 
695 /// emitDebugValueComment - This method handles the target-independent form
696 /// of DBG_VALUE, returning true if it was able to do so.  A false return
697 /// means the target will need to handle MI in EmitInstruction.
698 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
699   // This code handles only the 4-operand target-independent form.
700   if (MI->getNumOperands() != 4)
701     return false;
702 
703   SmallString<128> Str;
704   raw_svector_ostream OS(Str);
705   OS << "DEBUG_VALUE: ";
706 
707   const DILocalVariable *V = MI->getDebugVariable();
708   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
709     StringRef Name = SP->getDisplayName();
710     if (!Name.empty())
711       OS << Name << ":";
712   }
713   OS << V->getName();
714 
715   const DIExpression *Expr = MI->getDebugExpression();
716   if (Expr->isBitPiece())
717     OS << " [bit_piece offset=" << Expr->getBitPieceOffset()
718        << " size=" << Expr->getBitPieceSize() << "]";
719   OS << " <- ";
720 
721   // The second operand is only an offset if it's an immediate.
722   bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
723   int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
724 
725   for (unsigned i = 0; i < Expr->getNumElements(); ++i) {
726     uint64_t Op = Expr->getElement(i);
727     if (Op == dwarf::DW_OP_bit_piece) {
728       // There can't be any operands after this in a valid expression
729       break;
730     } else if (Deref) {
731       // We currently don't support extra Offsets or derefs after the first
732       // one. Bail out early instead of emitting an incorrect comment
733       OS << " [complex expression]";
734       AP.OutStreamer->emitRawComment(OS.str());
735       return true;
736     } else if (Op == dwarf::DW_OP_deref) {
737       Deref = true;
738       continue;
739     }
740 
741     uint64_t ExtraOffset = Expr->getElement(i++);
742     if (Op == dwarf::DW_OP_plus)
743       Offset += ExtraOffset;
744     else {
745       assert(Op == dwarf::DW_OP_minus);
746       Offset -= ExtraOffset;
747     }
748   }
749 
750   // Register or immediate value. Register 0 means undef.
751   if (MI->getOperand(0).isFPImm()) {
752     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
753     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
754       OS << (double)APF.convertToFloat();
755     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
756       OS << APF.convertToDouble();
757     } else {
758       // There is no good way to print long double.  Convert a copy to
759       // double.  Ah well, it's only a comment.
760       bool ignored;
761       APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
762                   &ignored);
763       OS << "(long double) " << APF.convertToDouble();
764     }
765   } else if (MI->getOperand(0).isImm()) {
766     OS << MI->getOperand(0).getImm();
767   } else if (MI->getOperand(0).isCImm()) {
768     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
769   } else {
770     unsigned Reg;
771     if (MI->getOperand(0).isReg()) {
772       Reg = MI->getOperand(0).getReg();
773     } else {
774       assert(MI->getOperand(0).isFI() && "Unknown operand type");
775       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
776       Offset += TFI->getFrameIndexReference(*AP.MF,
777                                             MI->getOperand(0).getIndex(), Reg);
778       Deref = true;
779     }
780     if (Reg == 0) {
781       // Suppress offset, it is not meaningful here.
782       OS << "undef";
783       // NOTE: Want this comment at start of line, don't emit with AddComment.
784       AP.OutStreamer->emitRawComment(OS.str());
785       return true;
786     }
787     if (Deref)
788       OS << '[';
789     OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
790   }
791 
792   if (Deref)
793     OS << '+' << Offset << ']';
794 
795   // NOTE: Want this comment at start of line, don't emit with AddComment.
796   AP.OutStreamer->emitRawComment(OS.str());
797   return true;
798 }
799 
800 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
801   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
802       MF->getFunction()->needsUnwindTableEntry())
803     return CFI_M_EH;
804 
805   if (MMI->hasDebugInfo())
806     return CFI_M_Debug;
807 
808   return CFI_M_None;
809 }
810 
811 bool AsmPrinter::needsSEHMoves() {
812   return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
813 }
814 
815 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
816   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
817   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
818       ExceptionHandlingType != ExceptionHandling::ARM)
819     return;
820 
821   if (needsCFIMoves() == CFI_M_None)
822     return;
823 
824   const MachineModuleInfo &MMI = MF->getMMI();
825   const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
826   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
827   const MCCFIInstruction &CFI = Instrs[CFIIndex];
828   emitCFIInstruction(CFI);
829 }
830 
831 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
832   // The operands are the MCSymbol and the frame offset of the allocation.
833   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
834   int FrameOffset = MI.getOperand(1).getImm();
835 
836   // Emit a symbol assignment.
837   OutStreamer->EmitAssignment(FrameAllocSym,
838                              MCConstantExpr::create(FrameOffset, OutContext));
839 }
840 
841 /// EmitFunctionBody - This method emits the body and trailer for a
842 /// function.
843 void AsmPrinter::EmitFunctionBody() {
844   EmitFunctionHeader();
845 
846   // Emit target-specific gunk before the function body.
847   EmitFunctionBodyStart();
848 
849   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
850 
851   // Print out code for the function.
852   bool HasAnyRealCode = false;
853   for (auto &MBB : *MF) {
854     // Print a label for the basic block.
855     EmitBasicBlockStart(MBB);
856     for (auto &MI : MBB) {
857 
858       // Print the assembly for the instruction.
859       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
860           !MI.isDebugValue()) {
861         HasAnyRealCode = true;
862         ++EmittedInsts;
863       }
864 
865       if (ShouldPrintDebugScopes) {
866         for (const HandlerInfo &HI : Handlers) {
867           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
868                              HI.TimerGroupName, HI.TimerGroupDescription,
869                              TimePassesIsEnabled);
870           HI.Handler->beginInstruction(&MI);
871         }
872       }
873 
874       if (isVerbose())
875         emitComments(MI, OutStreamer->GetCommentOS());
876 
877       switch (MI.getOpcode()) {
878       case TargetOpcode::CFI_INSTRUCTION:
879         emitCFIInstruction(MI);
880         break;
881 
882       case TargetOpcode::LOCAL_ESCAPE:
883         emitFrameAlloc(MI);
884         break;
885 
886       case TargetOpcode::EH_LABEL:
887       case TargetOpcode::GC_LABEL:
888         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
889         break;
890       case TargetOpcode::INLINEASM:
891         EmitInlineAsm(&MI);
892         break;
893       case TargetOpcode::DBG_VALUE:
894         if (isVerbose()) {
895           if (!emitDebugValueComment(&MI, *this))
896             EmitInstruction(&MI);
897         }
898         break;
899       case TargetOpcode::IMPLICIT_DEF:
900         if (isVerbose()) emitImplicitDef(&MI);
901         break;
902       case TargetOpcode::KILL:
903         if (isVerbose()) emitKill(&MI, *this);
904         break;
905       default:
906         EmitInstruction(&MI);
907         break;
908       }
909 
910       if (ShouldPrintDebugScopes) {
911         for (const HandlerInfo &HI : Handlers) {
912           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
913                              HI.TimerGroupName, HI.TimerGroupDescription,
914                              TimePassesIsEnabled);
915           HI.Handler->endInstruction();
916         }
917       }
918     }
919 
920     EmitBasicBlockEnd(MBB);
921   }
922 
923   // If the function is empty and the object file uses .subsections_via_symbols,
924   // then we need to emit *something* to the function body to prevent the
925   // labels from collapsing together.  Just emit a noop.
926   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
927     MCInst Noop;
928     MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop);
929     OutStreamer->AddComment("avoids zero-length function");
930 
931     // Targets can opt-out of emitting the noop here by leaving the opcode
932     // unspecified.
