1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/RemarkStreamer.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCStreamer.h" 95 #include "llvm/MC/MCSubtargetInfo.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/MC/MCSymbolELF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/Format.h" 108 #include "llvm/Support/MathExtras.h" 109 #include "llvm/Support/Path.h" 110 #include "llvm/Support/TargetRegistry.h" 111 #include "llvm/Support/Timer.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetLoweringObjectFile.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cinttypes> 119 #include <cstdint> 120 #include <iterator> 121 #include <limits> 122 #include <memory> 123 #include <string> 124 #include <utility> 125 #include <vector> 126 127 using namespace llvm; 128 129 #define DEBUG_TYPE "asm-printer" 130 131 static const char *const DWARFGroupName = "dwarf"; 132 static const char *const DWARFGroupDescription = "DWARF Emission"; 133 static const char *const DbgTimerName = "emit"; 134 static const char *const DbgTimerDescription = "Debug Info Emission"; 135 static const char *const EHTimerName = "write_exception"; 136 static const char *const EHTimerDescription = "DWARF Exception Writer"; 137 static const char *const CFGuardName = "Control Flow Guard"; 138 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 139 static const char *const CodeViewLineTablesGroupName = "linetables"; 140 static const char *const CodeViewLineTablesGroupDescription = 141 "CodeView Line Tables"; 142 143 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 144 145 static cl::opt<bool> EnableRemarksSection( 146 "remarks-section", 147 cl::desc("Emit a section containing remark diagnostics metadata"), 148 cl::init(false)); 149 150 char AsmPrinter::ID = 0; 151 152 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 153 154 static gcp_map_type &getGCMap(void *&P) { 155 if (!P) 156 P = new gcp_map_type(); 157 return *(gcp_map_type*)P; 158 } 159 160 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 161 /// value in log2 form. This rounds up to the preferred alignment if possible 162 /// and legal. 163 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 164 unsigned InBits = 0) { 165 unsigned NumBits = 0; 166 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 167 NumBits = DL.getPreferredAlignmentLog(GVar); 168 169 // If InBits is specified, round it to it. 170 if (InBits > NumBits) 171 NumBits = InBits; 172 173 // If the GV has a specified alignment, take it into account. 174 if (GV->getAlignment() == 0) 175 return NumBits; 176 177 unsigned GVAlign = Log2_32(GV->getAlignment()); 178 179 // If the GVAlign is larger than NumBits, or if we are required to obey 180 // NumBits because the GV has an assigned section, obey it. 181 if (GVAlign > NumBits || GV->hasSection()) 182 NumBits = GVAlign; 183 return NumBits; 184 } 185 186 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 187 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 188 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 189 VerboseAsm = OutStreamer->isVerboseAsm(); 190 } 191 192 AsmPrinter::~AsmPrinter() { 193 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 194 195 if (GCMetadataPrinters) { 196 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 197 198 delete &GCMap; 199 GCMetadataPrinters = nullptr; 200 } 201 } 202 203 bool AsmPrinter::isPositionIndependent() const { 204 return TM.isPositionIndependent(); 205 } 206 207 /// getFunctionNumber - Return a unique ID for the current function. 208 unsigned AsmPrinter::getFunctionNumber() const { 209 return MF->getFunctionNumber(); 210 } 211 212 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 213 return *TM.getObjFileLowering(); 214 } 215 216 const DataLayout &AsmPrinter::getDataLayout() const { 217 return MMI->getModule()->getDataLayout(); 218 } 219 220 // Do not use the cached DataLayout because some client use it without a Module 221 // (dsymutil, llvm-dwarfdump). 222 unsigned AsmPrinter::getPointerSize() const { 223 return TM.getPointerSize(0); // FIXME: Default address space 224 } 225 226 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 227 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 228 return MF->getSubtarget<MCSubtargetInfo>(); 229 } 230 231 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 232 S.EmitInstruction(Inst, getSubtargetInfo()); 233 } 234 235 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 236 assert(DD && "Dwarf debug file is not defined."); 237 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 238 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 239 } 240 241 /// getCurrentSection() - Return the current section we are emitting to. 242 const MCSection *AsmPrinter::getCurrentSection() const { 243 return OutStreamer->getCurrentSectionOnly(); 244 } 245 246 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 247 AU.setPreservesAll(); 248 MachineFunctionPass::getAnalysisUsage(AU); 249 AU.addRequired<MachineModuleInfo>(); 250 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 251 AU.addRequired<GCModuleInfo>(); 252 } 253 254 bool AsmPrinter::doInitialization(Module &M) { 255 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 256 257 // Initialize TargetLoweringObjectFile. 258 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 259 .Initialize(OutContext, TM); 260 261 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 262 .getModuleMetadata(M); 263 264 OutStreamer->InitSections(false); 265 266 // Emit the version-min deployment target directive if needed. 267 // 268 // FIXME: If we end up with a collection of these sorts of Darwin-specific 269 // or ELF-specific things, it may make sense to have a platform helper class 270 // that will work with the target helper class. For now keep it here, as the 271 // alternative is duplicated code in each of the target asm printers that 272 // use the directive, where it would need the same conditionalization 273 // anyway. 274 const Triple &Target = TM.getTargetTriple(); 275 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 276 277 // Allow the target to emit any magic that it wants at the start of the file. 278 EmitStartOfAsmFile(M); 279 280 // Very minimal debug info. It is ignored if we emit actual debug info. If we 281 // don't, this at least helps the user find where a global came from. 282 if (MAI->hasSingleParameterDotFile()) { 283 // .file "foo.c" 284 OutStreamer->EmitFileDirective( 285 llvm::sys::path::filename(M.getSourceFileName())); 286 } 287 288 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 289 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 290 for (auto &I : *MI) 291 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 292 MP->beginAssembly(M, *MI, *this); 293 294 // Emit module-level inline asm if it exists. 295 if (!M.getModuleInlineAsm().empty()) { 296 // We're at the module level. Construct MCSubtarget from the default CPU 297 // and target triple. 298 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 299 TM.getTargetTriple().str(), TM.getTargetCPU(), 300 TM.getTargetFeatureString())); 301 OutStreamer->AddComment("Start of file scope inline assembly"); 302 OutStreamer->AddBlankLine(); 303 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 304 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 305 OutStreamer->AddComment("End of file scope inline assembly"); 306 OutStreamer->AddBlankLine(); 307 } 308 309 if (MAI->doesSupportDebugInformation()) { 310 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 311 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 312 Handlers.emplace_back(llvm::make_unique<CodeViewDebug>(this), 313 DbgTimerName, DbgTimerDescription, 314 CodeViewLineTablesGroupName, 315 CodeViewLineTablesGroupDescription); 316 } 317 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 318 DD = new DwarfDebug(this, &M); 319 DD->beginModule(); 320 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 321 DbgTimerDescription, DWARFGroupName, 322 DWARFGroupDescription); 323 } 324 } 325 326 switch (MAI->getExceptionHandlingType()) { 327 case ExceptionHandling::SjLj: 328 case ExceptionHandling::DwarfCFI: 329 case ExceptionHandling::ARM: 330 isCFIMoveForDebugging = true; 331 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 332 break; 333 for (auto &F: M.getFunctionList()) { 334 // If the module contains any function with unwind data, 335 // .eh_frame has to be emitted. 336 // Ignore functions that won't get emitted. 337 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 338 isCFIMoveForDebugging = false; 339 break; 340 } 341 } 342 break; 343 default: 344 isCFIMoveForDebugging = false; 345 break; 346 } 347 348 EHStreamer *ES = nullptr; 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::None: 351 break; 352 case ExceptionHandling::SjLj: 353 case ExceptionHandling::DwarfCFI: 354 ES = new DwarfCFIException(this); 355 break; 356 case ExceptionHandling::ARM: 357 ES = new ARMException(this); 358 break; 359 case ExceptionHandling::WinEH: 360 switch (MAI->getWinEHEncodingType()) { 361 default: llvm_unreachable("unsupported unwinding information encoding"); 362 case WinEH::EncodingType::Invalid: 363 break; 364 case WinEH::EncodingType::X86: 365 case WinEH::EncodingType::Itanium: 366 ES = new WinException(this); 367 break; 368 } 369 break; 370 case ExceptionHandling::Wasm: 371 ES = new WasmException(this); 372 break; 373 } 374 if (ES) 375 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 376 EHTimerDescription, DWARFGroupName, 377 DWARFGroupDescription); 378 379 if (mdconst::extract_or_null<ConstantInt>( 380 MMI->getModule()->getModuleFlag("cfguardtable"))) 381 Handlers.emplace_back(llvm::make_unique<WinCFGuard>(this), CFGuardName, 382 CFGuardDescription, DWARFGroupName, 383 DWARFGroupDescription); 384 385 return false; 386 } 387 388 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 389 if (!MAI.hasWeakDefCanBeHiddenDirective()) 390 return false; 391 392 return GV->canBeOmittedFromSymbolTable(); 393 } 394 395 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 396 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 397 switch (Linkage) { 398 case GlobalValue::CommonLinkage: 399 case GlobalValue::LinkOnceAnyLinkage: 400 case GlobalValue::LinkOnceODRLinkage: 401 case GlobalValue::WeakAnyLinkage: 402 case GlobalValue::WeakODRLinkage: 403 if (MAI->hasWeakDefDirective()) { 404 // .globl _foo 405 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 406 407 if (!canBeHidden(GV, *MAI)) 408 // .weak_definition _foo 409 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 410 else 411 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 412 } else if (MAI->hasLinkOnceDirective()) { 413 // .globl _foo 414 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 415 //NOTE: linkonce is handled by the section the symbol was assigned to. 416 } else { 417 // .weak _foo 418 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 419 } 420 return; 421 case GlobalValue::ExternalLinkage: 422 // If external, declare as a global symbol: .globl _foo 423 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 424 return; 425 case GlobalValue::PrivateLinkage: 426 case GlobalValue::InternalLinkage: 427 return; 428 case GlobalValue::AppendingLinkage: 429 case GlobalValue::AvailableExternallyLinkage: 430 case GlobalValue::ExternalWeakLinkage: 431 llvm_unreachable("Should never emit this"); 432 } 433 llvm_unreachable("Unknown linkage type!"); 434 } 435 436 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 437 const GlobalValue *GV) const { 438 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 439 } 440 441 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 442 return TM.getSymbol(GV); 443 } 444 445 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 446 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 447 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 448 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 449 "No emulated TLS variables in the common section"); 450 451 // Never emit TLS variable xyz in emulated TLS model. 452 // The initialization value is in __emutls_t.xyz instead of xyz. 453 if (IsEmuTLSVar) 454 return; 455 456 if (GV->hasInitializer()) { 457 // Check to see if this is a special global used by LLVM, if so, emit it. 458 if (EmitSpecialLLVMGlobal(GV)) 459 return; 460 461 // Skip the emission of global equivalents. The symbol can be emitted later 462 // on by emitGlobalGOTEquivs in case it turns out to be needed. 463 if (GlobalGOTEquivs.count(getSymbol(GV))) 464 return; 465 466 if (isVerbose()) { 467 // When printing the control variable __emutls_v.*, 468 // we don't need to print the original TLS variable name. 469 GV->printAsOperand(OutStreamer->GetCommentOS(), 470 /*PrintType=*/false, GV->getParent()); 471 OutStreamer->GetCommentOS() << '\n'; 472 } 473 } 474 475 MCSymbol *GVSym = getSymbol(GV); 476 MCSymbol *EmittedSym = GVSym; 477 478 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 479 // attributes. 480 // GV's or GVSym's attributes will be used for the EmittedSym. 481 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 482 483 if (!GV->hasInitializer()) // External globals require no extra code. 484 return; 485 486 GVSym->redefineIfPossible(); 487 if (GVSym->isDefined() || GVSym->isVariable()) 488 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 489 "' is already defined"); 490 491 if (MAI->hasDotTypeDotSizeDirective()) 492 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 493 494 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 495 496 const DataLayout &DL = GV->getParent()->getDataLayout(); 497 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 498 499 // If the alignment is specified, we *must* obey it. Overaligning a global 500 // with a specified alignment is a prompt way to break globals emitted to 501 // sections and expected to be contiguous (e.g. ObjC metadata). 