1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/RemarkStreamer.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCStreamer.h"
95 #include "llvm/MC/MCSubtargetInfo.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/MC/MCSymbolELF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/Format.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/Path.h"
110 #include "llvm/Support/TargetRegistry.h"
111 #include "llvm/Support/Timer.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetLoweringObjectFile.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cinttypes>
119 #include <cstdint>
120 #include <iterator>
121 #include <limits>
122 #include <memory>
123 #include <string>
124 #include <utility>
125 #include <vector>
126 
127 using namespace llvm;
128 
129 #define DEBUG_TYPE "asm-printer"
130 
131 static const char *const DWARFGroupName = "dwarf";
132 static const char *const DWARFGroupDescription = "DWARF Emission";
133 static const char *const DbgTimerName = "emit";
134 static const char *const DbgTimerDescription = "Debug Info Emission";
135 static const char *const EHTimerName = "write_exception";
136 static const char *const EHTimerDescription = "DWARF Exception Writer";
137 static const char *const CFGuardName = "Control Flow Guard";
138 static const char *const CFGuardDescription = "Control Flow Guard Tables";
139 static const char *const CodeViewLineTablesGroupName = "linetables";
140 static const char *const CodeViewLineTablesGroupDescription =
141   "CodeView Line Tables";
142 
143 STATISTIC(EmittedInsts, "Number of machine instrs printed");
144 
145 static cl::opt<bool> EnableRemarksSection(
146     "remarks-section",
147     cl::desc("Emit a section containing remark diagnostics metadata"),
148     cl::init(false));
149 
150 char AsmPrinter::ID = 0;
151 
152 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
153 
154 static gcp_map_type &getGCMap(void *&P) {
155   if (!P)
156     P = new gcp_map_type();
157   return *(gcp_map_type*)P;
158 }
159 
160 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
161 /// value in log2 form.  This rounds up to the preferred alignment if possible
162 /// and legal.
163 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
164                                    unsigned InBits = 0) {
165   unsigned NumBits = 0;
166   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
167     NumBits = DL.getPreferredAlignmentLog(GVar);
168 
169   // If InBits is specified, round it to it.
170   if (InBits > NumBits)
171     NumBits = InBits;
172 
173   // If the GV has a specified alignment, take it into account.
174   if (GV->getAlignment() == 0)
175     return NumBits;
176 
177   unsigned GVAlign = Log2_32(GV->getAlignment());
178 
179   // If the GVAlign is larger than NumBits, or if we are required to obey
180   // NumBits because the GV has an assigned section, obey it.
181   if (GVAlign > NumBits || GV->hasSection())
182     NumBits = GVAlign;
183   return NumBits;
184 }
185 
186 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
187     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
188       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
189   VerboseAsm = OutStreamer->isVerboseAsm();
190 }
191 
192 AsmPrinter::~AsmPrinter() {
193   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
194 
195   if (GCMetadataPrinters) {
196     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
197 
198     delete &GCMap;
199     GCMetadataPrinters = nullptr;
200   }
201 }
202 
203 bool AsmPrinter::isPositionIndependent() const {
204   return TM.isPositionIndependent();
205 }
206 
207 /// getFunctionNumber - Return a unique ID for the current function.
208 unsigned AsmPrinter::getFunctionNumber() const {
209   return MF->getFunctionNumber();
210 }
211 
212 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
213   return *TM.getObjFileLowering();
214 }
215 
216 const DataLayout &AsmPrinter::getDataLayout() const {
217   return MMI->getModule()->getDataLayout();
218 }
219 
220 // Do not use the cached DataLayout because some client use it without a Module
221 // (dsymutil, llvm-dwarfdump).
222 unsigned AsmPrinter::getPointerSize() const {
223   return TM.getPointerSize(0); // FIXME: Default address space
224 }
225 
226 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
227   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
228   return MF->getSubtarget<MCSubtargetInfo>();
229 }
230 
231 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
232   S.EmitInstruction(Inst, getSubtargetInfo());
233 }
234 
235 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
236   assert(DD && "Dwarf debug file is not defined.");
237   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
238   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
239 }
240 
241 /// getCurrentSection() - Return the current section we are emitting to.
242 const MCSection *AsmPrinter::getCurrentSection() const {
243   return OutStreamer->getCurrentSectionOnly();
244 }
245 
246 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
247   AU.setPreservesAll();
248   MachineFunctionPass::getAnalysisUsage(AU);
249   AU.addRequired<MachineModuleInfo>();
250   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
251   AU.addRequired<GCModuleInfo>();
252 }
253 
254 bool AsmPrinter::doInitialization(Module &M) {
255   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
256 
257   // Initialize TargetLoweringObjectFile.
258   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
259     .Initialize(OutContext, TM);
260 
261   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
262       .getModuleMetadata(M);
263 
264   OutStreamer->InitSections(false);
265 
266   // Emit the version-min deployment target directive if needed.
267   //
268   // FIXME: If we end up with a collection of these sorts of Darwin-specific
269   // or ELF-specific things, it may make sense to have a platform helper class
270   // that will work with the target helper class. For now keep it here, as the
271   // alternative is duplicated code in each of the target asm printers that
272   // use the directive, where it would need the same conditionalization
273   // anyway.
274   const Triple &Target = TM.getTargetTriple();
275   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
276 
277   // Allow the target to emit any magic that it wants at the start of the file.
278   EmitStartOfAsmFile(M);
279 
280   // Very minimal debug info. It is ignored if we emit actual debug info. If we
281   // don't, this at least helps the user find where a global came from.
282   if (MAI->hasSingleParameterDotFile()) {
283     // .file "foo.c"
284     OutStreamer->EmitFileDirective(
285         llvm::sys::path::filename(M.getSourceFileName()));
286   }
287 
288   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
289   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
290   for (auto &I : *MI)
291     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
292       MP->beginAssembly(M, *MI, *this);
293 
294   // Emit module-level inline asm if it exists.
295   if (!M.getModuleInlineAsm().empty()) {
296     // We're at the module level. Construct MCSubtarget from the default CPU
297     // and target triple.
298     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
299         TM.getTargetTriple().str(), TM.getTargetCPU(),
300         TM.getTargetFeatureString()));
301     OutStreamer->AddComment("Start of file scope inline assembly");
302     OutStreamer->AddBlankLine();
303     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
304                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
305     OutStreamer->AddComment("End of file scope inline assembly");
306     OutStreamer->AddBlankLine();
307   }
308 
309   if (MAI->doesSupportDebugInformation()) {
310     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
311     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
312       Handlers.emplace_back(llvm::make_unique<CodeViewDebug>(this),
313                             DbgTimerName, DbgTimerDescription,
314                             CodeViewLineTablesGroupName,
315                             CodeViewLineTablesGroupDescription);
316     }
317     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
318       DD = new DwarfDebug(this, &M);
319       DD->beginModule();
320       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
321                             DbgTimerDescription, DWARFGroupName,
322                             DWARFGroupDescription);
323     }
324   }
325 
326   switch (MAI->getExceptionHandlingType()) {
327   case ExceptionHandling::SjLj:
328   case ExceptionHandling::DwarfCFI:
329   case ExceptionHandling::ARM:
330     isCFIMoveForDebugging = true;
331     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
332       break;
333     for (auto &F: M.getFunctionList()) {
334       // If the module contains any function with unwind data,
335       // .eh_frame has to be emitted.
336       // Ignore functions that won't get emitted.
337       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
338         isCFIMoveForDebugging = false;
339         break;
340       }
341     }
342     break;
343   default:
344     isCFIMoveForDebugging = false;
345     break;
346   }
347 
348   EHStreamer *ES = nullptr;
349   switch (MAI->getExceptionHandlingType()) {
350   case ExceptionHandling::None:
351     break;
352   case ExceptionHandling::SjLj:
353   case ExceptionHandling::DwarfCFI:
354     ES = new DwarfCFIException(this);
355     break;
356   case ExceptionHandling::ARM:
357     ES = new ARMException(this);
358     break;
359   case ExceptionHandling::WinEH:
360     switch (MAI->getWinEHEncodingType()) {
361     default: llvm_unreachable("unsupported unwinding information encoding");
362     case WinEH::EncodingType::Invalid:
363       break;
364     case WinEH::EncodingType::X86:
365     case WinEH::EncodingType::Itanium:
366       ES = new WinException(this);
367       break;
368     }
369     break;
370   case ExceptionHandling::Wasm:
371     ES = new WasmException(this);
372     break;
373   }
374   if (ES)
375     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
376                           EHTimerDescription, DWARFGroupName,
377                           DWARFGroupDescription);
378 
379   if (mdconst::extract_or_null<ConstantInt>(
380           MMI->getModule()->getModuleFlag("cfguardtable")))
381     Handlers.emplace_back(llvm::make_unique<WinCFGuard>(this), CFGuardName,
382                           CFGuardDescription, DWARFGroupName,
383                           DWARFGroupDescription);
384 
385   return false;
386 }
387 
388 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
389   if (!MAI.hasWeakDefCanBeHiddenDirective())
390     return false;
391 
392   return GV->canBeOmittedFromSymbolTable();
393 }
394 
395 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
396   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
397   switch (Linkage) {
398   case GlobalValue::CommonLinkage:
399   case GlobalValue::LinkOnceAnyLinkage:
400   case GlobalValue::LinkOnceODRLinkage:
401   case GlobalValue::WeakAnyLinkage:
402   case GlobalValue::WeakODRLinkage:
403     if (MAI->hasWeakDefDirective()) {
404       // .globl _foo
405       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
406 
407       if (!canBeHidden(GV, *MAI))
408         // .weak_definition _foo
409         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
410       else
411         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
412     } else if (MAI->hasLinkOnceDirective()) {
413       // .globl _foo
414       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
415       //NOTE: linkonce is handled by the section the symbol was assigned to.
416     } else {
417       // .weak _foo
418       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
419     }
420     return;
421   case GlobalValue::ExternalLinkage:
422     // If external, declare as a global symbol: .globl _foo
423     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
424     return;
425   case GlobalValue::PrivateLinkage:
426   case GlobalValue::InternalLinkage:
427     return;
428   case GlobalValue::AppendingLinkage:
429   case GlobalValue::AvailableExternallyLinkage:
430   case GlobalValue::ExternalWeakLinkage:
431     llvm_unreachable("Should never emit this");
432   }
433   llvm_unreachable("Unknown linkage type!");
434 }
435 
436 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
437                                    const GlobalValue *GV) const {
438   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
439 }
440 
441 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
442   return TM.getSymbol(GV);
443 }
444 
445 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
446 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
447   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
448   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
449          "No emulated TLS variables in the common section");
450 
451   // Never emit TLS variable xyz in emulated TLS model.
452   // The initialization value is in __emutls_t.xyz instead of xyz.
453   if (IsEmuTLSVar)
454     return;
455 
456   if (GV->hasInitializer()) {
457     // Check to see if this is a special global used by LLVM, if so, emit it.
458     if (EmitSpecialLLVMGlobal(GV))
459       return;
460 
461     // Skip the emission of global equivalents. The symbol can be emitted later
462     // on by emitGlobalGOTEquivs in case it turns out to be needed.
463     if (GlobalGOTEquivs.count(getSymbol(GV)))
464       return;
465 
466     if (isVerbose()) {
467       // When printing the control variable __emutls_v.*,
468       // we don't need to print the original TLS variable name.
469       GV->printAsOperand(OutStreamer->GetCommentOS(),
470                      /*PrintType=*/false, GV->getParent());
471       OutStreamer->GetCommentOS() << '\n';
472     }
473   }
474 
475   MCSymbol *GVSym = getSymbol(GV);
476   MCSymbol *EmittedSym = GVSym;
477 
478   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
479   // attributes.
480   // GV's or GVSym's attributes will be used for the EmittedSym.
481   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
482 
483   if (!GV->hasInitializer())   // External globals require no extra code.
484     return;
485 
486   GVSym->redefineIfPossible();
487   if (GVSym->isDefined() || GVSym->isVariable())
488     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
489                        "' is already defined");
490 
491   if (MAI->hasDotTypeDotSizeDirective())
492     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
493 
494   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
495 
496   const DataLayout &DL = GV->getParent()->getDataLayout();
497   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
498 
499   // If the alignment is specified, we *must* obey it.  Overaligning a global
500   // with a specified alignment is a prompt way to break globals emitted to
501   // sections and expected to be contiguous (e.g. ObjC metadata).
