1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/ObjectUtils.h" 33 #include "llvm/BinaryFormat/Dwarf.h" 34 #include "llvm/BinaryFormat/ELF.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/GCMetadataPrinter.h" 38 #include "llvm/CodeGen/GCStrategy.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineConstantPool.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBundle.h" 46 #include "llvm/CodeGen/MachineJumpTableInfo.h" 47 #include "llvm/CodeGen/MachineLoopInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DebugInfoMetadata.h" 57 #include "llvm/IR/DerivedTypes.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalAlias.h" 60 #include "llvm/IR/GlobalIFunc.h" 61 #include "llvm/IR/GlobalIndirectSymbol.h" 62 #include "llvm/IR/GlobalObject.h" 63 #include "llvm/IR/GlobalValue.h" 64 #include "llvm/IR/GlobalVariable.h" 65 #include "llvm/IR/Mangler.h" 66 #include "llvm/IR/Metadata.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/MC/MCAsmInfo.h" 71 #include "llvm/MC/MCContext.h" 72 #include "llvm/MC/MCDirectives.h" 73 #include "llvm/MC/MCExpr.h" 74 #include "llvm/MC/MCInst.h" 75 #include "llvm/MC/MCSection.h" 76 #include "llvm/MC/MCSectionELF.h" 77 #include "llvm/MC/MCSectionMachO.h" 78 #include "llvm/MC/MCStreamer.h" 79 #include "llvm/MC/MCSubtargetInfo.h" 80 #include "llvm/MC/MCSymbol.h" 81 #include "llvm/MC/MCTargetOptions.h" 82 #include "llvm/MC/MCValue.h" 83 #include "llvm/MC/SectionKind.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/Casting.h" 86 #include "llvm/Support/Compiler.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/Format.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/Path.h" 91 #include "llvm/Support/TargetRegistry.h" 92 #include "llvm/Support/Timer.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Target/TargetFrameLowering.h" 95 #include "llvm/Target/TargetInstrInfo.h" 96 #include "llvm/Target/TargetLowering.h" 97 #include "llvm/Target/TargetLoweringObjectFile.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetRegisterInfo.h" 100 #include "llvm/Target/TargetSubtargetInfo.h" 101 #include <algorithm> 102 #include <cassert> 103 #include <cinttypes> 104 #include <cstdint> 105 #include <limits> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 #include <vector> 110 111 using namespace llvm; 112 113 #define DEBUG_TYPE "asm-printer" 114 115 static const char *const DWARFGroupName = "dwarf"; 116 static const char *const DWARFGroupDescription = "DWARF Emission"; 117 static const char *const DbgTimerName = "emit"; 118 static const char *const DbgTimerDescription = "Debug Info Emission"; 119 static const char *const EHTimerName = "write_exception"; 120 static const char *const EHTimerDescription = "DWARF Exception Writer"; 121 static const char *const CodeViewLineTablesGroupName = "linetables"; 122 static const char *const CodeViewLineTablesGroupDescription = 123 "CodeView Line Tables"; 124 125 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 126 127 static cl::opt<bool> 128 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 129 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 130 131 char AsmPrinter::ID = 0; 132 133 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 134 static gcp_map_type &getGCMap(void *&P) { 135 if (!P) 136 P = new gcp_map_type(); 137 return *(gcp_map_type*)P; 138 } 139 140 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 141 /// value in log2 form. This rounds up to the preferred alignment if possible 142 /// and legal. 143 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 144 unsigned InBits = 0) { 145 unsigned NumBits = 0; 146 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 147 NumBits = DL.getPreferredAlignmentLog(GVar); 148 149 // If InBits is specified, round it to it. 150 if (InBits > NumBits) 151 NumBits = InBits; 152 153 // If the GV has a specified alignment, take it into account. 154 if (GV->getAlignment() == 0) 155 return NumBits; 156 157 unsigned GVAlign = Log2_32(GV->getAlignment()); 158 159 // If the GVAlign is larger than NumBits, or if we are required to obey 160 // NumBits because the GV has an assigned section, obey it. 161 if (GVAlign > NumBits || GV->hasSection()) 162 NumBits = GVAlign; 163 return NumBits; 164 } 165 166 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 167 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 168 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 169 VerboseAsm = OutStreamer->isVerboseAsm(); 170 } 171 172 AsmPrinter::~AsmPrinter() { 173 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 174 175 if (GCMetadataPrinters) { 176 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 177 178 delete &GCMap; 179 GCMetadataPrinters = nullptr; 180 } 181 } 182 183 bool AsmPrinter::isPositionIndependent() const { 184 return TM.isPositionIndependent(); 185 } 186 187 /// getFunctionNumber - Return a unique ID for the current function. 188 /// 189 unsigned AsmPrinter::getFunctionNumber() const { 190 return MF->getFunctionNumber(); 191 } 192 193 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 194 return *TM.getObjFileLowering(); 195 } 196 197 const DataLayout &AsmPrinter::getDataLayout() const { 198 return MMI->getModule()->getDataLayout(); 199 } 200 201 // Do not use the cached DataLayout because some client use it without a Module 202 // (llvm-dsymutil, llvm-dwarfdump). 203 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 204 205 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 206 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 207 return MF->getSubtarget<MCSubtargetInfo>(); 208 } 209 210 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 211 S.EmitInstruction(Inst, getSubtargetInfo()); 212 } 213 214 /// getCurrentSection() - Return the current section we are emitting to. 215 const MCSection *AsmPrinter::getCurrentSection() const { 216 return OutStreamer->getCurrentSectionOnly(); 217 } 218 219 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 220 AU.setPreservesAll(); 221 MachineFunctionPass::getAnalysisUsage(AU); 222 AU.addRequired<MachineModuleInfo>(); 223 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 224 AU.addRequired<GCModuleInfo>(); 225 if (isVerbose()) 226 AU.addRequired<MachineLoopInfo>(); 227 } 228 229 bool AsmPrinter::doInitialization(Module &M) { 230 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 231 232 // Initialize TargetLoweringObjectFile. 233 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 234 .Initialize(OutContext, TM); 235 236 OutStreamer->InitSections(false); 237 238 // Emit the version-min deplyment target directive if needed. 239 // 240 // FIXME: If we end up with a collection of these sorts of Darwin-specific 241 // or ELF-specific things, it may make sense to have a platform helper class 242 // that will work with the target helper class. For now keep it here, as the 243 // alternative is duplicated code in each of the target asm printers that 244 // use the directive, where it would need the same conditionalization 245 // anyway. 246 const Triple &TT = TM.getTargetTriple(); 247 // If there is a version specified, Major will be non-zero. 248 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 249 unsigned Major, Minor, Update; 250 MCVersionMinType VersionType; 251 if (TT.isWatchOS()) { 252 VersionType = MCVM_WatchOSVersionMin; 253 TT.getWatchOSVersion(Major, Minor, Update); 254 } else if (TT.isTvOS()) { 255 VersionType = MCVM_TvOSVersionMin; 256 TT.getiOSVersion(Major, Minor, Update); 257 } else if (TT.isMacOSX()) { 258 VersionType = MCVM_OSXVersionMin; 259 if (!TT.getMacOSXVersion(Major, Minor, Update)) 260 Major = 0; 261 } else { 262 VersionType = MCVM_IOSVersionMin; 263 TT.getiOSVersion(Major, Minor, Update); 264 } 265 if (Major != 0) 266 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 267 } 268 269 // Allow the target to emit any magic that it wants at the start of the file. 270 EmitStartOfAsmFile(M); 271 272 // Very minimal debug info. It is ignored if we emit actual debug info. If we 273 // don't, this at least helps the user find where a global came from. 274 if (MAI->hasSingleParameterDotFile()) { 275 // .file "foo.c" 276 OutStreamer->EmitFileDirective( 277 llvm::sys::path::filename(M.getSourceFileName())); 278 } 279 280 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 281 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 282 for (auto &I : *MI) 283 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 284 MP->beginAssembly(M, *MI, *this); 285 286 // Emit module-level inline asm if it exists. 287 if (!M.getModuleInlineAsm().empty()) { 288 // We're at the module level. Construct MCSubtarget from the default CPU 289 // and target triple. 290 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 291 TM.getTargetTriple().str(), TM.getTargetCPU(), 292 TM.getTargetFeatureString())); 293 OutStreamer->AddComment("Start of file scope inline assembly"); 294 OutStreamer->AddBlankLine(); 295 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 296 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 297 OutStreamer->AddComment("End of file scope inline assembly"); 298 OutStreamer->AddBlankLine(); 299 } 300 301 if (MAI->doesSupportDebugInformation()) { 302 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 303 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 304 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 305 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 306 DbgTimerName, DbgTimerDescription, 307 CodeViewLineTablesGroupName, 308 CodeViewLineTablesGroupDescription)); 309 } 310 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 311 DD = new DwarfDebug(this, &M); 312 DD->beginModule(); 313 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 314 DWARFGroupName, DWARFGroupDescription)); 315 } 316 } 317 318 switch (MAI->getExceptionHandlingType()) { 319 case ExceptionHandling::SjLj: 320 case ExceptionHandling::DwarfCFI: 321 case ExceptionHandling::ARM: 322 isCFIMoveForDebugging = true; 323 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 324 break; 325 for (auto &F: M.getFunctionList()) { 326 // If the module contains any function with unwind data, 327 // .eh_frame has to be emitted. 328 // Ignore functions that won't get emitted. 329 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 330 isCFIMoveForDebugging = false; 331 break; 332 } 333 } 334 break; 335 default: 336 isCFIMoveForDebugging = false; 337 break; 338 } 339 340 EHStreamer *ES = nullptr; 341 switch (MAI->getExceptionHandlingType()) { 342 case ExceptionHandling::None: 343 break; 344 case ExceptionHandling::SjLj: 345 case ExceptionHandling::DwarfCFI: 346 ES = new DwarfCFIException(this); 347 break; 348 case ExceptionHandling::ARM: 349 ES = new ARMException(this); 350 break; 351 case ExceptionHandling::WinEH: 352 switch (MAI->getWinEHEncodingType()) { 353 default: llvm_unreachable("unsupported unwinding information encoding"); 354 case WinEH::EncodingType::Invalid: 355 break; 356 case WinEH::EncodingType::X86: 357 case WinEH::EncodingType::Itanium: 358 ES = new WinException(this); 359 break; 360 } 361 break; 362 } 363 if (ES) 364 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 365 DWARFGroupName, DWARFGroupDescription)); 366 return false; 367 } 368 369 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 370 if (!MAI.hasWeakDefCanBeHiddenDirective()) 371 return false; 372 373 return canBeOmittedFromSymbolTable(GV); 374 } 375 376 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 377 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 378 switch (Linkage) { 379 case GlobalValue::CommonLinkage: 380 case GlobalValue::LinkOnceAnyLinkage: 381 case GlobalValue::LinkOnceODRLinkage: 382 case GlobalValue::WeakAnyLinkage: 383 case GlobalValue::WeakODRLinkage: 384 if (MAI->hasWeakDefDirective()) { 385 // .globl _foo 386 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 387 388 if (!canBeHidden(GV, *MAI)) 389 // .weak_definition _foo 390 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 391 else 392 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 393 } else if (MAI->hasLinkOnceDirective()) { 394 // .globl _foo 395 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 396 //NOTE: linkonce is handled by the section the symbol was assigned to. 397 } else { 398 // .weak _foo 399 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 400 } 401 return; 402 case GlobalValue::ExternalLinkage: 403 // If external, declare as a global symbol: .globl _foo 404 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 405 return; 406 case GlobalValue::PrivateLinkage: 407 case GlobalValue::InternalLinkage: 408 return; 409 case GlobalValue::AppendingLinkage: 410 case GlobalValue::AvailableExternallyLinkage: 411 case GlobalValue::ExternalWeakLinkage: 412 llvm_unreachable("Should never emit this"); 413 } 414 llvm_unreachable("Unknown linkage type!"); 415 } 416 417 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 418 const GlobalValue *GV) const { 419 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 420 } 421 422 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 423 return TM.getSymbol(GV); 424 } 425 426 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 427 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 428 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 429 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 430 "No emulated TLS variables in the common section"); 431 432 // Never emit TLS variable xyz in emulated TLS model. 