1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "Win64Exception.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/JumpInstrTableInfo.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/GCMetadataPrinter.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBundle.h" 29 #include "llvm/CodeGen/MachineJumpTableInfo.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Mangler.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCExpr.h" 40 #include "llvm/MC/MCInst.h" 41 #include "llvm/MC/MCSection.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/MCValue.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Target/TargetFrameLowering.h" 51 #include "llvm/Target/TargetInstrInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetLoweringObjectFile.h" 54 #include "llvm/Target/TargetRegisterInfo.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 using namespace llvm; 57 58 #define DEBUG_TYPE "asm-printer" 59 60 static const char *const DWARFGroupName = "DWARF Emission"; 61 static const char *const DbgTimerName = "Debug Info Emission"; 62 static const char *const EHTimerName = "DWARF Exception Writer"; 63 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 64 65 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 66 67 char AsmPrinter::ID = 0; 68 69 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 70 static gcp_map_type &getGCMap(void *&P) { 71 if (!P) 72 P = new gcp_map_type(); 73 return *(gcp_map_type*)P; 74 } 75 76 77 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 78 /// value in log2 form. This rounds up to the preferred alignment if possible 79 /// and legal. 80 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 81 unsigned InBits = 0) { 82 unsigned NumBits = 0; 83 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 84 NumBits = TD.getPreferredAlignmentLog(GVar); 85 86 // If InBits is specified, round it to it. 87 if (InBits > NumBits) 88 NumBits = InBits; 89 90 // If the GV has a specified alignment, take it into account. 91 if (GV->getAlignment() == 0) 92 return NumBits; 93 94 unsigned GVAlign = Log2_32(GV->getAlignment()); 95 96 // If the GVAlign is larger than NumBits, or if we are required to obey 97 // NumBits because the GV has an assigned section, obey it. 98 if (GVAlign > NumBits || GV->hasSection()) 99 NumBits = GVAlign; 100 return NumBits; 101 } 102 103 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 104 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 105 OutContext(Streamer->getContext()), OutStreamer(*Streamer.release()), 106 LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) { 107 DD = nullptr; 108 MMI = nullptr; 109 LI = nullptr; 110 MF = nullptr; 111 CurrentFnSym = CurrentFnSymForSize = nullptr; 112 CurrentFnBegin = nullptr; 113 CurrentFnEnd = nullptr; 114 GCMetadataPrinters = nullptr; 115 VerboseAsm = OutStreamer.isVerboseAsm(); 116 } 117 118 AsmPrinter::~AsmPrinter() { 119 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 120 121 if (GCMetadataPrinters) { 122 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 123 124 delete &GCMap; 125 GCMetadataPrinters = nullptr; 126 } 127 128 delete &OutStreamer; 129 } 130 131 /// getFunctionNumber - Return a unique ID for the current function. 132 /// 133 unsigned AsmPrinter::getFunctionNumber() const { 134 return MF->getFunctionNumber(); 135 } 136 137 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 138 return *TM.getObjFileLowering(); 139 } 140 141 /// getDataLayout - Return information about data layout. 142 const DataLayout &AsmPrinter::getDataLayout() const { 143 return *TM.getDataLayout(); 144 } 145 146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 148 return MF->getSubtarget<MCSubtargetInfo>(); 149 } 150 151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 152 S.EmitInstruction(Inst, getSubtargetInfo()); 153 } 154 155 StringRef AsmPrinter::getTargetTriple() const { 156 return TM.getTargetTriple(); 157 } 158 159 /// getCurrentSection() - Return the current section we are emitting to. 160 const MCSection *AsmPrinter::getCurrentSection() const { 161 return OutStreamer.getCurrentSection().first; 162 } 163 164 165 166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesAll(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 AU.addRequired<MachineModuleInfo>(); 170 AU.addRequired<GCModuleInfo>(); 171 if (isVerbose()) 172 AU.addRequired<MachineLoopInfo>(); 173 } 174 175 bool AsmPrinter::doInitialization(Module &M) { 176 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 177 MMI->AnalyzeModule(M); 178 179 // Initialize TargetLoweringObjectFile. 180 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 181 .Initialize(OutContext, TM); 182 183 OutStreamer.InitSections(false); 184 185 Mang = new Mangler(TM.getDataLayout()); 186 187 // Emit the version-min deplyment target directive if needed. 188 // 189 // FIXME: If we end up with a collection of these sorts of Darwin-specific 190 // or ELF-specific things, it may make sense to have a platform helper class 191 // that will work with the target helper class. For now keep it here, as the 192 // alternative is duplicated code in each of the target asm printers that 193 // use the directive, where it would need the same conditionalization 194 // anyway. 195 Triple TT(getTargetTriple()); 196 if (TT.isOSDarwin()) { 197 unsigned Major, Minor, Update; 198 TT.getOSVersion(Major, Minor, Update); 199 // If there is a version specified, Major will be non-zero. 200 if (Major) 201 OutStreamer.EmitVersionMin((TT.isMacOSX() ? 202 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 203 Major, Minor, Update); 204 } 205 206 // Allow the target to emit any magic that it wants at the start of the file. 207 EmitStartOfAsmFile(M); 208 209 // Very minimal debug info. It is ignored if we emit actual debug info. If we 210 // don't, this at least helps the user find where a global came from. 211 if (MAI->hasSingleParameterDotFile()) { 212 // .file "foo.c" 213 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 214 } 215 216 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 217 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 218 for (auto &I : *MI) 219 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 220 MP->beginAssembly(M, *MI, *this); 221 222 // Emit module-level inline asm if it exists. 223 if (!M.getModuleInlineAsm().empty()) { 224 OutStreamer.AddComment("Start of file scope inline assembly"); 225 OutStreamer.AddBlankLine(); 226 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 227 OutStreamer.AddComment("End of file scope inline assembly"); 228 OutStreamer.AddBlankLine(); 229 } 230 231 if (MAI->doesSupportDebugInformation()) { 232 bool skip_dwarf = false; 233 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) { 234 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 235 DbgTimerName, 236 CodeViewLineTablesGroupName)); 237 // FIXME: Don't emit DWARF debug info if there's at least one function 238 // with AddressSanitizer instrumentation. 239 // This is a band-aid fix for PR22032. 240 for (auto &F : M.functions()) { 241 if (F.hasFnAttribute(Attribute::SanitizeAddress)) { 242 skip_dwarf = true; 243 break; 244 } 245 } 246 } 247 if (!skip_dwarf) { 248 DD = new DwarfDebug(this, &M); 249 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 250 } 251 } 252 253 EHStreamer *ES = nullptr; 254 switch (MAI->getExceptionHandlingType()) { 255 case ExceptionHandling::None: 256 break; 257 case ExceptionHandling::SjLj: 258 case ExceptionHandling::DwarfCFI: 259 ES = new DwarfCFIException(this); 260 break; 261 case ExceptionHandling::ARM: 262 ES = new ARMException(this); 263 break; 264 case ExceptionHandling::WinEH: 265 switch (MAI->getWinEHEncodingType()) { 266 default: llvm_unreachable("unsupported unwinding information encoding"); 267 case WinEH::EncodingType::Itanium: 268 ES = new Win64Exception(this); 269 break; 270 } 271 break; 272 } 273 if (ES) 274 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 275 return false; 276 } 277 278 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 279 if (!MAI.hasWeakDefCanBeHiddenDirective()) 280 return false; 281 282 return canBeOmittedFromSymbolTable(GV); 283 } 284 285 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 286 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 287 switch (Linkage) { 288 case GlobalValue::CommonLinkage: 289 case GlobalValue::LinkOnceAnyLinkage: 290 case GlobalValue::LinkOnceODRLinkage: 291 case GlobalValue::WeakAnyLinkage: 292 case GlobalValue::WeakODRLinkage: 293 if (MAI->hasWeakDefDirective()) { 294 // .globl _foo 295 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 296 297 if (!canBeHidden(GV, *MAI)) 298 // .weak_definition _foo 299 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 300 else 301 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 302 } else if (MAI->hasLinkOnceDirective()) { 303 // .globl _foo 304 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 305 //NOTE: linkonce is handled by the section the symbol was assigned to. 306 } else { 307 // .weak _foo 308 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 309 } 310 return; 311 case GlobalValue::AppendingLinkage: 312 // FIXME: appending linkage variables should go into a section of 313 // their name or something. For now, just emit them as external. 314 case GlobalValue::ExternalLinkage: 315 // If external or appending, declare as a global symbol. 316 // .globl _foo 317 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 318 return; 319 case GlobalValue::PrivateLinkage: 320 case GlobalValue::InternalLinkage: 321 return; 322 case GlobalValue::AvailableExternallyLinkage: 323 llvm_unreachable("Should never emit this"); 324 case GlobalValue::ExternalWeakLinkage: 325 llvm_unreachable("Don't know how to emit these"); 326 } 327 llvm_unreachable("Unknown linkage type!"); 328 } 329 330 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 331 const GlobalValue *GV) const { 332 TM.getNameWithPrefix(Name, GV, *Mang); 333 } 334 335 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 336 return TM.getSymbol(GV, *Mang); 337 } 338 339 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 340 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 341 if (GV->hasInitializer()) { 342 // Check to see if this is a special global used by LLVM, if so, emit it. 343 if (EmitSpecialLLVMGlobal(GV)) 344 return; 345 346 // Skip the emission of global equivalents. The symbol can be emitted later 347 // on by emitGlobalGOTEquivs in case it turns out to be needed. 