502   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
503 
504   for (const HandlerInfo &HI : Handlers) {
505     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
506                        HI.TimerGroupName, HI.TimerGroupDescription,
507                        TimePassesIsEnabled);
508     HI.Handler->setSymbolSize(GVSym, Size);
509   }
510 
511   // Handle common symbols
512   if (GVKind.isCommon()) {
513     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
514     unsigned Align = 1 << AlignLog;
515     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
516       Align = 0;
517 
518     // .comm _foo, 42, 4
519     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
520     return;
521   }
522 
523   // Determine to which section this global should be emitted.
524   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
525 
526   // If we have a bss global going to a section that supports the
527   // zerofill directive, do so here.
528   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
529       TheSection->isVirtualSection()) {
530     if (Size == 0)
531       Size = 1; // zerofill of 0 bytes is undefined.
532     unsigned Align = 1 << AlignLog;
533     EmitLinkage(GV, GVSym);
534     // .zerofill __DATA, __bss, _foo, 400, 5
535     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
536     return;
537   }
538 
539   // If this is a BSS local symbol and we are emitting in the BSS
540   // section use .lcomm/.comm directive.
541   if (GVKind.isBSSLocal() &&
542       getObjFileLowering().getBSSSection() == TheSection) {
543     if (Size == 0)
544       Size = 1; // .comm Foo, 0 is undefined, avoid it.
545     unsigned Align = 1 << AlignLog;
546 
547     // Use .lcomm only if it supports user-specified alignment.
548     // Otherwise, while it would still be correct to use .lcomm in some
549     // cases (e.g. when Align == 1), the external assembler might enfore
550     // some -unknown- default alignment behavior, which could cause
551     // spurious differences between external and integrated assembler.
552     // Prefer to simply fall back to .local / .comm in this case.
553     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
554       // .lcomm _foo, 42
555       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
556       return;
557     }
558 
559     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
560       Align = 0;
561 
562     // .local _foo
563     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
564     // .comm _foo, 42, 4
565     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
566     return;
567   }
568 
569   // Handle thread local data for mach-o which requires us to output an
570   // additional structure of data and mangle the original symbol so that we
571   // can reference it later.
572   //
573   // TODO: This should become an "emit thread local global" method on TLOF.
574   // All of this macho specific stuff should be sunk down into TLOFMachO and
575   // stuff like "TLSExtraDataSection" should no longer be part of the parent
576   // TLOF class.  This will also make it more obvious that stuff like
577   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
578   // specific code.
579   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
580     // Emit the .tbss symbol
581     MCSymbol *MangSym =
582         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
583 
584     if (GVKind.isThreadBSS()) {
585       TheSection = getObjFileLowering().getTLSBSSSection();
586       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
587     } else if (GVKind.isThreadData()) {
588       OutStreamer->SwitchSection(TheSection);
589 
590       EmitAlignment(AlignLog, GV);
591       OutStreamer->EmitLabel(MangSym);
592 
593       EmitGlobalConstant(GV->getParent()->getDataLayout(),
594                          GV->getInitializer());
595     }
596 
597     OutStreamer->AddBlankLine();
598 
599     // Emit the variable struct for the runtime.
600     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
601 
602     OutStreamer->SwitchSection(TLVSect);
603     // Emit the linkage here.
604     EmitLinkage(GV, GVSym);
605     OutStreamer->EmitLabel(GVSym);
606 
607     // Three pointers in size:
608     //   - __tlv_bootstrap - used to make sure support exists
609     //   - spare pointer, used when mapped by the runtime
610     //   - pointer to mangled symbol above with initializer
611     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
612     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
613                                 PtrSize);
614     OutStreamer->EmitIntValue(0, PtrSize);
615     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
616 
617     OutStreamer->AddBlankLine();
618     return;
619   }
620 
621   MCSymbol *EmittedInitSym = GVSym;
622 
623   OutStreamer->SwitchSection(TheSection);
624 
625   EmitLinkage(GV, EmittedInitSym);
626   EmitAlignment(AlignLog, GV);
627 
628   OutStreamer->EmitLabel(EmittedInitSym);
629 
630   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
631 
632   if (MAI->hasDotTypeDotSizeDirective())
633     // .size foo, 42
634     OutStreamer->emitELFSize(EmittedInitSym,
635                              MCConstantExpr::create(Size, OutContext));
636 
637   OutStreamer->AddBlankLine();
638 }
639 
640 /// Emit the directive and value for debug thread local expression
641 ///
642 /// \p Value - The value to emit.
643 /// \p Size - The size of the integer (in bytes) to emit.
644 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
645   OutStreamer->EmitValue(Value, Size);
646 }
647 
648 /// EmitFunctionHeader - This method emits the header for the current
649 /// function.
650 void AsmPrinter::EmitFunctionHeader() {
651   const Function &F = MF->getFunction();
652 
653   if (isVerbose())
654     OutStreamer->GetCommentOS()
655         << "-- Begin function "
656         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
657 
658   // Print out constants referenced by the function
659   EmitConstantPool();
660 
661   // Print the 'header' of function.
662   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
663   EmitVisibility(CurrentFnSym, F.getVisibility());
664 
665   EmitLinkage(&F, CurrentFnSym);
666   if (MAI->hasFunctionAlignment())
667     EmitAlignment(MF->getAlignment(), &F);
668 
669   if (MAI->hasDotTypeDotSizeDirective())
670     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
671 
672   if (F.hasFnAttribute(Attribute::Cold))
673     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
674 
675   if (isVerbose()) {
676     F.printAsOperand(OutStreamer->GetCommentOS(),
677                    /*PrintType=*/false, F.getParent());
678     OutStreamer->GetCommentOS() << '\n';
679   }
680 
681   // Emit the prefix data.
682   if (F.hasPrefixData()) {
683     if (MAI->hasSubsectionsViaSymbols()) {
684       // Preserving prefix data on platforms which use subsections-via-symbols
685       // is a bit tricky. Here we introduce a symbol for the prefix data
686       // and use the .alt_entry attribute to mark the function's real entry point
687       // as an alternative entry point to the prefix-data symbol.
688       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
689       OutStreamer->EmitLabel(PrefixSym);
690 
691       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
692 
693       // Emit an .alt_entry directive for the actual function symbol.
694       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
695     } else {
696       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
697     }
698   }
699 
700   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
701   // do their wild and crazy things as required.
702   EmitFunctionEntryLabel();
703 
704   // If the function had address-taken blocks that got deleted, then we have
705   // references to the dangling symbols.  Emit them at the start of the function
706   // so that we don't get references to undefined symbols.
707   std::vector<MCSymbol*> DeadBlockSyms;
708   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
709   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
710     OutStreamer->AddComment("Address taken block that was later removed");
711     OutStreamer->EmitLabel(DeadBlockSyms[i]);
712   }
713 
714   if (CurrentFnBegin) {
715     if (MAI->useAssignmentForEHBegin()) {
716       MCSymbol *CurPos = OutContext.createTempSymbol();
717       OutStreamer->EmitLabel(CurPos);
718       OutStreamer->EmitAssignment(CurrentFnBegin,
719                                  MCSymbolRefExpr::create(CurPos, OutContext));
720     } else {
721       OutStreamer->EmitLabel(CurrentFnBegin);
722     }
723   }
724 
725   // Emit pre-function debug and/or EH information.
726   for (const HandlerInfo &HI : Handlers) {
727     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
728                        HI.TimerGroupDescription, TimePassesIsEnabled);
729     HI.Handler->beginFunction(MF);
730   }
731 
732   // Emit the prologue data.
733   if (F.hasPrologueData())
734     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
735 }
736 
737 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
738 /// function.  This can be overridden by targets as required to do custom stuff.
739 void AsmPrinter::EmitFunctionEntryLabel() {
740   CurrentFnSym->redefineIfPossible();
741 
742   // The function label could have already been emitted if two symbols end up
743   // conflicting due to asm renaming.  Detect this and emit an error.
744   if (CurrentFnSym->isVariable())
745     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
746                        "' is a protected alias");
747   if (CurrentFnSym->isDefined())
748     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
749                        "' label emitted multiple times to assembly file");
750 
751   return OutStreamer->EmitLabel(CurrentFnSym);
752 }
753 
754 /// emitComments - Pretty-print comments for instructions.
755 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
756   const MachineFunction *MF = MI.getMF();
757   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
758 
759   // Check for spills and reloads
760 
761   // We assume a single instruction only has a spill or reload, not
762   // both.
763   Optional<unsigned> Size;
764   if ((Size = MI.getRestoreSize(TII))) {
765     CommentOS << *Size << "-byte Reload\n";
766   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
767     if (*Size)
768       CommentOS << *Size << "-byte Folded Reload\n";
769   } else if ((Size = MI.getSpillSize(TII))) {
770     CommentOS << *Size << "-byte Spill\n";
771   } else if ((Size = MI.getFoldedSpillSize(TII))) {
772     if (*Size)
773       CommentOS << *Size << "-byte Folded Spill\n";
774   }
775 
776   // Check for spill-induced copies
777   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
778     CommentOS << " Reload Reuse\n";
779 }
780 
781 /// emitImplicitDef - This method emits the specified machine instruction
782 /// that is an implicit def.
783 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
784   unsigned RegNo = MI->getOperand(0).getReg();
785 
786   SmallString<128> Str;
787   raw_svector_ostream OS(Str);
788   OS << "implicit-def: "
789      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
790 
791   OutStreamer->AddComment(OS.str());
792   OutStreamer->AddBlankLine();
793 }
794 
795 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
796   std::string Str;
797   raw_string_ostream OS(Str);
798   OS << "kill:";
799   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
800     const MachineOperand &Op = MI->getOperand(i);
801     assert(Op.isReg() && "KILL instruction must have only register operands");
802     OS << ' ' << (Op.isDef() ? "def " : "killed ")
803        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
804   }
805   AP.OutStreamer->AddComment(OS.str());
806   AP.OutStreamer->AddBlankLine();
807 }
808 
809 /// emitDebugValueComment - This method handles the target-independent form
810 /// of DBG_VALUE, returning true if it was able to do so.  A false return
811 /// means the target will need to handle MI in EmitInstruction.
812 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
813   // This code handles only the 4-operand target-independent form.
814   if (MI->getNumOperands() != 4)
815     return false;
816 
817   SmallString<128> Str;
818   raw_svector_ostream OS(Str);
819   OS << "DEBUG_VALUE: ";
820 
821   const DILocalVariable *V = MI->getDebugVariable();
822   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
823     StringRef Name = SP->getName();
824     if (!Name.empty())
825       OS << Name << ":";
826   }
827   OS << V->getName();
828   OS << " <- ";
829 
830   // The second operand is only an offset if it's an immediate.
831   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
832   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
833   const DIExpression *Expr = MI->getDebugExpression();
834   if (Expr->getNumElements()) {
835     OS << '[';
836     bool NeedSep = false;
837     for (auto Op : Expr->expr_ops()) {
838       if (NeedSep)
839         OS << ", ";
840       else
841         NeedSep = true;
842       OS << dwarf::OperationEncodingString(Op.getOp());
843       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
844         OS << ' ' << Op.getArg(I);
845     }
846     OS << "] ";
847   }
848 
849   // Register or immediate value. Register 0 means undef.
850   if (MI->getOperand(0).isFPImm()) {
851     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
852     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
853       OS << (double)APF.convertToFloat();
854     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
855       OS << APF.convertToDouble();
856     } else {
857       // There is no good way to print long double.  Convert a copy to
858       // double.  Ah well, it's only a comment.
859       bool ignored;
860       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
861                   &ignored);
862       OS << "(long double) " << APF.convertToDouble();
863     }
864   } else if (MI->getOperand(0).isImm()) {
865     OS << MI->getOperand(0).getImm();
866   } else if (MI->getOperand(0).isCImm()) {
867     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
868   } else {
869     unsigned Reg;
870     if (MI->getOperand(0).isReg()) {
871       Reg = MI->getOperand(0).getReg();
872     } else {
873       assert(MI->getOperand(0).isFI() && "Unknown operand type");
874       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
875       Offset += TFI->getFrameIndexReference(*AP.MF,
876                                             MI->getOperand(0).getIndex(), Reg);
877       MemLoc = true;
878     }
879     if (Reg == 0) {
880       // Suppress offset, it is not meaningful here.
