1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCContext.h" 84 #include "llvm/MC/MCDirectives.h" 85 #include "llvm/MC/MCDwarf.h" 86 #include "llvm/MC/MCExpr.h" 87 #include "llvm/MC/MCInst.h" 88 #include "llvm/MC/MCSection.h" 89 #include "llvm/MC/MCSectionCOFF.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCSectionXCOFF.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCSymbolXCOFF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Remarks/RemarkFormat.h" 104 #include "llvm/Remarks/RemarkStreamer.h" 105 #include "llvm/Remarks/RemarkStringTable.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/Format.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/Path.h" 113 #include "llvm/Support/TargetRegistry.h" 114 #include "llvm/Support/Timer.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include "llvm/Target/TargetLoweringObjectFile.h" 117 #include "llvm/Target/TargetMachine.h" 118 #include "llvm/Target/TargetOptions.h" 119 #include <algorithm> 120 #include <cassert> 121 #include <cinttypes> 122 #include <cstdint> 123 #include <iterator> 124 #include <limits> 125 #include <memory> 126 #include <string> 127 #include <utility> 128 #include <vector> 129 130 using namespace llvm; 131 132 #define DEBUG_TYPE "asm-printer" 133 134 static const char *const DWARFGroupName = "dwarf"; 135 static const char *const DWARFGroupDescription = "DWARF Emission"; 136 static const char *const DbgTimerName = "emit"; 137 static const char *const DbgTimerDescription = "Debug Info Emission"; 138 static const char *const EHTimerName = "write_exception"; 139 static const char *const EHTimerDescription = "DWARF Exception Writer"; 140 static const char *const CFGuardName = "Control Flow Guard"; 141 static const char *const CFGuardDescription = "Control Flow Guard"; 142 static const char *const CodeViewLineTablesGroupName = "linetables"; 143 static const char *const CodeViewLineTablesGroupDescription = 144 "CodeView Line Tables"; 145 146 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 147 148 char AsmPrinter::ID = 0; 149 150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 151 152 static gcp_map_type &getGCMap(void *&P) { 153 if (!P) 154 P = new gcp_map_type(); 155 return *(gcp_map_type*)P; 156 } 157 158 /// getGVAlignment - Return the alignment to use for the specified global 159 /// value. This rounds up to the preferred alignment if possible and legal. 160 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 161 Align InAlign) { 162 Align Alignment; 163 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 164 Alignment = DL.getPreferredAlign(GVar); 165 166 // If InAlign is specified, round it to it. 167 if (InAlign > Alignment) 168 Alignment = InAlign; 169 170 // If the GV has a specified alignment, take it into account. 171 const MaybeAlign GVAlign(GV->getAlignment()); 172 if (!GVAlign) 173 return Alignment; 174 175 assert(GVAlign && "GVAlign must be set"); 176 177 // If the GVAlign is larger than NumBits, or if we are required to obey 178 // NumBits because the GV has an assigned section, obey it. 179 if (*GVAlign > Alignment || GV->hasSection()) 180 Alignment = *GVAlign; 181 return Alignment; 182 } 183 184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 185 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 186 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 187 VerboseAsm = OutStreamer->isVerboseAsm(); 188 } 189 190 AsmPrinter::~AsmPrinter() { 191 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 192 193 if (GCMetadataPrinters) { 194 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 195 196 delete &GCMap; 197 GCMetadataPrinters = nullptr; 198 } 199 } 200 201 bool AsmPrinter::isPositionIndependent() const { 202 return TM.isPositionIndependent(); 203 } 204 205 /// getFunctionNumber - Return a unique ID for the current function. 206 unsigned AsmPrinter::getFunctionNumber() const { 207 return MF->getFunctionNumber(); 208 } 209 210 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 211 return *TM.getObjFileLowering(); 212 } 213 214 const DataLayout &AsmPrinter::getDataLayout() const { 215 return MMI->getModule()->getDataLayout(); 216 } 217 218 // Do not use the cached DataLayout because some client use it without a Module 219 // (dsymutil, llvm-dwarfdump). 220 unsigned AsmPrinter::getPointerSize() const { 221 return TM.getPointerSize(0); // FIXME: Default address space 222 } 223 224 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 225 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 226 return MF->getSubtarget<MCSubtargetInfo>(); 227 } 228 229 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 230 S.emitInstruction(Inst, getSubtargetInfo()); 231 } 232 233 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 234 assert(DD && "Dwarf debug file is not defined."); 235 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 236 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 237 } 238 239 /// getCurrentSection() - Return the current section we are emitting to. 240 const MCSection *AsmPrinter::getCurrentSection() const { 241 return OutStreamer->getCurrentSectionOnly(); 242 } 243 244 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 245 AU.setPreservesAll(); 246 MachineFunctionPass::getAnalysisUsage(AU); 247 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 248 AU.addRequired<GCModuleInfo>(); 249 } 250 251 bool AsmPrinter::doInitialization(Module &M) { 252 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 253 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 254 255 // Initialize TargetLoweringObjectFile. 256 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 257 .Initialize(OutContext, TM); 258 259 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 260 .getModuleMetadata(M); 261 262 OutStreamer->InitSections(false); 263 264 // Emit the version-min deployment target directive if needed. 265 // 266 // FIXME: If we end up with a collection of these sorts of Darwin-specific 267 // or ELF-specific things, it may make sense to have a platform helper class 268 // that will work with the target helper class. For now keep it here, as the 269 // alternative is duplicated code in each of the target asm printers that 270 // use the directive, where it would need the same conditionalization 271 // anyway. 272 const Triple &Target = TM.getTargetTriple(); 273 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 274 275 // Allow the target to emit any magic that it wants at the start of the file. 276 emitStartOfAsmFile(M); 277 278 // Very minimal debug info. It is ignored if we emit actual debug info. If we 279 // don't, this at least helps the user find where a global came from. 280 if (MAI->hasSingleParameterDotFile()) { 281 // .file "foo.c" 282 OutStreamer->emitFileDirective( 283 llvm::sys::path::filename(M.getSourceFileName())); 284 } 285 286 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 287 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 288 for (auto &I : *MI) 289 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 290 MP->beginAssembly(M, *MI, *this); 291 292 // Emit module-level inline asm if it exists. 293 if (!M.getModuleInlineAsm().empty()) { 294 // We're at the module level. Construct MCSubtarget from the default CPU 295 // and target triple. 296 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 297 TM.getTargetTriple().str(), TM.getTargetCPU(), 298 TM.getTargetFeatureString())); 299 OutStreamer->AddComment("Start of file scope inline assembly"); 300 OutStreamer->AddBlankLine(); 301 emitInlineAsm(M.getModuleInlineAsm() + "\n", 302 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 303 OutStreamer->AddComment("End of file scope inline assembly"); 304 OutStreamer->AddBlankLine(); 305 } 306 307 if (MAI->doesSupportDebugInformation()) { 308 bool EmitCodeView = M.getCodeViewFlag(); 309 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 310 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 311 DbgTimerName, DbgTimerDescription, 312 CodeViewLineTablesGroupName, 313 CodeViewLineTablesGroupDescription); 314 } 315 if (!EmitCodeView || M.getDwarfVersion()) { 316 DD = new DwarfDebug(this, &M); 317 DD->beginModule(); 318 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 319 DbgTimerDescription, DWARFGroupName, 320 DWARFGroupDescription); 321 } 322 } 323 324 switch (MAI->getExceptionHandlingType()) { 325 case ExceptionHandling::SjLj: 326 case ExceptionHandling::DwarfCFI: 327 case ExceptionHandling::ARM: 328 isCFIMoveForDebugging = true; 329 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 330 break; 331 for (auto &F: M.getFunctionList()) { 332 // If the module contains any function with unwind data, 333 // .eh_frame has to be emitted. 334 // Ignore functions that won't get emitted. 335 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 336 isCFIMoveForDebugging = false; 337 break; 338 } 339 } 340 break; 341 default: 342 isCFIMoveForDebugging = false; 343 break; 344 } 345 346 EHStreamer *ES = nullptr; 347 switch (MAI->getExceptionHandlingType()) { 348 case ExceptionHandling::None: 349 break; 350 case ExceptionHandling::SjLj: 351 case ExceptionHandling::DwarfCFI: 352 ES = new DwarfCFIException(this); 353 break; 354 case ExceptionHandling::ARM: 355 ES = new ARMException(this); 356 break; 357 case ExceptionHandling::WinEH: 358 switch (MAI->getWinEHEncodingType()) { 359 default: llvm_unreachable("unsupported unwinding information encoding"); 360 case WinEH::EncodingType::Invalid: 361 break; 362 case WinEH::EncodingType::X86: 363 case WinEH::EncodingType::Itanium: 364 ES = new WinException(this); 365 break; 366 } 367 break; 368 case ExceptionHandling::Wasm: 369 ES = new WasmException(this); 370 break; 371 } 372 if (ES) 373 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 374 EHTimerDescription, DWARFGroupName, 375 DWARFGroupDescription); 376 377 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 378 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 379 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 380 CFGuardDescription, DWARFGroupName, 381 DWARFGroupDescription); 382 return false; 383 } 384 385 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 386 if (!MAI.hasWeakDefCanBeHiddenDirective()) 387 return false; 388 389 return GV->canBeOmittedFromSymbolTable(); 390 } 391 392 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 393 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 394 switch (Linkage) { 395 case GlobalValue::CommonLinkage: 396 case GlobalValue::LinkOnceAnyLinkage: 397 case GlobalValue::LinkOnceODRLinkage: 398 case GlobalValue::WeakAnyLinkage: 399 case GlobalValue::WeakODRLinkage: 400 if (MAI->hasWeakDefDirective()) { 401 // .globl _foo 402 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 403 404 if (!canBeHidden(GV, *MAI)) 405 // .weak_definition _foo 406 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 407 else 408 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 409 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 410 // .globl _foo 411 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 412 //NOTE: linkonce is handled by the section the symbol was assigned to. 413 } else { 414 // .weak _foo 415 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 416 } 417 return; 418 case GlobalValue::ExternalLinkage: 419 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 420 return; 421 case GlobalValue::PrivateLinkage: 422 case GlobalValue::InternalLinkage: 423 return; 424 case GlobalValue::ExternalWeakLinkage: 425 case GlobalValue::AvailableExternallyLinkage: 426 case GlobalValue::AppendingLinkage: 427 llvm_unreachable("Should never emit this"); 428 } 429 llvm_unreachable("Unknown linkage type!"); 430 } 431 432 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 433 const GlobalValue *GV) const { 434 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 435 } 436 437 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 438 return TM.getSymbol(GV); 439 } 440 441 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 442 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 443 // exact definion (intersection of GlobalValue::hasExactDefinition() and 444 // !isInterposable()). These linkages include: external, appending, internal, 445 // private. It may be profitable to use a local alias for external. The 446 // assembler would otherwise be conservative and assume a global default 447 // visibility symbol can be interposable, even if the code generator already 448 // assumed it. 449 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 450 const Module &M = *GV.getParent(); 451 if (TM.getRelocationModel() != Reloc::Static && 452 M.getPIELevel() == PIELevel::Default) 453 if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() && 454 GV.getParent()->noSemanticInterposition())) 455 return getSymbolWithGlobalValueBase(&GV, "$local"); 456 } 457 return TM.getSymbol(&GV); 458 } 459 460 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 461 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 462 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 463 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 464 "No emulated TLS variables in the common section"); 465 466 // Never emit TLS variable xyz in emulated TLS model. 467 // The initialization value is in __emutls_t.xyz instead of xyz. 468 if (IsEmuTLSVar) 469 return; 470 471 if (GV->hasInitializer()) { 472 // Check to see if this is a special global used by LLVM, if so, emit it. 473 if (emitSpecialLLVMGlobal(GV)) 474 return; 475 476 // Skip the emission of global equivalents. The symbol can be emitted later 477 // on by emitGlobalGOTEquivs in case it turns out to be needed. 478 if (GlobalGOTEquivs.count(getSymbol(GV))) 479 return; 480 481 if (isVerbose()) { 482 // When printing the control variable __emutls_v.*, 483 // we don't need to print the original TLS variable name. 484 GV->printAsOperand(OutStreamer->GetCommentOS(), 485 /*PrintType=*/false, GV->getParent()); 486 OutStreamer->GetCommentOS() << '\n'; 487 } 488 } 489 490 MCSymbol *GVSym = getSymbol(GV); 491 MCSymbol *EmittedSym = GVSym; 492 493 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 494 // attributes. 495 // GV's or GVSym's attributes will be used for the EmittedSym. 496 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 497 498 if (!GV->hasInitializer()) // External globals require no extra code. 499 return; 500 501 GVSym->redefineIfPossible(); 502 if (GVSym->isDefined() || GVSym->isVariable()) 503 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 504 "' is already defined"); 505 506 if (MAI->hasDotTypeDotSizeDirective()) 507 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 508 509 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 510 511 const DataLayout &DL = GV->getParent()->getDataLayout(); 512 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 513 514 // If the alignment is specified, we *must* obey it. Overaligning a global 515 // with a specified alignment is a prompt way to break globals emitted to 516 // sections and expected to be contiguous (e.g. ObjC metadata). 