433 // The initialization value is in __emutls_t.xyz instead of xyz. 434 if (IsEmuTLSVar) 435 return; 436 437 if (GV->hasInitializer()) { 438 // Check to see if this is a special global used by LLVM, if so, emit it. 439 if (EmitSpecialLLVMGlobal(GV)) 440 return; 441 442 // Skip the emission of global equivalents. The symbol can be emitted later 443 // on by emitGlobalGOTEquivs in case it turns out to be needed. 444 if (GlobalGOTEquivs.count(getSymbol(GV))) 445 return; 446 447 if (isVerbose()) { 448 // When printing the control variable __emutls_v.*, 449 // we don't need to print the original TLS variable name. 450 GV->printAsOperand(OutStreamer->GetCommentOS(), 451 /*PrintType=*/false, GV->getParent()); 452 OutStreamer->GetCommentOS() << '\n'; 453 } 454 } 455 456 MCSymbol *GVSym = getSymbol(GV); 457 MCSymbol *EmittedSym = GVSym; 458 459 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 460 // attributes. 461 // GV's or GVSym's attributes will be used for the EmittedSym. 462 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 463 464 if (!GV->hasInitializer()) // External globals require no extra code. 465 return; 466 467 GVSym->redefineIfPossible(); 468 if (GVSym->isDefined() || GVSym->isVariable()) 469 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 470 "' is already defined"); 471 472 if (MAI->hasDotTypeDotSizeDirective()) 473 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 474 475 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 476 477 const DataLayout &DL = GV->getParent()->getDataLayout(); 478 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 479 480 // If the alignment is specified, we *must* obey it. Overaligning a global 481 // with a specified alignment is a prompt way to break globals emitted to 482 // sections and expected to be contiguous (e.g. ObjC metadata). 483 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 484 485 for (const HandlerInfo &HI : Handlers) { 486 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 487 HI.TimerGroupName, HI.TimerGroupDescription, 488 TimePassesIsEnabled); 489 HI.Handler->setSymbolSize(GVSym, Size); 490 } 491 492 // Handle common symbols 493 if (GVKind.isCommon()) { 494 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 495 unsigned Align = 1 << AlignLog; 496 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 497 Align = 0; 498 499 // .comm _foo, 42, 4 500 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 501 return; 502 } 503 504 // Determine to which section this global should be emitted. 505 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 506 507 // If we have a bss global going to a section that supports the 508 // zerofill directive, do so here. 509 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 510 TheSection->isVirtualSection()) { 511 if (Size == 0) 512 Size = 1; // zerofill of 0 bytes is undefined. 513 unsigned Align = 1 << AlignLog; 514 EmitLinkage(GV, GVSym); 515 // .zerofill __DATA, __bss, _foo, 400, 5 516 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 517 return; 518 } 519 520 // If this is a BSS local symbol and we are emitting in the BSS 521 // section use .lcomm/.comm directive. 522 if (GVKind.isBSSLocal() && 523 getObjFileLowering().getBSSSection() == TheSection) { 524 if (Size == 0) 525 Size = 1; // .comm Foo, 0 is undefined, avoid it. 526 unsigned Align = 1 << AlignLog; 527 528 // Use .lcomm only if it supports user-specified alignment. 529 // Otherwise, while it would still be correct to use .lcomm in some 530 // cases (e.g. when Align == 1), the external assembler might enfore 531 // some -unknown- default alignment behavior, which could cause 532 // spurious differences between external and integrated assembler. 533 // Prefer to simply fall back to .local / .comm in this case. 534 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 535 // .lcomm _foo, 42 536 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 537 return; 538 } 539 540 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 541 Align = 0; 542 543 // .local _foo 544 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 545 // .comm _foo, 42, 4 546 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 547 return; 548 } 549 550 // Handle thread local data for mach-o which requires us to output an 551 // additional structure of data and mangle the original symbol so that we 552 // can reference it later. 553 // 554 // TODO: This should become an "emit thread local global" method on TLOF. 555 // All of this macho specific stuff should be sunk down into TLOFMachO and 556 // stuff like "TLSExtraDataSection" should no longer be part of the parent 557 // TLOF class. This will also make it more obvious that stuff like 558 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 559 // specific code. 560 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 561 // Emit the .tbss symbol 562 MCSymbol *MangSym = 563 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 564 565 if (GVKind.isThreadBSS()) { 566 TheSection = getObjFileLowering().getTLSBSSSection(); 567 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 568 } else if (GVKind.isThreadData()) { 569 OutStreamer->SwitchSection(TheSection); 570 571 EmitAlignment(AlignLog, GV); 572 OutStreamer->EmitLabel(MangSym); 573 574 EmitGlobalConstant(GV->getParent()->getDataLayout(), 575 GV->getInitializer()); 576 } 577 578 OutStreamer->AddBlankLine(); 579 580 // Emit the variable struct for the runtime. 581 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 582 583 OutStreamer->SwitchSection(TLVSect); 584 // Emit the linkage here. 585 EmitLinkage(GV, GVSym); 586 OutStreamer->EmitLabel(GVSym); 587 588 // Three pointers in size: 589 // - __tlv_bootstrap - used to make sure support exists 590 // - spare pointer, used when mapped by the runtime 591 // - pointer to mangled symbol above with initializer 592 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 593 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 594 PtrSize); 595 OutStreamer->EmitIntValue(0, PtrSize); 596 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 597 598 OutStreamer->AddBlankLine(); 599 return; 600 } 601 602 MCSymbol *EmittedInitSym = GVSym; 603 604 OutStreamer->SwitchSection(TheSection); 605 606 EmitLinkage(GV, EmittedInitSym); 607 EmitAlignment(AlignLog, GV); 608 609 OutStreamer->EmitLabel(EmittedInitSym); 610 611 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 612 613 if (MAI->hasDotTypeDotSizeDirective()) 614 // .size foo, 42 615 OutStreamer->emitELFSize(EmittedInitSym, 616 MCConstantExpr::create(Size, OutContext)); 617 618 OutStreamer->AddBlankLine(); 619 } 620 621 /// Emit the directive and value for debug thread local expression 622 /// 623 /// \p Value - The value to emit. 624 /// \p Size - The size of the integer (in bytes) to emit. 625 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 626 unsigned Size) const { 627 OutStreamer->EmitValue(Value, Size); 628 } 629 630 /// EmitFunctionHeader - This method emits the header for the current 631 /// function. 632 void AsmPrinter::EmitFunctionHeader() { 633 const Function *F = MF->getFunction(); 634 635 if (isVerbose()) 636 OutStreamer->GetCommentOS() 637 << "-- Begin function " 638 << GlobalValue::dropLLVMManglingEscape(F->getName()) << '\n'; 639 640 // Print out constants referenced by the function 641 EmitConstantPool(); 642 643 // Print the 'header' of function. 644 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 645 EmitVisibility(CurrentFnSym, F->getVisibility()); 646 647 EmitLinkage(F, CurrentFnSym); 648 if (MAI->hasFunctionAlignment()) 649 EmitAlignment(MF->getAlignment(), F); 650 651 if (MAI->hasDotTypeDotSizeDirective()) 652 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 653 654 if (isVerbose()) { 655 F->printAsOperand(OutStreamer->GetCommentOS(), 656 /*PrintType=*/false, F->getParent()); 657 OutStreamer->GetCommentOS() << '\n'; 658 } 659 660 // Emit the prefix data. 661 if (F->hasPrefixData()) { 662 if (MAI->hasSubsectionsViaSymbols()) { 663 // Preserving prefix data on platforms which use subsections-via-symbols 664 // is a bit tricky. Here we introduce a symbol for the prefix data 665 // and use the .alt_entry attribute to mark the function's real entry point 666 // as an alternative entry point to the prefix-data symbol. 667 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 668 OutStreamer->EmitLabel(PrefixSym); 669 670 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 671 672 // Emit an .alt_entry directive for the actual function symbol. 673 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 674 } else { 675 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 676 } 677 } 678 679 // Emit the CurrentFnSym. This is a virtual function to allow targets to 680 // do their wild and crazy things as required. 681 EmitFunctionEntryLabel(); 682 683 // If the function had address-taken blocks that got deleted, then we have 684 // references to the dangling symbols. Emit them at the start of the function 685 // so that we don't get references to undefined symbols. 686 std::vector<MCSymbol*> DeadBlockSyms; 687 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 688 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 689 OutStreamer->AddComment("Address taken block that was later removed"); 690 OutStreamer->EmitLabel(DeadBlockSyms[i]); 691 } 692 693 if (CurrentFnBegin) { 694 if (MAI->useAssignmentForEHBegin()) { 695 MCSymbol *CurPos = OutContext.createTempSymbol(); 696 OutStreamer->EmitLabel(CurPos); 697 OutStreamer->EmitAssignment(CurrentFnBegin, 698 MCSymbolRefExpr::create(CurPos, OutContext)); 699 } else { 700 OutStreamer->EmitLabel(CurrentFnBegin); 701 } 702 } 703 704 // Emit pre-function debug and/or EH information. 705 for (const HandlerInfo &HI : Handlers) { 706 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 707 HI.TimerGroupDescription, TimePassesIsEnabled); 708 HI.Handler->beginFunction(MF); 709 } 710 711 // Emit the prologue data. 712 if (F->hasPrologueData()) 713 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 714 } 715 716 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 717 /// function. This can be overridden by targets as required to do custom stuff. 718 void AsmPrinter::EmitFunctionEntryLabel() { 719 CurrentFnSym->redefineIfPossible(); 720 721 // The function label could have already been emitted if two symbols end up 722 // conflicting due to asm renaming. Detect this and emit an error. 723 if (CurrentFnSym->isVariable()) 724 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 725 "' is a protected alias"); 726 if (CurrentFnSym->isDefined()) 727 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 728 "' label emitted multiple times to assembly file"); 729 730 return OutStreamer->EmitLabel(CurrentFnSym); 731 } 732 733 /// emitComments - Pretty-print comments for instructions. 