881       OS << "undef";
882       // NOTE: Want this comment at start of line, don't emit with AddComment.
883       AP.OutStreamer->emitRawComment(OS.str());
884       return true;
885     }
886     if (MemLoc)
887       OS << '[';
888     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
889   }
890 
891   if (MemLoc)
892     OS << '+' << Offset << ']';
893 
894   // NOTE: Want this comment at start of line, don't emit with AddComment.
895   AP.OutStreamer->emitRawComment(OS.str());
896   return true;
897 }
898 
899 /// This method handles the target-independent form of DBG_LABEL, returning
900 /// true if it was able to do so.  A false return means the target will need
901 /// to handle MI in EmitInstruction.
902 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
903   if (MI->getNumOperands() != 1)
904     return false;
905 
906   SmallString<128> Str;
907   raw_svector_ostream OS(Str);
908   OS << "DEBUG_LABEL: ";
909 
910   const DILabel *V = MI->getDebugLabel();
911   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
912     StringRef Name = SP->getName();
913     if (!Name.empty())
914       OS << Name << ":";
915   }
916   OS << V->getName();
917 
918   // NOTE: Want this comment at start of line, don't emit with AddComment.
919   AP.OutStreamer->emitRawComment(OS.str());
920   return true;
921 }
922 
923 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
924   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
925       MF->getFunction().needsUnwindTableEntry())
926     return CFI_M_EH;
927 
928   if (MMI->hasDebugInfo())
929     return CFI_M_Debug;
930 
931   return CFI_M_None;
932 }
933 
934 bool AsmPrinter::needsSEHMoves() {
935   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
936 }
937 
938 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
939   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
940   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
941       ExceptionHandlingType != ExceptionHandling::ARM)
942     return;
943 
944   if (needsCFIMoves() == CFI_M_None)
945     return;
946 
947   // If there is no "real" instruction following this CFI instruction, skip
948   // emitting it; it would be beyond the end of the function's FDE range.
949   auto *MBB = MI.getParent();
950   auto I = std::next(MI.getIterator());
951   while (I != MBB->end() && I->isTransient())
952     ++I;
953   if (I == MBB->instr_end() &&
954       MBB->getReverseIterator() == MBB->getParent()->rbegin())
955     return;
956 
957   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
958   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
959   const MCCFIInstruction &CFI = Instrs[CFIIndex];
960   emitCFIInstruction(CFI);
961 }
962 
963 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
964   // The operands are the MCSymbol and the frame offset of the allocation.
965   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
966   int FrameOffset = MI.getOperand(1).getImm();
967 
968   // Emit a symbol assignment.
969   OutStreamer->EmitAssignment(FrameAllocSym,
970                              MCConstantExpr::create(FrameOffset, OutContext));
971 }
972 
973 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
974   if (!MF.getTarget().Options.EmitStackSizeSection)
975     return;
976 
977   MCSection *StackSizeSection =
978       getObjFileLowering().getStackSizesSection(*getCurrentSection());
979   if (!StackSizeSection)
980     return;
981 
982   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
983   // Don't emit functions with dynamic stack allocations.
984   if (FrameInfo.hasVarSizedObjects())
985     return;
986 
987   OutStreamer->PushSection();
988   OutStreamer->SwitchSection(StackSizeSection);
989 
990   const MCSymbol *FunctionSymbol = getFunctionBegin();
991   uint64_t StackSize = FrameInfo.getStackSize();
992   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
993   OutStreamer->EmitULEB128IntValue(StackSize);
994 
995   OutStreamer->PopSection();
996 }
997 
998 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
999                                            MachineModuleInfo *MMI) {
1000   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1001     return true;
1002 
1003   // We might emit an EH table that uses function begin and end labels even if
1004   // we don't have any landingpads.
1005   if (!MF.getFunction().hasPersonalityFn())
1006     return false;
1007   return !isNoOpWithoutInvoke(
1008       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1009 }
1010 
1011 /// EmitFunctionBody - This method emits the body and trailer for a
1012 /// function.
1013 void AsmPrinter::EmitFunctionBody() {
1014   EmitFunctionHeader();
1015 
1016   // Emit target-specific gunk before the function body.
1017   EmitFunctionBodyStart();
1018 
1019   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1020 
1021   if (isVerbose()) {
1022     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1023     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1024     if (!MDT) {
1025       OwnedMDT = make_unique<MachineDominatorTree>();
1026       OwnedMDT->getBase().recalculate(*MF);
1027       MDT = OwnedMDT.get();
1028     }
1029 
1030     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1031     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1032     if (!MLI) {
1033       OwnedMLI = make_unique<MachineLoopInfo>();
1034       OwnedMLI->getBase().analyze(MDT->getBase());
1035       MLI = OwnedMLI.get();
1036     }
1037   }
1038 
1039   // Print out code for the function.
1040   bool HasAnyRealCode = false;
1041   int NumInstsInFunction = 0;
1042   for (auto &MBB : *MF) {
1043     // Print a label for the basic block.
1044     EmitBasicBlockStart(MBB);
1045     for (auto &MI : MBB) {
1046       // Print the assembly for the instruction.
1047       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1048           !MI.isDebugInstr()) {
1049         HasAnyRealCode = true;
1050         ++NumInstsInFunction;
1051       }
1052 
1053       // If there is a pre-instruction symbol, emit a label for it here.
1054       if (MCSymbol *S = MI.getPreInstrSymbol())
1055         OutStreamer->EmitLabel(S);
1056 
1057       if (ShouldPrintDebugScopes) {
1058         for (const HandlerInfo &HI : Handlers) {
1059           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1060                              HI.TimerGroupName, HI.TimerGroupDescription,
1061                              TimePassesIsEnabled);
1062           HI.Handler->beginInstruction(&MI);
1063         }
1064       }
1065 
1066       if (isVerbose())
1067         emitComments(MI, OutStreamer->GetCommentOS());
1068 
1069       switch (MI.getOpcode()) {
1070       case TargetOpcode::CFI_INSTRUCTION:
1071         emitCFIInstruction(MI);
1072         break;
1073       case TargetOpcode::LOCAL_ESCAPE:
1074         emitFrameAlloc(MI);
1075         break;
1076       case TargetOpcode::ANNOTATION_LABEL:
1077       case TargetOpcode::EH_LABEL:
1078       case TargetOpcode::GC_LABEL:
1079         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1080         break;
1081       case TargetOpcode::INLINEASM:
1082       case TargetOpcode::INLINEASM_BR:
1083         EmitInlineAsm(&MI);
1084         break;
1085       case TargetOpcode::DBG_VALUE:
1086         if (isVerbose()) {
1087           if (!emitDebugValueComment(&MI, *this))
1088             EmitInstruction(&MI);
1089         }
1090         break;
1091       case TargetOpcode::DBG_LABEL:
1092         if (isVerbose()) {
1093           if (!emitDebugLabelComment(&MI, *this))
1094             EmitInstruction(&MI);
1095         }
1096         break;
1097       case TargetOpcode::IMPLICIT_DEF:
1098         if (isVerbose()) emitImplicitDef(&MI);
1099         break;
1100       case TargetOpcode::KILL:
1101         if (isVerbose()) emitKill(&MI, *this);
1102         break;
1103       default:
1104         EmitInstruction(&MI);
1105         break;
1106       }
1107 
1108       // If there is a post-instruction symbol, emit a label for it here.
1109       if (MCSymbol *S = MI.getPostInstrSymbol())
1110         OutStreamer->EmitLabel(S);
1111 
1112       if (ShouldPrintDebugScopes) {
1113         for (const HandlerInfo &HI : Handlers) {
1114           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1115                              HI.TimerGroupName, HI.TimerGroupDescription,
1116                              TimePassesIsEnabled);
1117           HI.Handler->endInstruction();
1118         }
1119       }
1120     }
1121 
1122     EmitBasicBlockEnd(MBB);
1123   }
1124 
1125   EmittedInsts += NumInstsInFunction;
1126   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1127                                       MF->getFunction().getSubprogram(),
1128                                       &MF->front());
1129   R << ore::NV("NumInstructions", NumInstsInFunction)
1130     << " instructions in function";
1131   ORE->emit(R);
1132 
1133   // If the function is empty and the object file uses .subsections_via_symbols,
1134   // then we need to emit *something* to the function body to prevent the
1135   // labels from collapsing together.  Just emit a noop.
1136   // Similarly, don't emit empty functions on Windows either. It can lead to
1137   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1138   // after linking, causing the kernel not to load the binary:
1139   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1140   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1141   const Triple &TT = TM.getTargetTriple();
1142   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1143                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1144     MCInst Noop;
1145     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1146 
1147     // Targets can opt-out of emitting the noop here by leaving the opcode
1148     // unspecified.
1149     if (Noop.getOpcode()) {
1150       OutStreamer->AddComment("avoids zero-length function");
1151       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1152     }
1153   }
1154 
1155   const Function &F = MF->getFunction();
1156   for (const auto &BB : F) {
1157     if (!BB.hasAddressTaken())
1158       continue;
1159     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1160     if (Sym->isDefined())
1161       continue;
1162     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1163     OutStreamer->EmitLabel(Sym);
1164   }
1165 
1166   // Emit target-specific gunk after the function body.
1167   EmitFunctionBodyEnd();
1168 
1169   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1170       MAI->hasDotTypeDotSizeDirective()) {
1171     // Create a symbol for the end of function.
1172     CurrentFnEnd = createTempSymbol("func_end");
1173     OutStreamer->EmitLabel(CurrentFnEnd);
1174   }
1175 
1176   // If the target wants a .size directive for the size of the function, emit
1177   // it.
1178   if (MAI->hasDotTypeDotSizeDirective()) {
1179     // We can get the size as difference between the function label and the
1180     // temp label.
1181     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1182         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1183         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1184     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1185   }
1186 
1187   for (const HandlerInfo &HI : Handlers) {
1188     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1189                        HI.TimerGroupDescription, TimePassesIsEnabled);
1190     HI.Handler->markFunctionEnd();
1191   }
1192 
1193   // Print out jump tables referenced by the function.
1194   EmitJumpTableInfo();
1195 
1196   // Emit post-function debug and/or EH information.
1197   for (const HandlerInfo &HI : Handlers) {
1198     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1199                        HI.TimerGroupDescription, TimePassesIsEnabled);
1200     HI.Handler->endFunction(MF);
1201   }
1202 
1203   // Emit section containing stack size metadata.
1204   emitStackSizeSection(*MF);
1205 
1206   if (isVerbose())
1207     OutStreamer->GetCommentOS() << "-- End function\n";
1208 
1209   OutStreamer->AddBlankLine();
1210 }
1211 
1212 /// Compute the number of Global Variables that uses a Constant.
1213 static unsigned getNumGlobalVariableUses(const Constant *C) {
1214   if (!C)
1215     return 0;
1216 
1217   if (isa<GlobalVariable>(C))
1218     return 1;
1219 
1220   unsigned NumUses = 0;
1221   for (auto *CU : C->users())
1222     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1223 
1224   return NumUses;
1225 }
1226 
1227 /// Only consider global GOT equivalents if at least one user is a
1228 /// cstexpr inside an initializer of another global variables. Also, don't
1229 /// handle cstexpr inside instructions. During global variable emission,
1230 /// candidates are skipped and are emitted later in case at least one cstexpr
1231 /// isn't replaced by a PC relative GOT entry access.
1232 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1233                                      unsigned &NumGOTEquivUsers) {
1234   // Global GOT equivalents are unnamed private globals with a constant
1235   // pointer initializer to another global symbol. They must point to a
1236   // GlobalVariable or Function, i.e., as GlobalValue.
1237   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1238       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1239       !isa<GlobalValue>(GV->getOperand(0)))
1240     return false;
1241 
1242   // To be a got equivalent, at least one of its users need to be a constant
1243   // expression used by another global variable.
1244   for (auto *U : GV->users())
1245     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1246 
1247   return NumGOTEquivUsers > 0;
1248 }
1249 
1250 /// Unnamed constant global variables solely contaning a pointer to
1251 /// another globals variable is equivalent to a GOT table entry; it contains the
1252 /// the address of another symbol. Optimize it and replace accesses to these
1253 /// "GOT equivalents" by using the GOT entry for the final global instead.