933     if (Noop.getOpcode())
934       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
935   }
936 
937   const Function *F = MF->getFunction();
938   for (const auto &BB : *F) {
939     if (!BB.hasAddressTaken())
940       continue;
941     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
942     if (Sym->isDefined())
943       continue;
944     OutStreamer->AddComment("Address of block that was removed by CodeGen");
945     OutStreamer->EmitLabel(Sym);
946   }
947 
948   // Emit target-specific gunk after the function body.
949   EmitFunctionBodyEnd();
950 
951   if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
952       MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) {
953     // Create a symbol for the end of function.
954     CurrentFnEnd = createTempSymbol("func_end");
955     OutStreamer->EmitLabel(CurrentFnEnd);
956   }
957 
958   // If the target wants a .size directive for the size of the function, emit
959   // it.
960   if (MAI->hasDotTypeDotSizeDirective()) {
961     // We can get the size as difference between the function label and the
962     // temp label.
963     const MCExpr *SizeExp = MCBinaryExpr::createSub(
964         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
965         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
966     if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym))
967       OutStreamer->emitELFSize(Sym, SizeExp);
968   }
969 
970   for (const HandlerInfo &HI : Handlers) {
971     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
972                        HI.TimerGroupDescription, TimePassesIsEnabled);
973     HI.Handler->markFunctionEnd();
974   }
975 
976   // Print out jump tables referenced by the function.
977   EmitJumpTableInfo();
978 
979   // Emit post-function debug and/or EH information.
980   for (const HandlerInfo &HI : Handlers) {
981     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
982                        HI.TimerGroupDescription, TimePassesIsEnabled);
983     HI.Handler->endFunction(MF);
984   }
985   MMI->EndFunction();
986 
987   OutStreamer->AddBlankLine();
988 }
989 
990 /// \brief Compute the number of Global Variables that uses a Constant.
991 static unsigned getNumGlobalVariableUses(const Constant *C) {
992   if (!C)
993     return 0;
994 
995   if (isa<GlobalVariable>(C))
996     return 1;
997 
998   unsigned NumUses = 0;
999   for (auto *CU : C->users())
1000     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1001 
1002   return NumUses;
1003 }
1004 
1005 /// \brief Only consider global GOT equivalents if at least one user is a
1006 /// cstexpr inside an initializer of another global variables. Also, don't
1007 /// handle cstexpr inside instructions. During global variable emission,
1008 /// candidates are skipped and are emitted later in case at least one cstexpr
1009 /// isn't replaced by a PC relative GOT entry access.
1010 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1011                                      unsigned &NumGOTEquivUsers) {
1012   // Global GOT equivalents are unnamed private globals with a constant
1013   // pointer initializer to another global symbol. They must point to a
1014   // GlobalVariable or Function, i.e., as GlobalValue.
1015   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1016       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1017       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1018     return false;
1019 
1020   // To be a got equivalent, at least one of its users need to be a constant
1021   // expression used by another global variable.
1022   for (auto *U : GV->users())
1023     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1024 
1025   return NumGOTEquivUsers > 0;
1026 }
1027 
1028 /// \brief Unnamed constant global variables solely contaning a pointer to
1029 /// another globals variable is equivalent to a GOT table entry; it contains the
1030 /// the address of another symbol. Optimize it and replace accesses to these
1031 /// "GOT equivalents" by using the GOT entry for the final global instead.
1032 /// Compute GOT equivalent candidates among all global variables to avoid
1033 /// emitting them if possible later on, after it use is replaced by a GOT entry
1034 /// access.
1035 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1036   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1037     return;
1038 
1039   for (const auto &G : M.globals()) {
1040     unsigned NumGOTEquivUsers = 0;
1041     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1042       continue;
1043 
1044     const MCSymbol *GOTEquivSym = getSymbol(&G);
1045     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1046   }
1047 }
1048 
1049 /// \brief Constant expressions using GOT equivalent globals may not be eligible
1050 /// for PC relative GOT entry conversion, in such cases we need to emit such
1051 /// globals we previously omitted in EmitGlobalVariable.
1052 void AsmPrinter::emitGlobalGOTEquivs() {
1053   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1054     return;
1055 
1056   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1057   for (auto &I : GlobalGOTEquivs) {
1058     const GlobalVariable *GV = I.second.first;
1059     unsigned Cnt = I.second.second;
1060     if (Cnt)
1061       FailedCandidates.push_back(GV);
1062   }
1063   GlobalGOTEquivs.clear();
1064 
1065   for (auto *GV : FailedCandidates)
1066     EmitGlobalVariable(GV);
1067 }
1068 
1069 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1070                                           const GlobalIndirectSymbol& GIS) {
1071   MCSymbol *Name = getSymbol(&GIS);
1072 
1073   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1074     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1075   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1076     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1077   else
1078     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1079 
1080   // Set the symbol type to function if the alias has a function type.
1081   // This affects codegen when the aliasee is not a function.
1082   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1083     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1084     if (isa<GlobalIFunc>(GIS))
1085       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1086   }
1087 
1088   EmitVisibility(Name, GIS.getVisibility());
1089 
1090   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1091 
1092   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1093     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1094 
1095   // Emit the directives as assignments aka .set:
1096   OutStreamer->EmitAssignment(Name, Expr);
1097 
1098   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1099     // If the aliasee does not correspond to a symbol in the output, i.e. the
1100     // alias is not of an object or the aliased object is private, then set the
1101     // size of the alias symbol from the type of the alias. We don't do this in
1102     // other situations as the alias and aliasee having differing types but same
1103     // size may be intentional.
1104     const GlobalObject *BaseObject = GA->getBaseObject();
1105     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1106         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1107       const DataLayout &DL = M.getDataLayout();
1108       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1109       OutStreamer->emitELFSize(cast<MCSymbolELF>(Name),
1110                                MCConstantExpr::create(Size, OutContext));
1111     }
1112   }
1113 }
1114 
1115 bool AsmPrinter::doFinalization(Module &M) {
1116   // Set the MachineFunction to nullptr so that we can catch attempted
1117   // accesses to MF specific features at the module level and so that
1118   // we can conditionalize accesses based on whether or not it is nullptr.
1119   MF = nullptr;
1120 
1121   // Gather all GOT equivalent globals in the module. We really need two
1122   // passes over the globals: one to compute and another to avoid its emission
1123   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1124   // where the got equivalent shows up before its use.
1125   computeGlobalGOTEquivs(M);
1126 
1127   // Emit global variables.
1128   for (const auto &G : M.globals())
1129     EmitGlobalVariable(&G);
1130 
1131   // Emit remaining GOT equivalent globals.
1132   emitGlobalGOTEquivs();
1133 
1134   // Emit visibility info for declarations
1135   for (const Function &F : M) {
1136     if (!F.isDeclarationForLinker())
1137       continue;
1138     GlobalValue::VisibilityTypes V = F.getVisibility();
1139     if (V == GlobalValue::DefaultVisibility)
1140       continue;
1141 
1142     MCSymbol *Name = getSymbol(&F);
1143     EmitVisibility(Name, V, false);
1144   }
1145 
1146   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1147 
1148   // Emit module flags.
1149   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
1150   M.getModuleFlagsMetadata(ModuleFlags);
1151   if (!ModuleFlags.empty())
1152     TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM);
1153 
1154   if (TM.getTargetTriple().isOSBinFormatELF()) {
1155     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1156 
1157     // Output stubs for external and common global variables.