502 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 503 504 for (const HandlerInfo &HI : Handlers) { 505 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 506 HI.TimerGroupName, HI.TimerGroupDescription, 507 TimePassesIsEnabled); 508 HI.Handler->setSymbolSize(GVSym, Size); 509 } 510 511 // Handle common symbols 512 if (GVKind.isCommon()) { 513 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 514 unsigned Align = 1 << AlignLog; 515 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 516 Align = 0; 517 518 // .comm _foo, 42, 4 519 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 520 return; 521 } 522 523 // Determine to which section this global should be emitted. 524 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 525 526 // If we have a bss global going to a section that supports the 527 // zerofill directive, do so here. 528 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 529 TheSection->isVirtualSection()) { 530 if (Size == 0) 531 Size = 1; // zerofill of 0 bytes is undefined. 532 unsigned Align = 1 << AlignLog; 533 EmitLinkage(GV, GVSym); 534 // .zerofill __DATA, __bss, _foo, 400, 5 535 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 536 return; 537 } 538 539 // If this is a BSS local symbol and we are emitting in the BSS 540 // section use .lcomm/.comm directive. 541 if (GVKind.isBSSLocal() && 542 getObjFileLowering().getBSSSection() == TheSection) { 543 if (Size == 0) 544 Size = 1; // .comm Foo, 0 is undefined, avoid it. 545 unsigned Align = 1 << AlignLog; 546 547 // Use .lcomm only if it supports user-specified alignment. 548 // Otherwise, while it would still be correct to use .lcomm in some 549 // cases (e.g. when Align == 1), the external assembler might enfore 550 // some -unknown- default alignment behavior, which could cause 551 // spurious differences between external and integrated assembler. 552 // Prefer to simply fall back to .local / .comm in this case. 553 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 554 // .lcomm _foo, 42 555 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 556 return; 557 } 558 559 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 560 Align = 0; 561 562 // .local _foo 563 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 564 // .comm _foo, 42, 4 565 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 566 return; 567 } 568 569 // Handle thread local data for mach-o which requires us to output an 570 // additional structure of data and mangle the original symbol so that we 571 // can reference it later. 572 // 573 // TODO: This should become an "emit thread local global" method on TLOF. 574 // All of this macho specific stuff should be sunk down into TLOFMachO and 575 // stuff like "TLSExtraDataSection" should no longer be part of the parent 576 // TLOF class. This will also make it more obvious that stuff like 577 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 578 // specific code. 579 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 580 // Emit the .tbss symbol 581 MCSymbol *MangSym = 582 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 583 584 if (GVKind.isThreadBSS()) { 585 TheSection = getObjFileLowering().getTLSBSSSection(); 586 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 587 } else if (GVKind.isThreadData()) { 588 OutStreamer->SwitchSection(TheSection); 589 590 EmitAlignment(AlignLog, GV); 591 OutStreamer->EmitLabel(MangSym); 592 593 EmitGlobalConstant(GV->getParent()->getDataLayout(), 594 GV->getInitializer()); 595 } 596 597 OutStreamer->AddBlankLine(); 598 599 // Emit the variable struct for the runtime. 600 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 601 602 OutStreamer->SwitchSection(TLVSect); 603 // Emit the linkage here. 604 EmitLinkage(GV, GVSym); 605 OutStreamer->EmitLabel(GVSym); 606 607 // Three pointers in size: 608 // - __tlv_bootstrap - used to make sure support exists 609 // - spare pointer, used when mapped by the runtime 610 // - pointer to mangled symbol above with initializer 611 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 612 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 613 PtrSize); 614 OutStreamer->EmitIntValue(0, PtrSize); 615 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 616 617 OutStreamer->AddBlankLine(); 618 return; 619 } 620 621 MCSymbol *EmittedInitSym = GVSym; 622 623 OutStreamer->SwitchSection(TheSection); 624 625 EmitLinkage(GV, EmittedInitSym); 626 EmitAlignment(AlignLog, GV); 627 628 OutStreamer->EmitLabel(EmittedInitSym); 629 630 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 631 632 if (MAI->hasDotTypeDotSizeDirective()) 633 // .size foo, 42 634 OutStreamer->emitELFSize(EmittedInitSym, 635 MCConstantExpr::create(Size, OutContext)); 636 637 OutStreamer->AddBlankLine(); 638 } 639 640 /// Emit the directive and value for debug thread local expression 641 /// 642 /// \p Value - The value to emit. 643 /// \p Size - The size of the integer (in bytes) to emit. 644 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 645 OutStreamer->EmitValue(Value, Size); 646 } 647 648 /// EmitFunctionHeader - This method emits the header for the current 649 /// function. 650 void AsmPrinter::EmitFunctionHeader() { 651 const Function &F = MF->getFunction(); 652 653 if (isVerbose()) 654 OutStreamer->GetCommentOS() 655 << "-- Begin function " 656 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 657 658 // Print out constants referenced by the function 659 EmitConstantPool(); 660 661 // Print the 'header' of function. 662 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 663 EmitVisibility(CurrentFnSym, F.getVisibility()); 664 665 EmitLinkage(&F, CurrentFnSym); 666 if (MAI->hasFunctionAlignment()) 667 EmitAlignment(MF->getAlignment(), &F); 668 669 if (MAI->hasDotTypeDotSizeDirective()) 670 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 671 672 if (F.hasFnAttribute(Attribute::Cold)) 673 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 674 675 if (isVerbose()) { 676 F.printAsOperand(OutStreamer->GetCommentOS(), 677 /*PrintType=*/false, F.getParent()); 678 OutStreamer->GetCommentOS() << '\n'; 679 } 680 681 // Emit the prefix data. 682 if (F.hasPrefixData()) { 683 if (MAI->hasSubsectionsViaSymbols()) { 684 // Preserving prefix data on platforms which use subsections-via-symbols 685 // is a bit tricky. Here we introduce a symbol for the prefix data 686 // and use the .alt_entry attribute to mark the function's real entry point 687 // as an alternative entry point to the prefix-data symbol. 688 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 689 OutStreamer->EmitLabel(PrefixSym); 690 691 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 692 693 // Emit an .alt_entry directive for the actual function symbol. 694 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 695 } else { 696 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 697 } 698 } 699 700 // Emit the CurrentFnSym. This is a virtual function to allow targets to 701 // do their wild and crazy things as required. 702 EmitFunctionEntryLabel(); 703 704 // If the function had address-taken blocks that got deleted, then we have 705 // references to the dangling symbols. Emit them at the start of the function 706 // so that we don't get references to undefined symbols. 707 std::vector<MCSymbol*> DeadBlockSyms; 708 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 709 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 710 OutStreamer->AddComment("Address taken block that was later removed"); 711 OutStreamer->EmitLabel(DeadBlockSyms[i]); 712 } 713 714 if (CurrentFnBegin) { 715 if (MAI->useAssignmentForEHBegin()) { 716 MCSymbol *CurPos = OutContext.createTempSymbol(); 717 OutStreamer->EmitLabel(CurPos); 718 OutStreamer->EmitAssignment(CurrentFnBegin, 719 MCSymbolRefExpr::create(CurPos, OutContext)); 720 } else { 721 OutStreamer->EmitLabel(CurrentFnBegin); 722 } 723 } 724 725 // Emit pre-function debug and/or EH information. 726 for (const HandlerInfo &HI : Handlers) { 727 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 728 HI.TimerGroupDescription, TimePassesIsEnabled); 729 HI.Handler->beginFunction(MF); 730 } 731 732 // Emit the prologue data. 733 if (F.hasPrologueData()) 734 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 735 } 736 737 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 738 /// function. This can be overridden by targets as required to do custom stuff. 739 void AsmPrinter::EmitFunctionEntryLabel() { 740 CurrentFnSym->redefineIfPossible(); 741 742 // The function label could have already been emitted if two symbols end up 743 // conflicting due to asm renaming. Detect this and emit an error. 744 if (CurrentFnSym->isVariable()) 745 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 746 "' is a protected alias"); 747 if (CurrentFnSym->isDefined()) 748 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 749 "' label emitted multiple times to assembly file"); 750 751 return OutStreamer->EmitLabel(CurrentFnSym); 752 } 753 754 /// emitComments - Pretty-print comments for instructions. 755 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 756 const MachineFunction *MF = MI.getMF(); 757 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 758 759 // Check for spills and reloads 760 761 // We assume a single instruction only has a spill or reload, not 762 // both. 763 Optional<unsigned> Size; 764 if ((Size = MI.getRestoreSize(TII))) { 765 CommentOS << *Size << "-byte Reload\n"; 766 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 767 if (*Size) 768 CommentOS << *Size << "-byte Folded Reload\n"; 769 } else if ((Size = MI.getSpillSize(TII))) { 770 CommentOS << *Size << "-byte Spill\n"; 771 } else if ((Size = MI.getFoldedSpillSize(TII))) { 772 if (*Size) 773 CommentOS << *Size << "-byte Folded Spill\n"; 774 } 775 776 // Check for spill-induced copies 777 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 778 CommentOS << " Reload Reuse\n"; 779 } 780 781 /// emitImplicitDef - This method emits the specified machine instruction 782 /// that is an implicit def. 783 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 784 unsigned RegNo = MI->getOperand(0).getReg(); 785 786 SmallString<128> Str; 787 raw_svector_ostream OS(Str); 788 OS << "implicit-def: " 789 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 790 791 OutStreamer->AddComment(OS.str()); 792 OutStreamer->AddBlankLine(); 793 } 794 795 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 796 std::string Str; 797 raw_string_ostream OS(Str); 798 OS << "kill:"; 799 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 800 const MachineOperand &Op = MI->getOperand(i); 801 assert(Op.isReg() && "KILL instruction must have only register operands"); 802 OS << ' ' << (Op.isDef() ? "def " : "killed ") 803 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 804 } 805 AP.OutStreamer->AddComment(OS.str()); 806 AP.OutStreamer->AddBlankLine(); 807 } 808 809 /// emitDebugValueComment - This method handles the target-independent form 810 /// of DBG_VALUE, returning true if it was able to do so. A false return 811 /// means the target will need to handle MI in EmitInstruction. 812 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 813 // This code handles only the 4-operand target-independent form. 814 if (MI->getNumOperands() != 4) 815 return false; 816 817 SmallString<128> Str; 818 raw_svector_ostream OS(Str); 819 OS << "DEBUG_VALUE: "; 820 821 const DILocalVariable *V = MI->getDebugVariable(); 822 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 823 StringRef Name = SP->getName(); 824 if (!Name.empty()) 825 OS << Name << ":"; 826 } 827 OS << V->getName(); 828 OS << " <- "; 829 830 // The second operand is only an offset if it's an immediate. 831 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 832 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 833 const DIExpression *Expr = MI->getDebugExpression(); 834 if (Expr->getNumElements()) { 835 OS << '['; 836 bool NeedSep = false; 837 for (auto Op : Expr->expr_ops()) { 838 if (NeedSep) 839 OS << ", "; 840 else 841 NeedSep = true; 842 OS << dwarf::OperationEncodingString(Op.getOp()); 843 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 844 OS << ' ' << Op.getArg(I); 845 } 846 OS << "] "; 847 } 848 849 // Register or immediate value. Register 0 means undef. 850 if (MI->getOperand(0).isFPImm()) { 851 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 852 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 853 OS << (double)APF.convertToFloat(); 854 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 855 OS << APF.convertToDouble(); 856 } else { 857 // There is no good way to print long double. Convert a copy to 858 // double. Ah well, it's only a comment. 859 bool ignored; 860 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 861 &ignored); 862 OS << "(long double) " << APF.convertToDouble(); 863 } 864 } else if (MI->getOperand(0).isImm()) { 865 OS << MI->getOperand(0).getImm(); 866 } else if (MI->getOperand(0).isCImm()) { 867 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 868 } else { 869 unsigned Reg; 870 if (MI->getOperand(0).isReg()) { 871 Reg = MI->getOperand(0).getReg(); 872 } else { 873 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 874 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 875 Offset += TFI->getFrameIndexReference(*AP.MF, 876 MI->getOperand(0).getIndex(), Reg); 877 MemLoc = true; 878 } 879 if (Reg == 0) { 880 // Suppress offset, it is not meaningful here. 881 OS << "undef"; 882 // NOTE: Want this comment at start of line, don't emit with AddComment. 883 AP.OutStreamer->emitRawComment(OS.str()); 884 return true; 885 } 886 if (MemLoc) 887 OS << '['; 888 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 889 } 890 891 if (MemLoc) 892 OS << '+' << Offset << ']'; 893 894 // NOTE: Want this comment at start of line, don't emit with AddComment. 895 AP.OutStreamer->emitRawComment(OS.str()); 896 return true; 897 } 898 899 /// This method handles the target-independent form of DBG_LABEL, returning 900 /// true if it was able to do so. A false return means the target will need 901 /// to handle MI in EmitInstruction. 