1254 /// Compute GOT equivalent candidates among all global variables to avoid
1255 /// emitting them if possible later on, after it use is replaced by a GOT entry
1256 /// access.
1257 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1258   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1259     return;
1260 
1261   for (const auto &G : M.globals()) {
1262     unsigned NumGOTEquivUsers = 0;
1263     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1264       continue;
1265 
1266     const MCSymbol *GOTEquivSym = getSymbol(&G);
1267     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1268   }
1269 }
1270 
1271 /// Constant expressions using GOT equivalent globals may not be eligible
1272 /// for PC relative GOT entry conversion, in such cases we need to emit such
1273 /// globals we previously omitted in EmitGlobalVariable.
1274 void AsmPrinter::emitGlobalGOTEquivs() {
1275   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1276     return;
1277 
1278   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1279   for (auto &I : GlobalGOTEquivs) {
1280     const GlobalVariable *GV = I.second.first;
1281     unsigned Cnt = I.second.second;
1282     if (Cnt)
1283       FailedCandidates.push_back(GV);
1284   }
1285   GlobalGOTEquivs.clear();
1286 
1287   for (auto *GV : FailedCandidates)
1288     EmitGlobalVariable(GV);
1289 }
1290 
1291 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1292                                           const GlobalIndirectSymbol& GIS) {
1293   MCSymbol *Name = getSymbol(&GIS);
1294 
1295   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1296     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1297   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1298     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1299   else
1300     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1301 
1302   bool IsFunction = GIS.getType()->getPointerElementType()->isFunctionTy();
1303 
1304   // Treat bitcasts of functions as functions also. This is important at least
1305   // on WebAssembly where object and function addresses can't alias each other.
1306   if (!IsFunction)
1307     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1308       if (CE->getOpcode() == Instruction::BitCast)
1309         IsFunction =
1310           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1311 
1312   // Set the symbol type to function if the alias has a function type.
1313   // This affects codegen when the aliasee is not a function.
1314   if (IsFunction) {
1315     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1316     if (isa<GlobalIFunc>(GIS))
1317       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1318   }
1319 
1320   EmitVisibility(Name, GIS.getVisibility());
1321 
1322   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1323 
1324   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1325     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1326 
1327   // Emit the directives as assignments aka .set:
1328   OutStreamer->EmitAssignment(Name, Expr);
1329 
1330   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1331     // If the aliasee does not correspond to a symbol in the output, i.e. the
1332     // alias is not of an object or the aliased object is private, then set the
1333     // size of the alias symbol from the type of the alias. We don't do this in
1334     // other situations as the alias and aliasee having differing types but same
1335     // size may be intentional.
1336     const GlobalObject *BaseObject = GA->getBaseObject();
1337     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1338         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1339       const DataLayout &DL = M.getDataLayout();
1340       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1341       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1342     }
1343   }
1344 }
1345 
1346 void AsmPrinter::emitRemarksSection(Module &M) {
1347   RemarkStreamer *RS = M.getContext().getRemarkStreamer();
1348   if (!RS)
1349     return;
1350 
1351   // Switch to the right section: .remarks/__remarks.
1352   MCSection *RemarksSection =
1353       OutContext.getObjectFileInfo()->getRemarksSection();
1354   OutStreamer->SwitchSection(RemarksSection);
1355 
1356   // Emit the magic number.
1357   OutStreamer->EmitBytes(remarks::Magic);
1358   // Explicitly emit a '\0'.
1359   OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1);
1360 
1361   // Emit the version number: little-endian uint64_t.
1362   // The version number is located at the offset 0x0 in the section.
1363   std::array<char, 8> Version;
1364   support::endian::write64le(Version.data(), remarks::Version);
1365   OutStreamer->EmitBinaryData(StringRef(Version.data(), Version.size()));
1366 
1367   // Emit the string table in the section.
1368   // Note: we need to use the streamer here to emit it in the section. We can't
1369   // just use the serialize function with a raw_ostream because of the way
1370   // MCStreamers work.
1371   const remarks::StringTable &StrTab = RS->getStringTable();
1372   std::vector<StringRef> StrTabStrings = StrTab.serialize();
1373   uint64_t StrTabSize = StrTab.SerializedSize;
1374   // Emit the total size of the string table (the size itself excluded):
1375   // little-endian uint64_t.
1376   // The total size is located after the version number.
1377   std::array<char, 8> StrTabSizeBuf;
1378   support::endian::write64le(StrTabSizeBuf.data(), StrTabSize);
1379   OutStreamer->EmitBinaryData(
1380       StringRef(StrTabSizeBuf.data(), StrTabSizeBuf.size()));
1381   // Emit a list of null-terminated strings.
1382   // Note: the order is important here: the ID used in the remarks corresponds
1383   // to the position of the string in the section.
1384   for (StringRef Str : StrTabStrings) {
1385     OutStreamer->EmitBytes(Str);
1386     // Explicitly emit a '\0'.
1387     OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1);
1388   }
1389 
1390   // Emit the null-terminated absolute path to the remark file.
1391   // The path is located at the offset 0x4 in the section.
1392   StringRef FilenameRef = RS->getFilename();
1393   SmallString<128> Filename = FilenameRef;
1394   sys::fs::make_absolute(Filename);
1395   assert(!Filename.empty() && "The filename can't be empty.");
1396   OutStreamer->EmitBytes(Filename);
1397   // Explicitly emit a '\0'.
1398   OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1);
1399 }
1400 
1401 bool AsmPrinter::doFinalization(Module &M) {
1402   // Set the MachineFunction to nullptr so that we can catch attempted
1403   // accesses to MF specific features at the module level and so that
1404   // we can conditionalize accesses based on whether or not it is nullptr.
1405   MF = nullptr;
1406 
1407   // Gather all GOT equivalent globals in the module. We really need two
1408   // passes over the globals: one to compute and another to avoid its emission
1409   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1410   // where the got equivalent shows up before its use.
1411   computeGlobalGOTEquivs(M);
1412 
1413   // Emit global variables.
1414   for (const auto &G : M.globals())
1415     EmitGlobalVariable(&G);
1416 
1417   // Emit remaining GOT equivalent globals.
1418   emitGlobalGOTEquivs();
1419 
1420   // Emit visibility info for declarations
1421   for (const Function &F : M) {
1422     if (!F.isDeclarationForLinker())
1423       continue;
1424     GlobalValue::VisibilityTypes V = F.getVisibility();
1425     if (V == GlobalValue::DefaultVisibility)
1426       continue;
1427 
1428     MCSymbol *Name = getSymbol(&F);
1429     EmitVisibility(Name, V, false);
1430   }
1431 
1432   // Emit the remarks section contents.
1433   // FIXME: Figure out when is the safest time to emit this section. It should
1434   // not come after debug info.
1435   if (EnableRemarksSection)
1436     emitRemarksSection(M);
1437 
1438   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1439 
1440   TLOF.emitModuleMetadata(*OutStreamer, M);
1441 
1442   if (TM.getTargetTriple().isOSBinFormatELF()) {
1443     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1444 
1445     // Output stubs for external and common global variables.
1446     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1447     if (!Stubs.empty()) {
1448       OutStreamer->SwitchSection(TLOF.getDataSection());
1449       const DataLayout &DL = M.getDataLayout();
1450 
1451       EmitAlignment(Log2_32(DL.getPointerSize()));
1452       for (const auto &Stub : Stubs) {
1453         OutStreamer->EmitLabel(Stub.first);
1454         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1455                                      DL.getPointerSize());
1456       }
1457     }
1458   }
1459 
1460   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1461     MachineModuleInfoCOFF &MMICOFF =
1462         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1463 
1464     // Output stubs for external and common global variables.
1465     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1466     if (!Stubs.empty()) {
1467       const DataLayout &DL = M.getDataLayout();
1468 
1469       for (const auto &Stub : Stubs) {
1470         SmallString<256> SectionName = StringRef(".rdata$");
1471         SectionName += Stub.first->getName();
1472         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1473             SectionName,
1474             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1475                 COFF::IMAGE_SCN_LNK_COMDAT,
1476             SectionKind::getReadOnly(), Stub.first->getName(),
1477             COFF::IMAGE_COMDAT_SELECT_ANY));
1478         EmitAlignment(Log2_32(DL.getPointerSize()));
1479         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1480         OutStreamer->EmitLabel(Stub.first);
1481         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1482                                      DL.getPointerSize());
1483       }
1484     }
1485   }
1486 
1487   // Finalize debug and EH information.
1488   for (const HandlerInfo &HI : Handlers) {
1489     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1490                        HI.TimerGroupDescription, TimePassesIsEnabled);
1491     HI.Handler->endModule();
1492   }
1493   Handlers.clear();
1494   DD = nullptr;
1495 
1496   // If the target wants to know about weak references, print them all.
1497   if (MAI->getWeakRefDirective()) {
1498     // FIXME: This is not lazy, it would be nice to only print weak references
1499     // to stuff that is actually used.  Note that doing so would require targets
1500     // to notice uses in operands (due to constant exprs etc).  This should
1501     // happen with the MC stuff eventually.
1502 
1503     // Print out module-level global objects here.
1504     for (const auto &GO : M.global_objects()) {
1505       if (!GO.hasExternalWeakLinkage())
1506         continue;
1507       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1508     }
1509   }
1510 
1511   OutStreamer->AddBlankLine();
1512 
1513   // Print aliases in topological order, that is, for each alias a = b,
1514   // b must be printed before a.
1515   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1516   // such an order to generate correct TOC information.
1517   SmallVector<const GlobalAlias *, 16> AliasStack;
1518   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1519   for (const auto &Alias : M.aliases()) {
1520     for (const GlobalAlias *Cur = &Alias; Cur;
1521          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1522       if (!AliasVisited.insert(Cur).second)
1523         break;
1524       AliasStack.push_back(Cur);
1525     }
1526     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1527       emitGlobalIndirectSymbol(M, *AncestorAlias);
1528     AliasStack.clear();
1529   }
1530   for (const auto &IFunc : M.ifuncs())
1531     emitGlobalIndirectSymbol(M, IFunc);
1532 
1533   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1534   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1535   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1536     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1537       MP->finishAssembly(M, *MI, *this);
1538 
1539   // Emit llvm.ident metadata in an '.ident' directive.
1540   EmitModuleIdents(M);
1541 
1542   // Emit bytes for llvm.commandline metadata.
1543   EmitModuleCommandLines(M);
1544 
1545   // Emit __morestack address if needed for indirect calls.
1546   if (MMI->usesMorestackAddr()) {
1547     unsigned Align = 1;
1548     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1549         getDataLayout(), SectionKind::getReadOnly(),
1550         /*C=*/nullptr, Align);
1551     OutStreamer->SwitchSection(ReadOnlySection);
1552 
1553     MCSymbol *AddrSymbol =
1554         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1555     OutStreamer->EmitLabel(AddrSymbol);
1556 
1557     unsigned PtrSize = MAI->getCodePointerSize();
1558     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1559                                  PtrSize);
1560   }
1561 
1562   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1563   // split-stack is used.
1564   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1565     OutStreamer->SwitchSection(
1566         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1567     if (MMI->hasNosplitStack())
1568       OutStreamer->SwitchSection(
1569           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1570   }
1571 
1572   // If we don't have any trampolines, then we don't require stack memory
1573   // to be executable. Some targets have a directive to declare this.
1574   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1575   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1576     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1577       OutStreamer->SwitchSection(S);
1578 
1579   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1580     // Emit /EXPORT: flags for each exported global as necessary.
1581     const auto &TLOF = getObjFileLowering();
1582     std::string Flags;
1583 
1584     for (const GlobalValue &GV : M.global_values()) {
1585       raw_string_ostream OS(Flags);
1586       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1587       OS.flush();
1588       if (!Flags.empty()) {
1589         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1590         OutStreamer->EmitBytes(Flags);
1591       }
1592       Flags.clear();
1593     }
1594 
1595     // Emit /INCLUDE: flags for each used global as necessary.