517 const Align Alignment = getGVAlignment(GV, DL); 518 519 for (const HandlerInfo &HI : Handlers) { 520 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 521 HI.TimerGroupName, HI.TimerGroupDescription, 522 TimePassesIsEnabled); 523 HI.Handler->setSymbolSize(GVSym, Size); 524 } 525 526 // Handle common symbols 527 if (GVKind.isCommon()) { 528 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 529 // .comm _foo, 42, 4 530 const bool SupportsAlignment = 531 getObjFileLowering().getCommDirectiveSupportsAlignment(); 532 OutStreamer->emitCommonSymbol(GVSym, Size, 533 SupportsAlignment ? Alignment.value() : 0); 534 return; 535 } 536 537 // Determine to which section this global should be emitted. 538 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 539 540 // If we have a bss global going to a section that supports the 541 // zerofill directive, do so here. 542 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 543 TheSection->isVirtualSection()) { 544 if (Size == 0) 545 Size = 1; // zerofill of 0 bytes is undefined. 546 emitLinkage(GV, GVSym); 547 // .zerofill __DATA, __bss, _foo, 400, 5 548 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 549 return; 550 } 551 552 // If this is a BSS local symbol and we are emitting in the BSS 553 // section use .lcomm/.comm directive. 554 if (GVKind.isBSSLocal() && 555 getObjFileLowering().getBSSSection() == TheSection) { 556 if (Size == 0) 557 Size = 1; // .comm Foo, 0 is undefined, avoid it. 558 559 // Use .lcomm only if it supports user-specified alignment. 560 // Otherwise, while it would still be correct to use .lcomm in some 561 // cases (e.g. when Align == 1), the external assembler might enfore 562 // some -unknown- default alignment behavior, which could cause 563 // spurious differences between external and integrated assembler. 564 // Prefer to simply fall back to .local / .comm in this case. 565 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 566 // .lcomm _foo, 42 567 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 568 return; 569 } 570 571 // .local _foo 572 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 573 // .comm _foo, 42, 4 574 const bool SupportsAlignment = 575 getObjFileLowering().getCommDirectiveSupportsAlignment(); 576 OutStreamer->emitCommonSymbol(GVSym, Size, 577 SupportsAlignment ? Alignment.value() : 0); 578 return; 579 } 580 581 // Handle thread local data for mach-o which requires us to output an 582 // additional structure of data and mangle the original symbol so that we 583 // can reference it later. 584 // 585 // TODO: This should become an "emit thread local global" method on TLOF. 586 // All of this macho specific stuff should be sunk down into TLOFMachO and 587 // stuff like "TLSExtraDataSection" should no longer be part of the parent 588 // TLOF class. This will also make it more obvious that stuff like 589 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 590 // specific code. 591 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 592 // Emit the .tbss symbol 593 MCSymbol *MangSym = 594 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 595 596 if (GVKind.isThreadBSS()) { 597 TheSection = getObjFileLowering().getTLSBSSSection(); 598 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 599 } else if (GVKind.isThreadData()) { 600 OutStreamer->SwitchSection(TheSection); 601 602 emitAlignment(Alignment, GV); 603 OutStreamer->emitLabel(MangSym); 604 605 emitGlobalConstant(GV->getParent()->getDataLayout(), 606 GV->getInitializer()); 607 } 608 609 OutStreamer->AddBlankLine(); 610 611 // Emit the variable struct for the runtime. 612 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 613 614 OutStreamer->SwitchSection(TLVSect); 615 // Emit the linkage here. 616 emitLinkage(GV, GVSym); 617 OutStreamer->emitLabel(GVSym); 618 619 // Three pointers in size: 620 // - __tlv_bootstrap - used to make sure support exists 621 // - spare pointer, used when mapped by the runtime 622 // - pointer to mangled symbol above with initializer 623 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 624 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 625 PtrSize); 626 OutStreamer->emitIntValue(0, PtrSize); 627 OutStreamer->emitSymbolValue(MangSym, PtrSize); 628 629 OutStreamer->AddBlankLine(); 630 return; 631 } 632 633 MCSymbol *EmittedInitSym = GVSym; 634 635 OutStreamer->SwitchSection(TheSection); 636 637 emitLinkage(GV, EmittedInitSym); 638 emitAlignment(Alignment, GV); 639 640 OutStreamer->emitLabel(EmittedInitSym); 641 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 642 if (LocalAlias != EmittedInitSym) 643 OutStreamer->emitLabel(LocalAlias); 644 645 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 646 647 if (MAI->hasDotTypeDotSizeDirective()) 648 // .size foo, 42 649 OutStreamer->emitELFSize(EmittedInitSym, 650 MCConstantExpr::create(Size, OutContext)); 651 652 OutStreamer->AddBlankLine(); 653 } 654 655 /// Emit the directive and value for debug thread local expression 656 /// 657 /// \p Value - The value to emit. 658 /// \p Size - The size of the integer (in bytes) to emit. 659 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 660 OutStreamer->emitValue(Value, Size); 661 } 662 663 void AsmPrinter::emitFunctionHeaderComment() {} 664 665 /// EmitFunctionHeader - This method emits the header for the current 666 /// function. 667 void AsmPrinter::emitFunctionHeader() { 668 const Function &F = MF->getFunction(); 669 670 if (isVerbose()) 671 OutStreamer->GetCommentOS() 672 << "-- Begin function " 673 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 674 675 // Print out constants referenced by the function 676 emitConstantPool(); 677 678 // Print the 'header' of function. 679 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 680 OutStreamer->SwitchSection(MF->getSection()); 681 682 if (!MAI->hasVisibilityOnlyWithLinkage()) 683 emitVisibility(CurrentFnSym, F.getVisibility()); 684 685 if (MAI->needsFunctionDescriptors()) 686 emitLinkage(&F, CurrentFnDescSym); 687 688 emitLinkage(&F, CurrentFnSym); 689 if (MAI->hasFunctionAlignment()) 690 emitAlignment(MF->getAlignment(), &F); 691 692 if (MAI->hasDotTypeDotSizeDirective()) 693 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 694 695 if (F.hasFnAttribute(Attribute::Cold)) 696 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 697 698 if (isVerbose()) { 699 F.printAsOperand(OutStreamer->GetCommentOS(), 700 /*PrintType=*/false, F.getParent()); 701 emitFunctionHeaderComment(); 702 OutStreamer->GetCommentOS() << '\n'; 703 } 704 705 // Emit the prefix data. 706 if (F.hasPrefixData()) { 707 if (MAI->hasSubsectionsViaSymbols()) { 708 // Preserving prefix data on platforms which use subsections-via-symbols 709 // is a bit tricky. Here we introduce a symbol for the prefix data 710 // and use the .alt_entry attribute to mark the function's real entry point 711 // as an alternative entry point to the prefix-data symbol. 712 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 713 OutStreamer->emitLabel(PrefixSym); 714 715 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 716 717 // Emit an .alt_entry directive for the actual function symbol. 718 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 719 } else { 720 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 721 } 722 } 723 724 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 725 // place prefix data before NOPs. 726 unsigned PatchableFunctionPrefix = 0; 727 unsigned PatchableFunctionEntry = 0; 728 (void)F.getFnAttribute("patchable-function-prefix") 729 .getValueAsString() 730 .getAsInteger(10, PatchableFunctionPrefix); 731 (void)F.getFnAttribute("patchable-function-entry") 732 .getValueAsString() 733 .getAsInteger(10, PatchableFunctionEntry); 734 if (PatchableFunctionPrefix) { 735 CurrentPatchableFunctionEntrySym = 736 OutContext.createLinkerPrivateTempSymbol(); 737 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 738 emitNops(PatchableFunctionPrefix); 739 } else if (PatchableFunctionEntry) { 740 // May be reassigned when emitting the body, to reference the label after 741 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 742 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 743 } 744 745 // Emit the function descriptor. This is a virtual function to allow targets 746 // to emit their specific function descriptor. Right now it is only used by 747 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 748 // descriptors and should be converted to use this hook as well. 749 if (MAI->needsFunctionDescriptors()) 750 emitFunctionDescriptor(); 751 752 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 753 // their wild and crazy things as required. 754 emitFunctionEntryLabel(); 755 756 if (CurrentFnBegin) { 757 if (MAI->useAssignmentForEHBegin()) { 758 MCSymbol *CurPos = OutContext.createTempSymbol(); 759 OutStreamer->emitLabel(CurPos); 760 OutStreamer->emitAssignment(CurrentFnBegin, 761 MCSymbolRefExpr::create(CurPos, OutContext)); 762 } else { 763 OutStreamer->emitLabel(CurrentFnBegin); 764 } 765 } 766 767 // Emit pre-function debug and/or EH information. 768 for (const HandlerInfo &HI : Handlers) { 769 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 770 HI.TimerGroupDescription, TimePassesIsEnabled); 771 HI.Handler->beginFunction(MF); 772 } 773 774 // Emit the prologue data. 775 if (F.hasPrologueData()) 776 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 777 } 778 779 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 780 /// function. This can be overridden by targets as required to do custom stuff. 781 void AsmPrinter::emitFunctionEntryLabel() { 782 CurrentFnSym->redefineIfPossible(); 783 784 // The function label could have already been emitted if two symbols end up 785 // conflicting due to asm renaming. Detect this and emit an error. 786 if (CurrentFnSym->isVariable()) 787 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 788 "' is a protected alias"); 789 if (CurrentFnSym->isDefined()) 790 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 791 "' label emitted multiple times to assembly file"); 792 793 OutStreamer->emitLabel(CurrentFnSym); 794 795 if (TM.getTargetTriple().isOSBinFormatELF()) { 796 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 797 if (Sym != CurrentFnSym) 798 OutStreamer->emitLabel(Sym); 799 } 800 } 801 802 /// emitComments - Pretty-print comments for instructions. 803 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 804 const MachineFunction *MF = MI.getMF(); 805 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 806 807 // Check for spills and reloads 808 809 // We assume a single instruction only has a spill or reload, not 810 // both. 811 Optional<unsigned> Size; 812 if ((Size = MI.getRestoreSize(TII))) { 813 CommentOS << *Size << "-byte Reload\n"; 814 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 815 if (*Size) 816 CommentOS << *Size << "-byte Folded Reload\n"; 817 } else if ((Size = MI.getSpillSize(TII))) { 818 CommentOS << *Size << "-byte Spill\n"; 819 } else if ((Size = MI.getFoldedSpillSize(TII))) { 820 if (*Size) 821 CommentOS << *Size << "-byte Folded Spill\n"; 822 } 823 824 // Check for spill-induced copies 825 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 826 CommentOS << " Reload Reuse\n"; 827 } 828 829 /// emitImplicitDef - This method emits the specified machine instruction 830 /// that is an implicit def. 831 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 832 Register RegNo = MI->getOperand(0).getReg(); 833 834 SmallString<128> Str; 835 raw_svector_ostream OS(Str); 836 OS << "implicit-def: " 837 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 838 839 OutStreamer->AddComment(OS.str()); 840 OutStreamer->AddBlankLine(); 841 } 842 843 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 844 std::string Str; 845 raw_string_ostream OS(Str); 846 OS << "kill:"; 847 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 848 const MachineOperand &Op = MI->getOperand(i); 849 assert(Op.isReg() && "KILL instruction must have only register operands"); 850 OS << ' ' << (Op.isDef() ? "def " : "killed ") 851 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 852 } 853 AP.OutStreamer->AddComment(OS.str()); 854 AP.OutStreamer->AddBlankLine(); 855 } 856 857 /// emitDebugValueComment - This method handles the target-independent form 858 /// of DBG_VALUE, returning true if it was able to do so. A false return 859 /// means the target will need to handle MI in EmitInstruction. 860 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 861 // This code handles only the 4-operand target-independent form. 862 if (MI->getNumOperands() != 4) 863 return false; 864 865 SmallString<128> Str; 866 raw_svector_ostream OS(Str); 867 OS << "DEBUG_VALUE: "; 868 869 const DILocalVariable *V = MI->getDebugVariable(); 870 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 871 StringRef Name = SP->getName(); 872 if (!Name.empty()) 873 OS << Name << ":"; 874 } 875 OS << V->getName(); 876 OS << " <- "; 877 878 // The second operand is only an offset if it's an immediate. 879 bool MemLoc = MI->isIndirectDebugValue(); 880 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 881 const DIExpression *Expr = MI->getDebugExpression(); 882 if (Expr->getNumElements()) { 883 OS << '['; 884 bool NeedSep = false; 885 for (auto Op : Expr->expr_ops()) { 886 if (NeedSep) 887 OS << ", "; 888 else 889 NeedSep = true; 890 OS << dwarf::OperationEncodingString(Op.getOp()); 891 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 892 OS << ' ' << Op.getArg(I); 893 } 894 OS << "] "; 895 } 896 897 // Register or immediate value. Register 0 means undef. 898 if (MI->getDebugOperand(0).isFPImm()) { 899 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF()); 900 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) { 901 OS << (double)APF.convertToFloat(); 902 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) { 903 OS << APF.convertToDouble(); 904 } else { 905 // There is no good way to print long double. Convert a copy to 906 // double. Ah well, it's only a comment. 907 bool ignored; 908 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 909 &ignored); 910 OS << "(long double) " << APF.convertToDouble(); 911 } 912 } else if (MI->getDebugOperand(0).isImm()) { 913 OS << MI->getDebugOperand(0).getImm(); 914 } else if (MI->getDebugOperand(0).isCImm()) { 915 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 916 } else if (MI->getDebugOperand(0).isTargetIndex()) { 917 auto Op = MI->getDebugOperand(0); 918 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 919 return true; 920 } else { 921 Register Reg; 922 if (MI->getDebugOperand(0).isReg()) { 923 Reg = MI->getDebugOperand(0).getReg(); 924 } else { 925 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type"); 926 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 927 Offset += TFI->getFrameIndexReference( 928 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg); 929 MemLoc = true; 930 } 931 if (Reg == 0) { 932 // Suppress offset, it is not meaningful here. 933 OS << "undef"; 934 // NOTE: Want this comment at start of line, don't emit with AddComment. 