1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetLowering.h" 58 #include "llvm/CodeGen/TargetOpcodes.h" 59 #include "llvm/CodeGen/TargetRegisterInfo.h" 60 #include "llvm/CodeGen/TargetSubtargetInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCCodePadder.h" 84 #include "llvm/MC/MCContext.h" 85 #include "llvm/MC/MCDirectives.h" 86 #include "llvm/MC/MCDwarf.h" 87 #include "llvm/MC/MCExpr.h" 88 #include "llvm/MC/MCInst.h" 89 #include "llvm/MC/MCSection.h" 90 #include "llvm/MC/MCSectionCOFF.h" 91 #include "llvm/MC/MCSectionELF.h" 92 #include "llvm/MC/MCSectionMachO.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCTargetOptions.h" 98 #include "llvm/MC/MCValue.h" 99 #include "llvm/MC/SectionKind.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/Format.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/Path.h" 108 #include "llvm/Support/TargetRegistry.h" 109 #include "llvm/Support/Timer.h" 110 #include "llvm/Support/raw_ostream.h" 111 #include "llvm/Target/TargetLoweringObjectFile.h" 112 #include "llvm/Target/TargetMachine.h" 113 #include "llvm/Target/TargetOptions.h" 114 #include <algorithm> 115 #include <cassert> 116 #include <cinttypes> 117 #include <cstdint> 118 #include <iterator> 119 #include <limits> 120 #include <memory> 121 #include <string> 122 #include <utility> 123 #include <vector> 124 125 using namespace llvm; 126 127 #define DEBUG_TYPE "asm-printer" 128 129 static const char *const DWARFGroupName = "dwarf"; 130 static const char *const DWARFGroupDescription = "DWARF Emission"; 131 static const char *const DbgTimerName = "emit"; 132 static const char *const DbgTimerDescription = "Debug Info Emission"; 133 static const char *const EHTimerName = "write_exception"; 134 static const char *const EHTimerDescription = "DWARF Exception Writer"; 135 static const char *const CFGuardName = "Control Flow Guard"; 136 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 137 static const char *const CodeViewLineTablesGroupName = "linetables"; 138 static const char *const CodeViewLineTablesGroupDescription = 139 "CodeView Line Tables"; 140 141 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 142 143 static cl::opt<bool> 144 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 145 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 146 147 char AsmPrinter::ID = 0; 148 149 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 150 151 static gcp_map_type &getGCMap(void *&P) { 152 if (!P) 153 P = new gcp_map_type(); 154 return *(gcp_map_type*)P; 155 } 156 157 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 158 /// value in log2 form. This rounds up to the preferred alignment if possible 159 /// and legal. 160 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 161 unsigned InBits = 0) { 162 unsigned NumBits = 0; 163 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 164 NumBits = DL.getPreferredAlignmentLog(GVar); 165 166 // If InBits is specified, round it to it. 167 if (InBits > NumBits) 168 NumBits = InBits; 169 170 // If the GV has a specified alignment, take it into account. 171 if (GV->getAlignment() == 0) 172 return NumBits; 173 174 unsigned GVAlign = Log2_32(GV->getAlignment()); 175 176 // If the GVAlign is larger than NumBits, or if we are required to obey 177 // NumBits because the GV has an assigned section, obey it. 178 if (GVAlign > NumBits || GV->hasSection()) 179 NumBits = GVAlign; 180 return NumBits; 181 } 182 183 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 184 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 185 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 186 VerboseAsm = OutStreamer->isVerboseAsm(); 187 } 188 189 AsmPrinter::~AsmPrinter() { 190 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 191 192 if (GCMetadataPrinters) { 193 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 194 195 delete &GCMap; 196 GCMetadataPrinters = nullptr; 197 } 198 } 199 200 bool AsmPrinter::isPositionIndependent() const { 201 return TM.isPositionIndependent(); 202 } 203 204 /// getFunctionNumber - Return a unique ID for the current function. 205 unsigned AsmPrinter::getFunctionNumber() const { 206 return MF->getFunctionNumber(); 207 } 208 209 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 210 return *TM.getObjFileLowering(); 211 } 212 213 const DataLayout &AsmPrinter::getDataLayout() const { 214 return MMI->getModule()->getDataLayout(); 215 } 216 217 // Do not use the cached DataLayout because some client use it without a Module 218 // (dsymutil, llvm-dwarfdump). 219 unsigned AsmPrinter::getPointerSize() const { 220 return TM.getPointerSize(0); // FIXME: Default address space 221 } 222 223 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 224 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 225 return MF->getSubtarget<MCSubtargetInfo>(); 226 } 227 228 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 229 S.EmitInstruction(Inst, getSubtargetInfo()); 230 } 231 232 /// getCurrentSection() - Return the current section we are emitting to. 233 const MCSection *AsmPrinter::getCurrentSection() const { 234 return OutStreamer->getCurrentSectionOnly(); 235 } 236 237 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 238 AU.setPreservesAll(); 239 MachineFunctionPass::getAnalysisUsage(AU); 240 AU.addRequired<MachineModuleInfo>(); 241 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 242 AU.addRequired<GCModuleInfo>(); 243 } 244 245 bool AsmPrinter::doInitialization(Module &M) { 246 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 247 248 // Initialize TargetLoweringObjectFile. 249 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 250 .Initialize(OutContext, TM); 251 252 OutStreamer->InitSections(false); 253 254 // Emit the version-min deployment target directive if needed. 255 // 256 // FIXME: If we end up with a collection of these sorts of Darwin-specific 257 // or ELF-specific things, it may make sense to have a platform helper class 258 // that will work with the target helper class. For now keep it here, as the 259 // alternative is duplicated code in each of the target asm printers that 260 // use the directive, where it would need the same conditionalization 261 // anyway. 262 const Triple &Target = TM.getTargetTriple(); 263 OutStreamer->EmitVersionForTarget(Target); 264 265 // Allow the target to emit any magic that it wants at the start of the file. 266 EmitStartOfAsmFile(M); 267 268 // Very minimal debug info. It is ignored if we emit actual debug info. If we 269 // don't, this at least helps the user find where a global came from. 270 if (MAI->hasSingleParameterDotFile()) { 271 // .file "foo.c" 272 OutStreamer->EmitFileDirective( 273 llvm::sys::path::filename(M.getSourceFileName())); 274 } 275 276 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 277 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 278 for (auto &I : *MI) 279 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 280 MP->beginAssembly(M, *MI, *this); 281 282 // Emit module-level inline asm if it exists. 283 if (!M.getModuleInlineAsm().empty()) { 284 // We're at the module level. Construct MCSubtarget from the default CPU 285 // and target triple. 286 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 287 TM.getTargetTriple().str(), TM.getTargetCPU(), 288 TM.getTargetFeatureString())); 289 OutStreamer->AddComment("Start of file scope inline assembly"); 290 OutStreamer->AddBlankLine(); 291 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 292 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 293 OutStreamer->AddComment("End of file scope inline assembly"); 294 OutStreamer->AddBlankLine(); 295 } 296 297 if (MAI->doesSupportDebugInformation()) { 298 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 299 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 300 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 301 DbgTimerName, DbgTimerDescription, 302 CodeViewLineTablesGroupName, 303 CodeViewLineTablesGroupDescription)); 304 } 305 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 306 DD = new DwarfDebug(this, &M); 307 DD->beginModule(); 308 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 309 DWARFGroupName, DWARFGroupDescription)); 310 } 311 } 312 313 switch (MAI->getExceptionHandlingType()) { 314 case ExceptionHandling::SjLj: 315 case ExceptionHandling::DwarfCFI: 316 case ExceptionHandling::ARM: 317 isCFIMoveForDebugging = true; 318 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 319 break; 320 for (auto &F: M.getFunctionList()) { 321 // If the module contains any function with unwind data, 322 // .eh_frame has to be emitted. 323 // Ignore functions that won't get emitted. 324 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 325 isCFIMoveForDebugging = false; 326 break; 327 } 328 } 329 break; 330 default: 331 isCFIMoveForDebugging = false; 332 break; 333 } 334 335 EHStreamer *ES = nullptr; 336 switch (MAI->getExceptionHandlingType()) { 337 case ExceptionHandling::None: 338 break; 339 case ExceptionHandling::SjLj: 340 case ExceptionHandling::DwarfCFI: 341 ES = new DwarfCFIException(this); 342 break; 343 case ExceptionHandling::ARM: 344 ES = new ARMException(this); 345 break; 346 case ExceptionHandling::WinEH: 347 switch (MAI->getWinEHEncodingType()) { 348 default: llvm_unreachable("unsupported unwinding information encoding"); 349 case WinEH::EncodingType::Invalid: 350 break; 351 case WinEH::EncodingType::X86: 352 case WinEH::EncodingType::Itanium: 353 ES = new WinException(this); 354 break; 355 } 356 break; 357 case ExceptionHandling::Wasm: 358 // TODO to prevent warning 359 break; 360 } 361 if (ES) 362 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 363 DWARFGroupName, DWARFGroupDescription)); 364 365 if (mdconst::extract_or_null<ConstantInt>( 366 MMI->getModule()->getModuleFlag("cfguard"))) 367 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName, 368 CFGuardDescription, DWARFGroupName, 369 DWARFGroupDescription)); 370 371 return false; 372 } 373 374 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 375 if (!MAI.hasWeakDefCanBeHiddenDirective()) 376 return false; 377 378 return GV->canBeOmittedFromSymbolTable(); 379 } 380 381 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 382 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 383 switch (Linkage) { 384 case GlobalValue::CommonLinkage: 385 case GlobalValue::LinkOnceAnyLinkage: 386 case GlobalValue::LinkOnceODRLinkage: 387 case GlobalValue::WeakAnyLinkage: 388 case GlobalValue::WeakODRLinkage: 389 if (MAI->hasWeakDefDirective()) { 390 // .globl _foo 391 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 392 393 if (!canBeHidden(GV, *MAI)) 394 // .weak_definition _foo 395 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 396 else 397 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 398 } else if (MAI->hasLinkOnceDirective()) { 399 // .globl _foo 400 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 401 //NOTE: linkonce is handled by the section the symbol was assigned to. 402 } else { 403 // .weak _foo 404 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 405 } 406 return; 407 case GlobalValue::ExternalLinkage: 408 // If external, declare as a global symbol: .globl _foo 409 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 410 return; 411 case GlobalValue::PrivateLinkage: 412 case GlobalValue::InternalLinkage: 413 return; 414 case GlobalValue::AppendingLinkage: 415 case GlobalValue::AvailableExternallyLinkage: 416 case GlobalValue::ExternalWeakLinkage: 417 llvm_unreachable("Should never emit this"); 418 } 419 llvm_unreachable("Unknown linkage type!"); 420 } 421 422 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 423 const GlobalValue *GV) const { 424 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 425 } 426 427 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 428 return TM.getSymbol(GV); 429 } 430 431 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 432 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 433 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 434 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 435 "No emulated TLS variables in the common section"); 436 437 // Never emit TLS variable xyz in emulated TLS model. 438 // The initialization value is in __emutls_t.xyz instead of xyz. 439 if (IsEmuTLSVar) 440 return; 441 442 if (GV->hasInitializer()) { 443 // Check to see if this is a special global used by LLVM, if so, emit it. 444 if (EmitSpecialLLVMGlobal(GV)) 445 return; 446 447 // Skip the emission of global equivalents. The symbol can be emitted later 448 // on by emitGlobalGOTEquivs in case it turns out to be needed. 449 if (GlobalGOTEquivs.count(getSymbol(GV))) 450 return; 451 452 if (isVerbose()) { 453 // When printing the control variable __emutls_v.*, 454 // we don't need to print the original TLS variable name. 455 GV->printAsOperand(OutStreamer->GetCommentOS(), 456 /*PrintType=*/false, GV->getParent()); 457 OutStreamer->GetCommentOS() << '\n'; 458 } 459 } 460 461 MCSymbol *GVSym = getSymbol(GV); 462 MCSymbol *EmittedSym = GVSym; 463 464 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 465 // attributes. 466 // GV's or GVSym's attributes will be used for the EmittedSym. 