1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WinException.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/GCMetadataPrinter.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCExpr.h" 38 #include "llvm/MC/MCInst.h" 39 #include "llvm/MC/MCSection.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSymbolELF.h" 42 #include "llvm/MC/MCValue.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/Format.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetLoweringObjectFile.h" 52 #include "llvm/Target/TargetRegisterInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "asm-printer" 57 58 static const char *const DWARFGroupName = "DWARF Emission"; 59 static const char *const DbgTimerName = "Debug Info Emission"; 60 static const char *const EHTimerName = "DWARF Exception Writer"; 61 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 62 63 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 64 65 char AsmPrinter::ID = 0; 66 67 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 68 static gcp_map_type &getGCMap(void *&P) { 69 if (!P) 70 P = new gcp_map_type(); 71 return *(gcp_map_type*)P; 72 } 73 74 75 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 76 /// value in log2 form. This rounds up to the preferred alignment if possible 77 /// and legal. 78 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 79 unsigned InBits = 0) { 80 unsigned NumBits = 0; 81 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 82 NumBits = DL.getPreferredAlignmentLog(GVar); 83 84 // If InBits is specified, round it to it. 85 if (InBits > NumBits) 86 NumBits = InBits; 87 88 // If the GV has a specified alignment, take it into account. 89 if (GV->getAlignment() == 0) 90 return NumBits; 91 92 unsigned GVAlign = Log2_32(GV->getAlignment()); 93 94 // If the GVAlign is larger than NumBits, or if we are required to obey 95 // NumBits because the GV has an assigned section, obey it. 96 if (GVAlign > NumBits || GV->hasSection()) 97 NumBits = GVAlign; 98 return NumBits; 99 } 100 101 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 102 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 103 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 104 LastMI(nullptr), LastFn(0), Counter(~0U) { 105 DD = nullptr; 106 MMI = nullptr; 107 LI = nullptr; 108 MF = nullptr; 109 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 110 CurrentFnBegin = nullptr; 111 CurrentFnEnd = nullptr; 112 GCMetadataPrinters = nullptr; 113 VerboseAsm = OutStreamer->isVerboseAsm(); 114 } 115 116 AsmPrinter::~AsmPrinter() { 117 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 118 119 if (GCMetadataPrinters) { 120 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 121 122 delete &GCMap; 123 GCMetadataPrinters = nullptr; 124 } 125 } 126 127 /// getFunctionNumber - Return a unique ID for the current function. 128 /// 129 unsigned AsmPrinter::getFunctionNumber() const { 130 return MF->getFunctionNumber(); 131 } 132 133 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 134 return *TM.getObjFileLowering(); 135 } 136 137 const DataLayout &AsmPrinter::getDataLayout() const { 138 return MMI->getModule()->getDataLayout(); 139 } 140 141 // Do not use the cached DataLayout because some client use it without a Module 142 // (llmv-dsymutil, llvm-dwarfdump). 143 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 144 145 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 146 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 147 return MF->getSubtarget<MCSubtargetInfo>(); 148 } 149 150 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 151 S.EmitInstruction(Inst, getSubtargetInfo()); 152 } 153 154 StringRef AsmPrinter::getTargetTriple() const { 155 return TM.getTargetTriple().str(); 156 } 157 158 /// getCurrentSection() - Return the current section we are emitting to. 159 const MCSection *AsmPrinter::getCurrentSection() const { 160 return OutStreamer->getCurrentSection().first; 161 } 162 163 164 165 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 166 AU.setPreservesAll(); 167 MachineFunctionPass::getAnalysisUsage(AU); 168 AU.addRequired<MachineModuleInfo>(); 169 AU.addRequired<GCModuleInfo>(); 170 if (isVerbose()) 171 AU.addRequired<MachineLoopInfo>(); 172 } 173 174 bool AsmPrinter::doInitialization(Module &M) { 175 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 176 177 // Initialize TargetLoweringObjectFile. 178 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 179 .Initialize(OutContext, TM); 180 181 OutStreamer->InitSections(false); 182 183 Mang = new Mangler(); 184 185 // Emit the version-min deplyment target directive if needed. 186 // 187 // FIXME: If we end up with a collection of these sorts of Darwin-specific 188 // or ELF-specific things, it may make sense to have a platform helper class 189 // that will work with the target helper class. For now keep it here, as the 190 // alternative is duplicated code in each of the target asm printers that 191 // use the directive, where it would need the same conditionalization 192 // anyway. 