902 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 903 if (MI->getNumOperands() != 1) 904 return false; 905 906 SmallString<128> Str; 907 raw_svector_ostream OS(Str); 908 OS << "DEBUG_LABEL: "; 909 910 const DILabel *V = MI->getDebugLabel(); 911 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 912 StringRef Name = SP->getName(); 913 if (!Name.empty()) 914 OS << Name << ":"; 915 } 916 OS << V->getName(); 917 918 // NOTE: Want this comment at start of line, don't emit with AddComment. 919 AP.OutStreamer->emitRawComment(OS.str()); 920 return true; 921 } 922 923 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 924 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 925 MF->getFunction().needsUnwindTableEntry()) 926 return CFI_M_EH; 927 928 if (MMI->hasDebugInfo()) 929 return CFI_M_Debug; 930 931 return CFI_M_None; 932 } 933 934 bool AsmPrinter::needsSEHMoves() { 935 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 936 } 937 938 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 939 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 940 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 941 ExceptionHandlingType != ExceptionHandling::ARM) 942 return; 943 944 if (needsCFIMoves() == CFI_M_None) 945 return; 946 947 // If there is no "real" instruction following this CFI instruction, skip 948 // emitting it; it would be beyond the end of the function's FDE range. 949 auto *MBB = MI.getParent(); 950 auto I = std::next(MI.getIterator()); 951 while (I != MBB->end() && I->isTransient()) 952 ++I; 953 if (I == MBB->instr_end() && 954 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 955 return; 956 957 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 958 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 959 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 960 emitCFIInstruction(CFI); 961 } 962 963 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 964 // The operands are the MCSymbol and the frame offset of the allocation. 965 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 966 int FrameOffset = MI.getOperand(1).getImm(); 967 968 // Emit a symbol assignment. 969 OutStreamer->EmitAssignment(FrameAllocSym, 970 MCConstantExpr::create(FrameOffset, OutContext)); 971 } 972 973 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 974 if (!MF.getTarget().Options.EmitStackSizeSection) 975 return; 976 977 MCSection *StackSizeSection = 978 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 979 if (!StackSizeSection) 980 return; 981 982 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 983 // Don't emit functions with dynamic stack allocations. 984 if (FrameInfo.hasVarSizedObjects()) 985 return; 986 987 OutStreamer->PushSection(); 988 OutStreamer->SwitchSection(StackSizeSection); 989 990 const MCSymbol *FunctionSymbol = getFunctionBegin(); 991 uint64_t StackSize = FrameInfo.getStackSize(); 992 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 993 OutStreamer->EmitULEB128IntValue(StackSize); 994 995 OutStreamer->PopSection(); 996 } 997 998 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 999 MachineModuleInfo *MMI) { 1000 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1001 return true; 1002 1003 // We might emit an EH table that uses function begin and end labels even if 1004 // we don't have any landingpads. 1005 if (!MF.getFunction().hasPersonalityFn()) 1006 return false; 1007 return !isNoOpWithoutInvoke( 1008 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1009 } 1010 1011 /// EmitFunctionBody - This method emits the body and trailer for a 1012 /// function. 1013 void AsmPrinter::EmitFunctionBody() { 1014 EmitFunctionHeader(); 1015 1016 // Emit target-specific gunk before the function body. 1017 EmitFunctionBodyStart(); 1018 1019 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1020 1021 if (isVerbose()) { 1022 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1023 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1024 if (!MDT) { 1025 OwnedMDT = make_unique<MachineDominatorTree>(); 1026 OwnedMDT->getBase().recalculate(*MF); 1027 MDT = OwnedMDT.get(); 1028 } 1029 1030 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1031 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1032 if (!MLI) { 1033 OwnedMLI = make_unique<MachineLoopInfo>(); 1034 OwnedMLI->getBase().analyze(MDT->getBase()); 1035 MLI = OwnedMLI.get(); 1036 } 1037 } 1038 1039 // Print out code for the function. 1040 bool HasAnyRealCode = false; 1041 int NumInstsInFunction = 0; 1042 for (auto &MBB : *MF) { 1043 // Print a label for the basic block. 1044 EmitBasicBlockStart(MBB); 1045 for (auto &MI : MBB) { 1046 // Print the assembly for the instruction. 1047 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1048 !MI.isDebugInstr()) { 1049 HasAnyRealCode = true; 1050 ++NumInstsInFunction; 1051 } 1052 1053 // If there is a pre-instruction symbol, emit a label for it here. 1054 if (MCSymbol *S = MI.getPreInstrSymbol()) 1055 OutStreamer->EmitLabel(S); 1056 1057 if (ShouldPrintDebugScopes) { 1058 for (const HandlerInfo &HI : Handlers) { 1059 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1060 HI.TimerGroupName, HI.TimerGroupDescription, 1061 TimePassesIsEnabled); 1062 HI.Handler->beginInstruction(&MI); 1063 } 1064 } 1065 1066 if (isVerbose()) 1067 emitComments(MI, OutStreamer->GetCommentOS()); 1068 1069 switch (MI.getOpcode()) { 1070 case TargetOpcode::CFI_INSTRUCTION: 1071 emitCFIInstruction(MI); 1072 break; 1073 case TargetOpcode::LOCAL_ESCAPE: 1074 emitFrameAlloc(MI); 1075 break; 1076 case TargetOpcode::ANNOTATION_LABEL: 1077 case TargetOpcode::EH_LABEL: 1078 case TargetOpcode::GC_LABEL: 1079 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1080 break; 1081 case TargetOpcode::INLINEASM: 1082 case TargetOpcode::INLINEASM_BR: 1083 EmitInlineAsm(&MI); 1084 break; 1085 case TargetOpcode::DBG_VALUE: 1086 if (isVerbose()) { 1087 if (!emitDebugValueComment(&MI, *this)) 1088 EmitInstruction(&MI); 1089 } 1090 break; 1091 case TargetOpcode::DBG_LABEL: 1092 if (isVerbose()) { 1093 if (!emitDebugLabelComment(&MI, *this)) 1094 EmitInstruction(&MI); 1095 } 1096 break; 1097 case TargetOpcode::IMPLICIT_DEF: 1098 if (isVerbose()) emitImplicitDef(&MI); 1099 break; 1100 case TargetOpcode::KILL: 1101 if (isVerbose()) emitKill(&MI, *this); 1102 break; 1103 default: 1104 EmitInstruction(&MI); 1105 break; 1106 } 1107 1108 // If there is a post-instruction symbol, emit a label for it here. 1109 if (MCSymbol *S = MI.getPostInstrSymbol()) 1110 OutStreamer->EmitLabel(S); 1111 1112 if (ShouldPrintDebugScopes) { 1113 for (const HandlerInfo &HI : Handlers) { 1114 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1115 HI.TimerGroupName, HI.TimerGroupDescription, 1116 TimePassesIsEnabled); 1117 HI.Handler->endInstruction(); 1118 } 1119 } 1120 } 1121 1122 EmitBasicBlockEnd(MBB); 1123 } 1124 1125 EmittedInsts += NumInstsInFunction; 1126 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1127 MF->getFunction().getSubprogram(), 1128 &MF->front()); 1129 R << ore::NV("NumInstructions", NumInstsInFunction) 1130 << " instructions in function"; 1131 ORE->emit(R); 1132 1133 // If the function is empty and the object file uses .subsections_via_symbols, 1134 // then we need to emit *something* to the function body to prevent the 1135 // labels from collapsing together. Just emit a noop. 1136 // Similarly, don't emit empty functions on Windows either. It can lead to 1137 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1138 // after linking, causing the kernel not to load the binary: 1139 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1140 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1141 const Triple &TT = TM.getTargetTriple(); 1142 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1143 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1144 MCInst Noop; 1145 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1146 1147 // Targets can opt-out of emitting the noop here by leaving the opcode 1148 // unspecified. 1149 if (Noop.getOpcode()) { 1150 OutStreamer->AddComment("avoids zero-length function"); 1151 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1152 } 1153 } 1154 1155 const Function &F = MF->getFunction(); 1156 for (const auto &BB : F) { 1157 if (!BB.hasAddressTaken()) 1158 continue; 1159 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1160 if (Sym->isDefined()) 1161 continue; 1162 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1163 OutStreamer->EmitLabel(Sym); 1164 } 1165 1166 // Emit target-specific gunk after the function body. 1167 EmitFunctionBodyEnd(); 1168 1169 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1170 MAI->hasDotTypeDotSizeDirective()) { 1171 // Create a symbol for the end of function. 1172 CurrentFnEnd = createTempSymbol("func_end"); 1173 OutStreamer->EmitLabel(CurrentFnEnd); 1174 } 1175 1176 // If the target wants a .size directive for the size of the function, emit 1177 // it. 1178 if (MAI->hasDotTypeDotSizeDirective()) { 1179 // We can get the size as difference between the function label and the 1180 // temp label. 1181 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1182 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1183 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1184 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1185 } 1186 1187 for (const HandlerInfo &HI : Handlers) { 1188 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1189 HI.TimerGroupDescription, TimePassesIsEnabled); 1190 HI.Handler->markFunctionEnd(); 1191 } 1192 1193 // Print out jump tables referenced by the function. 1194 EmitJumpTableInfo(); 1195 1196 // Emit post-function debug and/or EH information. 1197 for (const HandlerInfo &HI : Handlers) { 1198 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1199 HI.TimerGroupDescription, TimePassesIsEnabled); 1200 HI.Handler->endFunction(MF); 1201 } 1202 1203 // Emit section containing stack size metadata. 1204 emitStackSizeSection(*MF); 1205 1206 if (isVerbose()) 1207 OutStreamer->GetCommentOS() << "-- End function\n"; 1208 1209 OutStreamer->AddBlankLine(); 1210 } 1211 1212 /// Compute the number of Global Variables that uses a Constant. 1213 static unsigned getNumGlobalVariableUses(const Constant *C) { 1214 if (!C) 1215 return 0; 1216 1217 if (isa<GlobalVariable>(C)) 1218 return 1; 1219 1220 unsigned NumUses = 0; 1221 for (auto *CU : C->users()) 1222 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1223 1224 return NumUses; 1225 } 1226 1227 /// Only consider global GOT equivalents if at least one user is a 1228 /// cstexpr inside an initializer of another global variables. Also, don't 1229 /// handle cstexpr inside instructions. During global variable emission, 1230 /// candidates are skipped and are emitted later in case at least one cstexpr 1231 /// isn't replaced by a PC relative GOT entry access. 1232 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1233 unsigned &NumGOTEquivUsers) { 1234 // Global GOT equivalents are unnamed private globals with a constant 1235 // pointer initializer to another global symbol. They must point to a 1236 // GlobalVariable or Function, i.e., as GlobalValue. 1237 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1238 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1239 !isa<GlobalValue>(GV->getOperand(0))) 1240 return false; 1241 1242 // To be a got equivalent, at least one of its users need to be a constant 1243 // expression used by another global variable. 1244 for (auto *U : GV->users()) 1245 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1246 1247 return NumGOTEquivUsers > 0; 1248 } 1249 1250 /// Unnamed constant global variables solely contaning a pointer to 1251 /// another globals variable is equivalent to a GOT table entry; it contains the 1252 /// the address of another symbol. Optimize it and replace accesses to these 1253 /// "GOT equivalents" by using the GOT entry for the final global instead. 1254 /// Compute GOT equivalent candidates among all global variables to avoid 1255 /// emitting them if possible later on, after it use is replaced by a GOT entry 1256 /// access. 1257 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1258 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1259 return; 1260 1261 for (const auto &G : M.globals()) { 1262 unsigned NumGOTEquivUsers = 0; 1263 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1264 continue; 1265 1266 const MCSymbol *GOTEquivSym = getSymbol(&G); 1267 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1268 } 1269 } 1270 1271 /// Constant expressions using GOT equivalent globals may not be eligible 1272 /// for PC relative GOT entry conversion, in such cases we need to emit such 1273 /// globals we previously omitted in EmitGlobalVariable. 1274 void AsmPrinter::emitGlobalGOTEquivs() { 1275 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1276 return; 1277 1278 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1279 for (auto &I : GlobalGOTEquivs) { 1280 const GlobalVariable *GV = I.second.first; 1281 unsigned Cnt = I.second.second; 1282 if (Cnt) 1283 FailedCandidates.push_back(GV); 1284 } 1285 GlobalGOTEquivs.clear(); 1286 1287 for (auto *GV : FailedCandidates) 1288 EmitGlobalVariable(GV); 1289 } 1290 1291 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1292 const GlobalIndirectSymbol& GIS) { 1293 MCSymbol *Name = getSymbol(&GIS); 1294 1295 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1296 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1297 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1298 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1299 else 1300 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1301 1302 bool IsFunction = GIS.getType()->getPointerElementType()->isFunctionTy(); 1303 1304 // Treat bitcasts of functions as functions also. This is important at least 1305 // on WebAssembly where object and function addresses can't alias each other. 