734 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 735 AsmPrinter *AP) { 736 const MachineFunction *MF = MI.getParent()->getParent(); 737 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 738 739 // Check for spills and reloads 740 int FI; 741 742 const MachineFrameInfo &MFI = MF->getFrameInfo(); 743 bool Commented = false; 744 745 // We assume a single instruction only has a spill or reload, not 746 // both. 747 const MachineMemOperand *MMO; 748 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 749 if (MFI.isSpillSlotObjectIndex(FI)) { 750 MMO = *MI.memoperands_begin(); 751 CommentOS << MMO->getSize() << "-byte Reload"; 752 Commented = true; 753 } 754 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 755 if (MFI.isSpillSlotObjectIndex(FI)) { 756 CommentOS << MMO->getSize() << "-byte Folded Reload"; 757 Commented = true; 758 } 759 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 760 if (MFI.isSpillSlotObjectIndex(FI)) { 761 MMO = *MI.memoperands_begin(); 762 CommentOS << MMO->getSize() << "-byte Spill"; 763 Commented = true; 764 } 765 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 766 if (MFI.isSpillSlotObjectIndex(FI)) { 767 CommentOS << MMO->getSize() << "-byte Folded Spill"; 768 Commented = true; 769 } 770 } 771 772 // Check for spill-induced copies 773 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 774 Commented = true; 775 CommentOS << " Reload Reuse"; 776 } 777 778 if (Commented && AP->EnablePrintSchedInfo) 779 // If any comment was added above and we need sched info comment then 780 // add this new comment just after the above comment w/o "\n" between them. 781 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 782 else if (Commented) 783 CommentOS << "\n"; 784 } 785 786 /// emitImplicitDef - This method emits the specified machine instruction 787 /// that is an implicit def. 788 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 789 unsigned RegNo = MI->getOperand(0).getReg(); 790 791 SmallString<128> Str; 792 raw_svector_ostream OS(Str); 793 OS << "implicit-def: " 794 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 795 796 OutStreamer->AddComment(OS.str()); 797 OutStreamer->AddBlankLine(); 798 } 799 800 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 801 std::string Str; 802 raw_string_ostream OS(Str); 803 OS << "kill:"; 804 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 805 const MachineOperand &Op = MI->getOperand(i); 806 assert(Op.isReg() && "KILL instruction must have only register operands"); 807 OS << ' ' 808 << PrintReg(Op.getReg(), 809 AP.MF->getSubtarget().getRegisterInfo()) 810 << (Op.isDef() ? "<def>" : "<kill>"); 811 } 812 AP.OutStreamer->AddComment(OS.str()); 813 AP.OutStreamer->AddBlankLine(); 814 } 815 816 /// emitDebugValueComment - This method handles the target-independent form 817 /// of DBG_VALUE, returning true if it was able to do so. A false return 818 /// means the target will need to handle MI in EmitInstruction. 819 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 820 // This code handles only the 4-operand target-independent form. 821 if (MI->getNumOperands() != 4) 822 return false; 823 824 SmallString<128> Str; 825 raw_svector_ostream OS(Str); 826 OS << "DEBUG_VALUE: "; 827 828 const DILocalVariable *V = MI->getDebugVariable(); 829 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 830 StringRef Name = SP->getName(); 831 if (!Name.empty()) 832 OS << Name << ":"; 833 } 834 OS << V->getName(); 835 OS << " <- "; 836 837 // The second operand is only an offset if it's an immediate. 838 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 839 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 840 const DIExpression *Expr = MI->getDebugExpression(); 841 if (Expr->getNumElements()) { 842 OS << '['; 843 bool NeedSep = false; 844 for (auto Op : Expr->expr_ops()) { 845 if (NeedSep) 846 OS << ", "; 847 else 848 NeedSep = true; 849 OS << dwarf::OperationEncodingString(Op.getOp()); 850 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 851 OS << ' ' << Op.getArg(I); 852 } 853 OS << "] "; 854 } 855 856 // Register or immediate value. Register 0 means undef. 857 if (MI->getOperand(0).isFPImm()) { 858 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 859 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 860 OS << (double)APF.convertToFloat(); 861 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 862 OS << APF.convertToDouble(); 863 } else { 864 // There is no good way to print long double. Convert a copy to 865 // double. Ah well, it's only a comment. 866 bool ignored; 867 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 868 &ignored); 869 OS << "(long double) " << APF.convertToDouble(); 870 } 871 } else if (MI->getOperand(0).isImm()) { 872 OS << MI->getOperand(0).getImm(); 873 } else if (MI->getOperand(0).isCImm()) { 874 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 875 } else { 876 unsigned Reg; 877 if (MI->getOperand(0).isReg()) { 878 Reg = MI->getOperand(0).getReg(); 879 } else { 880 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 881 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 882 Offset += TFI->getFrameIndexReference(*AP.MF, 883 MI->getOperand(0).getIndex(), Reg); 884 MemLoc = true; 885 } 886 if (Reg == 0) { 887 // Suppress offset, it is not meaningful here. 888 OS << "undef"; 889 // NOTE: Want this comment at start of line, don't emit with AddComment. 890 AP.OutStreamer->emitRawComment(OS.str()); 891 return true; 892 } 893 if (MemLoc) 894 OS << '['; 895 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 896 } 897 898 if (MemLoc) 899 OS << '+' << Offset << ']'; 900 901 // NOTE: Want this comment at start of line, don't emit with AddComment. 902 AP.OutStreamer->emitRawComment(OS.str()); 903 return true; 904 } 905 906 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 907 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 908 MF->getFunction()->needsUnwindTableEntry()) 909 return CFI_M_EH; 910 911 if (MMI->hasDebugInfo()) 912 return CFI_M_Debug; 913 914 return CFI_M_None; 915 } 916 917 bool AsmPrinter::needsSEHMoves() { 918 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 919 } 920 921 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 922 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 923 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 924 ExceptionHandlingType != ExceptionHandling::ARM) 925 return; 926 927 if (needsCFIMoves() == CFI_M_None) 928 return; 929 930 // If there is no "real" instruction following this CFI instruction, skip 931 // emitting it; it would be beyond the end of the function's FDE range. 932 auto *MBB = MI.getParent(); 933 auto I = std::next(MI.getIterator()); 934 while (I != MBB->end() && I->isTransient()) 935 ++I; 936 if (I == MBB->instr_end() && 937 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 938 return; 939 940 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 941 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 942 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 943 emitCFIInstruction(CFI); 944 } 945 946 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 947 // The operands are the MCSymbol and the frame offset of the allocation. 948 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 949 int FrameOffset = MI.getOperand(1).getImm(); 950 951 // Emit a symbol assignment. 952 OutStreamer->EmitAssignment(FrameAllocSym, 953 MCConstantExpr::create(FrameOffset, OutContext)); 954 } 955 956 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 957 MachineModuleInfo *MMI) { 958 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 959 return true; 960 961 // We might emit an EH table that uses function begin and end labels even if 962 // we don't have any landingpads. 963 if (!MF.getFunction()->hasPersonalityFn()) 964 return false; 965 return !isNoOpWithoutInvoke( 966 classifyEHPersonality(MF.getFunction()->getPersonalityFn())); 967 } 968 969 /// EmitFunctionBody - This method emits the body and trailer for a 970 /// function. 971 void AsmPrinter::EmitFunctionBody() { 972 EmitFunctionHeader(); 973 974 // Emit target-specific gunk before the function body. 975 EmitFunctionBodyStart(); 976 977 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 978 979 // Print out code for the function. 980 bool HasAnyRealCode = false; 981 int NumInstsInFunction = 0; 982 for (auto &MBB : *MF) { 983 // Print a label for the basic block. 984 EmitBasicBlockStart(MBB); 985 for (auto &MI : MBB) { 986 987 // Print the assembly for the instruction. 988 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 989 !MI.isDebugValue()) { 990 HasAnyRealCode = true; 991 ++NumInstsInFunction; 992 } 993 994 if (ShouldPrintDebugScopes) { 995 for (const HandlerInfo &HI : Handlers) { 996 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 997 HI.TimerGroupName, HI.TimerGroupDescription, 998 TimePassesIsEnabled); 999 HI.Handler->beginInstruction(&MI); 1000 } 1001 } 1002 1003 if (isVerbose()) 1004 emitComments(MI, OutStreamer->GetCommentOS(), this); 1005 1006 switch (MI.getOpcode()) { 1007 case TargetOpcode::CFI_INSTRUCTION: 1008 emitCFIInstruction(MI); 1009 break; 1010 1011 case TargetOpcode::LOCAL_ESCAPE: 1012 emitFrameAlloc(MI); 1013 break; 1014 1015 case TargetOpcode::EH_LABEL: 1016 case TargetOpcode::GC_LABEL: 1017 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1018 break; 1019 case TargetOpcode::INLINEASM: 1020 EmitInlineAsm(&MI); 1021 break; 1022 case TargetOpcode::DBG_VALUE: 1023 if (isVerbose()) { 1024 if (!emitDebugValueComment(&MI, *this)) 1025 EmitInstruction(&MI); 1026 } 1027 break; 1028 case TargetOpcode::IMPLICIT_DEF: 1029 if (isVerbose()) emitImplicitDef(&MI); 1030 break; 1031 case TargetOpcode::KILL: 1032 if (isVerbose()) emitKill(&MI, *this); 1033 break; 1034 default: 1035 EmitInstruction(&MI); 1036 break; 1037 } 1038 1039 if (ShouldPrintDebugScopes) { 1040 for (const HandlerInfo &HI : Handlers) { 1041 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1042 HI.TimerGroupName, HI.TimerGroupDescription, 1043 TimePassesIsEnabled); 1044 HI.Handler->endInstruction(); 1045 } 1046 } 1047 } 1048 1049 EmitBasicBlockEnd(MBB); 1050 } 1051 1052 EmittedInsts += NumInstsInFunction; 1053 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1054 MF->getFunction()->getSubprogram(), 1055 &MF->front()); 1056 R << ore::NV("NumInstructions", NumInstsInFunction) 1057 << " instructions in function"; 1058 ORE->emit(R); 1059 1060 // If the function is empty and the object file uses .subsections_via_symbols, 1061 // then we need to emit *something* to the function body to prevent the 1062 // labels from collapsing together. Just emit a noop. 1063 // Similarly, don't emit empty functions on Windows either. It can lead to 1064 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1065 // after linking, causing the kernel not to load the binary: 1066 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1067 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1068 const Triple &TT = TM.getTargetTriple(); 1069 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1070 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1071 MCInst Noop; 1072 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1073 1074 // Targets can opt-out of emitting the noop here by leaving the opcode 1075 // unspecified. 1076 if (Noop.getOpcode()) { 1077 OutStreamer->AddComment("avoids zero-length function"); 1078 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1079 } 1080 } 1081 1082 const Function *F = MF->getFunction(); 1083 for (const auto &BB : *F) { 1084 if (!BB.hasAddressTaken()) 1085 continue; 1086 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1087 if (Sym->isDefined()) 1088 continue; 1089 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1090 OutStreamer->EmitLabel(Sym); 1091 } 1092 1093 // Emit target-specific gunk after the function body. 1094 EmitFunctionBodyEnd(); 1095 1096 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1097 MAI->hasDotTypeDotSizeDirective()) { 1098 // Create a symbol for the end of function. 1099 CurrentFnEnd = createTempSymbol("func_end"); 1100 OutStreamer->EmitLabel(CurrentFnEnd); 1101 } 1102 1103 // If the target wants a .size directive for the size of the function, emit 1104 // it. 1105 if (MAI->hasDotTypeDotSizeDirective()) { 1106 // We can get the size as difference between the function label and the 1107 // temp label. 1108 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1109 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1110 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1111 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1112 } 1113 1114 for (const HandlerInfo &HI : Handlers) { 1115 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1116 HI.TimerGroupDescription, TimePassesIsEnabled); 1117 HI.Handler->markFunctionEnd(); 1118 } 1119 1120 // Print out jump tables referenced by the function. 1121 EmitJumpTableInfo(); 1122 1123 // Emit post-function debug and/or EH information. 1124 for (const HandlerInfo &HI : Handlers) { 1125 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1126 HI.TimerGroupDescription, TimePassesIsEnabled); 1127 HI.Handler->endFunction(MF); 1128 } 1129 1130 if (isVerbose()) 1131 OutStreamer->GetCommentOS() << "-- End function\n"; 1132 1133 OutStreamer->AddBlankLine(); 1134 } 1135 1136 /// \brief Compute the number of Global Variables that uses a Constant. 1137 static unsigned getNumGlobalVariableUses(const Constant *C) { 1138 if (!C) 1139 return 0; 1140 1141 if (isa<GlobalVariable>(C)) 1142 return 1; 1143 1144 unsigned NumUses = 0; 1145 for (auto *CU : C->users()) 1146 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1147 1148 return NumUses; 1149 } 1150 1151 /// \brief Only consider global GOT equivalents if at least one user is a 1152 /// cstexpr inside an initializer of another global variables. Also, don't 1153 /// handle cstexpr inside instructions. During global variable emission, 1154 /// candidates are skipped and are emitted later in case at least one cstexpr 1155 /// isn't replaced by a PC relative GOT entry access. 