935 AP.OutStreamer->emitRawComment(OS.str()); 936 return true; 937 } 938 if (MemLoc) 939 OS << '['; 940 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 941 } 942 943 if (MemLoc) 944 OS << '+' << Offset << ']'; 945 946 // NOTE: Want this comment at start of line, don't emit with AddComment. 947 AP.OutStreamer->emitRawComment(OS.str()); 948 return true; 949 } 950 951 /// This method handles the target-independent form of DBG_LABEL, returning 952 /// true if it was able to do so. A false return means the target will need 953 /// to handle MI in EmitInstruction. 954 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 955 if (MI->getNumOperands() != 1) 956 return false; 957 958 SmallString<128> Str; 959 raw_svector_ostream OS(Str); 960 OS << "DEBUG_LABEL: "; 961 962 const DILabel *V = MI->getDebugLabel(); 963 if (auto *SP = dyn_cast<DISubprogram>( 964 V->getScope()->getNonLexicalBlockFileScope())) { 965 StringRef Name = SP->getName(); 966 if (!Name.empty()) 967 OS << Name << ":"; 968 } 969 OS << V->getName(); 970 971 // NOTE: Want this comment at start of line, don't emit with AddComment. 972 AP.OutStreamer->emitRawComment(OS.str()); 973 return true; 974 } 975 976 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 977 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 978 MF->getFunction().needsUnwindTableEntry()) 979 return CFI_M_EH; 980 981 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 982 return CFI_M_Debug; 983 984 return CFI_M_None; 985 } 986 987 bool AsmPrinter::needsSEHMoves() { 988 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 989 } 990 991 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 992 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 993 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 994 ExceptionHandlingType != ExceptionHandling::ARM) 995 return; 996 997 if (needsCFIMoves() == CFI_M_None) 998 return; 999 1000 // If there is no "real" instruction following this CFI instruction, skip 1001 // emitting it; it would be beyond the end of the function's FDE range. 1002 auto *MBB = MI.getParent(); 1003 auto I = std::next(MI.getIterator()); 1004 while (I != MBB->end() && I->isTransient()) 1005 ++I; 1006 if (I == MBB->instr_end() && 1007 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1008 return; 1009 1010 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1011 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1012 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1013 emitCFIInstruction(CFI); 1014 } 1015 1016 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1017 // The operands are the MCSymbol and the frame offset of the allocation. 1018 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1019 int FrameOffset = MI.getOperand(1).getImm(); 1020 1021 // Emit a symbol assignment. 1022 OutStreamer->emitAssignment(FrameAllocSym, 1023 MCConstantExpr::create(FrameOffset, OutContext)); 1024 } 1025 1026 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1027 /// given basic block. This can be used to capture more precise profile 1028 /// information. We use the last 3 bits (LSBs) to ecnode the following 1029 /// information: 1030 /// * (1): set if return block (ret or tail call). 1031 /// * (2): set if ends with a tail call. 1032 /// * (3): set if exception handling (EH) landing pad. 1033 /// The remaining bits are zero. 1034 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1035 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1036 return ((unsigned)MBB.isReturnBlock()) | 1037 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1038 (MBB.isEHPad() << 2); 1039 } 1040 1041 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1042 MCSection *BBAddrMapSection = 1043 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1044 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1045 1046 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1047 1048 OutStreamer->PushSection(); 1049 OutStreamer->SwitchSection(BBAddrMapSection); 1050 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1051 // Emit the total number of basic blocks in this function. 1052 OutStreamer->emitULEB128IntValue(MF.size()); 1053 // Emit BB Information for each basic block in the funciton. 1054 for (const MachineBasicBlock &MBB : MF) { 1055 const MCSymbol *MBBSymbol = 1056 MBB.pred_empty() ? FunctionSymbol : MBB.getSymbol(); 1057 // Emit the basic block offset. 1058 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1059 // Emit the basic block size. When BBs have alignments, their size cannot 1060 // always be computed from their offsets. 1061 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1062 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1063 } 1064 OutStreamer->PopSection(); 1065 } 1066 1067 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1068 if (!MF.getTarget().Options.EmitStackSizeSection) 1069 return; 1070 1071 MCSection *StackSizeSection = 1072 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1073 if (!StackSizeSection) 1074 return; 1075 1076 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1077 // Don't emit functions with dynamic stack allocations. 1078 if (FrameInfo.hasVarSizedObjects()) 1079 return; 1080 1081 OutStreamer->PushSection(); 1082 OutStreamer->SwitchSection(StackSizeSection); 1083 1084 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1085 uint64_t StackSize = FrameInfo.getStackSize(); 1086 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1087 OutStreamer->emitULEB128IntValue(StackSize); 1088 1089 OutStreamer->PopSection(); 1090 } 1091 1092 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1093 MachineModuleInfo &MMI = MF.getMMI(); 1094 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1095 return true; 1096 1097 // We might emit an EH table that uses function begin and end labels even if 1098 // we don't have any landingpads. 1099 if (!MF.getFunction().hasPersonalityFn()) 1100 return false; 1101 return !isNoOpWithoutInvoke( 1102 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1103 } 1104 1105 /// EmitFunctionBody - This method emits the body and trailer for a 1106 /// function. 1107 void AsmPrinter::emitFunctionBody() { 1108 emitFunctionHeader(); 1109 1110 // Emit target-specific gunk before the function body. 1111 emitFunctionBodyStart(); 1112 1113 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1114 1115 if (isVerbose()) { 1116 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1117 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1118 if (!MDT) { 1119 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1120 OwnedMDT->getBase().recalculate(*MF); 1121 MDT = OwnedMDT.get(); 1122 } 1123 1124 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1125 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1126 if (!MLI) { 1127 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1128 OwnedMLI->getBase().analyze(MDT->getBase()); 1129 MLI = OwnedMLI.get(); 1130 } 1131 } 1132 1133 // Print out code for the function. 1134 bool HasAnyRealCode = false; 1135 int NumInstsInFunction = 0; 1136 1137 for (auto &MBB : *MF) { 1138 // Print a label for the basic block. 1139 emitBasicBlockStart(MBB); 1140 for (auto &MI : MBB) { 1141 // Print the assembly for the instruction. 1142 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1143 !MI.isDebugInstr()) { 1144 HasAnyRealCode = true; 1145 ++NumInstsInFunction; 1146 } 1147 1148 // If there is a pre-instruction symbol, emit a label for it here. 1149 if (MCSymbol *S = MI.getPreInstrSymbol()) 1150 OutStreamer->emitLabel(S); 1151 1152 if (ShouldPrintDebugScopes) { 1153 for (const HandlerInfo &HI : Handlers) { 1154 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1155 HI.TimerGroupName, HI.TimerGroupDescription, 1156 TimePassesIsEnabled); 1157 HI.Handler->beginInstruction(&MI); 1158 } 1159 } 1160 1161 if (isVerbose()) 1162 emitComments(MI, OutStreamer->GetCommentOS()); 1163 1164 switch (MI.getOpcode()) { 1165 case TargetOpcode::CFI_INSTRUCTION: 1166 emitCFIInstruction(MI); 1167 break; 1168 case TargetOpcode::LOCAL_ESCAPE: 1169 emitFrameAlloc(MI); 1170 break; 1171 case TargetOpcode::ANNOTATION_LABEL: 1172 case TargetOpcode::EH_LABEL: 1173 case TargetOpcode::GC_LABEL: 1174 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1175 break; 1176 case TargetOpcode::INLINEASM: 1177 case TargetOpcode::INLINEASM_BR: 1178 emitInlineAsm(&MI); 1179 break; 1180 case TargetOpcode::DBG_VALUE: 1181 if (isVerbose()) { 1182 if (!emitDebugValueComment(&MI, *this)) 1183 emitInstruction(&MI); 1184 } 1185 break; 1186 case TargetOpcode::DBG_INSTR_REF: 1187 // This instruction reference will have been resolved to a machine 1188 // location, and a nearby DBG_VALUE created. We can safely ignore 1189 // the instruction reference. 1190 break; 1191 case TargetOpcode::DBG_LABEL: 1192 if (isVerbose()) { 1193 if (!emitDebugLabelComment(&MI, *this)) 1194 emitInstruction(&MI); 1195 } 1196 break; 1197 case TargetOpcode::IMPLICIT_DEF: 1198 if (isVerbose()) emitImplicitDef(&MI); 1199 break; 1200 case TargetOpcode::KILL: 1201 if (isVerbose()) emitKill(&MI, *this); 1202 break; 1203 default: 1204 emitInstruction(&MI); 1205 break; 1206 } 1207 1208 // If there is a post-instruction symbol, emit a label for it here. 1209 if (MCSymbol *S = MI.getPostInstrSymbol()) 1210 OutStreamer->emitLabel(S); 1211 1212 if (ShouldPrintDebugScopes) { 1213 for (const HandlerInfo &HI : Handlers) { 1214 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1215 HI.TimerGroupName, HI.TimerGroupDescription, 1216 TimePassesIsEnabled); 1217 HI.Handler->endInstruction(); 1218 } 1219 } 1220 } 1221 1222 // We must emit temporary symbol for the end of this basic block, if either 1223 // we have BBLabels enabled or if this basic blocks marks the end of a 1224 // section (except the section containing the entry basic block as the end 1225 // symbol for that section is CurrentFnEnd). 1226 if (MF->hasBBLabels() || 1227 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1228 !MBB.sameSection(&MF->front()))) 1229 OutStreamer->emitLabel(MBB.getEndSymbol()); 1230 1231 if (MBB.isEndSection()) { 1232 // The size directive for the section containing the entry block is 1233 // handled separately by the function section. 1234 if (!MBB.sameSection(&MF->front())) { 1235 if (MAI->hasDotTypeDotSizeDirective()) { 1236 // Emit the size directive for the basic block section. 1237 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1238 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1239 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1240 OutContext); 1241 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1242 } 1243 MBBSectionRanges[MBB.getSectionIDNum()] = 1244 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1245 } 1246 } 1247 emitBasicBlockEnd(MBB); 1248 } 1249 1250 EmittedInsts += NumInstsInFunction; 1251 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1252 MF->getFunction().getSubprogram(), 1253 &MF->front()); 1254 R << ore::NV("NumInstructions", NumInstsInFunction) 1255 << " instructions in function"; 1256 ORE->emit(R); 1257 1258 // If the function is empty and the object file uses .subsections_via_symbols, 1259 // then we need to emit *something* to the function body to prevent the 1260 // labels from collapsing together. Just emit a noop. 1261 // Similarly, don't emit empty functions on Windows either. It can lead to 1262 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1263 // after linking, causing the kernel not to load the binary: 1264 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1265 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1266 const Triple &TT = TM.getTargetTriple(); 1267 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1268 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1269 MCInst Noop; 1270 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1271 1272 // Targets can opt-out of emitting the noop here by leaving the opcode 1273 // unspecified. 1274 if (Noop.getOpcode()) { 1275 OutStreamer->AddComment("avoids zero-length function"); 1276 emitNops(1); 1277 } 1278 } 1279 1280 // Switch to the original section in case basic block sections was used. 1281 OutStreamer->SwitchSection(MF->getSection()); 1282 1283 const Function &F = MF->getFunction(); 1284 for (const auto &BB : F) { 1285 if (!BB.hasAddressTaken()) 1286 continue; 1287 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1288 if (Sym->isDefined()) 1289 continue; 1290 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1291 OutStreamer->emitLabel(Sym); 1292 } 1293 1294 // Emit target-specific gunk after the function body. 1295 emitFunctionBodyEnd(); 1296 1297 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1298 MAI->hasDotTypeDotSizeDirective()) { 1299 // Create a symbol for the end of function. 1300 CurrentFnEnd = createTempSymbol("func_end"); 1301 OutStreamer->emitLabel(CurrentFnEnd); 1302 } 1303 1304 // If the target wants a .size directive for the size of the function, emit 1305 // it. 1306 if (MAI->hasDotTypeDotSizeDirective()) { 1307 // We can get the size as difference between the function label and the 1308 // temp label. 1309 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1310 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1311 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1312 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1313 } 1314 1315 for (const HandlerInfo &HI : Handlers) { 1316 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1317 HI.TimerGroupDescription, TimePassesIsEnabled); 1318 HI.Handler->markFunctionEnd(); 1319 } 1320 1321 MBBSectionRanges[MF->front().getSectionIDNum()] = 1322 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1323 1324 // Print out jump tables referenced by the function. 1325 emitJumpTableInfo(); 1326 1327 // Emit post-function debug and/or EH information. 1328 for (const HandlerInfo &HI : Handlers) { 1329 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1330 HI.TimerGroupDescription, TimePassesIsEnabled); 1331 HI.Handler->endFunction(MF); 1332 } 1333 1334 // Emit section containing BB address offsets and their metadata, when 1335 // BB labels are requested for this function. 1336 if (MF->hasBBLabels()) 1337 emitBBAddrMapSection(*MF); 1338 1339 // Emit section containing stack size metadata. 1340 emitStackSizeSection(*MF); 1341 1342 emitPatchableFunctionEntries(); 1343 1344 if (isVerbose()) 1345 OutStreamer->GetCommentOS() << "-- End function\n"; 1346 1347 OutStreamer->AddBlankLine(); 1348 } 1349 1350 /// Compute the number of Global Variables that uses a Constant. 1351 static unsigned getNumGlobalVariableUses(const Constant *C) { 1352 if (!C) 1353 return 0; 1354 1355 if (isa<GlobalVariable>(C)) 1356 return 1; 1357 1358 unsigned NumUses = 0; 1359 for (auto *CU : C->users()) 1360 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1361 1362 return NumUses; 1363 } 1364 1365 /// Only consider global GOT equivalents if at least one user is a 1366 /// cstexpr inside an initializer of another global variables. Also, don't 1367 /// handle cstexpr inside instructions. During global variable emission, 1368 /// candidates are skipped and are emitted later in case at least one cstexpr 1369 /// isn't replaced by a PC relative GOT entry access. 