1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/ObjectUtils.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetLowering.h" 58 #include "llvm/CodeGen/TargetLoweringObjectFile.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/CodeGen/TargetSubtargetInfo.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Comdat.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GlobalAlias.h" 71 #include "llvm/IR/GlobalIFunc.h" 72 #include "llvm/IR/GlobalIndirectSymbol.h" 73 #include "llvm/IR/GlobalObject.h" 74 #include "llvm/IR/GlobalValue.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Mangler.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionELF.h" 92 #include "llvm/MC/MCSectionMachO.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCTargetOptions.h" 98 #include "llvm/MC/MCValue.h" 99 #include "llvm/MC/SectionKind.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/Format.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/Path.h" 108 #include "llvm/Support/TargetRegistry.h" 109 #include "llvm/Support/Timer.h" 110 #include "llvm/Support/raw_ostream.h" 111 #include "llvm/Target/TargetMachine.h" 112 #include "llvm/Target/TargetOptions.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cinttypes> 116 #include <cstdint> 117 #include <iterator> 118 #include <limits> 119 #include <memory> 120 #include <string> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 126 #define DEBUG_TYPE "asm-printer" 127 128 static const char *const DWARFGroupName = "dwarf"; 129 static const char *const DWARFGroupDescription = "DWARF Emission"; 130 static const char *const DbgTimerName = "emit"; 131 static const char *const DbgTimerDescription = "Debug Info Emission"; 132 static const char *const EHTimerName = "write_exception"; 133 static const char *const EHTimerDescription = "DWARF Exception Writer"; 134 static const char *const CFGuardName = "Control Flow Guard"; 135 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 136 static const char *const CodeViewLineTablesGroupName = "linetables"; 137 static const char *const CodeViewLineTablesGroupDescription = 138 "CodeView Line Tables"; 139 140 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 141 142 static cl::opt<bool> 143 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 144 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 145 146 char AsmPrinter::ID = 0; 147 148 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 149 150 static gcp_map_type &getGCMap(void *&P) { 151 if (!P) 152 P = new gcp_map_type(); 153 return *(gcp_map_type*)P; 154 } 155 156 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 157 /// value in log2 form. This rounds up to the preferred alignment if possible 158 /// and legal. 159 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 160 unsigned InBits = 0) { 161 unsigned NumBits = 0; 162 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 163 NumBits = DL.getPreferredAlignmentLog(GVar); 164 165 // If InBits is specified, round it to it. 166 if (InBits > NumBits) 167 NumBits = InBits; 168 169 // If the GV has a specified alignment, take it into account. 170 if (GV->getAlignment() == 0) 171 return NumBits; 172 173 unsigned GVAlign = Log2_32(GV->getAlignment()); 174 175 // If the GVAlign is larger than NumBits, or if we are required to obey 176 // NumBits because the GV has an assigned section, obey it. 177 if (GVAlign > NumBits || GV->hasSection()) 178 NumBits = GVAlign; 179 return NumBits; 180 } 181 182 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 183 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 184 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 185 VerboseAsm = OutStreamer->isVerboseAsm(); 186 } 187 188 AsmPrinter::~AsmPrinter() { 189 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 190 191 if (GCMetadataPrinters) { 192 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 193 194 delete &GCMap; 195 GCMetadataPrinters = nullptr; 196 } 197 } 198 199 bool AsmPrinter::isPositionIndependent() const { 200 return TM.isPositionIndependent(); 201 } 202 203 /// getFunctionNumber - Return a unique ID for the current function. 204 unsigned AsmPrinter::getFunctionNumber() const { 205 return MF->getFunctionNumber(); 206 } 207 208 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 209 return *TM.getObjFileLowering(); 210 } 211 212 const DataLayout &AsmPrinter::getDataLayout() const { 213 return MMI->getModule()->getDataLayout(); 214 } 215 216 // Do not use the cached DataLayout because some client use it without a Module 217 // (llvm-dsymutil, llvm-dwarfdump). 218 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 219 220 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 221 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 222 return MF->getSubtarget<MCSubtargetInfo>(); 223 } 224 225 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 226 S.EmitInstruction(Inst, getSubtargetInfo()); 227 } 228 229 /// getCurrentSection() - Return the current section we are emitting to. 230 const MCSection *AsmPrinter::getCurrentSection() const { 231 return OutStreamer->getCurrentSectionOnly(); 232 } 233 234 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 235 AU.setPreservesAll(); 236 MachineFunctionPass::getAnalysisUsage(AU); 237 AU.addRequired<MachineModuleInfo>(); 238 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 239 AU.addRequired<GCModuleInfo>(); 240 AU.addRequired<MachineLoopInfo>(); 241 } 242 243 bool AsmPrinter::doInitialization(Module &M) { 244 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 245 246 // Initialize TargetLoweringObjectFile. 247 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 248 .Initialize(OutContext, TM); 249 250 OutStreamer->InitSections(false); 251 252 // Emit the version-min deplyment target directive if needed. 253 // 254 // FIXME: If we end up with a collection of these sorts of Darwin-specific 255 // or ELF-specific things, it may make sense to have a platform helper class 256 // that will work with the target helper class. For now keep it here, as the 257 // alternative is duplicated code in each of the target asm printers that 258 // use the directive, where it would need the same conditionalization 259 // anyway. 260 const Triple &Target = TM.getTargetTriple(); 261 OutStreamer->EmitVersionForTarget(Target); 262 263 // Allow the target to emit any magic that it wants at the start of the file. 264 EmitStartOfAsmFile(M); 265 266 // Very minimal debug info. It is ignored if we emit actual debug info. If we 267 // don't, this at least helps the user find where a global came from. 268 if (MAI->hasSingleParameterDotFile()) { 269 // .file "foo.c" 270 OutStreamer->EmitFileDirective( 271 llvm::sys::path::filename(M.getSourceFileName())); 272 } 273 274 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 275 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 276 for (auto &I : *MI) 277 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 278 MP->beginAssembly(M, *MI, *this); 279 280 // Emit module-level inline asm if it exists. 281 if (!M.getModuleInlineAsm().empty()) { 282 // We're at the module level. Construct MCSubtarget from the default CPU 283 // and target triple. 284 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 285 TM.getTargetTriple().str(), TM.getTargetCPU(), 286 TM.getTargetFeatureString())); 287 OutStreamer->AddComment("Start of file scope inline assembly"); 288 OutStreamer->AddBlankLine(); 289 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 290 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 291 OutStreamer->AddComment("End of file scope inline assembly"); 292 OutStreamer->AddBlankLine(); 293 } 294 295 if (MAI->doesSupportDebugInformation()) { 296 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 297 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 298 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 299 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 300 DbgTimerName, DbgTimerDescription, 301 CodeViewLineTablesGroupName, 302 CodeViewLineTablesGroupDescription)); 303 } 304 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 305 DD = new DwarfDebug(this, &M); 306 DD->beginModule(); 307 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 308 DWARFGroupName, DWARFGroupDescription)); 309 } 310 } 311 312 switch (MAI->getExceptionHandlingType()) { 313 case ExceptionHandling::SjLj: 314 case ExceptionHandling::DwarfCFI: 315 case ExceptionHandling::ARM: 316 isCFIMoveForDebugging = true; 317 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 318 break; 319 for (auto &F: M.getFunctionList()) { 320 // If the module contains any function with unwind data, 321 // .eh_frame has to be emitted. 322 // Ignore functions that won't get emitted. 323 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 324 isCFIMoveForDebugging = false; 325 break; 326 } 327 } 328 break; 329 default: 330 isCFIMoveForDebugging = false; 331 break; 332 } 333 334 EHStreamer *ES = nullptr; 335 switch (MAI->getExceptionHandlingType()) { 336 case ExceptionHandling::None: 337 break; 338 case ExceptionHandling::SjLj: 339 case ExceptionHandling::DwarfCFI: 340 ES = new DwarfCFIException(this); 341 break; 342 case ExceptionHandling::ARM: 343 ES = new ARMException(this); 344 break; 345 case ExceptionHandling::WinEH: 346 switch (MAI->getWinEHEncodingType()) { 347 default: llvm_unreachable("unsupported unwinding information encoding"); 348 case WinEH::EncodingType::Invalid: 349 break; 350 case WinEH::EncodingType::X86: 351 case WinEH::EncodingType::Itanium: 352 ES = new WinException(this); 353 break; 354 } 355 break; 356 } 357 if (ES) 358 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 359 DWARFGroupName, DWARFGroupDescription)); 360 361 if (mdconst::extract_or_null<ConstantInt>( 362 MMI->getModule()->getModuleFlag("cfguard"))) 363 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName, 364 CFGuardDescription, DWARFGroupName, 365 DWARFGroupDescription)); 366 367 return false; 368 } 369 370 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 371 if (!MAI.hasWeakDefCanBeHiddenDirective()) 372 return false; 373 374 return canBeOmittedFromSymbolTable(GV); 375 } 376 377 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 378 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 379 switch (Linkage) { 380 case GlobalValue::CommonLinkage: 381 case GlobalValue::LinkOnceAnyLinkage: 382 case GlobalValue::LinkOnceODRLinkage: 383 case GlobalValue::WeakAnyLinkage: 384 case GlobalValue::WeakODRLinkage: 385 if (MAI->hasWeakDefDirective()) { 386 // .globl _foo 387 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 388 389 if (!canBeHidden(GV, *MAI)) 390 // .weak_definition _foo 391 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 392 else 393 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 394 } else if (MAI->hasLinkOnceDirective()) { 395 // .globl _foo 396 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 397 //NOTE: linkonce is handled by the section the symbol was assigned to. 398 } else { 399 // .weak _foo 400 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 401 } 402 return; 403 case GlobalValue::ExternalLinkage: 404 // If external, declare as a global symbol: .globl _foo 405 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 406 return; 407 case GlobalValue::PrivateLinkage: 408 case GlobalValue::InternalLinkage: 409 return; 410 case GlobalValue::AppendingLinkage: 411 case GlobalValue::AvailableExternallyLinkage: 412 case GlobalValue::ExternalWeakLinkage: 413 llvm_unreachable("Should never emit this"); 414 } 415 llvm_unreachable("Unknown linkage type!"); 416 } 417 418 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 419 const GlobalValue *GV) const { 420 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 421 } 422 423 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 424 return TM.getSymbol(GV); 425 } 426 427 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 428 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 429 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 430 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 431 "No emulated TLS variables in the common section"); 432 433 // Never emit TLS variable xyz in emulated TLS model. 434 // The initialization value is in __emutls_t.xyz instead of xyz. 435 if (IsEmuTLSVar) 436 return; 437 438 if (GV->hasInitializer()) { 439 // Check to see if this is a special global used by LLVM, if so, emit it. 440 if (EmitSpecialLLVMGlobal(GV)) 441 return; 442 443 // Skip the emission of global equivalents. The symbol can be emitted later 444 // on by emitGlobalGOTEquivs in case it turns out to be needed. 445 if (GlobalGOTEquivs.count(getSymbol(GV))) 446 return; 447 448 if (isVerbose()) { 449 // When printing the control variable __emutls_v.