1156 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1157 unsigned &NumGOTEquivUsers) { 1158 // Global GOT equivalents are unnamed private globals with a constant 1159 // pointer initializer to another global symbol. They must point to a 1160 // GlobalVariable or Function, i.e., as GlobalValue. 1161 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1162 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1163 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1164 return false; 1165 1166 // To be a got equivalent, at least one of its users need to be a constant 1167 // expression used by another global variable. 1168 for (auto *U : GV->users()) 1169 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1170 1171 return NumGOTEquivUsers > 0; 1172 } 1173 1174 /// \brief Unnamed constant global variables solely contaning a pointer to 1175 /// another globals variable is equivalent to a GOT table entry; it contains the 1176 /// the address of another symbol. Optimize it and replace accesses to these 1177 /// "GOT equivalents" by using the GOT entry for the final global instead. 1178 /// Compute GOT equivalent candidates among all global variables to avoid 1179 /// emitting them if possible later on, after it use is replaced by a GOT entry 1180 /// access. 1181 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1182 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1183 return; 1184 1185 for (const auto &G : M.globals()) { 1186 unsigned NumGOTEquivUsers = 0; 1187 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1188 continue; 1189 1190 const MCSymbol *GOTEquivSym = getSymbol(&G); 1191 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1192 } 1193 } 1194 1195 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1196 /// for PC relative GOT entry conversion, in such cases we need to emit such 1197 /// globals we previously omitted in EmitGlobalVariable. 1198 void AsmPrinter::emitGlobalGOTEquivs() { 1199 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1200 return; 1201 1202 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1203 for (auto &I : GlobalGOTEquivs) { 1204 const GlobalVariable *GV = I.second.first; 1205 unsigned Cnt = I.second.second; 1206 if (Cnt) 1207 FailedCandidates.push_back(GV); 1208 } 1209 GlobalGOTEquivs.clear(); 1210 1211 for (auto *GV : FailedCandidates) 1212 EmitGlobalVariable(GV); 1213 } 1214 1215 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1216 const GlobalIndirectSymbol& GIS) { 1217 MCSymbol *Name = getSymbol(&GIS); 1218 1219 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1220 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1221 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1222 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1223 else 1224 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1225 1226 // Set the symbol type to function if the alias has a function type. 1227 // This affects codegen when the aliasee is not a function. 1228 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1229 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1230 if (isa<GlobalIFunc>(GIS)) 1231 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1232 } 1233 1234 EmitVisibility(Name, GIS.getVisibility()); 1235 1236 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1237 1238 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1239 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1240 1241 // Emit the directives as assignments aka .set: 1242 OutStreamer->EmitAssignment(Name, Expr); 1243 1244 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1245 // If the aliasee does not correspond to a symbol in the output, i.e. the 1246 // alias is not of an object or the aliased object is private, then set the 1247 // size of the alias symbol from the type of the alias. We don't do this in 1248 // other situations as the alias and aliasee having differing types but same 1249 // size may be intentional. 1250 const GlobalObject *BaseObject = GA->getBaseObject(); 1251 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1252 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1253 const DataLayout &DL = M.getDataLayout(); 1254 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1255 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1256 } 1257 } 1258 } 1259 1260 bool AsmPrinter::doFinalization(Module &M) { 1261 // Set the MachineFunction to nullptr so that we can catch attempted 1262 // accesses to MF specific features at the module level and so that 1263 // we can conditionalize accesses based on whether or not it is nullptr. 1264 MF = nullptr; 1265 1266 // Gather all GOT equivalent globals in the module. We really need two 1267 // passes over the globals: one to compute and another to avoid its emission 1268 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1269 // where the got equivalent shows up before its use. 1270 computeGlobalGOTEquivs(M); 1271 1272 // Emit global variables. 1273 for (const auto &G : M.globals()) 1274 EmitGlobalVariable(&G); 1275 1276 // Emit remaining GOT equivalent globals. 1277 emitGlobalGOTEquivs(); 1278 1279 // Emit visibility info for declarations 1280 for (const Function &F : M) { 1281 if (!F.isDeclarationForLinker()) 1282 continue; 1283 GlobalValue::VisibilityTypes V = F.getVisibility(); 1284 if (V == GlobalValue::DefaultVisibility) 1285 continue; 1286 1287 MCSymbol *Name = getSymbol(&F); 1288 EmitVisibility(Name, V, false); 1289 } 1290 1291 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1292 1293 TLOF.emitModuleMetadata(*OutStreamer, M, TM); 1294 1295 if (TM.getTargetTriple().isOSBinFormatELF()) { 1296 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1297 1298 // Output stubs for external and common global variables. 1299 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1300 if (!Stubs.empty()) { 1301 OutStreamer->SwitchSection(TLOF.getDataSection()); 1302 const DataLayout &DL = M.getDataLayout(); 1303 1304 for (const auto &Stub : Stubs) { 1305 OutStreamer->EmitLabel(Stub.first); 1306 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1307 DL.getPointerSize()); 1308 } 1309 } 1310 } 1311 1312 // Finalize debug and EH information. 1313 for (const HandlerInfo &HI : Handlers) { 1314 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1315 HI.TimerGroupDescription, TimePassesIsEnabled); 1316 HI.Handler->endModule(); 1317 delete HI.Handler; 1318 } 1319 Handlers.clear(); 1320 DD = nullptr; 1321 1322 // If the target wants to know about weak references, print them all. 1323 if (MAI->getWeakRefDirective()) { 1324 // FIXME: This is not lazy, it would be nice to only print weak references 1325 // to stuff that is actually used. Note that doing so would require targets 1326 // to notice uses in operands (due to constant exprs etc). This should 1327 // happen with the MC stuff eventually. 1328 1329 // Print out module-level global objects here. 1330 for (const auto &GO : M.global_objects()) { 1331 if (!GO.hasExternalWeakLinkage()) 1332 continue; 1333 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1334 } 1335 } 1336 1337 OutStreamer->AddBlankLine(); 1338 1339 // Print aliases in topological order, that is, for each alias a = b, 1340 // b must be printed before a. 1341 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1342 // such an order to generate correct TOC information. 1343 SmallVector<const GlobalAlias *, 16> AliasStack; 1344 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1345 for (const auto &Alias : M.aliases()) { 1346 for (const GlobalAlias *Cur = &Alias; Cur; 1347 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1348 if (!AliasVisited.insert(Cur).second) 1349 break; 1350 AliasStack.push_back(Cur); 1351 } 1352 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1353 emitGlobalIndirectSymbol(M, *AncestorAlias); 1354 AliasStack.clear(); 1355 } 1356 for (const auto &IFunc : M.ifuncs()) 1357 emitGlobalIndirectSymbol(M, IFunc); 1358 1359 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1360 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1361 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1362 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1363 MP->finishAssembly(M, *MI, *this); 1364 1365 // Emit llvm.ident metadata in an '.ident' directive. 1366 EmitModuleIdents(M); 1367 1368 // Emit __morestack address if needed for indirect calls. 1369 if (MMI->usesMorestackAddr()) { 1370 unsigned Align = 1; 1371 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1372 getDataLayout(), SectionKind::getReadOnly(), 1373 /*C=*/nullptr, Align); 1374 OutStreamer->SwitchSection(ReadOnlySection); 1375 1376 MCSymbol *AddrSymbol = 1377 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1378 OutStreamer->EmitLabel(AddrSymbol); 1379 1380 unsigned PtrSize = MAI->getCodePointerSize(); 1381 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1382 PtrSize); 1383 } 1384 1385 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1386 // split-stack is used. 1387 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1388 OutStreamer->SwitchSection( 1389 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1390 if (MMI->hasNosplitStack()) 1391 OutStreamer->SwitchSection( 1392 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1393 } 1394 1395 // If we don't have any trampolines, then we don't require stack memory 1396 // to be executable. Some targets have a directive to declare this. 1397 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1398 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1399 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1400 OutStreamer->SwitchSection(S); 1401 1402 // Allow the target to emit any magic that it wants at the end of the file, 1403 // after everything else has gone out. 1404 EmitEndOfAsmFile(M); 1405 1406 MMI = nullptr; 1407 1408 OutStreamer->Finish(); 1409 OutStreamer->reset(); 1410 1411 return false; 1412 } 1413 1414 MCSymbol *AsmPrinter::getCurExceptionSym() { 1415 if (!CurExceptionSym) 1416 CurExceptionSym = createTempSymbol("exception"); 1417 return CurExceptionSym; 1418 } 1419 1420 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1421 this->MF = &MF; 1422 // Get the function symbol. 1423 CurrentFnSym = getSymbol(MF.getFunction()); 1424 CurrentFnSymForSize = CurrentFnSym; 1425 CurrentFnBegin = nullptr; 1426 CurExceptionSym = nullptr; 1427 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1428 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) { 1429 CurrentFnBegin = createTempSymbol("func_begin"); 1430 if (NeedsLocalForSize) 1431 CurrentFnSymForSize = CurrentFnBegin; 1432 } 1433 1434 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1435 if (isVerbose()) 1436 LI = &getAnalysis<MachineLoopInfo>(); 1437 1438 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1439 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1440 ? PrintSchedule 1441 : STI.supportPrintSchedInfo(); 1442 } 1443 1444 namespace { 1445 1446 // Keep track the alignment, constpool entries per Section. 1447 struct SectionCPs { 1448 MCSection *S; 1449 unsigned Alignment; 1450 SmallVector<unsigned, 4> CPEs; 1451 1452 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1453 }; 1454 1455 } // end anonymous namespace 1456 1457 /// EmitConstantPool - Print to the current output stream assembly 1458 /// representations of the constants in the constant pool MCP. This is 1459 /// used to print out constants which have been "spilled to memory" by 1460 /// the code generator. 1461 /// 1462 void AsmPrinter::EmitConstantPool() { 1463 const MachineConstantPool *MCP = MF->getConstantPool(); 1464 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1465 if (CP.empty()) return; 1466 1467 // Calculate sections for constant pool entries. We collect entries to go into 1468 // the same section together to reduce amount of section switch statements. 1469 SmallVector<SectionCPs, 4> CPSections; 1470 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1471 const MachineConstantPoolEntry &CPE = CP[i]; 1472 unsigned Align = CPE.getAlignment(); 1473 1474 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1475 1476 const Constant *C = nullptr; 1477 if (!CPE.isMachineConstantPoolEntry()) 1478 C = CPE.Val.ConstVal; 1479 1480 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1481 Kind, C, Align); 1482 1483 // The number of sections are small, just do a linear search from the 1484 // last section to the first. 