348 if (GlobalGOTEquivs.count(getSymbol(GV))) 349 return; 350 351 if (isVerbose()) { 352 GV->printAsOperand(OutStreamer.GetCommentOS(), 353 /*PrintType=*/false, GV->getParent()); 354 OutStreamer.GetCommentOS() << '\n'; 355 } 356 } 357 358 MCSymbol *GVSym = getSymbol(GV); 359 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 360 361 if (!GV->hasInitializer()) // External globals require no extra code. 362 return; 363 364 GVSym->redefineIfPossible(); 365 if (GVSym->isDefined() || GVSym->isVariable()) 366 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 367 "' is already defined"); 368 369 if (MAI->hasDotTypeDotSizeDirective()) 370 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 371 372 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 373 374 const DataLayout *DL = TM.getDataLayout(); 375 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 376 377 // If the alignment is specified, we *must* obey it. Overaligning a global 378 // with a specified alignment is a prompt way to break globals emitted to 379 // sections and expected to be contiguous (e.g. ObjC metadata). 380 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 381 382 for (const HandlerInfo &HI : Handlers) { 383 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 384 HI.Handler->setSymbolSize(GVSym, Size); 385 } 386 387 // Handle common and BSS local symbols (.lcomm). 388 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 389 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 390 unsigned Align = 1 << AlignLog; 391 392 // Handle common symbols. 393 if (GVKind.isCommon()) { 394 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 395 Align = 0; 396 397 // .comm _foo, 42, 4 398 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 399 return; 400 } 401 402 // Handle local BSS symbols. 403 if (MAI->hasMachoZeroFillDirective()) { 404 const MCSection *TheSection = 405 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 406 // .zerofill __DATA, __bss, _foo, 400, 5 407 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 408 return; 409 } 410 411 // Use .lcomm only if it supports user-specified alignment. 412 // Otherwise, while it would still be correct to use .lcomm in some 413 // cases (e.g. when Align == 1), the external assembler might enfore 414 // some -unknown- default alignment behavior, which could cause 415 // spurious differences between external and integrated assembler. 416 // Prefer to simply fall back to .local / .comm in this case. 417 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 418 // .lcomm _foo, 42 419 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 420 return; 421 } 422 423 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 424 Align = 0; 425 426 // .local _foo 427 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 428 // .comm _foo, 42, 4 429 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 430 return; 431 } 432 433 const MCSection *TheSection = 434 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 435 436 // Handle the zerofill directive on darwin, which is a special form of BSS 437 // emission. 438 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 439 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 440 441 // .globl _foo 442 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 443 // .zerofill __DATA, __common, _foo, 400, 5 444 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 445 return; 446 } 447 448 // Handle thread local data for mach-o which requires us to output an 449 // additional structure of data and mangle the original symbol so that we 450 // can reference it later. 451 // 452 // TODO: This should become an "emit thread local global" method on TLOF. 453 // All of this macho specific stuff should be sunk down into TLOFMachO and 454 // stuff like "TLSExtraDataSection" should no longer be part of the parent 455 // TLOF class. This will also make it more obvious that stuff like 456 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 457 // specific code. 458 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 459 // Emit the .tbss symbol 460 MCSymbol *MangSym = 461 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 462 463 if (GVKind.isThreadBSS()) { 464 TheSection = getObjFileLowering().getTLSBSSSection(); 465 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 466 } else if (GVKind.isThreadData()) { 467 OutStreamer.SwitchSection(TheSection); 468 469 EmitAlignment(AlignLog, GV); 470 OutStreamer.EmitLabel(MangSym); 471 472 EmitGlobalConstant(GV->getInitializer()); 473 } 474 475 OutStreamer.AddBlankLine(); 476 477 // Emit the variable struct for the runtime. 478 const MCSection *TLVSect 479 = getObjFileLowering().getTLSExtraDataSection(); 480 481 OutStreamer.SwitchSection(TLVSect); 482 // Emit the linkage here. 483 EmitLinkage(GV, GVSym); 484 OutStreamer.EmitLabel(GVSym); 485 486 // Three pointers in size: 487 // - __tlv_bootstrap - used to make sure support exists 488 // - spare pointer, used when mapped by the runtime 489 // - pointer to mangled symbol above with initializer 490 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 491 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 492 PtrSize); 493 OutStreamer.EmitIntValue(0, PtrSize); 494 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 495 496 OutStreamer.AddBlankLine(); 497 return; 498 } 499 500 OutStreamer.SwitchSection(TheSection); 501 502 EmitLinkage(GV, GVSym); 503 EmitAlignment(AlignLog, GV); 504 505 OutStreamer.EmitLabel(GVSym); 506 507 EmitGlobalConstant(GV->getInitializer()); 508 509 if (MAI->hasDotTypeDotSizeDirective()) 510 // .size foo, 42 511 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 512 513 OutStreamer.AddBlankLine(); 514 } 515 516 /// EmitFunctionHeader - This method emits the header for the current 517 /// function. 518 void AsmPrinter::EmitFunctionHeader() { 519 // Print out constants referenced by the function 520 EmitConstantPool(); 521 522 // Print the 'header' of function. 523 const Function *F = MF->getFunction(); 524 525 OutStreamer.SwitchSection( 526 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 527 EmitVisibility(CurrentFnSym, F->getVisibility()); 528 529 EmitLinkage(F, CurrentFnSym); 530 EmitAlignment(MF->getAlignment(), F); 531 532 if (MAI->hasDotTypeDotSizeDirective()) 533 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 534 535 if (isVerbose()) { 536 F->printAsOperand(OutStreamer.GetCommentOS(), 537 /*PrintType=*/false, F->getParent()); 538 OutStreamer.GetCommentOS() << '\n'; 539 } 540 541 // Emit the prefix data. 542 if (F->hasPrefixData()) 543 EmitGlobalConstant(F->getPrefixData()); 544 545 // Emit the CurrentFnSym. This is a virtual function to allow targets to 546 // do their wild and crazy things as required. 547 EmitFunctionEntryLabel(); 548 549 // If the function had address-taken blocks that got deleted, then we have 550 // references to the dangling symbols. Emit them at the start of the function 551 // so that we don't get references to undefined symbols. 552 std::vector<MCSymbol*> DeadBlockSyms; 553 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 554 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 555 OutStreamer.AddComment("Address taken block that was later removed"); 556 OutStreamer.EmitLabel(DeadBlockSyms[i]); 557 } 558 559 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo()) { 560 CurrentFnBegin = createTempSymbol("func_begin", getFunctionNumber()); 561 562 if (MAI->useAssignmentForEHBegin()) { 563 MCSymbol *CurPos = OutContext.CreateTempSymbol(); 564 OutStreamer.EmitLabel(CurPos); 565 OutStreamer.EmitAssignment(CurrentFnBegin, 566 MCSymbolRefExpr::Create(CurPos, OutContext)); 567 } else { 568 OutStreamer.EmitLabel(CurrentFnBegin); 569 } 570 } 571 572 // Emit pre-function debug and/or EH information. 573 for (const HandlerInfo &HI : Handlers) { 574 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 575 HI.Handler->beginFunction(MF); 576 } 577 578 // Emit the prologue data. 579 if (F->hasPrologueData()) 580 EmitGlobalConstant(F->getPrologueData()); 581 } 582 583 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 584 /// function. This can be overridden by targets as required to do custom stuff. 585 void AsmPrinter::EmitFunctionEntryLabel() { 586 CurrentFnSym->redefineIfPossible(); 587 588 // The function label could have already been emitted if two symbols end up 589 // conflicting due to asm renaming. Detect this and emit an error. 590 if (CurrentFnSym->isVariable()) 591 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 592 "' is a protected alias"); 593 if (CurrentFnSym->isDefined()) 594 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 595 "' label emitted multiple times to assembly file"); 596 597 return OutStreamer.EmitLabel(CurrentFnSym); 598 } 599 600 /// emitComments - Pretty-print comments for instructions. 601 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 602 const MachineFunction *MF = MI.getParent()->getParent(); 603 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 604 605 // Check for spills and reloads 606 int FI; 607 608 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 609 610 // We assume a single instruction only has a spill or reload, not 611 // both. 612 const MachineMemOperand *MMO; 613 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 614 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 615 MMO = *MI.memoperands_begin(); 616 CommentOS << MMO->getSize() << "-byte Reload\n"; 617 } 618 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 619 if (FrameInfo->isSpillSlotObjectIndex(FI)) 620 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 621 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 622 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 623 MMO = *MI.memoperands_begin(); 624 CommentOS << MMO->getSize() << "-byte Spill\n"; 625 } 626 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 627 if (FrameInfo->isSpillSlotObjectIndex(FI)) 628 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 629 } 630 631 // Check for spill-induced copies 632 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 633 CommentOS << " Reload Reuse\n"; 634 } 635 636 /// emitImplicitDef - This method emits the specified machine instruction 637 /// that is an implicit def. 638 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 639 unsigned RegNo = MI->getOperand(0).getReg(); 640 OutStreamer.AddComment(Twine("implicit-def: ") + 641 MMI->getContext().getRegisterInfo()->getName(RegNo)); 642 OutStreamer.AddBlankLine(); 643 } 644 645 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 646 std::string Str = "kill:"; 647 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 648 const MachineOperand &Op = MI->getOperand(i); 649 assert(Op.isReg() && "KILL instruction must have only register operands"); 650 Str += ' '; 651 Str += AP.MMI->getContext().getRegisterInfo()->getName(Op.getReg()); 652 Str += (Op.isDef() ? "<def>" : "<kill>"); 653 } 654 AP.OutStreamer.AddComment(Str); 655 AP.OutStreamer.AddBlankLine(); 656 } 657 658 /// emitDebugValueComment - This method handles the target-independent form 659 /// of DBG_VALUE, returning true if it was able to do so. A false return 660 /// means the target will need to handle MI in EmitInstruction. 