467 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 468 469 if (!GV->hasInitializer()) // External globals require no extra code. 470 return; 471 472 GVSym->redefineIfPossible(); 473 if (GVSym->isDefined() || GVSym->isVariable()) 474 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 475 "' is already defined"); 476 477 if (MAI->hasDotTypeDotSizeDirective()) 478 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 479 480 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 481 482 const DataLayout &DL = GV->getParent()->getDataLayout(); 483 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 484 485 // If the alignment is specified, we *must* obey it. Overaligning a global 486 // with a specified alignment is a prompt way to break globals emitted to 487 // sections and expected to be contiguous (e.g. ObjC metadata). 488 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 489 490 for (const HandlerInfo &HI : Handlers) { 491 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 492 HI.TimerGroupName, HI.TimerGroupDescription, 493 TimePassesIsEnabled); 494 HI.Handler->setSymbolSize(GVSym, Size); 495 } 496 497 // Handle common symbols 498 if (GVKind.isCommon()) { 499 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 500 unsigned Align = 1 << AlignLog; 501 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 502 Align = 0; 503 504 // .comm _foo, 42, 4 505 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 506 return; 507 } 508 509 // Determine to which section this global should be emitted. 510 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 511 512 // If we have a bss global going to a section that supports the 513 // zerofill directive, do so here. 514 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 515 TheSection->isVirtualSection()) { 516 if (Size == 0) 517 Size = 1; // zerofill of 0 bytes is undefined. 518 unsigned Align = 1 << AlignLog; 519 EmitLinkage(GV, GVSym); 520 // .zerofill __DATA, __bss, _foo, 400, 5 521 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 522 return; 523 } 524 525 // If this is a BSS local symbol and we are emitting in the BSS 526 // section use .lcomm/.comm directive. 527 if (GVKind.isBSSLocal() && 528 getObjFileLowering().getBSSSection() == TheSection) { 529 if (Size == 0) 530 Size = 1; // .comm Foo, 0 is undefined, avoid it. 531 unsigned Align = 1 << AlignLog; 532 533 // Use .lcomm only if it supports user-specified alignment. 534 // Otherwise, while it would still be correct to use .lcomm in some 535 // cases (e.g. when Align == 1), the external assembler might enfore 536 // some -unknown- default alignment behavior, which could cause 537 // spurious differences between external and integrated assembler. 538 // Prefer to simply fall back to .local / .comm in this case. 539 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 540 // .lcomm _foo, 42 541 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 542 return; 543 } 544 545 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 546 Align = 0; 547 548 // .local _foo 549 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 550 // .comm _foo, 42, 4 551 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 552 return; 553 } 554 555 // Handle thread local data for mach-o which requires us to output an 556 // additional structure of data and mangle the original symbol so that we 557 // can reference it later. 558 // 559 // TODO: This should become an "emit thread local global" method on TLOF. 560 // All of this macho specific stuff should be sunk down into TLOFMachO and 561 // stuff like "TLSExtraDataSection" should no longer be part of the parent 562 // TLOF class. This will also make it more obvious that stuff like 563 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 564 // specific code. 565 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 566 // Emit the .tbss symbol 567 MCSymbol *MangSym = 568 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 569 570 if (GVKind.isThreadBSS()) { 571 TheSection = getObjFileLowering().getTLSBSSSection(); 572 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 573 } else if (GVKind.isThreadData()) { 574 OutStreamer->SwitchSection(TheSection); 575 576 EmitAlignment(AlignLog, GV); 577 OutStreamer->EmitLabel(MangSym); 578 579 EmitGlobalConstant(GV->getParent()->getDataLayout(), 580 GV->getInitializer()); 581 } 582 583 OutStreamer->AddBlankLine(); 584 585 // Emit the variable struct for the runtime. 586 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 587 588 OutStreamer->SwitchSection(TLVSect); 589 // Emit the linkage here. 590 EmitLinkage(GV, GVSym); 591 OutStreamer->EmitLabel(GVSym); 592 593 // Three pointers in size: 594 // - __tlv_bootstrap - used to make sure support exists 595 // - spare pointer, used when mapped by the runtime 596 // - pointer to mangled symbol above with initializer 597 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 598 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 599 PtrSize); 600 OutStreamer->EmitIntValue(0, PtrSize); 601 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 602 603 OutStreamer->AddBlankLine(); 604 return; 605 } 606 607 MCSymbol *EmittedInitSym = GVSym; 608 609 OutStreamer->SwitchSection(TheSection); 610 611 EmitLinkage(GV, EmittedInitSym); 612 EmitAlignment(AlignLog, GV); 613 614 OutStreamer->EmitLabel(EmittedInitSym); 615 616 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 617 618 if (MAI->hasDotTypeDotSizeDirective()) 619 // .size foo, 42 620 OutStreamer->emitELFSize(EmittedInitSym, 621 MCConstantExpr::create(Size, OutContext)); 622 623 OutStreamer->AddBlankLine(); 624 } 625 626 /// Emit the directive and value for debug thread local expression 627 /// 628 /// \p Value - The value to emit. 629 /// \p Size - The size of the integer (in bytes) to emit. 630 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 631 unsigned Size) const { 632 OutStreamer->EmitValue(Value, Size); 633 } 634 635 /// EmitFunctionHeader - This method emits the header for the current 636 /// function. 637 void AsmPrinter::EmitFunctionHeader() { 638 const Function &F = MF->getFunction(); 639 640 if (isVerbose()) 641 OutStreamer->GetCommentOS() 642 << "-- Begin function " 643 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 644 645 // Print out constants referenced by the function 646 EmitConstantPool(); 647 648 // Print the 'header' of function. 649 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 650 EmitVisibility(CurrentFnSym, F.getVisibility()); 651 652 EmitLinkage(&F, CurrentFnSym); 653 if (MAI->hasFunctionAlignment()) 654 EmitAlignment(MF->getAlignment(), &F); 655 656 if (MAI->hasDotTypeDotSizeDirective()) 657 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 658 659 if (isVerbose()) { 660 F.printAsOperand(OutStreamer->GetCommentOS(), 661 /*PrintType=*/false, F.getParent()); 662 OutStreamer->GetCommentOS() << '\n'; 663 } 664 665 // Emit the prefix data. 666 if (F.hasPrefixData()) { 667 if (MAI->hasSubsectionsViaSymbols()) { 668 // Preserving prefix data on platforms which use subsections-via-symbols 669 // is a bit tricky. Here we introduce a symbol for the prefix data 670 // and use the .alt_entry attribute to mark the function's real entry point 671 // as an alternative entry point to the prefix-data symbol. 672 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 673 OutStreamer->EmitLabel(PrefixSym); 674 675 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 676 677 // Emit an .alt_entry directive for the actual function symbol. 678 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 679 } else { 680 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 681 } 682 } 683 684 // Emit the CurrentFnSym. This is a virtual function to allow targets to 685 // do their wild and crazy things as required. 686 EmitFunctionEntryLabel(); 687 688 // If the function had address-taken blocks that got deleted, then we have 689 // references to the dangling symbols. Emit them at the start of the function 690 // so that we don't get references to undefined symbols. 691 std::vector<MCSymbol*> DeadBlockSyms; 692 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 693 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 694 OutStreamer->AddComment("Address taken block that was later removed"); 695 OutStreamer->EmitLabel(DeadBlockSyms[i]); 696 } 697 698 if (CurrentFnBegin) { 699 if (MAI->useAssignmentForEHBegin()) { 700 MCSymbol *CurPos = OutContext.createTempSymbol(); 701 OutStreamer->EmitLabel(CurPos); 702 OutStreamer->EmitAssignment(CurrentFnBegin, 703 MCSymbolRefExpr::create(CurPos, OutContext)); 704 } else { 705 OutStreamer->EmitLabel(CurrentFnBegin); 706 } 707 } 708 709 // Emit pre-function debug and/or EH information. 710 for (const HandlerInfo &HI : Handlers) { 711 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 712 HI.TimerGroupDescription, TimePassesIsEnabled); 713 HI.Handler->beginFunction(MF); 714 } 715 716 // Emit the prologue data. 717 if (F.hasPrologueData()) 718 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 719 } 720 721 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 722 /// function. This can be overridden by targets as required to do custom stuff. 723 void AsmPrinter::EmitFunctionEntryLabel() { 724 CurrentFnSym->redefineIfPossible(); 725 726 // The function label could have already been emitted if two symbols end up 727 // conflicting due to asm renaming. Detect this and emit an error. 728 if (CurrentFnSym->isVariable()) 729 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 730 "' is a protected alias"); 731 if (CurrentFnSym->isDefined()) 732 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 733 "' label emitted multiple times to assembly file"); 734 735 return OutStreamer->EmitLabel(CurrentFnSym); 736 } 737 738 /// emitComments - Pretty-print comments for instructions. 739 /// It returns true iff the sched comment was emitted. 740 /// Otherwise it returns false. 741 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 742 AsmPrinter *AP) { 743 const MachineFunction *MF = MI.getMF(); 744 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 745 746 // Check for spills and reloads 747 int FI; 748 749 const MachineFrameInfo &MFI = MF->getFrameInfo(); 750 bool Commented = false; 751 752 // We assume a single instruction only has a spill or reload, not 753 // both. 754 const MachineMemOperand *MMO; 755 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 756 if (MFI.isSpillSlotObjectIndex(FI)) { 757 MMO = *MI.memoperands_begin(); 758 CommentOS << MMO->getSize() << "-byte Reload"; 759 Commented = true; 760 } 761 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 762 if (MFI.isSpillSlotObjectIndex(FI)) { 763 CommentOS << MMO->getSize() << "-byte Folded Reload"; 764 Commented = true; 765 } 766 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 767 if (MFI.isSpillSlotObjectIndex(FI)) { 768 MMO = *MI.memoperands_begin(); 769 CommentOS << MMO->getSize() << "-byte Spill"; 770 Commented = true; 771 } 772 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 773 if (MFI.isSpillSlotObjectIndex(FI)) { 774 CommentOS << MMO->getSize() << "-byte Folded Spill"; 775 Commented = true; 776 } 777 } 778 779 // Check for spill-induced copies 780 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 781 Commented = true; 782 CommentOS << " Reload Reuse"; 783 } 784 785 if (Commented) { 786 if (AP->EnablePrintSchedInfo) { 787 // If any comment was added above and we need sched info comment then add 788 // this new comment just after the above comment w/o "\n" between them. 789 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 790 return true; 791 } 792 CommentOS << "\n"; 793 } 794 return false; 795 } 796 797 /// emitImplicitDef - This method emits the specified machine instruction 798 /// that is an implicit def. 799 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 800 unsigned RegNo = MI->getOperand(0).getReg(); 801 802 SmallString<128> Str; 803 raw_svector_ostream OS(Str); 804 OS << "implicit-def: " 805 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 806 807 OutStreamer->AddComment(OS.str()); 808 OutStreamer->AddBlankLine(); 809 } 810 811 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 812 std::string Str; 813 raw_string_ostream OS(Str); 814 OS << "kill:"; 815 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 816 const MachineOperand &Op = MI->getOperand(i); 817 assert(Op.isReg() && "KILL instruction must have only register operands"); 818 OS << ' ' << (Op.isDef() ? "def " : "killed ") 819 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 820 } 821 AP.OutStreamer->AddComment(OS.str()); 822 AP.OutStreamer->AddBlankLine(); 823 } 824 825 /// emitDebugValueComment - This method handles the target-independent form 826 /// of DBG_VALUE, returning true if it was able to do so. A false return 827 /// means the target will need to handle MI in EmitInstruction. 828 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 829 // This code handles only the 4-operand target-independent form. 830 if (MI->getNumOperands() != 4) 831 return false; 832 833 SmallString<128> Str; 834 raw_svector_ostream OS(Str); 835 OS << "DEBUG_VALUE: "; 836 837 const DILocalVariable *V = MI->getDebugVariable(); 838 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 839 StringRef Name = SP->getName(); 840 if (!Name.empty()) 841 OS << Name << ":"; 842 } 843 OS << V->getName(); 844 OS << " <- "; 845 846 // The second operand is only an offset if it's an immediate. 