1158     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1159     if (!Stubs.empty()) {
1160       OutStreamer->SwitchSection(TLOF.getDataSection());
1161       const DataLayout &DL = M.getDataLayout();
1162 
1163       for (const auto &Stub : Stubs) {
1164         OutStreamer->EmitLabel(Stub.first);
1165         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1166                                      DL.getPointerSize());
1167       }
1168     }
1169   }
1170 
1171   // Finalize debug and EH information.
1172   for (const HandlerInfo &HI : Handlers) {
1173     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1174                        HI.TimerGroupDescription, TimePassesIsEnabled);
1175     HI.Handler->endModule();
1176     delete HI.Handler;
1177   }
1178   Handlers.clear();
1179   DD = nullptr;
1180 
1181   // If the target wants to know about weak references, print them all.
1182   if (MAI->getWeakRefDirective()) {
1183     // FIXME: This is not lazy, it would be nice to only print weak references
1184     // to stuff that is actually used.  Note that doing so would require targets
1185     // to notice uses in operands (due to constant exprs etc).  This should
1186     // happen with the MC stuff eventually.
1187 
1188     // Print out module-level global objects here.
1189     for (const auto &GO : M.global_objects()) {
1190       if (!GO.hasExternalWeakLinkage())
1191         continue;
1192       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1193     }
1194   }
1195 
1196   OutStreamer->AddBlankLine();
1197 
1198   // Print aliases in topological order, that is, for each alias a = b,
1199   // b must be printed before a.
1200   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1201   // such an order to generate correct TOC information.
1202   SmallVector<const GlobalAlias *, 16> AliasStack;
1203   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1204   for (const auto &Alias : M.aliases()) {
1205     for (const GlobalAlias *Cur = &Alias; Cur;
1206          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1207       if (!AliasVisited.insert(Cur).second)
1208         break;
1209       AliasStack.push_back(Cur);
1210     }
1211     for (const GlobalAlias *AncestorAlias : reverse(AliasStack))
1212       emitGlobalIndirectSymbol(M, *AncestorAlias);
1213     AliasStack.clear();
1214   }
1215   for (const auto &IFunc : M.ifuncs())
1216     emitGlobalIndirectSymbol(M, IFunc);
1217 
1218   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1219   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1220   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1221     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1222       MP->finishAssembly(M, *MI, *this);
1223 
1224   // Emit llvm.ident metadata in an '.ident' directive.
1225   EmitModuleIdents(M);
1226 
1227   // Emit __morestack address if needed for indirect calls.
1228   if (MMI->usesMorestackAddr()) {
1229     unsigned Align = 1;
1230     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1231         getDataLayout(), SectionKind::getReadOnly(),
1232         /*C=*/nullptr, Align);
1233     OutStreamer->SwitchSection(ReadOnlySection);
1234 
1235     MCSymbol *AddrSymbol =
1236         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1237     OutStreamer->EmitLabel(AddrSymbol);
1238 
1239     unsigned PtrSize = M.getDataLayout().getPointerSize(0);
1240     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1241                                  PtrSize);
1242   }
1243 
1244   // If we don't have any trampolines, then we don't require stack memory
1245   // to be executable. Some targets have a directive to declare this.
1246   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1247   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1248     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1249       OutStreamer->SwitchSection(S);
1250 
1251   // Allow the target to emit any magic that it wants at the end of the file,
1252   // after everything else has gone out.
1253   EmitEndOfAsmFile(M);
1254 
1255   MMI = nullptr;
1256 
1257   OutStreamer->Finish();
1258   OutStreamer->reset();
1259 
1260   return false;
1261 }
1262 
1263 MCSymbol *AsmPrinter::getCurExceptionSym() {
1264   if (!CurExceptionSym)
1265     CurExceptionSym = createTempSymbol("exception");
1266   return CurExceptionSym;
1267 }
1268 
1269 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1270   this->MF = &MF;
1271   // Get the function symbol.
1272   CurrentFnSym = getSymbol(MF.getFunction());
1273   CurrentFnSymForSize = CurrentFnSym;
1274   CurrentFnBegin = nullptr;
1275   CurExceptionSym = nullptr;
1276   bool NeedsLocalForSize = MAI->needsLocalForSize();
1277   if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
1278       MMI->hasEHFunclets() || NeedsLocalForSize) {
1279     CurrentFnBegin = createTempSymbol("func_begin");
1280     if (NeedsLocalForSize)
1281       CurrentFnSymForSize = CurrentFnBegin;
1282   }
1283 
1284   if (isVerbose())
1285     LI = &getAnalysis<MachineLoopInfo>();
1286 }
1287 
1288 namespace {
1289 // Keep track the alignment, constpool entries per Section.
1290   struct SectionCPs {
1291     MCSection *S;
1292     unsigned Alignment;
1293     SmallVector<unsigned, 4> CPEs;
1294     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1295   };
1296 }
1297 
1298 /// EmitConstantPool - Print to the current output stream assembly
1299 /// representations of the constants in the constant pool MCP. This is
1300 /// used to print out constants which have been "spilled to memory" by
1301 /// the code generator.
1302 ///
1303 void AsmPrinter::EmitConstantPool() {
1304   const MachineConstantPool *MCP = MF->getConstantPool();
1305   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1306   if (CP.empty()) return;
1307 
1308   // Calculate sections for constant pool entries. We collect entries to go into
1309   // the same section together to reduce amount of section switch statements.
1310   SmallVector<SectionCPs, 4> CPSections;
1311   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1312     const MachineConstantPoolEntry &CPE = CP[i];
1313     unsigned Align = CPE.getAlignment();
1314 
1315     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1316 
1317     const Constant *C = nullptr;
1318     if (!CPE.isMachineConstantPoolEntry())
1319       C = CPE.Val.ConstVal;
1320 
1321     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1322                                                               Kind, C, Align);
1323 
1324     // The number of sections are small, just do a linear search from the
1325     // last section to the first.
1326     bool Found = false;
1327     unsigned SecIdx = CPSections.size();
1328     while (SecIdx != 0) {
1329       if (CPSections[--SecIdx].S == S) {
1330         Found = true;
1331         break;
1332       }
1333     }
1334     if (!Found) {
1335       SecIdx = CPSections.size();
1336       CPSections.push_back(SectionCPs(S, Align));
1337     }
1338 
1339     if (Align > CPSections[SecIdx].Alignment)
1340       CPSections[SecIdx].Alignment = Align;
1341     CPSections[SecIdx].CPEs.push_back(i);
1342   }
1343 
1344   // Now print stuff into the calculated sections.
1345   const MCSection *CurSection = nullptr;
1346   unsigned Offset = 0;
1347   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1348     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1349       unsigned CPI = CPSections[i].CPEs[j];
1350       MCSymbol *Sym = GetCPISymbol(CPI);
1351       if (!Sym->isUndefined())
1352         continue;
1353 
1354       if (CurSection != CPSections[i].S) {
1355         OutStreamer->SwitchSection(CPSections[i].S);
1356         EmitAlignment(Log2_32(CPSections[i].Alignment));
1357         CurSection = CPSections[i].S;
1358         Offset = 0;
1359       }
1360 
1361       MachineConstantPoolEntry CPE = CP[CPI];
1362 
1363       // Emit inter-object padding for alignment.
1364       unsigned AlignMask = CPE.getAlignment() - 1;
1365       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1366       OutStreamer->EmitZeros(NewOffset - Offset);
1367 
1368       Type *Ty = CPE.getType();
1369       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1370 
1371       OutStreamer->EmitLabel(Sym);
1372       if (CPE.isMachineConstantPoolEntry())
1373         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1374       else
1375         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1376     }
1377   }
1378 }
1379 
1380 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1381 /// by the current function to the current output stream.