*, 450 // we don't need to print the original TLS variable name. 451 GV->printAsOperand(OutStreamer->GetCommentOS(), 452 /*PrintType=*/false, GV->getParent()); 453 OutStreamer->GetCommentOS() << '\n'; 454 } 455 } 456 457 MCSymbol *GVSym = getSymbol(GV); 458 MCSymbol *EmittedSym = GVSym; 459 460 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 461 // attributes. 462 // GV's or GVSym's attributes will be used for the EmittedSym. 463 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 464 465 if (!GV->hasInitializer()) // External globals require no extra code. 466 return; 467 468 GVSym->redefineIfPossible(); 469 if (GVSym->isDefined() || GVSym->isVariable()) 470 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 471 "' is already defined"); 472 473 if (MAI->hasDotTypeDotSizeDirective()) 474 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 475 476 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 477 478 const DataLayout &DL = GV->getParent()->getDataLayout(); 479 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 480 481 // If the alignment is specified, we *must* obey it. Overaligning a global 482 // with a specified alignment is a prompt way to break globals emitted to 483 // sections and expected to be contiguous (e.g. ObjC metadata). 484 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 485 486 for (const HandlerInfo &HI : Handlers) { 487 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 488 HI.TimerGroupName, HI.TimerGroupDescription, 489 TimePassesIsEnabled); 490 HI.Handler->setSymbolSize(GVSym, Size); 491 } 492 493 // Handle common symbols 494 if (GVKind.isCommon()) { 495 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 496 unsigned Align = 1 << AlignLog; 497 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 498 Align = 0; 499 500 // .comm _foo, 42, 4 501 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 502 return; 503 } 504 505 // Determine to which section this global should be emitted. 506 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 507 508 // If we have a bss global going to a section that supports the 509 // zerofill directive, do so here. 510 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 511 TheSection->isVirtualSection()) { 512 if (Size == 0) 513 Size = 1; // zerofill of 0 bytes is undefined. 514 unsigned Align = 1 << AlignLog; 515 EmitLinkage(GV, GVSym); 516 // .zerofill __DATA, __bss, _foo, 400, 5 517 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 518 return; 519 } 520 521 // If this is a BSS local symbol and we are emitting in the BSS 522 // section use .lcomm/.comm directive. 523 if (GVKind.isBSSLocal() && 524 getObjFileLowering().getBSSSection() == TheSection) { 525 if (Size == 0) 526 Size = 1; // .comm Foo, 0 is undefined, avoid it. 527 unsigned Align = 1 << AlignLog; 528 529 // Use .lcomm only if it supports user-specified alignment. 530 // Otherwise, while it would still be correct to use .lcomm in some 531 // cases (e.g. when Align == 1), the external assembler might enfore 532 // some -unknown- default alignment behavior, which could cause 533 // spurious differences between external and integrated assembler. 534 // Prefer to simply fall back to .local / .comm in this case. 535 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 536 // .lcomm _foo, 42 537 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 538 return; 539 } 540 541 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 542 Align = 0; 543 544 // .local _foo 545 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 546 // .comm _foo, 42, 4 547 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 548 return; 549 } 550 551 // Handle thread local data for mach-o which requires us to output an 552 // additional structure of data and mangle the original symbol so that we 553 // can reference it later. 554 // 555 // TODO: This should become an "emit thread local global" method on TLOF. 556 // All of this macho specific stuff should be sunk down into TLOFMachO and 557 // stuff like "TLSExtraDataSection" should no longer be part of the parent 558 // TLOF class. This will also make it more obvious that stuff like 559 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 560 // specific code. 561 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 562 // Emit the .tbss symbol 563 MCSymbol *MangSym = 564 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 565 566 if (GVKind.isThreadBSS()) { 567 TheSection = getObjFileLowering().getTLSBSSSection(); 568 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 569 } else if (GVKind.isThreadData()) { 570 OutStreamer->SwitchSection(TheSection); 571 572 EmitAlignment(AlignLog, GV); 573 OutStreamer->EmitLabel(MangSym); 574 575 EmitGlobalConstant(GV->getParent()->getDataLayout(), 576 GV->getInitializer()); 577 } 578 579 OutStreamer->AddBlankLine(); 580 581 // Emit the variable struct for the runtime. 582 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 583 584 OutStreamer->SwitchSection(TLVSect); 585 // Emit the linkage here. 586 EmitLinkage(GV, GVSym); 587 OutStreamer->EmitLabel(GVSym); 588 589 // Three pointers in size: 590 // - __tlv_bootstrap - used to make sure support exists 591 // - spare pointer, used when mapped by the runtime 592 // - pointer to mangled symbol above with initializer 593 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 594 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 595 PtrSize); 596 OutStreamer->EmitIntValue(0, PtrSize); 597 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 598 599 OutStreamer->AddBlankLine(); 600 return; 601 } 602 603 MCSymbol *EmittedInitSym = GVSym; 604 605 OutStreamer->SwitchSection(TheSection); 606 607 EmitLinkage(GV, EmittedInitSym); 608 EmitAlignment(AlignLog, GV); 609 610 OutStreamer->EmitLabel(EmittedInitSym); 611 612 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 613 614 if (MAI->hasDotTypeDotSizeDirective()) 615 // .size foo, 42 616 OutStreamer->emitELFSize(EmittedInitSym, 617 MCConstantExpr::create(Size, OutContext)); 618 619 OutStreamer->AddBlankLine(); 620 } 621 622 /// Emit the directive and value for debug thread local expression 623 /// 624 /// \p Value - The value to emit. 625 /// \p Size - The size of the integer (in bytes) to emit. 626 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 627 unsigned Size) const { 628 OutStreamer->EmitValue(Value, Size); 629 } 630 631 /// EmitFunctionHeader - This method emits the header for the current 632 /// function. 633 void AsmPrinter::EmitFunctionHeader() { 634 const Function &F = MF->getFunction(); 635 636 if (isVerbose()) 637 OutStreamer->GetCommentOS() 638 << "-- Begin function " 639 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 640 641 // Print out constants referenced by the function 642 EmitConstantPool(); 643 644 // Print the 'header' of function. 645 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 646 EmitVisibility(CurrentFnSym, F.getVisibility()); 647 648 EmitLinkage(&F, CurrentFnSym); 649 if (MAI->hasFunctionAlignment()) 650 EmitAlignment(MF->getAlignment(), &F); 651 652 if (MAI->hasDotTypeDotSizeDirective()) 653 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 654 655 if (isVerbose()) { 656 F.printAsOperand(OutStreamer->GetCommentOS(), 657 /*PrintType=*/false, F.getParent()); 658 OutStreamer->GetCommentOS() << '\n'; 659 } 660 661 // Emit the prefix data. 662 if (F.hasPrefixData()) { 663 if (MAI->hasSubsectionsViaSymbols()) { 664 // Preserving prefix data on platforms which use subsections-via-symbols 665 // is a bit tricky. Here we introduce a symbol for the prefix data 666 // and use the .alt_entry attribute to mark the function's real entry point 667 // as an alternative entry point to the prefix-data symbol. 668 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 669 OutStreamer->EmitLabel(PrefixSym); 670 671 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 672 673 // Emit an .alt_entry directive for the actual function symbol. 674 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 675 } else { 676 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 677 } 678 } 679 680 // Emit the CurrentFnSym. This is a virtual function to allow targets to 681 // do their wild and crazy things as required. 682 EmitFunctionEntryLabel(); 683 684 // If the function had address-taken blocks that got deleted, then we have 685 // references to the dangling symbols. Emit them at the start of the function 686 // so that we don't get references to undefined symbols. 687 std::vector<MCSymbol*> DeadBlockSyms; 688 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 689 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 690 OutStreamer->AddComment("Address taken block that was later removed"); 691 OutStreamer->EmitLabel(DeadBlockSyms[i]); 692 } 693 694 if (CurrentFnBegin) { 695 if (MAI->useAssignmentForEHBegin()) { 696 MCSymbol *CurPos = OutContext.createTempSymbol(); 697 OutStreamer->EmitLabel(CurPos); 698 OutStreamer->EmitAssignment(CurrentFnBegin, 699 MCSymbolRefExpr::create(CurPos, OutContext)); 700 } else { 701 OutStreamer->EmitLabel(CurrentFnBegin); 702 } 703 } 704 705 // Emit pre-function debug and/or EH information. 706 for (const HandlerInfo &HI : Handlers) { 707 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 708 HI.TimerGroupDescription, TimePassesIsEnabled); 709 HI.Handler->beginFunction(MF); 710 } 711 712 // Emit the prologue data. 713 if (F.hasPrologueData()) 714 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 715 } 716 717 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 718 /// function. This can be overridden by targets as required to do custom stuff. 719 void AsmPrinter::EmitFunctionEntryLabel() { 720 CurrentFnSym->redefineIfPossible(); 721 722 // The function label could have already been emitted if two symbols end up 723 // conflicting due to asm renaming. Detect this and emit an error. 724 if (CurrentFnSym->isVariable()) 725 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 726 "' is a protected alias"); 727 if (CurrentFnSym->isDefined()) 728 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 729 "' label emitted multiple times to assembly file"); 730 731 return OutStreamer->EmitLabel(CurrentFnSym); 732 } 733 734 /// emitComments - Pretty-print comments for instructions. 735 /// It returns true iff the sched comment was emitted. 736 /// Otherwise it returns false. 737 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 738 AsmPrinter *AP) { 739 const MachineFunction *MF = MI.getMF(); 740 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 741 742 // Check for spills and reloads 743 int FI; 744 745 const MachineFrameInfo &MFI = MF->getFrameInfo(); 746 bool Commented = false; 747 748 // We assume a single instruction only has a spill or reload, not 749 // both. 750 const MachineMemOperand *MMO; 751 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 752 if (MFI.isSpillSlotObjectIndex(FI)) { 753 MMO = *MI.memoperands_begin(); 754 CommentOS << MMO->getSize() << "-byte Reload"; 755 Commented = true; 756 } 757 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 758 if (MFI.isSpillSlotObjectIndex(FI)) { 759 CommentOS << MMO->getSize() << "-byte Folded Reload"; 760 Commented = true; 761 } 762 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 763 if (MFI.isSpillSlotObjectIndex(FI)) { 764 MMO = *MI.memoperands_begin(); 765 CommentOS << MMO->getSize() << "-byte Spill"; 766 Commented = true; 767 } 768 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 769 if (MFI.isSpillSlotObjectIndex(FI)) { 770 CommentOS << MMO->getSize() << "-byte Folded Spill"; 771 Commented = true; 772 } 773 } 774 775 // Check for spill-induced copies 776 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 777 Commented = true; 778 CommentOS << " Reload Reuse"; 779 } 780 781 if (Commented) { 782 if (AP->EnablePrintSchedInfo) { 783 // If any comment was added above and we need sched info comment then add 784 // this new comment just after the above comment w/o "\n" between them. 785 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 786 return true; 787 } 788 CommentOS << "\n"; 789 } 790 return false; 791 } 792 793 /// emitImplicitDef - This method emits the specified machine instruction 794 /// that is an implicit def. 795 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 796 unsigned RegNo = MI->getOperand(0).getReg(); 797 798 SmallString<128> Str; 799 raw_svector_ostream OS(Str); 800 OS << "implicit-def: " 801 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 802 803 OutStreamer->AddComment(OS.str()); 804 OutStreamer->AddBlankLine(); 805 } 806 807 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 808 std::string Str; 809 raw_string_ostream OS(Str); 810 OS << "kill:"; 811 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 812 const MachineOperand &Op = MI->getOperand(i); 813 assert(Op.isReg() && "KILL instruction must have only register operands"); 814 OS << ' ' << (Op.isDef() ? "def " : "killed ") 815 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 816 } 817 AP.OutStreamer->AddComment(OS.str()); 818 AP.OutStreamer->AddBlankLine(); 819 } 820 821 /// emitDebugValueComment - This method handles the target-independent form 822 /// of DBG_VALUE, returning true if it was able to do so. A false return 823 /// means the target will need to handle MI in EmitInstruction. 