847 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 848 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 849 const DIExpression *Expr = MI->getDebugExpression(); 850 if (Expr->getNumElements()) { 851 OS << '['; 852 bool NeedSep = false; 853 for (auto Op : Expr->expr_ops()) { 854 if (NeedSep) 855 OS << ", "; 856 else 857 NeedSep = true; 858 OS << dwarf::OperationEncodingString(Op.getOp()); 859 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 860 OS << ' ' << Op.getArg(I); 861 } 862 OS << "] "; 863 } 864 865 // Register or immediate value. Register 0 means undef. 866 if (MI->getOperand(0).isFPImm()) { 867 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 868 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 869 OS << (double)APF.convertToFloat(); 870 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 871 OS << APF.convertToDouble(); 872 } else { 873 // There is no good way to print long double. Convert a copy to 874 // double. Ah well, it's only a comment. 875 bool ignored; 876 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 877 &ignored); 878 OS << "(long double) " << APF.convertToDouble(); 879 } 880 } else if (MI->getOperand(0).isImm()) { 881 OS << MI->getOperand(0).getImm(); 882 } else if (MI->getOperand(0).isCImm()) { 883 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 884 } else { 885 unsigned Reg; 886 if (MI->getOperand(0).isReg()) { 887 Reg = MI->getOperand(0).getReg(); 888 } else { 889 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 890 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 891 Offset += TFI->getFrameIndexReference(*AP.MF, 892 MI->getOperand(0).getIndex(), Reg); 893 MemLoc = true; 894 } 895 if (Reg == 0) { 896 // Suppress offset, it is not meaningful here. 897 OS << "undef"; 898 // NOTE: Want this comment at start of line, don't emit with AddComment. 899 AP.OutStreamer->emitRawComment(OS.str()); 900 return true; 901 } 902 if (MemLoc) 903 OS << '['; 904 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 905 } 906 907 if (MemLoc) 908 OS << '+' << Offset << ']'; 909 910 // NOTE: Want this comment at start of line, don't emit with AddComment. 911 AP.OutStreamer->emitRawComment(OS.str()); 912 return true; 913 } 914 915 /// This method handles the target-independent form of DBG_LABEL, returning 916 /// true if it was able to do so. A false return means the target will need 917 /// to handle MI in EmitInstruction. 918 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 919 if (MI->getNumOperands() != 1) 920 return false; 921 922 SmallString<128> Str; 923 raw_svector_ostream OS(Str); 924 OS << "DEBUG_LABEL: "; 925 926 const DILabel *V = MI->getDebugLabel(); 927 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 928 StringRef Name = SP->getName(); 929 if (!Name.empty()) 930 OS << Name << ":"; 931 } 932 OS << V->getName(); 933 934 // NOTE: Want this comment at start of line, don't emit with AddComment. 935 AP.OutStreamer->emitRawComment(OS.str()); 936 return true; 937 } 938 939 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 940 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 941 MF->getFunction().needsUnwindTableEntry()) 942 return CFI_M_EH; 943 944 if (MMI->hasDebugInfo()) 945 return CFI_M_Debug; 946 947 return CFI_M_None; 948 } 949 950 bool AsmPrinter::needsSEHMoves() { 951 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 952 } 953 954 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 955 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 956 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 957 ExceptionHandlingType != ExceptionHandling::ARM) 958 return; 959 960 if (needsCFIMoves() == CFI_M_None) 961 return; 962 963 // If there is no "real" instruction following this CFI instruction, skip 964 // emitting it; it would be beyond the end of the function's FDE range. 965 auto *MBB = MI.getParent(); 966 auto I = std::next(MI.getIterator()); 967 while (I != MBB->end() && I->isTransient()) 968 ++I; 969 if (I == MBB->instr_end() && 970 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 971 return; 972 973 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 974 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 975 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 976 emitCFIInstruction(CFI); 977 } 978 979 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 980 // The operands are the MCSymbol and the frame offset of the allocation. 981 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 982 int FrameOffset = MI.getOperand(1).getImm(); 983 984 // Emit a symbol assignment. 985 OutStreamer->EmitAssignment(FrameAllocSym, 986 MCConstantExpr::create(FrameOffset, OutContext)); 987 } 988 989 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 990 if (!MF.getTarget().Options.EmitStackSizeSection) 991 return; 992 993 MCSection *StackSizeSection = 994 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 995 if (!StackSizeSection) 996 return; 997 998 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 999 // Don't emit functions with dynamic stack allocations. 1000 if (FrameInfo.hasVarSizedObjects()) 1001 return; 1002 1003 OutStreamer->PushSection(); 1004 OutStreamer->SwitchSection(StackSizeSection); 1005 1006 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1007 uint64_t StackSize = FrameInfo.getStackSize(); 1008 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1009 OutStreamer->EmitULEB128IntValue(StackSize); 1010 1011 OutStreamer->PopSection(); 1012 } 1013 1014 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1015 MachineModuleInfo *MMI) { 1016 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1017 return true; 1018 1019 // We might emit an EH table that uses function begin and end labels even if 1020 // we don't have any landingpads. 1021 if (!MF.getFunction().hasPersonalityFn()) 1022 return false; 1023 return !isNoOpWithoutInvoke( 1024 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1025 } 1026 1027 /// EmitFunctionBody - This method emits the body and trailer for a 1028 /// function. 1029 void AsmPrinter::EmitFunctionBody() { 1030 EmitFunctionHeader(); 1031 1032 // Emit target-specific gunk before the function body. 1033 EmitFunctionBodyStart(); 1034 1035 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1036 1037 if (isVerbose()) { 1038 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1039 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1040 if (!MDT) { 1041 OwnedMDT = make_unique<MachineDominatorTree>(); 1042 OwnedMDT->getBase().recalculate(*MF); 1043 MDT = OwnedMDT.get(); 1044 } 1045 1046 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1047 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1048 if (!MLI) { 1049 OwnedMLI = make_unique<MachineLoopInfo>(); 1050 OwnedMLI->getBase().analyze(MDT->getBase()); 1051 MLI = OwnedMLI.get(); 1052 } 1053 } 1054 1055 // Print out code for the function. 1056 bool HasAnyRealCode = false; 1057 int NumInstsInFunction = 0; 1058 for (auto &MBB : *MF) { 1059 // Print a label for the basic block. 1060 EmitBasicBlockStart(MBB); 1061 for (auto &MI : MBB) { 1062 // Print the assembly for the instruction. 1063 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1064 !MI.isDebugInstr()) { 1065 HasAnyRealCode = true; 1066 ++NumInstsInFunction; 1067 } 1068 1069 if (ShouldPrintDebugScopes) { 1070 for (const HandlerInfo &HI : Handlers) { 1071 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1072 HI.TimerGroupName, HI.TimerGroupDescription, 1073 TimePassesIsEnabled); 1074 HI.Handler->beginInstruction(&MI); 1075 } 1076 } 1077 1078 if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) { 1079 MachineInstr *MIP = const_cast<MachineInstr *>(&MI); 1080 MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment); 1081 } 1082 1083 switch (MI.getOpcode()) { 1084 case TargetOpcode::CFI_INSTRUCTION: 1085 emitCFIInstruction(MI); 1086 break; 1087 case TargetOpcode::LOCAL_ESCAPE: 1088 emitFrameAlloc(MI); 1089 break; 1090 case TargetOpcode::EH_LABEL: 1091 case TargetOpcode::GC_LABEL: 1092 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1093 break; 1094 case TargetOpcode::INLINEASM: 1095 EmitInlineAsm(&MI); 1096 break; 1097 case TargetOpcode::DBG_VALUE: 1098 if (isVerbose()) { 1099 if (!emitDebugValueComment(&MI, *this)) 1100 EmitInstruction(&MI); 1101 } 1102 break; 1103 case TargetOpcode::DBG_LABEL: 1104 if (isVerbose()) { 1105 if (!emitDebugLabelComment(&MI, *this)) 1106 EmitInstruction(&MI); 1107 } 1108 break; 1109 case TargetOpcode::IMPLICIT_DEF: 1110 if (isVerbose()) emitImplicitDef(&MI); 1111 break; 1112 case TargetOpcode::KILL: 1113 if (isVerbose()) emitKill(&MI, *this); 1114 break; 1115 default: 1116 EmitInstruction(&MI); 1117 break; 1118 } 1119 1120 if (ShouldPrintDebugScopes) { 1121 for (const HandlerInfo &HI : Handlers) { 1122 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1123 HI.TimerGroupName, HI.TimerGroupDescription, 1124 TimePassesIsEnabled); 1125 HI.Handler->endInstruction(); 1126 } 1127 } 1128 } 1129 1130 EmitBasicBlockEnd(MBB); 1131 } 1132 1133 EmittedInsts += NumInstsInFunction; 1134 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1135 MF->getFunction().getSubprogram(), 1136 &MF->front()); 1137 R << ore::NV("NumInstructions", NumInstsInFunction) 1138 << " instructions in function"; 1139 ORE->emit(R); 1140 1141 // If the function is empty and the object file uses .subsections_via_symbols, 1142 // then we need to emit *something* to the function body to prevent the 1143 // labels from collapsing together. Just emit a noop. 1144 // Similarly, don't emit empty functions on Windows either. It can lead to 1145 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1146 // after linking, causing the kernel not to load the binary: 1147 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1148 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1149 const Triple &TT = TM.getTargetTriple(); 1150 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1151 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1152 MCInst Noop; 1153 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1154 1155 // Targets can opt-out of emitting the noop here by leaving the opcode 1156 // unspecified. 1157 if (Noop.getOpcode()) { 1158 OutStreamer->AddComment("avoids zero-length function"); 1159 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1160 } 1161 } 1162 1163 const Function &F = MF->getFunction(); 1164 for (const auto &BB : F) { 1165 if (!BB.hasAddressTaken()) 1166 continue; 1167 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1168 if (Sym->isDefined()) 1169 continue; 1170 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1171 OutStreamer->EmitLabel(Sym); 1172 } 1173 1174 // Emit target-specific gunk after the function body. 1175 EmitFunctionBodyEnd(); 1176 1177 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1178 MAI->hasDotTypeDotSizeDirective()) { 1179 // Create a symbol for the end of function. 1180 CurrentFnEnd = createTempSymbol("func_end"); 1181 OutStreamer->EmitLabel(CurrentFnEnd); 1182 } 1183 1184 // If the target wants a .size directive for the size of the function, emit 1185 // it. 1186 if (MAI->hasDotTypeDotSizeDirective()) { 1187 // We can get the size as difference between the function label and the 1188 // temp label. 1189 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1190 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1191 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1192 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1193 } 1194 1195 for (const HandlerInfo &HI : Handlers) { 1196 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1197 HI.TimerGroupDescription, TimePassesIsEnabled); 1198 HI.Handler->markFunctionEnd(); 1199 } 1200 1201 // Print out jump tables referenced by the function. 1202 EmitJumpTableInfo(); 1203 1204 // Emit post-function debug and/or EH information. 1205 for (const HandlerInfo &HI : Handlers) { 1206 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1207 HI.TimerGroupDescription, TimePassesIsEnabled); 1208 HI.Handler->endFunction(MF); 1209 } 1210 1211 // Emit section containing stack size metadata. 1212 emitStackSizeSection(*MF); 1213 1214 if (isVerbose()) 1215 OutStreamer->GetCommentOS() << "-- End function\n"; 1216 1217 OutStreamer->AddBlankLine(); 1218 } 1219 1220 /// Compute the number of Global Variables that uses a Constant. 1221 static unsigned getNumGlobalVariableUses(const Constant *C) { 1222 if (!C) 1223 return 0; 1224 1225 if (isa<GlobalVariable>(C)) 1226 return 1; 1227 1228 unsigned NumUses = 0; 1229 for (auto *CU : C->users()) 1230 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1231 1232 return NumUses; 1233 } 1234 1235 /// Only consider global GOT equivalents if at least one user is a 1236 /// cstexpr inside an initializer of another global variables. Also, don't 1237 /// handle cstexpr inside instructions. During global variable emission, 1238 /// candidates are skipped and are emitted later in case at least one cstexpr 1239 /// isn't replaced by a PC relative GOT entry access. 1240 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1241 unsigned &NumGOTEquivUsers) { 1242 // Global GOT equivalents are unnamed private globals with a constant 1243 // pointer initializer to another global symbol. They must point to a 1244 // GlobalVariable or Function, i.e., as GlobalValue. 