1370 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1371 unsigned &NumGOTEquivUsers) { 1372 // Global GOT equivalents are unnamed private globals with a constant 1373 // pointer initializer to another global symbol. They must point to a 1374 // GlobalVariable or Function, i.e., as GlobalValue. 1375 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1376 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1377 !isa<GlobalValue>(GV->getOperand(0))) 1378 return false; 1379 1380 // To be a got equivalent, at least one of its users need to be a constant 1381 // expression used by another global variable. 1382 for (auto *U : GV->users()) 1383 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1384 1385 return NumGOTEquivUsers > 0; 1386 } 1387 1388 /// Unnamed constant global variables solely contaning a pointer to 1389 /// another globals variable is equivalent to a GOT table entry; it contains the 1390 /// the address of another symbol. Optimize it and replace accesses to these 1391 /// "GOT equivalents" by using the GOT entry for the final global instead. 1392 /// Compute GOT equivalent candidates among all global variables to avoid 1393 /// emitting them if possible later on, after it use is replaced by a GOT entry 1394 /// access. 1395 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1396 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1397 return; 1398 1399 for (const auto &G : M.globals()) { 1400 unsigned NumGOTEquivUsers = 0; 1401 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1402 continue; 1403 1404 const MCSymbol *GOTEquivSym = getSymbol(&G); 1405 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1406 } 1407 } 1408 1409 /// Constant expressions using GOT equivalent globals may not be eligible 1410 /// for PC relative GOT entry conversion, in such cases we need to emit such 1411 /// globals we previously omitted in EmitGlobalVariable. 1412 void AsmPrinter::emitGlobalGOTEquivs() { 1413 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1414 return; 1415 1416 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1417 for (auto &I : GlobalGOTEquivs) { 1418 const GlobalVariable *GV = I.second.first; 1419 unsigned Cnt = I.second.second; 1420 if (Cnt) 1421 FailedCandidates.push_back(GV); 1422 } 1423 GlobalGOTEquivs.clear(); 1424 1425 for (auto *GV : FailedCandidates) 1426 emitGlobalVariable(GV); 1427 } 1428 1429 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1430 const GlobalIndirectSymbol& GIS) { 1431 MCSymbol *Name = getSymbol(&GIS); 1432 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1433 // Treat bitcasts of functions as functions also. This is important at least 1434 // on WebAssembly where object and function addresses can't alias each other. 1435 if (!IsFunction) 1436 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1437 if (CE->getOpcode() == Instruction::BitCast) 1438 IsFunction = 1439 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1440 1441 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1442 // so AIX has to use the extra-label-at-definition strategy. At this 1443 // point, all the extra label is emitted, we just have to emit linkage for 1444 // those labels. 1445 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1446 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1447 assert(MAI->hasVisibilityOnlyWithLinkage() && 1448 "Visibility should be handled with emitLinkage() on AIX."); 1449 emitLinkage(&GIS, Name); 1450 // If it's a function, also emit linkage for aliases of function entry 1451 // point. 1452 if (IsFunction) 1453 emitLinkage(&GIS, 1454 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1455 return; 1456 } 1457 1458 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1459 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1460 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1461 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1462 else 1463 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1464 1465 // Set the symbol type to function if the alias has a function type. 1466 // This affects codegen when the aliasee is not a function. 1467 if (IsFunction) 1468 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1469 ? MCSA_ELF_TypeIndFunction 1470 : MCSA_ELF_TypeFunction); 1471 1472 emitVisibility(Name, GIS.getVisibility()); 1473 1474 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1475 1476 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1477 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1478 1479 // Emit the directives as assignments aka .set: 1480 OutStreamer->emitAssignment(Name, Expr); 1481 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1482 if (LocalAlias != Name) 1483 OutStreamer->emitAssignment(LocalAlias, Expr); 1484 1485 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1486 // If the aliasee does not correspond to a symbol in the output, i.e. the 1487 // alias is not of an object or the aliased object is private, then set the 1488 // size of the alias symbol from the type of the alias. We don't do this in 1489 // other situations as the alias and aliasee having differing types but same 1490 // size may be intentional. 1491 const GlobalObject *BaseObject = GA->getBaseObject(); 1492 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1493 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1494 const DataLayout &DL = M.getDataLayout(); 1495 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1496 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1497 } 1498 } 1499 } 1500 1501 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1502 if (!RS.needsSection()) 1503 return; 1504 1505 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1506 1507 Optional<SmallString<128>> Filename; 1508 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1509 Filename = *FilenameRef; 1510 sys::fs::make_absolute(*Filename); 1511 assert(!Filename->empty() && "The filename can't be empty."); 1512 } 1513 1514 std::string Buf; 1515 raw_string_ostream OS(Buf); 1516 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1517 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1518 : RemarkSerializer.metaSerializer(OS); 1519 MetaSerializer->emit(); 1520 1521 // Switch to the remarks section. 1522 MCSection *RemarksSection = 1523 OutContext.getObjectFileInfo()->getRemarksSection(); 1524 OutStreamer->SwitchSection(RemarksSection); 1525 1526 OutStreamer->emitBinaryData(OS.str()); 1527 } 1528 1529 bool AsmPrinter::doFinalization(Module &M) { 1530 // Set the MachineFunction to nullptr so that we can catch attempted 1531 // accesses to MF specific features at the module level and so that 1532 // we can conditionalize accesses based on whether or not it is nullptr. 1533 MF = nullptr; 1534 1535 // Gather all GOT equivalent globals in the module. We really need two 1536 // passes over the globals: one to compute and another to avoid its emission 1537 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1538 // where the got equivalent shows up before its use. 1539 computeGlobalGOTEquivs(M); 1540 1541 // Emit global variables. 1542 for (const auto &G : M.globals()) 1543 emitGlobalVariable(&G); 1544 1545 // Emit remaining GOT equivalent globals. 1546 emitGlobalGOTEquivs(); 1547 1548 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1549 1550 // Emit linkage(XCOFF) and visibility info for declarations 1551 for (const Function &F : M) { 1552 if (!F.isDeclarationForLinker()) 1553 continue; 1554 1555 MCSymbol *Name = getSymbol(&F); 1556 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1557 1558 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1559 GlobalValue::VisibilityTypes V = F.getVisibility(); 1560 if (V == GlobalValue::DefaultVisibility) 1561 continue; 1562 1563 emitVisibility(Name, V, false); 1564 continue; 1565 } 1566 1567 if (F.isIntrinsic()) 1568 continue; 1569 1570 // Handle the XCOFF case. 1571 // Variable `Name` is the function descriptor symbol (see above). Get the 1572 // function entry point symbol. 1573 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1574 // Emit linkage for the function entry point. 1575 emitLinkage(&F, FnEntryPointSym); 1576 1577 // Emit linkage for the function descriptor. 1578 emitLinkage(&F, Name); 1579 } 1580 1581 // Emit the remarks section contents. 1582 // FIXME: Figure out when is the safest time to emit this section. It should 1583 // not come after debug info. 1584 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1585 emitRemarksSection(*RS); 1586 1587 TLOF.emitModuleMetadata(*OutStreamer, M); 1588 1589 if (TM.getTargetTriple().isOSBinFormatELF()) { 1590 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1591 1592 // Output stubs for external and common global variables. 1593 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1594 if (!Stubs.empty()) { 1595 OutStreamer->SwitchSection(TLOF.getDataSection()); 1596 const DataLayout &DL = M.getDataLayout(); 1597 1598 emitAlignment(Align(DL.getPointerSize())); 1599 for (const auto &Stub : Stubs) { 1600 OutStreamer->emitLabel(Stub.first); 1601 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1602 DL.getPointerSize()); 1603 } 1604 } 1605 } 1606 1607 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1608 MachineModuleInfoCOFF &MMICOFF = 1609 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1610 1611 // Output stubs for external and common global variables. 1612 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1613 if (!Stubs.empty()) { 1614 const DataLayout &DL = M.getDataLayout(); 1615 1616 for (const auto &Stub : Stubs) { 1617 SmallString<256> SectionName = StringRef(".rdata$"); 1618 SectionName += Stub.first->getName(); 1619 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1620 SectionName, 1621 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1622 COFF::IMAGE_SCN_LNK_COMDAT, 1623 SectionKind::getReadOnly(), Stub.first->getName(), 1624 COFF::IMAGE_COMDAT_SELECT_ANY)); 1625 emitAlignment(Align(DL.getPointerSize())); 1626 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1627 OutStreamer->emitLabel(Stub.first); 1628 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1629 DL.getPointerSize()); 1630 } 1631 } 1632 } 1633 1634 // Finalize debug and EH information. 1635 for (const HandlerInfo &HI : Handlers) { 1636 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1637 HI.TimerGroupDescription, TimePassesIsEnabled); 1638 HI.Handler->endModule(); 1639 } 1640 Handlers.clear(); 1641 DD = nullptr; 1642 1643 // If the target wants to know about weak references, print them all. 1644 if (MAI->getWeakRefDirective()) { 1645 // FIXME: This is not lazy, it would be nice to only print weak references 1646 // to stuff that is actually used. Note that doing so would require targets 1647 // to notice uses in operands (due to constant exprs etc). This should 1648 // happen with the MC stuff eventually. 1649 1650 // Print out module-level global objects here. 1651 for (const auto &GO : M.global_objects()) { 1652 if (!GO.hasExternalWeakLinkage()) 1653 continue; 1654 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1655 } 1656 } 1657 1658 // Print aliases in topological order, that is, for each alias a = b, 1659 // b must be printed before a. 1660 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1661 // such an order to generate correct TOC information. 1662 SmallVector<const GlobalAlias *, 16> AliasStack; 1663 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1664 for (const auto &Alias : M.aliases()) { 1665 for (const GlobalAlias *Cur = &Alias; Cur; 1666 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1667 if (!AliasVisited.insert(Cur).second) 1668 break; 1669 AliasStack.push_back(Cur); 1670 } 1671 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1672 emitGlobalIndirectSymbol(M, *AncestorAlias); 1673 AliasStack.clear(); 1674 } 1675 for (const auto &IFunc : M.ifuncs()) 1676 emitGlobalIndirectSymbol(M, IFunc); 1677 1678 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1679 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1680 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1681 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1682 MP->finishAssembly(M, *MI, *this); 1683 1684 // Emit llvm.ident metadata in an '.ident' directive. 1685 emitModuleIdents(M); 1686 1687 // Emit bytes for llvm.commandline metadata. 1688 emitModuleCommandLines(M); 1689 1690 // Emit __morestack address if needed for indirect calls. 1691 if (MMI->usesMorestackAddr()) { 1692 Align Alignment(1); 1693 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1694 getDataLayout(), SectionKind::getReadOnly(), 1695 /*C=*/nullptr, Alignment); 1696 OutStreamer->SwitchSection(ReadOnlySection); 1697 1698 MCSymbol *AddrSymbol = 1699 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1700 OutStreamer->emitLabel(AddrSymbol); 1701 1702 unsigned PtrSize = MAI->getCodePointerSize(); 1703 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1704 PtrSize); 1705 } 1706 1707 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1708 // split-stack is used. 1709 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1710 OutStreamer->SwitchSection( 1711 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1712 if (MMI->hasNosplitStack()) 1713 OutStreamer->SwitchSection( 1714 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1715 } 1716 1717 // If we don't have any trampolines, then we don't require stack memory 1718 // to be executable. Some targets have a directive to declare this. 1719 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1720 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1721 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1722 OutStreamer->SwitchSection(S); 1723 1724 if (TM.Options.EmitAddrsig) { 1725 // Emit address-significance attributes for all globals. 1726 OutStreamer->emitAddrsig(); 1727 for (const GlobalValue &GV : M.global_values()) 1728 if (!GV.use_empty() && !GV.isThreadLocal() && 1729 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1730 !GV.hasAtLeastLocalUnnamedAddr()) 1731 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1732 } 1733 1734 // Emit symbol partition specifications (ELF only). 1735 if (TM.getTargetTriple().isOSBinFormatELF()) { 1736 unsigned UniqueID = 0; 1737 for (const GlobalValue &GV : M.global_values()) { 1738 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1739 GV.getVisibility() != GlobalValue::DefaultVisibility) 1740 continue; 1741 1742 OutStreamer->SwitchSection( 1743 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1744 "", ++UniqueID, nullptr)); 1745 OutStreamer->emitBytes(GV.getPartition()); 1746 OutStreamer->emitZeros(1); 1747 OutStreamer->emitValue( 1748 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1749 MAI->getCodePointerSize()); 1750 } 1751 } 1752 1753 // Allow the target to emit any magic that it wants at the end of the file, 1754 // after everything else has gone out. 1755 emitEndOfAsmFile(M); 1756 1757 MMI = nullptr; 1758 1759 OutStreamer->Finish(); 1760 OutStreamer->reset(); 1761 OwnedMLI.reset(); 1762 OwnedMDT.reset(); 1763 1764 return false; 1765 } 1766 1767 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1768 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1769 if (Res.second) 1770 Res.first->second = createTempSymbol("exception"); 1771 return Res.first->second; 1772 } 1773 1774 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1775 this->MF = &MF; 1776 const Function &F = MF.getFunction(); 1777 1778 // Get the function symbol. 