1306 if (!IsFunction) 1307 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1308 if (CE->getOpcode() == Instruction::BitCast) 1309 IsFunction = 1310 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1311 1312 // Set the symbol type to function if the alias has a function type. 1313 // This affects codegen when the aliasee is not a function. 1314 if (IsFunction) { 1315 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1316 if (isa<GlobalIFunc>(GIS)) 1317 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1318 } 1319 1320 EmitVisibility(Name, GIS.getVisibility()); 1321 1322 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1323 1324 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1325 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1326 1327 // Emit the directives as assignments aka .set: 1328 OutStreamer->EmitAssignment(Name, Expr); 1329 1330 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1331 // If the aliasee does not correspond to a symbol in the output, i.e. the 1332 // alias is not of an object or the aliased object is private, then set the 1333 // size of the alias symbol from the type of the alias. We don't do this in 1334 // other situations as the alias and aliasee having differing types but same 1335 // size may be intentional. 1336 const GlobalObject *BaseObject = GA->getBaseObject(); 1337 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1338 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1339 const DataLayout &DL = M.getDataLayout(); 1340 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1341 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1342 } 1343 } 1344 } 1345 1346 void AsmPrinter::emitRemarksSection(Module &M) { 1347 RemarkStreamer *RS = M.getContext().getRemarkStreamer(); 1348 if (!RS) 1349 return; 1350 1351 // Switch to the right section: .remarks/__remarks. 1352 MCSection *RemarksSection = 1353 OutContext.getObjectFileInfo()->getRemarksSection(); 1354 OutStreamer->SwitchSection(RemarksSection); 1355 1356 // Emit the magic number. 1357 OutStreamer->EmitBytes(remarks::Magic); 1358 // Explicitly emit a '\0'. 1359 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1360 1361 // Emit the version number: little-endian uint64_t. 1362 // The version number is located at the offset 0x0 in the section. 1363 std::array<char, 8> Version; 1364 support::endian::write64le(Version.data(), remarks::Version); 1365 OutStreamer->EmitBinaryData(StringRef(Version.data(), Version.size())); 1366 1367 // Emit the string table in the section. 1368 // Note: we need to use the streamer here to emit it in the section. We can't 1369 // just use the serialize function with a raw_ostream because of the way 1370 // MCStreamers work. 1371 const remarks::StringTable &StrTab = RS->getStringTable(); 1372 std::vector<StringRef> StrTabStrings = StrTab.serialize(); 1373 uint64_t StrTabSize = StrTab.SerializedSize; 1374 // Emit the total size of the string table (the size itself excluded): 1375 // little-endian uint64_t. 1376 // The total size is located after the version number. 1377 std::array<char, 8> StrTabSizeBuf; 1378 support::endian::write64le(StrTabSizeBuf.data(), StrTabSize); 1379 OutStreamer->EmitBinaryData( 1380 StringRef(StrTabSizeBuf.data(), StrTabSizeBuf.size())); 1381 // Emit a list of null-terminated strings. 1382 // Note: the order is important here: the ID used in the remarks corresponds 1383 // to the position of the string in the section. 1384 for (StringRef Str : StrTabStrings) { 1385 OutStreamer->EmitBytes(Str); 1386 // Explicitly emit a '\0'. 1387 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1388 } 1389 1390 // Emit the null-terminated absolute path to the remark file. 1391 // The path is located at the offset 0x4 in the section. 1392 StringRef FilenameRef = RS->getFilename(); 1393 SmallString<128> Filename = FilenameRef; 1394 sys::fs::make_absolute(Filename); 1395 assert(!Filename.empty() && "The filename can't be empty."); 1396 OutStreamer->EmitBytes(Filename); 1397 // Explicitly emit a '\0'. 1398 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1399 } 1400 1401 bool AsmPrinter::doFinalization(Module &M) { 1402 // Set the MachineFunction to nullptr so that we can catch attempted 1403 // accesses to MF specific features at the module level and so that 1404 // we can conditionalize accesses based on whether or not it is nullptr. 1405 MF = nullptr; 1406 1407 // Gather all GOT equivalent globals in the module. We really need two 1408 // passes over the globals: one to compute and another to avoid its emission 1409 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1410 // where the got equivalent shows up before its use. 1411 computeGlobalGOTEquivs(M); 1412 1413 // Emit global variables. 1414 for (const auto &G : M.globals()) 1415 EmitGlobalVariable(&G); 1416 1417 // Emit remaining GOT equivalent globals. 1418 emitGlobalGOTEquivs(); 1419 1420 // Emit visibility info for declarations 1421 for (const Function &F : M) { 1422 if (!F.isDeclarationForLinker()) 1423 continue; 1424 GlobalValue::VisibilityTypes V = F.getVisibility(); 1425 if (V == GlobalValue::DefaultVisibility) 1426 continue; 1427 1428 MCSymbol *Name = getSymbol(&F); 1429 EmitVisibility(Name, V, false); 1430 } 1431 1432 // Emit the remarks section contents. 1433 // FIXME: Figure out when is the safest time to emit this section. It should 1434 // not come after debug info. 1435 if (EnableRemarksSection) 1436 emitRemarksSection(M); 1437 1438 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1439 1440 TLOF.emitModuleMetadata(*OutStreamer, M); 1441 1442 if (TM.getTargetTriple().isOSBinFormatELF()) { 1443 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1444 1445 // Output stubs for external and common global variables. 1446 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1447 if (!Stubs.empty()) { 1448 OutStreamer->SwitchSection(TLOF.getDataSection()); 1449 const DataLayout &DL = M.getDataLayout(); 1450 1451 EmitAlignment(Log2_32(DL.getPointerSize())); 1452 for (const auto &Stub : Stubs) { 1453 OutStreamer->EmitLabel(Stub.first); 1454 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1455 DL.getPointerSize()); 1456 } 1457 } 1458 } 1459 1460 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1461 MachineModuleInfoCOFF &MMICOFF = 1462 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1463 1464 // Output stubs for external and common global variables. 1465 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1466 if (!Stubs.empty()) { 1467 const DataLayout &DL = M.getDataLayout(); 1468 1469 for (const auto &Stub : Stubs) { 1470 SmallString<256> SectionName = StringRef(".rdata$"); 1471 SectionName += Stub.first->getName(); 1472 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1473 SectionName, 1474 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1475 COFF::IMAGE_SCN_LNK_COMDAT, 1476 SectionKind::getReadOnly(), Stub.first->getName(), 1477 COFF::IMAGE_COMDAT_SELECT_ANY)); 1478 EmitAlignment(Log2_32(DL.getPointerSize())); 1479 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1480 OutStreamer->EmitLabel(Stub.first); 1481 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1482 DL.getPointerSize()); 1483 } 1484 } 1485 } 1486 1487 // Finalize debug and EH information. 1488 for (const HandlerInfo &HI : Handlers) { 1489 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1490 HI.TimerGroupDescription, TimePassesIsEnabled); 1491 HI.Handler->endModule(); 1492 } 1493 Handlers.clear(); 1494 DD = nullptr; 1495 1496 // If the target wants to know about weak references, print them all. 1497 if (MAI->getWeakRefDirective()) { 1498 // FIXME: This is not lazy, it would be nice to only print weak references 1499 // to stuff that is actually used. Note that doing so would require targets 1500 // to notice uses in operands (due to constant exprs etc). This should 1501 // happen with the MC stuff eventually. 1502 1503 // Print out module-level global objects here. 1504 for (const auto &GO : M.global_objects()) { 1505 if (!GO.hasExternalWeakLinkage()) 1506 continue; 1507 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1508 } 1509 } 1510 1511 OutStreamer->AddBlankLine(); 1512 1513 // Print aliases in topological order, that is, for each alias a = b, 1514 // b must be printed before a. 1515 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1516 // such an order to generate correct TOC information. 1517 SmallVector<const GlobalAlias *, 16> AliasStack; 1518 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1519 for (const auto &Alias : M.aliases()) { 1520 for (const GlobalAlias *Cur = &Alias; Cur; 1521 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1522 if (!AliasVisited.insert(Cur).second) 1523 break; 1524 AliasStack.push_back(Cur); 1525 } 1526 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1527 emitGlobalIndirectSymbol(M, *AncestorAlias); 1528 AliasStack.clear(); 1529 } 1530 for (const auto &IFunc : M.ifuncs()) 1531 emitGlobalIndirectSymbol(M, IFunc); 1532 1533 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1534 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1535 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1536 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1537 MP->finishAssembly(M, *MI, *this); 1538 1539 // Emit llvm.ident metadata in an '.ident' directive. 1540 EmitModuleIdents(M); 1541 1542 // Emit bytes for llvm.commandline metadata. 1543 EmitModuleCommandLines(M); 1544 1545 // Emit __morestack address if needed for indirect calls. 1546 if (MMI->usesMorestackAddr()) { 1547 unsigned Align = 1; 1548 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1549 getDataLayout(), SectionKind::getReadOnly(), 1550 /*C=*/nullptr, Align); 1551 OutStreamer->SwitchSection(ReadOnlySection); 1552 1553 MCSymbol *AddrSymbol = 1554 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1555 OutStreamer->EmitLabel(AddrSymbol); 1556 1557 unsigned PtrSize = MAI->getCodePointerSize(); 1558 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1559 PtrSize); 1560 } 1561 1562 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1563 // split-stack is used. 1564 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1565 OutStreamer->SwitchSection( 1566 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1567 if (MMI->hasNosplitStack()) 1568 OutStreamer->SwitchSection( 1569 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1570 } 1571 1572 // If we don't have any trampolines, then we don't require stack memory 1573 // to be executable. Some targets have a directive to declare this. 1574 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1575 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1576 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1577 OutStreamer->SwitchSection(S); 1578 1579 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1580 // Emit /EXPORT: flags for each exported global as necessary. 1581 const auto &TLOF = getObjFileLowering(); 1582 std::string Flags; 1583 1584 for (const GlobalValue &GV : M.global_values()) { 1585 raw_string_ostream OS(Flags); 1586 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1587 OS.flush(); 1588 if (!Flags.empty()) { 1589 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1590 OutStreamer->EmitBytes(Flags); 1591 } 1592 Flags.clear(); 1593 } 1594 1595 // Emit /INCLUDE: flags for each used global as necessary. 1596 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1597 assert(LU->hasInitializer() && 1598 "expected llvm.used to have an initializer"); 1599 assert(isa<ArrayType>(LU->getValueType()) && 1600 "expected llvm.used to be an array type"); 1601 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1602 for (const Value *Op : A->operands()) { 1603 const auto *GV = 1604 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1605 // Global symbols with internal or private linkage are not visible to 1606 // the linker, and thus would cause an error when the linker tried to 1607 // preserve the symbol due to the `/include:` directive. 1608 if (GV->hasLocalLinkage()) 1609 continue; 1610 1611 raw_string_ostream OS(Flags); 1612 TLOF.emitLinkerFlagsForUsed(OS, GV); 1613 OS.flush(); 1614 1615 if (!Flags.empty()) { 1616 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1617 OutStreamer->EmitBytes(Flags); 1618 } 1619 Flags.clear(); 1620 } 1621 } 1622 } 1623 } 1624 1625 if (TM.Options.EmitAddrsig) { 1626 // Emit address-significance attributes for all globals. 1627 OutStreamer->EmitAddrsig(); 1628 for (const GlobalValue &GV : M.global_values()) 1629 if (!GV.use_empty() && !GV.isThreadLocal() && 1630 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1631 !GV.hasAtLeastLocalUnnamedAddr()) 1632 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1633 } 1634 1635 // Emit symbol partition specifications (ELF only). 1636 if (TM.getTargetTriple().isOSBinFormatELF()) { 1637 unsigned UniqueID = 0; 1638 for (const GlobalValue &GV : M.global_values()) { 1639 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1640 GV.getVisibility() != GlobalValue::DefaultVisibility) 1641 continue; 1642 1643 OutStreamer->SwitchSection(OutContext.getELFSection( 1644 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID)); 1645 OutStreamer->EmitBytes(GV.getPartition()); 1646 OutStreamer->EmitZeros(1); 1647 OutStreamer->EmitValue( 1648 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1649 MAI->getCodePointerSize()); 1650 } 1651 } 1652 1653 // Allow the target to emit any magic that it wants at the end of the file, 1654 // after everything else has gone out. 1655 EmitEndOfAsmFile(M); 1656 1657 MMI = nullptr; 1658 1659 OutStreamer->Finish(); 1660 OutStreamer->reset(); 1661 OwnedMLI.reset(); 1662 OwnedMDT.reset(); 1663 1664 return false; 1665 } 1666 1667 MCSymbol *AsmPrinter::getCurExceptionSym() { 1668 if (!CurExceptionSym) 1669 CurExceptionSym = createTempSymbol("exception"); 1670 return CurExceptionSym; 1671 } 1672 1673 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1674 this->MF = &MF; 1675 // Get the function symbol. 