1245 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1246 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1247 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1248 return false; 1249 1250 // To be a got equivalent, at least one of its users need to be a constant 1251 // expression used by another global variable. 1252 for (auto *U : GV->users()) 1253 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1254 1255 return NumGOTEquivUsers > 0; 1256 } 1257 1258 /// Unnamed constant global variables solely contaning a pointer to 1259 /// another globals variable is equivalent to a GOT table entry; it contains the 1260 /// the address of another symbol. Optimize it and replace accesses to these 1261 /// "GOT equivalents" by using the GOT entry for the final global instead. 1262 /// Compute GOT equivalent candidates among all global variables to avoid 1263 /// emitting them if possible later on, after it use is replaced by a GOT entry 1264 /// access. 1265 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1266 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1267 return; 1268 1269 for (const auto &G : M.globals()) { 1270 unsigned NumGOTEquivUsers = 0; 1271 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1272 continue; 1273 1274 const MCSymbol *GOTEquivSym = getSymbol(&G); 1275 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1276 } 1277 } 1278 1279 /// Constant expressions using GOT equivalent globals may not be eligible 1280 /// for PC relative GOT entry conversion, in such cases we need to emit such 1281 /// globals we previously omitted in EmitGlobalVariable. 1282 void AsmPrinter::emitGlobalGOTEquivs() { 1283 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1284 return; 1285 1286 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1287 for (auto &I : GlobalGOTEquivs) { 1288 const GlobalVariable *GV = I.second.first; 1289 unsigned Cnt = I.second.second; 1290 if (Cnt) 1291 FailedCandidates.push_back(GV); 1292 } 1293 GlobalGOTEquivs.clear(); 1294 1295 for (auto *GV : FailedCandidates) 1296 EmitGlobalVariable(GV); 1297 } 1298 1299 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1300 const GlobalIndirectSymbol& GIS) { 1301 MCSymbol *Name = getSymbol(&GIS); 1302 1303 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1304 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1305 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1306 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1307 else 1308 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1309 1310 // Set the symbol type to function if the alias has a function type. 1311 // This affects codegen when the aliasee is not a function. 1312 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1313 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1314 if (isa<GlobalIFunc>(GIS)) 1315 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1316 } 1317 1318 EmitVisibility(Name, GIS.getVisibility()); 1319 1320 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1321 1322 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1323 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1324 1325 // Emit the directives as assignments aka .set: 1326 OutStreamer->EmitAssignment(Name, Expr); 1327 1328 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1329 // If the aliasee does not correspond to a symbol in the output, i.e. the 1330 // alias is not of an object or the aliased object is private, then set the 1331 // size of the alias symbol from the type of the alias. We don't do this in 1332 // other situations as the alias and aliasee having differing types but same 1333 // size may be intentional. 1334 const GlobalObject *BaseObject = GA->getBaseObject(); 1335 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1336 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1337 const DataLayout &DL = M.getDataLayout(); 1338 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1339 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1340 } 1341 } 1342 } 1343 1344 bool AsmPrinter::doFinalization(Module &M) { 1345 // Set the MachineFunction to nullptr so that we can catch attempted 1346 // accesses to MF specific features at the module level and so that 1347 // we can conditionalize accesses based on whether or not it is nullptr. 1348 MF = nullptr; 1349 1350 // Gather all GOT equivalent globals in the module. We really need two 1351 // passes over the globals: one to compute and another to avoid its emission 1352 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1353 // where the got equivalent shows up before its use. 1354 computeGlobalGOTEquivs(M); 1355 1356 // Emit global variables. 1357 for (const auto &G : M.globals()) 1358 EmitGlobalVariable(&G); 1359 1360 // Emit remaining GOT equivalent globals. 1361 emitGlobalGOTEquivs(); 1362 1363 // Emit visibility info for declarations 1364 for (const Function &F : M) { 1365 if (!F.isDeclarationForLinker()) 1366 continue; 1367 GlobalValue::VisibilityTypes V = F.getVisibility(); 1368 if (V == GlobalValue::DefaultVisibility) 1369 continue; 1370 1371 MCSymbol *Name = getSymbol(&F); 1372 EmitVisibility(Name, V, false); 1373 } 1374 1375 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1376 1377 TLOF.emitModuleMetadata(*OutStreamer, M); 1378 1379 if (TM.getTargetTriple().isOSBinFormatELF()) { 1380 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1381 1382 // Output stubs for external and common global variables. 1383 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1384 if (!Stubs.empty()) { 1385 OutStreamer->SwitchSection(TLOF.getDataSection()); 1386 const DataLayout &DL = M.getDataLayout(); 1387 1388 EmitAlignment(Log2_32(DL.getPointerSize())); 1389 for (const auto &Stub : Stubs) { 1390 OutStreamer->EmitLabel(Stub.first); 1391 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1392 DL.getPointerSize()); 1393 } 1394 } 1395 } 1396 1397 // Finalize debug and EH information. 1398 for (const HandlerInfo &HI : Handlers) { 1399 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1400 HI.TimerGroupDescription, TimePassesIsEnabled); 1401 HI.Handler->endModule(); 1402 delete HI.Handler; 1403 } 1404 Handlers.clear(); 1405 DD = nullptr; 1406 1407 // If the target wants to know about weak references, print them all. 1408 if (MAI->getWeakRefDirective()) { 1409 // FIXME: This is not lazy, it would be nice to only print weak references 1410 // to stuff that is actually used. Note that doing so would require targets 1411 // to notice uses in operands (due to constant exprs etc). This should 1412 // happen with the MC stuff eventually. 1413 1414 // Print out module-level global objects here. 1415 for (const auto &GO : M.global_objects()) { 1416 if (!GO.hasExternalWeakLinkage()) 1417 continue; 1418 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1419 } 1420 } 1421 1422 OutStreamer->AddBlankLine(); 1423 1424 // Print aliases in topological order, that is, for each alias a = b, 1425 // b must be printed before a. 1426 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1427 // such an order to generate correct TOC information. 1428 SmallVector<const GlobalAlias *, 16> AliasStack; 1429 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1430 for (const auto &Alias : M.aliases()) { 1431 for (const GlobalAlias *Cur = &Alias; Cur; 1432 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1433 if (!AliasVisited.insert(Cur).second) 1434 break; 1435 AliasStack.push_back(Cur); 1436 } 1437 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1438 emitGlobalIndirectSymbol(M, *AncestorAlias); 1439 AliasStack.clear(); 1440 } 1441 for (const auto &IFunc : M.ifuncs()) 1442 emitGlobalIndirectSymbol(M, IFunc); 1443 1444 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1445 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1446 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1447 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1448 MP->finishAssembly(M, *MI, *this); 1449 1450 // Emit llvm.ident metadata in an '.ident' directive. 1451 EmitModuleIdents(M); 1452 1453 // Emit __morestack address if needed for indirect calls. 1454 if (MMI->usesMorestackAddr()) { 1455 unsigned Align = 1; 1456 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1457 getDataLayout(), SectionKind::getReadOnly(), 1458 /*C=*/nullptr, Align); 1459 OutStreamer->SwitchSection(ReadOnlySection); 1460 1461 MCSymbol *AddrSymbol = 1462 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1463 OutStreamer->EmitLabel(AddrSymbol); 1464 1465 unsigned PtrSize = MAI->getCodePointerSize(); 1466 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1467 PtrSize); 1468 } 1469 1470 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1471 // split-stack is used. 1472 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1473 OutStreamer->SwitchSection( 1474 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1475 if (MMI->hasNosplitStack()) 1476 OutStreamer->SwitchSection( 1477 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1478 } 1479 1480 // If we don't have any trampolines, then we don't require stack memory 1481 // to be executable. Some targets have a directive to declare this. 1482 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1483 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1484 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1485 OutStreamer->SwitchSection(S); 1486 1487 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1488 // Emit /EXPORT: flags for each exported global as necessary. 1489 const auto &TLOF = getObjFileLowering(); 1490 std::string Flags; 1491 1492 for (const GlobalValue &GV : M.global_values()) { 1493 raw_string_ostream OS(Flags); 1494 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1495 OS.flush(); 1496 if (!Flags.empty()) { 1497 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1498 OutStreamer->EmitBytes(Flags); 1499 } 1500 Flags.clear(); 1501 } 1502 1503 // Emit /INCLUDE: flags for each used global as necessary. 1504 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1505 assert(LU->hasInitializer() && 1506 "expected llvm.used to have an initializer"); 1507 assert(isa<ArrayType>(LU->getValueType()) && 1508 "expected llvm.used to be an array type"); 1509 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1510 for (const Value *Op : A->operands()) { 1511 const auto *GV = 1512 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1513 // Global symbols with internal or private linkage are not visible to 1514 // the linker, and thus would cause an error when the linker tried to 1515 // preserve the symbol due to the `/include:` directive. 1516 if (GV->hasLocalLinkage()) 1517 continue; 1518 1519 raw_string_ostream OS(Flags); 1520 TLOF.emitLinkerFlagsForUsed(OS, GV); 1521 OS.flush(); 1522 1523 if (!Flags.empty()) { 1524 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1525 OutStreamer->EmitBytes(Flags); 1526 } 1527 Flags.clear(); 1528 } 1529 } 1530 } 1531 } 1532 1533 if (TM.Options.EmitAddrsig) { 1534 // Emit address-significance attributes for all globals. 1535 OutStreamer->EmitAddrsig(); 1536 for (const GlobalValue &GV : M.global_values()) 1537 if (!GV.isThreadLocal() && !GV.getName().startswith("llvm.") && 1538 !GV.hasAtLeastLocalUnnamedAddr()) 1539 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1540 } 1541 1542 // Allow the target to emit any magic that it wants at the end of the file, 1543 // after everything else has gone out. 1544 EmitEndOfAsmFile(M); 1545 1546 MMI = nullptr; 1547 1548 OutStreamer->Finish(); 1549 OutStreamer->reset(); 1550 OwnedMLI.reset(); 1551 OwnedMDT.reset(); 1552 1553 return false; 1554 } 1555 1556 MCSymbol *AsmPrinter::getCurExceptionSym() { 1557 if (!CurExceptionSym) 1558 CurExceptionSym = createTempSymbol("exception"); 1559 return CurExceptionSym; 1560 } 1561 1562 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1563 this->MF = &MF; 1564 // Get the function symbol. 1565 CurrentFnSym = getSymbol(&MF.getFunction()); 1566 CurrentFnSymForSize = CurrentFnSym; 1567 CurrentFnBegin = nullptr; 1568 CurExceptionSym = nullptr; 1569 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1570 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1571 MF.getTarget().Options.EmitStackSizeSection) { 1572 CurrentFnBegin = createTempSymbol("func_begin"); 1573 if (NeedsLocalForSize) 1574 CurrentFnSymForSize = CurrentFnBegin; 1575 } 1576 1577 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1578 1579 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1580 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1581 ? PrintSchedule 1582 : STI.supportPrintSchedInfo(); 1583 } 1584 1585 namespace { 1586 1587 // Keep track the alignment, constpool entries per Section. 1588 struct SectionCPs { 1589 MCSection *S; 1590 unsigned Alignment; 1591 SmallVector<unsigned, 4> CPEs; 1592 1593 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1594 }; 1595 1596 } // end anonymous namespace 1597 1598 /// EmitConstantPool - Print to the current output stream assembly 1599 /// representations of the constants in the constant pool MCP. This is 1600 /// used to print out constants which have been "spilled to memory" by 1601 /// the code generator. 1602 void AsmPrinter::EmitConstantPool() { 1603 const MachineConstantPool *MCP = MF->getConstantPool(); 1604 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1605 if (CP.empty()) return; 1606 1607 // Calculate sections for constant pool entries. We collect entries to go into 1608 // the same section together to reduce amount of section switch statements. 