1485 bool Found = false; 1486 unsigned SecIdx = CPSections.size(); 1487 while (SecIdx != 0) { 1488 if (CPSections[--SecIdx].S == S) { 1489 Found = true; 1490 break; 1491 } 1492 } 1493 if (!Found) { 1494 SecIdx = CPSections.size(); 1495 CPSections.push_back(SectionCPs(S, Align)); 1496 } 1497 1498 if (Align > CPSections[SecIdx].Alignment) 1499 CPSections[SecIdx].Alignment = Align; 1500 CPSections[SecIdx].CPEs.push_back(i); 1501 } 1502 1503 // Now print stuff into the calculated sections. 1504 const MCSection *CurSection = nullptr; 1505 unsigned Offset = 0; 1506 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1507 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1508 unsigned CPI = CPSections[i].CPEs[j]; 1509 MCSymbol *Sym = GetCPISymbol(CPI); 1510 if (!Sym->isUndefined()) 1511 continue; 1512 1513 if (CurSection != CPSections[i].S) { 1514 OutStreamer->SwitchSection(CPSections[i].S); 1515 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1516 CurSection = CPSections[i].S; 1517 Offset = 0; 1518 } 1519 1520 MachineConstantPoolEntry CPE = CP[CPI]; 1521 1522 // Emit inter-object padding for alignment. 1523 unsigned AlignMask = CPE.getAlignment() - 1; 1524 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1525 OutStreamer->EmitZeros(NewOffset - Offset); 1526 1527 Type *Ty = CPE.getType(); 1528 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1529 1530 OutStreamer->EmitLabel(Sym); 1531 if (CPE.isMachineConstantPoolEntry()) 1532 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1533 else 1534 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1535 } 1536 } 1537 } 1538 1539 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1540 /// by the current function to the current output stream. 1541 /// 1542 void AsmPrinter::EmitJumpTableInfo() { 1543 const DataLayout &DL = MF->getDataLayout(); 1544 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1545 if (!MJTI) return; 1546 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1547 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1548 if (JT.empty()) return; 1549 1550 // Pick the directive to use to print the jump table entries, and switch to 1551 // the appropriate section. 1552 const Function *F = MF->getFunction(); 1553 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1554 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1555 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1556 *F); 1557 if (JTInDiffSection) { 1558 // Drop it in the readonly section. 1559 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1560 OutStreamer->SwitchSection(ReadOnlySection); 1561 } 1562 1563 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1564 1565 // Jump tables in code sections are marked with a data_region directive 1566 // where that's supported. 1567 if (!JTInDiffSection) 1568 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1569 1570 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1571 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1572 1573 // If this jump table was deleted, ignore it. 1574 if (JTBBs.empty()) continue; 1575 1576 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1577 /// emit a .set directive for each unique entry. 1578 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1579 MAI->doesSetDirectiveSuppressReloc()) { 1580 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1581 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1582 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1583 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1584 const MachineBasicBlock *MBB = JTBBs[ii]; 1585 if (!EmittedSets.insert(MBB).second) 1586 continue; 1587 1588 // .set LJTSet, LBB32-base 1589 const MCExpr *LHS = 1590 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1591 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1592 MCBinaryExpr::createSub(LHS, Base, 1593 OutContext)); 1594 } 1595 } 1596 1597 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1598 // before each jump table. The first label is never referenced, but tells 1599 // the assembler and linker the extents of the jump table object. The 1600 // second label is actually referenced by the code. 1601 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1602 // FIXME: This doesn't have to have any specific name, just any randomly 1603 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1604 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1605 1606 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1607 1608 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1609 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1610 } 1611 if (!JTInDiffSection) 1612 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1613 } 1614 1615 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1616 /// current stream. 1617 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1618 const MachineBasicBlock *MBB, 1619 unsigned UID) const { 1620 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1621 const MCExpr *Value = nullptr; 1622 switch (MJTI->getEntryKind()) { 1623 case MachineJumpTableInfo::EK_Inline: 1624 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1625 case MachineJumpTableInfo::EK_Custom32: 1626 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1627 MJTI, MBB, UID, OutContext); 1628 break; 1629 case MachineJumpTableInfo::EK_BlockAddress: 1630 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1631 // .word LBB123 1632 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1633 break; 1634 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1635 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1636 // with a relocation as gp-relative, e.g.: 1637 // .gprel32 LBB123 1638 MCSymbol *MBBSym = MBB->getSymbol(); 1639 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1640 return; 1641 } 1642 1643 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1644 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1645 // with a relocation as gp-relative, e.g.: 1646 // .gpdword LBB123 1647 MCSymbol *MBBSym = MBB->getSymbol(); 1648 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1649 return; 1650 } 1651 1652 case MachineJumpTableInfo::EK_LabelDifference32: { 1653 // Each entry is the address of the block minus the address of the jump 1654 // table. This is used for PIC jump tables where gprel32 is not supported. 1655 // e.g.: 1656 // .word LBB123 - LJTI1_2 1657 // If the .set directive avoids relocations, this is emitted as: 1658 // .set L4_5_set_123, LBB123 - LJTI1_2 1659 // .word L4_5_set_123 1660 if (MAI->doesSetDirectiveSuppressReloc()) { 1661 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1662 OutContext); 1663 break; 1664 } 1665 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1666 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1667 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1668 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1669 break; 1670 } 1671 } 1672 1673 assert(Value && "Unknown entry kind!"); 1674 1675 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1676 OutStreamer->EmitValue(Value, EntrySize); 1677 } 1678 1679 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1680 /// special global used by LLVM. If so, emit it and return true, otherwise 1681 /// do nothing and return false. 1682 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1683 if (GV->getName() == "llvm.used") { 1684 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1685 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1686 return true; 1687 } 1688 1689 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1690 if (GV->getSection() == "llvm.metadata" || 1691 GV->hasAvailableExternallyLinkage()) 1692 return true; 1693 1694 if (!GV->hasAppendingLinkage()) return false; 1695 1696 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1697 1698 if (GV->getName() == "llvm.global_ctors") { 1699 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1700 /* isCtor */ true); 1701 1702 return true; 1703 } 1704 1705 if (GV->getName() == "llvm.global_dtors") { 1706 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1707 /* isCtor */ false); 1708 1709 return true; 1710 } 1711 1712 report_fatal_error("unknown special variable"); 1713 } 1714 1715 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1716 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1717 /// is true, as being used with this directive. 1718 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1719 // Should be an array of 'i8*'. 1720 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1721 const GlobalValue *GV = 1722 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1723 if (GV) 1724 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1725 } 1726 } 1727 1728 namespace { 1729 1730 struct Structor { 1731 int Priority = 0; 1732 Constant *Func = nullptr; 1733 GlobalValue *ComdatKey = nullptr; 1734 1735 Structor() = default; 1736 }; 1737 1738 } // end anonymous namespace 1739 1740 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1741 /// priority. 1742 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1743 bool isCtor) { 1744 // Should be an array of '{ int, void ()* }' structs. The first value is the 1745 // init priority. 1746 if (!isa<ConstantArray>(List)) return; 1747 1748 // Sanity check the structors list. 1749 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1750 if (!InitList) return; // Not an array! 1751 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1752 // FIXME: Only allow the 3-field form in LLVM 4.0. 1753 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1754 return; // Not an array of two or three elements! 1755 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1756 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1757 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1758 return; // Not (int, ptr, ptr). 1759 1760 // Gather the structors in a form that's convenient for sorting by priority. 1761 SmallVector<Structor, 8> Structors; 1762 for (Value *O : InitList->operands()) { 1763 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1764 if (!CS) continue; // Malformed. 1765 if (CS->getOperand(1)->isNullValue()) 1766 break; // Found a null terminator, skip the rest. 1767 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1768 if (!Priority) continue; // Malformed. 1769 Structors.push_back(Structor()); 1770 Structor &S = Structors.back(); 1771 S.Priority = Priority->getLimitedValue(65535); 1772 S.Func = CS->getOperand(1); 1773 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1774 S.ComdatKey = 1775 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1776 } 1777 1778 // Emit the function pointers in the target-specific order 1779 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1780 std::stable_sort(Structors.begin(), Structors.end(), 1781 [](const Structor &L, 1782 const Structor &R) { return L.Priority < R.Priority; }); 1783 for (Structor &S : Structors) { 1784 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1785 const MCSymbol *KeySym = nullptr; 1786 if (GlobalValue *GV = S.ComdatKey) { 1787 if (GV->isDeclarationForLinker()) 1788 // If the associated variable is not defined in this module 1789 // (it might be available_externally, or have been an 1790 // available_externally definition that was dropped by the 1791 // EliminateAvailableExternally pass), some other TU 1792 // will provide its dynamic initializer. 1793 continue; 1794 1795 KeySym = getSymbol(GV); 1796 } 1797 MCSection *OutputSection = 1798 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1799 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1800 OutStreamer->SwitchSection(OutputSection); 1801 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1802 EmitAlignment(Align); 1803 EmitXXStructor(DL, S.Func); 1804 } 1805 } 1806 1807 void AsmPrinter::EmitModuleIdents(Module &M) { 1808 if (!MAI->hasIdentDirective()) 1809 return; 1810 1811 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1812 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1813 const MDNode *N = NMD->getOperand(i); 1814 assert(N->getNumOperands() == 1 && 1815 "llvm.ident metadata entry can have only one operand"); 1816 const MDString *S = cast<MDString>(N->getOperand(0)); 1817 OutStreamer->EmitIdent(S->getString()); 1818 } 1819 } 1820 } 1821 1822 //===--------------------------------------------------------------------===// 1823 // Emission and print routines 1824 // 1825 1826 /// EmitInt8 - Emit a byte directive and value. 1827 /// 1828 void AsmPrinter::EmitInt8(int Value) const { 1829 OutStreamer->EmitIntValue(Value, 1); 1830 } 1831 1832 /// EmitInt16 - Emit a short directive and value. 1833 /// 1834 void AsmPrinter::EmitInt16(int Value) const { 1835 OutStreamer->EmitIntValue(Value, 2); 1836 } 1837 1838 /// EmitInt32 - Emit a long directive and value. 