1676 CurrentFnSym = getSymbol(&MF.getFunction()); 1677 CurrentFnSymForSize = CurrentFnSym; 1678 CurrentFnBegin = nullptr; 1679 CurExceptionSym = nullptr; 1680 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1681 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1682 MF.getTarget().Options.EmitStackSizeSection) { 1683 CurrentFnBegin = createTempSymbol("func_begin"); 1684 if (NeedsLocalForSize) 1685 CurrentFnSymForSize = CurrentFnBegin; 1686 } 1687 1688 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1689 } 1690 1691 namespace { 1692 1693 // Keep track the alignment, constpool entries per Section. 1694 struct SectionCPs { 1695 MCSection *S; 1696 unsigned Alignment; 1697 SmallVector<unsigned, 4> CPEs; 1698 1699 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1700 }; 1701 1702 } // end anonymous namespace 1703 1704 /// EmitConstantPool - Print to the current output stream assembly 1705 /// representations of the constants in the constant pool MCP. This is 1706 /// used to print out constants which have been "spilled to memory" by 1707 /// the code generator. 1708 void AsmPrinter::EmitConstantPool() { 1709 const MachineConstantPool *MCP = MF->getConstantPool(); 1710 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1711 if (CP.empty()) return; 1712 1713 // Calculate sections for constant pool entries. We collect entries to go into 1714 // the same section together to reduce amount of section switch statements. 1715 SmallVector<SectionCPs, 4> CPSections; 1716 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1717 const MachineConstantPoolEntry &CPE = CP[i]; 1718 unsigned Align = CPE.getAlignment(); 1719 1720 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1721 1722 const Constant *C = nullptr; 1723 if (!CPE.isMachineConstantPoolEntry()) 1724 C = CPE.Val.ConstVal; 1725 1726 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1727 Kind, C, Align); 1728 1729 // The number of sections are small, just do a linear search from the 1730 // last section to the first. 1731 bool Found = false; 1732 unsigned SecIdx = CPSections.size(); 1733 while (SecIdx != 0) { 1734 if (CPSections[--SecIdx].S == S) { 1735 Found = true; 1736 break; 1737 } 1738 } 1739 if (!Found) { 1740 SecIdx = CPSections.size(); 1741 CPSections.push_back(SectionCPs(S, Align)); 1742 } 1743 1744 if (Align > CPSections[SecIdx].Alignment) 1745 CPSections[SecIdx].Alignment = Align; 1746 CPSections[SecIdx].CPEs.push_back(i); 1747 } 1748 1749 // Now print stuff into the calculated sections. 1750 const MCSection *CurSection = nullptr; 1751 unsigned Offset = 0; 1752 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1753 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1754 unsigned CPI = CPSections[i].CPEs[j]; 1755 MCSymbol *Sym = GetCPISymbol(CPI); 1756 if (!Sym->isUndefined()) 1757 continue; 1758 1759 if (CurSection != CPSections[i].S) { 1760 OutStreamer->SwitchSection(CPSections[i].S); 1761 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1762 CurSection = CPSections[i].S; 1763 Offset = 0; 1764 } 1765 1766 MachineConstantPoolEntry CPE = CP[CPI]; 1767 1768 // Emit inter-object padding for alignment. 1769 unsigned AlignMask = CPE.getAlignment() - 1; 1770 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1771 OutStreamer->EmitZeros(NewOffset - Offset); 1772 1773 Type *Ty = CPE.getType(); 1774 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1775 1776 OutStreamer->EmitLabel(Sym); 1777 if (CPE.isMachineConstantPoolEntry()) 1778 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1779 else 1780 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1781 } 1782 } 1783 } 1784 1785 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1786 /// by the current function to the current output stream. 1787 void AsmPrinter::EmitJumpTableInfo() { 1788 const DataLayout &DL = MF->getDataLayout(); 1789 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1790 if (!MJTI) return; 1791 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1792 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1793 if (JT.empty()) return; 1794 1795 // Pick the directive to use to print the jump table entries, and switch to 1796 // the appropriate section. 1797 const Function &F = MF->getFunction(); 1798 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1799 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1800 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1801 F); 1802 if (JTInDiffSection) { 1803 // Drop it in the readonly section. 1804 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1805 OutStreamer->SwitchSection(ReadOnlySection); 1806 } 1807 1808 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1809 1810 // Jump tables in code sections are marked with a data_region directive 1811 // where that's supported. 1812 if (!JTInDiffSection) 1813 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1814 1815 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1816 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1817 1818 // If this jump table was deleted, ignore it. 1819 if (JTBBs.empty()) continue; 1820 1821 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1822 /// emit a .set directive for each unique entry. 1823 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1824 MAI->doesSetDirectiveSuppressReloc()) { 1825 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1826 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1827 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1828 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1829 const MachineBasicBlock *MBB = JTBBs[ii]; 1830 if (!EmittedSets.insert(MBB).second) 1831 continue; 1832 1833 // .set LJTSet, LBB32-base 1834 const MCExpr *LHS = 1835 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1836 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1837 MCBinaryExpr::createSub(LHS, Base, 1838 OutContext)); 1839 } 1840 } 1841 1842 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1843 // before each jump table. The first label is never referenced, but tells 1844 // the assembler and linker the extents of the jump table object. The 1845 // second label is actually referenced by the code. 1846 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1847 // FIXME: This doesn't have to have any specific name, just any randomly 1848 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1849 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1850 1851 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1852 1853 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1854 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1855 } 1856 if (!JTInDiffSection) 1857 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1858 } 1859 1860 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1861 /// current stream. 1862 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1863 const MachineBasicBlock *MBB, 1864 unsigned UID) const { 1865 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1866 const MCExpr *Value = nullptr; 1867 switch (MJTI->getEntryKind()) { 1868 case MachineJumpTableInfo::EK_Inline: 1869 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1870 case MachineJumpTableInfo::EK_Custom32: 1871 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1872 MJTI, MBB, UID, OutContext); 1873 break; 1874 case MachineJumpTableInfo::EK_BlockAddress: 1875 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1876 // .word LBB123 1877 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1878 break; 1879 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1880 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1881 // with a relocation as gp-relative, e.g.: 1882 // .gprel32 LBB123 1883 MCSymbol *MBBSym = MBB->getSymbol(); 1884 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1885 return; 1886 } 1887 1888 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1889 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1890 // with a relocation as gp-relative, e.g.: 1891 // .gpdword LBB123 1892 MCSymbol *MBBSym = MBB->getSymbol(); 1893 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1894 return; 1895 } 1896 1897 case MachineJumpTableInfo::EK_LabelDifference32: { 1898 // Each entry is the address of the block minus the address of the jump 1899 // table. This is used for PIC jump tables where gprel32 is not supported. 1900 // e.g.: 1901 // .word LBB123 - LJTI1_2 1902 // If the .set directive avoids relocations, this is emitted as: 1903 // .set L4_5_set_123, LBB123 - LJTI1_2 1904 // .word L4_5_set_123 1905 if (MAI->doesSetDirectiveSuppressReloc()) { 1906 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1907 OutContext); 1908 break; 1909 } 1910 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1911 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1912 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1913 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1914 break; 1915 } 1916 } 1917 1918 assert(Value && "Unknown entry kind!"); 1919 1920 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1921 OutStreamer->EmitValue(Value, EntrySize); 1922 } 1923 1924 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1925 /// special global used by LLVM. If so, emit it and return true, otherwise 1926 /// do nothing and return false. 1927 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1928 if (GV->getName() == "llvm.used") { 1929 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1930 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1931 return true; 1932 } 1933 1934 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1935 if (GV->getSection() == "llvm.metadata" || 1936 GV->hasAvailableExternallyLinkage()) 1937 return true; 1938 1939 if (!GV->hasAppendingLinkage()) return false; 1940 1941 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1942 1943 if (GV->getName() == "llvm.global_ctors") { 1944 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1945 /* isCtor */ true); 1946 1947 return true; 1948 } 1949 1950 if (GV->getName() == "llvm.global_dtors") { 1951 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1952 /* isCtor */ false); 1953 1954 return true; 1955 } 1956 1957 report_fatal_error("unknown special variable"); 1958 } 1959 1960 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1961 /// global in the specified llvm.used list. 1962 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1963 // Should be an array of 'i8*'. 1964 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1965 const GlobalValue *GV = 1966 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1967 if (GV) 1968 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1969 } 1970 } 1971 1972 namespace { 1973 1974 struct Structor { 1975 int Priority = 0; 1976 Constant *Func = nullptr; 1977 GlobalValue *ComdatKey = nullptr; 1978 1979 Structor() = default; 1980 }; 1981 1982 } // end anonymous namespace 1983 1984 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1985 /// priority. 1986 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1987 bool isCtor) { 1988 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 1989 // init priority. 1990 if (!isa<ConstantArray>(List)) return; 1991 1992 // Sanity check the structors list. 1993 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1994 if (!InitList) return; // Not an array! 1995 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1996 if (!ETy || ETy->getNumElements() != 3 || 1997 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1998 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 1999 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 2000 return; // Not (int, ptr, ptr). 2001 2002 // Gather the structors in a form that's convenient for sorting by priority. 2003 SmallVector<Structor, 8> Structors; 2004 for (Value *O : InitList->operands()) { 2005 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 2006 if (!CS) continue; // Malformed. 2007 if (CS->getOperand(1)->isNullValue()) 2008 break; // Found a null terminator, skip the rest. 2009 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2010 if (!Priority) continue; // Malformed. 2011 Structors.push_back(Structor()); 2012 Structor &S = Structors.back(); 2013 S.Priority = Priority->getLimitedValue(65535); 2014 S.Func = CS->getOperand(1); 2015 if (!CS->getOperand(2)->isNullValue()) 2016 S.ComdatKey = 2017 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2018 } 2019 2020 // Emit the function pointers in the target-specific order 2021 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 2022 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2023 return L.Priority < R.Priority; 2024 }); 2025 for (Structor &S : Structors) { 2026 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2027 const MCSymbol *KeySym = nullptr; 2028 if (GlobalValue *GV = S.ComdatKey) { 2029 if (GV->isDeclarationForLinker()) 2030 // If the associated variable is not defined in this module 2031 // (it might be available_externally, or have been an 2032 // available_externally definition that was dropped by the 2033 // EliminateAvailableExternally pass), some other TU 2034 // will provide its dynamic initializer. 2035 continue; 2036 2037 KeySym = getSymbol(GV); 2038 } 2039 MCSection *OutputSection = 2040 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2041 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2042 OutStreamer->SwitchSection(OutputSection); 2043 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2044 EmitAlignment(Align); 2045 EmitXXStructor(DL, S.Func); 2046 } 2047 } 2048 2049 void AsmPrinter::EmitModuleIdents(Module &M) { 2050 if (!MAI->hasIdentDirective()) 2051 return; 2052 2053 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2054 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2055 const MDNode *N = NMD->getOperand(i); 2056 assert(N->getNumOperands() == 1 && 2057 "llvm.ident metadata entry can have only one operand"); 2058 const MDString *S = cast<MDString>(N->getOperand(0)); 2059 OutStreamer->EmitIdent(S->getString()); 2060 } 2061 } 2062 } 2063 2064 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2065 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2066 if (!CommandLine) 2067 return; 2068 2069 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2070 if (!NMD || !NMD->getNumOperands()) 2071 return; 2072 2073 OutStreamer->PushSection(); 2074 OutStreamer->SwitchSection(CommandLine); 2075 OutStreamer->EmitZeros(1); 2076 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2077 const MDNode *N = NMD->getOperand(i); 2078 assert(N->getNumOperands() == 1 && 2079 "llvm.commandline metadata entry can have only one operand"); 2080 const MDString *S = cast<MDString>(N->getOperand(0)); 2081 OutStreamer->EmitBytes(S->getString()); 2082 OutStreamer->EmitZeros(1); 2083 } 2084 OutStreamer->PopSection(); 2085 } 2086 2087 //===--------------------------------------------------------------------===// 2088 // Emission and print routines 2089 // 2090 2091 /// Emit a byte directive and value. 