1609 SmallVector<SectionCPs, 4> CPSections; 1610 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1611 const MachineConstantPoolEntry &CPE = CP[i]; 1612 unsigned Align = CPE.getAlignment(); 1613 1614 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1615 1616 const Constant *C = nullptr; 1617 if (!CPE.isMachineConstantPoolEntry()) 1618 C = CPE.Val.ConstVal; 1619 1620 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1621 Kind, C, Align); 1622 1623 // The number of sections are small, just do a linear search from the 1624 // last section to the first. 1625 bool Found = false; 1626 unsigned SecIdx = CPSections.size(); 1627 while (SecIdx != 0) { 1628 if (CPSections[--SecIdx].S == S) { 1629 Found = true; 1630 break; 1631 } 1632 } 1633 if (!Found) { 1634 SecIdx = CPSections.size(); 1635 CPSections.push_back(SectionCPs(S, Align)); 1636 } 1637 1638 if (Align > CPSections[SecIdx].Alignment) 1639 CPSections[SecIdx].Alignment = Align; 1640 CPSections[SecIdx].CPEs.push_back(i); 1641 } 1642 1643 // Now print stuff into the calculated sections. 1644 const MCSection *CurSection = nullptr; 1645 unsigned Offset = 0; 1646 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1647 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1648 unsigned CPI = CPSections[i].CPEs[j]; 1649 MCSymbol *Sym = GetCPISymbol(CPI); 1650 if (!Sym->isUndefined()) 1651 continue; 1652 1653 if (CurSection != CPSections[i].S) { 1654 OutStreamer->SwitchSection(CPSections[i].S); 1655 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1656 CurSection = CPSections[i].S; 1657 Offset = 0; 1658 } 1659 1660 MachineConstantPoolEntry CPE = CP[CPI]; 1661 1662 // Emit inter-object padding for alignment. 1663 unsigned AlignMask = CPE.getAlignment() - 1; 1664 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1665 OutStreamer->EmitZeros(NewOffset - Offset); 1666 1667 Type *Ty = CPE.getType(); 1668 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1669 1670 OutStreamer->EmitLabel(Sym); 1671 if (CPE.isMachineConstantPoolEntry()) 1672 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1673 else 1674 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1675 } 1676 } 1677 } 1678 1679 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1680 /// by the current function to the current output stream. 1681 void AsmPrinter::EmitJumpTableInfo() { 1682 const DataLayout &DL = MF->getDataLayout(); 1683 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1684 if (!MJTI) return; 1685 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1686 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1687 if (JT.empty()) return; 1688 1689 // Pick the directive to use to print the jump table entries, and switch to 1690 // the appropriate section. 1691 const Function &F = MF->getFunction(); 1692 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1693 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1694 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1695 F); 1696 if (JTInDiffSection) { 1697 // Drop it in the readonly section. 1698 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1699 OutStreamer->SwitchSection(ReadOnlySection); 1700 } 1701 1702 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1703 1704 // Jump tables in code sections are marked with a data_region directive 1705 // where that's supported. 1706 if (!JTInDiffSection) 1707 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1708 1709 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1710 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1711 1712 // If this jump table was deleted, ignore it. 1713 if (JTBBs.empty()) continue; 1714 1715 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1716 /// emit a .set directive for each unique entry. 1717 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1718 MAI->doesSetDirectiveSuppressReloc()) { 1719 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1720 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1721 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1722 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1723 const MachineBasicBlock *MBB = JTBBs[ii]; 1724 if (!EmittedSets.insert(MBB).second) 1725 continue; 1726 1727 // .set LJTSet, LBB32-base 1728 const MCExpr *LHS = 1729 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1730 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1731 MCBinaryExpr::createSub(LHS, Base, 1732 OutContext)); 1733 } 1734 } 1735 1736 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1737 // before each jump table. The first label is never referenced, but tells 1738 // the assembler and linker the extents of the jump table object. The 1739 // second label is actually referenced by the code. 1740 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1741 // FIXME: This doesn't have to have any specific name, just any randomly 1742 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1743 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1744 1745 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1746 1747 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1748 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1749 } 1750 if (!JTInDiffSection) 1751 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1752 } 1753 1754 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1755 /// current stream. 1756 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1757 const MachineBasicBlock *MBB, 1758 unsigned UID) const { 1759 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1760 const MCExpr *Value = nullptr; 1761 switch (MJTI->getEntryKind()) { 1762 case MachineJumpTableInfo::EK_Inline: 1763 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1764 case MachineJumpTableInfo::EK_Custom32: 1765 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1766 MJTI, MBB, UID, OutContext); 1767 break; 1768 case MachineJumpTableInfo::EK_BlockAddress: 1769 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1770 // .word LBB123 1771 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1772 break; 1773 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1774 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1775 // with a relocation as gp-relative, e.g.: 1776 // .gprel32 LBB123 1777 MCSymbol *MBBSym = MBB->getSymbol(); 1778 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1779 return; 1780 } 1781 1782 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1783 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1784 // with a relocation as gp-relative, e.g.: 1785 // .gpdword LBB123 1786 MCSymbol *MBBSym = MBB->getSymbol(); 1787 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1788 return; 1789 } 1790 1791 case MachineJumpTableInfo::EK_LabelDifference32: { 1792 // Each entry is the address of the block minus the address of the jump 1793 // table. This is used for PIC jump tables where gprel32 is not supported. 1794 // e.g.: 1795 // .word LBB123 - LJTI1_2 1796 // If the .set directive avoids relocations, this is emitted as: 1797 // .set L4_5_set_123, LBB123 - LJTI1_2 1798 // .word L4_5_set_123 1799 if (MAI->doesSetDirectiveSuppressReloc()) { 1800 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1801 OutContext); 1802 break; 1803 } 1804 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1805 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1806 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1807 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1808 break; 1809 } 1810 } 1811 1812 assert(Value && "Unknown entry kind!"); 1813 1814 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1815 OutStreamer->EmitValue(Value, EntrySize); 1816 } 1817 1818 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1819 /// special global used by LLVM. If so, emit it and return true, otherwise 1820 /// do nothing and return false. 1821 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1822 if (GV->getName() == "llvm.used") { 1823 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1824 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1825 return true; 1826 } 1827 1828 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1829 if (GV->getSection() == "llvm.metadata" || 1830 GV->hasAvailableExternallyLinkage()) 1831 return true; 1832 1833 if (!GV->hasAppendingLinkage()) return false; 1834 1835 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1836 1837 if (GV->getName() == "llvm.global_ctors") { 1838 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1839 /* isCtor */ true); 1840 1841 return true; 1842 } 1843 1844 if (GV->getName() == "llvm.global_dtors") { 1845 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1846 /* isCtor */ false); 1847 1848 return true; 1849 } 1850 1851 report_fatal_error("unknown special variable"); 1852 } 1853 1854 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1855 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1856 /// is true, as being used with this directive. 1857 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1858 // Should be an array of 'i8*'. 1859 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1860 const GlobalValue *GV = 1861 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1862 if (GV) 1863 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1864 } 1865 } 1866 1867 namespace { 1868 1869 struct Structor { 1870 int Priority = 0; 1871 Constant *Func = nullptr; 1872 GlobalValue *ComdatKey = nullptr; 1873 1874 Structor() = default; 1875 }; 1876 1877 } // end anonymous namespace 1878 1879 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1880 /// priority. 1881 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1882 bool isCtor) { 1883 // Should be an array of '{ int, void ()* }' structs. The first value is the 1884 // init priority. 1885 if (!isa<ConstantArray>(List)) return; 1886 1887 // Sanity check the structors list. 1888 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1889 if (!InitList) return; // Not an array! 1890 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1891 // FIXME: Only allow the 3-field form in LLVM 4.0. 1892 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1893 return; // Not an array of two or three elements! 1894 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1895 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1896 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1897 return; // Not (int, ptr, ptr). 1898 1899 // Gather the structors in a form that's convenient for sorting by priority. 1900 SmallVector<Structor, 8> Structors; 1901 for (Value *O : InitList->operands()) { 1902 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1903 if (!CS) continue; // Malformed. 1904 if (CS->getOperand(1)->isNullValue()) 1905 break; // Found a null terminator, skip the rest. 1906 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1907 if (!Priority) continue; // Malformed. 1908 Structors.push_back(Structor()); 1909 Structor &S = Structors.back(); 1910 S.Priority = Priority->getLimitedValue(65535); 1911 S.Func = CS->getOperand(1); 1912 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1913 S.ComdatKey = 1914 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1915 } 1916 1917 // Emit the function pointers in the target-specific order 1918 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1919 std::stable_sort(Structors.begin(), Structors.end(), 1920 [](const Structor &L, 1921 const Structor &R) { return L.Priority < R.Priority; }); 1922 for (Structor &S : Structors) { 1923 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1924 const MCSymbol *KeySym = nullptr; 1925 if (GlobalValue *GV = S.ComdatKey) { 1926 if (GV->isDeclarationForLinker()) 1927 // If the associated variable is not defined in this module 1928 // (it might be available_externally, or have been an 1929 // available_externally definition that was dropped by the 1930 // EliminateAvailableExternally pass), some other TU 1931 // will provide its dynamic initializer. 1932 continue; 1933 1934 KeySym = getSymbol(GV); 1935 } 1936 MCSection *OutputSection = 1937 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1938 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1939 OutStreamer->SwitchSection(OutputSection); 1940 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1941 EmitAlignment(Align); 1942 EmitXXStructor(DL, S.Func); 1943 } 1944 } 1945 1946 void AsmPrinter::EmitModuleIdents(Module &M) { 1947 if (!MAI->hasIdentDirective()) 1948 return; 1949 1950 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1951 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1952 const MDNode *N = NMD->getOperand(i); 1953 assert(N->getNumOperands() == 1 && 1954 "llvm.ident metadata entry can have only one operand"); 1955 const MDString *S = cast<MDString>(N->getOperand(0)); 1956 OutStreamer->EmitIdent(S->getString()); 1957 } 1958 } 1959 } 1960 1961 //===--------------------------------------------------------------------===// 1962 // Emission and print routines 1963 // 1964 1965 /// Emit a byte directive and value. 1966 /// 1967 void AsmPrinter::emitInt8(int Value) const { 1968 OutStreamer->EmitIntValue(Value, 1); 1969 } 1970 1971 /// Emit a short directive and value. 1972 void AsmPrinter::emitInt16(int Value) const { 1973 OutStreamer->EmitIntValue(Value, 2); 1974 } 1975 1976 /// Emit a long directive and value. 