1382 ///
1383 void AsmPrinter::EmitJumpTableInfo() {
1384   const DataLayout &DL = MF->getDataLayout();
1385   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1386   if (!MJTI) return;
1387   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1388   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1389   if (JT.empty()) return;
1390 
1391   // Pick the directive to use to print the jump table entries, and switch to
1392   // the appropriate section.
1393   const Function *F = MF->getFunction();
1394   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1395   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1396       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1397       *F);
1398   if (JTInDiffSection) {
1399     // Drop it in the readonly section.
1400     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM);
1401     OutStreamer->SwitchSection(ReadOnlySection);
1402   }
1403 
1404   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1405 
1406   // Jump tables in code sections are marked with a data_region directive
1407   // where that's supported.
1408   if (!JTInDiffSection)
1409     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1410 
1411   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1412     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1413 
1414     // If this jump table was deleted, ignore it.
1415     if (JTBBs.empty()) continue;
1416 
1417     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1418     /// emit a .set directive for each unique entry.
1419     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1420         MAI->doesSetDirectiveSuppressReloc()) {
1421       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1422       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1423       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1424       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1425         const MachineBasicBlock *MBB = JTBBs[ii];
1426         if (!EmittedSets.insert(MBB).second)
1427           continue;
1428 
1429         // .set LJTSet, LBB32-base
1430         const MCExpr *LHS =
1431           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1432         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1433                                     MCBinaryExpr::createSub(LHS, Base,
1434                                                             OutContext));
1435       }
1436     }
1437 
1438     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1439     // before each jump table.  The first label is never referenced, but tells
1440     // the assembler and linker the extents of the jump table object.  The
1441     // second label is actually referenced by the code.
1442     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1443       // FIXME: This doesn't have to have any specific name, just any randomly
1444       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1445       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1446 
1447     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1448 
1449     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1450       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1451   }
1452   if (!JTInDiffSection)
1453     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1454 }
1455 
1456 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1457 /// current stream.
1458 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1459                                     const MachineBasicBlock *MBB,
1460                                     unsigned UID) const {
1461   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1462   const MCExpr *Value = nullptr;
1463   switch (MJTI->getEntryKind()) {
1464   case MachineJumpTableInfo::EK_Inline:
1465     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1466   case MachineJumpTableInfo::EK_Custom32:
1467     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1468         MJTI, MBB, UID, OutContext);
1469     break;
1470   case MachineJumpTableInfo::EK_BlockAddress:
1471     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1472     //     .word LBB123
1473     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1474     break;
1475   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1476     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1477     // with a relocation as gp-relative, e.g.:
1478     //     .gprel32 LBB123
1479     MCSymbol *MBBSym = MBB->getSymbol();
1480     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1481     return;
1482   }
1483 
1484   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1485     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1486     // with a relocation as gp-relative, e.g.:
1487     //     .gpdword LBB123
1488     MCSymbol *MBBSym = MBB->getSymbol();
1489     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1490     return;
1491   }
1492 
1493   case MachineJumpTableInfo::EK_LabelDifference32: {
1494     // Each entry is the address of the block minus the address of the jump
1495     // table. This is used for PIC jump tables where gprel32 is not supported.
1496     // e.g.:
1497     //      .word LBB123 - LJTI1_2
1498     // If the .set directive avoids relocations, this is emitted as:
1499     //      .set L4_5_set_123, LBB123 - LJTI1_2
1500     //      .word L4_5_set_123
1501     if (MAI->doesSetDirectiveSuppressReloc()) {
1502       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1503                                       OutContext);
1504       break;
1505     }
1506     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1507     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1508     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1509     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1510     break;
1511   }
1512   }
1513 
1514   assert(Value && "Unknown entry kind!");
1515 
1516   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1517   OutStreamer->EmitValue(Value, EntrySize);
1518 }
1519 
1520 
1521 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1522 /// special global used by LLVM.  If so, emit it and return true, otherwise
1523 /// do nothing and return false.
1524 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1525   if (GV->getName() == "llvm.used") {
1526     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1527       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1528     return true;
1529   }
1530 
1531   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1532   if (GV->getSection() == "llvm.metadata" ||
1533       GV->hasAvailableExternallyLinkage())
1534     return true;
1535 
1536   if (!GV->hasAppendingLinkage()) return false;
1537 
1538   assert(GV->hasInitializer() && "Not a special LLVM global!");
1539 
1540   if (GV->getName() == "llvm.global_ctors") {
1541     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1542                        /* isCtor */ true);
1543 
1544     return true;
1545   }
1546 
1547   if (GV->getName() == "llvm.global_dtors") {
1548     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1549                        /* isCtor */ false);
1550 
1551     return true;
1552   }
1553 
1554   report_fatal_error("unknown special variable");
1555 }
1556 
1557 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1558 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1559 /// is true, as being used with this directive.
1560 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1561   // Should be an array of 'i8*'.
1562   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1563     const GlobalValue *GV =
1564       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1565     if (GV)
1566       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1567   }
1568 }
1569 
1570 namespace {
1571 struct Structor {
1572   Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
1573   int Priority;
1574   llvm::Constant *Func;
1575   llvm::GlobalValue *ComdatKey;
1576 };
1577 } // end namespace
1578 
1579 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1580 /// priority.
1581 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1582                                     bool isCtor) {
1583   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1584   // init priority.
1585   if (!isa<ConstantArray>(List)) return;
1586 
1587   // Sanity check the structors list.
1588   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1589   if (!InitList) return; // Not an array!
1590   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1591   // FIXME: Only allow the 3-field form in LLVM 4.0.
1592   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1593     return; // Not an array of two or three elements!
1594   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1595       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1596   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1597     return; // Not (int, ptr, ptr).
1598 
1599   // Gather the structors in a form that's convenient for sorting by priority.
1600   SmallVector<Structor, 8> Structors;
1601   for (Value *O : InitList->operands()) {
1602     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1603     if (!CS) continue; // Malformed.
1604     if (CS->getOperand(1)->isNullValue())
1605       break;  // Found a null terminator, skip the rest.
1606     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1607     if (!Priority) continue; // Malformed.
1608     Structors.push_back(Structor());
1609     Structor &S = Structors.back();
1610     S.Priority = Priority->getLimitedValue(65535);
1611     S.Func = CS->getOperand(1);
1612     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1613       S.ComdatKey =
1614           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1615   }
1616 
1617   // Emit the function pointers in the target-specific order
1618   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1619   std::stable_sort(Structors.begin(), Structors.end(),
1620                    [](const Structor &L,
1621                       const Structor &R) { return L.Priority < R.Priority; });
1622   for (Structor &S : Structors) {
1623     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1624     const MCSymbol *KeySym = nullptr;
1625     if (GlobalValue *GV = S.ComdatKey) {
1626       if (GV->hasAvailableExternallyLinkage())
1627         // If the associated variable is available_externally, some other TU
1628         // will provide its dynamic initializer.