1779 if (!MAI->needsFunctionDescriptors()) { 1780 CurrentFnSym = getSymbol(&MF.getFunction()); 1781 } else { 1782 assert(TM.getTargetTriple().isOSAIX() && 1783 "Only AIX uses the function descriptor hooks."); 1784 // AIX is unique here in that the name of the symbol emitted for the 1785 // function body does not have the same name as the source function's 1786 // C-linkage name. 1787 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1788 " initalized first."); 1789 1790 // Get the function entry point symbol. 1791 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1792 } 1793 1794 CurrentFnSymForSize = CurrentFnSym; 1795 CurrentFnBegin = nullptr; 1796 CurrentSectionBeginSym = nullptr; 1797 MBBSectionRanges.clear(); 1798 MBBSectionExceptionSyms.clear(); 1799 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1800 if (F.hasFnAttribute("patchable-function-entry") || 1801 F.hasFnAttribute("function-instrument") || 1802 F.hasFnAttribute("xray-instruction-threshold") || 1803 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1804 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1805 CurrentFnBegin = createTempSymbol("func_begin"); 1806 if (NeedsLocalForSize) 1807 CurrentFnSymForSize = CurrentFnBegin; 1808 } 1809 1810 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1811 } 1812 1813 namespace { 1814 1815 // Keep track the alignment, constpool entries per Section. 1816 struct SectionCPs { 1817 MCSection *S; 1818 Align Alignment; 1819 SmallVector<unsigned, 4> CPEs; 1820 1821 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1822 }; 1823 1824 } // end anonymous namespace 1825 1826 /// EmitConstantPool - Print to the current output stream assembly 1827 /// representations of the constants in the constant pool MCP. This is 1828 /// used to print out constants which have been "spilled to memory" by 1829 /// the code generator. 1830 void AsmPrinter::emitConstantPool() { 1831 const MachineConstantPool *MCP = MF->getConstantPool(); 1832 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1833 if (CP.empty()) return; 1834 1835 // Calculate sections for constant pool entries. We collect entries to go into 1836 // the same section together to reduce amount of section switch statements. 1837 SmallVector<SectionCPs, 4> CPSections; 1838 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1839 const MachineConstantPoolEntry &CPE = CP[i]; 1840 Align Alignment = CPE.getAlign(); 1841 1842 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1843 1844 const Constant *C = nullptr; 1845 if (!CPE.isMachineConstantPoolEntry()) 1846 C = CPE.Val.ConstVal; 1847 1848 MCSection *S = getObjFileLowering().getSectionForConstant( 1849 getDataLayout(), Kind, C, Alignment); 1850 1851 // The number of sections are small, just do a linear search from the 1852 // last section to the first. 1853 bool Found = false; 1854 unsigned SecIdx = CPSections.size(); 1855 while (SecIdx != 0) { 1856 if (CPSections[--SecIdx].S == S) { 1857 Found = true; 1858 break; 1859 } 1860 } 1861 if (!Found) { 1862 SecIdx = CPSections.size(); 1863 CPSections.push_back(SectionCPs(S, Alignment)); 1864 } 1865 1866 if (Alignment > CPSections[SecIdx].Alignment) 1867 CPSections[SecIdx].Alignment = Alignment; 1868 CPSections[SecIdx].CPEs.push_back(i); 1869 } 1870 1871 // Now print stuff into the calculated sections. 1872 const MCSection *CurSection = nullptr; 1873 unsigned Offset = 0; 1874 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1875 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1876 unsigned CPI = CPSections[i].CPEs[j]; 1877 MCSymbol *Sym = GetCPISymbol(CPI); 1878 if (!Sym->isUndefined()) 1879 continue; 1880 1881 if (CurSection != CPSections[i].S) { 1882 OutStreamer->SwitchSection(CPSections[i].S); 1883 emitAlignment(Align(CPSections[i].Alignment)); 1884 CurSection = CPSections[i].S; 1885 Offset = 0; 1886 } 1887 1888 MachineConstantPoolEntry CPE = CP[CPI]; 1889 1890 // Emit inter-object padding for alignment. 1891 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1892 OutStreamer->emitZeros(NewOffset - Offset); 1893 1894 Type *Ty = CPE.getType(); 1895 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1896 1897 OutStreamer->emitLabel(Sym); 1898 if (CPE.isMachineConstantPoolEntry()) 1899 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1900 else 1901 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1902 } 1903 } 1904 } 1905 1906 // Print assembly representations of the jump tables used by the current 1907 // function. 1908 void AsmPrinter::emitJumpTableInfo() { 1909 const DataLayout &DL = MF->getDataLayout(); 1910 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1911 if (!MJTI) return; 1912 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1913 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1914 if (JT.empty()) return; 1915 1916 // Pick the directive to use to print the jump table entries, and switch to 1917 // the appropriate section. 1918 const Function &F = MF->getFunction(); 1919 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1920 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1921 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1922 F); 1923 if (JTInDiffSection) { 1924 // Drop it in the readonly section. 1925 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1926 OutStreamer->SwitchSection(ReadOnlySection); 1927 } 1928 1929 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 1930 1931 // Jump tables in code sections are marked with a data_region directive 1932 // where that's supported. 1933 if (!JTInDiffSection) 1934 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 1935 1936 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1937 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1938 1939 // If this jump table was deleted, ignore it. 1940 if (JTBBs.empty()) continue; 1941 1942 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1943 /// emit a .set directive for each unique entry. 1944 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1945 MAI->doesSetDirectiveSuppressReloc()) { 1946 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1947 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1948 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1949 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1950 const MachineBasicBlock *MBB = JTBBs[ii]; 1951 if (!EmittedSets.insert(MBB).second) 1952 continue; 1953 1954 // .set LJTSet, LBB32-base 1955 const MCExpr *LHS = 1956 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1957 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1958 MCBinaryExpr::createSub(LHS, Base, 1959 OutContext)); 1960 } 1961 } 1962 1963 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1964 // before each jump table. The first label is never referenced, but tells 1965 // the assembler and linker the extents of the jump table object. The 1966 // second label is actually referenced by the code. 1967 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1968 // FIXME: This doesn't have to have any specific name, just any randomly 1969 // named and numbered local label started with 'l' would work. Simplify 1970 // GetJTISymbol. 1971 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 1972 1973 MCSymbol* JTISymbol = GetJTISymbol(JTI); 1974 OutStreamer->emitLabel(JTISymbol); 1975 1976 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1977 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1978 } 1979 if (!JTInDiffSection) 1980 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1981 } 1982 1983 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1984 /// current stream. 1985 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1986 const MachineBasicBlock *MBB, 1987 unsigned UID) const { 1988 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1989 const MCExpr *Value = nullptr; 1990 switch (MJTI->getEntryKind()) { 1991 case MachineJumpTableInfo::EK_Inline: 1992 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1993 case MachineJumpTableInfo::EK_Custom32: 1994 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1995 MJTI, MBB, UID, OutContext); 1996 break; 1997 case MachineJumpTableInfo::EK_BlockAddress: 1998 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1999 // .word LBB123 2000 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2001 break; 2002 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2003 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2004 // with a relocation as gp-relative, e.g.: 2005 // .gprel32 LBB123 2006 MCSymbol *MBBSym = MBB->getSymbol(); 2007 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2008 return; 2009 } 2010 2011 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2012 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2013 // with a relocation as gp-relative, e.g.: 2014 // .gpdword LBB123 2015 MCSymbol *MBBSym = MBB->getSymbol(); 2016 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2017 return; 2018 } 2019 2020 case MachineJumpTableInfo::EK_LabelDifference32: { 2021 // Each entry is the address of the block minus the address of the jump 2022 // table. This is used for PIC jump tables where gprel32 is not supported. 2023 // e.g.: 2024 // .word LBB123 - LJTI1_2 2025 // If the .set directive avoids relocations, this is emitted as: 2026 // .set L4_5_set_123, LBB123 - LJTI1_2 2027 // .word L4_5_set_123 2028 if (MAI->doesSetDirectiveSuppressReloc()) { 2029 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2030 OutContext); 2031 break; 2032 } 2033 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2034 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2035 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2036 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2037 break; 2038 } 2039 } 2040 2041 assert(Value && "Unknown entry kind!"); 2042 2043 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2044 OutStreamer->emitValue(Value, EntrySize); 2045 } 2046 2047 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2048 /// special global used by LLVM. If so, emit it and return true, otherwise 2049 /// do nothing and return false. 2050 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2051 if (GV->getName() == "llvm.used") { 2052 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2053 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2054 return true; 2055 } 2056 2057 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2058 if (GV->getSection() == "llvm.metadata" || 2059 GV->hasAvailableExternallyLinkage()) 2060 return true; 2061 2062 if (!GV->hasAppendingLinkage()) return false; 2063 2064 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2065 2066 if (GV->getName() == "llvm.global_ctors") { 2067 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2068 /* isCtor */ true); 2069 2070 return true; 2071 } 2072 2073 if (GV->getName() == "llvm.global_dtors") { 2074 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2075 /* isCtor */ false); 2076 2077 return true; 2078 } 2079 2080 report_fatal_error("unknown special variable"); 2081 } 2082 2083 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2084 /// global in the specified llvm.used list. 2085 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2086 // Should be an array of 'i8*'. 2087 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2088 const GlobalValue *GV = 2089 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2090 if (GV) 2091 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2092 } 2093 } 2094 2095 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2096 const Constant *List, 2097 SmallVector<Structor, 8> &Structors) { 2098 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2099 // the init priority. 2100 if (!isa<ConstantArray>(List)) 2101 return; 2102 2103 // Gather the structors in a form that's convenient for sorting by priority. 2104 for (Value *O : cast<ConstantArray>(List)->operands()) { 2105 auto *CS = cast<ConstantStruct>(O); 2106 if (CS->getOperand(1)->isNullValue()) 2107 break; // Found a null terminator, skip the rest. 2108 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2109 if (!Priority) 2110 continue; // Malformed. 2111 Structors.push_back(Structor()); 2112 Structor &S = Structors.back(); 2113 S.Priority = Priority->getLimitedValue(65535); 2114 S.Func = CS->getOperand(1); 2115 if (!CS->getOperand(2)->isNullValue()) { 2116 if (TM.getTargetTriple().isOSAIX()) 2117 llvm::report_fatal_error( 2118 "associated data of XXStructor list is not yet supported on AIX"); 2119 S.ComdatKey = 2120 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2121 } 2122 } 2123 2124 // Emit the function pointers in the target-specific order 2125 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2126 return L.Priority < R.Priority; 2127 }); 2128 } 2129 2130 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2131 /// priority. 2132 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2133 bool IsCtor) { 2134 SmallVector<Structor, 8> Structors; 2135 preprocessXXStructorList(DL, List, Structors); 2136 if (Structors.empty()) 2137 return; 2138 2139 const Align Align = DL.getPointerPrefAlignment(); 2140 for (Structor &S : Structors) { 2141 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2142 const MCSymbol *KeySym = nullptr; 2143 if (GlobalValue *GV = S.ComdatKey) { 2144 if (GV->isDeclarationForLinker()) 2145 // If the associated variable is not defined in this module 2146 // (it might be available_externally, or have been an 2147 // available_externally definition that was dropped by the 2148 // EliminateAvailableExternally pass), some other TU 2149 // will provide its dynamic initializer. 