661 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 662 // This code handles only the 4-operand target-independent form. 663 if (MI->getNumOperands() != 4) 664 return false; 665 666 SmallString<128> Str; 667 raw_svector_ostream OS(Str); 668 OS << "DEBUG_VALUE: "; 669 670 DIVariable V = MI->getDebugVariable(); 671 if (V.getContext().isSubprogram()) { 672 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 673 if (!Name.empty()) 674 OS << Name << ":"; 675 } 676 OS << V.getName(); 677 678 DIExpression Expr = MI->getDebugExpression(); 679 if (Expr.isBitPiece()) 680 OS << " [bit_piece offset=" << Expr.getBitPieceOffset() 681 << " size=" << Expr.getBitPieceSize() << "]"; 682 OS << " <- "; 683 684 // The second operand is only an offset if it's an immediate. 685 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 686 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 687 688 // Register or immediate value. Register 0 means undef. 689 if (MI->getOperand(0).isFPImm()) { 690 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 691 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 692 OS << (double)APF.convertToFloat(); 693 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 694 OS << APF.convertToDouble(); 695 } else { 696 // There is no good way to print long double. Convert a copy to 697 // double. Ah well, it's only a comment. 698 bool ignored; 699 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 700 &ignored); 701 OS << "(long double) " << APF.convertToDouble(); 702 } 703 } else if (MI->getOperand(0).isImm()) { 704 OS << MI->getOperand(0).getImm(); 705 } else if (MI->getOperand(0).isCImm()) { 706 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 707 } else { 708 unsigned Reg; 709 if (MI->getOperand(0).isReg()) { 710 Reg = MI->getOperand(0).getReg(); 711 } else { 712 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 713 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 714 Offset += TFI->getFrameIndexReference(*AP.MF, 715 MI->getOperand(0).getIndex(), Reg); 716 Deref = true; 717 } 718 if (Reg == 0) { 719 // Suppress offset, it is not meaningful here. 720 OS << "undef"; 721 // NOTE: Want this comment at start of line, don't emit with AddComment. 722 AP.OutStreamer.emitRawComment(OS.str()); 723 return true; 724 } 725 if (Deref) 726 OS << '['; 727 OS << AP.MMI->getContext().getRegisterInfo()->getName(Reg); 728 } 729 730 if (Deref) 731 OS << '+' << Offset << ']'; 732 733 // NOTE: Want this comment at start of line, don't emit with AddComment. 734 AP.OutStreamer.emitRawComment(OS.str()); 735 return true; 736 } 737 738 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 739 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 740 MF->getFunction()->needsUnwindTableEntry()) 741 return CFI_M_EH; 742 743 if (MMI->hasDebugInfo()) 744 return CFI_M_Debug; 745 746 return CFI_M_None; 747 } 748 749 bool AsmPrinter::needsSEHMoves() { 750 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 751 } 752 753 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 754 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 755 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 756 ExceptionHandlingType != ExceptionHandling::ARM) 757 return; 758 759 if (needsCFIMoves() == CFI_M_None) 760 return; 761 762 const MachineModuleInfo &MMI = MF->getMMI(); 763 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 764 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 765 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 766 emitCFIInstruction(CFI); 767 } 768 769 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 770 // The operands are the MCSymbol and the frame offset of the allocation. 771 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 772 int FrameOffset = MI.getOperand(1).getImm(); 773 774 // Emit a symbol assignment. 775 OutStreamer.EmitAssignment(FrameAllocSym, 776 MCConstantExpr::Create(FrameOffset, OutContext)); 777 } 778 779 /// EmitFunctionBody - This method emits the body and trailer for a 780 /// function. 781 void AsmPrinter::EmitFunctionBody() { 782 // Emit target-specific gunk before the function body. 783 EmitFunctionBodyStart(); 784 785 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 786 787 // Print out code for the function. 788 bool HasAnyRealCode = false; 789 for (auto &MBB : *MF) { 790 // Print a label for the basic block. 791 EmitBasicBlockStart(MBB); 792 for (auto &MI : MBB) { 793 794 // Print the assembly for the instruction. 795 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 796 !MI.isDebugValue()) { 797 HasAnyRealCode = true; 798 ++EmittedInsts; 799 } 800 801 if (ShouldPrintDebugScopes) { 802 for (const HandlerInfo &HI : Handlers) { 803 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 804 TimePassesIsEnabled); 805 HI.Handler->beginInstruction(&MI); 806 } 807 } 808 809 if (isVerbose()) 810 emitComments(MI, OutStreamer.GetCommentOS()); 811 812 switch (MI.getOpcode()) { 813 case TargetOpcode::CFI_INSTRUCTION: 814 emitCFIInstruction(MI); 815 break; 816 817 case TargetOpcode::FRAME_ALLOC: 818 emitFrameAlloc(MI); 819 break; 820 821 case TargetOpcode::EH_LABEL: 822 case TargetOpcode::GC_LABEL: 823 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol()); 824 break; 825 case TargetOpcode::INLINEASM: 826 EmitInlineAsm(&MI); 827 break; 828 case TargetOpcode::DBG_VALUE: 829 if (isVerbose()) { 830 if (!emitDebugValueComment(&MI, *this)) 831 EmitInstruction(&MI); 832 } 833 break; 834 case TargetOpcode::IMPLICIT_DEF: 835 if (isVerbose()) emitImplicitDef(&MI); 836 break; 837 case TargetOpcode::KILL: 838 if (isVerbose()) emitKill(&MI, *this); 839 break; 840 default: 841 EmitInstruction(&MI); 842 break; 843 } 844 845 if (ShouldPrintDebugScopes) { 846 for (const HandlerInfo &HI : Handlers) { 847 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 848 TimePassesIsEnabled); 849 HI.Handler->endInstruction(); 850 } 851 } 852 } 853 854 EmitBasicBlockEnd(MBB); 855 } 856 857 // If the function is empty and the object file uses .subsections_via_symbols, 858 // then we need to emit *something* to the function body to prevent the 859 // labels from collapsing together. Just emit a noop. 860 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 861 MCInst Noop; 862 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 863 OutStreamer.AddComment("avoids zero-length function"); 864 865 // Targets can opt-out of emitting the noop here by leaving the opcode 866 // unspecified. 867 if (Noop.getOpcode()) 868 OutStreamer.EmitInstruction(Noop, getSubtargetInfo()); 869 } 870 871 const Function *F = MF->getFunction(); 872 for (const auto &BB : *F) { 873 if (!BB.hasAddressTaken()) 874 continue; 875 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 876 if (Sym->isDefined()) 877 continue; 878 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 879 OutStreamer.EmitLabel(Sym); 880 } 881 882 // Emit target-specific gunk after the function body. 883 EmitFunctionBodyEnd(); 884 885 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 886 MAI->hasDotTypeDotSizeDirective()) { 887 // Create a symbol for the end of function. 888 CurrentFnEnd = createTempSymbol("func_end", getFunctionNumber()); 889 OutStreamer.EmitLabel(CurrentFnEnd); 890 } 891 892 // If the target wants a .size directive for the size of the function, emit 893 // it. 894 if (MAI->hasDotTypeDotSizeDirective()) { 895 // We can get the size as difference between the function label and the 896 // temp label. 897 const MCExpr *SizeExp = 898 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(CurrentFnEnd, OutContext), 899 MCSymbolRefExpr::Create(CurrentFnSymForSize, 900 OutContext), 901 OutContext); 902 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 903 } 904 905 // Emit post-function debug and/or EH information. 906 for (const HandlerInfo &HI : Handlers) { 907 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 908 HI.Handler->endFunction(MF); 909 } 910 MMI->EndFunction(); 911 912 // Print out jump tables referenced by the function. 913 EmitJumpTableInfo(); 914 915 OutStreamer.AddBlankLine(); 916 } 917 918 /// \brief Compute the number of Global Variables that uses a Constant. 919 static unsigned getNumGlobalVariableUses(const Constant *C) { 920 if (!C) 921 return 0; 922 923 if (isa<GlobalVariable>(C)) 924 return 1; 925 926 unsigned NumUses = 0; 927 for (auto *CU : C->users()) 928 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 929 930 return NumUses; 931 } 932 933 /// \brief Only consider global GOT equivalents if at least one user is a 934 /// cstexpr inside an initializer of another global variables. Also, don't 935 /// handle cstexpr inside instructions. During global variable emission, 936 /// candidates are skipped and are emitted later in case at least one cstexpr 937 /// isn't replaced by a PC relative GOT entry access. 938 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 939 unsigned &NumGOTEquivUsers) { 940 // Global GOT equivalents are unnamed private globals with a constant 941 // pointer initializer to another global symbol. They must point to a 942 // GlobalVariable or Function, i.e., as GlobalValue. 943 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 944 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 945 return false; 946 947 // To be a got equivalent, at least one of its users need to be a constant 948 // expression used by another global variable. 949 for (auto *U : GV->users()) 950 NumGOTEquivUsers += getNumGlobalVariableUses(cast<Constant>(U)); 951 952 return NumGOTEquivUsers > 0; 953 } 954 955 /// \brief Unnamed constant global variables solely contaning a pointer to 956 /// another globals variable is equivalent to a GOT table entry; it contains the 957 /// the address of another symbol. Optimize it and replace accesses to these 958 /// "GOT equivalents" by using the GOT entry for the final global instead. 959 /// Compute GOT equivalent candidates among all global variables to avoid 960 /// emitting them if possible later on, after it use is replaced by a GOT entry 961 /// access. 962 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 963 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 964 return; 965 966 for (const auto &G : M.globals()) { 967 unsigned NumGOTEquivUsers = 0; 968 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 969 continue; 970 971 const MCSymbol *GOTEquivSym = getSymbol(&G); 972 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 973 } 974 } 975 976 /// \brief Constant expressions using GOT equivalent globals may not be eligible 977 /// for PC relative GOT entry conversion, in such cases we need to emit such 978 /// globals we previously omitted in EmitGlobalVariable. 