2092 /// 2093 void AsmPrinter::emitInt8(int Value) const { 2094 OutStreamer->EmitIntValue(Value, 1); 2095 } 2096 2097 /// Emit a short directive and value. 2098 void AsmPrinter::emitInt16(int Value) const { 2099 OutStreamer->EmitIntValue(Value, 2); 2100 } 2101 2102 /// Emit a long directive and value. 2103 void AsmPrinter::emitInt32(int Value) const { 2104 OutStreamer->EmitIntValue(Value, 4); 2105 } 2106 2107 /// Emit a long long directive and value. 2108 void AsmPrinter::emitInt64(uint64_t Value) const { 2109 OutStreamer->EmitIntValue(Value, 8); 2110 } 2111 2112 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2113 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2114 /// .set if it avoids relocations. 2115 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2116 unsigned Size) const { 2117 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2118 } 2119 2120 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2121 /// where the size in bytes of the directive is specified by Size and Label 2122 /// specifies the label. This implicitly uses .set if it is available. 2123 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2124 unsigned Size, 2125 bool IsSectionRelative) const { 2126 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2127 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2128 if (Size > 4) 2129 OutStreamer->EmitZeros(Size - 4); 2130 return; 2131 } 2132 2133 // Emit Label+Offset (or just Label if Offset is zero) 2134 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2135 if (Offset) 2136 Expr = MCBinaryExpr::createAdd( 2137 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2138 2139 OutStreamer->EmitValue(Expr, Size); 2140 } 2141 2142 //===----------------------------------------------------------------------===// 2143 2144 // EmitAlignment - Emit an alignment directive to the specified power of 2145 // two boundary. For example, if you pass in 3 here, you will get an 8 2146 // byte alignment. If a global value is specified, and if that global has 2147 // an explicit alignment requested, it will override the alignment request 2148 // if required for correctness. 2149 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2150 if (GV) 2151 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2152 2153 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2154 2155 assert(NumBits < 2156 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2157 "undefined behavior"); 2158 if (getCurrentSection()->getKind().isText()) 2159 OutStreamer->EmitCodeAlignment(1u << NumBits); 2160 else 2161 OutStreamer->EmitValueToAlignment(1u << NumBits); 2162 } 2163 2164 //===----------------------------------------------------------------------===// 2165 // Constant emission. 2166 //===----------------------------------------------------------------------===// 2167 2168 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2169 MCContext &Ctx = OutContext; 2170 2171 if (CV->isNullValue() || isa<UndefValue>(CV)) 2172 return MCConstantExpr::create(0, Ctx); 2173 2174 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2175 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2176 2177 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2178 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2179 2180 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2181 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2182 2183 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2184 if (!CE) { 2185 llvm_unreachable("Unknown constant value to lower!"); 2186 } 2187 2188 switch (CE->getOpcode()) { 2189 default: 2190 // If the code isn't optimized, there may be outstanding folding 2191 // opportunities. Attempt to fold the expression using DataLayout as a 2192 // last resort before giving up. 2193 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2194 if (C != CE) 2195 return lowerConstant(C); 2196 2197 // Otherwise report the problem to the user. 2198 { 2199 std::string S; 2200 raw_string_ostream OS(S); 2201 OS << "Unsupported expression in static initializer: "; 2202 CE->printAsOperand(OS, /*PrintType=*/false, 2203 !MF ? nullptr : MF->getFunction().getParent()); 2204 report_fatal_error(OS.str()); 2205 } 2206 case Instruction::GetElementPtr: { 2207 // Generate a symbolic expression for the byte address 2208 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2209 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2210 2211 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2212 if (!OffsetAI) 2213 return Base; 2214 2215 int64_t Offset = OffsetAI.getSExtValue(); 2216 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2217 Ctx); 2218 } 2219 2220 case Instruction::Trunc: 2221 // We emit the value and depend on the assembler to truncate the generated 2222 // expression properly. This is important for differences between 2223 // blockaddress labels. Since the two labels are in the same function, it 2224 // is reasonable to treat their delta as a 32-bit value. 2225 LLVM_FALLTHROUGH; 2226 case Instruction::BitCast: 2227 return lowerConstant(CE->getOperand(0)); 2228 2229 case Instruction::IntToPtr: { 2230 const DataLayout &DL = getDataLayout(); 2231 2232 // Handle casts to pointers by changing them into casts to the appropriate 2233 // integer type. This promotes constant folding and simplifies this code. 2234 Constant *Op = CE->getOperand(0); 2235 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2236 false/*ZExt*/); 2237 return lowerConstant(Op); 2238 } 2239 2240 case Instruction::PtrToInt: { 2241 const DataLayout &DL = getDataLayout(); 2242 2243 // Support only foldable casts to/from pointers that can be eliminated by 2244 // changing the pointer to the appropriately sized integer type. 2245 Constant *Op = CE->getOperand(0); 2246 Type *Ty = CE->getType(); 2247 2248 const MCExpr *OpExpr = lowerConstant(Op); 2249 2250 // We can emit the pointer value into this slot if the slot is an 2251 // integer slot equal to the size of the pointer. 2252 // 2253 // If the pointer is larger than the resultant integer, then 2254 // as with Trunc just depend on the assembler to truncate it. 2255 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2256 return OpExpr; 2257 2258 // Otherwise the pointer is smaller than the resultant integer, mask off 2259 // the high bits so we are sure to get a proper truncation if the input is 2260 // a constant expr. 2261 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2262 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2263 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2264 } 2265 2266 case Instruction::Sub: { 2267 GlobalValue *LHSGV; 2268 APInt LHSOffset; 2269 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2270 getDataLayout())) { 2271 GlobalValue *RHSGV; 2272 APInt RHSOffset; 2273 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2274 getDataLayout())) { 2275 const MCExpr *RelocExpr = 2276 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2277 if (!RelocExpr) 2278 RelocExpr = MCBinaryExpr::createSub( 2279 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2280 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2281 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2282 if (Addend != 0) 2283 RelocExpr = MCBinaryExpr::createAdd( 2284 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2285 return RelocExpr; 2286 } 2287 } 2288 } 2289 // else fallthrough 2290 LLVM_FALLTHROUGH; 2291 2292 // The MC library also has a right-shift operator, but it isn't consistently 2293 // signed or unsigned between different targets. 2294 case Instruction::Add: 2295 case Instruction::Mul: 2296 case Instruction::SDiv: 2297 case Instruction::SRem: 2298 case Instruction::Shl: 2299 case Instruction::And: 2300 case Instruction::Or: 2301 case Instruction::Xor: { 2302 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2303 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2304 switch (CE->getOpcode()) { 2305 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2306 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2307 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2308 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2309 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2310 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2311 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2312 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2313 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2314 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2315 } 2316 } 2317 } 2318 } 2319 2320 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2321 AsmPrinter &AP, 2322 const Constant *BaseCV = nullptr, 2323 uint64_t Offset = 0); 2324 2325 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2326 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2327 2328 /// isRepeatedByteSequence - Determine whether the given value is 2329 /// composed of a repeated sequence of identical bytes and return the 2330 /// byte value. If it is not a repeated sequence, return -1. 2331 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2332 StringRef Data = V->getRawDataValues(); 2333 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2334 char C = Data[0]; 2335 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2336 if (Data[i] != C) return -1; 2337 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2338 } 2339 2340 /// isRepeatedByteSequence - Determine whether the given value is 2341 /// composed of a repeated sequence of identical bytes and return the 2342 /// byte value. If it is not a repeated sequence, return -1. 2343 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2344 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2345 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2346 assert(Size % 8 == 0); 2347 2348 // Extend the element to take zero padding into account. 2349 APInt Value = CI->getValue().zextOrSelf(Size); 2350 if (!Value.isSplat(8)) 2351 return -1; 2352 2353 return Value.zextOrTrunc(8).getZExtValue(); 2354 } 2355 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2356 // Make sure all array elements are sequences of the same repeated 2357 // byte. 2358 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2359 Constant *Op0 = CA->getOperand(0); 2360 int Byte = isRepeatedByteSequence(Op0, DL); 2361 if (Byte == -1) 2362 return -1; 2363 2364 // All array elements must be equal. 2365 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2366 if (CA->getOperand(i) != Op0) 2367 return -1; 2368 return Byte; 2369 } 2370 2371 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2372 return isRepeatedByteSequence(CDS); 2373 2374 return -1; 2375 } 2376 2377 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2378 const ConstantDataSequential *CDS, 2379 AsmPrinter &AP) { 2380 // See if we can aggregate this into a .fill, if so, emit it as such. 2381 int Value = isRepeatedByteSequence(CDS, DL); 2382 if (Value != -1) { 2383 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2384 // Don't emit a 1-byte object as a .fill. 2385 if (Bytes > 1) 2386 return AP.OutStreamer->emitFill(Bytes, Value); 2387 } 2388 2389 // If this can be emitted with .ascii/.asciz, emit it as such. 2390 if (CDS->isString()) 2391 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2392 2393 // Otherwise, emit the values in successive locations. 2394 unsigned ElementByteSize = CDS->getElementByteSize(); 2395 if (isa<IntegerType>(CDS->getElementType())) { 2396 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2397 if (AP.isVerbose()) 2398 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2399 CDS->getElementAsInteger(i)); 2400 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2401 ElementByteSize); 2402 } 2403 } else { 2404 Type *ET = CDS->getElementType(); 2405 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2406 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2407 } 2408 2409 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2410 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2411 CDS->getNumElements(); 2412 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2413 if (unsigned Padding = Size - EmittedSize) 2414 AP.OutStreamer->EmitZeros(Padding); 2415 } 2416 2417 static void emitGlobalConstantArray(const DataLayout &DL, 2418 const ConstantArray *CA, AsmPrinter &AP, 2419 const Constant *BaseCV, uint64_t Offset) { 2420 // See if we can aggregate some values. Make sure it can be 2421 // represented as a series of bytes of the constant value. 2422 int Value = isRepeatedByteSequence(CA, DL); 2423 2424 if (Value != -1) { 2425 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2426 AP.OutStreamer->emitFill(Bytes, Value); 2427 } 2428 else { 2429 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2430 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2431 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2432 } 2433 } 2434 } 2435 2436 static void emitGlobalConstantVector(const DataLayout &DL, 2437 const ConstantVector *CV, AsmPrinter &AP) { 2438 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2439 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2440 2441 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2442 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2443 CV->getType()->getNumElements(); 2444 if (unsigned Padding = Size - EmittedSize) 2445 AP.OutStreamer->EmitZeros(Padding); 2446 } 2447 2448 static void emitGlobalConstantStruct(const DataLayout &DL, 2449 const ConstantStruct *CS, AsmPrinter &AP, 2450 const Constant *BaseCV, uint64_t Offset) { 2451 // Print the fields in successive locations. Pad to align if needed! 