824 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 825 // This code handles only the 4-operand target-independent form. 826 if (MI->getNumOperands() != 4) 827 return false; 828 829 SmallString<128> Str; 830 raw_svector_ostream OS(Str); 831 OS << "DEBUG_VALUE: "; 832 833 const DILocalVariable *V = MI->getDebugVariable(); 834 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 835 StringRef Name = SP->getName(); 836 if (!Name.empty()) 837 OS << Name << ":"; 838 } 839 OS << V->getName(); 840 OS << " <- "; 841 842 // The second operand is only an offset if it's an immediate. 843 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 844 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 845 const DIExpression *Expr = MI->getDebugExpression(); 846 if (Expr->getNumElements()) { 847 OS << '['; 848 bool NeedSep = false; 849 for (auto Op : Expr->expr_ops()) { 850 if (NeedSep) 851 OS << ", "; 852 else 853 NeedSep = true; 854 OS << dwarf::OperationEncodingString(Op.getOp()); 855 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 856 OS << ' ' << Op.getArg(I); 857 } 858 OS << "] "; 859 } 860 861 // Register or immediate value. Register 0 means undef. 862 if (MI->getOperand(0).isFPImm()) { 863 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 864 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 865 OS << (double)APF.convertToFloat(); 866 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 867 OS << APF.convertToDouble(); 868 } else { 869 // There is no good way to print long double. Convert a copy to 870 // double. Ah well, it's only a comment. 871 bool ignored; 872 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 873 &ignored); 874 OS << "(long double) " << APF.convertToDouble(); 875 } 876 } else if (MI->getOperand(0).isImm()) { 877 OS << MI->getOperand(0).getImm(); 878 } else if (MI->getOperand(0).isCImm()) { 879 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 880 } else { 881 unsigned Reg; 882 if (MI->getOperand(0).isReg()) { 883 Reg = MI->getOperand(0).getReg(); 884 } else { 885 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 886 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 887 Offset += TFI->getFrameIndexReference(*AP.MF, 888 MI->getOperand(0).getIndex(), Reg); 889 MemLoc = true; 890 } 891 if (Reg == 0) { 892 // Suppress offset, it is not meaningful here. 893 OS << "undef"; 894 // NOTE: Want this comment at start of line, don't emit with AddComment. 895 AP.OutStreamer->emitRawComment(OS.str()); 896 return true; 897 } 898 if (MemLoc) 899 OS << '['; 900 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 901 } 902 903 if (MemLoc) 904 OS << '+' << Offset << ']'; 905 906 // NOTE: Want this comment at start of line, don't emit with AddComment. 907 AP.OutStreamer->emitRawComment(OS.str()); 908 return true; 909 } 910 911 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 912 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 913 MF->getFunction().needsUnwindTableEntry()) 914 return CFI_M_EH; 915 916 if (MMI->hasDebugInfo()) 917 return CFI_M_Debug; 918 919 return CFI_M_None; 920 } 921 922 bool AsmPrinter::needsSEHMoves() { 923 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 924 } 925 926 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 927 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 928 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 929 ExceptionHandlingType != ExceptionHandling::ARM) 930 return; 931 932 if (needsCFIMoves() == CFI_M_None) 933 return; 934 935 // If there is no "real" instruction following this CFI instruction, skip 936 // emitting it; it would be beyond the end of the function's FDE range. 937 auto *MBB = MI.getParent(); 938 auto I = std::next(MI.getIterator()); 939 while (I != MBB->end() && I->isTransient()) 940 ++I; 941 if (I == MBB->instr_end() && 942 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 943 return; 944 945 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 946 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 947 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 948 emitCFIInstruction(CFI); 949 } 950 951 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 952 // The operands are the MCSymbol and the frame offset of the allocation. 953 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 954 int FrameOffset = MI.getOperand(1).getImm(); 955 956 // Emit a symbol assignment. 957 OutStreamer->EmitAssignment(FrameAllocSym, 958 MCConstantExpr::create(FrameOffset, OutContext)); 959 } 960 961 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 962 if (!MF.getTarget().Options.EmitStackSizeSection) 963 return; 964 965 MCSection *StackSizeSection = getObjFileLowering().getStackSizesSection(); 966 if (!StackSizeSection) 967 return; 968 969 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 970 // Don't emit functions with dynamic stack allocations. 971 if (FrameInfo.hasVarSizedObjects()) 972 return; 973 974 OutStreamer->PushSection(); 975 OutStreamer->SwitchSection(StackSizeSection); 976 977 const MCSymbol *FunctionSymbol = getSymbol(&MF.getFunction()); 978 uint64_t StackSize = FrameInfo.getStackSize(); 979 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getPointerSize()); 980 OutStreamer->EmitULEB128IntValue(StackSize); 981 982 OutStreamer->PopSection(); 983 } 984 985 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 986 MachineModuleInfo *MMI) { 987 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 988 return true; 989 990 // We might emit an EH table that uses function begin and end labels even if 991 // we don't have any landingpads. 992 if (!MF.getFunction().hasPersonalityFn()) 993 return false; 994 return !isNoOpWithoutInvoke( 995 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 996 } 997 998 /// EmitFunctionBody - This method emits the body and trailer for a 999 /// function. 1000 void AsmPrinter::EmitFunctionBody() { 1001 EmitFunctionHeader(); 1002 1003 // Emit target-specific gunk before the function body. 1004 EmitFunctionBodyStart(); 1005 1006 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1007 1008 // Print out code for the function. 1009 bool HasAnyRealCode = false; 1010 int NumInstsInFunction = 0; 1011 for (auto &MBB : *MF) { 1012 // Print a label for the basic block. 1013 EmitBasicBlockStart(MBB); 1014 for (auto &MI : MBB) { 1015 // Print the assembly for the instruction. 1016 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1017 !MI.isDebugValue()) { 1018 HasAnyRealCode = true; 1019 ++NumInstsInFunction; 1020 } 1021 1022 if (ShouldPrintDebugScopes) { 1023 for (const HandlerInfo &HI : Handlers) { 1024 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1025 HI.TimerGroupName, HI.TimerGroupDescription, 1026 TimePassesIsEnabled); 1027 HI.Handler->beginInstruction(&MI); 1028 } 1029 } 1030 1031 if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) { 1032 MachineInstr *MIP = const_cast<MachineInstr *>(&MI); 1033 MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment); 1034 } 1035 1036 switch (MI.getOpcode()) { 1037 case TargetOpcode::CFI_INSTRUCTION: 1038 emitCFIInstruction(MI); 1039 break; 1040 case TargetOpcode::LOCAL_ESCAPE: 1041 emitFrameAlloc(MI); 1042 break; 1043 case TargetOpcode::EH_LABEL: 1044 case TargetOpcode::GC_LABEL: 1045 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1046 break; 1047 case TargetOpcode::INLINEASM: 1048 EmitInlineAsm(&MI); 1049 break; 1050 case TargetOpcode::DBG_VALUE: 1051 if (isVerbose()) { 1052 if (!emitDebugValueComment(&MI, *this)) 1053 EmitInstruction(&MI); 1054 } 1055 break; 1056 case TargetOpcode::IMPLICIT_DEF: 1057 if (isVerbose()) emitImplicitDef(&MI); 1058 break; 1059 case TargetOpcode::KILL: 1060 if (isVerbose()) emitKill(&MI, *this); 1061 break; 1062 default: 1063 EmitInstruction(&MI); 1064 break; 1065 } 1066 1067 if (ShouldPrintDebugScopes) { 1068 for (const HandlerInfo &HI : Handlers) { 1069 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1070 HI.TimerGroupName, HI.TimerGroupDescription, 1071 TimePassesIsEnabled); 1072 HI.Handler->endInstruction(); 1073 } 1074 } 1075 } 1076 1077 EmitBasicBlockEnd(MBB); 1078 } 1079 1080 EmittedInsts += NumInstsInFunction; 1081 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1082 MF->getFunction().getSubprogram(), 1083 &MF->front()); 1084 R << ore::NV("NumInstructions", NumInstsInFunction) 1085 << " instructions in function"; 1086 ORE->emit(R); 1087 1088 // If the function is empty and the object file uses .subsections_via_symbols, 1089 // then we need to emit *something* to the function body to prevent the 1090 // labels from collapsing together. Just emit a noop. 1091 // Similarly, don't emit empty functions on Windows either. It can lead to 1092 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1093 // after linking, causing the kernel not to load the binary: 1094 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1095 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1096 const Triple &TT = TM.getTargetTriple(); 1097 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1098 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1099 MCInst Noop; 1100 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1101 1102 // Targets can opt-out of emitting the noop here by leaving the opcode 1103 // unspecified. 1104 if (Noop.getOpcode()) { 1105 OutStreamer->AddComment("avoids zero-length function"); 1106 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1107 } 1108 } 1109 1110 const Function &F = MF->getFunction(); 1111 for (const auto &BB : F) { 1112 if (!BB.hasAddressTaken()) 1113 continue; 1114 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1115 if (Sym->isDefined()) 1116 continue; 1117 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1118 OutStreamer->EmitLabel(Sym); 1119 } 1120 1121 // Emit target-specific gunk after the function body. 1122 EmitFunctionBodyEnd(); 1123 1124 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1125 MAI->hasDotTypeDotSizeDirective()) { 1126 // Create a symbol for the end of function. 1127 CurrentFnEnd = createTempSymbol("func_end"); 1128 OutStreamer->EmitLabel(CurrentFnEnd); 1129 } 1130 1131 // If the target wants a .size directive for the size of the function, emit 1132 // it. 1133 if (MAI->hasDotTypeDotSizeDirective()) { 1134 // We can get the size as difference between the function label and the 1135 // temp label. 1136 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1137 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1138 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1139 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1140 } 1141 1142 for (const HandlerInfo &HI : Handlers) { 1143 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1144 HI.TimerGroupDescription, TimePassesIsEnabled); 1145 HI.Handler->markFunctionEnd(); 1146 } 1147 1148 // Print out jump tables referenced by the function. 1149 EmitJumpTableInfo(); 1150 1151 // Emit post-function debug and/or EH information. 1152 for (const HandlerInfo &HI : Handlers) { 1153 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1154 HI.TimerGroupDescription, TimePassesIsEnabled); 1155 HI.Handler->endFunction(MF); 1156 } 1157 1158 // Emit section containing stack size metadata. 1159 emitStackSizeSection(*MF); 1160 1161 if (isVerbose()) 1162 OutStreamer->GetCommentOS() << "-- End function\n"; 1163 1164 OutStreamer->AddBlankLine(); 1165 } 1166 1167 /// \brief Compute the number of Global Variables that uses a Constant. 1168 static unsigned getNumGlobalVariableUses(const Constant *C) { 1169 if (!C) 1170 return 0; 1171 1172 if (isa<GlobalVariable>(C)) 1173 return 1; 1174 1175 unsigned NumUses = 0; 1176 for (auto *CU : C->users()) 1177 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1178 1179 return NumUses; 1180 } 1181 1182 /// \brief Only consider global GOT equivalents if at least one user is a 1183 /// cstexpr inside an initializer of another global variables. Also, don't 1184 /// handle cstexpr inside instructions. During global variable emission, 1185 /// candidates are skipped and are emitted later in case at least one cstexpr 1186 /// isn't replaced by a PC relative GOT entry access. 1187 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1188 unsigned &NumGOTEquivUsers) { 1189 // Global GOT equivalents are unnamed private globals with a constant 1190 // pointer initializer to another global symbol. They must point to a 1191 // GlobalVariable or Function, i.e., as GlobalValue. 