979 void AsmPrinter::emitGlobalGOTEquivs() { 980 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 981 return; 982 983 while (!GlobalGOTEquivs.empty()) { 984 DenseMap<const MCSymbol *, GOTEquivUsePair>::iterator I = 985 GlobalGOTEquivs.begin(); 986 const MCSymbol *S = I->first; 987 const GlobalVariable *GV = I->second.first; 988 GlobalGOTEquivs.erase(S); 989 EmitGlobalVariable(GV); 990 } 991 } 992 993 bool AsmPrinter::doFinalization(Module &M) { 994 // Gather all GOT equivalent globals in the module. We really need two 995 // passes over the globals: one to compute and another to avoid its emission 996 // in EmitGlobalVariable, otherwise we would not be able to handle cases 997 // where the got equivalent shows up before its use. 998 computeGlobalGOTEquivs(M); 999 1000 // Emit global variables. 1001 for (const auto &G : M.globals()) 1002 EmitGlobalVariable(&G); 1003 1004 // Emit remaining GOT equivalent globals. 1005 emitGlobalGOTEquivs(); 1006 1007 // Emit visibility info for declarations 1008 for (const Function &F : M) { 1009 if (!F.isDeclaration()) 1010 continue; 1011 GlobalValue::VisibilityTypes V = F.getVisibility(); 1012 if (V == GlobalValue::DefaultVisibility) 1013 continue; 1014 1015 MCSymbol *Name = getSymbol(&F); 1016 EmitVisibility(Name, V, false); 1017 } 1018 1019 // Emit module flags. 1020 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1021 M.getModuleFlagsMetadata(ModuleFlags); 1022 if (!ModuleFlags.empty()) 1023 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM); 1024 1025 // Make sure we wrote out everything we need. 1026 OutStreamer.Flush(); 1027 1028 // Finalize debug and EH information. 1029 for (const HandlerInfo &HI : Handlers) { 1030 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1031 TimePassesIsEnabled); 1032 HI.Handler->endModule(); 1033 delete HI.Handler; 1034 } 1035 Handlers.clear(); 1036 DD = nullptr; 1037 1038 // If the target wants to know about weak references, print them all. 1039 if (MAI->getWeakRefDirective()) { 1040 // FIXME: This is not lazy, it would be nice to only print weak references 1041 // to stuff that is actually used. Note that doing so would require targets 1042 // to notice uses in operands (due to constant exprs etc). This should 1043 // happen with the MC stuff eventually. 1044 1045 // Print out module-level global variables here. 1046 for (const auto &G : M.globals()) { 1047 if (!G.hasExternalWeakLinkage()) 1048 continue; 1049 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1050 } 1051 1052 for (const auto &F : M) { 1053 if (!F.hasExternalWeakLinkage()) 1054 continue; 1055 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1056 } 1057 } 1058 1059 OutStreamer.AddBlankLine(); 1060 for (const auto &Alias : M.aliases()) { 1061 MCSymbol *Name = getSymbol(&Alias); 1062 1063 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1064 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 1065 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1066 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 1067 else 1068 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1069 1070 EmitVisibility(Name, Alias.getVisibility()); 1071 1072 // Emit the directives as assignments aka .set: 1073 OutStreamer.EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1074 } 1075 1076 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1077 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1078 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1079 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1080 MP->finishAssembly(M, *MI, *this); 1081 1082 // Emit llvm.ident metadata in an '.ident' directive. 1083 EmitModuleIdents(M); 1084 1085 // Emit __morestack address if needed for indirect calls. 1086 if (MMI->usesMorestackAddr()) { 1087 const MCSection *ReadOnlySection = 1088 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(), 1089 /*C=*/nullptr); 1090 OutStreamer.SwitchSection(ReadOnlySection); 1091 1092 MCSymbol *AddrSymbol = 1093 OutContext.GetOrCreateSymbol(StringRef("__morestack_addr")); 1094 OutStreamer.EmitLabel(AddrSymbol); 1095 1096 unsigned PtrSize = TM.getDataLayout()->getPointerSize(0); 1097 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1098 PtrSize); 1099 } 1100 1101 // If we don't have any trampolines, then we don't require stack memory 1102 // to be executable. Some targets have a directive to declare this. 1103 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1104 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1105 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1106 OutStreamer.SwitchSection(S); 1107 1108 // Allow the target to emit any magic that it wants at the end of the file, 1109 // after everything else has gone out. 1110 EmitEndOfAsmFile(M); 1111 1112 delete Mang; Mang = nullptr; 1113 MMI = nullptr; 1114 1115 OutStreamer.Finish(); 1116 OutStreamer.reset(); 1117 1118 return false; 1119 } 1120 1121 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1122 this->MF = &MF; 1123 // Get the function symbol. 1124 CurrentFnSym = getSymbol(MF.getFunction()); 1125 CurrentFnSymForSize = CurrentFnSym; 1126 1127 if (isVerbose()) 1128 LI = &getAnalysis<MachineLoopInfo>(); 1129 } 1130 1131 namespace { 1132 // SectionCPs - Keep track the alignment, constpool entries per Section. 1133 struct SectionCPs { 1134 const MCSection *S; 1135 unsigned Alignment; 1136 SmallVector<unsigned, 4> CPEs; 1137 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1138 }; 1139 } 1140 1141 /// EmitConstantPool - Print to the current output stream assembly 1142 /// representations of the constants in the constant pool MCP. This is 1143 /// used to print out constants which have been "spilled to memory" by 1144 /// the code generator. 1145 /// 1146 void AsmPrinter::EmitConstantPool() { 1147 const MachineConstantPool *MCP = MF->getConstantPool(); 1148 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1149 if (CP.empty()) return; 1150 1151 // Calculate sections for constant pool entries. We collect entries to go into 1152 // the same section together to reduce amount of section switch statements. 1153 SmallVector<SectionCPs, 4> CPSections; 1154 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1155 const MachineConstantPoolEntry &CPE = CP[i]; 1156 unsigned Align = CPE.getAlignment(); 1157 1158 SectionKind Kind = 1159 CPE.getSectionKind(TM.getDataLayout()); 1160 1161 const Constant *C = nullptr; 1162 if (!CPE.isMachineConstantPoolEntry()) 1163 C = CPE.Val.ConstVal; 1164 1165 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C); 1166 1167 // The number of sections are small, just do a linear search from the 1168 // last section to the first. 1169 bool Found = false; 1170 unsigned SecIdx = CPSections.size(); 1171 while (SecIdx != 0) { 1172 if (CPSections[--SecIdx].S == S) { 1173 Found = true; 1174 break; 1175 } 1176 } 1177 if (!Found) { 1178 SecIdx = CPSections.size(); 1179 CPSections.push_back(SectionCPs(S, Align)); 1180 } 1181 1182 if (Align > CPSections[SecIdx].Alignment) 1183 CPSections[SecIdx].Alignment = Align; 1184 CPSections[SecIdx].CPEs.push_back(i); 1185 } 1186 1187 // Now print stuff into the calculated sections. 1188 const MCSection *CurSection = nullptr; 1189 unsigned Offset = 0; 1190 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1191 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1192 unsigned CPI = CPSections[i].CPEs[j]; 1193 MCSymbol *Sym = GetCPISymbol(CPI); 1194 if (!Sym->isUndefined()) 1195 continue; 1196 1197 if (CurSection != CPSections[i].S) { 1198 OutStreamer.SwitchSection(CPSections[i].S); 1199 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1200 CurSection = CPSections[i].S; 1201 Offset = 0; 1202 } 1203 1204 MachineConstantPoolEntry CPE = CP[CPI]; 1205 1206 // Emit inter-object padding for alignment. 1207 unsigned AlignMask = CPE.getAlignment() - 1; 1208 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1209 OutStreamer.EmitZeros(NewOffset - Offset); 1210 1211 Type *Ty = CPE.getType(); 1212 Offset = NewOffset + 1213 TM.getDataLayout()->getTypeAllocSize(Ty); 1214 1215 OutStreamer.EmitLabel(Sym); 1216 if (CPE.isMachineConstantPoolEntry()) 1217 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1218 else 1219 EmitGlobalConstant(CPE.Val.ConstVal); 1220 } 1221 } 1222 } 1223 1224 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1225 /// by the current function to the current output stream. 1226 /// 1227 void AsmPrinter::EmitJumpTableInfo() { 1228 const DataLayout *DL = MF->getTarget().getDataLayout(); 1229 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1230 if (!MJTI) return; 1231 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1232 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1233 if (JT.empty()) return; 1234 1235 // Pick the directive to use to print the jump table entries, and switch to 1236 // the appropriate section. 1237 const Function *F = MF->getFunction(); 1238 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1239 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1240 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1241 *F); 1242 if (!JTInDiffSection) { 1243 OutStreamer.SwitchSection(TLOF.SectionForGlobal(F, *Mang, TM)); 1244 } else { 1245 // Otherwise, drop it in the readonly section. 1246 const MCSection *ReadOnlySection = 1247 TLOF.getSectionForJumpTable(*F, *Mang, TM); 1248 OutStreamer.SwitchSection(ReadOnlySection); 1249 } 1250 1251 EmitAlignment(Log2_32( 1252 MJTI->getEntryAlignment(*TM.getDataLayout()))); 1253 1254 // Jump tables in code sections are marked with a data_region directive 1255 // where that's supported. 1256 if (!JTInDiffSection) 1257 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1258 1259 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1260 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1261 1262 // If this jump table was deleted, ignore it. 1263 if (JTBBs.empty()) continue; 1264 1265 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1266 /// emit a .set directive for each unique entry. 1267 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1268 MAI->doesSetDirectiveSuppressesReloc()) { 1269 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1270 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1271 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1272 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1273 const MachineBasicBlock *MBB = JTBBs[ii]; 1274 if (!EmittedSets.insert(MBB).second) 1275 continue; 1276 1277 // .set LJTSet, LBB32-base 1278 const MCExpr *LHS = 1279 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1280 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1281 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1282 } 1283 } 1284 1285 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1286 // before each jump table. The first label is never referenced, but tells 1287 // the assembler and linker the extents of the jump table object. The 1288 // second label is actually referenced by the code. 1289 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1290 // FIXME: This doesn't have to have any specific name, just any randomly 1291 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1292 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1293 1294 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1295 1296 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1297 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1298 } 1299 if (!JTInDiffSection) 1300 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1301 } 1302 1303 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1304 /// current stream. 