1839 /// 1840 void AsmPrinter::EmitInt32(int Value) const { 1841 OutStreamer->EmitIntValue(Value, 4); 1842 } 1843 1844 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1845 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1846 /// .set if it avoids relocations. 1847 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1848 unsigned Size) const { 1849 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1850 } 1851 1852 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1853 /// where the size in bytes of the directive is specified by Size and Label 1854 /// specifies the label. This implicitly uses .set if it is available. 1855 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1856 unsigned Size, 1857 bool IsSectionRelative) const { 1858 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1859 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1860 if (Size > 4) 1861 OutStreamer->EmitZeros(Size - 4); 1862 return; 1863 } 1864 1865 // Emit Label+Offset (or just Label if Offset is zero) 1866 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1867 if (Offset) 1868 Expr = MCBinaryExpr::createAdd( 1869 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1870 1871 OutStreamer->EmitValue(Expr, Size); 1872 } 1873 1874 //===----------------------------------------------------------------------===// 1875 1876 // EmitAlignment - Emit an alignment directive to the specified power of 1877 // two boundary. For example, if you pass in 3 here, you will get an 8 1878 // byte alignment. If a global value is specified, and if that global has 1879 // an explicit alignment requested, it will override the alignment request 1880 // if required for correctness. 1881 // 1882 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1883 if (GV) 1884 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1885 1886 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1887 1888 assert(NumBits < 1889 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1890 "undefined behavior"); 1891 if (getCurrentSection()->getKind().isText()) 1892 OutStreamer->EmitCodeAlignment(1u << NumBits); 1893 else 1894 OutStreamer->EmitValueToAlignment(1u << NumBits); 1895 } 1896 1897 //===----------------------------------------------------------------------===// 1898 // Constant emission. 1899 //===----------------------------------------------------------------------===// 1900 1901 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1902 MCContext &Ctx = OutContext; 1903 1904 if (CV->isNullValue() || isa<UndefValue>(CV)) 1905 return MCConstantExpr::create(0, Ctx); 1906 1907 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1908 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1909 1910 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1911 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1912 1913 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1914 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1915 1916 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1917 if (!CE) { 1918 llvm_unreachable("Unknown constant value to lower!"); 1919 } 1920 1921 switch (CE->getOpcode()) { 1922 default: 1923 // If the code isn't optimized, there may be outstanding folding 1924 // opportunities. Attempt to fold the expression using DataLayout as a 1925 // last resort before giving up. 1926 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1927 if (C != CE) 1928 return lowerConstant(C); 1929 1930 // Otherwise report the problem to the user. 1931 { 1932 std::string S; 1933 raw_string_ostream OS(S); 1934 OS << "Unsupported expression in static initializer: "; 1935 CE->printAsOperand(OS, /*PrintType=*/false, 1936 !MF ? nullptr : MF->getFunction()->getParent()); 1937 report_fatal_error(OS.str()); 1938 } 1939 case Instruction::GetElementPtr: { 1940 // Generate a symbolic expression for the byte address 1941 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1942 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1943 1944 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1945 if (!OffsetAI) 1946 return Base; 1947 1948 int64_t Offset = OffsetAI.getSExtValue(); 1949 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1950 Ctx); 1951 } 1952 1953 case Instruction::Trunc: 1954 // We emit the value and depend on the assembler to truncate the generated 1955 // expression properly. This is important for differences between 1956 // blockaddress labels. Since the two labels are in the same function, it 1957 // is reasonable to treat their delta as a 32-bit value. 1958 LLVM_FALLTHROUGH; 1959 case Instruction::BitCast: 1960 return lowerConstant(CE->getOperand(0)); 1961 1962 case Instruction::IntToPtr: { 1963 const DataLayout &DL = getDataLayout(); 1964 1965 // Handle casts to pointers by changing them into casts to the appropriate 1966 // integer type. This promotes constant folding and simplifies this code. 1967 Constant *Op = CE->getOperand(0); 1968 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1969 false/*ZExt*/); 1970 return lowerConstant(Op); 1971 } 1972 1973 case Instruction::PtrToInt: { 1974 const DataLayout &DL = getDataLayout(); 1975 1976 // Support only foldable casts to/from pointers that can be eliminated by 1977 // changing the pointer to the appropriately sized integer type. 1978 Constant *Op = CE->getOperand(0); 1979 Type *Ty = CE->getType(); 1980 1981 const MCExpr *OpExpr = lowerConstant(Op); 1982 1983 // We can emit the pointer value into this slot if the slot is an 1984 // integer slot equal to the size of the pointer. 1985 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1986 return OpExpr; 1987 1988 // Otherwise the pointer is smaller than the resultant integer, mask off 1989 // the high bits so we are sure to get a proper truncation if the input is 1990 // a constant expr. 1991 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1992 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1993 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1994 } 1995 1996 case Instruction::Sub: { 1997 GlobalValue *LHSGV; 1998 APInt LHSOffset; 1999 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2000 getDataLayout())) { 2001 GlobalValue *RHSGV; 2002 APInt RHSOffset; 2003 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2004 getDataLayout())) { 2005 const MCExpr *RelocExpr = 2006 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2007 if (!RelocExpr) 2008 RelocExpr = MCBinaryExpr::createSub( 2009 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2010 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2011 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2012 if (Addend != 0) 2013 RelocExpr = MCBinaryExpr::createAdd( 2014 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2015 return RelocExpr; 2016 } 2017 } 2018 } 2019 // else fallthrough 2020 2021 // The MC library also has a right-shift operator, but it isn't consistently 2022 // signed or unsigned between different targets. 2023 case Instruction::Add: 2024 case Instruction::Mul: 2025 case Instruction::SDiv: 2026 case Instruction::SRem: 2027 case Instruction::Shl: 2028 case Instruction::And: 2029 case Instruction::Or: 2030 case Instruction::Xor: { 2031 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2032 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2033 switch (CE->getOpcode()) { 2034 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2035 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2036 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2037 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2038 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2039 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2040 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2041 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2042 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2043 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2044 } 2045 } 2046 } 2047 } 2048 2049 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2050 AsmPrinter &AP, 2051 const Constant *BaseCV = nullptr, 2052 uint64_t Offset = 0); 2053 2054 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2055 2056 /// isRepeatedByteSequence - Determine whether the given value is 2057 /// composed of a repeated sequence of identical bytes and return the 2058 /// byte value. If it is not a repeated sequence, return -1. 2059 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2060 StringRef Data = V->getRawDataValues(); 2061 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2062 char C = Data[0]; 2063 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2064 if (Data[i] != C) return -1; 2065 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2066 } 2067 2068 /// isRepeatedByteSequence - Determine whether the given value is 2069 /// composed of a repeated sequence of identical bytes and return the 2070 /// byte value. If it is not a repeated sequence, return -1. 2071 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2072 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2073 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2074 assert(Size % 8 == 0); 2075 2076 // Extend the element to take zero padding into account. 2077 APInt Value = CI->getValue().zextOrSelf(Size); 2078 if (!Value.isSplat(8)) 2079 return -1; 2080 2081 return Value.zextOrTrunc(8).getZExtValue(); 2082 } 2083 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2084 // Make sure all array elements are sequences of the same repeated 2085 // byte. 2086 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2087 Constant *Op0 = CA->getOperand(0); 2088 int Byte = isRepeatedByteSequence(Op0, DL); 2089 if (Byte == -1) 2090 return -1; 2091 2092 // All array elements must be equal. 2093 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2094 if (CA->getOperand(i) != Op0) 2095 return -1; 2096 return Byte; 2097 } 2098 2099 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2100 return isRepeatedByteSequence(CDS); 2101 2102 return -1; 2103 } 2104 2105 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2106 const ConstantDataSequential *CDS, 2107 AsmPrinter &AP) { 2108 // See if we can aggregate this into a .fill, if so, emit it as such. 2109 int Value = isRepeatedByteSequence(CDS, DL); 2110 if (Value != -1) { 2111 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2112 // Don't emit a 1-byte object as a .fill. 2113 if (Bytes > 1) 2114 return AP.OutStreamer->emitFill(Bytes, Value); 2115 } 2116 2117 // If this can be emitted with .ascii/.asciz, emit it as such. 2118 if (CDS->isString()) 2119 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2120 2121 // Otherwise, emit the values in successive locations. 2122 unsigned ElementByteSize = CDS->getElementByteSize(); 2123 if (isa<IntegerType>(CDS->getElementType())) { 2124 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2125 if (AP.isVerbose()) 2126 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2127 CDS->getElementAsInteger(i)); 2128 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2129 ElementByteSize); 2130 } 2131 } else { 2132 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2133 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2134 } 2135 2136 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2137 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2138 CDS->getNumElements(); 2139 if (unsigned Padding = Size - EmittedSize) 2140 AP.OutStreamer->EmitZeros(Padding); 2141 } 2142 2143 static void emitGlobalConstantArray(const DataLayout &DL, 2144 const ConstantArray *CA, AsmPrinter &AP, 2145 const Constant *BaseCV, uint64_t Offset) { 2146 // See if we can aggregate some values. Make sure it can be 2147 // represented as a series of bytes of the constant value. 2148 int Value = isRepeatedByteSequence(CA, DL); 2149 2150 if (Value != -1) { 2151 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2152 AP.OutStreamer->emitFill(Bytes, Value); 2153 } 2154 else { 2155 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2156 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2157 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2158 } 2159 } 2160 } 2161 2162 static void emitGlobalConstantVector(const DataLayout &DL, 2163 const ConstantVector *CV, AsmPrinter &AP) { 2164 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2165 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2166 2167 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2168 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2169 CV->getType()->getNumElements(); 2170 if (unsigned Padding = Size - EmittedSize) 2171 AP.OutStreamer->EmitZeros(Padding); 2172 } 2173 2174 static void emitGlobalConstantStruct(const DataLayout &DL, 2175 const ConstantStruct *CS, AsmPrinter &AP, 2176 const Constant *BaseCV, uint64_t Offset) { 2177 // Print the fields in successive locations. Pad to align if needed! 