1192 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1193 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1194 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1195 return false; 1196 1197 // To be a got equivalent, at least one of its users need to be a constant 1198 // expression used by another global variable. 1199 for (auto *U : GV->users()) 1200 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1201 1202 return NumGOTEquivUsers > 0; 1203 } 1204 1205 /// \brief Unnamed constant global variables solely contaning a pointer to 1206 /// another globals variable is equivalent to a GOT table entry; it contains the 1207 /// the address of another symbol. Optimize it and replace accesses to these 1208 /// "GOT equivalents" by using the GOT entry for the final global instead. 1209 /// Compute GOT equivalent candidates among all global variables to avoid 1210 /// emitting them if possible later on, after it use is replaced by a GOT entry 1211 /// access. 1212 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1213 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1214 return; 1215 1216 for (const auto &G : M.globals()) { 1217 unsigned NumGOTEquivUsers = 0; 1218 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1219 continue; 1220 1221 const MCSymbol *GOTEquivSym = getSymbol(&G); 1222 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1223 } 1224 } 1225 1226 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1227 /// for PC relative GOT entry conversion, in such cases we need to emit such 1228 /// globals we previously omitted in EmitGlobalVariable. 1229 void AsmPrinter::emitGlobalGOTEquivs() { 1230 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1231 return; 1232 1233 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1234 for (auto &I : GlobalGOTEquivs) { 1235 const GlobalVariable *GV = I.second.first; 1236 unsigned Cnt = I.second.second; 1237 if (Cnt) 1238 FailedCandidates.push_back(GV); 1239 } 1240 GlobalGOTEquivs.clear(); 1241 1242 for (auto *GV : FailedCandidates) 1243 EmitGlobalVariable(GV); 1244 } 1245 1246 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1247 const GlobalIndirectSymbol& GIS) { 1248 MCSymbol *Name = getSymbol(&GIS); 1249 1250 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1251 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1252 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1253 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1254 else 1255 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1256 1257 // Set the symbol type to function if the alias has a function type. 1258 // This affects codegen when the aliasee is not a function. 1259 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1260 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1261 if (isa<GlobalIFunc>(GIS)) 1262 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1263 } 1264 1265 EmitVisibility(Name, GIS.getVisibility()); 1266 1267 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1268 1269 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1270 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1271 1272 // Emit the directives as assignments aka .set: 1273 OutStreamer->EmitAssignment(Name, Expr); 1274 1275 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1276 // If the aliasee does not correspond to a symbol in the output, i.e. the 1277 // alias is not of an object or the aliased object is private, then set the 1278 // size of the alias symbol from the type of the alias. We don't do this in 1279 // other situations as the alias and aliasee having differing types but same 1280 // size may be intentional. 1281 const GlobalObject *BaseObject = GA->getBaseObject(); 1282 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1283 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1284 const DataLayout &DL = M.getDataLayout(); 1285 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1286 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1287 } 1288 } 1289 } 1290 1291 bool AsmPrinter::doFinalization(Module &M) { 1292 // Set the MachineFunction to nullptr so that we can catch attempted 1293 // accesses to MF specific features at the module level and so that 1294 // we can conditionalize accesses based on whether or not it is nullptr. 1295 MF = nullptr; 1296 1297 // Gather all GOT equivalent globals in the module. We really need two 1298 // passes over the globals: one to compute and another to avoid its emission 1299 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1300 // where the got equivalent shows up before its use. 1301 computeGlobalGOTEquivs(M); 1302 1303 // Emit global variables. 1304 for (const auto &G : M.globals()) 1305 EmitGlobalVariable(&G); 1306 1307 // Emit remaining GOT equivalent globals. 1308 emitGlobalGOTEquivs(); 1309 1310 // Emit visibility info for declarations 1311 for (const Function &F : M) { 1312 if (!F.isDeclarationForLinker()) 1313 continue; 1314 GlobalValue::VisibilityTypes V = F.getVisibility(); 1315 if (V == GlobalValue::DefaultVisibility) 1316 continue; 1317 1318 MCSymbol *Name = getSymbol(&F); 1319 EmitVisibility(Name, V, false); 1320 } 1321 1322 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1323 1324 TLOF.emitModuleMetadata(*OutStreamer, M, TM); 1325 1326 if (TM.getTargetTriple().isOSBinFormatELF()) { 1327 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1328 1329 // Output stubs for external and common global variables. 1330 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1331 if (!Stubs.empty()) { 1332 OutStreamer->SwitchSection(TLOF.getDataSection()); 1333 const DataLayout &DL = M.getDataLayout(); 1334 1335 for (const auto &Stub : Stubs) { 1336 OutStreamer->EmitLabel(Stub.first); 1337 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1338 DL.getPointerSize()); 1339 } 1340 } 1341 } 1342 1343 // Finalize debug and EH information. 1344 for (const HandlerInfo &HI : Handlers) { 1345 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1346 HI.TimerGroupDescription, TimePassesIsEnabled); 1347 HI.Handler->endModule(); 1348 delete HI.Handler; 1349 } 1350 Handlers.clear(); 1351 DD = nullptr; 1352 1353 // If the target wants to know about weak references, print them all. 1354 if (MAI->getWeakRefDirective()) { 1355 // FIXME: This is not lazy, it would be nice to only print weak references 1356 // to stuff that is actually used. Note that doing so would require targets 1357 // to notice uses in operands (due to constant exprs etc). This should 1358 // happen with the MC stuff eventually. 1359 1360 // Print out module-level global objects here. 1361 for (const auto &GO : M.global_objects()) { 1362 if (!GO.hasExternalWeakLinkage()) 1363 continue; 1364 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1365 } 1366 } 1367 1368 OutStreamer->AddBlankLine(); 1369 1370 // Print aliases in topological order, that is, for each alias a = b, 1371 // b must be printed before a. 1372 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1373 // such an order to generate correct TOC information. 1374 SmallVector<const GlobalAlias *, 16> AliasStack; 1375 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1376 for (const auto &Alias : M.aliases()) { 1377 for (const GlobalAlias *Cur = &Alias; Cur; 1378 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1379 if (!AliasVisited.insert(Cur).second) 1380 break; 1381 AliasStack.push_back(Cur); 1382 } 1383 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1384 emitGlobalIndirectSymbol(M, *AncestorAlias); 1385 AliasStack.clear(); 1386 } 1387 for (const auto &IFunc : M.ifuncs()) 1388 emitGlobalIndirectSymbol(M, IFunc); 1389 1390 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1391 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1392 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1393 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1394 MP->finishAssembly(M, *MI, *this); 1395 1396 // Emit llvm.ident metadata in an '.ident' directive. 1397 EmitModuleIdents(M); 1398 1399 // Emit __morestack address if needed for indirect calls. 1400 if (MMI->usesMorestackAddr()) { 1401 unsigned Align = 1; 1402 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1403 getDataLayout(), SectionKind::getReadOnly(), 1404 /*C=*/nullptr, Align); 1405 OutStreamer->SwitchSection(ReadOnlySection); 1406 1407 MCSymbol *AddrSymbol = 1408 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1409 OutStreamer->EmitLabel(AddrSymbol); 1410 1411 unsigned PtrSize = MAI->getCodePointerSize(); 1412 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1413 PtrSize); 1414 } 1415 1416 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1417 // split-stack is used. 1418 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1419 OutStreamer->SwitchSection( 1420 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1421 if (MMI->hasNosplitStack()) 1422 OutStreamer->SwitchSection( 1423 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1424 } 1425 1426 // If we don't have any trampolines, then we don't require stack memory 1427 // to be executable. Some targets have a directive to declare this. 1428 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1429 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1430 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1431 OutStreamer->SwitchSection(S); 1432 1433 // Allow the target to emit any magic that it wants at the end of the file, 1434 // after everything else has gone out. 1435 EmitEndOfAsmFile(M); 1436 1437 MMI = nullptr; 1438 1439 OutStreamer->Finish(); 1440 OutStreamer->reset(); 1441 1442 return false; 1443 } 1444 1445 MCSymbol *AsmPrinter::getCurExceptionSym() { 1446 if (!CurExceptionSym) 1447 CurExceptionSym = createTempSymbol("exception"); 1448 return CurExceptionSym; 1449 } 1450 1451 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1452 this->MF = &MF; 1453 // Get the function symbol. 1454 CurrentFnSym = getSymbol(&MF.getFunction()); 1455 CurrentFnSymForSize = CurrentFnSym; 1456 CurrentFnBegin = nullptr; 1457 CurExceptionSym = nullptr; 1458 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1459 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) { 1460 CurrentFnBegin = createTempSymbol("func_begin"); 1461 if (NeedsLocalForSize) 1462 CurrentFnSymForSize = CurrentFnBegin; 1463 } 1464 1465 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1466 LI = &getAnalysis<MachineLoopInfo>(); 1467 1468 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1469 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1470 ? PrintSchedule 1471 : STI.supportPrintSchedInfo(); 1472 } 1473 1474 namespace { 1475 1476 // Keep track the alignment, constpool entries per Section. 1477 struct SectionCPs { 1478 MCSection *S; 1479 unsigned Alignment; 1480 SmallVector<unsigned, 4> CPEs; 1481 1482 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1483 }; 1484 1485 } // end anonymous namespace 1486 1487 /// EmitConstantPool - Print to the current output stream assembly 1488 /// representations of the constants in the constant pool MCP. This is 1489 /// used to print out constants which have been "spilled to memory" by 1490 /// the code generator. 1491 void AsmPrinter::EmitConstantPool() { 1492 const MachineConstantPool *MCP = MF->getConstantPool(); 1493 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1494 if (CP.empty()) return; 1495 1496 // Calculate sections for constant pool entries. We collect entries to go into 1497 // the same section together to reduce amount of section switch statements. 1498 SmallVector<SectionCPs, 4> CPSections; 1499 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1500 const MachineConstantPoolEntry &CPE = CP[i]; 1501 unsigned Align = CPE.getAlignment(); 1502 1503 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1504 1505 const Constant *C = nullptr; 1506 if (!CPE.isMachineConstantPoolEntry()) 1507 C = CPE.Val.ConstVal; 1508 1509 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1510 Kind, C, Align); 1511 1512 // The number of sections are small, just do a linear search from the 1513 // last section to the first. 1514 bool Found = false; 1515 unsigned SecIdx = CPSections.size(); 1516 while (SecIdx != 0) { 1517 if (CPSections[--SecIdx].S == S) { 1518 Found = true; 1519 break; 1520 } 1521 } 1522 if (!Found) { 1523 SecIdx = CPSections.size(); 1524 CPSections.push_back(SectionCPs(S, Align)); 1525 } 1526 1527 if (Align > CPSections[SecIdx].Alignment) 1528 CPSections[SecIdx].Alignment = Align; 1529 CPSections[SecIdx].CPEs.push_back(i); 1530 } 1531 1532 // Now print stuff into the calculated sections. 