1305 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1306 const MachineBasicBlock *MBB, 1307 unsigned UID) const { 1308 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1309 const MCExpr *Value = nullptr; 1310 switch (MJTI->getEntryKind()) { 1311 case MachineJumpTableInfo::EK_Inline: 1312 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1313 case MachineJumpTableInfo::EK_Custom32: 1314 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1315 MJTI, MBB, UID, OutContext); 1316 break; 1317 case MachineJumpTableInfo::EK_BlockAddress: 1318 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1319 // .word LBB123 1320 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1321 break; 1322 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1323 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1324 // with a relocation as gp-relative, e.g.: 1325 // .gprel32 LBB123 1326 MCSymbol *MBBSym = MBB->getSymbol(); 1327 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1328 return; 1329 } 1330 1331 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1332 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1333 // with a relocation as gp-relative, e.g.: 1334 // .gpdword LBB123 1335 MCSymbol *MBBSym = MBB->getSymbol(); 1336 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1337 return; 1338 } 1339 1340 case MachineJumpTableInfo::EK_LabelDifference32: { 1341 // Each entry is the address of the block minus the address of the jump 1342 // table. This is used for PIC jump tables where gprel32 is not supported. 1343 // e.g.: 1344 // .word LBB123 - LJTI1_2 1345 // If the .set directive avoids relocations, this is emitted as: 1346 // .set L4_5_set_123, LBB123 - LJTI1_2 1347 // .word L4_5_set_123 1348 if (MAI->doesSetDirectiveSuppressesReloc()) { 1349 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1350 OutContext); 1351 break; 1352 } 1353 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1354 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1355 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1356 Value = MCBinaryExpr::CreateSub(Value, Base, OutContext); 1357 break; 1358 } 1359 } 1360 1361 assert(Value && "Unknown entry kind!"); 1362 1363 unsigned EntrySize = 1364 MJTI->getEntrySize(*TM.getDataLayout()); 1365 OutStreamer.EmitValue(Value, EntrySize); 1366 } 1367 1368 1369 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1370 /// special global used by LLVM. If so, emit it and return true, otherwise 1371 /// do nothing and return false. 1372 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1373 if (GV->getName() == "llvm.used") { 1374 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1375 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1376 return true; 1377 } 1378 1379 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1380 if (StringRef(GV->getSection()) == "llvm.metadata" || 1381 GV->hasAvailableExternallyLinkage()) 1382 return true; 1383 1384 if (!GV->hasAppendingLinkage()) return false; 1385 1386 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1387 1388 if (GV->getName() == "llvm.global_ctors") { 1389 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1390 1391 if (TM.getRelocationModel() == Reloc::Static && 1392 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1393 StringRef Sym(".constructors_used"); 1394 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1395 MCSA_Reference); 1396 } 1397 return true; 1398 } 1399 1400 if (GV->getName() == "llvm.global_dtors") { 1401 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1402 1403 if (TM.getRelocationModel() == Reloc::Static && 1404 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1405 StringRef Sym(".destructors_used"); 1406 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1407 MCSA_Reference); 1408 } 1409 return true; 1410 } 1411 1412 return false; 1413 } 1414 1415 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1416 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1417 /// is true, as being used with this directive. 1418 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1419 // Should be an array of 'i8*'. 1420 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1421 const GlobalValue *GV = 1422 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1423 if (GV) 1424 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1425 } 1426 } 1427 1428 namespace { 1429 struct Structor { 1430 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1431 int Priority; 1432 llvm::Constant *Func; 1433 llvm::GlobalValue *ComdatKey; 1434 }; 1435 } // end namespace 1436 1437 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1438 /// priority. 1439 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1440 // Should be an array of '{ int, void ()* }' structs. The first value is the 1441 // init priority. 1442 if (!isa<ConstantArray>(List)) return; 1443 1444 // Sanity check the structors list. 1445 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1446 if (!InitList) return; // Not an array! 1447 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1448 // FIXME: Only allow the 3-field form in LLVM 4.0. 1449 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1450 return; // Not an array of two or three elements! 1451 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1452 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1453 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1454 return; // Not (int, ptr, ptr). 1455 1456 // Gather the structors in a form that's convenient for sorting by priority. 1457 SmallVector<Structor, 8> Structors; 1458 for (Value *O : InitList->operands()) { 1459 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1460 if (!CS) continue; // Malformed. 1461 if (CS->getOperand(1)->isNullValue()) 1462 break; // Found a null terminator, skip the rest. 1463 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1464 if (!Priority) continue; // Malformed. 1465 Structors.push_back(Structor()); 1466 Structor &S = Structors.back(); 1467 S.Priority = Priority->getLimitedValue(65535); 1468 S.Func = CS->getOperand(1); 1469 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1470 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1471 } 1472 1473 // Emit the function pointers in the target-specific order 1474 const DataLayout *DL = TM.getDataLayout(); 1475 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1476 std::stable_sort(Structors.begin(), Structors.end(), 1477 [](const Structor &L, 1478 const Structor &R) { return L.Priority < R.Priority; }); 1479 for (Structor &S : Structors) { 1480 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1481 const MCSymbol *KeySym = nullptr; 1482 if (GlobalValue *GV = S.ComdatKey) { 1483 if (GV->hasAvailableExternallyLinkage()) 1484 // If the associated variable is available_externally, some other TU 1485 // will provide its dynamic initializer. 1486 continue; 1487 1488 KeySym = getSymbol(GV); 1489 } 1490 const MCSection *OutputSection = 1491 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1492 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1493 OutStreamer.SwitchSection(OutputSection); 1494 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1495 EmitAlignment(Align); 1496 EmitXXStructor(S.Func); 1497 } 1498 } 1499 1500 void AsmPrinter::EmitModuleIdents(Module &M) { 1501 if (!MAI->hasIdentDirective()) 1502 return; 1503 1504 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1505 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1506 const MDNode *N = NMD->getOperand(i); 1507 assert(N->getNumOperands() == 1 && 1508 "llvm.ident metadata entry can have only one operand"); 1509 const MDString *S = cast<MDString>(N->getOperand(0)); 1510 OutStreamer.EmitIdent(S->getString()); 1511 } 1512 } 1513 } 1514 1515 //===--------------------------------------------------------------------===// 1516 // Emission and print routines 1517 // 1518 1519 /// EmitInt8 - Emit a byte directive and value. 1520 /// 1521 void AsmPrinter::EmitInt8(int Value) const { 1522 OutStreamer.EmitIntValue(Value, 1); 1523 } 1524 1525 /// EmitInt16 - Emit a short directive and value. 1526 /// 1527 void AsmPrinter::EmitInt16(int Value) const { 1528 OutStreamer.EmitIntValue(Value, 2); 1529 } 1530 1531 /// EmitInt32 - Emit a long directive and value. 1532 /// 1533 void AsmPrinter::EmitInt32(int Value) const { 1534 OutStreamer.EmitIntValue(Value, 4); 1535 } 1536 1537 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1538 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1539 /// .set if it avoids relocations. 1540 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1541 unsigned Size) const { 1542 // Get the Hi-Lo expression. 1543 const MCExpr *Diff = 1544 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1545 MCSymbolRefExpr::Create(Lo, OutContext), 1546 OutContext); 1547 1548 if (!MAI->doesSetDirectiveSuppressesReloc()) { 1549 OutStreamer.EmitValue(Diff, Size); 1550 return; 1551 } 1552 1553 // Otherwise, emit with .set (aka assignment). 1554 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1555 OutStreamer.EmitAssignment(SetLabel, Diff); 1556 OutStreamer.EmitSymbolValue(SetLabel, Size); 1557 } 1558 1559 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1560 /// where the size in bytes of the directive is specified by Size and Label 1561 /// specifies the label. This implicitly uses .set if it is available. 1562 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1563 unsigned Size, 1564 bool IsSectionRelative) const { 1565 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1566 OutStreamer.EmitCOFFSecRel32(Label); 1567 return; 1568 } 1569 1570 // Emit Label+Offset (or just Label if Offset is zero) 1571 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1572 if (Offset) 1573 Expr = MCBinaryExpr::CreateAdd( 1574 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1575 1576 OutStreamer.EmitValue(Expr, Size); 1577 } 1578 1579 //===----------------------------------------------------------------------===// 1580 1581 // EmitAlignment - Emit an alignment directive to the specified power of 1582 // two boundary. For example, if you pass in 3 here, you will get an 8 1583 // byte alignment. If a global value is specified, and if that global has 1584 // an explicit alignment requested, it will override the alignment request 1585 // if required for correctness. 