1596     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1597       assert(LU->hasInitializer() &&
1598              "expected llvm.used to have an initializer");
1599       assert(isa<ArrayType>(LU->getValueType()) &&
1600              "expected llvm.used to be an array type");
1601       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1602         for (const Value *Op : A->operands()) {
1603           const auto *GV =
1604               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1605           // Global symbols with internal or private linkage are not visible to
1606           // the linker, and thus would cause an error when the linker tried to
1607           // preserve the symbol due to the `/include:` directive.
1608           if (GV->hasLocalLinkage())
1609             continue;
1610 
1611           raw_string_ostream OS(Flags);
1612           TLOF.emitLinkerFlagsForUsed(OS, GV);
1613           OS.flush();
1614 
1615           if (!Flags.empty()) {
1616             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1617             OutStreamer->EmitBytes(Flags);
1618           }
1619           Flags.clear();
1620         }
1621       }
1622     }
1623   }
1624 
1625   if (TM.Options.EmitAddrsig) {
1626     // Emit address-significance attributes for all globals.
1627     OutStreamer->EmitAddrsig();
1628     for (const GlobalValue &GV : M.global_values())
1629       if (!GV.use_empty() && !GV.isThreadLocal() &&
1630           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1631           !GV.hasAtLeastLocalUnnamedAddr())
1632         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1633   }
1634 
1635   // Emit symbol partition specifications (ELF only).
1636   if (TM.getTargetTriple().isOSBinFormatELF()) {
1637     unsigned UniqueID = 0;
1638     for (const GlobalValue &GV : M.global_values()) {
1639       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1640           GV.getVisibility() != GlobalValue::DefaultVisibility)
1641         continue;
1642 
1643       OutStreamer->SwitchSection(OutContext.getELFSection(
1644           ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID));
1645       OutStreamer->EmitBytes(GV.getPartition());
1646       OutStreamer->EmitZeros(1);
1647       OutStreamer->EmitValue(
1648           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1649           MAI->getCodePointerSize());
1650     }
1651   }
1652 
1653   // Allow the target to emit any magic that it wants at the end of the file,
1654   // after everything else has gone out.
1655   EmitEndOfAsmFile(M);
1656 
1657   MMI = nullptr;
1658 
1659   OutStreamer->Finish();
1660   OutStreamer->reset();
1661   OwnedMLI.reset();
1662   OwnedMDT.reset();
1663 
1664   return false;
1665 }
1666 
1667 MCSymbol *AsmPrinter::getCurExceptionSym() {
1668   if (!CurExceptionSym)
1669     CurExceptionSym = createTempSymbol("exception");
1670   return CurExceptionSym;
1671 }
1672 
1673 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1674   this->MF = &MF;
1675   // Get the function symbol.
1676   CurrentFnSym = getSymbol(&MF.getFunction());
1677   CurrentFnSymForSize = CurrentFnSym;
1678   CurrentFnBegin = nullptr;
1679   CurExceptionSym = nullptr;
1680   bool NeedsLocalForSize = MAI->needsLocalForSize();
1681   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1682       MF.getTarget().Options.EmitStackSizeSection) {
1683     CurrentFnBegin = createTempSymbol("func_begin");
1684     if (NeedsLocalForSize)
1685       CurrentFnSymForSize = CurrentFnBegin;
1686   }
1687 
1688   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1689 }
1690 
1691 namespace {
1692 
1693 // Keep track the alignment, constpool entries per Section.
1694   struct SectionCPs {
1695     MCSection *S;
1696     unsigned Alignment;
1697     SmallVector<unsigned, 4> CPEs;
1698 
1699     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1700   };
1701 
1702 } // end anonymous namespace
1703 
1704 /// EmitConstantPool - Print to the current output stream assembly
1705 /// representations of the constants in the constant pool MCP. This is
1706 /// used to print out constants which have been "spilled to memory" by
1707 /// the code generator.
1708 void AsmPrinter::EmitConstantPool() {
1709   const MachineConstantPool *MCP = MF->getConstantPool();
1710   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1711   if (CP.empty()) return;
1712 
1713   // Calculate sections for constant pool entries. We collect entries to go into
1714   // the same section together to reduce amount of section switch statements.
1715   SmallVector<SectionCPs, 4> CPSections;
1716   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1717     const MachineConstantPoolEntry &CPE = CP[i];
1718     unsigned Align = CPE.getAlignment();
1719 
1720     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1721 
1722     const Constant *C = nullptr;
1723     if (!CPE.isMachineConstantPoolEntry())
1724       C = CPE.Val.ConstVal;
1725 
1726     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1727                                                               Kind, C, Align);
1728 
1729     // The number of sections are small, just do a linear search from the
1730     // last section to the first.
1731     bool Found = false;
1732     unsigned SecIdx = CPSections.size();
1733     while (SecIdx != 0) {
1734       if (CPSections[--SecIdx].S == S) {
1735         Found = true;
1736         break;
1737       }
1738     }
1739     if (!Found) {
1740       SecIdx = CPSections.size();
1741       CPSections.push_back(SectionCPs(S, Align));
1742     }
1743 
1744     if (Align > CPSections[SecIdx].Alignment)
1745       CPSections[SecIdx].Alignment = Align;
1746     CPSections[SecIdx].CPEs.push_back(i);
1747   }
1748 
1749   // Now print stuff into the calculated sections.
1750   const MCSection *CurSection = nullptr;
1751   unsigned Offset = 0;
1752   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1753     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1754       unsigned CPI = CPSections[i].CPEs[j];
1755       MCSymbol *Sym = GetCPISymbol(CPI);
1756       if (!Sym->isUndefined())
1757         continue;
1758 
1759       if (CurSection != CPSections[i].S) {
1760         OutStreamer->SwitchSection(CPSections[i].S);
1761         EmitAlignment(Log2_32(CPSections[i].Alignment));
1762         CurSection = CPSections[i].S;
1763         Offset = 0;
1764       }
1765 
1766       MachineConstantPoolEntry CPE = CP[CPI];
1767 
1768       // Emit inter-object padding for alignment.
1769       unsigned AlignMask = CPE.getAlignment() - 1;
1770       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1771       OutStreamer->EmitZeros(NewOffset - Offset);
1772 
1773       Type *Ty = CPE.getType();
1774       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1775 
1776       OutStreamer->EmitLabel(Sym);
1777       if (CPE.isMachineConstantPoolEntry())
1778         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1779       else
1780         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1781     }
1782   }
1783 }
1784 
1785 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1786 /// by the current function to the current output stream.
1787 void AsmPrinter::EmitJumpTableInfo() {
1788   const DataLayout &DL = MF->getDataLayout();
1789   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1790   if (!MJTI) return;
1791   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1792   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1793   if (JT.empty()) return;
1794 
1795   // Pick the directive to use to print the jump table entries, and switch to
1796   // the appropriate section.
1797   const Function &F = MF->getFunction();
1798   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1799   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1800       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1801       F);
1802   if (JTInDiffSection) {
1803     // Drop it in the readonly section.
1804     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1805     OutStreamer->SwitchSection(ReadOnlySection);
1806   }
1807 
1808   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1809 
1810   // Jump tables in code sections are marked with a data_region directive
1811   // where that's supported.
1812   if (!JTInDiffSection)
1813     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1814 
1815   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1816     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1817 
1818     // If this jump table was deleted, ignore it.
1819     if (JTBBs.empty()) continue;
1820 
1821     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1822     /// emit a .set directive for each unique entry.
1823     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1824         MAI->doesSetDirectiveSuppressReloc()) {
1825       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1826       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1827       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1828       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1829         const MachineBasicBlock *MBB = JTBBs[ii];
1830         if (!EmittedSets.insert(MBB).second)
1831           continue;
1832 
1833         // .set LJTSet, LBB32-base
1834         const MCExpr *LHS =
1835           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1836         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1837                                     MCBinaryExpr::createSub(LHS, Base,
1838                                                             OutContext));
1839       }
1840     }
1841 
1842     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1843     // before each jump table.  The first label is never referenced, but tells
1844     // the assembler and linker the extents of the jump table object.  The
1845     // second label is actually referenced by the code.
1846     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1847       // FIXME: This doesn't have to have any specific name, just any randomly
1848       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1849       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1850 
1851     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1852 
1853     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1854       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1855   }
1856   if (!JTInDiffSection)
1857     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1858 }
1859 
1860 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1861 /// current stream.
1862 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1863                                     const MachineBasicBlock *MBB,
1864                                     unsigned UID) const {
1865   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1866   const MCExpr *Value = nullptr;
1867   switch (MJTI->getEntryKind()) {
1868   case MachineJumpTableInfo::EK_Inline:
1869     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1870   case MachineJumpTableInfo::EK_Custom32:
1871     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1872         MJTI, MBB, UID, OutContext);
1873     break;
1874   case MachineJumpTableInfo::EK_BlockAddress:
1875     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1876     //     .word LBB123
1877     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1878     break;
1879   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1880     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1881     // with a relocation as gp-relative, e.g.:
1882     //     .gprel32 LBB123
1883     MCSymbol *MBBSym = MBB->getSymbol();
1884     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1885     return;
1886   }
1887 
1888   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1889     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1890     // with a relocation as gp-relative, e.g.:
1891     //     .gpdword LBB123
1892     MCSymbol *MBBSym = MBB->getSymbol();
1893     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1894     return;
1895   }
1896 
1897   case MachineJumpTableInfo::EK_LabelDifference32: {
1898     // Each entry is the address of the block minus the address of the jump
1899     // table. This is used for PIC jump tables where gprel32 is not supported.
1900     // e.g.:
1901     //      .word LBB123 - LJTI1_2
1902     // If the .set directive avoids relocations, this is emitted as:
1903     //      .set L4_5_set_123, LBB123 - LJTI1_2
1904     //      .word L4_5_set_123
1905     if (MAI->doesSetDirectiveSuppressReloc()) {
1906       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1907                                       OutContext);
1908       break;
1909     }
1910     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1911     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1912     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1913     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1914     break;
1915   }
1916   }
1917 
1918   assert(Value && "Unknown entry kind!");
1919 
1920   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1921   OutStreamer->EmitValue(Value, EntrySize);
1922 }
1923 
1924 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1925 /// special global used by LLVM.  If so, emit it and return true, otherwise
1926 /// do nothing and return false.
1927 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1928   if (GV->getName() == "llvm.used") {
1929     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1930       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1931     return true;
1932   }
1933 
1934   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1935   if (GV->getSection() == "llvm.metadata" ||
1936       GV->hasAvailableExternallyLinkage())
1937     return true;
1938 
1939   if (!GV->hasAppendingLinkage()) return false;
1940 
1941   assert(GV->hasInitializer() && "Not a special LLVM global!");
1942 
1943   if (GV->getName() == "llvm.global_ctors") {
1944     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1945                        /* isCtor */ true);
1946 
1947     return true;
1948   }
1949 
1950   if (GV->getName() == "llvm.global_dtors") {
1951     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1952                        /* isCtor */ false);
1953 
1954     return true;
1955   }
1956 
1957   report_fatal_error("unknown special variable");
1958 }
1959 
1960 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1961 /// global in the specified llvm.used list.
1962 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1963   // Should be an array of 'i8*'.
1964   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1965     const GlobalValue *GV =
1966       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1967     if (GV)
1968       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1969   }
1970 }
1971 
1972 namespace {
1973 
1974 struct Structor {
1975   int Priority = 0;
1976   Constant *Func = nullptr;
1977   GlobalValue *ComdatKey = nullptr;
1978 
1979   Structor() = default;
1980 };
1981 
1982 } // end anonymous namespace
1983 
1984 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1985 /// priority.
1986 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1987                                     bool isCtor) {
1988   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
1989   // init priority.
1990   if (!isa<ConstantArray>(List)) return;
1991 
1992   // Sanity check the structors list.
1993   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1994   if (!InitList) return; // Not an array!
1995   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1996   if (!ETy || ETy->getNumElements() != 3 ||
1997       !isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1998       !isa<PointerType>(ETy->getTypeAtIndex(1U)) ||
1999       !isa<PointerType>(ETy->getTypeAtIndex(2U)))
2000     return; // Not (int, ptr, ptr).
2001 
2002   // Gather the structors in a form that's convenient for sorting by priority.
2003   SmallVector<Structor, 8> Structors;
2004   for (Value *O : InitList->operands()) {
2005     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
2006     if (!CS) continue; // Malformed.
2007     if (CS->getOperand(1)->isNullValue())
2008       break;  // Found a null terminator, skip the rest.