1533 const MCSection *CurSection = nullptr; 1534 unsigned Offset = 0; 1535 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1536 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1537 unsigned CPI = CPSections[i].CPEs[j]; 1538 MCSymbol *Sym = GetCPISymbol(CPI); 1539 if (!Sym->isUndefined()) 1540 continue; 1541 1542 if (CurSection != CPSections[i].S) { 1543 OutStreamer->SwitchSection(CPSections[i].S); 1544 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1545 CurSection = CPSections[i].S; 1546 Offset = 0; 1547 } 1548 1549 MachineConstantPoolEntry CPE = CP[CPI]; 1550 1551 // Emit inter-object padding for alignment. 1552 unsigned AlignMask = CPE.getAlignment() - 1; 1553 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1554 OutStreamer->EmitZeros(NewOffset - Offset); 1555 1556 Type *Ty = CPE.getType(); 1557 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1558 1559 OutStreamer->EmitLabel(Sym); 1560 if (CPE.isMachineConstantPoolEntry()) 1561 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1562 else 1563 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1564 } 1565 } 1566 } 1567 1568 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1569 /// by the current function to the current output stream. 1570 void AsmPrinter::EmitJumpTableInfo() { 1571 const DataLayout &DL = MF->getDataLayout(); 1572 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1573 if (!MJTI) return; 1574 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1575 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1576 if (JT.empty()) return; 1577 1578 // Pick the directive to use to print the jump table entries, and switch to 1579 // the appropriate section. 1580 const Function &F = MF->getFunction(); 1581 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1582 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1583 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1584 F); 1585 if (JTInDiffSection) { 1586 // Drop it in the readonly section. 1587 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1588 OutStreamer->SwitchSection(ReadOnlySection); 1589 } 1590 1591 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1592 1593 // Jump tables in code sections are marked with a data_region directive 1594 // where that's supported. 1595 if (!JTInDiffSection) 1596 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1597 1598 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1599 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1600 1601 // If this jump table was deleted, ignore it. 1602 if (JTBBs.empty()) continue; 1603 1604 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1605 /// emit a .set directive for each unique entry. 1606 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1607 MAI->doesSetDirectiveSuppressReloc()) { 1608 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1609 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1610 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1611 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1612 const MachineBasicBlock *MBB = JTBBs[ii]; 1613 if (!EmittedSets.insert(MBB).second) 1614 continue; 1615 1616 // .set LJTSet, LBB32-base 1617 const MCExpr *LHS = 1618 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1619 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1620 MCBinaryExpr::createSub(LHS, Base, 1621 OutContext)); 1622 } 1623 } 1624 1625 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1626 // before each jump table. The first label is never referenced, but tells 1627 // the assembler and linker the extents of the jump table object. The 1628 // second label is actually referenced by the code. 1629 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1630 // FIXME: This doesn't have to have any specific name, just any randomly 1631 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1632 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1633 1634 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1635 1636 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1637 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1638 } 1639 if (!JTInDiffSection) 1640 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1641 } 1642 1643 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1644 /// current stream. 1645 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1646 const MachineBasicBlock *MBB, 1647 unsigned UID) const { 1648 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1649 const MCExpr *Value = nullptr; 1650 switch (MJTI->getEntryKind()) { 1651 case MachineJumpTableInfo::EK_Inline: 1652 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1653 case MachineJumpTableInfo::EK_Custom32: 1654 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1655 MJTI, MBB, UID, OutContext); 1656 break; 1657 case MachineJumpTableInfo::EK_BlockAddress: 1658 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1659 // .word LBB123 1660 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1661 break; 1662 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1663 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1664 // with a relocation as gp-relative, e.g.: 1665 // .gprel32 LBB123 1666 MCSymbol *MBBSym = MBB->getSymbol(); 1667 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1668 return; 1669 } 1670 1671 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1672 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1673 // with a relocation as gp-relative, e.g.: 1674 // .gpdword LBB123 1675 MCSymbol *MBBSym = MBB->getSymbol(); 1676 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1677 return; 1678 } 1679 1680 case MachineJumpTableInfo::EK_LabelDifference32: { 1681 // Each entry is the address of the block minus the address of the jump 1682 // table. This is used for PIC jump tables where gprel32 is not supported. 1683 // e.g.: 1684 // .word LBB123 - LJTI1_2 1685 // If the .set directive avoids relocations, this is emitted as: 1686 // .set L4_5_set_123, LBB123 - LJTI1_2 1687 // .word L4_5_set_123 1688 if (MAI->doesSetDirectiveSuppressReloc()) { 1689 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1690 OutContext); 1691 break; 1692 } 1693 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1694 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1695 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1696 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1697 break; 1698 } 1699 } 1700 1701 assert(Value && "Unknown entry kind!"); 1702 1703 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1704 OutStreamer->EmitValue(Value, EntrySize); 1705 } 1706 1707 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1708 /// special global used by LLVM. If so, emit it and return true, otherwise 1709 /// do nothing and return false. 1710 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1711 if (GV->getName() == "llvm.used") { 1712 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1713 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1714 return true; 1715 } 1716 1717 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1718 if (GV->getSection() == "llvm.metadata" || 1719 GV->hasAvailableExternallyLinkage()) 1720 return true; 1721 1722 if (!GV->hasAppendingLinkage()) return false; 1723 1724 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1725 1726 if (GV->getName() == "llvm.global_ctors") { 1727 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1728 /* isCtor */ true); 1729 1730 return true; 1731 } 1732 1733 if (GV->getName() == "llvm.global_dtors") { 1734 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1735 /* isCtor */ false); 1736 1737 return true; 1738 } 1739 1740 report_fatal_error("unknown special variable"); 1741 } 1742 1743 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1744 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1745 /// is true, as being used with this directive. 1746 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1747 // Should be an array of 'i8*'. 1748 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1749 const GlobalValue *GV = 1750 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1751 if (GV) 1752 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1753 } 1754 } 1755 1756 namespace { 1757 1758 struct Structor { 1759 int Priority = 0; 1760 Constant *Func = nullptr; 1761 GlobalValue *ComdatKey = nullptr; 1762 1763 Structor() = default; 1764 }; 1765 1766 } // end anonymous namespace 1767 1768 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1769 /// priority. 1770 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1771 bool isCtor) { 1772 // Should be an array of '{ int, void ()* }' structs. The first value is the 1773 // init priority. 1774 if (!isa<ConstantArray>(List)) return; 1775 1776 // Sanity check the structors list. 1777 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1778 if (!InitList) return; // Not an array! 1779 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1780 // FIXME: Only allow the 3-field form in LLVM 4.0. 1781 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1782 return; // Not an array of two or three elements! 1783 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1784 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1785 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1786 return; // Not (int, ptr, ptr). 1787 1788 // Gather the structors in a form that's convenient for sorting by priority. 1789 SmallVector<Structor, 8> Structors; 1790 for (Value *O : InitList->operands()) { 1791 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1792 if (!CS) continue; // Malformed. 1793 if (CS->getOperand(1)->isNullValue()) 1794 break; // Found a null terminator, skip the rest. 1795 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1796 if (!Priority) continue; // Malformed. 1797 Structors.push_back(Structor()); 1798 Structor &S = Structors.back(); 1799 S.Priority = Priority->getLimitedValue(65535); 1800 S.Func = CS->getOperand(1); 1801 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1802 S.ComdatKey = 1803 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1804 } 1805 1806 // Emit the function pointers in the target-specific order 1807 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1808 std::stable_sort(Structors.begin(), Structors.end(), 1809 [](const Structor &L, 1810 const Structor &R) { return L.Priority < R.Priority; }); 1811 for (Structor &S : Structors) { 1812 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1813 const MCSymbol *KeySym = nullptr; 1814 if (GlobalValue *GV = S.ComdatKey) { 1815 if (GV->isDeclarationForLinker()) 1816 // If the associated variable is not defined in this module 1817 // (it might be available_externally, or have been an 1818 // available_externally definition that was dropped by the 1819 // EliminateAvailableExternally pass), some other TU 1820 // will provide its dynamic initializer. 1821 continue; 1822 1823 KeySym = getSymbol(GV); 1824 } 1825 MCSection *OutputSection = 1826 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1827 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1828 OutStreamer->SwitchSection(OutputSection); 1829 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1830 EmitAlignment(Align); 1831 EmitXXStructor(DL, S.Func); 1832 } 1833 } 1834 1835 void AsmPrinter::EmitModuleIdents(Module &M) { 1836 if (!MAI->hasIdentDirective()) 1837 return; 1838 1839 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1840 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1841 const MDNode *N = NMD->getOperand(i); 1842 assert(N->getNumOperands() == 1 && 1843 "llvm.ident metadata entry can have only one operand"); 1844 const MDString *S = cast<MDString>(N->getOperand(0)); 1845 OutStreamer->EmitIdent(S->getString()); 1846 } 1847 } 1848 } 1849 1850 //===--------------------------------------------------------------------===// 1851 // Emission and print routines 1852 // 1853 1854 /// EmitInt8 - Emit a byte directive and value. 1855 /// 1856 void AsmPrinter::EmitInt8(int Value) const { 1857 OutStreamer->EmitIntValue(Value, 1); 1858 } 1859 1860 /// EmitInt16 - Emit a short directive and value. 1861 void AsmPrinter::EmitInt16(int Value) const { 1862 OutStreamer->EmitIntValue(Value, 2); 1863 } 1864 1865 /// EmitInt32 - Emit a long directive and value. 1866 void AsmPrinter::EmitInt32(int Value) const { 1867 OutStreamer->EmitIntValue(Value, 4); 1868 } 1869 1870 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1871 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1872 /// .set if it avoids relocations. 1873 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1874 unsigned Size) const { 1875 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1876 } 1877 1878 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1879 /// where the size in bytes of the directive is specified by Size and Label 1880 /// specifies the label. This implicitly uses .set if it is available. 