193 Triple TT(getTargetTriple()); 194 // If there is a version specified, Major will be non-zero. 195 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 196 unsigned Major, Minor, Update; 197 MCVersionMinType VersionType; 198 if (TT.isWatchOS()) { 199 VersionType = MCVM_WatchOSVersionMin; 200 TT.getWatchOSVersion(Major, Minor, Update); 201 } else if (TT.isTvOS()) { 202 VersionType = MCVM_TvOSVersionMin; 203 TT.getiOSVersion(Major, Minor, Update); 204 } else if (TT.isMacOSX()) { 205 VersionType = MCVM_OSXVersionMin; 206 if (!TT.getMacOSXVersion(Major, Minor, Update)) 207 Major = 0; 208 } else { 209 VersionType = MCVM_IOSVersionMin; 210 TT.getiOSVersion(Major, Minor, Update); 211 } 212 if (Major != 0) 213 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 214 } 215 216 // Allow the target to emit any magic that it wants at the start of the file. 217 EmitStartOfAsmFile(M); 218 219 // Very minimal debug info. It is ignored if we emit actual debug info. If we 220 // don't, this at least helps the user find where a global came from. 221 if (MAI->hasSingleParameterDotFile()) { 222 // .file "foo.c" 223 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 224 } 225 226 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 227 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 228 for (auto &I : *MI) 229 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 230 MP->beginAssembly(M, *MI, *this); 231 232 // Emit module-level inline asm if it exists. 233 if (!M.getModuleInlineAsm().empty()) { 234 // We're at the module level. Construct MCSubtarget from the default CPU 235 // and target triple. 236 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 237 TM.getTargetTriple().str(), TM.getTargetCPU(), 238 TM.getTargetFeatureString())); 239 OutStreamer->AddComment("Start of file scope inline assembly"); 240 OutStreamer->AddBlankLine(); 241 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 242 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 243 OutStreamer->AddComment("End of file scope inline assembly"); 244 OutStreamer->AddBlankLine(); 245 } 246 247 if (MAI->doesSupportDebugInformation()) { 248 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 249 if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 250 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 251 DbgTimerName, 252 CodeViewLineTablesGroupName)); 253 } 254 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 255 DD = new DwarfDebug(this, &M); 256 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 257 } 258 } 259 260 EHStreamer *ES = nullptr; 261 switch (MAI->getExceptionHandlingType()) { 262 case ExceptionHandling::None: 263 break; 264 case ExceptionHandling::SjLj: 265 case ExceptionHandling::DwarfCFI: 266 ES = new DwarfCFIException(this); 267 break; 268 case ExceptionHandling::ARM: 269 ES = new ARMException(this); 270 break; 271 case ExceptionHandling::WinEH: 272 switch (MAI->getWinEHEncodingType()) { 273 default: llvm_unreachable("unsupported unwinding information encoding"); 274 case WinEH::EncodingType::Invalid: 275 break; 276 case WinEH::EncodingType::X86: 277 case WinEH::EncodingType::Itanium: 278 ES = new WinException(this); 279 break; 280 } 281 break; 282 } 283 if (ES) 284 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 285 return false; 286 } 287 288 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 289 if (!MAI.hasWeakDefCanBeHiddenDirective()) 290 return false; 291 292 return canBeOmittedFromSymbolTable(GV); 293 } 294 295 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 296 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 297 switch (Linkage) { 298 case GlobalValue::CommonLinkage: 299 case GlobalValue::LinkOnceAnyLinkage: 300 case GlobalValue::LinkOnceODRLinkage: 301 case GlobalValue::WeakAnyLinkage: 302 case GlobalValue::WeakODRLinkage: 303 if (MAI->hasWeakDefDirective()) { 304 // .globl _foo 305 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 306 307 if (!canBeHidden(GV, *MAI)) 308 // .weak_definition _foo 309 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 310 else 311 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 312 } else if (MAI->hasLinkOnceDirective()) { 313 // .globl _foo 314 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 315 //NOTE: linkonce is handled by the section the symbol was assigned to. 316 } else { 317 // .weak _foo 318 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 319 } 320 return; 321 case GlobalValue::AppendingLinkage: 322 // FIXME: appending linkage variables should go into a section of 323 // their name or something. For now, just emit them as external. 324 case GlobalValue::ExternalLinkage: 325 // If external or appending, declare as a global symbol. 326 // .globl _foo 327 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 328 return; 329 case GlobalValue::PrivateLinkage: 330 case GlobalValue::InternalLinkage: 331 return; 332 case GlobalValue::AvailableExternallyLinkage: 333 llvm_unreachable("Should never emit this"); 334 case GlobalValue::ExternalWeakLinkage: 335 llvm_unreachable("Don't know how to emit these"); 336 } 337 llvm_unreachable("Unknown linkage type!"); 338 } 339 340 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 341 const GlobalValue *GV) const { 342 TM.getNameWithPrefix(Name, GV, *Mang); 343 } 344 345 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 346 return TM.getSymbol(GV, *Mang); 347 } 348 349 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 350 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 351 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 352 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 353 "No emulated TLS variables in the common section"); 354 355 // Never emit TLS variable xyz in emulated TLS model. 