1629         continue;
1630 
1631       KeySym = getSymbol(GV);
1632     }
1633     MCSection *OutputSection =
1634         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1635                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1636     OutStreamer->SwitchSection(OutputSection);
1637     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1638       EmitAlignment(Align);
1639     EmitXXStructor(DL, S.Func);
1640   }
1641 }
1642 
1643 void AsmPrinter::EmitModuleIdents(Module &M) {
1644   if (!MAI->hasIdentDirective())
1645     return;
1646 
1647   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1648     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1649       const MDNode *N = NMD->getOperand(i);
1650       assert(N->getNumOperands() == 1 &&
1651              "llvm.ident metadata entry can have only one operand");
1652       const MDString *S = cast<MDString>(N->getOperand(0));
1653       OutStreamer->EmitIdent(S->getString());
1654     }
1655   }
1656 }
1657 
1658 //===--------------------------------------------------------------------===//
1659 // Emission and print routines
1660 //
1661 
1662 /// EmitInt8 - Emit a byte directive and value.
1663 ///
1664 void AsmPrinter::EmitInt8(int Value) const {
1665   OutStreamer->EmitIntValue(Value, 1);
1666 }
1667 
1668 /// EmitInt16 - Emit a short directive and value.
1669 ///
1670 void AsmPrinter::EmitInt16(int Value) const {
1671   OutStreamer->EmitIntValue(Value, 2);
1672 }
1673 
1674 /// EmitInt32 - Emit a long directive and value.
1675 ///
1676 void AsmPrinter::EmitInt32(int Value) const {
1677   OutStreamer->EmitIntValue(Value, 4);
1678 }
1679 
1680 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1681 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1682 /// .set if it avoids relocations.
1683 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1684                                      unsigned Size) const {
1685   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1686 }
1687 
1688 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1689 /// where the size in bytes of the directive is specified by Size and Label
1690 /// specifies the label.  This implicitly uses .set if it is available.
1691 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1692                                      unsigned Size,
1693                                      bool IsSectionRelative) const {
1694   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1695     OutStreamer->EmitCOFFSecRel32(Label);
1696     return;
1697   }
1698 
1699   // Emit Label+Offset (or just Label if Offset is zero)
1700   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1701   if (Offset)
1702     Expr = MCBinaryExpr::createAdd(
1703         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1704 
1705   OutStreamer->EmitValue(Expr, Size);
1706 }
1707 
1708 //===----------------------------------------------------------------------===//
1709 
1710 // EmitAlignment - Emit an alignment directive to the specified power of
1711 // two boundary.  For example, if you pass in 3 here, you will get an 8
1712 // byte alignment.  If a global value is specified, and if that global has
1713 // an explicit alignment requested, it will override the alignment request
1714 // if required for correctness.
1715 //
1716 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1717   if (GV)
1718     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1719 
1720   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1721 
1722   assert(NumBits <
1723              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1724          "undefined behavior");
1725   if (getCurrentSection()->getKind().isText())
1726     OutStreamer->EmitCodeAlignment(1u << NumBits);
1727   else
1728     OutStreamer->EmitValueToAlignment(1u << NumBits);
1729 }
1730 
1731 //===----------------------------------------------------------------------===//
1732 // Constant emission.
1733 //===----------------------------------------------------------------------===//
1734 
1735 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1736   MCContext &Ctx = OutContext;
1737 
1738   if (CV->isNullValue() || isa<UndefValue>(CV))
1739     return MCConstantExpr::create(0, Ctx);
1740 
1741   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1742     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1743 
1744   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1745     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1746 
1747   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1748     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1749 
1750   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1751   if (!CE) {
1752     llvm_unreachable("Unknown constant value to lower!");
1753   }
1754 
1755   switch (CE->getOpcode()) {
1756   default:
1757     // If the code isn't optimized, there may be outstanding folding
1758     // opportunities. Attempt to fold the expression using DataLayout as a
1759     // last resort before giving up.
1760     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
1761       if (C != CE)
1762         return lowerConstant(C);
1763 
1764     // Otherwise report the problem to the user.
1765     {
1766       std::string S;
1767       raw_string_ostream OS(S);
1768       OS << "Unsupported expression in static initializer: ";
1769       CE->printAsOperand(OS, /*PrintType=*/false,
1770                      !MF ? nullptr : MF->getFunction()->getParent());
1771       report_fatal_error(OS.str());
1772     }
1773   case Instruction::GetElementPtr: {
1774     // Generate a symbolic expression for the byte address
1775     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
1776     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
1777 
1778     const MCExpr *Base = lowerConstant(CE->getOperand(0));
1779     if (!OffsetAI)
1780       return Base;
1781 
1782     int64_t Offset = OffsetAI.getSExtValue();
1783     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
1784                                    Ctx);
1785   }
1786 
1787   case Instruction::Trunc:
1788     // We emit the value and depend on the assembler to truncate the generated
1789     // expression properly.  This is important for differences between
1790     // blockaddress labels.  Since the two labels are in the same function, it
1791     // is reasonable to treat their delta as a 32-bit value.
1792     LLVM_FALLTHROUGH;
1793   case Instruction::BitCast:
1794     return lowerConstant(CE->getOperand(0));
1795 
1796   case Instruction::IntToPtr: {
1797     const DataLayout &DL = getDataLayout();
1798 
1799     // Handle casts to pointers by changing them into casts to the appropriate
1800     // integer type.  This promotes constant folding and simplifies this code.
1801     Constant *Op = CE->getOperand(0);
1802     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1803                                       false/*ZExt*/);
1804     return lowerConstant(Op);
1805   }
1806 
1807   case Instruction::PtrToInt: {
1808     const DataLayout &DL = getDataLayout();
1809 
1810     // Support only foldable casts to/from pointers that can be eliminated by
1811     // changing the pointer to the appropriately sized integer type.
1812     Constant *Op = CE->getOperand(0);
1813     Type *Ty = CE->getType();
1814 
1815     const MCExpr *OpExpr = lowerConstant(Op);
1816 
1817     // We can emit the pointer value into this slot if the slot is an
1818     // integer slot equal to the size of the pointer.
1819     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1820       return OpExpr;
1821 
1822     // Otherwise the pointer is smaller than the resultant integer, mask off
1823     // the high bits so we are sure to get a proper truncation if the input is
1824     // a constant expr.
1825     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1826     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
1827     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
1828   }
1829 
1830   case Instruction::Sub: {
1831     GlobalValue *LHSGV;
1832     APInt LHSOffset;
1833     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
1834                                    getDataLayout())) {
1835       GlobalValue *RHSGV;
1836       APInt RHSOffset;
1837       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
1838                                      getDataLayout())) {
1839         const MCExpr *RelocExpr =
1840             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
1841         if (!RelocExpr)
1842           RelocExpr = MCBinaryExpr::createSub(
1843               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
1844               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
1845         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
1846         if (Addend != 0)
1847           RelocExpr = MCBinaryExpr::createAdd(
1848               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
1849         return RelocExpr;
1850       }
1851     }
1852   }
1853   // else fallthrough
1854 
1855   // The MC library also has a right-shift operator, but it isn't consistently
1856   // signed or unsigned between different targets.
1857   case Instruction::Add:
1858   case Instruction::Mul:
1859   case Instruction::SDiv:
1860   case Instruction::SRem:
1861   case Instruction::Shl:
1862   case Instruction::And:
1863   case Instruction::Or:
1864   case Instruction::Xor: {
1865     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
1866     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
1867     switch (CE->getOpcode()) {
1868     default: llvm_unreachable("Unknown binary operator constant cast expr");
1869     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
1870     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1871     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
1872     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
1873     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
1874     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
1875     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
1876     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
1877     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
1878     }
1879   }
1880   }
1881 }
1882 
1883 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
1884                                    AsmPrinter &AP,
1885                                    const Constant *BaseCV = nullptr,
1886                                    uint64_t Offset = 0);
1887 
1888 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
1889 
1890 /// isRepeatedByteSequence - Determine whether the given value is
1891 /// composed of a repeated sequence of identical bytes and return the
1892 /// byte value.  If it is not a repeated sequence, return -1.