1586 // 1587 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1588 if (GV) 1589 NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), 1590 NumBits); 1591 1592 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1593 1594 assert(NumBits < 1595 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1596 "undefined behavior"); 1597 if (getCurrentSection()->getKind().isText()) 1598 OutStreamer.EmitCodeAlignment(1u << NumBits); 1599 else 1600 OutStreamer.EmitValueToAlignment(1u << NumBits); 1601 } 1602 1603 //===----------------------------------------------------------------------===// 1604 // Constant emission. 1605 //===----------------------------------------------------------------------===// 1606 1607 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1608 MCContext &Ctx = OutContext; 1609 1610 if (CV->isNullValue() || isa<UndefValue>(CV)) 1611 return MCConstantExpr::Create(0, Ctx); 1612 1613 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1614 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1615 1616 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1617 return MCSymbolRefExpr::Create(getSymbol(GV), Ctx); 1618 1619 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1620 return MCSymbolRefExpr::Create(GetBlockAddressSymbol(BA), Ctx); 1621 1622 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1623 if (!CE) { 1624 llvm_unreachable("Unknown constant value to lower!"); 1625 } 1626 1627 if (const MCExpr *RelocExpr 1628 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1629 return RelocExpr; 1630 1631 switch (CE->getOpcode()) { 1632 default: 1633 // If the code isn't optimized, there may be outstanding folding 1634 // opportunities. Attempt to fold the expression using DataLayout as a 1635 // last resort before giving up. 1636 if (Constant *C = ConstantFoldConstantExpression( 1637 CE, TM.getDataLayout())) 1638 if (C != CE) 1639 return lowerConstant(C); 1640 1641 // Otherwise report the problem to the user. 1642 { 1643 std::string S; 1644 raw_string_ostream OS(S); 1645 OS << "Unsupported expression in static initializer: "; 1646 CE->printAsOperand(OS, /*PrintType=*/false, 1647 !MF ? nullptr : MF->getFunction()->getParent()); 1648 report_fatal_error(OS.str()); 1649 } 1650 case Instruction::GetElementPtr: { 1651 const DataLayout &DL = *TM.getDataLayout(); 1652 1653 // Generate a symbolic expression for the byte address 1654 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1655 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1656 1657 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1658 if (!OffsetAI) 1659 return Base; 1660 1661 int64_t Offset = OffsetAI.getSExtValue(); 1662 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1663 Ctx); 1664 } 1665 1666 case Instruction::Trunc: 1667 // We emit the value and depend on the assembler to truncate the generated 1668 // expression properly. This is important for differences between 1669 // blockaddress labels. Since the two labels are in the same function, it 1670 // is reasonable to treat their delta as a 32-bit value. 1671 // FALL THROUGH. 1672 case Instruction::BitCast: 1673 return lowerConstant(CE->getOperand(0)); 1674 1675 case Instruction::IntToPtr: { 1676 const DataLayout &DL = *TM.getDataLayout(); 1677 1678 // Handle casts to pointers by changing them into casts to the appropriate 1679 // integer type. This promotes constant folding and simplifies this code. 1680 Constant *Op = CE->getOperand(0); 1681 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1682 false/*ZExt*/); 1683 return lowerConstant(Op); 1684 } 1685 1686 case Instruction::PtrToInt: { 1687 const DataLayout &DL = *TM.getDataLayout(); 1688 1689 // Support only foldable casts to/from pointers that can be eliminated by 1690 // changing the pointer to the appropriately sized integer type. 1691 Constant *Op = CE->getOperand(0); 1692 Type *Ty = CE->getType(); 1693 1694 const MCExpr *OpExpr = lowerConstant(Op); 1695 1696 // We can emit the pointer value into this slot if the slot is an 1697 // integer slot equal to the size of the pointer. 1698 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1699 return OpExpr; 1700 1701 // Otherwise the pointer is smaller than the resultant integer, mask off 1702 // the high bits so we are sure to get a proper truncation if the input is 1703 // a constant expr. 1704 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1705 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1706 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1707 } 1708 1709 // The MC library also has a right-shift operator, but it isn't consistently 1710 // signed or unsigned between different targets. 1711 case Instruction::Add: 1712 case Instruction::Sub: 1713 case Instruction::Mul: 1714 case Instruction::SDiv: 1715 case Instruction::SRem: 1716 case Instruction::Shl: 1717 case Instruction::And: 1718 case Instruction::Or: 1719 case Instruction::Xor: { 1720 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1721 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1722 switch (CE->getOpcode()) { 1723 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1724 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1725 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1726 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1727 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1728 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1729 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1730 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1731 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1732 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1733 } 1734 } 1735 } 1736 } 1737 1738 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP, 1739 const Constant *BaseCV = nullptr, 1740 uint64_t Offset = 0); 1741 1742 /// isRepeatedByteSequence - Determine whether the given value is 1743 /// composed of a repeated sequence of identical bytes and return the 1744 /// byte value. If it is not a repeated sequence, return -1. 1745 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1746 StringRef Data = V->getRawDataValues(); 1747 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1748 char C = Data[0]; 1749 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1750 if (Data[i] != C) return -1; 1751 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1752 } 1753 1754 1755 /// isRepeatedByteSequence - Determine whether the given value is 1756 /// composed of a repeated sequence of identical bytes and return the 1757 /// byte value. If it is not a repeated sequence, return -1. 1758 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1759 1760 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1761 if (CI->getBitWidth() > 64) return -1; 1762 1763 uint64_t Size = 1764 TM.getDataLayout()->getTypeAllocSize(V->getType()); 1765 uint64_t Value = CI->getZExtValue(); 1766 1767 // Make sure the constant is at least 8 bits long and has a power 1768 // of 2 bit width. This guarantees the constant bit width is 1769 // always a multiple of 8 bits, avoiding issues with padding out 1770 // to Size and other such corner cases. 1771 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1772 1773 uint8_t Byte = static_cast<uint8_t>(Value); 1774 1775 for (unsigned i = 1; i < Size; ++i) { 1776 Value >>= 8; 1777 if (static_cast<uint8_t>(Value) != Byte) return -1; 1778 } 1779 return Byte; 1780 } 1781 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1782 // Make sure all array elements are sequences of the same repeated 1783 // byte. 1784 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1785 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1786 if (Byte == -1) return -1; 1787 1788 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1789 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1790 if (ThisByte == -1) return -1; 1791 if (Byte != ThisByte) return -1; 1792 } 1793 return Byte; 1794 } 1795 1796 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1797 return isRepeatedByteSequence(CDS); 1798 1799 return -1; 1800 } 1801 1802 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1803 AsmPrinter &AP){ 1804 1805 // See if we can aggregate this into a .fill, if so, emit it as such. 1806 int Value = isRepeatedByteSequence(CDS, AP.TM); 1807 if (Value != -1) { 1808 uint64_t Bytes = 1809 AP.TM.getDataLayout()->getTypeAllocSize( 1810 CDS->getType()); 1811 // Don't emit a 1-byte object as a .fill. 1812 if (Bytes > 1) 1813 return AP.OutStreamer.EmitFill(Bytes, Value); 1814 } 1815 1816 // If this can be emitted with .ascii/.asciz, emit it as such. 1817 if (CDS->isString()) 1818 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1819 1820 // Otherwise, emit the values in successive locations. 1821 unsigned ElementByteSize = CDS->getElementByteSize(); 1822 if (isa<IntegerType>(CDS->getElementType())) { 1823 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1824 if (AP.isVerbose()) 1825 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1826 CDS->getElementAsInteger(i)); 1827 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1828 ElementByteSize); 1829 } 1830 } else if (ElementByteSize == 4) { 1831 // FP Constants are printed as integer constants to avoid losing 1832 // precision. 1833 assert(CDS->getElementType()->isFloatTy()); 1834 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1835 union { 1836 float F; 1837 uint32_t I; 1838 }; 1839 1840 F = CDS->getElementAsFloat(i); 1841 if (AP.isVerbose()) 1842 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1843 AP.OutStreamer.EmitIntValue(I, 4); 1844 } 1845 } else { 1846 assert(CDS->getElementType()->isDoubleTy()); 1847 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1848 union { 1849 double F; 1850 uint64_t I; 1851 }; 1852 1853 F = CDS->getElementAsDouble(i); 1854 if (AP.isVerbose()) 1855 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1856 AP.OutStreamer.EmitIntValue(I, 8); 1857 } 1858 } 1859 1860 const DataLayout &DL = *AP.TM.getDataLayout(); 1861 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1862 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1863 CDS->getNumElements(); 1864 if (unsigned Padding = Size - EmittedSize) 1865 AP.OutStreamer.EmitZeros(Padding); 1866 1867 } 1868 1869 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP, 1870 const Constant *BaseCV, uint64_t Offset) { 1871 // See if we can aggregate some values. Make sure it can be 1872 // represented as a series of bytes of the constant value. 