2452 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2453 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2454 uint64_t SizeSoFar = 0; 2455 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2456 const Constant *Field = CS->getOperand(i); 2457 2458 // Print the actual field value. 2459 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2460 2461 // Check if padding is needed and insert one or more 0s. 2462 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2463 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2464 - Layout->getElementOffset(i)) - FieldSize; 2465 SizeSoFar += FieldSize + PadSize; 2466 2467 // Insert padding - this may include padding to increase the size of the 2468 // current field up to the ABI size (if the struct is not packed) as well 2469 // as padding to ensure that the next field starts at the right offset. 2470 AP.OutStreamer->EmitZeros(PadSize); 2471 } 2472 assert(SizeSoFar == Layout->getSizeInBytes() && 2473 "Layout of constant struct may be incorrect!"); 2474 } 2475 2476 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2477 APInt API = APF.bitcastToAPInt(); 2478 2479 // First print a comment with what we think the original floating-point value 2480 // should have been. 2481 if (AP.isVerbose()) { 2482 SmallString<8> StrVal; 2483 APF.toString(StrVal); 2484 2485 if (ET) 2486 ET->print(AP.OutStreamer->GetCommentOS()); 2487 else 2488 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2489 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2490 } 2491 2492 // Now iterate through the APInt chunks, emitting them in endian-correct 2493 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2494 // floats). 2495 unsigned NumBytes = API.getBitWidth() / 8; 2496 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2497 const uint64_t *p = API.getRawData(); 2498 2499 // PPC's long double has odd notions of endianness compared to how LLVM 2500 // handles it: p[0] goes first for *big* endian on PPC. 2501 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2502 int Chunk = API.getNumWords() - 1; 2503 2504 if (TrailingBytes) 2505 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2506 2507 for (; Chunk >= 0; --Chunk) 2508 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2509 } else { 2510 unsigned Chunk; 2511 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2512 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2513 2514 if (TrailingBytes) 2515 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2516 } 2517 2518 // Emit the tail padding for the long double. 2519 const DataLayout &DL = AP.getDataLayout(); 2520 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2521 } 2522 2523 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2524 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2525 } 2526 2527 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2528 const DataLayout &DL = AP.getDataLayout(); 2529 unsigned BitWidth = CI->getBitWidth(); 2530 2531 // Copy the value as we may massage the layout for constants whose bit width 2532 // is not a multiple of 64-bits. 2533 APInt Realigned(CI->getValue()); 2534 uint64_t ExtraBits = 0; 2535 unsigned ExtraBitsSize = BitWidth & 63; 2536 2537 if (ExtraBitsSize) { 2538 // The bit width of the data is not a multiple of 64-bits. 2539 // The extra bits are expected to be at the end of the chunk of the memory. 2540 // Little endian: 2541 // * Nothing to be done, just record the extra bits to emit. 2542 // Big endian: 2543 // * Record the extra bits to emit. 2544 // * Realign the raw data to emit the chunks of 64-bits. 2545 if (DL.isBigEndian()) { 2546 // Basically the structure of the raw data is a chunk of 64-bits cells: 2547 // 0 1 BitWidth / 64 2548 // [chunk1][chunk2] ... [chunkN]. 2549 // The most significant chunk is chunkN and it should be emitted first. 2550 // However, due to the alignment issue chunkN contains useless bits. 2551 // Realign the chunks so that they contain only useless information: 2552 // ExtraBits 0 1 (BitWidth / 64) - 1 2553 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2554 ExtraBits = Realigned.getRawData()[0] & 2555 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2556 Realigned.lshrInPlace(ExtraBitsSize); 2557 } else 2558 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2559 } 2560 2561 // We don't expect assemblers to support integer data directives 2562 // for more than 64 bits, so we emit the data in at most 64-bit 2563 // quantities at a time. 2564 const uint64_t *RawData = Realigned.getRawData(); 2565 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2566 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2567 AP.OutStreamer->EmitIntValue(Val, 8); 2568 } 2569 2570 if (ExtraBitsSize) { 2571 // Emit the extra bits after the 64-bits chunks. 2572 2573 // Emit a directive that fills the expected size. 2574 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2575 Size -= (BitWidth / 64) * 8; 2576 assert(Size && Size * 8 >= ExtraBitsSize && 2577 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2578 == ExtraBits && "Directive too small for extra bits."); 2579 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2580 } 2581 } 2582 2583 /// Transform a not absolute MCExpr containing a reference to a GOT 2584 /// equivalent global, by a target specific GOT pc relative access to the 2585 /// final symbol. 2586 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2587 const Constant *BaseCst, 2588 uint64_t Offset) { 2589 // The global @foo below illustrates a global that uses a got equivalent. 2590 // 2591 // @bar = global i32 42 2592 // @gotequiv = private unnamed_addr constant i32* @bar 2593 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2594 // i64 ptrtoint (i32* @foo to i64)) 2595 // to i32) 2596 // 2597 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2598 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2599 // form: 2600 // 2601 // foo = cstexpr, where 2602 // cstexpr := <gotequiv> - "." + <cst> 2603 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2604 // 2605 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2606 // 2607 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2608 // gotpcrelcst := <offset from @foo base> + <cst> 2609 MCValue MV; 2610 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2611 return; 2612 const MCSymbolRefExpr *SymA = MV.getSymA(); 2613 if (!SymA) 2614 return; 2615 2616 // Check that GOT equivalent symbol is cached. 2617 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2618 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2619 return; 2620 2621 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2622 if (!BaseGV) 2623 return; 2624 2625 // Check for a valid base symbol 2626 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2627 const MCSymbolRefExpr *SymB = MV.getSymB(); 2628 2629 if (!SymB || BaseSym != &SymB->getSymbol()) 2630 return; 2631 2632 // Make sure to match: 2633 // 2634 // gotpcrelcst := <offset from @foo base> + <cst> 2635 // 2636 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2637 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2638 // if the target knows how to encode it. 2639 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2640 if (GOTPCRelCst < 0) 2641 return; 2642 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2643 return; 2644 2645 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2646 // 2647 // bar: 2648 // .long 42 2649 // gotequiv: 2650 // .quad bar 2651 // foo: 2652 // .long gotequiv - "." + <cst> 2653 // 2654 // is replaced by the target specific equivalent to: 2655 // 2656 // bar: 2657 // .long 42 2658 // foo: 2659 // .long bar@GOTPCREL+<gotpcrelcst> 2660 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2661 const GlobalVariable *GV = Result.first; 2662 int NumUses = (int)Result.second; 2663 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2664 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2665 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2666 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2667 2668 // Update GOT equivalent usage information 2669 --NumUses; 2670 if (NumUses >= 0) 2671 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2672 } 2673 2674 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2675 AsmPrinter &AP, const Constant *BaseCV, 2676 uint64_t Offset) { 2677 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2678 2679 // Globals with sub-elements such as combinations of arrays and structs 2680 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2681 // constant symbol base and the current position with BaseCV and Offset. 2682 if (!BaseCV && CV->hasOneUse()) 2683 BaseCV = dyn_cast<Constant>(CV->user_back()); 2684 2685 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2686 return AP.OutStreamer->EmitZeros(Size); 2687 2688 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2689 switch (Size) { 2690 case 1: 2691 case 2: 2692 case 4: 2693 case 8: 2694 if (AP.isVerbose()) 2695 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2696 CI->getZExtValue()); 2697 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2698 return; 2699 default: 2700 emitGlobalConstantLargeInt(CI, AP); 2701 return; 2702 } 2703 } 2704 2705 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2706 return emitGlobalConstantFP(CFP, AP); 2707 2708 if (isa<ConstantPointerNull>(CV)) { 2709 AP.OutStreamer->EmitIntValue(0, Size); 2710 return; 2711 } 2712 2713 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2714 return emitGlobalConstantDataSequential(DL, CDS, AP); 2715 2716 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2717 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2718 2719 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2720 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2721 2722 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2723 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2724 // vectors). 2725 if (CE->getOpcode() == Instruction::BitCast) 2726 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2727 2728 if (Size > 8) { 2729 // If the constant expression's size is greater than 64-bits, then we have 2730 // to emit the value in chunks. Try to constant fold the value and emit it 2731 // that way. 2732 Constant *New = ConstantFoldConstant(CE, DL); 2733 if (New && New != CE) 2734 return emitGlobalConstantImpl(DL, New, AP); 2735 } 2736 } 2737 2738 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2739 return emitGlobalConstantVector(DL, V, AP); 2740 2741 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2742 // thread the streamer with EmitValue. 2743 const MCExpr *ME = AP.lowerConstant(CV); 2744 2745 // Since lowerConstant already folded and got rid of all IR pointer and 2746 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2747 // directly. 2748 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2749 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2750 2751 AP.OutStreamer->EmitValue(ME, Size); 2752 } 2753 2754 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2755 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2756 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2757 if (Size) 2758 emitGlobalConstantImpl(DL, CV, *this); 2759 else if (MAI->hasSubsectionsViaSymbols()) { 2760 // If the global has zero size, emit a single byte so that two labels don't 2761 // look like they are at the same location. 2762 OutStreamer->EmitIntValue(0, 1); 2763 } 2764 } 2765 2766 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2767 // Target doesn't support this yet! 2768 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2769 } 2770 2771 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2772 if (Offset > 0) 2773 OS << '+' << Offset; 2774 else if (Offset < 0) 2775 OS << Offset; 2776 } 2777 2778 //===----------------------------------------------------------------------===// 2779 // Symbol Lowering Routines. 2780 //===----------------------------------------------------------------------===// 2781 2782 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2783 return OutContext.createTempSymbol(Name, true); 2784 } 2785 2786 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2787 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2788 } 2789 2790 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2791 return MMI->getAddrLabelSymbol(BB); 2792 } 2793 2794 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2795 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2796 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) { 2797 const MachineConstantPoolEntry &CPE = 2798 MF->getConstantPool()->getConstants()[CPID]; 2799 if (!CPE.isMachineConstantPoolEntry()) { 2800 const DataLayout &DL = MF->getDataLayout(); 2801 SectionKind Kind = CPE.getSectionKind(&DL); 2802 const Constant *C = CPE.Val.ConstVal; 2803 unsigned Align = CPE.Alignment; 2804 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2805 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2806 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2807 if (Sym->isUndefined()) 2808 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2809 return Sym; 2810 } 2811 } 2812 } 2813 } 2814 2815 const DataLayout &DL = getDataLayout(); 2816 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2817 "CPI" + Twine(getFunctionNumber()) + "_" + 2818 Twine(CPID)); 2819 } 2820 2821 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2822 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2823 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2824 } 2825 2826 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2827 /// FIXME: privatize to AsmPrinter. 