1893 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1894   StringRef Data = V->getRawDataValues();
1895   assert(!Data.empty() && "Empty aggregates should be CAZ node");
1896   char C = Data[0];
1897   for (unsigned i = 1, e = Data.size(); i != e; ++i)
1898     if (Data[i] != C) return -1;
1899   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1900 }
1901 
1902 
1903 /// isRepeatedByteSequence - Determine whether the given value is
1904 /// composed of a repeated sequence of identical bytes and return the
1905 /// byte value.  If it is not a repeated sequence, return -1.
1906 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
1907   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1908     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
1909     assert(Size % 8 == 0);
1910 
1911     // Extend the element to take zero padding into account.
1912     APInt Value = CI->getValue().zextOrSelf(Size);
1913     if (!Value.isSplat(8))
1914       return -1;
1915 
1916     return Value.zextOrTrunc(8).getZExtValue();
1917   }
1918   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1919     // Make sure all array elements are sequences of the same repeated
1920     // byte.
1921     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1922     Constant *Op0 = CA->getOperand(0);
1923     int Byte = isRepeatedByteSequence(Op0, DL);
1924     if (Byte == -1)
1925       return -1;
1926 
1927     // All array elements must be equal.
1928     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
1929       if (CA->getOperand(i) != Op0)
1930         return -1;
1931     return Byte;
1932   }
1933 
1934   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1935     return isRepeatedByteSequence(CDS);
1936 
1937   return -1;
1938 }
1939 
1940 static void emitGlobalConstantDataSequential(const DataLayout &DL,
1941                                              const ConstantDataSequential *CDS,
1942                                              AsmPrinter &AP) {
1943 
1944   // See if we can aggregate this into a .fill, if so, emit it as such.
1945   int Value = isRepeatedByteSequence(CDS, DL);
1946   if (Value != -1) {
1947     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
1948     // Don't emit a 1-byte object as a .fill.
1949     if (Bytes > 1)
1950       return AP.OutStreamer->emitFill(Bytes, Value);
1951   }
1952 
1953   // If this can be emitted with .ascii/.asciz, emit it as such.
1954   if (CDS->isString())
1955     return AP.OutStreamer->EmitBytes(CDS->getAsString());
1956 
1957   // Otherwise, emit the values in successive locations.
1958   unsigned ElementByteSize = CDS->getElementByteSize();
1959   if (isa<IntegerType>(CDS->getElementType())) {
1960     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1961       if (AP.isVerbose())
1962         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
1963                                                  CDS->getElementAsInteger(i));
1964       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
1965                                    ElementByteSize);
1966     }
1967   } else {
1968     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
1969       emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
1970   }
1971 
1972   unsigned Size = DL.getTypeAllocSize(CDS->getType());
1973   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1974                         CDS->getNumElements();
1975   if (unsigned Padding = Size - EmittedSize)
1976     AP.OutStreamer->EmitZeros(Padding);
1977 
1978 }
1979 
1980 static void emitGlobalConstantArray(const DataLayout &DL,
1981                                     const ConstantArray *CA, AsmPrinter &AP,
1982                                     const Constant *BaseCV, uint64_t Offset) {
1983   // See if we can aggregate some values.  Make sure it can be
1984   // represented as a series of bytes of the constant value.
1985   int Value = isRepeatedByteSequence(CA, DL);
1986 
1987   if (Value != -1) {
1988     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
1989     AP.OutStreamer->emitFill(Bytes, Value);
1990   }
1991   else {
1992     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1993       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
1994       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
1995     }
1996   }
1997 }
1998 
1999 static void emitGlobalConstantVector(const DataLayout &DL,
2000                                      const ConstantVector *CV, AsmPrinter &AP) {
2001   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2002     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2003 
2004   unsigned Size = DL.getTypeAllocSize(CV->getType());
2005   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2006                          CV->getType()->getNumElements();
2007   if (unsigned Padding = Size - EmittedSize)
2008     AP.OutStreamer->EmitZeros(Padding);
2009 }
2010 
2011 static void emitGlobalConstantStruct(const DataLayout &DL,
2012                                      const ConstantStruct *CS, AsmPrinter &AP,
2013                                      const Constant *BaseCV, uint64_t Offset) {
2014   // Print the fields in successive locations. Pad to align if needed!
2015   unsigned Size = DL.getTypeAllocSize(CS->getType());
2016   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2017   uint64_t SizeSoFar = 0;
2018   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2019     const Constant *Field = CS->getOperand(i);
2020 
2021     // Print the actual field value.
2022     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2023 
2024     // Check if padding is needed and insert one or more 0s.
2025     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2026     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2027                         - Layout->getElementOffset(i)) - FieldSize;
2028     SizeSoFar += FieldSize + PadSize;
2029 
2030     // Insert padding - this may include padding to increase the size of the
2031     // current field up to the ABI size (if the struct is not packed) as well
2032     // as padding to ensure that the next field starts at the right offset.
2033     AP.OutStreamer->EmitZeros(PadSize);
2034   }
2035   assert(SizeSoFar == Layout->getSizeInBytes() &&
2036          "Layout of constant struct may be incorrect!");
2037 }
2038 
2039 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2040   APInt API = CFP->getValueAPF().bitcastToAPInt();
2041 
2042   // First print a comment with what we think the original floating-point value
2043   // should have been.
2044   if (AP.isVerbose()) {
2045     SmallString<8> StrVal;
2046     CFP->getValueAPF().toString(StrVal);
2047 
2048     if (CFP->getType())
2049       CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2050     else
2051       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2052     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2053   }
2054 
2055   // Now iterate through the APInt chunks, emitting them in endian-correct
2056   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2057   // floats).
2058   unsigned NumBytes = API.getBitWidth() / 8;
2059   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2060   const uint64_t *p = API.getRawData();
2061 
2062   // PPC's long double has odd notions of endianness compared to how LLVM
2063   // handles it: p[0] goes first for *big* endian on PPC.
2064   if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2065     int Chunk = API.getNumWords() - 1;
2066 
2067     if (TrailingBytes)
2068       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2069 
2070     for (; Chunk >= 0; --Chunk)
2071       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2072   } else {
2073     unsigned Chunk;
2074     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2075       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2076 
2077     if (TrailingBytes)
2078       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2079   }
2080 
2081   // Emit the tail padding for the long double.
2082   const DataLayout &DL = AP.getDataLayout();
2083   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2084                             DL.getTypeStoreSize(CFP->getType()));
2085 }
2086 
2087 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2088   const DataLayout &DL = AP.getDataLayout();
2089   unsigned BitWidth = CI->getBitWidth();
2090 
2091   // Copy the value as we may massage the layout for constants whose bit width
2092   // is not a multiple of 64-bits.
2093   APInt Realigned(CI->getValue());
2094   uint64_t ExtraBits = 0;
2095   unsigned ExtraBitsSize = BitWidth & 63;
2096 
2097   if (ExtraBitsSize) {
2098     // The bit width of the data is not a multiple of 64-bits.
2099     // The extra bits are expected to be at the end of the chunk of the memory.
2100     // Little endian:
2101     // * Nothing to be done, just record the extra bits to emit.
2102     // Big endian:
2103     // * Record the extra bits to emit.
2104     // * Realign the raw data to emit the chunks of 64-bits.
2105     if (DL.isBigEndian()) {
2106       // Basically the structure of the raw data is a chunk of 64-bits cells:
2107       //    0        1         BitWidth / 64
2108       // [chunk1][chunk2] ... [chunkN].