2009     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2010     if (!Priority) continue; // Malformed.
2011     Structors.push_back(Structor());
2012     Structor &S = Structors.back();
2013     S.Priority = Priority->getLimitedValue(65535);
2014     S.Func = CS->getOperand(1);
2015     if (!CS->getOperand(2)->isNullValue())
2016       S.ComdatKey =
2017           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2018   }
2019 
2020   // Emit the function pointers in the target-specific order
2021   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
2022   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2023     return L.Priority < R.Priority;
2024   });
2025   for (Structor &S : Structors) {
2026     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2027     const MCSymbol *KeySym = nullptr;
2028     if (GlobalValue *GV = S.ComdatKey) {
2029       if (GV->isDeclarationForLinker())
2030         // If the associated variable is not defined in this module
2031         // (it might be available_externally, or have been an
2032         // available_externally definition that was dropped by the
2033         // EliminateAvailableExternally pass), some other TU
2034         // will provide its dynamic initializer.
2035         continue;
2036 
2037       KeySym = getSymbol(GV);
2038     }
2039     MCSection *OutputSection =
2040         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2041                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2042     OutStreamer->SwitchSection(OutputSection);
2043     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2044       EmitAlignment(Align);
2045     EmitXXStructor(DL, S.Func);
2046   }
2047 }
2048 
2049 void AsmPrinter::EmitModuleIdents(Module &M) {
2050   if (!MAI->hasIdentDirective())
2051     return;
2052 
2053   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2054     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2055       const MDNode *N = NMD->getOperand(i);
2056       assert(N->getNumOperands() == 1 &&
2057              "llvm.ident metadata entry can have only one operand");
2058       const MDString *S = cast<MDString>(N->getOperand(0));
2059       OutStreamer->EmitIdent(S->getString());
2060     }
2061   }
2062 }
2063 
2064 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2065   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2066   if (!CommandLine)
2067     return;
2068 
2069   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2070   if (!NMD || !NMD->getNumOperands())
2071     return;
2072 
2073   OutStreamer->PushSection();
2074   OutStreamer->SwitchSection(CommandLine);
2075   OutStreamer->EmitZeros(1);
2076   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2077     const MDNode *N = NMD->getOperand(i);
2078     assert(N->getNumOperands() == 1 &&
2079            "llvm.commandline metadata entry can have only one operand");
2080     const MDString *S = cast<MDString>(N->getOperand(0));
2081     OutStreamer->EmitBytes(S->getString());
2082     OutStreamer->EmitZeros(1);
2083   }
2084   OutStreamer->PopSection();
2085 }
2086 
2087 //===--------------------------------------------------------------------===//
2088 // Emission and print routines
2089 //
2090 
2091 /// Emit a byte directive and value.
2092 ///
2093 void AsmPrinter::emitInt8(int Value) const {
2094   OutStreamer->EmitIntValue(Value, 1);
2095 }
2096 
2097 /// Emit a short directive and value.
2098 void AsmPrinter::emitInt16(int Value) const {
2099   OutStreamer->EmitIntValue(Value, 2);
2100 }
2101 
2102 /// Emit a long directive and value.
2103 void AsmPrinter::emitInt32(int Value) const {
2104   OutStreamer->EmitIntValue(Value, 4);
2105 }
2106 
2107 /// Emit a long long directive and value.
2108 void AsmPrinter::emitInt64(uint64_t Value) const {
2109   OutStreamer->EmitIntValue(Value, 8);
2110 }
2111 
2112 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2113 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2114 /// .set if it avoids relocations.
2115 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2116                                      unsigned Size) const {
2117   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2118 }
2119 
2120 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2121 /// where the size in bytes of the directive is specified by Size and Label
2122 /// specifies the label.  This implicitly uses .set if it is available.
2123 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2124                                      unsigned Size,
2125                                      bool IsSectionRelative) const {
2126   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2127     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2128     if (Size > 4)
2129       OutStreamer->EmitZeros(Size - 4);
2130     return;
2131   }
2132 
2133   // Emit Label+Offset (or just Label if Offset is zero)
2134   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2135   if (Offset)
2136     Expr = MCBinaryExpr::createAdd(
2137         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2138 
2139   OutStreamer->EmitValue(Expr, Size);
2140 }
2141 
2142 //===----------------------------------------------------------------------===//
2143 
2144 // EmitAlignment - Emit an alignment directive to the specified power of
2145 // two boundary.  For example, if you pass in 3 here, you will get an 8
2146 // byte alignment.  If a global value is specified, and if that global has
2147 // an explicit alignment requested, it will override the alignment request
2148 // if required for correctness.
2149 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2150   if (GV)
2151     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2152 
2153   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
2154 
2155   assert(NumBits <
2156              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2157          "undefined behavior");
2158   if (getCurrentSection()->getKind().isText())
2159     OutStreamer->EmitCodeAlignment(1u << NumBits);
2160   else
2161     OutStreamer->EmitValueToAlignment(1u << NumBits);
2162 }
2163 
2164 //===----------------------------------------------------------------------===//
2165 // Constant emission.
2166 //===----------------------------------------------------------------------===//
2167 
2168 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2169   MCContext &Ctx = OutContext;
2170 
2171   if (CV->isNullValue() || isa<UndefValue>(CV))
2172     return MCConstantExpr::create(0, Ctx);
2173 
2174   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2175     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2176 
2177   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2178     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2179 
2180   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2181     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2182 
2183   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2184   if (!CE) {
2185     llvm_unreachable("Unknown constant value to lower!");
2186   }
2187 
2188   switch (CE->getOpcode()) {
2189   default:
2190     // If the code isn't optimized, there may be outstanding folding
2191     // opportunities. Attempt to fold the expression using DataLayout as a
2192     // last resort before giving up.
2193     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2194       if (C != CE)
2195         return lowerConstant(C);
2196 
2197     // Otherwise report the problem to the user.
2198     {
2199       std::string S;
2200       raw_string_ostream OS(S);
2201       OS << "Unsupported expression in static initializer: ";
2202       CE->printAsOperand(OS, /*PrintType=*/false,
2203                      !MF ? nullptr : MF->getFunction().getParent());
2204       report_fatal_error(OS.str());
2205     }
2206   case Instruction::GetElementPtr: {
2207     // Generate a symbolic expression for the byte address
2208     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2209     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2210 
2211     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2212     if (!OffsetAI)
2213       return Base;
2214 
2215     int64_t Offset = OffsetAI.getSExtValue();
2216     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2217                                    Ctx);
2218   }
2219 
2220   case Instruction::Trunc:
2221     // We emit the value and depend on the assembler to truncate the generated
2222     // expression properly.  This is important for differences between
2223     // blockaddress labels.  Since the two labels are in the same function, it
2224     // is reasonable to treat their delta as a 32-bit value.
2225     LLVM_FALLTHROUGH;
2226   case Instruction::BitCast:
2227     return lowerConstant(CE->getOperand(0));
2228 
2229   case Instruction::IntToPtr: {
2230     const DataLayout &DL = getDataLayout();
2231 
2232     // Handle casts to pointers by changing them into casts to the appropriate
2233     // integer type.  This promotes constant folding and simplifies this code.
2234     Constant *Op = CE->getOperand(0);
2235     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2236                                       false/*ZExt*/);
2237     return lowerConstant(Op);
2238   }
2239 
2240   case Instruction::PtrToInt: {
2241     const DataLayout &DL = getDataLayout();
2242 
2243     // Support only foldable casts to/from pointers that can be eliminated by
2244     // changing the pointer to the appropriately sized integer type.
2245     Constant *Op = CE->getOperand(0);
2246     Type *Ty = CE->getType();
2247 
2248     const MCExpr *OpExpr = lowerConstant(Op);
2249 
2250     // We can emit the pointer value into this slot if the slot is an
2251     // integer slot equal to the size of the pointer.
2252     //
2253     // If the pointer is larger than the resultant integer, then
2254     // as with Trunc just depend on the assembler to truncate it.
2255     if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2256       return OpExpr;
2257 
2258     // Otherwise the pointer is smaller than the resultant integer, mask off
2259     // the high bits so we are sure to get a proper truncation if the input is
2260     // a constant expr.
2261     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2262     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2263     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2264   }
2265 
2266   case Instruction::Sub: {
2267     GlobalValue *LHSGV;
2268     APInt LHSOffset;
2269     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2270                                    getDataLayout())) {
2271       GlobalValue *RHSGV;
2272       APInt RHSOffset;
2273       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2274                                      getDataLayout())) {
2275         const MCExpr *RelocExpr =
2276             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2277         if (!RelocExpr)
2278           RelocExpr = MCBinaryExpr::createSub(
2279               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2280               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2281         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2282         if (Addend != 0)
2283           RelocExpr = MCBinaryExpr::createAdd(
2284               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2285         return RelocExpr;
2286       }
2287     }
2288   }
2289   // else fallthrough
2290   LLVM_FALLTHROUGH;
2291 
2292   // The MC library also has a right-shift operator, but it isn't consistently
2293   // signed or unsigned between different targets.
2294   case Instruction::Add:
2295   case Instruction::Mul:
2296   case Instruction::SDiv:
2297   case Instruction::SRem:
2298   case Instruction::Shl:
2299   case Instruction::And:
2300   case Instruction::Or:
2301   case Instruction::Xor: {
2302     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2303     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2304     switch (CE->getOpcode()) {
2305     default: llvm_unreachable("Unknown binary operator constant cast expr");
2306     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2307     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2308     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2309     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2310     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2311     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2312     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2313     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2314     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2315     }
2316   }
2317   }
2318 }
2319 
2320 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2321                                    AsmPrinter &AP,
2322                                    const Constant *BaseCV = nullptr,
2323                                    uint64_t Offset = 0);
2324 
2325 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2326 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2327 
2328 /// isRepeatedByteSequence - Determine whether the given value is
2329 /// composed of a repeated sequence of identical bytes and return the
2330 /// byte value.  If it is not a repeated sequence, return -1.
2331 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2332   StringRef Data = V->getRawDataValues();
2333   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2334   char C = Data[0];
2335   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2336     if (Data[i] != C) return -1;
2337   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2338 }
2339 
2340 /// isRepeatedByteSequence - Determine whether the given value is
2341 /// composed of a repeated sequence of identical bytes and return the
2342 /// byte value.  If it is not a repeated sequence, return -1.
2343 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2344   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2345     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2346     assert(Size % 8 == 0);
2347 
2348     // Extend the element to take zero padding into account.
2349     APInt Value = CI->getValue().zextOrSelf(Size);
2350     if (!Value.isSplat(8))
2351       return -1;
2352 
2353     return Value.zextOrTrunc(8).getZExtValue();
2354   }
2355   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2356     // Make sure all array elements are sequences of the same repeated
2357     // byte.
2358     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2359     Constant *Op0 = CA->getOperand(0);
2360     int Byte = isRepeatedByteSequence(Op0, DL);
2361     if (Byte == -1)
2362       return -1;
2363 
2364     // All array elements must be equal.
2365     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2366       if (CA->getOperand(i) != Op0)
2367         return -1;
2368     return Byte;
2369   }
2370 
2371   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2372     return isRepeatedByteSequence(CDS);
2373 
2374   return -1;
2375 }
2376 
2377 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2378                                              const ConstantDataSequential *CDS,
2379                                              AsmPrinter &AP) {
2380   // See if we can aggregate this into a .fill, if so, emit it as such.
2381   int Value = isRepeatedByteSequence(CDS, DL);
2382   if (Value != -1) {
2383     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2384     // Don't emit a 1-byte object as a .fill.
2385     if (Bytes > 1)
2386       return AP.OutStreamer->emitFill(Bytes, Value);
2387   }
2388 
2389   // If this can be emitted with .ascii/.asciz, emit it as such.
2390   if (CDS->isString())
2391     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2392 
2393   // Otherwise, emit the values in successive locations.