2150 continue; 2151 2152 KeySym = getSymbol(GV); 2153 } 2154 2155 MCSection *OutputSection = 2156 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2157 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2158 OutStreamer->SwitchSection(OutputSection); 2159 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2160 emitAlignment(Align); 2161 emitXXStructor(DL, S.Func); 2162 } 2163 } 2164 2165 void AsmPrinter::emitModuleIdents(Module &M) { 2166 if (!MAI->hasIdentDirective()) 2167 return; 2168 2169 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2170 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2171 const MDNode *N = NMD->getOperand(i); 2172 assert(N->getNumOperands() == 1 && 2173 "llvm.ident metadata entry can have only one operand"); 2174 const MDString *S = cast<MDString>(N->getOperand(0)); 2175 OutStreamer->emitIdent(S->getString()); 2176 } 2177 } 2178 } 2179 2180 void AsmPrinter::emitModuleCommandLines(Module &M) { 2181 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2182 if (!CommandLine) 2183 return; 2184 2185 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2186 if (!NMD || !NMD->getNumOperands()) 2187 return; 2188 2189 OutStreamer->PushSection(); 2190 OutStreamer->SwitchSection(CommandLine); 2191 OutStreamer->emitZeros(1); 2192 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2193 const MDNode *N = NMD->getOperand(i); 2194 assert(N->getNumOperands() == 1 && 2195 "llvm.commandline metadata entry can have only one operand"); 2196 const MDString *S = cast<MDString>(N->getOperand(0)); 2197 OutStreamer->emitBytes(S->getString()); 2198 OutStreamer->emitZeros(1); 2199 } 2200 OutStreamer->PopSection(); 2201 } 2202 2203 //===--------------------------------------------------------------------===// 2204 // Emission and print routines 2205 // 2206 2207 /// Emit a byte directive and value. 2208 /// 2209 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2210 2211 /// Emit a short directive and value. 2212 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2213 2214 /// Emit a long directive and value. 2215 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2216 2217 /// Emit a long long directive and value. 2218 void AsmPrinter::emitInt64(uint64_t Value) const { 2219 OutStreamer->emitInt64(Value); 2220 } 2221 2222 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2223 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2224 /// .set if it avoids relocations. 2225 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2226 unsigned Size) const { 2227 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2228 } 2229 2230 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2231 /// where the size in bytes of the directive is specified by Size and Label 2232 /// specifies the label. This implicitly uses .set if it is available. 2233 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2234 unsigned Size, 2235 bool IsSectionRelative) const { 2236 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2237 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2238 if (Size > 4) 2239 OutStreamer->emitZeros(Size - 4); 2240 return; 2241 } 2242 2243 // Emit Label+Offset (or just Label if Offset is zero) 2244 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2245 if (Offset) 2246 Expr = MCBinaryExpr::createAdd( 2247 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2248 2249 OutStreamer->emitValue(Expr, Size); 2250 } 2251 2252 //===----------------------------------------------------------------------===// 2253 2254 // EmitAlignment - Emit an alignment directive to the specified power of 2255 // two boundary. If a global value is specified, and if that global has 2256 // an explicit alignment requested, it will override the alignment request 2257 // if required for correctness. 2258 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2259 if (GV) 2260 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2261 2262 if (Alignment == Align(1)) 2263 return; // 1-byte aligned: no need to emit alignment. 2264 2265 if (getCurrentSection()->getKind().isText()) 2266 OutStreamer->emitCodeAlignment(Alignment.value()); 2267 else 2268 OutStreamer->emitValueToAlignment(Alignment.value()); 2269 } 2270 2271 //===----------------------------------------------------------------------===// 2272 // Constant emission. 2273 //===----------------------------------------------------------------------===// 2274 2275 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2276 MCContext &Ctx = OutContext; 2277 2278 if (CV->isNullValue() || isa<UndefValue>(CV)) 2279 return MCConstantExpr::create(0, Ctx); 2280 2281 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2282 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2283 2284 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2285 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2286 2287 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2288 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2289 2290 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2291 if (!CE) { 2292 llvm_unreachable("Unknown constant value to lower!"); 2293 } 2294 2295 switch (CE->getOpcode()) { 2296 case Instruction::AddrSpaceCast: { 2297 const Constant *Op = CE->getOperand(0); 2298 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2299 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2300 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2301 return lowerConstant(Op); 2302 2303 // Fallthrough to error. 2304 LLVM_FALLTHROUGH; 2305 } 2306 default: { 2307 // If the code isn't optimized, there may be outstanding folding 2308 // opportunities. Attempt to fold the expression using DataLayout as a 2309 // last resort before giving up. 2310 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2311 if (C != CE) 2312 return lowerConstant(C); 2313 2314 // Otherwise report the problem to the user. 2315 std::string S; 2316 raw_string_ostream OS(S); 2317 OS << "Unsupported expression in static initializer: "; 2318 CE->printAsOperand(OS, /*PrintType=*/false, 2319 !MF ? nullptr : MF->getFunction().getParent()); 2320 report_fatal_error(OS.str()); 2321 } 2322 case Instruction::GetElementPtr: { 2323 // Generate a symbolic expression for the byte address 2324 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2325 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2326 2327 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2328 if (!OffsetAI) 2329 return Base; 2330 2331 int64_t Offset = OffsetAI.getSExtValue(); 2332 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2333 Ctx); 2334 } 2335 2336 case Instruction::Trunc: 2337 // We emit the value and depend on the assembler to truncate the generated 2338 // expression properly. This is important for differences between 2339 // blockaddress labels. Since the two labels are in the same function, it 2340 // is reasonable to treat their delta as a 32-bit value. 2341 LLVM_FALLTHROUGH; 2342 case Instruction::BitCast: 2343 return lowerConstant(CE->getOperand(0)); 2344 2345 case Instruction::IntToPtr: { 2346 const DataLayout &DL = getDataLayout(); 2347 2348 // Handle casts to pointers by changing them into casts to the appropriate 2349 // integer type. This promotes constant folding and simplifies this code. 2350 Constant *Op = CE->getOperand(0); 2351 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2352 false/*ZExt*/); 2353 return lowerConstant(Op); 2354 } 2355 2356 case Instruction::PtrToInt: { 2357 const DataLayout &DL = getDataLayout(); 2358 2359 // Support only foldable casts to/from pointers that can be eliminated by 2360 // changing the pointer to the appropriately sized integer type. 2361 Constant *Op = CE->getOperand(0); 2362 Type *Ty = CE->getType(); 2363 2364 const MCExpr *OpExpr = lowerConstant(Op); 2365 2366 // We can emit the pointer value into this slot if the slot is an 2367 // integer slot equal to the size of the pointer. 2368 // 2369 // If the pointer is larger than the resultant integer, then 2370 // as with Trunc just depend on the assembler to truncate it. 2371 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2372 return OpExpr; 2373 2374 // Otherwise the pointer is smaller than the resultant integer, mask off 2375 // the high bits so we are sure to get a proper truncation if the input is 2376 // a constant expr. 2377 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2378 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2379 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2380 } 2381 2382 case Instruction::Sub: { 2383 GlobalValue *LHSGV; 2384 APInt LHSOffset; 2385 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2386 getDataLayout())) { 2387 GlobalValue *RHSGV; 2388 APInt RHSOffset; 2389 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2390 getDataLayout())) { 2391 const MCExpr *RelocExpr = 2392 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2393 if (!RelocExpr) 2394 RelocExpr = MCBinaryExpr::createSub( 2395 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2396 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2397 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2398 if (Addend != 0) 2399 RelocExpr = MCBinaryExpr::createAdd( 2400 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2401 return RelocExpr; 2402 } 2403 } 2404 } 2405 // else fallthrough 2406 LLVM_FALLTHROUGH; 2407 2408 // The MC library also has a right-shift operator, but it isn't consistently 2409 // signed or unsigned between different targets. 2410 case Instruction::Add: 2411 case Instruction::Mul: 2412 case Instruction::SDiv: 2413 case Instruction::SRem: 2414 case Instruction::Shl: 2415 case Instruction::And: 2416 case Instruction::Or: 2417 case Instruction::Xor: { 2418 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2419 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2420 switch (CE->getOpcode()) { 2421 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2422 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2423 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2424 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2425 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2426 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2427 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2428 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2429 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2430 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2431 } 2432 } 2433 } 2434 } 2435 2436 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2437 AsmPrinter &AP, 2438 const Constant *BaseCV = nullptr, 2439 uint64_t Offset = 0); 2440 2441 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2442 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2443 2444 /// isRepeatedByteSequence - Determine whether the given value is 2445 /// composed of a repeated sequence of identical bytes and return the 2446 /// byte value. If it is not a repeated sequence, return -1. 2447 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2448 StringRef Data = V->getRawDataValues(); 2449 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2450 char C = Data[0]; 2451 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2452 if (Data[i] != C) return -1; 2453 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2454 } 2455 2456 /// isRepeatedByteSequence - Determine whether the given value is 2457 /// composed of a repeated sequence of identical bytes and return the 2458 /// byte value. If it is not a repeated sequence, return -1. 2459 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2460 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2461 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2462 assert(Size % 8 == 0); 2463 2464 // Extend the element to take zero padding into account. 2465 APInt Value = CI->getValue().zextOrSelf(Size); 2466 if (!Value.isSplat(8)) 2467 return -1; 2468 2469 return Value.zextOrTrunc(8).getZExtValue(); 2470 } 2471 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2472 // Make sure all array elements are sequences of the same repeated 2473 // byte. 2474 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2475 Constant *Op0 = CA->getOperand(0); 2476 int Byte = isRepeatedByteSequence(Op0, DL); 2477 if (Byte == -1) 2478 return -1; 2479 2480 // All array elements must be equal. 2481 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2482 if (CA->getOperand(i) != Op0) 2483 return -1; 2484 return Byte; 2485 } 2486 2487 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2488 return isRepeatedByteSequence(CDS); 2489 2490 return -1; 2491 } 2492 2493 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2494 const ConstantDataSequential *CDS, 2495 AsmPrinter &AP) { 2496 // See if we can aggregate this into a .fill, if so, emit it as such. 2497 int Value = isRepeatedByteSequence(CDS, DL); 2498 if (Value != -1) { 2499 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2500 // Don't emit a 1-byte object as a .fill. 2501 if (Bytes > 1) 2502 return AP.OutStreamer->emitFill(Bytes, Value); 2503 } 2504 2505 // If this can be emitted with .ascii/.asciz, emit it as such. 2506 if (CDS->isString()) 2507 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2508 2509 // Otherwise, emit the values in successive locations. 2510 unsigned ElementByteSize = CDS->getElementByteSize(); 2511 if (isa<IntegerType>(CDS->getElementType())) { 2512 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2513 if (AP.isVerbose()) 2514 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2515 CDS->getElementAsInteger(i)); 2516 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2517 ElementByteSize); 2518 } 2519 } else { 2520 Type *ET = CDS->getElementType(); 2521 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2522 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2523 } 2524 2525 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2526 unsigned EmittedSize = 2527 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2528 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2529 if (unsigned Padding = Size - EmittedSize) 2530 AP.OutStreamer->emitZeros(Padding); 2531 } 2532 2533 static void emitGlobalConstantArray(const DataLayout &DL, 2534 const ConstantArray *CA, AsmPrinter &AP, 2535 const Constant *BaseCV, uint64_t Offset) { 2536 // See if we can aggregate some values. Make sure it can be 2537 // represented as a series of bytes of the constant value. 2538 int Value = isRepeatedByteSequence(CA, DL); 2539 2540 if (Value != -1) { 2541 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2542 AP.OutStreamer->emitFill(Bytes, Value); 2543 } 2544 else { 2545 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2546 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2547 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2548 } 2549 } 2550 } 2551 2552 static void emitGlobalConstantVector(const DataLayout &DL, 2553 const ConstantVector *CV, AsmPrinter &AP) { 2554 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2555 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2556 2557 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2558 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2559 CV->getType()->getNumElements(); 2560 if (unsigned Padding = Size - EmittedSize) 2561 AP.OutStreamer->emitZeros(Padding); 2562 } 2563 2564 static void emitGlobalConstantStruct(const DataLayout &DL, 2565 const ConstantStruct *CS, AsmPrinter &AP, 2566 const Constant *BaseCV, uint64_t Offset) { 2567 // Print the fields in successive locations. Pad to align if needed! 2568 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2569 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2570 uint64_t SizeSoFar = 0; 2571 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2572 const Constant *Field = CS->getOperand(i); 2573 2574 // Print the actual field value. 