1873 int Value = isRepeatedByteSequence(CA, AP.TM); 1874 const DataLayout &DL = *AP.TM.getDataLayout(); 1875 1876 if (Value != -1) { 1877 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1878 AP.OutStreamer.EmitFill(Bytes, Value); 1879 } 1880 else { 1881 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1882 emitGlobalConstantImpl(CA->getOperand(i), AP, BaseCV, Offset); 1883 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1884 } 1885 } 1886 } 1887 1888 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1889 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1890 emitGlobalConstantImpl(CV->getOperand(i), AP); 1891 1892 const DataLayout &DL = *AP.TM.getDataLayout(); 1893 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1894 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1895 CV->getType()->getNumElements(); 1896 if (unsigned Padding = Size - EmittedSize) 1897 AP.OutStreamer.EmitZeros(Padding); 1898 } 1899 1900 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP, 1901 const Constant *BaseCV, uint64_t Offset) { 1902 // Print the fields in successive locations. Pad to align if needed! 1903 const DataLayout *DL = AP.TM.getDataLayout(); 1904 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1905 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1906 uint64_t SizeSoFar = 0; 1907 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1908 const Constant *Field = CS->getOperand(i); 1909 1910 // Print the actual field value. 1911 emitGlobalConstantImpl(Field, AP, BaseCV, Offset+SizeSoFar); 1912 1913 // Check if padding is needed and insert one or more 0s. 1914 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1915 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1916 - Layout->getElementOffset(i)) - FieldSize; 1917 SizeSoFar += FieldSize + PadSize; 1918 1919 // Insert padding - this may include padding to increase the size of the 1920 // current field up to the ABI size (if the struct is not packed) as well 1921 // as padding to ensure that the next field starts at the right offset. 1922 AP.OutStreamer.EmitZeros(PadSize); 1923 } 1924 assert(SizeSoFar == Layout->getSizeInBytes() && 1925 "Layout of constant struct may be incorrect!"); 1926 } 1927 1928 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1929 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1930 1931 // First print a comment with what we think the original floating-point value 1932 // should have been. 1933 if (AP.isVerbose()) { 1934 SmallString<8> StrVal; 1935 CFP->getValueAPF().toString(StrVal); 1936 1937 if (CFP->getType()) 1938 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1939 else 1940 AP.OutStreamer.GetCommentOS() << "Printing <null> Type"; 1941 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1942 } 1943 1944 // Now iterate through the APInt chunks, emitting them in endian-correct 1945 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1946 // floats). 1947 unsigned NumBytes = API.getBitWidth() / 8; 1948 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1949 const uint64_t *p = API.getRawData(); 1950 1951 // PPC's long double has odd notions of endianness compared to how LLVM 1952 // handles it: p[0] goes first for *big* endian on PPC. 1953 if (AP.TM.getDataLayout()->isBigEndian() && 1954 !CFP->getType()->isPPC_FP128Ty()) { 1955 int Chunk = API.getNumWords() - 1; 1956 1957 if (TrailingBytes) 1958 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1959 1960 for (; Chunk >= 0; --Chunk) 1961 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1962 } else { 1963 unsigned Chunk; 1964 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1965 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1966 1967 if (TrailingBytes) 1968 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1969 } 1970 1971 // Emit the tail padding for the long double. 1972 const DataLayout &DL = *AP.TM.getDataLayout(); 1973 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1974 DL.getTypeStoreSize(CFP->getType())); 1975 } 1976 1977 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1978 const DataLayout *DL = AP.TM.getDataLayout(); 1979 unsigned BitWidth = CI->getBitWidth(); 1980 1981 // Copy the value as we may massage the layout for constants whose bit width 1982 // is not a multiple of 64-bits. 1983 APInt Realigned(CI->getValue()); 1984 uint64_t ExtraBits = 0; 1985 unsigned ExtraBitsSize = BitWidth & 63; 1986 1987 if (ExtraBitsSize) { 1988 // The bit width of the data is not a multiple of 64-bits. 1989 // The extra bits are expected to be at the end of the chunk of the memory. 1990 // Little endian: 1991 // * Nothing to be done, just record the extra bits to emit. 1992 // Big endian: 1993 // * Record the extra bits to emit. 1994 // * Realign the raw data to emit the chunks of 64-bits. 1995 if (DL->isBigEndian()) { 1996 // Basically the structure of the raw data is a chunk of 64-bits cells: 1997 // 0 1 BitWidth / 64 1998 // [chunk1][chunk2] ... [chunkN]. 1999 // The most significant chunk is chunkN and it should be emitted first. 2000 // However, due to the alignment issue chunkN contains useless bits. 2001 // Realign the chunks so that they contain only useless information: 2002 // ExtraBits 0 1 (BitWidth / 64) - 1 2003 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2004 ExtraBits = Realigned.getRawData()[0] & 2005 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2006 Realigned = Realigned.lshr(ExtraBitsSize); 2007 } else 2008 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2009 } 2010 2011 // We don't expect assemblers to support integer data directives 2012 // for more than 64 bits, so we emit the data in at most 64-bit 2013 // quantities at a time. 2014 const uint64_t *RawData = Realigned.getRawData(); 2015 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2016 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2017 AP.OutStreamer.EmitIntValue(Val, 8); 2018 } 2019 2020 if (ExtraBitsSize) { 2021 // Emit the extra bits after the 64-bits chunks. 2022 2023 // Emit a directive that fills the expected size. 2024 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize( 2025 CI->getType()); 2026 Size -= (BitWidth / 64) * 8; 2027 assert(Size && Size * 8 >= ExtraBitsSize && 2028 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2029 == ExtraBits && "Directive too small for extra bits."); 2030 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 2031 } 2032 } 2033 2034 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2035 /// equivalent global, by a target specific GOT pc relative access to the 2036 /// final symbol. 2037 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2038 const Constant *BaseCst, 2039 uint64_t Offset) { 2040 // The global @foo below illustrates a global that uses a got equivalent. 2041 // 2042 // @bar = global i32 42 2043 // @gotequiv = private unnamed_addr constant i32* @bar 2044 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2045 // i64 ptrtoint (i32* @foo to i64)) 2046 // to i32) 2047 // 2048 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2049 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2050 // form: 2051 // 2052 // foo = cstexpr, where 2053 // cstexpr := <gotequiv> - "." + <cst> 2054 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2055 // 2056 // After canonicalization by EvaluateAsRelocatable `ME` turns into: 2057 // 2058 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2059 // gotpcrelcst := <offset from @foo base> + <cst> 2060 // 2061 MCValue MV; 2062 if (!(*ME)->EvaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2063 return; 2064 2065 const MCSymbol *GOTEquivSym = &MV.getSymA()->getSymbol(); 2066 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2067 return; 2068 2069 const GlobalValue *BaseGV = dyn_cast<GlobalValue>(BaseCst); 2070 if (!BaseGV) 2071 return; 2072 2073 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2074 if (BaseSym != &MV.getSymB()->getSymbol()) 2075 return; 2076 2077 // Make sure to match: 2078 // 2079 // gotpcrelcst := <offset from @foo base> + <cst> 2080 // 2081 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2082 if (GOTPCRelCst < 0) 2083 return; 2084 2085 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2086 // 2087 // bar: 2088 // .long 42 2089 // gotequiv: 2090 // .quad bar 2091 // foo: 2092 // .long gotequiv - "." + <cst> 2093 // 2094 // is replaced by the target specific equivalent to: 2095 // 2096 // bar: 2097 // .long 42 2098 // foo: 2099 // .long bar@GOTPCREL+<gotpcrelcst> 2100 // 2101 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2102 const GlobalVariable *GV = Result.first; 2103 unsigned NumUses = Result.second; 2104 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2105 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2106 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(FinalSym, 2107 GOTPCRelCst); 2108 2109 // Update GOT equivalent usage information 2110 --NumUses; 2111 if (NumUses) 2112 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2113 else 2114 AP.GlobalGOTEquivs.erase(GOTEquivSym); 2115 } 2116 2117 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP, 2118 const Constant *BaseCV, uint64_t Offset) { 2119 const DataLayout *DL = AP.TM.getDataLayout(); 2120 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 2121 2122 // Globals with sub-elements such as combinations of arrays and structs 2123 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2124 // constant symbol base and the current position with BaseCV and Offset. 2125 if (!BaseCV && CV->hasOneUse()) 2126 BaseCV = dyn_cast<Constant>(CV->user_back()); 2127 2128 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2129 return AP.OutStreamer.EmitZeros(Size); 2130 2131 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2132 switch (Size) { 2133 case 1: 2134 case 2: 2135 case 4: 2136 case 8: 2137 if (AP.isVerbose()) 2138 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 2139 CI->getZExtValue()); 2140 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 2141 return; 2142 default: 2143 emitGlobalConstantLargeInt(CI, AP); 2144 return; 2145 } 2146 } 2147 2148 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2149 return emitGlobalConstantFP(CFP, AP); 2150 2151 if (isa<ConstantPointerNull>(CV)) { 2152 AP.OutStreamer.EmitIntValue(0, Size); 2153 return; 2154 } 2155 2156 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2157 return emitGlobalConstantDataSequential(CDS, AP); 2158 2159 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2160 return emitGlobalConstantArray(CVA, AP, BaseCV, Offset); 2161 2162 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2163 return emitGlobalConstantStruct(CVS, AP, BaseCV, Offset); 2164 2165 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2166 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2167 // vectors). 2168 if (CE->getOpcode() == Instruction::BitCast) 2169 return emitGlobalConstantImpl(CE->getOperand(0), AP); 2170 2171 if (Size > 8) { 2172 // If the constant expression's size is greater than 64-bits, then we have 2173 // to emit the value in chunks. Try to constant fold the value and emit it 2174 // that way. 2175 Constant *New = ConstantFoldConstantExpression(CE, DL); 2176 if (New && New != CE) 2177 return emitGlobalConstantImpl(New, AP); 2178 } 2179 } 2180 2181 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2182 return emitGlobalConstantVector(V, AP); 2183 2184 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2185 // thread the streamer with EmitValue. 