356 // The initialization value is in __emutls_t.xyz instead of xyz. 357 if (IsEmuTLSVar) 358 return; 359 360 if (GV->hasInitializer()) { 361 // Check to see if this is a special global used by LLVM, if so, emit it. 362 if (EmitSpecialLLVMGlobal(GV)) 363 return; 364 365 // Skip the emission of global equivalents. The symbol can be emitted later 366 // on by emitGlobalGOTEquivs in case it turns out to be needed. 367 if (GlobalGOTEquivs.count(getSymbol(GV))) 368 return; 369 370 if (isVerbose()) { 371 // When printing the control variable __emutls_v.*, 372 // we don't need to print the original TLS variable name. 373 GV->printAsOperand(OutStreamer->GetCommentOS(), 374 /*PrintType=*/false, GV->getParent()); 375 OutStreamer->GetCommentOS() << '\n'; 376 } 377 } 378 379 MCSymbol *GVSym = getSymbol(GV); 380 MCSymbol *EmittedSym = GVSym; 381 // getOrCreateEmuTLSControlSym only creates the symbol with name and default attributes. 382 // GV's or GVSym's attributes will be used for the EmittedSym. 383 384 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 385 386 if (!GV->hasInitializer()) // External globals require no extra code. 387 return; 388 389 GVSym->redefineIfPossible(); 390 if (GVSym->isDefined() || GVSym->isVariable()) 391 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 392 "' is already defined"); 393 394 if (MAI->hasDotTypeDotSizeDirective()) 395 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 396 397 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 398 399 const DataLayout &DL = GV->getParent()->getDataLayout(); 400 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 401 402 // If the alignment is specified, we *must* obey it. Overaligning a global 403 // with a specified alignment is a prompt way to break globals emitted to 404 // sections and expected to be contiguous (e.g. ObjC metadata). 405 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 406 407 for (const HandlerInfo &HI : Handlers) { 408 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 409 HI.Handler->setSymbolSize(GVSym, Size); 410 } 411 412 // Handle common and BSS local symbols (.lcomm). 413 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 414 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 415 unsigned Align = 1 << AlignLog; 416 417 // Handle common symbols. 418 if (GVKind.isCommon()) { 419 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 420 Align = 0; 421 422 // .comm _foo, 42, 4 423 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 424 return; 425 } 426 427 // Handle local BSS symbols. 428 if (MAI->hasMachoZeroFillDirective()) { 429 MCSection *TheSection = 430 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 431 // .zerofill __DATA, __bss, _foo, 400, 5 432 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 433 return; 434 } 435 436 // Use .lcomm only if it supports user-specified alignment. 437 // Otherwise, while it would still be correct to use .lcomm in some 438 // cases (e.g. when Align == 1), the external assembler might enfore 439 // some -unknown- default alignment behavior, which could cause 440 // spurious differences between external and integrated assembler. 441 // Prefer to simply fall back to .local / .comm in this case. 442 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 443 // .lcomm _foo, 42 444 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 445 return; 446 } 447 448 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 449 Align = 0; 450 451 // .local _foo 452 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 453 // .comm _foo, 42, 4 454 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 455 return; 456 } 457 458 MCSymbol *EmittedInitSym = GVSym; 459 460 MCSection *TheSection = 461 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 462 463 // Handle the zerofill directive on darwin, which is a special form of BSS 464 // emission. 465 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 466 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 467 468 // .globl _foo 469 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 470 // .zerofill __DATA, __common, _foo, 400, 5 471 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 472 return; 473 } 474 475 // Handle thread local data for mach-o which requires us to output an 476 // additional structure of data and mangle the original symbol so that we 477 // can reference it later. 478 // 479 // TODO: This should become an "emit thread local global" method on TLOF. 480 // All of this macho specific stuff should be sunk down into TLOFMachO and 481 // stuff like "TLSExtraDataSection" should no longer be part of the parent 482 // TLOF class. This will also make it more obvious that stuff like 483 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 484 // specific code. 485 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 486 // Emit the .tbss symbol 487 MCSymbol *MangSym = 488 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 489 490 if (GVKind.isThreadBSS()) { 491 TheSection = getObjFileLowering().getTLSBSSSection(); 492 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 493 } else if (GVKind.isThreadData()) { 494 OutStreamer->SwitchSection(TheSection); 495 496 EmitAlignment(AlignLog, GV); 497 OutStreamer->EmitLabel(MangSym); 498 499 EmitGlobalConstant(GV->getParent()->getDataLayout(), 500 GV->getInitializer()); 501 } 502 503 OutStreamer->AddBlankLine(); 504 505 // Emit the variable struct for the runtime. 