1977 void AsmPrinter::emitInt32(int Value) const { 1978 OutStreamer->EmitIntValue(Value, 4); 1979 } 1980 1981 /// Emit a long long directive and value. 1982 void AsmPrinter::emitInt64(uint64_t Value) const { 1983 OutStreamer->EmitIntValue(Value, 8); 1984 } 1985 1986 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1987 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1988 /// .set if it avoids relocations. 1989 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1990 unsigned Size) const { 1991 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1992 } 1993 1994 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1995 /// where the size in bytes of the directive is specified by Size and Label 1996 /// specifies the label. This implicitly uses .set if it is available. 1997 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1998 unsigned Size, 1999 bool IsSectionRelative) const { 2000 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2001 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2002 if (Size > 4) 2003 OutStreamer->EmitZeros(Size - 4); 2004 return; 2005 } 2006 2007 // Emit Label+Offset (or just Label if Offset is zero) 2008 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2009 if (Offset) 2010 Expr = MCBinaryExpr::createAdd( 2011 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2012 2013 OutStreamer->EmitValue(Expr, Size); 2014 } 2015 2016 //===----------------------------------------------------------------------===// 2017 2018 // EmitAlignment - Emit an alignment directive to the specified power of 2019 // two boundary. For example, if you pass in 3 here, you will get an 8 2020 // byte alignment. If a global value is specified, and if that global has 2021 // an explicit alignment requested, it will override the alignment request 2022 // if required for correctness. 2023 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2024 if (GV) 2025 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2026 2027 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2028 2029 assert(NumBits < 2030 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2031 "undefined behavior"); 2032 if (getCurrentSection()->getKind().isText()) 2033 OutStreamer->EmitCodeAlignment(1u << NumBits); 2034 else 2035 OutStreamer->EmitValueToAlignment(1u << NumBits); 2036 } 2037 2038 //===----------------------------------------------------------------------===// 2039 // Constant emission. 2040 //===----------------------------------------------------------------------===// 2041 2042 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2043 MCContext &Ctx = OutContext; 2044 2045 if (CV->isNullValue() || isa<UndefValue>(CV)) 2046 return MCConstantExpr::create(0, Ctx); 2047 2048 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2049 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2050 2051 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2052 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2053 2054 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2055 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2056 2057 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2058 if (!CE) { 2059 llvm_unreachable("Unknown constant value to lower!"); 2060 } 2061 2062 switch (CE->getOpcode()) { 2063 default: 2064 // If the code isn't optimized, there may be outstanding folding 2065 // opportunities. Attempt to fold the expression using DataLayout as a 2066 // last resort before giving up. 2067 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2068 if (C != CE) 2069 return lowerConstant(C); 2070 2071 // Otherwise report the problem to the user. 2072 { 2073 std::string S; 2074 raw_string_ostream OS(S); 2075 OS << "Unsupported expression in static initializer: "; 2076 CE->printAsOperand(OS, /*PrintType=*/false, 2077 !MF ? nullptr : MF->getFunction().getParent()); 2078 report_fatal_error(OS.str()); 2079 } 2080 case Instruction::GetElementPtr: { 2081 // Generate a symbolic expression for the byte address 2082 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2083 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2084 2085 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2086 if (!OffsetAI) 2087 return Base; 2088 2089 int64_t Offset = OffsetAI.getSExtValue(); 2090 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2091 Ctx); 2092 } 2093 2094 case Instruction::Trunc: 2095 // We emit the value and depend on the assembler to truncate the generated 2096 // expression properly. This is important for differences between 2097 // blockaddress labels. Since the two labels are in the same function, it 2098 // is reasonable to treat their delta as a 32-bit value. 2099 LLVM_FALLTHROUGH; 2100 case Instruction::BitCast: 2101 return lowerConstant(CE->getOperand(0)); 2102 2103 case Instruction::IntToPtr: { 2104 const DataLayout &DL = getDataLayout(); 2105 2106 // Handle casts to pointers by changing them into casts to the appropriate 2107 // integer type. This promotes constant folding and simplifies this code. 2108 Constant *Op = CE->getOperand(0); 2109 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2110 false/*ZExt*/); 2111 return lowerConstant(Op); 2112 } 2113 2114 case Instruction::PtrToInt: { 2115 const DataLayout &DL = getDataLayout(); 2116 2117 // Support only foldable casts to/from pointers that can be eliminated by 2118 // changing the pointer to the appropriately sized integer type. 2119 Constant *Op = CE->getOperand(0); 2120 Type *Ty = CE->getType(); 2121 2122 const MCExpr *OpExpr = lowerConstant(Op); 2123 2124 // We can emit the pointer value into this slot if the slot is an 2125 // integer slot equal to the size of the pointer. 2126 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2127 return OpExpr; 2128 2129 // Otherwise the pointer is smaller than the resultant integer, mask off 2130 // the high bits so we are sure to get a proper truncation if the input is 2131 // a constant expr. 2132 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2133 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2134 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2135 } 2136 2137 case Instruction::Sub: { 2138 GlobalValue *LHSGV; 2139 APInt LHSOffset; 2140 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2141 getDataLayout())) { 2142 GlobalValue *RHSGV; 2143 APInt RHSOffset; 2144 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2145 getDataLayout())) { 2146 const MCExpr *RelocExpr = 2147 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2148 if (!RelocExpr) 2149 RelocExpr = MCBinaryExpr::createSub( 2150 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2151 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2152 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2153 if (Addend != 0) 2154 RelocExpr = MCBinaryExpr::createAdd( 2155 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2156 return RelocExpr; 2157 } 2158 } 2159 } 2160 // else fallthrough 2161 LLVM_FALLTHROUGH; 2162 2163 // The MC library also has a right-shift operator, but it isn't consistently 2164 // signed or unsigned between different targets. 2165 case Instruction::Add: 2166 case Instruction::Mul: 2167 case Instruction::SDiv: 2168 case Instruction::SRem: 2169 case Instruction::Shl: 2170 case Instruction::And: 2171 case Instruction::Or: 2172 case Instruction::Xor: { 2173 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2174 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2175 switch (CE->getOpcode()) { 2176 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2177 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2178 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2179 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2180 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2181 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2182 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2183 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2184 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2185 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2186 } 2187 } 2188 } 2189 } 2190 2191 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2192 AsmPrinter &AP, 2193 const Constant *BaseCV = nullptr, 2194 uint64_t Offset = 0); 2195 2196 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2197 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2198 2199 /// isRepeatedByteSequence - Determine whether the given value is 2200 /// composed of a repeated sequence of identical bytes and return the 2201 /// byte value. If it is not a repeated sequence, return -1. 2202 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2203 StringRef Data = V->getRawDataValues(); 2204 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2205 char C = Data[0]; 2206 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2207 if (Data[i] != C) return -1; 2208 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2209 } 2210 2211 /// isRepeatedByteSequence - Determine whether the given value is 2212 /// composed of a repeated sequence of identical bytes and return the 2213 /// byte value. If it is not a repeated sequence, return -1. 2214 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2215 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2216 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2217 assert(Size % 8 == 0); 2218 2219 // Extend the element to take zero padding into account. 2220 APInt Value = CI->getValue().zextOrSelf(Size); 2221 if (!Value.isSplat(8)) 2222 return -1; 2223 2224 return Value.zextOrTrunc(8).getZExtValue(); 2225 } 2226 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2227 // Make sure all array elements are sequences of the same repeated 2228 // byte. 2229 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2230 Constant *Op0 = CA->getOperand(0); 2231 int Byte = isRepeatedByteSequence(Op0, DL); 2232 if (Byte == -1) 2233 return -1; 2234 2235 // All array elements must be equal. 2236 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2237 if (CA->getOperand(i) != Op0) 2238 return -1; 2239 return Byte; 2240 } 2241 2242 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2243 return isRepeatedByteSequence(CDS); 2244 2245 return -1; 2246 } 2247 2248 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2249 const ConstantDataSequential *CDS, 2250 AsmPrinter &AP) { 2251 // See if we can aggregate this into a .fill, if so, emit it as such. 2252 int Value = isRepeatedByteSequence(CDS, DL); 2253 if (Value != -1) { 2254 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2255 // Don't emit a 1-byte object as a .fill. 2256 if (Bytes > 1) 2257 return AP.OutStreamer->emitFill(Bytes, Value); 2258 } 2259 2260 // If this can be emitted with .ascii/.asciz, emit it as such. 2261 if (CDS->isString()) 2262 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2263 2264 // Otherwise, emit the values in successive locations. 2265 unsigned ElementByteSize = CDS->getElementByteSize(); 2266 if (isa<IntegerType>(CDS->getElementType())) { 2267 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2268 if (AP.isVerbose()) 2269 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2270 CDS->getElementAsInteger(i)); 2271 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2272 ElementByteSize); 2273 } 2274 } else { 2275 Type *ET = CDS->getElementType(); 2276 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2277 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2278 } 2279 2280 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2281 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2282 CDS->getNumElements(); 2283 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2284 if (unsigned Padding = Size - EmittedSize) 2285 AP.OutStreamer->EmitZeros(Padding); 2286 } 2287 2288 static void emitGlobalConstantArray(const DataLayout &DL, 2289 const ConstantArray *CA, AsmPrinter &AP, 2290 const Constant *BaseCV, uint64_t Offset) { 2291 // See if we can aggregate some values. Make sure it can be 2292 // represented as a series of bytes of the constant value. 2293 int Value = isRepeatedByteSequence(CA, DL); 2294 2295 if (Value != -1) { 2296 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2297 AP.OutStreamer->emitFill(Bytes, Value); 2298 } 2299 else { 2300 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2301 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2302 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2303 } 2304 } 2305 } 2306 2307 static void emitGlobalConstantVector(const DataLayout &DL, 2308 const ConstantVector *CV, AsmPrinter &AP) { 2309 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2310 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2311 2312 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2313 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2314 CV->getType()->getNumElements(); 2315 if (unsigned Padding = Size - EmittedSize) 2316 AP.OutStreamer->EmitZeros(Padding); 2317 } 2318 2319 static void emitGlobalConstantStruct(const DataLayout &DL, 2320 const ConstantStruct *CS, AsmPrinter &AP, 2321 const Constant *BaseCV, uint64_t Offset) { 2322 // Print the fields in successive locations. Pad to align if needed! 2323 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2324 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2325 uint64_t SizeSoFar = 0; 2326 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2327 const Constant *Field = CS->getOperand(i); 2328 2329 // Print the actual field value. 