2828 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2829 const DataLayout &DL = getDataLayout(); 2830 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2831 Twine(getFunctionNumber()) + "_" + 2832 Twine(UID) + "_set_" + Twine(MBBID)); 2833 } 2834 2835 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2836 StringRef Suffix) const { 2837 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2838 } 2839 2840 /// Return the MCSymbol for the specified ExternalSymbol. 2841 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2842 SmallString<60> NameStr; 2843 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2844 return OutContext.getOrCreateSymbol(NameStr); 2845 } 2846 2847 /// PrintParentLoopComment - Print comments about parent loops of this one. 2848 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2849 unsigned FunctionNumber) { 2850 if (!Loop) return; 2851 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2852 OS.indent(Loop->getLoopDepth()*2) 2853 << "Parent Loop BB" << FunctionNumber << "_" 2854 << Loop->getHeader()->getNumber() 2855 << " Depth=" << Loop->getLoopDepth() << '\n'; 2856 } 2857 2858 /// PrintChildLoopComment - Print comments about child loops within 2859 /// the loop for this basic block, with nesting. 2860 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2861 unsigned FunctionNumber) { 2862 // Add child loop information 2863 for (const MachineLoop *CL : *Loop) { 2864 OS.indent(CL->getLoopDepth()*2) 2865 << "Child Loop BB" << FunctionNumber << "_" 2866 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2867 << '\n'; 2868 PrintChildLoopComment(OS, CL, FunctionNumber); 2869 } 2870 } 2871 2872 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2873 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2874 const MachineLoopInfo *LI, 2875 const AsmPrinter &AP) { 2876 // Add loop depth information 2877 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2878 if (!Loop) return; 2879 2880 MachineBasicBlock *Header = Loop->getHeader(); 2881 assert(Header && "No header for loop"); 2882 2883 // If this block is not a loop header, just print out what is the loop header 2884 // and return. 2885 if (Header != &MBB) { 2886 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2887 Twine(AP.getFunctionNumber())+"_" + 2888 Twine(Loop->getHeader()->getNumber())+ 2889 " Depth="+Twine(Loop->getLoopDepth())); 2890 return; 2891 } 2892 2893 // Otherwise, it is a loop header. Print out information about child and 2894 // parent loops. 2895 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2896 2897 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2898 2899 OS << "=>"; 2900 OS.indent(Loop->getLoopDepth()*2-2); 2901 2902 OS << "This "; 2903 if (Loop->empty()) 2904 OS << "Inner "; 2905 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2906 2907 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2908 } 2909 2910 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2911 MCCodePaddingContext &Context) const { 2912 assert(MF != nullptr && "Machine function must be valid"); 2913 Context.IsPaddingActive = !MF->hasInlineAsm() && 2914 !MF->getFunction().hasOptSize() && 2915 TM.getOptLevel() != CodeGenOpt::None; 2916 Context.IsBasicBlockReachableViaFallthrough = 2917 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2918 MBB.pred_end(); 2919 Context.IsBasicBlockReachableViaBranch = 2920 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2921 } 2922 2923 /// EmitBasicBlockStart - This method prints the label for the specified 2924 /// MachineBasicBlock, an alignment (if present) and a comment describing 2925 /// it if appropriate. 2926 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2927 // End the previous funclet and start a new one. 2928 if (MBB.isEHFuncletEntry()) { 2929 for (const HandlerInfo &HI : Handlers) { 2930 HI.Handler->endFunclet(); 2931 HI.Handler->beginFunclet(MBB); 2932 } 2933 } 2934 2935 // Emit an alignment directive for this block, if needed. 2936 if (unsigned Align = MBB.getAlignment()) 2937 EmitAlignment(Align); 2938 MCCodePaddingContext Context; 2939 setupCodePaddingContext(MBB, Context); 2940 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2941 2942 // If the block has its address taken, emit any labels that were used to 2943 // reference the block. It is possible that there is more than one label 2944 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2945 // the references were generated. 2946 if (MBB.hasAddressTaken()) { 2947 const BasicBlock *BB = MBB.getBasicBlock(); 2948 if (isVerbose()) 2949 OutStreamer->AddComment("Block address taken"); 2950 2951 // MBBs can have their address taken as part of CodeGen without having 2952 // their corresponding BB's address taken in IR 2953 if (BB->hasAddressTaken()) 2954 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2955 OutStreamer->EmitLabel(Sym); 2956 } 2957 2958 // Print some verbose block comments. 2959 if (isVerbose()) { 2960 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2961 if (BB->hasName()) { 2962 BB->printAsOperand(OutStreamer->GetCommentOS(), 2963 /*PrintType=*/false, BB->getModule()); 2964 OutStreamer->GetCommentOS() << '\n'; 2965 } 2966 } 2967 2968 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2969 emitBasicBlockLoopComments(MBB, MLI, *this); 2970 } 2971 2972 // Print the main label for the block. 2973 if (MBB.pred_empty() || 2974 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2975 !MBB.hasLabelMustBeEmitted())) { 2976 if (isVerbose()) { 2977 // NOTE: Want this comment at start of line, don't emit with AddComment. 2978 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2979 false); 2980 } 2981 } else { 2982 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 2983 OutStreamer->AddComment("Label of block must be emitted"); 2984 OutStreamer->EmitLabel(MBB.getSymbol()); 2985 } 2986 } 2987 2988 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2989 MCCodePaddingContext Context; 2990 setupCodePaddingContext(MBB, Context); 2991 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2992 } 2993 2994 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2995 bool IsDefinition) const { 2996 MCSymbolAttr Attr = MCSA_Invalid; 2997 2998 switch (Visibility) { 2999 default: break; 3000 case GlobalValue::HiddenVisibility: 3001 if (IsDefinition) 3002 Attr = MAI->getHiddenVisibilityAttr(); 3003 else 3004 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3005 break; 3006 case GlobalValue::ProtectedVisibility: 3007 Attr = MAI->getProtectedVisibilityAttr(); 3008 break; 3009 } 3010 3011 if (Attr != MCSA_Invalid) 3012 OutStreamer->EmitSymbolAttribute(Sym, Attr); 3013 } 3014 3015 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3016 /// exactly one predecessor and the control transfer mechanism between 3017 /// the predecessor and this block is a fall-through. 3018 bool AsmPrinter:: 3019 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3020 // If this is a landing pad, it isn't a fall through. If it has no preds, 3021 // then nothing falls through to it. 3022 if (MBB->isEHPad() || MBB->pred_empty()) 3023 return false; 3024 3025 // If there isn't exactly one predecessor, it can't be a fall through. 3026 if (MBB->pred_size() > 1) 3027 return false; 3028 3029 // The predecessor has to be immediately before this block. 3030 MachineBasicBlock *Pred = *MBB->pred_begin(); 3031 if (!Pred->isLayoutSuccessor(MBB)) 3032 return false; 3033 3034 // If the block is completely empty, then it definitely does fall through. 3035 if (Pred->empty()) 3036 return true; 3037 3038 // Check the terminators in the previous blocks 3039 for (const auto &MI : Pred->terminators()) { 3040 // If it is not a simple branch, we are in a table somewhere. 3041 if (!MI.isBranch() || MI.isIndirectBranch()) 3042 return false; 3043 3044 // If we are the operands of one of the branches, this is not a fall 3045 // through. Note that targets with delay slots will usually bundle 3046 // terminators with the delay slot instruction. 3047 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3048 if (OP->isJTI()) 3049 return false; 3050 if (OP->isMBB() && OP->getMBB() == MBB) 3051 return false; 3052 } 3053 } 3054 3055 return true; 3056 } 3057 3058 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3059 if (!S.usesMetadata()) 3060 return nullptr; 3061 3062 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3063 gcp_map_type::iterator GCPI = GCMap.find(&S); 3064 if (GCPI != GCMap.end()) 3065 return GCPI->second.get(); 3066 3067 auto Name = S.getName(); 3068 3069 for (GCMetadataPrinterRegistry::iterator 3070 I = GCMetadataPrinterRegistry::begin(), 3071 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3072 if (Name == I->getName()) { 3073 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3074 GMP->S = &S; 3075 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3076 return IterBool.first->second.get(); 3077 } 3078 3079 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3080 } 3081 3082 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3083 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3084 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3085 bool NeedsDefault = false; 3086 if (MI->begin() == MI->end()) 3087 // No GC strategy, use the default format. 3088 NeedsDefault = true; 3089 else 3090 for (auto &I : *MI) { 3091 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3092 if (MP->emitStackMaps(SM, *this)) 3093 continue; 3094 // The strategy doesn't have printer or doesn't emit custom stack maps. 3095 // Use the default format. 3096 NeedsDefault = true; 3097 } 3098 3099 if (NeedsDefault) 3100 SM.serializeToStackMapSection(); 3101 } 3102 3103 /// Pin vtable to this file. 3104 AsmPrinterHandler::~AsmPrinterHandler() = default; 3105 3106 void AsmPrinterHandler::markFunctionEnd() {} 3107 3108 // In the binary's "xray_instr_map" section, an array of these function entries 3109 // describes each instrumentation point. When XRay patches your code, the index 3110 // into this table will be given to your handler as a patch point identifier. 3111 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3112 const MCSymbol *CurrentFnSym) const { 3113 Out->EmitSymbolValue(Sled, Bytes); 3114 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3115 auto Kind8 = static_cast<uint8_t>(Kind); 3116 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3117 Out->EmitBinaryData( 3118 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3119 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3120 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3121 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3122 Out->EmitZeros(Padding); 3123 } 3124 3125 void AsmPrinter::emitXRayTable() { 3126 if (Sleds.empty()) 3127 return; 3128 3129 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3130 const Function &F = MF->getFunction(); 3131 MCSection *InstMap = nullptr; 3132 MCSection *FnSledIndex = nullptr; 3133 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3134 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3135 assert(Associated != nullptr); 3136 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3137 std::string GroupName; 3138 if (F.hasComdat()) { 3139 Flags |= ELF::SHF_GROUP; 3140 GroupName = F.getComdat()->getName(); 3141 } 3142 3143 auto UniqueID = ++XRayFnUniqueID; 3144 InstMap = 3145 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3146 GroupName, UniqueID, Associated); 3147 FnSledIndex = 3148 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3149 GroupName, UniqueID, Associated); 3150 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3151 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3152 SectionKind::getReadOnlyWithRel()); 3153 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3154 SectionKind::getReadOnlyWithRel()); 3155 } else { 3156 llvm_unreachable("Unsupported target"); 3157 } 3158 3159 auto WordSizeBytes = MAI->getCodePointerSize(); 3160 3161 // Now we switch to the instrumentation map section. Because this is done 3162 // per-function, we are able to create an index entry that will represent the 3163 // range of sleds associated with a function. 3164 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3165 OutStreamer->SwitchSection(InstMap); 3166 OutStreamer->EmitLabel(SledsStart); 3167 for (const auto &Sled : Sleds) 3168 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3169 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3170 OutStreamer->EmitLabel(SledsEnd); 3171 3172 // We then emit a single entry in the index per function. We use the symbols 3173 // that bound the instrumentation map as the range for a specific function. 3174 // Each entry here will be 2 * word size aligned, as we're writing down two 3175 // pointers. This should work for both 32-bit and 64-bit platforms. 3176 OutStreamer->SwitchSection(FnSledIndex); 3177 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3178 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3179 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3180 OutStreamer->SwitchSection(PrevSection); 3181 Sleds.clear(); 3182 } 3183 3184 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3185 SledKind Kind, uint8_t Version) { 3186 const Function &F = MI.getMF()->getFunction(); 3187 auto Attr = F.getFnAttribute("function-instrument"); 3188 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3189 bool AlwaysInstrument = 3190 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3191 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3192 Kind = SledKind::LOG_ARGS_ENTER; 3193 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3194 AlwaysInstrument, &F, Version}); 3195 } 3196 3197 uint16_t AsmPrinter::getDwarfVersion() const { 3198 return OutStreamer->getContext().getDwarfVersion(); 3199 } 3200 3201 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3202 OutStreamer->getContext().setDwarfVersion(Version); 3203 } 3204