2575 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2576 2577 // Check if padding is needed and insert one or more 0s. 2578 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2579 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2580 - Layout->getElementOffset(i)) - FieldSize; 2581 SizeSoFar += FieldSize + PadSize; 2582 2583 // Insert padding - this may include padding to increase the size of the 2584 // current field up to the ABI size (if the struct is not packed) as well 2585 // as padding to ensure that the next field starts at the right offset. 2586 AP.OutStreamer->emitZeros(PadSize); 2587 } 2588 assert(SizeSoFar == Layout->getSizeInBytes() && 2589 "Layout of constant struct may be incorrect!"); 2590 } 2591 2592 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2593 assert(ET && "Unknown float type"); 2594 APInt API = APF.bitcastToAPInt(); 2595 2596 // First print a comment with what we think the original floating-point value 2597 // should have been. 2598 if (AP.isVerbose()) { 2599 SmallString<8> StrVal; 2600 APF.toString(StrVal); 2601 ET->print(AP.OutStreamer->GetCommentOS()); 2602 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2603 } 2604 2605 // Now iterate through the APInt chunks, emitting them in endian-correct 2606 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2607 // floats). 2608 unsigned NumBytes = API.getBitWidth() / 8; 2609 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2610 const uint64_t *p = API.getRawData(); 2611 2612 // PPC's long double has odd notions of endianness compared to how LLVM 2613 // handles it: p[0] goes first for *big* endian on PPC. 2614 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2615 int Chunk = API.getNumWords() - 1; 2616 2617 if (TrailingBytes) 2618 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2619 2620 for (; Chunk >= 0; --Chunk) 2621 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2622 } else { 2623 unsigned Chunk; 2624 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2625 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2626 2627 if (TrailingBytes) 2628 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2629 } 2630 2631 // Emit the tail padding for the long double. 2632 const DataLayout &DL = AP.getDataLayout(); 2633 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2634 } 2635 2636 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2637 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2638 } 2639 2640 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2641 const DataLayout &DL = AP.getDataLayout(); 2642 unsigned BitWidth = CI->getBitWidth(); 2643 2644 // Copy the value as we may massage the layout for constants whose bit width 2645 // is not a multiple of 64-bits. 2646 APInt Realigned(CI->getValue()); 2647 uint64_t ExtraBits = 0; 2648 unsigned ExtraBitsSize = BitWidth & 63; 2649 2650 if (ExtraBitsSize) { 2651 // The bit width of the data is not a multiple of 64-bits. 2652 // The extra bits are expected to be at the end of the chunk of the memory. 2653 // Little endian: 2654 // * Nothing to be done, just record the extra bits to emit. 2655 // Big endian: 2656 // * Record the extra bits to emit. 2657 // * Realign the raw data to emit the chunks of 64-bits. 2658 if (DL.isBigEndian()) { 2659 // Basically the structure of the raw data is a chunk of 64-bits cells: 2660 // 0 1 BitWidth / 64 2661 // [chunk1][chunk2] ... [chunkN]. 2662 // The most significant chunk is chunkN and it should be emitted first. 2663 // However, due to the alignment issue chunkN contains useless bits. 2664 // Realign the chunks so that they contain only useful information: 2665 // ExtraBits 0 1 (BitWidth / 64) - 1 2666 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2667 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2668 ExtraBits = Realigned.getRawData()[0] & 2669 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2670 Realigned.lshrInPlace(ExtraBitsSize); 2671 } else 2672 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2673 } 2674 2675 // We don't expect assemblers to support integer data directives 2676 // for more than 64 bits, so we emit the data in at most 64-bit 2677 // quantities at a time. 2678 const uint64_t *RawData = Realigned.getRawData(); 2679 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2680 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2681 AP.OutStreamer->emitIntValue(Val, 8); 2682 } 2683 2684 if (ExtraBitsSize) { 2685 // Emit the extra bits after the 64-bits chunks. 2686 2687 // Emit a directive that fills the expected size. 2688 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2689 Size -= (BitWidth / 64) * 8; 2690 assert(Size && Size * 8 >= ExtraBitsSize && 2691 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2692 == ExtraBits && "Directive too small for extra bits."); 2693 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2694 } 2695 } 2696 2697 /// Transform a not absolute MCExpr containing a reference to a GOT 2698 /// equivalent global, by a target specific GOT pc relative access to the 2699 /// final symbol. 2700 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2701 const Constant *BaseCst, 2702 uint64_t Offset) { 2703 // The global @foo below illustrates a global that uses a got equivalent. 2704 // 2705 // @bar = global i32 42 2706 // @gotequiv = private unnamed_addr constant i32* @bar 2707 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2708 // i64 ptrtoint (i32* @foo to i64)) 2709 // to i32) 2710 // 2711 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2712 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2713 // form: 2714 // 2715 // foo = cstexpr, where 2716 // cstexpr := <gotequiv> - "." + <cst> 2717 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2718 // 2719 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2720 // 2721 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2722 // gotpcrelcst := <offset from @foo base> + <cst> 2723 MCValue MV; 2724 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2725 return; 2726 const MCSymbolRefExpr *SymA = MV.getSymA(); 2727 if (!SymA) 2728 return; 2729 2730 // Check that GOT equivalent symbol is cached. 2731 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2732 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2733 return; 2734 2735 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2736 if (!BaseGV) 2737 return; 2738 2739 // Check for a valid base symbol 2740 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2741 const MCSymbolRefExpr *SymB = MV.getSymB(); 2742 2743 if (!SymB || BaseSym != &SymB->getSymbol()) 2744 return; 2745 2746 // Make sure to match: 2747 // 2748 // gotpcrelcst := <offset from @foo base> + <cst> 2749 // 2750 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2751 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2752 // if the target knows how to encode it. 2753 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2754 if (GOTPCRelCst < 0) 2755 return; 2756 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2757 return; 2758 2759 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2760 // 2761 // bar: 2762 // .long 42 2763 // gotequiv: 2764 // .quad bar 2765 // foo: 2766 // .long gotequiv - "." + <cst> 2767 // 2768 // is replaced by the target specific equivalent to: 2769 // 2770 // bar: 2771 // .long 42 2772 // foo: 2773 // .long bar@GOTPCREL+<gotpcrelcst> 2774 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2775 const GlobalVariable *GV = Result.first; 2776 int NumUses = (int)Result.second; 2777 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2778 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2779 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2780 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2781 2782 // Update GOT equivalent usage information 2783 --NumUses; 2784 if (NumUses >= 0) 2785 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2786 } 2787 2788 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2789 AsmPrinter &AP, const Constant *BaseCV, 2790 uint64_t Offset) { 2791 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2792 2793 // Globals with sub-elements such as combinations of arrays and structs 2794 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2795 // constant symbol base and the current position with BaseCV and Offset. 2796 if (!BaseCV && CV->hasOneUse()) 2797 BaseCV = dyn_cast<Constant>(CV->user_back()); 2798 2799 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2800 return AP.OutStreamer->emitZeros(Size); 2801 2802 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2803 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2804 2805 if (StoreSize <= 8) { 2806 if (AP.isVerbose()) 2807 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2808 CI->getZExtValue()); 2809 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2810 } else { 2811 emitGlobalConstantLargeInt(CI, AP); 2812 } 2813 2814 // Emit tail padding if needed 2815 if (Size != StoreSize) 2816 AP.OutStreamer->emitZeros(Size - StoreSize); 2817 2818 return; 2819 } 2820 2821 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2822 return emitGlobalConstantFP(CFP, AP); 2823 2824 if (isa<ConstantPointerNull>(CV)) { 2825 AP.OutStreamer->emitIntValue(0, Size); 2826 return; 2827 } 2828 2829 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2830 return emitGlobalConstantDataSequential(DL, CDS, AP); 2831 2832 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2833 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2834 2835 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2836 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2837 2838 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2839 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2840 // vectors). 2841 if (CE->getOpcode() == Instruction::BitCast) 2842 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2843 2844 if (Size > 8) { 2845 // If the constant expression's size is greater than 64-bits, then we have 2846 // to emit the value in chunks. Try to constant fold the value and emit it 2847 // that way. 2848 Constant *New = ConstantFoldConstant(CE, DL); 2849 if (New != CE) 2850 return emitGlobalConstantImpl(DL, New, AP); 2851 } 2852 } 2853 2854 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2855 return emitGlobalConstantVector(DL, V, AP); 2856 2857 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2858 // thread the streamer with EmitValue. 2859 const MCExpr *ME = AP.lowerConstant(CV); 2860 2861 // Since lowerConstant already folded and got rid of all IR pointer and 2862 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2863 // directly. 2864 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2865 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2866 2867 AP.OutStreamer->emitValue(ME, Size); 2868 } 2869 2870 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2871 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2872 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2873 if (Size) 2874 emitGlobalConstantImpl(DL, CV, *this); 2875 else if (MAI->hasSubsectionsViaSymbols()) { 2876 // If the global has zero size, emit a single byte so that two labels don't 2877 // look like they are at the same location. 2878 OutStreamer->emitIntValue(0, 1); 2879 } 2880 } 2881 2882 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2883 // Target doesn't support this yet! 2884 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2885 } 2886 2887 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2888 if (Offset > 0) 2889 OS << '+' << Offset; 2890 else if (Offset < 0) 2891 OS << Offset; 2892 } 2893 2894 void AsmPrinter::emitNops(unsigned N) { 2895 MCInst Nop; 2896 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2897 for (; N; --N) 2898 EmitToStreamer(*OutStreamer, Nop); 2899 } 2900 2901 //===----------------------------------------------------------------------===// 2902 // Symbol Lowering Routines. 2903 //===----------------------------------------------------------------------===// 2904 2905 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2906 return OutContext.createTempSymbol(Name, true); 2907 } 2908 2909 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2910 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2911 } 2912 2913 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2914 return MMI->getAddrLabelSymbol(BB); 2915 } 2916 2917 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2918 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2919 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2920 const MachineConstantPoolEntry &CPE = 2921 MF->getConstantPool()->getConstants()[CPID]; 2922 if (!CPE.isMachineConstantPoolEntry()) { 2923 const DataLayout &DL = MF->getDataLayout(); 2924 SectionKind Kind = CPE.getSectionKind(&DL); 2925 const Constant *C = CPE.Val.ConstVal; 2926 Align Alignment = CPE.Alignment; 2927 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2928 getObjFileLowering().getSectionForConstant(DL, Kind, C, 2929 Alignment))) { 2930 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2931 if (Sym->isUndefined()) 2932 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2933 return Sym; 2934 } 2935 } 2936 } 2937 } 2938 2939 const DataLayout &DL = getDataLayout(); 2940 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2941 "CPI" + Twine(getFunctionNumber()) + "_" + 2942 Twine(CPID)); 2943 } 2944 2945 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2946 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2947 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2948 } 2949 2950 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2951 /// FIXME: privatize to AsmPrinter. 2952 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2953 const DataLayout &DL = getDataLayout(); 2954 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2955 Twine(getFunctionNumber()) + "_" + 2956 Twine(UID) + "_set_" + Twine(MBBID)); 2957 } 2958 2959 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2960 StringRef Suffix) const { 2961 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2962 } 2963 2964 /// Return the MCSymbol for the specified ExternalSymbol. 2965 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2966 SmallString<60> NameStr; 2967 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2968 return OutContext.getOrCreateSymbol(NameStr); 2969 } 2970 2971 /// PrintParentLoopComment - Print comments about parent loops of this one. 2972 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2973 unsigned FunctionNumber) { 2974 if (!Loop) return; 2975 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2976 OS.indent(Loop->getLoopDepth()*2) 2977 << "Parent Loop BB" << FunctionNumber << "_" 2978 << Loop->getHeader()->getNumber() 2979 << " Depth=" << Loop->getLoopDepth() << '\n'; 2980 } 2981 2982 /// PrintChildLoopComment - Print comments about child loops within 2983 /// the loop for this basic block, with nesting. 