2330 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2331 2332 // Check if padding is needed and insert one or more 0s. 2333 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2334 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2335 - Layout->getElementOffset(i)) - FieldSize; 2336 SizeSoFar += FieldSize + PadSize; 2337 2338 // Insert padding - this may include padding to increase the size of the 2339 // current field up to the ABI size (if the struct is not packed) as well 2340 // as padding to ensure that the next field starts at the right offset. 2341 AP.OutStreamer->EmitZeros(PadSize); 2342 } 2343 assert(SizeSoFar == Layout->getSizeInBytes() && 2344 "Layout of constant struct may be incorrect!"); 2345 } 2346 2347 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2348 APInt API = APF.bitcastToAPInt(); 2349 2350 // First print a comment with what we think the original floating-point value 2351 // should have been. 2352 if (AP.isVerbose()) { 2353 SmallString<8> StrVal; 2354 APF.toString(StrVal); 2355 2356 if (ET) 2357 ET->print(AP.OutStreamer->GetCommentOS()); 2358 else 2359 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2360 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2361 } 2362 2363 // Now iterate through the APInt chunks, emitting them in endian-correct 2364 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2365 // floats). 2366 unsigned NumBytes = API.getBitWidth() / 8; 2367 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2368 const uint64_t *p = API.getRawData(); 2369 2370 // PPC's long double has odd notions of endianness compared to how LLVM 2371 // handles it: p[0] goes first for *big* endian on PPC. 2372 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2373 int Chunk = API.getNumWords() - 1; 2374 2375 if (TrailingBytes) 2376 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2377 2378 for (; Chunk >= 0; --Chunk) 2379 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2380 } else { 2381 unsigned Chunk; 2382 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2383 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2384 2385 if (TrailingBytes) 2386 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2387 } 2388 2389 // Emit the tail padding for the long double. 2390 const DataLayout &DL = AP.getDataLayout(); 2391 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2392 } 2393 2394 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2395 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2396 } 2397 2398 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2399 const DataLayout &DL = AP.getDataLayout(); 2400 unsigned BitWidth = CI->getBitWidth(); 2401 2402 // Copy the value as we may massage the layout for constants whose bit width 2403 // is not a multiple of 64-bits. 2404 APInt Realigned(CI->getValue()); 2405 uint64_t ExtraBits = 0; 2406 unsigned ExtraBitsSize = BitWidth & 63; 2407 2408 if (ExtraBitsSize) { 2409 // The bit width of the data is not a multiple of 64-bits. 2410 // The extra bits are expected to be at the end of the chunk of the memory. 2411 // Little endian: 2412 // * Nothing to be done, just record the extra bits to emit. 2413 // Big endian: 2414 // * Record the extra bits to emit. 2415 // * Realign the raw data to emit the chunks of 64-bits. 2416 if (DL.isBigEndian()) { 2417 // Basically the structure of the raw data is a chunk of 64-bits cells: 2418 // 0 1 BitWidth / 64 2419 // [chunk1][chunk2] ... [chunkN]. 2420 // The most significant chunk is chunkN and it should be emitted first. 2421 // However, due to the alignment issue chunkN contains useless bits. 2422 // Realign the chunks so that they contain only useless information: 2423 // ExtraBits 0 1 (BitWidth / 64) - 1 2424 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2425 ExtraBits = Realigned.getRawData()[0] & 2426 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2427 Realigned.lshrInPlace(ExtraBitsSize); 2428 } else 2429 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2430 } 2431 2432 // We don't expect assemblers to support integer data directives 2433 // for more than 64 bits, so we emit the data in at most 64-bit 2434 // quantities at a time. 2435 const uint64_t *RawData = Realigned.getRawData(); 2436 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2437 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2438 AP.OutStreamer->EmitIntValue(Val, 8); 2439 } 2440 2441 if (ExtraBitsSize) { 2442 // Emit the extra bits after the 64-bits chunks. 2443 2444 // Emit a directive that fills the expected size. 2445 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2446 Size -= (BitWidth / 64) * 8; 2447 assert(Size && Size * 8 >= ExtraBitsSize && 2448 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2449 == ExtraBits && "Directive too small for extra bits."); 2450 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2451 } 2452 } 2453 2454 /// Transform a not absolute MCExpr containing a reference to a GOT 2455 /// equivalent global, by a target specific GOT pc relative access to the 2456 /// final symbol. 2457 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2458 const Constant *BaseCst, 2459 uint64_t Offset) { 2460 // The global @foo below illustrates a global that uses a got equivalent. 2461 // 2462 // @bar = global i32 42 2463 // @gotequiv = private unnamed_addr constant i32* @bar 2464 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2465 // i64 ptrtoint (i32* @foo to i64)) 2466 // to i32) 2467 // 2468 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2469 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2470 // form: 2471 // 2472 // foo = cstexpr, where 2473 // cstexpr := <gotequiv> - "." + <cst> 2474 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2475 // 2476 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2477 // 2478 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2479 // gotpcrelcst := <offset from @foo base> + <cst> 2480 MCValue MV; 2481 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2482 return; 2483 const MCSymbolRefExpr *SymA = MV.getSymA(); 2484 if (!SymA) 2485 return; 2486 2487 // Check that GOT equivalent symbol is cached. 2488 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2489 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2490 return; 2491 2492 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2493 if (!BaseGV) 2494 return; 2495 2496 // Check for a valid base symbol 2497 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2498 const MCSymbolRefExpr *SymB = MV.getSymB(); 2499 2500 if (!SymB || BaseSym != &SymB->getSymbol()) 2501 return; 2502 2503 // Make sure to match: 2504 // 2505 // gotpcrelcst := <offset from @foo base> + <cst> 2506 // 2507 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2508 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2509 // if the target knows how to encode it. 2510 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2511 if (GOTPCRelCst < 0) 2512 return; 2513 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2514 return; 2515 2516 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2517 // 2518 // bar: 2519 // .long 42 2520 // gotequiv: 2521 // .quad bar 2522 // foo: 2523 // .long gotequiv - "." + <cst> 2524 // 2525 // is replaced by the target specific equivalent to: 2526 // 2527 // bar: 2528 // .long 42 2529 // foo: 2530 // .long bar@GOTPCREL+<gotpcrelcst> 2531 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2532 const GlobalVariable *GV = Result.first; 2533 int NumUses = (int)Result.second; 2534 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2535 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2536 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2537 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2538 2539 // Update GOT equivalent usage information 2540 --NumUses; 2541 if (NumUses >= 0) 2542 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2543 } 2544 2545 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2546 AsmPrinter &AP, const Constant *BaseCV, 2547 uint64_t Offset) { 2548 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2549 2550 // Globals with sub-elements such as combinations of arrays and structs 2551 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2552 // constant symbol base and the current position with BaseCV and Offset. 2553 if (!BaseCV && CV->hasOneUse()) 2554 BaseCV = dyn_cast<Constant>(CV->user_back()); 2555 2556 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2557 return AP.OutStreamer->EmitZeros(Size); 2558 2559 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2560 switch (Size) { 2561 case 1: 2562 case 2: 2563 case 4: 2564 case 8: 2565 if (AP.isVerbose()) 2566 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2567 CI->getZExtValue()); 2568 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2569 return; 2570 default: 2571 emitGlobalConstantLargeInt(CI, AP); 2572 return; 2573 } 2574 } 2575 2576 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2577 return emitGlobalConstantFP(CFP, AP); 2578 2579 if (isa<ConstantPointerNull>(CV)) { 2580 AP.OutStreamer->EmitIntValue(0, Size); 2581 return; 2582 } 2583 2584 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2585 return emitGlobalConstantDataSequential(DL, CDS, AP); 2586 2587 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2588 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2589 2590 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2591 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2592 2593 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2594 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2595 // vectors). 2596 if (CE->getOpcode() == Instruction::BitCast) 2597 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2598 2599 if (Size > 8) { 2600 // If the constant expression's size is greater than 64-bits, then we have 2601 // to emit the value in chunks. Try to constant fold the value and emit it 2602 // that way. 2603 Constant *New = ConstantFoldConstant(CE, DL); 2604 if (New && New != CE) 2605 return emitGlobalConstantImpl(DL, New, AP); 2606 } 2607 } 2608 2609 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2610 return emitGlobalConstantVector(DL, V, AP); 2611 2612 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2613 // thread the streamer with EmitValue. 2614 const MCExpr *ME = AP.lowerConstant(CV); 2615 2616 // Since lowerConstant already folded and got rid of all IR pointer and 2617 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2618 // directly. 2619 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2620 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2621 2622 AP.OutStreamer->EmitValue(ME, Size); 2623 } 2624 2625 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2626 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2627 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2628 if (Size) 2629 emitGlobalConstantImpl(DL, CV, *this); 2630 else if (MAI->hasSubsectionsViaSymbols()) { 2631 // If the global has zero size, emit a single byte so that two labels don't 2632 // look like they are at the same location. 2633 OutStreamer->EmitIntValue(0, 1); 2634 } 2635 } 2636 2637 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2638 // Target doesn't support this yet! 2639 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2640 } 2641 2642 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2643 if (Offset > 0) 2644 OS << '+' << Offset; 2645 else if (Offset < 0) 2646 OS << Offset; 2647 } 2648 2649 //===----------------------------------------------------------------------===// 2650 // Symbol Lowering Routines. 2651 //===----------------------------------------------------------------------===// 2652 2653 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2654 return OutContext.createTempSymbol(Name, true); 2655 } 2656 2657 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2658 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2659 } 2660 2661 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2662 return MMI->getAddrLabelSymbol(BB); 2663 } 2664 2665 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2666 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2667 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) { 2668 const MachineConstantPoolEntry &CPE = 2669 MF->getConstantPool()->getConstants()[CPID]; 2670 if (!CPE.isMachineConstantPoolEntry()) { 2671 const DataLayout &DL = MF->getDataLayout(); 2672 SectionKind Kind = CPE.getSectionKind(&DL); 2673 const Constant *C = CPE.Val.ConstVal; 2674 unsigned Align = CPE.Alignment; 2675 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2676 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2677 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2678 if (Sym->isUndefined()) 2679 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2680 return Sym; 2681 } 2682 } 2683 } 2684 } 2685 2686 const DataLayout &DL = getDataLayout(); 2687 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2688 "CPI" + Twine(getFunctionNumber()) + "_" + 2689 Twine(CPID)); 2690 } 2691 2692 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2693 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2694 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2695 } 2696 2697 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2698 /// FIXME: privatize to AsmPrinter. 