2178 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2179 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2180 uint64_t SizeSoFar = 0; 2181 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2182 const Constant *Field = CS->getOperand(i); 2183 2184 // Print the actual field value. 2185 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2186 2187 // Check if padding is needed and insert one or more 0s. 2188 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2189 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2190 - Layout->getElementOffset(i)) - FieldSize; 2191 SizeSoFar += FieldSize + PadSize; 2192 2193 // Insert padding - this may include padding to increase the size of the 2194 // current field up to the ABI size (if the struct is not packed) as well 2195 // as padding to ensure that the next field starts at the right offset. 2196 AP.OutStreamer->EmitZeros(PadSize); 2197 } 2198 assert(SizeSoFar == Layout->getSizeInBytes() && 2199 "Layout of constant struct may be incorrect!"); 2200 } 2201 2202 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2203 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2204 2205 // First print a comment with what we think the original floating-point value 2206 // should have been. 2207 if (AP.isVerbose()) { 2208 SmallString<8> StrVal; 2209 CFP->getValueAPF().toString(StrVal); 2210 2211 if (CFP->getType()) 2212 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2213 else 2214 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2215 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2216 } 2217 2218 // Now iterate through the APInt chunks, emitting them in endian-correct 2219 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2220 // floats). 2221 unsigned NumBytes = API.getBitWidth() / 8; 2222 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2223 const uint64_t *p = API.getRawData(); 2224 2225 // PPC's long double has odd notions of endianness compared to how LLVM 2226 // handles it: p[0] goes first for *big* endian on PPC. 2227 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2228 int Chunk = API.getNumWords() - 1; 2229 2230 if (TrailingBytes) 2231 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2232 2233 for (; Chunk >= 0; --Chunk) 2234 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2235 } else { 2236 unsigned Chunk; 2237 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2238 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2239 2240 if (TrailingBytes) 2241 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2242 } 2243 2244 // Emit the tail padding for the long double. 2245 const DataLayout &DL = AP.getDataLayout(); 2246 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2247 DL.getTypeStoreSize(CFP->getType())); 2248 } 2249 2250 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2251 const DataLayout &DL = AP.getDataLayout(); 2252 unsigned BitWidth = CI->getBitWidth(); 2253 2254 // Copy the value as we may massage the layout for constants whose bit width 2255 // is not a multiple of 64-bits. 2256 APInt Realigned(CI->getValue()); 2257 uint64_t ExtraBits = 0; 2258 unsigned ExtraBitsSize = BitWidth & 63; 2259 2260 if (ExtraBitsSize) { 2261 // The bit width of the data is not a multiple of 64-bits. 2262 // The extra bits are expected to be at the end of the chunk of the memory. 2263 // Little endian: 2264 // * Nothing to be done, just record the extra bits to emit. 2265 // Big endian: 2266 // * Record the extra bits to emit. 2267 // * Realign the raw data to emit the chunks of 64-bits. 2268 if (DL.isBigEndian()) { 2269 // Basically the structure of the raw data is a chunk of 64-bits cells: 2270 // 0 1 BitWidth / 64 2271 // [chunk1][chunk2] ... [chunkN]. 2272 // The most significant chunk is chunkN and it should be emitted first. 2273 // However, due to the alignment issue chunkN contains useless bits. 2274 // Realign the chunks so that they contain only useless information: 2275 // ExtraBits 0 1 (BitWidth / 64) - 1 2276 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2277 ExtraBits = Realigned.getRawData()[0] & 2278 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2279 Realigned.lshrInPlace(ExtraBitsSize); 2280 } else 2281 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2282 } 2283 2284 // We don't expect assemblers to support integer data directives 2285 // for more than 64 bits, so we emit the data in at most 64-bit 2286 // quantities at a time. 2287 const uint64_t *RawData = Realigned.getRawData(); 2288 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2289 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2290 AP.OutStreamer->EmitIntValue(Val, 8); 2291 } 2292 2293 if (ExtraBitsSize) { 2294 // Emit the extra bits after the 64-bits chunks. 2295 2296 // Emit a directive that fills the expected size. 2297 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2298 Size -= (BitWidth / 64) * 8; 2299 assert(Size && Size * 8 >= ExtraBitsSize && 2300 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2301 == ExtraBits && "Directive too small for extra bits."); 2302 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2303 } 2304 } 2305 2306 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2307 /// equivalent global, by a target specific GOT pc relative access to the 2308 /// final symbol. 2309 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2310 const Constant *BaseCst, 2311 uint64_t Offset) { 2312 // The global @foo below illustrates a global that uses a got equivalent. 2313 // 2314 // @bar = global i32 42 2315 // @gotequiv = private unnamed_addr constant i32* @bar 2316 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2317 // i64 ptrtoint (i32* @foo to i64)) 2318 // to i32) 2319 // 2320 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2321 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2322 // form: 2323 // 2324 // foo = cstexpr, where 2325 // cstexpr := <gotequiv> - "." + <cst> 2326 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2327 // 2328 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2329 // 2330 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2331 // gotpcrelcst := <offset from @foo base> + <cst> 2332 // 2333 MCValue MV; 2334 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2335 return; 2336 const MCSymbolRefExpr *SymA = MV.getSymA(); 2337 if (!SymA) 2338 return; 2339 2340 // Check that GOT equivalent symbol is cached. 2341 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2342 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2343 return; 2344 2345 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2346 if (!BaseGV) 2347 return; 2348 2349 // Check for a valid base symbol 2350 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2351 const MCSymbolRefExpr *SymB = MV.getSymB(); 2352 2353 if (!SymB || BaseSym != &SymB->getSymbol()) 2354 return; 2355 2356 // Make sure to match: 2357 // 2358 // gotpcrelcst := <offset from @foo base> + <cst> 2359 // 2360 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2361 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2362 // if the target knows how to encode it. 2363 // 2364 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2365 if (GOTPCRelCst < 0) 2366 return; 2367 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2368 return; 2369 2370 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2371 // 2372 // bar: 2373 // .long 42 2374 // gotequiv: 2375 // .quad bar 2376 // foo: 2377 // .long gotequiv - "." + <cst> 2378 // 2379 // is replaced by the target specific equivalent to: 2380 // 2381 // bar: 2382 // .long 42 2383 // foo: 2384 // .long bar@GOTPCREL+<gotpcrelcst> 2385 // 2386 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2387 const GlobalVariable *GV = Result.first; 2388 int NumUses = (int)Result.second; 2389 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2390 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2391 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2392 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2393 2394 // Update GOT equivalent usage information 2395 --NumUses; 2396 if (NumUses >= 0) 2397 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2398 } 2399 2400 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2401 AsmPrinter &AP, const Constant *BaseCV, 2402 uint64_t Offset) { 2403 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2404 2405 // Globals with sub-elements such as combinations of arrays and structs 2406 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2407 // constant symbol base and the current position with BaseCV and Offset. 2408 if (!BaseCV && CV->hasOneUse()) 2409 BaseCV = dyn_cast<Constant>(CV->user_back()); 2410 2411 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2412 return AP.OutStreamer->EmitZeros(Size); 2413 2414 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2415 switch (Size) { 2416 case 1: 2417 case 2: 2418 case 4: 2419 case 8: 2420 if (AP.isVerbose()) 2421 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2422 CI->getZExtValue()); 2423 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2424 return; 2425 default: 2426 emitGlobalConstantLargeInt(CI, AP); 2427 return; 2428 } 2429 } 2430 2431 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2432 return emitGlobalConstantFP(CFP, AP); 2433 2434 if (isa<ConstantPointerNull>(CV)) { 2435 AP.OutStreamer->EmitIntValue(0, Size); 2436 return; 2437 } 2438 2439 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2440 return emitGlobalConstantDataSequential(DL, CDS, AP); 2441 2442 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2443 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2444 2445 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2446 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2447 2448 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2449 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2450 // vectors). 2451 if (CE->getOpcode() == Instruction::BitCast) 2452 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2453 2454 if (Size > 8) { 2455 // If the constant expression's size is greater than 64-bits, then we have 2456 // to emit the value in chunks. Try to constant fold the value and emit it 2457 // that way. 2458 Constant *New = ConstantFoldConstant(CE, DL); 2459 if (New && New != CE) 2460 return emitGlobalConstantImpl(DL, New, AP); 2461 } 2462 } 2463 2464 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2465 return emitGlobalConstantVector(DL, V, AP); 2466 2467 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2468 // thread the streamer with EmitValue. 2469 const MCExpr *ME = AP.lowerConstant(CV); 2470 2471 // Since lowerConstant already folded and got rid of all IR pointer and 2472 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2473 // directly. 2474 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2475 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2476 2477 AP.OutStreamer->EmitValue(ME, Size); 2478 } 2479 2480 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2481 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2482 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2483 if (Size) 2484 emitGlobalConstantImpl(DL, CV, *this); 2485 else if (MAI->hasSubsectionsViaSymbols()) { 2486 // If the global has zero size, emit a single byte so that two labels don't 2487 // look like they are at the same location. 2488 OutStreamer->EmitIntValue(0, 1); 2489 } 2490 } 2491 2492 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2493 // Target doesn't support this yet! 2494 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2495 } 2496 2497 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2498 if (Offset > 0) 2499 OS << '+' << Offset; 2500 else if (Offset < 0) 2501 OS << Offset; 2502 } 2503 2504 //===----------------------------------------------------------------------===// 2505 // Symbol Lowering Routines. 2506 //===----------------------------------------------------------------------===// 2507 2508 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2509 return OutContext.createTempSymbol(Name, true); 2510 } 2511 2512 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2513 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2514 } 2515 2516 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2517 return MMI->getAddrLabelSymbol(BB); 2518 } 2519 2520 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2521 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2522 const DataLayout &DL = getDataLayout(); 2523 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2524 "CPI" + Twine(getFunctionNumber()) + "_" + 2525 Twine(CPID)); 2526 } 2527 2528 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2529 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2530 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2531 } 2532 2533 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2534 /// FIXME: privatize to AsmPrinter. 