2186 const MCExpr *ME = AP.lowerConstant(CV); 2187 2188 // Since lowerConstant already folded and got rid of all IR pointer and 2189 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2190 // directly. 2191 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2192 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2193 2194 AP.OutStreamer.EmitValue(ME, Size); 2195 } 2196 2197 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2198 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 2199 uint64_t Size = 2200 TM.getDataLayout()->getTypeAllocSize(CV->getType()); 2201 if (Size) 2202 emitGlobalConstantImpl(CV, *this); 2203 else if (MAI->hasSubsectionsViaSymbols()) { 2204 // If the global has zero size, emit a single byte so that two labels don't 2205 // look like they are at the same location. 2206 OutStreamer.EmitIntValue(0, 1); 2207 } 2208 } 2209 2210 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2211 // Target doesn't support this yet! 2212 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2213 } 2214 2215 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2216 if (Offset > 0) 2217 OS << '+' << Offset; 2218 else if (Offset < 0) 2219 OS << Offset; 2220 } 2221 2222 //===----------------------------------------------------------------------===// 2223 // Symbol Lowering Routines. 2224 //===----------------------------------------------------------------------===// 2225 2226 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 2227 /// temporary label with the specified stem and unique ID. 2228 MCSymbol *AsmPrinter::GetTempSymbol(const Twine &Name, unsigned ID) const { 2229 const DataLayout *DL = TM.getDataLayout(); 2230 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2231 Name + Twine(ID)); 2232 } 2233 2234 /// GetTempSymbol - Return an assembler temporary label with the specified 2235 /// stem. 2236 MCSymbol *AsmPrinter::GetTempSymbol(const Twine &Name) const { 2237 const DataLayout *DL = TM.getDataLayout(); 2238 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2239 Name); 2240 } 2241 2242 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name, unsigned ID) const { 2243 return OutContext.createTempSymbol(Name + Twine(ID)); 2244 } 2245 2246 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2247 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2248 } 2249 2250 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2251 return MMI->getAddrLabelSymbol(BB); 2252 } 2253 2254 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2255 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2256 const DataLayout *DL = TM.getDataLayout(); 2257 return OutContext.GetOrCreateSymbol 2258 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2259 + "_" + Twine(CPID)); 2260 } 2261 2262 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2263 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2264 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2265 } 2266 2267 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2268 /// FIXME: privatize to AsmPrinter. 2269 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2270 const DataLayout *DL = TM.getDataLayout(); 2271 return OutContext.GetOrCreateSymbol 2272 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2273 Twine(UID) + "_set_" + Twine(MBBID)); 2274 } 2275 2276 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2277 StringRef Suffix) const { 2278 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2279 TM); 2280 } 2281 2282 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2283 /// ExternalSymbol. 2284 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2285 SmallString<60> NameStr; 2286 Mang->getNameWithPrefix(NameStr, Sym); 2287 return OutContext.GetOrCreateSymbol(NameStr.str()); 2288 } 2289 2290 2291 2292 /// PrintParentLoopComment - Print comments about parent loops of this one. 2293 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2294 unsigned FunctionNumber) { 2295 if (!Loop) return; 2296 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2297 OS.indent(Loop->getLoopDepth()*2) 2298 << "Parent Loop BB" << FunctionNumber << "_" 2299 << Loop->getHeader()->getNumber() 2300 << " Depth=" << Loop->getLoopDepth() << '\n'; 2301 } 2302 2303 2304 /// PrintChildLoopComment - Print comments about child loops within 2305 /// the loop for this basic block, with nesting. 2306 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2307 unsigned FunctionNumber) { 2308 // Add child loop information 2309 for (const MachineLoop *CL : *Loop) { 2310 OS.indent(CL->getLoopDepth()*2) 2311 << "Child Loop BB" << FunctionNumber << "_" 2312 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2313 << '\n'; 2314 PrintChildLoopComment(OS, CL, FunctionNumber); 2315 } 2316 } 2317 2318 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2319 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2320 const MachineLoopInfo *LI, 2321 const AsmPrinter &AP) { 2322 // Add loop depth information 2323 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2324 if (!Loop) return; 2325 2326 MachineBasicBlock *Header = Loop->getHeader(); 2327 assert(Header && "No header for loop"); 2328 2329 // If this block is not a loop header, just print out what is the loop header 2330 // and return. 2331 if (Header != &MBB) { 2332 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2333 Twine(AP.getFunctionNumber())+"_" + 2334 Twine(Loop->getHeader()->getNumber())+ 2335 " Depth="+Twine(Loop->getLoopDepth())); 2336 return; 2337 } 2338 2339 // Otherwise, it is a loop header. Print out information about child and 2340 // parent loops. 2341 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2342 2343 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2344 2345 OS << "=>"; 2346 OS.indent(Loop->getLoopDepth()*2-2); 2347 2348 OS << "This "; 2349 if (Loop->empty()) 2350 OS << "Inner "; 2351 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2352 2353 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2354 } 2355 2356 2357 /// EmitBasicBlockStart - This method prints the label for the specified 2358 /// MachineBasicBlock, an alignment (if present) and a comment describing 2359 /// it if appropriate. 2360 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2361 // Emit an alignment directive for this block, if needed. 2362 if (unsigned Align = MBB.getAlignment()) 2363 EmitAlignment(Align); 2364 2365 // If the block has its address taken, emit any labels that were used to 2366 // reference the block. It is possible that there is more than one label 2367 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2368 // the references were generated. 2369 if (MBB.hasAddressTaken()) { 2370 const BasicBlock *BB = MBB.getBasicBlock(); 2371 if (isVerbose()) 2372 OutStreamer.AddComment("Block address taken"); 2373 2374 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB); 2375 for (auto *Sym : Symbols) 2376 OutStreamer.EmitLabel(Sym); 2377 } 2378 2379 // Print some verbose block comments. 2380 if (isVerbose()) { 2381 if (const BasicBlock *BB = MBB.getBasicBlock()) 2382 if (BB->hasName()) 2383 OutStreamer.AddComment("%" + BB->getName()); 2384 emitBasicBlockLoopComments(MBB, LI, *this); 2385 } 2386 2387 // Print the main label for the block. 2388 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2389 if (isVerbose()) { 2390 // NOTE: Want this comment at start of line, don't emit with AddComment. 2391 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2392 } 2393 } else { 2394 OutStreamer.EmitLabel(MBB.getSymbol()); 2395 } 2396 } 2397 2398 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2399 bool IsDefinition) const { 2400 MCSymbolAttr Attr = MCSA_Invalid; 2401 2402 switch (Visibility) { 2403 default: break; 2404 case GlobalValue::HiddenVisibility: 2405 if (IsDefinition) 2406 Attr = MAI->getHiddenVisibilityAttr(); 2407 else 2408 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2409 break; 2410 case GlobalValue::ProtectedVisibility: 2411 Attr = MAI->getProtectedVisibilityAttr(); 2412 break; 2413 } 2414 2415 if (Attr != MCSA_Invalid) 2416 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2417 } 2418 2419 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2420 /// exactly one predecessor and the control transfer mechanism between 2421 /// the predecessor and this block is a fall-through. 2422 bool AsmPrinter:: 2423 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2424 // If this is a landing pad, it isn't a fall through. If it has no preds, 2425 // then nothing falls through to it. 2426 if (MBB->isLandingPad() || MBB->pred_empty()) 2427 return false; 2428 2429 // If there isn't exactly one predecessor, it can't be a fall through. 2430 if (MBB->pred_size() > 1) 2431 return false; 2432 2433 // The predecessor has to be immediately before this block. 2434 MachineBasicBlock *Pred = *MBB->pred_begin(); 2435 if (!Pred->isLayoutSuccessor(MBB)) 2436 return false; 2437 2438 // If the block is completely empty, then it definitely does fall through. 2439 if (Pred->empty()) 2440 return true; 2441 2442 // Check the terminators in the previous blocks 2443 for (const auto &MI : Pred->terminators()) { 2444 // If it is not a simple branch, we are in a table somewhere. 2445 if (!MI.isBranch() || MI.isIndirectBranch()) 2446 return false; 2447 2448 // If we are the operands of one of the branches, this is not a fall 2449 // through. Note that targets with delay slots will usually bundle 2450 // terminators with the delay slot instruction. 2451 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2452 if (OP->isJTI()) 2453 return false; 2454 if (OP->isMBB() && OP->getMBB() == MBB) 2455 return false; 2456 } 2457 } 2458 2459 return true; 2460 } 2461 2462 2463 2464 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2465 if (!S.usesMetadata()) 2466 return nullptr; 2467 2468 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2469 " stackmap formats, please see the documentation for a description of" 2470 " the default format. If you really need a custom serialized format," 2471 " please file a bug"); 2472 2473 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2474 gcp_map_type::iterator GCPI = GCMap.find(&S); 2475 if (GCPI != GCMap.end()) 2476 return GCPI->second.get(); 2477 2478 const char *Name = S.getName().c_str(); 2479 2480 for (GCMetadataPrinterRegistry::iterator 2481 I = GCMetadataPrinterRegistry::begin(), 2482 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2483 if (strcmp(Name, I->getName()) == 0) { 2484 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2485 GMP->S = &S; 2486 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2487 return IterBool.first->second.get(); 2488 } 2489 2490 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2491 } 2492 2493 /// Pin vtable to this file. 2494 AsmPrinterHandler::~AsmPrinterHandler() {} 2495