2394   unsigned ElementByteSize = CDS->getElementByteSize();
2395   if (isa<IntegerType>(CDS->getElementType())) {
2396     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2397       if (AP.isVerbose())
2398         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2399                                                  CDS->getElementAsInteger(i));
2400       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2401                                    ElementByteSize);
2402     }
2403   } else {
2404     Type *ET = CDS->getElementType();
2405     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2406       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2407   }
2408 
2409   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2410   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2411                         CDS->getNumElements();
2412   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2413   if (unsigned Padding = Size - EmittedSize)
2414     AP.OutStreamer->EmitZeros(Padding);
2415 }
2416 
2417 static void emitGlobalConstantArray(const DataLayout &DL,
2418                                     const ConstantArray *CA, AsmPrinter &AP,
2419                                     const Constant *BaseCV, uint64_t Offset) {
2420   // See if we can aggregate some values.  Make sure it can be
2421   // represented as a series of bytes of the constant value.
2422   int Value = isRepeatedByteSequence(CA, DL);
2423 
2424   if (Value != -1) {
2425     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2426     AP.OutStreamer->emitFill(Bytes, Value);
2427   }
2428   else {
2429     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2430       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2431       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2432     }
2433   }
2434 }
2435 
2436 static void emitGlobalConstantVector(const DataLayout &DL,
2437                                      const ConstantVector *CV, AsmPrinter &AP) {
2438   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2439     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2440 
2441   unsigned Size = DL.getTypeAllocSize(CV->getType());
2442   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2443                          CV->getType()->getNumElements();
2444   if (unsigned Padding = Size - EmittedSize)
2445     AP.OutStreamer->EmitZeros(Padding);
2446 }
2447 
2448 static void emitGlobalConstantStruct(const DataLayout &DL,
2449                                      const ConstantStruct *CS, AsmPrinter &AP,
2450                                      const Constant *BaseCV, uint64_t Offset) {
2451   // Print the fields in successive locations. Pad to align if needed!
2452   unsigned Size = DL.getTypeAllocSize(CS->getType());
2453   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2454   uint64_t SizeSoFar = 0;
2455   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2456     const Constant *Field = CS->getOperand(i);
2457 
2458     // Print the actual field value.
2459     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2460 
2461     // Check if padding is needed and insert one or more 0s.
2462     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2463     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2464                         - Layout->getElementOffset(i)) - FieldSize;
2465     SizeSoFar += FieldSize + PadSize;
2466 
2467     // Insert padding - this may include padding to increase the size of the
2468     // current field up to the ABI size (if the struct is not packed) as well
2469     // as padding to ensure that the next field starts at the right offset.
2470     AP.OutStreamer->EmitZeros(PadSize);
2471   }
2472   assert(SizeSoFar == Layout->getSizeInBytes() &&
2473          "Layout of constant struct may be incorrect!");
2474 }
2475 
2476 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2477   APInt API = APF.bitcastToAPInt();
2478 
2479   // First print a comment with what we think the original floating-point value
2480   // should have been.
2481   if (AP.isVerbose()) {
2482     SmallString<8> StrVal;
2483     APF.toString(StrVal);
2484 
2485     if (ET)
2486       ET->print(AP.OutStreamer->GetCommentOS());
2487     else
2488       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2489     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2490   }
2491 
2492   // Now iterate through the APInt chunks, emitting them in endian-correct
2493   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2494   // floats).
2495   unsigned NumBytes = API.getBitWidth() / 8;
2496   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2497   const uint64_t *p = API.getRawData();
2498 
2499   // PPC's long double has odd notions of endianness compared to how LLVM
2500   // handles it: p[0] goes first for *big* endian on PPC.
2501   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2502     int Chunk = API.getNumWords() - 1;
2503 
2504     if (TrailingBytes)
2505       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2506 
2507     for (; Chunk >= 0; --Chunk)
2508       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2509   } else {
2510     unsigned Chunk;
2511     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2512       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2513 
2514     if (TrailingBytes)
2515       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2516   }
2517 
2518   // Emit the tail padding for the long double.
2519   const DataLayout &DL = AP.getDataLayout();
2520   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2521 }
2522 
2523 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2524   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2525 }
2526 
2527 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2528   const DataLayout &DL = AP.getDataLayout();
2529   unsigned BitWidth = CI->getBitWidth();
2530 
2531   // Copy the value as we may massage the layout for constants whose bit width
2532   // is not a multiple of 64-bits.
2533   APInt Realigned(CI->getValue());
2534   uint64_t ExtraBits = 0;
2535   unsigned ExtraBitsSize = BitWidth & 63;
2536 
2537   if (ExtraBitsSize) {
2538     // The bit width of the data is not a multiple of 64-bits.
2539     // The extra bits are expected to be at the end of the chunk of the memory.
2540     // Little endian:
2541     // * Nothing to be done, just record the extra bits to emit.
2542     // Big endian:
2543     // * Record the extra bits to emit.
2544     // * Realign the raw data to emit the chunks of 64-bits.
2545     if (DL.isBigEndian()) {
2546       // Basically the structure of the raw data is a chunk of 64-bits cells:
2547       //    0        1         BitWidth / 64
2548       // [chunk1][chunk2] ... [chunkN].
2549       // The most significant chunk is chunkN and it should be emitted first.
2550       // However, due to the alignment issue chunkN contains useless bits.
2551       // Realign the chunks so that they contain only useless information:
2552       // ExtraBits     0       1       (BitWidth / 64) - 1
2553       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2554       ExtraBits = Realigned.getRawData()[0] &
2555         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2556       Realigned.lshrInPlace(ExtraBitsSize);
2557     } else
2558       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2559   }
2560 
2561   // We don't expect assemblers to support integer data directives
2562   // for more than 64 bits, so we emit the data in at most 64-bit
2563   // quantities at a time.
2564   const uint64_t *RawData = Realigned.getRawData();
2565   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2566     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2567     AP.OutStreamer->EmitIntValue(Val, 8);
2568   }
2569 
2570   if (ExtraBitsSize) {
2571     // Emit the extra bits after the 64-bits chunks.
2572 
2573     // Emit a directive that fills the expected size.
2574     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2575     Size -= (BitWidth / 64) * 8;
2576     assert(Size && Size * 8 >= ExtraBitsSize &&
2577            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2578            == ExtraBits && "Directive too small for extra bits.");
2579     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2580   }
2581 }
2582 
2583 /// Transform a not absolute MCExpr containing a reference to a GOT
2584 /// equivalent global, by a target specific GOT pc relative access to the
2585 /// final symbol.
2586 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2587                                          const Constant *BaseCst,
2588                                          uint64_t Offset) {
2589   // The global @foo below illustrates a global that uses a got equivalent.
2590   //
2591   //  @bar = global i32 42
2592   //  @gotequiv = private unnamed_addr constant i32* @bar
2593   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2594   //                             i64 ptrtoint (i32* @foo to i64))
2595   //                        to i32)
2596   //
2597   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2598   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2599   // form:
2600   //
2601   //  foo = cstexpr, where
2602   //    cstexpr := <gotequiv> - "." + <cst>
2603   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2604   //
2605   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2606   //
2607   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2608   //    gotpcrelcst := <offset from @foo base> + <cst>
2609   MCValue MV;
2610   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2611     return;
2612   const MCSymbolRefExpr *SymA = MV.getSymA();
2613   if (!SymA)
2614     return;
2615 
2616   // Check that GOT equivalent symbol is cached.
2617   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2618   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2619     return;
2620 
2621   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2622   if (!BaseGV)
2623     return;
2624 
2625   // Check for a valid base symbol
2626   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2627   const MCSymbolRefExpr *SymB = MV.getSymB();
2628 
2629   if (!SymB || BaseSym != &SymB->getSymbol())
2630     return;
2631 
2632   // Make sure to match:
2633   //
2634   //    gotpcrelcst := <offset from @foo base> + <cst>
2635   //
2636   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2637   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2638   // if the target knows how to encode it.
2639   int64_t GOTPCRelCst = Offset + MV.getConstant();
2640   if (GOTPCRelCst < 0)
2641     return;
2642   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2643     return;
2644 
2645   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2646   //
2647   //  bar:
2648   //    .long 42
2649   //  gotequiv:
2650   //    .quad bar
2651   //  foo:
2652   //    .long gotequiv - "." + <cst>
2653   //
2654   // is replaced by the target specific equivalent to:
2655   //
2656   //  bar:
2657   //    .long 42
2658   //  foo:
2659   //    .long bar@GOTPCREL+<gotpcrelcst>
2660   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2661   const GlobalVariable *GV = Result.first;
2662   int NumUses = (int)Result.second;
2663   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2664   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2665   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2666       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2667 
2668   // Update GOT equivalent usage information
2669   --NumUses;
2670   if (NumUses >= 0)
2671     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2672 }
2673 
2674 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2675                                    AsmPrinter &AP, const Constant *BaseCV,
2676                                    uint64_t Offset) {
2677   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2678 
2679   // Globals with sub-elements such as combinations of arrays and structs
2680   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2681   // constant symbol base and the current position with BaseCV and Offset.
2682   if (!BaseCV && CV->hasOneUse())
2683     BaseCV = dyn_cast<Constant>(CV->user_back());
2684 
2685   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2686     return AP.OutStreamer->EmitZeros(Size);
2687 
2688   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2689     switch (Size) {
2690     case 1:
2691     case 2:
2692     case 4:
2693     case 8:
2694       if (AP.isVerbose())
2695         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2696                                                  CI->getZExtValue());
2697       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2698       return;
2699     default:
2700       emitGlobalConstantLargeInt(CI, AP);
2701       return;
2702     }
2703   }
2704 
2705   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2706     return emitGlobalConstantFP(CFP, AP);
2707 
2708   if (isa<ConstantPointerNull>(CV)) {
2709     AP.OutStreamer->EmitIntValue(0, Size);
2710     return;
2711   }
2712 
2713   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2714     return emitGlobalConstantDataSequential(DL, CDS, AP);
2715 
2716   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2717     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2718 
2719   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2720     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2721 
2722   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2723     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2724     // vectors).
2725     if (CE->getOpcode() == Instruction::BitCast)
2726       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2727 
2728     if (Size > 8) {
2729       // If the constant expression's size is greater than 64-bits, then we have
2730       // to emit the value in chunks. Try to constant fold the value and emit it
2731       // that way.
2732       Constant *New = ConstantFoldConstant(CE, DL);
2733       if (New && New != CE)
2734         return emitGlobalConstantImpl(DL, New, AP);
2735     }
2736   }
2737 
2738   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2739     return emitGlobalConstantVector(DL, V, AP);
2740 
2741   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2742   // thread the streamer with EmitValue.
2743   const MCExpr *ME = AP.lowerConstant(CV);
2744 
2745   // Since lowerConstant already folded and got rid of all IR pointer and
2746   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2747   // directly.
2748   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2749     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2750 
2751   AP.OutStreamer->EmitValue(ME, Size);
2752 }
2753 
2754 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2755 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2756   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2757   if (Size)
2758     emitGlobalConstantImpl(DL, CV, *this);
2759   else if (MAI->hasSubsectionsViaSymbols()) {
2760     // If the global has zero size, emit a single byte so that two labels don't
2761     // look like they are at the same location.
2762     OutStreamer->EmitIntValue(0, 1);
2763   }
2764 }
2765 
2766 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2767   // Target doesn't support this yet!
2768   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2769 }
2770 
2771 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2772   if (Offset > 0)
2773     OS << '+' << Offset;
2774   else if (Offset < 0)
2775     OS << Offset;
2776 }
2777 
2778 //===----------------------------------------------------------------------===//
2779 // Symbol Lowering Routines.
2780 //===----------------------------------------------------------------------===//
2781 
2782 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2783   return OutContext.createTempSymbol(Name, true);
2784 }
2785 
2786 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2787   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2788 }
2789 
2790 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2791   return MMI->getAddrLabelSymbol(BB);
2792 }
2793 
2794 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2795 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2796   if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) {
2797     const MachineConstantPoolEntry &CPE =
2798         MF->getConstantPool()->getConstants()[CPID];
2799     if (!CPE.isMachineConstantPoolEntry()) {
2800       const DataLayout &DL = MF->getDataLayout();
2801       SectionKind Kind = CPE.getSectionKind(&DL);
2802       const Constant *C = CPE.Val.ConstVal;
2803       unsigned Align = CPE.Alignment;
2804       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2805               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2806         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2807           if (Sym->isUndefined())
2808             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2809           return Sym;
2810         }
2811       }
2812     }
2813   }
2814 
2815   const DataLayout &DL = getDataLayout();
2816   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2817                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2818                                       Twine(CPID));
2819 }
2820 
2821 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2822 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2823   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2824 }
2825 
2826 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2827 /// FIXME: privatize to AsmPrinter.