1881 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1882 unsigned Size, 1883 bool IsSectionRelative) const { 1884 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1885 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1886 if (Size > 4) 1887 OutStreamer->EmitZeros(Size - 4); 1888 return; 1889 } 1890 1891 // Emit Label+Offset (or just Label if Offset is zero) 1892 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1893 if (Offset) 1894 Expr = MCBinaryExpr::createAdd( 1895 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1896 1897 OutStreamer->EmitValue(Expr, Size); 1898 } 1899 1900 //===----------------------------------------------------------------------===// 1901 1902 // EmitAlignment - Emit an alignment directive to the specified power of 1903 // two boundary. For example, if you pass in 3 here, you will get an 8 1904 // byte alignment. If a global value is specified, and if that global has 1905 // an explicit alignment requested, it will override the alignment request 1906 // if required for correctness. 1907 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1908 if (GV) 1909 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1910 1911 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1912 1913 assert(NumBits < 1914 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1915 "undefined behavior"); 1916 if (getCurrentSection()->getKind().isText()) 1917 OutStreamer->EmitCodeAlignment(1u << NumBits); 1918 else 1919 OutStreamer->EmitValueToAlignment(1u << NumBits); 1920 } 1921 1922 //===----------------------------------------------------------------------===// 1923 // Constant emission. 1924 //===----------------------------------------------------------------------===// 1925 1926 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1927 MCContext &Ctx = OutContext; 1928 1929 if (CV->isNullValue() || isa<UndefValue>(CV)) 1930 return MCConstantExpr::create(0, Ctx); 1931 1932 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1933 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1934 1935 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1936 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1937 1938 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1939 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1940 1941 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1942 if (!CE) { 1943 llvm_unreachable("Unknown constant value to lower!"); 1944 } 1945 1946 switch (CE->getOpcode()) { 1947 default: 1948 // If the code isn't optimized, there may be outstanding folding 1949 // opportunities. Attempt to fold the expression using DataLayout as a 1950 // last resort before giving up. 1951 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1952 if (C != CE) 1953 return lowerConstant(C); 1954 1955 // Otherwise report the problem to the user. 1956 { 1957 std::string S; 1958 raw_string_ostream OS(S); 1959 OS << "Unsupported expression in static initializer: "; 1960 CE->printAsOperand(OS, /*PrintType=*/false, 1961 !MF ? nullptr : MF->getFunction().getParent()); 1962 report_fatal_error(OS.str()); 1963 } 1964 case Instruction::GetElementPtr: { 1965 // Generate a symbolic expression for the byte address 1966 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1967 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1968 1969 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1970 if (!OffsetAI) 1971 return Base; 1972 1973 int64_t Offset = OffsetAI.getSExtValue(); 1974 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1975 Ctx); 1976 } 1977 1978 case Instruction::Trunc: 1979 // We emit the value and depend on the assembler to truncate the generated 1980 // expression properly. This is important for differences between 1981 // blockaddress labels. Since the two labels are in the same function, it 1982 // is reasonable to treat their delta as a 32-bit value. 1983 LLVM_FALLTHROUGH; 1984 case Instruction::BitCast: 1985 return lowerConstant(CE->getOperand(0)); 1986 1987 case Instruction::IntToPtr: { 1988 const DataLayout &DL = getDataLayout(); 1989 1990 // Handle casts to pointers by changing them into casts to the appropriate 1991 // integer type. This promotes constant folding and simplifies this code. 1992 Constant *Op = CE->getOperand(0); 1993 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1994 false/*ZExt*/); 1995 return lowerConstant(Op); 1996 } 1997 1998 case Instruction::PtrToInt: { 1999 const DataLayout &DL = getDataLayout(); 2000 2001 // Support only foldable casts to/from pointers that can be eliminated by 2002 // changing the pointer to the appropriately sized integer type. 2003 Constant *Op = CE->getOperand(0); 2004 Type *Ty = CE->getType(); 2005 2006 const MCExpr *OpExpr = lowerConstant(Op); 2007 2008 // We can emit the pointer value into this slot if the slot is an 2009 // integer slot equal to the size of the pointer. 2010 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2011 return OpExpr; 2012 2013 // Otherwise the pointer is smaller than the resultant integer, mask off 2014 // the high bits so we are sure to get a proper truncation if the input is 2015 // a constant expr. 2016 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2017 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2018 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2019 } 2020 2021 case Instruction::Sub: { 2022 GlobalValue *LHSGV; 2023 APInt LHSOffset; 2024 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2025 getDataLayout())) { 2026 GlobalValue *RHSGV; 2027 APInt RHSOffset; 2028 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2029 getDataLayout())) { 2030 const MCExpr *RelocExpr = 2031 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2032 if (!RelocExpr) 2033 RelocExpr = MCBinaryExpr::createSub( 2034 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2035 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2036 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2037 if (Addend != 0) 2038 RelocExpr = MCBinaryExpr::createAdd( 2039 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2040 return RelocExpr; 2041 } 2042 } 2043 } 2044 // else fallthrough 2045 LLVM_FALLTHROUGH; 2046 2047 // The MC library also has a right-shift operator, but it isn't consistently 2048 // signed or unsigned between different targets. 2049 case Instruction::Add: 2050 case Instruction::Mul: 2051 case Instruction::SDiv: 2052 case Instruction::SRem: 2053 case Instruction::Shl: 2054 case Instruction::And: 2055 case Instruction::Or: 2056 case Instruction::Xor: { 2057 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2058 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2059 switch (CE->getOpcode()) { 2060 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2061 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2062 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2063 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2064 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2065 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2066 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2067 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2068 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2069 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2070 } 2071 } 2072 } 2073 } 2074 2075 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2076 AsmPrinter &AP, 2077 const Constant *BaseCV = nullptr, 2078 uint64_t Offset = 0); 2079 2080 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2081 2082 /// isRepeatedByteSequence - Determine whether the given value is 2083 /// composed of a repeated sequence of identical bytes and return the 2084 /// byte value. If it is not a repeated sequence, return -1. 2085 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2086 StringRef Data = V->getRawDataValues(); 2087 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2088 char C = Data[0]; 2089 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2090 if (Data[i] != C) return -1; 2091 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2092 } 2093 2094 /// isRepeatedByteSequence - Determine whether the given value is 2095 /// composed of a repeated sequence of identical bytes and return the 2096 /// byte value. If it is not a repeated sequence, return -1. 2097 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2098 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2099 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2100 assert(Size % 8 == 0); 2101 2102 // Extend the element to take zero padding into account. 2103 APInt Value = CI->getValue().zextOrSelf(Size); 2104 if (!Value.isSplat(8)) 2105 return -1; 2106 2107 return Value.zextOrTrunc(8).getZExtValue(); 2108 } 2109 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2110 // Make sure all array elements are sequences of the same repeated 2111 // byte. 2112 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2113 Constant *Op0 = CA->getOperand(0); 2114 int Byte = isRepeatedByteSequence(Op0, DL); 2115 if (Byte == -1) 2116 return -1; 2117 2118 // All array elements must be equal. 2119 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2120 if (CA->getOperand(i) != Op0) 2121 return -1; 2122 return Byte; 2123 } 2124 2125 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2126 return isRepeatedByteSequence(CDS); 2127 2128 return -1; 2129 } 2130 2131 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2132 const ConstantDataSequential *CDS, 2133 AsmPrinter &AP) { 2134 // See if we can aggregate this into a .fill, if so, emit it as such. 2135 int Value = isRepeatedByteSequence(CDS, DL); 2136 if (Value != -1) { 2137 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2138 // Don't emit a 1-byte object as a .fill. 2139 if (Bytes > 1) 2140 return AP.OutStreamer->emitFill(Bytes, Value); 2141 } 2142 2143 // If this can be emitted with .ascii/.asciz, emit it as such. 2144 if (CDS->isString()) 2145 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2146 2147 // Otherwise, emit the values in successive locations. 2148 unsigned ElementByteSize = CDS->getElementByteSize(); 2149 if (isa<IntegerType>(CDS->getElementType())) { 2150 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2151 if (AP.isVerbose()) 2152 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2153 CDS->getElementAsInteger(i)); 2154 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2155 ElementByteSize); 2156 } 2157 } else { 2158 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2159 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2160 } 2161 2162 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2163 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2164 CDS->getNumElements(); 2165 if (unsigned Padding = Size - EmittedSize) 2166 AP.OutStreamer->EmitZeros(Padding); 2167 } 2168 2169 static void emitGlobalConstantArray(const DataLayout &DL, 2170 const ConstantArray *CA, AsmPrinter &AP, 2171 const Constant *BaseCV, uint64_t Offset) { 2172 // See if we can aggregate some values. Make sure it can be 2173 // represented as a series of bytes of the constant value. 2174 int Value = isRepeatedByteSequence(CA, DL); 2175 2176 if (Value != -1) { 2177 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2178 AP.OutStreamer->emitFill(Bytes, Value); 2179 } 2180 else { 2181 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2182 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2183 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2184 } 2185 } 2186 } 2187 2188 static void emitGlobalConstantVector(const DataLayout &DL, 2189 const ConstantVector *CV, AsmPrinter &AP) { 2190 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2191 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2192 2193 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2194 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2195 CV->getType()->getNumElements(); 2196 if (unsigned Padding = Size - EmittedSize) 2197 AP.OutStreamer->EmitZeros(Padding); 2198 } 2199 2200 static void emitGlobalConstantStruct(const DataLayout &DL, 2201 const ConstantStruct *CS, AsmPrinter &AP, 2202 const Constant *BaseCV, uint64_t Offset) { 2203 // Print the fields in successive locations. Pad to align if needed! 2204 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2205 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2206 uint64_t SizeSoFar = 0; 2207 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2208 const Constant *Field = CS->getOperand(i); 2209 2210 // Print the actual field value. 2211 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2212 2213 // Check if padding is needed and insert one or more 0s. 2214 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2215 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2216 - Layout->getElementOffset(i)) - FieldSize; 2217 SizeSoFar += FieldSize + PadSize; 2218 2219 // Insert padding - this may include padding to increase the size of the 2220 // current field up to the ABI size (if the struct is not packed) as well 2221 // as padding to ensure that the next field starts at the right offset. 