2109       // The most significant chunk is chunkN and it should be emitted first.
2110       // However, due to the alignment issue chunkN contains useless bits.
2111       // Realign the chunks so that they contain only useless information:
2112       // ExtraBits     0       1       (BitWidth / 64) - 1
2113       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2114       ExtraBits = Realigned.getRawData()[0] &
2115         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2116       Realigned = Realigned.lshr(ExtraBitsSize);
2117     } else
2118       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2119   }
2120 
2121   // We don't expect assemblers to support integer data directives
2122   // for more than 64 bits, so we emit the data in at most 64-bit
2123   // quantities at a time.
2124   const uint64_t *RawData = Realigned.getRawData();
2125   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2126     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2127     AP.OutStreamer->EmitIntValue(Val, 8);
2128   }
2129 
2130   if (ExtraBitsSize) {
2131     // Emit the extra bits after the 64-bits chunks.
2132 
2133     // Emit a directive that fills the expected size.
2134     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2135     Size -= (BitWidth / 64) * 8;
2136     assert(Size && Size * 8 >= ExtraBitsSize &&
2137            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2138            == ExtraBits && "Directive too small for extra bits.");
2139     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2140   }
2141 }
2142 
2143 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2144 /// equivalent global, by a target specific GOT pc relative access to the
2145 /// final symbol.
2146 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2147                                          const Constant *BaseCst,
2148                                          uint64_t Offset) {
2149   // The global @foo below illustrates a global that uses a got equivalent.
2150   //
2151   //  @bar = global i32 42
2152   //  @gotequiv = private unnamed_addr constant i32* @bar
2153   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2154   //                             i64 ptrtoint (i32* @foo to i64))
2155   //                        to i32)
2156   //
2157   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2158   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2159   // form:
2160   //
2161   //  foo = cstexpr, where
2162   //    cstexpr := <gotequiv> - "." + <cst>
2163   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2164   //
2165   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2166   //
2167   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2168   //    gotpcrelcst := <offset from @foo base> + <cst>
2169   //
2170   MCValue MV;
2171   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2172     return;
2173   const MCSymbolRefExpr *SymA = MV.getSymA();
2174   if (!SymA)
2175     return;
2176 
2177   // Check that GOT equivalent symbol is cached.
2178   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2179   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2180     return;
2181 
2182   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2183   if (!BaseGV)
2184     return;
2185 
2186   // Check for a valid base symbol
2187   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2188   const MCSymbolRefExpr *SymB = MV.getSymB();
2189 
2190   if (!SymB || BaseSym != &SymB->getSymbol())
2191     return;
2192 
2193   // Make sure to match:
2194   //
2195   //    gotpcrelcst := <offset from @foo base> + <cst>
2196   //
2197   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2198   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2199   // if the target knows how to encode it.
2200   //
2201   int64_t GOTPCRelCst = Offset + MV.getConstant();
2202   if (GOTPCRelCst < 0)
2203     return;
2204   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2205     return;
2206 
2207   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2208   //
2209   //  bar:
2210   //    .long 42
2211   //  gotequiv:
2212   //    .quad bar
2213   //  foo:
2214   //    .long gotequiv - "." + <cst>
2215   //
2216   // is replaced by the target specific equivalent to:
2217   //
2218   //  bar:
2219   //    .long 42
2220   //  foo:
2221   //    .long bar@GOTPCREL+<gotpcrelcst>
2222   //
2223   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2224   const GlobalVariable *GV = Result.first;
2225   int NumUses = (int)Result.second;
2226   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2227   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2228   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2229       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2230 
2231   // Update GOT equivalent usage information
2232   --NumUses;
2233   if (NumUses >= 0)
2234     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2235 }
2236 
2237 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2238                                    AsmPrinter &AP, const Constant *BaseCV,
2239                                    uint64_t Offset) {
2240   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2241 
2242   // Globals with sub-elements such as combinations of arrays and structs
2243   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2244   // constant symbol base and the current position with BaseCV and Offset.
2245   if (!BaseCV && CV->hasOneUse())
2246     BaseCV = dyn_cast<Constant>(CV->user_back());
2247 
2248   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2249     return AP.OutStreamer->EmitZeros(Size);
2250 
2251   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2252     switch (Size) {
2253     case 1:
2254     case 2:
2255     case 4:
2256     case 8:
2257       if (AP.isVerbose())
2258         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2259                                                  CI->getZExtValue());
2260       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2261       return;
2262     default:
2263       emitGlobalConstantLargeInt(CI, AP);
2264       return;
2265     }
2266   }
2267 
2268   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2269     return emitGlobalConstantFP(CFP, AP);
2270 
2271   if (isa<ConstantPointerNull>(CV)) {
2272     AP.OutStreamer->EmitIntValue(0, Size);
2273     return;
2274   }
2275 
2276   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2277     return emitGlobalConstantDataSequential(DL, CDS, AP);
2278 
2279   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2280     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2281 
2282   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2283     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2284 
2285   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2286     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2287     // vectors).
2288     if (CE->getOpcode() == Instruction::BitCast)
2289       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2290 
2291     if (Size > 8) {
2292       // If the constant expression's size is greater than 64-bits, then we have
2293       // to emit the value in chunks. Try to constant fold the value and emit it
2294       // that way.
2295       Constant *New = ConstantFoldConstant(CE, DL);
2296       if (New && New != CE)
2297         return emitGlobalConstantImpl(DL, New, AP);
2298     }
2299   }
2300 
2301   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2302     return emitGlobalConstantVector(DL, V, AP);
2303 
2304   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2305   // thread the streamer with EmitValue.
2306   const MCExpr *ME = AP.lowerConstant(CV);
2307 
2308   // Since lowerConstant already folded and got rid of all IR pointer and
2309   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2310   // directly.
2311   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2312     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2313 
2314   AP.OutStreamer->EmitValue(ME, Size);
2315 }
2316 
2317 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2318 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2319   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2320   if (Size)
2321     emitGlobalConstantImpl(DL, CV, *this);
2322   else if (MAI->hasSubsectionsViaSymbols()) {
2323     // If the global has zero size, emit a single byte so that two labels don't
2324     // look like they are at the same location.
2325     OutStreamer->EmitIntValue(0, 1);
2326   }
2327 }
2328 
2329 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2330   // Target doesn't support this yet!
2331   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2332 }
2333 
2334 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2335   if (Offset > 0)
2336     OS << '+' << Offset;
2337   else if (Offset < 0)
2338     OS << Offset;
2339 }
2340 
2341 //===----------------------------------------------------------------------===//
2342 // Symbol Lowering Routines.
2343 //===----------------------------------------------------------------------===//
2344 
2345 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2346   return OutContext.createTempSymbol(Name, true);
2347 }
2348 
2349 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2350   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2351 }
2352 
2353 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2354   return MMI->getAddrLabelSymbol(BB);
2355 }
2356 
2357 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2358 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2359   const DataLayout &DL = getDataLayout();
2360   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2361                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2362                                       Twine(CPID));
2363 }
2364 
2365 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2366 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2367   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2368 }
2369 
2370 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2371 /// FIXME: privatize to AsmPrinter.
2372 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2373   const DataLayout &DL = getDataLayout();
2374   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2375                                       Twine(getFunctionNumber()) + "_" +
2376                                       Twine(UID) + "_set_" + Twine(MBBID));
2377 }
2378 
2379 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2380                                                    StringRef Suffix) const {
2381   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2382 }
2383 
2384 /// Return the MCSymbol for the specified ExternalSymbol.