2828 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2829   const DataLayout &DL = getDataLayout();
2830   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2831                                       Twine(getFunctionNumber()) + "_" +
2832                                       Twine(UID) + "_set_" + Twine(MBBID));
2833 }
2834 
2835 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2836                                                    StringRef Suffix) const {
2837   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2838 }
2839 
2840 /// Return the MCSymbol for the specified ExternalSymbol.
2841 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2842   SmallString<60> NameStr;
2843   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2844   return OutContext.getOrCreateSymbol(NameStr);
2845 }
2846 
2847 /// PrintParentLoopComment - Print comments about parent loops of this one.
2848 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2849                                    unsigned FunctionNumber) {
2850   if (!Loop) return;
2851   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2852   OS.indent(Loop->getLoopDepth()*2)
2853     << "Parent Loop BB" << FunctionNumber << "_"
2854     << Loop->getHeader()->getNumber()
2855     << " Depth=" << Loop->getLoopDepth() << '\n';
2856 }
2857 
2858 /// PrintChildLoopComment - Print comments about child loops within
2859 /// the loop for this basic block, with nesting.
2860 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2861                                   unsigned FunctionNumber) {
2862   // Add child loop information
2863   for (const MachineLoop *CL : *Loop) {
2864     OS.indent(CL->getLoopDepth()*2)
2865       << "Child Loop BB" << FunctionNumber << "_"
2866       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2867       << '\n';
2868     PrintChildLoopComment(OS, CL, FunctionNumber);
2869   }
2870 }
2871 
2872 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2873 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2874                                        const MachineLoopInfo *LI,
2875                                        const AsmPrinter &AP) {
2876   // Add loop depth information
2877   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2878   if (!Loop) return;
2879 
2880   MachineBasicBlock *Header = Loop->getHeader();
2881   assert(Header && "No header for loop");
2882 
2883   // If this block is not a loop header, just print out what is the loop header
2884   // and return.
2885   if (Header != &MBB) {
2886     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2887                                Twine(AP.getFunctionNumber())+"_" +
2888                                Twine(Loop->getHeader()->getNumber())+
2889                                " Depth="+Twine(Loop->getLoopDepth()));
2890     return;
2891   }
2892 
2893   // Otherwise, it is a loop header.  Print out information about child and
2894   // parent loops.
2895   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2896 
2897   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2898 
2899   OS << "=>";
2900   OS.indent(Loop->getLoopDepth()*2-2);
2901 
2902   OS << "This ";
2903   if (Loop->empty())
2904     OS << "Inner ";
2905   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2906 
2907   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2908 }
2909 
2910 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2911                                          MCCodePaddingContext &Context) const {
2912   assert(MF != nullptr && "Machine function must be valid");
2913   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2914                             !MF->getFunction().hasOptSize() &&
2915                             TM.getOptLevel() != CodeGenOpt::None;
2916   Context.IsBasicBlockReachableViaFallthrough =
2917       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2918       MBB.pred_end();
2919   Context.IsBasicBlockReachableViaBranch =
2920       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2921 }
2922 
2923 /// EmitBasicBlockStart - This method prints the label for the specified
2924 /// MachineBasicBlock, an alignment (if present) and a comment describing
2925 /// it if appropriate.
2926 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2927   // End the previous funclet and start a new one.
2928   if (MBB.isEHFuncletEntry()) {
2929     for (const HandlerInfo &HI : Handlers) {
2930       HI.Handler->endFunclet();
2931       HI.Handler->beginFunclet(MBB);
2932     }
2933   }
2934 
2935   // Emit an alignment directive for this block, if needed.
2936   if (unsigned Align = MBB.getAlignment())
2937     EmitAlignment(Align);
2938   MCCodePaddingContext Context;
2939   setupCodePaddingContext(MBB, Context);
2940   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2941 
2942   // If the block has its address taken, emit any labels that were used to
2943   // reference the block.  It is possible that there is more than one label
2944   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2945   // the references were generated.
2946   if (MBB.hasAddressTaken()) {
2947     const BasicBlock *BB = MBB.getBasicBlock();
2948     if (isVerbose())
2949       OutStreamer->AddComment("Block address taken");
2950 
2951     // MBBs can have their address taken as part of CodeGen without having
2952     // their corresponding BB's address taken in IR
2953     if (BB->hasAddressTaken())
2954       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2955         OutStreamer->EmitLabel(Sym);
2956   }
2957 
2958   // Print some verbose block comments.
2959   if (isVerbose()) {
2960     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2961       if (BB->hasName()) {
2962         BB->printAsOperand(OutStreamer->GetCommentOS(),
2963                            /*PrintType=*/false, BB->getModule());
2964         OutStreamer->GetCommentOS() << '\n';
2965       }
2966     }
2967 
2968     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2969     emitBasicBlockLoopComments(MBB, MLI, *this);
2970   }
2971 
2972   // Print the main label for the block.
2973   if (MBB.pred_empty() ||
2974       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
2975        !MBB.hasLabelMustBeEmitted())) {
2976     if (isVerbose()) {
2977       // NOTE: Want this comment at start of line, don't emit with AddComment.
2978       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2979                                   false);
2980     }
2981   } else {
2982     if (isVerbose() && MBB.hasLabelMustBeEmitted())
2983       OutStreamer->AddComment("Label of block must be emitted");
2984     OutStreamer->EmitLabel(MBB.getSymbol());
2985   }
2986 }
2987 
2988 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2989   MCCodePaddingContext Context;
2990   setupCodePaddingContext(MBB, Context);
2991   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2992 }
2993 
2994 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2995                                 bool IsDefinition) const {
2996   MCSymbolAttr Attr = MCSA_Invalid;
2997 
2998   switch (Visibility) {
2999   default: break;
3000   case GlobalValue::HiddenVisibility:
3001     if (IsDefinition)
3002       Attr = MAI->getHiddenVisibilityAttr();
3003     else
3004       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3005     break;
3006   case GlobalValue::ProtectedVisibility:
3007     Attr = MAI->getProtectedVisibilityAttr();
3008     break;
3009   }
3010 
3011   if (Attr != MCSA_Invalid)
3012     OutStreamer->EmitSymbolAttribute(Sym, Attr);
3013 }
3014 
3015 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3016 /// exactly one predecessor and the control transfer mechanism between
3017 /// the predecessor and this block is a fall-through.
3018 bool AsmPrinter::
3019 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3020   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3021   // then nothing falls through to it.
3022   if (MBB->isEHPad() || MBB->pred_empty())
3023     return false;
3024 
3025   // If there isn't exactly one predecessor, it can't be a fall through.
3026   if (MBB->pred_size() > 1)
3027     return false;
3028 
3029   // The predecessor has to be immediately before this block.
3030   MachineBasicBlock *Pred = *MBB->pred_begin();
3031   if (!Pred->isLayoutSuccessor(MBB))
3032     return false;
3033 
3034   // If the block is completely empty, then it definitely does fall through.
3035   if (Pred->empty())
3036     return true;
3037 
3038   // Check the terminators in the previous blocks
3039   for (const auto &MI : Pred->terminators()) {
3040     // If it is not a simple branch, we are in a table somewhere.
3041     if (!MI.isBranch() || MI.isIndirectBranch())
3042       return false;
3043 
3044     // If we are the operands of one of the branches, this is not a fall
3045     // through. Note that targets with delay slots will usually bundle
3046     // terminators with the delay slot instruction.
3047     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3048       if (OP->isJTI())
3049         return false;
3050       if (OP->isMBB() && OP->getMBB() == MBB)
3051         return false;
3052     }
3053   }
3054 
3055   return true;
3056 }
3057 
3058 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3059   if (!S.usesMetadata())
3060     return nullptr;
3061 
3062   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3063   gcp_map_type::iterator GCPI = GCMap.find(&S);
3064   if (GCPI != GCMap.end())
3065     return GCPI->second.get();
3066 
3067   auto Name = S.getName();
3068 
3069   for (GCMetadataPrinterRegistry::iterator
3070          I = GCMetadataPrinterRegistry::begin(),
3071          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3072     if (Name == I->getName()) {
3073       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3074       GMP->S = &S;
3075       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3076       return IterBool.first->second.get();
3077     }
3078 
3079   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3080 }
3081 
3082 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3083   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3084   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3085   bool NeedsDefault = false;
3086   if (MI->begin() == MI->end())
3087     // No GC strategy, use the default format.
3088     NeedsDefault = true;
3089   else
3090     for (auto &I : *MI) {
3091       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3092         if (MP->emitStackMaps(SM, *this))
3093           continue;
3094       // The strategy doesn't have printer or doesn't emit custom stack maps.
3095       // Use the default format.
3096       NeedsDefault = true;
3097     }
3098 
3099   if (NeedsDefault)
3100     SM.serializeToStackMapSection();
3101 }
3102 
3103 /// Pin vtable to this file.
3104 AsmPrinterHandler::~AsmPrinterHandler() = default;
3105 
3106 void AsmPrinterHandler::markFunctionEnd() {}
3107 
3108 // In the binary's "xray_instr_map" section, an array of these function entries
3109 // describes each instrumentation point.  When XRay patches your code, the index
3110 // into this table will be given to your handler as a patch point identifier.
3111 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3112                                          const MCSymbol *CurrentFnSym) const {
3113   Out->EmitSymbolValue(Sled, Bytes);
3114   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3115   auto Kind8 = static_cast<uint8_t>(Kind);
3116   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3117   Out->EmitBinaryData(
3118       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3119   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3120   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3121   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3122   Out->EmitZeros(Padding);
3123 }
3124 
3125 void AsmPrinter::emitXRayTable() {
3126   if (Sleds.empty())
3127     return;
3128 
3129   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3130   const Function &F = MF->getFunction();
3131   MCSection *InstMap = nullptr;
3132   MCSection *FnSledIndex = nullptr;
3133   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3134     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3135     assert(Associated != nullptr);
3136     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3137     std::string GroupName;
3138     if (F.hasComdat()) {
3139       Flags |= ELF::SHF_GROUP;
3140       GroupName = F.getComdat()->getName();
3141     }
3142 
3143     auto UniqueID = ++XRayFnUniqueID;
3144     InstMap =
3145         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3146                                  GroupName, UniqueID, Associated);
3147     FnSledIndex =
3148         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3149                                  GroupName, UniqueID, Associated);
3150   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3151     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3152                                          SectionKind::getReadOnlyWithRel());
3153     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3154                                              SectionKind::getReadOnlyWithRel());
3155   } else {
3156     llvm_unreachable("Unsupported target");
3157   }
3158 
3159   auto WordSizeBytes = MAI->getCodePointerSize();
3160 
3161   // Now we switch to the instrumentation map section. Because this is done
3162   // per-function, we are able to create an index entry that will represent the
3163   // range of sleds associated with a function.
3164   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3165   OutStreamer->SwitchSection(InstMap);
3166   OutStreamer->EmitLabel(SledsStart);
3167   for (const auto &Sled : Sleds)
3168     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3169   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3170   OutStreamer->EmitLabel(SledsEnd);
3171 
3172   // We then emit a single entry in the index per function. We use the symbols
3173   // that bound the instrumentation map as the range for a specific function.
3174   // Each entry here will be 2 * word size aligned, as we're writing down two
3175   // pointers. This should work for both 32-bit and 64-bit platforms.
3176   OutStreamer->SwitchSection(FnSledIndex);
3177   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3178   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3179   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3180   OutStreamer->SwitchSection(PrevSection);
3181   Sleds.clear();
3182 }
3183 
3184 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3185                             SledKind Kind, uint8_t Version) {
3186   const Function &F = MI.getMF()->getFunction();
3187   auto Attr = F.getFnAttribute("function-instrument");
3188   bool LogArgs = F.hasFnAttribute("xray-log-args");
3189   bool AlwaysInstrument =
3190     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3191   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3192     Kind = SledKind::LOG_ARGS_ENTER;
3193   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3194                                        AlwaysInstrument, &F, Version});
3195 }
3196 
3197 uint16_t AsmPrinter::getDwarfVersion() const {
3198   return OutStreamer->getContext().getDwarfVersion();
3199 }
3200 
3201 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3202   OutStreamer->getContext().setDwarfVersion(Version);
3203 }
3204