2222 AP.OutStreamer->EmitZeros(PadSize); 2223 } 2224 assert(SizeSoFar == Layout->getSizeInBytes() && 2225 "Layout of constant struct may be incorrect!"); 2226 } 2227 2228 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2229 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2230 2231 // First print a comment with what we think the original floating-point value 2232 // should have been. 2233 if (AP.isVerbose()) { 2234 SmallString<8> StrVal; 2235 CFP->getValueAPF().toString(StrVal); 2236 2237 if (CFP->getType()) 2238 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2239 else 2240 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2241 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2242 } 2243 2244 // Now iterate through the APInt chunks, emitting them in endian-correct 2245 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2246 // floats). 2247 unsigned NumBytes = API.getBitWidth() / 8; 2248 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2249 const uint64_t *p = API.getRawData(); 2250 2251 // PPC's long double has odd notions of endianness compared to how LLVM 2252 // handles it: p[0] goes first for *big* endian on PPC. 2253 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2254 int Chunk = API.getNumWords() - 1; 2255 2256 if (TrailingBytes) 2257 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2258 2259 for (; Chunk >= 0; --Chunk) 2260 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2261 } else { 2262 unsigned Chunk; 2263 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2264 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2265 2266 if (TrailingBytes) 2267 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2268 } 2269 2270 // Emit the tail padding for the long double. 2271 const DataLayout &DL = AP.getDataLayout(); 2272 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2273 DL.getTypeStoreSize(CFP->getType())); 2274 } 2275 2276 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2277 const DataLayout &DL = AP.getDataLayout(); 2278 unsigned BitWidth = CI->getBitWidth(); 2279 2280 // Copy the value as we may massage the layout for constants whose bit width 2281 // is not a multiple of 64-bits. 2282 APInt Realigned(CI->getValue()); 2283 uint64_t ExtraBits = 0; 2284 unsigned ExtraBitsSize = BitWidth & 63; 2285 2286 if (ExtraBitsSize) { 2287 // The bit width of the data is not a multiple of 64-bits. 2288 // The extra bits are expected to be at the end of the chunk of the memory. 2289 // Little endian: 2290 // * Nothing to be done, just record the extra bits to emit. 2291 // Big endian: 2292 // * Record the extra bits to emit. 2293 // * Realign the raw data to emit the chunks of 64-bits. 2294 if (DL.isBigEndian()) { 2295 // Basically the structure of the raw data is a chunk of 64-bits cells: 2296 // 0 1 BitWidth / 64 2297 // [chunk1][chunk2] ... [chunkN]. 2298 // The most significant chunk is chunkN and it should be emitted first. 2299 // However, due to the alignment issue chunkN contains useless bits. 2300 // Realign the chunks so that they contain only useless information: 2301 // ExtraBits 0 1 (BitWidth / 64) - 1 2302 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2303 ExtraBits = Realigned.getRawData()[0] & 2304 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2305 Realigned.lshrInPlace(ExtraBitsSize); 2306 } else 2307 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2308 } 2309 2310 // We don't expect assemblers to support integer data directives 2311 // for more than 64 bits, so we emit the data in at most 64-bit 2312 // quantities at a time. 2313 const uint64_t *RawData = Realigned.getRawData(); 2314 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2315 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2316 AP.OutStreamer->EmitIntValue(Val, 8); 2317 } 2318 2319 if (ExtraBitsSize) { 2320 // Emit the extra bits after the 64-bits chunks. 2321 2322 // Emit a directive that fills the expected size. 2323 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2324 Size -= (BitWidth / 64) * 8; 2325 assert(Size && Size * 8 >= ExtraBitsSize && 2326 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2327 == ExtraBits && "Directive too small for extra bits."); 2328 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2329 } 2330 } 2331 2332 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2333 /// equivalent global, by a target specific GOT pc relative access to the 2334 /// final symbol. 2335 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2336 const Constant *BaseCst, 2337 uint64_t Offset) { 2338 // The global @foo below illustrates a global that uses a got equivalent. 2339 // 2340 // @bar = global i32 42 2341 // @gotequiv = private unnamed_addr constant i32* @bar 2342 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2343 // i64 ptrtoint (i32* @foo to i64)) 2344 // to i32) 2345 // 2346 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2347 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2348 // form: 2349 // 2350 // foo = cstexpr, where 2351 // cstexpr := <gotequiv> - "." + <cst> 2352 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2353 // 2354 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2355 // 2356 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2357 // gotpcrelcst := <offset from @foo base> + <cst> 2358 MCValue MV; 2359 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2360 return; 2361 const MCSymbolRefExpr *SymA = MV.getSymA(); 2362 if (!SymA) 2363 return; 2364 2365 // Check that GOT equivalent symbol is cached. 2366 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2367 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2368 return; 2369 2370 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2371 if (!BaseGV) 2372 return; 2373 2374 // Check for a valid base symbol 2375 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2376 const MCSymbolRefExpr *SymB = MV.getSymB(); 2377 2378 if (!SymB || BaseSym != &SymB->getSymbol()) 2379 return; 2380 2381 // Make sure to match: 2382 // 2383 // gotpcrelcst := <offset from @foo base> + <cst> 2384 // 2385 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2386 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2387 // if the target knows how to encode it. 2388 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2389 if (GOTPCRelCst < 0) 2390 return; 2391 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2392 return; 2393 2394 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2395 // 2396 // bar: 2397 // .long 42 2398 // gotequiv: 2399 // .quad bar 2400 // foo: 2401 // .long gotequiv - "." + <cst> 2402 // 2403 // is replaced by the target specific equivalent to: 2404 // 2405 // bar: 2406 // .long 42 2407 // foo: 2408 // .long bar@GOTPCREL+<gotpcrelcst> 2409 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2410 const GlobalVariable *GV = Result.first; 2411 int NumUses = (int)Result.second; 2412 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2413 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2414 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2415 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2416 2417 // Update GOT equivalent usage information 2418 --NumUses; 2419 if (NumUses >= 0) 2420 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2421 } 2422 2423 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2424 AsmPrinter &AP, const Constant *BaseCV, 2425 uint64_t Offset) { 2426 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2427 2428 // Globals with sub-elements such as combinations of arrays and structs 2429 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2430 // constant symbol base and the current position with BaseCV and Offset. 2431 if (!BaseCV && CV->hasOneUse()) 2432 BaseCV = dyn_cast<Constant>(CV->user_back()); 2433 2434 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2435 return AP.OutStreamer->EmitZeros(Size); 2436 2437 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2438 switch (Size) { 2439 case 1: 2440 case 2: 2441 case 4: 2442 case 8: 2443 if (AP.isVerbose()) 2444 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2445 CI->getZExtValue()); 2446 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2447 return; 2448 default: 2449 emitGlobalConstantLargeInt(CI, AP); 2450 return; 2451 } 2452 } 2453 2454 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2455 return emitGlobalConstantFP(CFP, AP); 2456 2457 if (isa<ConstantPointerNull>(CV)) { 2458 AP.OutStreamer->EmitIntValue(0, Size); 2459 return; 2460 } 2461 2462 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2463 return emitGlobalConstantDataSequential(DL, CDS, AP); 2464 2465 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2466 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2467 2468 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2469 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2470 2471 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2472 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2473 // vectors). 2474 if (CE->getOpcode() == Instruction::BitCast) 2475 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2476 2477 if (Size > 8) { 2478 // If the constant expression's size is greater than 64-bits, then we have 2479 // to emit the value in chunks. Try to constant fold the value and emit it 2480 // that way. 2481 Constant *New = ConstantFoldConstant(CE, DL); 2482 if (New && New != CE) 2483 return emitGlobalConstantImpl(DL, New, AP); 2484 } 2485 } 2486 2487 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2488 return emitGlobalConstantVector(DL, V, AP); 2489 2490 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2491 // thread the streamer with EmitValue. 2492 const MCExpr *ME = AP.lowerConstant(CV); 2493 2494 // Since lowerConstant already folded and got rid of all IR pointer and 2495 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2496 // directly. 2497 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2498 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2499 2500 AP.OutStreamer->EmitValue(ME, Size); 2501 } 2502 2503 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2504 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2505 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2506 if (Size) 2507 emitGlobalConstantImpl(DL, CV, *this); 2508 else if (MAI->hasSubsectionsViaSymbols()) { 2509 // If the global has zero size, emit a single byte so that two labels don't 2510 // look like they are at the same location. 2511 OutStreamer->EmitIntValue(0, 1); 2512 } 2513 } 2514 2515 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2516 // Target doesn't support this yet! 2517 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2518 } 2519 2520 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2521 if (Offset > 0) 2522 OS << '+' << Offset; 2523 else if (Offset < 0) 2524 OS << Offset; 2525 } 2526 2527 //===----------------------------------------------------------------------===// 2528 // Symbol Lowering Routines. 2529 //===----------------------------------------------------------------------===// 2530 2531 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2532 return OutContext.createTempSymbol(Name, true); 2533 } 2534 2535 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2536 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2537 } 2538 2539 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2540 return MMI->getAddrLabelSymbol(BB); 2541 } 2542 2543 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2544 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2545 const DataLayout &DL = getDataLayout(); 2546 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2547 "CPI" + Twine(getFunctionNumber()) + "_" + 2548 Twine(CPID)); 2549 } 2550 2551 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2552 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2553 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2554 } 2555 2556 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2557 /// FIXME: privatize to AsmPrinter. 2558 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2559 const DataLayout &DL = getDataLayout(); 2560 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2561 Twine(getFunctionNumber()) + "_" + 2562 Twine(UID) + "_set_" + Twine(MBBID)); 2563 } 2564 2565 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2566 StringRef Suffix) const { 2567 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2568 } 2569 2570 /// Return the MCSymbol for the specified ExternalSymbol. 