2385 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2386   SmallString<60> NameStr;
2387   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2388   return OutContext.getOrCreateSymbol(NameStr);
2389 }
2390 
2391 
2392 
2393 /// PrintParentLoopComment - Print comments about parent loops of this one.
2394 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2395                                    unsigned FunctionNumber) {
2396   if (!Loop) return;
2397   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2398   OS.indent(Loop->getLoopDepth()*2)
2399     << "Parent Loop BB" << FunctionNumber << "_"
2400     << Loop->getHeader()->getNumber()
2401     << " Depth=" << Loop->getLoopDepth() << '\n';
2402 }
2403 
2404 
2405 /// PrintChildLoopComment - Print comments about child loops within
2406 /// the loop for this basic block, with nesting.
2407 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2408                                   unsigned FunctionNumber) {
2409   // Add child loop information
2410   for (const MachineLoop *CL : *Loop) {
2411     OS.indent(CL->getLoopDepth()*2)
2412       << "Child Loop BB" << FunctionNumber << "_"
2413       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2414       << '\n';
2415     PrintChildLoopComment(OS, CL, FunctionNumber);
2416   }
2417 }
2418 
2419 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2420 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2421                                        const MachineLoopInfo *LI,
2422                                        const AsmPrinter &AP) {
2423   // Add loop depth information
2424   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2425   if (!Loop) return;
2426 
2427   MachineBasicBlock *Header = Loop->getHeader();
2428   assert(Header && "No header for loop");
2429 
2430   // If this block is not a loop header, just print out what is the loop header
2431   // and return.
2432   if (Header != &MBB) {
2433     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2434                                Twine(AP.getFunctionNumber())+"_" +
2435                                Twine(Loop->getHeader()->getNumber())+
2436                                " Depth="+Twine(Loop->getLoopDepth()));
2437     return;
2438   }
2439 
2440   // Otherwise, it is a loop header.  Print out information about child and
2441   // parent loops.
2442   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2443 
2444   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2445 
2446   OS << "=>";
2447   OS.indent(Loop->getLoopDepth()*2-2);
2448 
2449   OS << "This ";
2450   if (Loop->empty())
2451     OS << "Inner ";
2452   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2453 
2454   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2455 }
2456 
2457 
2458 /// EmitBasicBlockStart - This method prints the label for the specified
2459 /// MachineBasicBlock, an alignment (if present) and a comment describing
2460 /// it if appropriate.
2461 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2462   // End the previous funclet and start a new one.
2463   if (MBB.isEHFuncletEntry()) {
2464     for (const HandlerInfo &HI : Handlers) {
2465       HI.Handler->endFunclet();
2466       HI.Handler->beginFunclet(MBB);
2467     }
2468   }
2469 
2470   // Emit an alignment directive for this block, if needed.
2471   if (unsigned Align = MBB.getAlignment())
2472     EmitAlignment(Align);
2473 
2474   // If the block has its address taken, emit any labels that were used to
2475   // reference the block.  It is possible that there is more than one label
2476   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2477   // the references were generated.
2478   if (MBB.hasAddressTaken()) {
2479     const BasicBlock *BB = MBB.getBasicBlock();
2480     if (isVerbose())
2481       OutStreamer->AddComment("Block address taken");
2482 
2483     // MBBs can have their address taken as part of CodeGen without having
2484     // their corresponding BB's address taken in IR
2485     if (BB->hasAddressTaken())
2486       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2487         OutStreamer->EmitLabel(Sym);
2488   }
2489 
2490   // Print some verbose block comments.
2491   if (isVerbose()) {
2492     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2493       if (BB->hasName()) {
2494         BB->printAsOperand(OutStreamer->GetCommentOS(),
2495                            /*PrintType=*/false, BB->getModule());
2496         OutStreamer->GetCommentOS() << '\n';
2497       }
2498     }
2499     emitBasicBlockLoopComments(MBB, LI, *this);
2500   }
2501 
2502   // Print the main label for the block.
2503   if (MBB.pred_empty() ||
2504       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2505     if (isVerbose()) {
2506       // NOTE: Want this comment at start of line, don't emit with AddComment.
2507       OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2508     }
2509   } else {
2510     OutStreamer->EmitLabel(MBB.getSymbol());
2511   }
2512 }
2513 
2514 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2515                                 bool IsDefinition) const {
2516   MCSymbolAttr Attr = MCSA_Invalid;
2517 
2518   switch (Visibility) {
2519   default: break;
2520   case GlobalValue::HiddenVisibility:
2521     if (IsDefinition)
2522       Attr = MAI->getHiddenVisibilityAttr();
2523     else
2524       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2525     break;
2526   case GlobalValue::ProtectedVisibility:
2527     Attr = MAI->getProtectedVisibilityAttr();
2528     break;
2529   }
2530 
2531   if (Attr != MCSA_Invalid)
2532     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2533 }
2534 
2535 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2536 /// exactly one predecessor and the control transfer mechanism between
2537 /// the predecessor and this block is a fall-through.
2538 bool AsmPrinter::
2539 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2540   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2541   // then nothing falls through to it.
2542   if (MBB->isEHPad() || MBB->pred_empty())
2543     return false;
2544 
2545   // If there isn't exactly one predecessor, it can't be a fall through.
2546   if (MBB->pred_size() > 1)
2547     return false;
2548 
2549   // The predecessor has to be immediately before this block.
2550   MachineBasicBlock *Pred = *MBB->pred_begin();
2551   if (!Pred->isLayoutSuccessor(MBB))
2552     return false;
2553 
2554   // If the block is completely empty, then it definitely does fall through.
2555   if (Pred->empty())
2556     return true;
2557 
2558   // Check the terminators in the previous blocks
2559   for (const auto &MI : Pred->terminators()) {
2560     // If it is not a simple branch, we are in a table somewhere.
2561     if (!MI.isBranch() || MI.isIndirectBranch())
2562       return false;
2563 
2564     // If we are the operands of one of the branches, this is not a fall
2565     // through. Note that targets with delay slots will usually bundle
2566     // terminators with the delay slot instruction.
2567     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2568       if (OP->isJTI())
2569         return false;
2570       if (OP->isMBB() && OP->getMBB() == MBB)
2571         return false;
2572     }
2573   }
2574 
2575   return true;
2576 }
2577 
2578 
2579 
2580 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2581   if (!S.usesMetadata())
2582     return nullptr;
2583 
2584   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2585          " stackmap formats, please see the documentation for a description of"
2586          " the default format.  If you really need a custom serialized format,"
2587          " please file a bug");
2588 
2589   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2590   gcp_map_type::iterator GCPI = GCMap.find(&S);
2591   if (GCPI != GCMap.end())
2592     return GCPI->second.get();
2593 
2594   auto Name = S.getName();
2595 
2596   for (GCMetadataPrinterRegistry::iterator
2597          I = GCMetadataPrinterRegistry::begin(),
2598          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2599     if (Name == I->getName()) {
2600       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2601       GMP->S = &S;
2602       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2603       return IterBool.first->second.get();
2604     }
2605 
2606   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2607 }
2608 
2609 /// Pin vtable to this file.
2610 AsmPrinterHandler::~AsmPrinterHandler() {}
2611 
2612 void AsmPrinterHandler::markFunctionEnd() {}
2613 
2614 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
2615   SledKind Kind) {
2616   auto Fn = MI.getParent()->getParent()->getFunction();
2617   auto Attr = Fn->getFnAttribute("function-instrument");
2618   bool AlwaysInstrument =
2619     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
2620   Sleds.emplace_back(
2621     XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn });
2622 }
2623