2984 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2985 unsigned FunctionNumber) { 2986 // Add child loop information 2987 for (const MachineLoop *CL : *Loop) { 2988 OS.indent(CL->getLoopDepth()*2) 2989 << "Child Loop BB" << FunctionNumber << "_" 2990 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2991 << '\n'; 2992 PrintChildLoopComment(OS, CL, FunctionNumber); 2993 } 2994 } 2995 2996 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2997 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2998 const MachineLoopInfo *LI, 2999 const AsmPrinter &AP) { 3000 // Add loop depth information 3001 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3002 if (!Loop) return; 3003 3004 MachineBasicBlock *Header = Loop->getHeader(); 3005 assert(Header && "No header for loop"); 3006 3007 // If this block is not a loop header, just print out what is the loop header 3008 // and return. 3009 if (Header != &MBB) { 3010 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3011 Twine(AP.getFunctionNumber())+"_" + 3012 Twine(Loop->getHeader()->getNumber())+ 3013 " Depth="+Twine(Loop->getLoopDepth())); 3014 return; 3015 } 3016 3017 // Otherwise, it is a loop header. Print out information about child and 3018 // parent loops. 3019 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3020 3021 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3022 3023 OS << "=>"; 3024 OS.indent(Loop->getLoopDepth()*2-2); 3025 3026 OS << "This "; 3027 if (Loop->isInnermost()) 3028 OS << "Inner "; 3029 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3030 3031 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3032 } 3033 3034 /// emitBasicBlockStart - This method prints the label for the specified 3035 /// MachineBasicBlock, an alignment (if present) and a comment describing 3036 /// it if appropriate. 3037 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3038 // End the previous funclet and start a new one. 3039 if (MBB.isEHFuncletEntry()) { 3040 for (const HandlerInfo &HI : Handlers) { 3041 HI.Handler->endFunclet(); 3042 HI.Handler->beginFunclet(MBB); 3043 } 3044 } 3045 3046 // Emit an alignment directive for this block, if needed. 3047 const Align Alignment = MBB.getAlignment(); 3048 if (Alignment != Align(1)) 3049 emitAlignment(Alignment); 3050 3051 // Switch to a new section if this basic block must begin a section. The 3052 // entry block is always placed in the function section and is handled 3053 // separately. 3054 if (MBB.isBeginSection() && !MBB.pred_empty()) { 3055 OutStreamer->SwitchSection( 3056 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3057 MBB, TM)); 3058 CurrentSectionBeginSym = MBB.getSymbol(); 3059 } 3060 3061 // If the block has its address taken, emit any labels that were used to 3062 // reference the block. It is possible that there is more than one label 3063 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3064 // the references were generated. 3065 if (MBB.hasAddressTaken()) { 3066 const BasicBlock *BB = MBB.getBasicBlock(); 3067 if (isVerbose()) 3068 OutStreamer->AddComment("Block address taken"); 3069 3070 // MBBs can have their address taken as part of CodeGen without having 3071 // their corresponding BB's address taken in IR 3072 if (BB->hasAddressTaken()) 3073 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3074 OutStreamer->emitLabel(Sym); 3075 } 3076 3077 // Print some verbose block comments. 3078 if (isVerbose()) { 3079 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3080 if (BB->hasName()) { 3081 BB->printAsOperand(OutStreamer->GetCommentOS(), 3082 /*PrintType=*/false, BB->getModule()); 3083 OutStreamer->GetCommentOS() << '\n'; 3084 } 3085 } 3086 3087 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3088 emitBasicBlockLoopComments(MBB, MLI, *this); 3089 } 3090 3091 // Print the main label for the block. 3092 if (MBB.pred_empty() || 3093 (!MF->hasBBLabels() && isBlockOnlyReachableByFallthrough(&MBB) && 3094 !MBB.isEHFuncletEntry() && !MBB.hasLabelMustBeEmitted())) { 3095 if (isVerbose()) { 3096 // NOTE: Want this comment at start of line, don't emit with AddComment. 3097 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3098 false); 3099 } 3100 } else { 3101 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3102 OutStreamer->AddComment("Label of block must be emitted"); 3103 OutStreamer->emitLabel(MBB.getSymbol()); 3104 } 3105 3106 // With BB sections, each basic block must handle CFI information on its own 3107 // if it begins a section (Entry block is handled separately by 3108 // AsmPrinterHandler::beginFunction). 3109 if (MBB.isBeginSection() && !MBB.pred_empty()) 3110 for (const HandlerInfo &HI : Handlers) 3111 HI.Handler->beginBasicBlock(MBB); 3112 } 3113 3114 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3115 // Check if CFI information needs to be updated for this MBB with basic block 3116 // sections. 3117 if (MBB.isEndSection()) 3118 for (const HandlerInfo &HI : Handlers) 3119 HI.Handler->endBasicBlock(MBB); 3120 } 3121 3122 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3123 bool IsDefinition) const { 3124 MCSymbolAttr Attr = MCSA_Invalid; 3125 3126 switch (Visibility) { 3127 default: break; 3128 case GlobalValue::HiddenVisibility: 3129 if (IsDefinition) 3130 Attr = MAI->getHiddenVisibilityAttr(); 3131 else 3132 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3133 break; 3134 case GlobalValue::ProtectedVisibility: 3135 Attr = MAI->getProtectedVisibilityAttr(); 3136 break; 3137 } 3138 3139 if (Attr != MCSA_Invalid) 3140 OutStreamer->emitSymbolAttribute(Sym, Attr); 3141 } 3142 3143 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3144 /// exactly one predecessor and the control transfer mechanism between 3145 /// the predecessor and this block is a fall-through. 3146 bool AsmPrinter:: 3147 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3148 // With BasicBlock Sections, beginning of the section is not a fallthrough. 3149 if (MBB->isBeginSection()) 3150 return false; 3151 3152 // If this is a landing pad, it isn't a fall through. If it has no preds, 3153 // then nothing falls through to it. 3154 if (MBB->isEHPad() || MBB->pred_empty()) 3155 return false; 3156 3157 // If there isn't exactly one predecessor, it can't be a fall through. 3158 if (MBB->pred_size() > 1) 3159 return false; 3160 3161 // The predecessor has to be immediately before this block. 3162 MachineBasicBlock *Pred = *MBB->pred_begin(); 3163 if (!Pred->isLayoutSuccessor(MBB)) 3164 return false; 3165 3166 // If the block is completely empty, then it definitely does fall through. 3167 if (Pred->empty()) 3168 return true; 3169 3170 // Check the terminators in the previous blocks 3171 for (const auto &MI : Pred->terminators()) { 3172 // If it is not a simple branch, we are in a table somewhere. 3173 if (!MI.isBranch() || MI.isIndirectBranch()) 3174 return false; 3175 3176 // If we are the operands of one of the branches, this is not a fall 3177 // through. Note that targets with delay slots will usually bundle 3178 // terminators with the delay slot instruction. 3179 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3180 if (OP->isJTI()) 3181 return false; 3182 if (OP->isMBB() && OP->getMBB() == MBB) 3183 return false; 3184 } 3185 } 3186 3187 return true; 3188 } 3189 3190 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3191 if (!S.usesMetadata()) 3192 return nullptr; 3193 3194 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3195 gcp_map_type::iterator GCPI = GCMap.find(&S); 3196 if (GCPI != GCMap.end()) 3197 return GCPI->second.get(); 3198 3199 auto Name = S.getName(); 3200 3201 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3202 GCMetadataPrinterRegistry::entries()) 3203 if (Name == GCMetaPrinter.getName()) { 3204 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3205 GMP->S = &S; 3206 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3207 return IterBool.first->second.get(); 3208 } 3209 3210 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3211 } 3212 3213 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3214 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3215 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3216 bool NeedsDefault = false; 3217 if (MI->begin() == MI->end()) 3218 // No GC strategy, use the default format. 3219 NeedsDefault = true; 3220 else 3221 for (auto &I : *MI) { 3222 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3223 if (MP->emitStackMaps(SM, *this)) 3224 continue; 3225 // The strategy doesn't have printer or doesn't emit custom stack maps. 3226 // Use the default format. 3227 NeedsDefault = true; 3228 } 3229 3230 if (NeedsDefault) 3231 SM.serializeToStackMapSection(); 3232 } 3233 3234 /// Pin vtable to this file. 3235 AsmPrinterHandler::~AsmPrinterHandler() = default; 3236 3237 void AsmPrinterHandler::markFunctionEnd() {} 3238 3239 // In the binary's "xray_instr_map" section, an array of these function entries 3240 // describes each instrumentation point. When XRay patches your code, the index 3241 // into this table will be given to your handler as a patch point identifier. 3242 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3243 auto Kind8 = static_cast<uint8_t>(Kind); 3244 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3245 Out->emitBinaryData( 3246 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3247 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3248 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3249 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3250 Out->emitZeros(Padding); 3251 } 3252 3253 void AsmPrinter::emitXRayTable() { 3254 if (Sleds.empty()) 3255 return; 3256 3257 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3258 const Function &F = MF->getFunction(); 3259 MCSection *InstMap = nullptr; 3260 MCSection *FnSledIndex = nullptr; 3261 const Triple &TT = TM.getTargetTriple(); 3262 // Use PC-relative addresses on all targets. 3263 if (TT.isOSBinFormatELF()) { 3264 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3265 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3266 StringRef GroupName; 3267 if (F.hasComdat()) { 3268 Flags |= ELF::SHF_GROUP; 3269 GroupName = F.getComdat()->getName(); 3270 } 3271 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3272 Flags, 0, GroupName, 3273 MCSection::NonUniqueID, LinkedToSym); 3274 3275 if (!TM.Options.XRayOmitFunctionIndex) 3276 FnSledIndex = OutContext.getELFSection( 3277 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3278 GroupName, MCSection::NonUniqueID, LinkedToSym); 3279 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3280 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3281 SectionKind::getReadOnlyWithRel()); 3282 if (!TM.Options.XRayOmitFunctionIndex) 3283 FnSledIndex = OutContext.getMachOSection( 3284 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3285 } else { 3286 llvm_unreachable("Unsupported target"); 3287 } 3288 3289 auto WordSizeBytes = MAI->getCodePointerSize(); 3290 3291 // Now we switch to the instrumentation map section. Because this is done 3292 // per-function, we are able to create an index entry that will represent the 3293 // range of sleds associated with a function. 3294 auto &Ctx = OutContext; 3295 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3296 OutStreamer->SwitchSection(InstMap); 3297 OutStreamer->emitLabel(SledsStart); 3298 for (const auto &Sled : Sleds) { 3299 MCSymbol *Dot = Ctx.createTempSymbol(); 3300 OutStreamer->emitLabel(Dot); 3301 OutStreamer->emitValueImpl( 3302 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3303 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3304 WordSizeBytes); 3305 OutStreamer->emitValueImpl( 3306 MCBinaryExpr::createSub( 3307 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3308 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3309 MCConstantExpr::create(WordSizeBytes, Ctx), 3310 Ctx), 3311 Ctx), 3312 WordSizeBytes); 3313 Sled.emit(WordSizeBytes, OutStreamer.get()); 3314 } 3315 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3316 OutStreamer->emitLabel(SledsEnd); 3317 3318 // We then emit a single entry in the index per function. We use the symbols 3319 // that bound the instrumentation map as the range for a specific function. 3320 // Each entry here will be 2 * word size aligned, as we're writing down two 3321 // pointers. This should work for both 32-bit and 64-bit platforms. 3322 if (FnSledIndex) { 3323 OutStreamer->SwitchSection(FnSledIndex); 3324 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3325 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3326 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3327 OutStreamer->SwitchSection(PrevSection); 3328 } 3329 Sleds.clear(); 3330 } 3331 3332 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3333 SledKind Kind, uint8_t Version) { 3334 const Function &F = MI.getMF()->getFunction(); 3335 auto Attr = F.getFnAttribute("function-instrument"); 3336 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3337 bool AlwaysInstrument = 3338 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3339 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3340 Kind = SledKind::LOG_ARGS_ENTER; 3341 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3342 AlwaysInstrument, &F, Version}); 3343 } 3344 3345 void AsmPrinter::emitPatchableFunctionEntries() { 3346 const Function &F = MF->getFunction(); 3347 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3348 (void)F.getFnAttribute("patchable-function-prefix") 3349 .getValueAsString() 3350 .getAsInteger(10, PatchableFunctionPrefix); 3351 (void)F.getFnAttribute("patchable-function-entry") 3352 .getValueAsString() 3353 .getAsInteger(10, PatchableFunctionEntry); 3354 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3355 return; 3356 const unsigned PointerSize = getPointerSize(); 3357 if (TM.getTargetTriple().isOSBinFormatELF()) { 3358 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3359 const MCSymbolELF *LinkedToSym = nullptr; 3360 StringRef GroupName; 3361 3362 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3363 // if we are using the integrated assembler. 3364 if (MAI->useIntegratedAssembler()) { 3365 Flags |= ELF::SHF_LINK_ORDER; 3366 if (F.hasComdat()) { 3367 Flags |= ELF::SHF_GROUP; 3368 GroupName = F.getComdat()->getName(); 3369 } 3370 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3371 } 3372 OutStreamer->SwitchSection(OutContext.getELFSection( 3373 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3374 MCSection::NonUniqueID, LinkedToSym)); 3375 emitAlignment(Align(PointerSize)); 3376 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3377 } 3378 } 3379 3380 uint16_t AsmPrinter::getDwarfVersion() const { 3381 return OutStreamer->getContext().getDwarfVersion(); 3382 } 3383 3384 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3385 OutStreamer->getContext().setDwarfVersion(Version); 3386 } 3387 3388 bool AsmPrinter::isDwarf64() const { 3389 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3390 } 3391 3392 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3393 return dwarf::getDwarfOffsetByteSize( 3394 OutStreamer->getContext().getDwarfFormat()); 3395 } 3396 3397 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3398 return dwarf::getUnitLengthFieldByteSize( 3399 OutStreamer->getContext().getDwarfFormat()); 3400 } 3401