2571 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2572 SmallString<60> NameStr; 2573 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2574 return OutContext.getOrCreateSymbol(NameStr); 2575 } 2576 2577 /// PrintParentLoopComment - Print comments about parent loops of this one. 2578 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2579 unsigned FunctionNumber) { 2580 if (!Loop) return; 2581 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2582 OS.indent(Loop->getLoopDepth()*2) 2583 << "Parent Loop BB" << FunctionNumber << "_" 2584 << Loop->getHeader()->getNumber() 2585 << " Depth=" << Loop->getLoopDepth() << '\n'; 2586 } 2587 2588 /// PrintChildLoopComment - Print comments about child loops within 2589 /// the loop for this basic block, with nesting. 2590 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2591 unsigned FunctionNumber) { 2592 // Add child loop information 2593 for (const MachineLoop *CL : *Loop) { 2594 OS.indent(CL->getLoopDepth()*2) 2595 << "Child Loop BB" << FunctionNumber << "_" 2596 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2597 << '\n'; 2598 PrintChildLoopComment(OS, CL, FunctionNumber); 2599 } 2600 } 2601 2602 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2603 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2604 const MachineLoopInfo *LI, 2605 const AsmPrinter &AP) { 2606 // Add loop depth information 2607 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2608 if (!Loop) return; 2609 2610 MachineBasicBlock *Header = Loop->getHeader(); 2611 assert(Header && "No header for loop"); 2612 2613 // If this block is not a loop header, just print out what is the loop header 2614 // and return. 2615 if (Header != &MBB) { 2616 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2617 Twine(AP.getFunctionNumber())+"_" + 2618 Twine(Loop->getHeader()->getNumber())+ 2619 " Depth="+Twine(Loop->getLoopDepth())); 2620 return; 2621 } 2622 2623 // Otherwise, it is a loop header. Print out information about child and 2624 // parent loops. 2625 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2626 2627 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2628 2629 OS << "=>"; 2630 OS.indent(Loop->getLoopDepth()*2-2); 2631 2632 OS << "This "; 2633 if (Loop->empty()) 2634 OS << "Inner "; 2635 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2636 2637 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2638 } 2639 2640 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2641 MCCodePaddingContext &Context) const { 2642 assert(MF != nullptr && "Machine function must be valid"); 2643 assert(LI != nullptr && "Loop info must be valid"); 2644 Context.IsPaddingActive = !MF->hasInlineAsm() && 2645 !MF->getFunction().optForSize() && 2646 TM.getOptLevel() != CodeGenOpt::None; 2647 const MachineLoop *CurrentLoop = LI->getLoopFor(&MBB); 2648 Context.IsBasicBlockInsideInnermostLoop = 2649 CurrentLoop != nullptr && CurrentLoop->getSubLoops().empty(); 2650 Context.IsBasicBlockReachableViaFallthrough = 2651 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2652 MBB.pred_end(); 2653 Context.IsBasicBlockReachableViaBranch = 2654 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2655 } 2656 2657 /// EmitBasicBlockStart - This method prints the label for the specified 2658 /// MachineBasicBlock, an alignment (if present) and a comment describing 2659 /// it if appropriate. 2660 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2661 // End the previous funclet and start a new one. 2662 if (MBB.isEHFuncletEntry()) { 2663 for (const HandlerInfo &HI : Handlers) { 2664 HI.Handler->endFunclet(); 2665 HI.Handler->beginFunclet(MBB); 2666 } 2667 } 2668 2669 // Emit an alignment directive for this block, if needed. 2670 if (unsigned Align = MBB.getAlignment()) 2671 EmitAlignment(Align); 2672 MCCodePaddingContext Context; 2673 setupCodePaddingContext(MBB, Context); 2674 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2675 2676 // If the block has its address taken, emit any labels that were used to 2677 // reference the block. It is possible that there is more than one label 2678 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2679 // the references were generated. 2680 if (MBB.hasAddressTaken()) { 2681 const BasicBlock *BB = MBB.getBasicBlock(); 2682 if (isVerbose()) 2683 OutStreamer->AddComment("Block address taken"); 2684 2685 // MBBs can have their address taken as part of CodeGen without having 2686 // their corresponding BB's address taken in IR 2687 if (BB->hasAddressTaken()) 2688 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2689 OutStreamer->EmitLabel(Sym); 2690 } 2691 2692 // Print some verbose block comments. 2693 if (isVerbose()) { 2694 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2695 if (BB->hasName()) { 2696 BB->printAsOperand(OutStreamer->GetCommentOS(), 2697 /*PrintType=*/false, BB->getModule()); 2698 OutStreamer->GetCommentOS() << '\n'; 2699 } 2700 } 2701 emitBasicBlockLoopComments(MBB, LI, *this); 2702 } 2703 2704 // Print the main label for the block. 2705 if (MBB.pred_empty() || 2706 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2707 if (isVerbose()) { 2708 // NOTE: Want this comment at start of line, don't emit with AddComment. 2709 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2710 false); 2711 } 2712 } else { 2713 OutStreamer->EmitLabel(MBB.getSymbol()); 2714 } 2715 } 2716 2717 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2718 MCCodePaddingContext Context; 2719 setupCodePaddingContext(MBB, Context); 2720 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2721 } 2722 2723 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2724 bool IsDefinition) const { 2725 MCSymbolAttr Attr = MCSA_Invalid; 2726 2727 switch (Visibility) { 2728 default: break; 2729 case GlobalValue::HiddenVisibility: 2730 if (IsDefinition) 2731 Attr = MAI->getHiddenVisibilityAttr(); 2732 else 2733 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2734 break; 2735 case GlobalValue::ProtectedVisibility: 2736 Attr = MAI->getProtectedVisibilityAttr(); 2737 break; 2738 } 2739 2740 if (Attr != MCSA_Invalid) 2741 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2742 } 2743 2744 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2745 /// exactly one predecessor and the control transfer mechanism between 2746 /// the predecessor and this block is a fall-through. 2747 bool AsmPrinter:: 2748 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2749 // If this is a landing pad, it isn't a fall through. If it has no preds, 2750 // then nothing falls through to it. 2751 if (MBB->isEHPad() || MBB->pred_empty()) 2752 return false; 2753 2754 // If there isn't exactly one predecessor, it can't be a fall through. 2755 if (MBB->pred_size() > 1) 2756 return false; 2757 2758 // The predecessor has to be immediately before this block. 2759 MachineBasicBlock *Pred = *MBB->pred_begin(); 2760 if (!Pred->isLayoutSuccessor(MBB)) 2761 return false; 2762 2763 // If the block is completely empty, then it definitely does fall through. 2764 if (Pred->empty()) 2765 return true; 2766 2767 // Check the terminators in the previous blocks 2768 for (const auto &MI : Pred->terminators()) { 2769 // If it is not a simple branch, we are in a table somewhere. 2770 if (!MI.isBranch() || MI.isIndirectBranch()) 2771 return false; 2772 2773 // If we are the operands of one of the branches, this is not a fall 2774 // through. Note that targets with delay slots will usually bundle 2775 // terminators with the delay slot instruction. 2776 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2777 if (OP->isJTI()) 2778 return false; 2779 if (OP->isMBB() && OP->getMBB() == MBB) 2780 return false; 2781 } 2782 } 2783 2784 return true; 2785 } 2786 2787 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2788 if (!S.usesMetadata()) 2789 return nullptr; 2790 2791 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2792 " stackmap formats, please see the documentation for a description of" 2793 " the default format. If you really need a custom serialized format," 2794 " please file a bug"); 2795 2796 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2797 gcp_map_type::iterator GCPI = GCMap.find(&S); 2798 if (GCPI != GCMap.end()) 2799 return GCPI->second.get(); 2800 2801 auto Name = S.getName(); 2802 2803 for (GCMetadataPrinterRegistry::iterator 2804 I = GCMetadataPrinterRegistry::begin(), 2805 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2806 if (Name == I->getName()) { 2807 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2808 GMP->S = &S; 2809 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2810 return IterBool.first->second.get(); 2811 } 2812 2813 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2814 } 2815 2816 /// Pin vtable to this file. 2817 AsmPrinterHandler::~AsmPrinterHandler() = default; 2818 2819 void AsmPrinterHandler::markFunctionEnd() {} 2820 2821 // In the binary's "xray_instr_map" section, an array of these function entries 2822 // describes each instrumentation point. When XRay patches your code, the index 2823 // into this table will be given to your handler as a patch point identifier. 2824 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2825 const MCSymbol *CurrentFnSym) const { 2826 Out->EmitSymbolValue(Sled, Bytes); 2827 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2828 auto Kind8 = static_cast<uint8_t>(Kind); 2829 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2830 Out->EmitBinaryData( 2831 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2832 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 2833 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 2834 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 2835 Out->EmitZeros(Padding); 2836 } 2837 2838 void AsmPrinter::emitXRayTable() { 2839 if (Sleds.empty()) 2840 return; 2841 2842 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2843 const Function &F = MF->getFunction(); 2844 MCSection *InstMap = nullptr; 2845 MCSection *FnSledIndex = nullptr; 2846 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2847 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 2848 assert(Associated != nullptr); 2849 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 2850 std::string GroupName; 2851 if (F.hasComdat()) { 2852 Flags |= ELF::SHF_GROUP; 2853 GroupName = F.getComdat()->getName(); 2854 } 2855 2856 auto UniqueID = ++XRayFnUniqueID; 2857 InstMap = 2858 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 2859 GroupName, UniqueID, Associated); 2860 FnSledIndex = 2861 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 2862 GroupName, UniqueID, Associated); 2863 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2864 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2865 SectionKind::getReadOnlyWithRel()); 2866 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2867 SectionKind::getReadOnlyWithRel()); 2868 } else { 2869 llvm_unreachable("Unsupported target"); 2870 } 2871 2872 auto WordSizeBytes = MAI->getCodePointerSize(); 2873 2874 // Now we switch to the instrumentation map section. Because this is done 2875 // per-function, we are able to create an index entry that will represent the 2876 // range of sleds associated with a function. 2877 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 2878 OutStreamer->SwitchSection(InstMap); 2879 OutStreamer->EmitLabel(SledsStart); 2880 for (const auto &Sled : Sleds) 2881 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2882 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 2883 OutStreamer->EmitLabel(SledsEnd); 2884 2885 // We then emit a single entry in the index per function. We use the symbols 2886 // that bound the instrumentation map as the range for a specific function. 2887 // Each entry here will be 2 * word size aligned, as we're writing down two 2888 // pointers. This should work for both 32-bit and 64-bit platforms. 2889 OutStreamer->SwitchSection(FnSledIndex); 2890 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2891 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 2892 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 2893 OutStreamer->SwitchSection(PrevSection); 2894 Sleds.clear(); 2895 } 2896 2897 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2898 SledKind Kind, uint8_t Version) { 2899 const Function &F = MI.getMF()->getFunction(); 2900 auto Attr = F.getFnAttribute("function-instrument"); 2901 bool LogArgs = F.hasFnAttribute("xray-log-args"); 2902 bool AlwaysInstrument = 2903 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2904 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2905 Kind = SledKind::LOG_ARGS_ENTER; 2906 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 2907 AlwaysInstrument, &F, Version}); 2908 } 2909 2910 uint16_t AsmPrinter::getDwarfVersion() const { 2911 return OutStreamer->getContext().getDwarfVersion(); 2912 } 2913 2914 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2915 OutStreamer->getContext().setDwarfVersion(Version); 2916 } 2917