2535 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2536 const DataLayout &DL = getDataLayout(); 2537 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2538 Twine(getFunctionNumber()) + "_" + 2539 Twine(UID) + "_set_" + Twine(MBBID)); 2540 } 2541 2542 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2543 StringRef Suffix) const { 2544 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2545 } 2546 2547 /// Return the MCSymbol for the specified ExternalSymbol. 2548 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2549 SmallString<60> NameStr; 2550 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2551 return OutContext.getOrCreateSymbol(NameStr); 2552 } 2553 2554 /// PrintParentLoopComment - Print comments about parent loops of this one. 2555 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2556 unsigned FunctionNumber) { 2557 if (!Loop) return; 2558 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2559 OS.indent(Loop->getLoopDepth()*2) 2560 << "Parent Loop BB" << FunctionNumber << "_" 2561 << Loop->getHeader()->getNumber() 2562 << " Depth=" << Loop->getLoopDepth() << '\n'; 2563 } 2564 2565 2566 /// PrintChildLoopComment - Print comments about child loops within 2567 /// the loop for this basic block, with nesting. 2568 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2569 unsigned FunctionNumber) { 2570 // Add child loop information 2571 for (const MachineLoop *CL : *Loop) { 2572 OS.indent(CL->getLoopDepth()*2) 2573 << "Child Loop BB" << FunctionNumber << "_" 2574 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2575 << '\n'; 2576 PrintChildLoopComment(OS, CL, FunctionNumber); 2577 } 2578 } 2579 2580 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2581 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2582 const MachineLoopInfo *LI, 2583 const AsmPrinter &AP) { 2584 // Add loop depth information 2585 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2586 if (!Loop) return; 2587 2588 MachineBasicBlock *Header = Loop->getHeader(); 2589 assert(Header && "No header for loop"); 2590 2591 // If this block is not a loop header, just print out what is the loop header 2592 // and return. 2593 if (Header != &MBB) { 2594 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2595 Twine(AP.getFunctionNumber())+"_" + 2596 Twine(Loop->getHeader()->getNumber())+ 2597 " Depth="+Twine(Loop->getLoopDepth())); 2598 return; 2599 } 2600 2601 // Otherwise, it is a loop header. Print out information about child and 2602 // parent loops. 2603 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2604 2605 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2606 2607 OS << "=>"; 2608 OS.indent(Loop->getLoopDepth()*2-2); 2609 2610 OS << "This "; 2611 if (Loop->empty()) 2612 OS << "Inner "; 2613 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2614 2615 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2616 } 2617 2618 /// EmitBasicBlockStart - This method prints the label for the specified 2619 /// MachineBasicBlock, an alignment (if present) and a comment describing 2620 /// it if appropriate. 2621 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2622 // End the previous funclet and start a new one. 2623 if (MBB.isEHFuncletEntry()) { 2624 for (const HandlerInfo &HI : Handlers) { 2625 HI.Handler->endFunclet(); 2626 HI.Handler->beginFunclet(MBB); 2627 } 2628 } 2629 2630 // Emit an alignment directive for this block, if needed. 2631 if (unsigned Align = MBB.getAlignment()) 2632 EmitAlignment(Align); 2633 2634 // If the block has its address taken, emit any labels that were used to 2635 // reference the block. It is possible that there is more than one label 2636 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2637 // the references were generated. 2638 if (MBB.hasAddressTaken()) { 2639 const BasicBlock *BB = MBB.getBasicBlock(); 2640 if (isVerbose()) 2641 OutStreamer->AddComment("Block address taken"); 2642 2643 // MBBs can have their address taken as part of CodeGen without having 2644 // their corresponding BB's address taken in IR 2645 if (BB->hasAddressTaken()) 2646 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2647 OutStreamer->EmitLabel(Sym); 2648 } 2649 2650 // Print some verbose block comments. 2651 if (isVerbose()) { 2652 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2653 if (BB->hasName()) { 2654 BB->printAsOperand(OutStreamer->GetCommentOS(), 2655 /*PrintType=*/false, BB->getModule()); 2656 OutStreamer->GetCommentOS() << '\n'; 2657 } 2658 } 2659 emitBasicBlockLoopComments(MBB, LI, *this); 2660 } 2661 2662 // Print the main label for the block. 2663 if (MBB.pred_empty() || 2664 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2665 if (isVerbose()) { 2666 // NOTE: Want this comment at start of line, don't emit with AddComment. 2667 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2668 } 2669 } else { 2670 OutStreamer->EmitLabel(MBB.getSymbol()); 2671 } 2672 } 2673 2674 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2675 bool IsDefinition) const { 2676 MCSymbolAttr Attr = MCSA_Invalid; 2677 2678 switch (Visibility) { 2679 default: break; 2680 case GlobalValue::HiddenVisibility: 2681 if (IsDefinition) 2682 Attr = MAI->getHiddenVisibilityAttr(); 2683 else 2684 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2685 break; 2686 case GlobalValue::ProtectedVisibility: 2687 Attr = MAI->getProtectedVisibilityAttr(); 2688 break; 2689 } 2690 2691 if (Attr != MCSA_Invalid) 2692 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2693 } 2694 2695 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2696 /// exactly one predecessor and the control transfer mechanism between 2697 /// the predecessor and this block is a fall-through. 2698 bool AsmPrinter:: 2699 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2700 // If this is a landing pad, it isn't a fall through. If it has no preds, 2701 // then nothing falls through to it. 2702 if (MBB->isEHPad() || MBB->pred_empty()) 2703 return false; 2704 2705 // If there isn't exactly one predecessor, it can't be a fall through. 2706 if (MBB->pred_size() > 1) 2707 return false; 2708 2709 // The predecessor has to be immediately before this block. 2710 MachineBasicBlock *Pred = *MBB->pred_begin(); 2711 if (!Pred->isLayoutSuccessor(MBB)) 2712 return false; 2713 2714 // If the block is completely empty, then it definitely does fall through. 2715 if (Pred->empty()) 2716 return true; 2717 2718 // Check the terminators in the previous blocks 2719 for (const auto &MI : Pred->terminators()) { 2720 // If it is not a simple branch, we are in a table somewhere. 2721 if (!MI.isBranch() || MI.isIndirectBranch()) 2722 return false; 2723 2724 // If we are the operands of one of the branches, this is not a fall 2725 // through. Note that targets with delay slots will usually bundle 2726 // terminators with the delay slot instruction. 2727 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2728 if (OP->isJTI()) 2729 return false; 2730 if (OP->isMBB() && OP->getMBB() == MBB) 2731 return false; 2732 } 2733 } 2734 2735 return true; 2736 } 2737 2738 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2739 if (!S.usesMetadata()) 2740 return nullptr; 2741 2742 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2743 " stackmap formats, please see the documentation for a description of" 2744 " the default format. If you really need a custom serialized format," 2745 " please file a bug"); 2746 2747 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2748 gcp_map_type::iterator GCPI = GCMap.find(&S); 2749 if (GCPI != GCMap.end()) 2750 return GCPI->second.get(); 2751 2752 auto Name = S.getName(); 2753 2754 for (GCMetadataPrinterRegistry::iterator 2755 I = GCMetadataPrinterRegistry::begin(), 2756 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2757 if (Name == I->getName()) { 2758 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2759 GMP->S = &S; 2760 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2761 return IterBool.first->second.get(); 2762 } 2763 2764 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2765 } 2766 2767 /// Pin vtable to this file. 2768 AsmPrinterHandler::~AsmPrinterHandler() = default; 2769 2770 void AsmPrinterHandler::markFunctionEnd() {} 2771 2772 // In the binary's "xray_instr_map" section, an array of these function entries 2773 // describes each instrumentation point. When XRay patches your code, the index 2774 // into this table will be given to your handler as a patch point identifier. 2775 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2776 const MCSymbol *CurrentFnSym) const { 2777 Out->EmitSymbolValue(Sled, Bytes); 2778 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2779 auto Kind8 = static_cast<uint8_t>(Kind); 2780 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2781 Out->EmitBinaryData( 2782 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2783 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 2784 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 2785 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 2786 Out->EmitZeros(Padding); 2787 } 2788 2789 void AsmPrinter::emitXRayTable() { 2790 if (Sleds.empty()) 2791 return; 2792 2793 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2794 auto Fn = MF->getFunction(); 2795 MCSection *InstMap = nullptr; 2796 MCSection *FnSledIndex = nullptr; 2797 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2798 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 2799 assert(Associated != nullptr); 2800 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 2801 std::string GroupName; 2802 if (Fn->hasComdat()) { 2803 Flags |= ELF::SHF_GROUP; 2804 GroupName = Fn->getComdat()->getName(); 2805 } 2806 2807 auto UniqueID = ++XRayFnUniqueID; 2808 InstMap = 2809 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 2810 GroupName, UniqueID, Associated); 2811 FnSledIndex = 2812 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 2813 GroupName, UniqueID, Associated); 2814 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2815 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2816 SectionKind::getReadOnlyWithRel()); 2817 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2818 SectionKind::getReadOnlyWithRel()); 2819 } else { 2820 llvm_unreachable("Unsupported target"); 2821 } 2822 2823 auto WordSizeBytes = MAI->getCodePointerSize(); 2824 2825 // Now we switch to the instrumentation map section. Because this is done 2826 // per-function, we are able to create an index entry that will represent the 2827 // range of sleds associated with a function. 2828 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 2829 OutStreamer->SwitchSection(InstMap); 2830 OutStreamer->EmitLabel(SledsStart); 2831 for (const auto &Sled : Sleds) 2832 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2833 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 2834 OutStreamer->EmitLabel(SledsEnd); 2835 2836 // We then emit a single entry in the index per function. We use the symbols 2837 // that bound the instrumentation map as the range for a specific function. 2838 // Each entry here will be 2 * word size aligned, as we're writing down two 2839 // pointers. This should work for both 32-bit and 64-bit platforms. 2840 OutStreamer->SwitchSection(FnSledIndex); 2841 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2842 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 2843 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 2844 OutStreamer->SwitchSection(PrevSection); 2845 Sleds.clear(); 2846 } 2847 2848 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2849 SledKind Kind, uint8_t Version) { 2850 auto Fn = MI.getParent()->getParent()->getFunction(); 2851 auto Attr = Fn->getFnAttribute("function-instrument"); 2852 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2853 bool AlwaysInstrument = 2854 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2855 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2856 Kind = SledKind::LOG_ARGS_ENTER; 2857 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 2858 AlwaysInstrument, Fn, Version}); 2859 } 2860 2861 uint16_t AsmPrinter::getDwarfVersion() const { 2862 return OutStreamer->getContext().getDwarfVersion(); 2863 } 2864 2865 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2866 OutStreamer->getContext().setDwarfVersion(Version); 2867 } 2868