2699 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2700 const DataLayout &DL = getDataLayout(); 2701 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2702 Twine(getFunctionNumber()) + "_" + 2703 Twine(UID) + "_set_" + Twine(MBBID)); 2704 } 2705 2706 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2707 StringRef Suffix) const { 2708 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2709 } 2710 2711 /// Return the MCSymbol for the specified ExternalSymbol. 2712 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2713 SmallString<60> NameStr; 2714 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2715 return OutContext.getOrCreateSymbol(NameStr); 2716 } 2717 2718 /// PrintParentLoopComment - Print comments about parent loops of this one. 2719 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2720 unsigned FunctionNumber) { 2721 if (!Loop) return; 2722 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2723 OS.indent(Loop->getLoopDepth()*2) 2724 << "Parent Loop BB" << FunctionNumber << "_" 2725 << Loop->getHeader()->getNumber() 2726 << " Depth=" << Loop->getLoopDepth() << '\n'; 2727 } 2728 2729 /// PrintChildLoopComment - Print comments about child loops within 2730 /// the loop for this basic block, with nesting. 2731 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2732 unsigned FunctionNumber) { 2733 // Add child loop information 2734 for (const MachineLoop *CL : *Loop) { 2735 OS.indent(CL->getLoopDepth()*2) 2736 << "Child Loop BB" << FunctionNumber << "_" 2737 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2738 << '\n'; 2739 PrintChildLoopComment(OS, CL, FunctionNumber); 2740 } 2741 } 2742 2743 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2744 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2745 const MachineLoopInfo *LI, 2746 const AsmPrinter &AP) { 2747 // Add loop depth information 2748 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2749 if (!Loop) return; 2750 2751 MachineBasicBlock *Header = Loop->getHeader(); 2752 assert(Header && "No header for loop"); 2753 2754 // If this block is not a loop header, just print out what is the loop header 2755 // and return. 2756 if (Header != &MBB) { 2757 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2758 Twine(AP.getFunctionNumber())+"_" + 2759 Twine(Loop->getHeader()->getNumber())+ 2760 " Depth="+Twine(Loop->getLoopDepth())); 2761 return; 2762 } 2763 2764 // Otherwise, it is a loop header. Print out information about child and 2765 // parent loops. 2766 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2767 2768 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2769 2770 OS << "=>"; 2771 OS.indent(Loop->getLoopDepth()*2-2); 2772 2773 OS << "This "; 2774 if (Loop->empty()) 2775 OS << "Inner "; 2776 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2777 2778 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2779 } 2780 2781 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2782 MCCodePaddingContext &Context) const { 2783 assert(MF != nullptr && "Machine function must be valid"); 2784 Context.IsPaddingActive = !MF->hasInlineAsm() && 2785 !MF->getFunction().optForSize() && 2786 TM.getOptLevel() != CodeGenOpt::None; 2787 Context.IsBasicBlockReachableViaFallthrough = 2788 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2789 MBB.pred_end(); 2790 Context.IsBasicBlockReachableViaBranch = 2791 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2792 } 2793 2794 /// EmitBasicBlockStart - This method prints the label for the specified 2795 /// MachineBasicBlock, an alignment (if present) and a comment describing 2796 /// it if appropriate. 2797 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2798 // End the previous funclet and start a new one. 2799 if (MBB.isEHFuncletEntry()) { 2800 for (const HandlerInfo &HI : Handlers) { 2801 HI.Handler->endFunclet(); 2802 HI.Handler->beginFunclet(MBB); 2803 } 2804 } 2805 2806 // Emit an alignment directive for this block, if needed. 2807 if (unsigned Align = MBB.getAlignment()) 2808 EmitAlignment(Align); 2809 MCCodePaddingContext Context; 2810 setupCodePaddingContext(MBB, Context); 2811 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2812 2813 // If the block has its address taken, emit any labels that were used to 2814 // reference the block. It is possible that there is more than one label 2815 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2816 // the references were generated. 2817 if (MBB.hasAddressTaken()) { 2818 const BasicBlock *BB = MBB.getBasicBlock(); 2819 if (isVerbose()) 2820 OutStreamer->AddComment("Block address taken"); 2821 2822 // MBBs can have their address taken as part of CodeGen without having 2823 // their corresponding BB's address taken in IR 2824 if (BB->hasAddressTaken()) 2825 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2826 OutStreamer->EmitLabel(Sym); 2827 } 2828 2829 // Print some verbose block comments. 2830 if (isVerbose()) { 2831 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2832 if (BB->hasName()) { 2833 BB->printAsOperand(OutStreamer->GetCommentOS(), 2834 /*PrintType=*/false, BB->getModule()); 2835 OutStreamer->GetCommentOS() << '\n'; 2836 } 2837 } 2838 2839 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2840 emitBasicBlockLoopComments(MBB, MLI, *this); 2841 } 2842 2843 // Print the main label for the block. 2844 if (MBB.pred_empty() || 2845 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2846 if (isVerbose()) { 2847 // NOTE: Want this comment at start of line, don't emit with AddComment. 2848 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2849 false); 2850 } 2851 } else { 2852 OutStreamer->EmitLabel(MBB.getSymbol()); 2853 } 2854 } 2855 2856 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2857 MCCodePaddingContext Context; 2858 setupCodePaddingContext(MBB, Context); 2859 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2860 } 2861 2862 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2863 bool IsDefinition) const { 2864 MCSymbolAttr Attr = MCSA_Invalid; 2865 2866 switch (Visibility) { 2867 default: break; 2868 case GlobalValue::HiddenVisibility: 2869 if (IsDefinition) 2870 Attr = MAI->getHiddenVisibilityAttr(); 2871 else 2872 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2873 break; 2874 case GlobalValue::ProtectedVisibility: 2875 Attr = MAI->getProtectedVisibilityAttr(); 2876 break; 2877 } 2878 2879 if (Attr != MCSA_Invalid) 2880 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2881 } 2882 2883 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2884 /// exactly one predecessor and the control transfer mechanism between 2885 /// the predecessor and this block is a fall-through. 2886 bool AsmPrinter:: 2887 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2888 // If this is a landing pad, it isn't a fall through. If it has no preds, 2889 // then nothing falls through to it. 2890 if (MBB->isEHPad() || MBB->pred_empty()) 2891 return false; 2892 2893 // If there isn't exactly one predecessor, it can't be a fall through. 2894 if (MBB->pred_size() > 1) 2895 return false; 2896 2897 // The predecessor has to be immediately before this block. 2898 MachineBasicBlock *Pred = *MBB->pred_begin(); 2899 if (!Pred->isLayoutSuccessor(MBB)) 2900 return false; 2901 2902 // If the block is completely empty, then it definitely does fall through. 2903 if (Pred->empty()) 2904 return true; 2905 2906 // Check the terminators in the previous blocks 2907 for (const auto &MI : Pred->terminators()) { 2908 // If it is not a simple branch, we are in a table somewhere. 2909 if (!MI.isBranch() || MI.isIndirectBranch()) 2910 return false; 2911 2912 // If we are the operands of one of the branches, this is not a fall 2913 // through. Note that targets with delay slots will usually bundle 2914 // terminators with the delay slot instruction. 2915 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2916 if (OP->isJTI()) 2917 return false; 2918 if (OP->isMBB() && OP->getMBB() == MBB) 2919 return false; 2920 } 2921 } 2922 2923 return true; 2924 } 2925 2926 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2927 if (!S.usesMetadata()) 2928 return nullptr; 2929 2930 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2931 " stackmap formats, please see the documentation for a description of" 2932 " the default format. If you really need a custom serialized format," 2933 " please file a bug"); 2934 2935 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2936 gcp_map_type::iterator GCPI = GCMap.find(&S); 2937 if (GCPI != GCMap.end()) 2938 return GCPI->second.get(); 2939 2940 auto Name = S.getName(); 2941 2942 for (GCMetadataPrinterRegistry::iterator 2943 I = GCMetadataPrinterRegistry::begin(), 2944 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2945 if (Name == I->getName()) { 2946 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2947 GMP->S = &S; 2948 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2949 return IterBool.first->second.get(); 2950 } 2951 2952 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2953 } 2954 2955 /// Pin vtable to this file. 2956 AsmPrinterHandler::~AsmPrinterHandler() = default; 2957 2958 void AsmPrinterHandler::markFunctionEnd() {} 2959 2960 // In the binary's "xray_instr_map" section, an array of these function entries 2961 // describes each instrumentation point. When XRay patches your code, the index 2962 // into this table will be given to your handler as a patch point identifier. 2963 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2964 const MCSymbol *CurrentFnSym) const { 2965 Out->EmitSymbolValue(Sled, Bytes); 2966 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2967 auto Kind8 = static_cast<uint8_t>(Kind); 2968 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2969 Out->EmitBinaryData( 2970 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2971 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 2972 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 2973 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 2974 Out->EmitZeros(Padding); 2975 } 2976 2977 void AsmPrinter::emitXRayTable() { 2978 if (Sleds.empty()) 2979 return; 2980 2981 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2982 const Function &F = MF->getFunction(); 2983 MCSection *InstMap = nullptr; 2984 MCSection *FnSledIndex = nullptr; 2985 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2986 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 2987 assert(Associated != nullptr); 2988 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 2989 std::string GroupName; 2990 if (F.hasComdat()) { 2991 Flags |= ELF::SHF_GROUP; 2992 GroupName = F.getComdat()->getName(); 2993 } 2994 2995 auto UniqueID = ++XRayFnUniqueID; 2996 InstMap = 2997 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 2998 GroupName, UniqueID, Associated); 2999 FnSledIndex = 3000 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3001 GroupName, UniqueID, Associated); 3002 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3003 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3004 SectionKind::getReadOnlyWithRel()); 3005 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3006 SectionKind::getReadOnlyWithRel()); 3007 } else { 3008 llvm_unreachable("Unsupported target"); 3009 } 3010 3011 auto WordSizeBytes = MAI->getCodePointerSize(); 3012 3013 // Now we switch to the instrumentation map section. Because this is done 3014 // per-function, we are able to create an index entry that will represent the 3015 // range of sleds associated with a function. 3016 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3017 OutStreamer->SwitchSection(InstMap); 3018 OutStreamer->EmitLabel(SledsStart); 3019 for (const auto &Sled : Sleds) 3020 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3021 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3022 OutStreamer->EmitLabel(SledsEnd); 3023 3024 // We then emit a single entry in the index per function. We use the symbols 3025 // that bound the instrumentation map as the range for a specific function. 3026 // Each entry here will be 2 * word size aligned, as we're writing down two 3027 // pointers. This should work for both 32-bit and 64-bit platforms. 3028 OutStreamer->SwitchSection(FnSledIndex); 3029 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3030 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3031 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3032 OutStreamer->SwitchSection(PrevSection); 3033 Sleds.clear(); 3034 } 3035 3036 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3037 SledKind Kind, uint8_t Version) { 3038 const Function &F = MI.getMF()->getFunction(); 3039 auto Attr = F.getFnAttribute("function-instrument"); 3040 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3041 bool AlwaysInstrument = 3042 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3043 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3044 Kind = SledKind::LOG_ARGS_ENTER; 3045 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3046 AlwaysInstrument, &F, Version}); 3047 } 3048 3049 uint16_t AsmPrinter::getDwarfVersion() const { 3050 return OutStreamer->getContext().getDwarfVersion(); 3051 } 3052 3053 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3054 OutStreamer->getContext().setDwarfVersion(Version); 3055 } 3056