506 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 507 508 OutStreamer->SwitchSection(TLVSect); 509 // Emit the linkage here. 510 EmitLinkage(GV, GVSym); 511 OutStreamer->EmitLabel(GVSym); 512 513 // Three pointers in size: 514 // - __tlv_bootstrap - used to make sure support exists 515 // - spare pointer, used when mapped by the runtime 516 // - pointer to mangled symbol above with initializer 517 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 518 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 519 PtrSize); 520 OutStreamer->EmitIntValue(0, PtrSize); 521 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 522 523 OutStreamer->AddBlankLine(); 524 return; 525 } 526 527 OutStreamer->SwitchSection(TheSection); 528 529 EmitLinkage(GV, EmittedInitSym); 530 EmitAlignment(AlignLog, GV); 531 532 OutStreamer->EmitLabel(EmittedInitSym); 533 534 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 535 536 if (MAI->hasDotTypeDotSizeDirective()) 537 // .size foo, 42 538 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym), 539 MCConstantExpr::create(Size, OutContext)); 540 541 OutStreamer->AddBlankLine(); 542 } 543 544 /// EmitFunctionHeader - This method emits the header for the current 545 /// function. 546 void AsmPrinter::EmitFunctionHeader() { 547 // Print out constants referenced by the function 548 EmitConstantPool(); 549 550 // Print the 'header' of function. 551 const Function *F = MF->getFunction(); 552 553 OutStreamer->SwitchSection( 554 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 555 EmitVisibility(CurrentFnSym, F->getVisibility()); 556 557 EmitLinkage(F, CurrentFnSym); 558 if (MAI->hasFunctionAlignment()) 559 EmitAlignment(MF->getAlignment(), F); 560 561 if (MAI->hasDotTypeDotSizeDirective()) 562 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 563 564 if (isVerbose()) { 565 F->printAsOperand(OutStreamer->GetCommentOS(), 566 /*PrintType=*/false, F->getParent()); 567 OutStreamer->GetCommentOS() << '\n'; 568 } 569 570 // Emit the prefix data. 571 if (F->hasPrefixData()) 572 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 573 574 // Emit the CurrentFnSym. This is a virtual function to allow targets to 575 // do their wild and crazy things as required. 576 EmitFunctionEntryLabel(); 577 578 // If the function had address-taken blocks that got deleted, then we have 579 // references to the dangling symbols. Emit them at the start of the function 580 // so that we don't get references to undefined symbols. 581 std::vector<MCSymbol*> DeadBlockSyms; 582 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 583 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 584 OutStreamer->AddComment("Address taken block that was later removed"); 585 OutStreamer->EmitLabel(DeadBlockSyms[i]); 586 } 587 588 if (CurrentFnBegin) { 589 if (MAI->useAssignmentForEHBegin()) { 590 MCSymbol *CurPos = OutContext.createTempSymbol(); 591 OutStreamer->EmitLabel(CurPos); 592 OutStreamer->EmitAssignment(CurrentFnBegin, 593 MCSymbolRefExpr::create(CurPos, OutContext)); 594 } else { 595 OutStreamer->EmitLabel(CurrentFnBegin); 596 } 597 } 598 599 // Emit pre-function debug and/or EH information. 600 for (const HandlerInfo &HI : Handlers) { 601 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 602 HI.Handler->beginFunction(MF); 603 } 604 605 // Emit the prologue data. 606 if (F->hasPrologueData()) 607 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 608 } 609 610 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 611 /// function. This can be overridden by targets as required to do custom stuff. 612 void AsmPrinter::EmitFunctionEntryLabel() { 613 CurrentFnSym->redefineIfPossible(); 614 615 // The function label could have already been emitted if two symbols end up 616 // conflicting due to asm renaming. Detect this and emit an error. 617 if (CurrentFnSym->isVariable()) 618 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 619 "' is a protected alias"); 620 if (CurrentFnSym->isDefined()) 621 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 622 "' label emitted multiple times to assembly file"); 623 624 return OutStreamer->EmitLabel(CurrentFnSym); 625 } 626 627 /// emitComments - Pretty-print comments for instructions. 628 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 629 const MachineFunction *MF = MI.getParent()->getParent(); 630 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 631 632 // Check for spills and reloads 633 int FI; 634 635 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 636 637 // We assume a single instruction only has a spill or reload, not 638 // both. 639 const MachineMemOperand *MMO; 640 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 641 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 642 MMO = *MI.memoperands_begin(); 643 CommentOS << MMO->getSize() << "-byte Reload\n"; 644 } 645 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 646 if (FrameInfo->isSpillSlotObjectIndex(FI)) 647 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 648 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 649 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 650 MMO = *MI.memoperands_begin(); 651 CommentOS << MMO->getSize() << "-byte Spill\n"; 652 } 653 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 654 if (FrameInfo->isSpillSlotObjectIndex(FI)) 655 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 656 } 657 658 // Check for spill-induced copies 659 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 660 CommentOS << " Reload Reuse\n"; 661 } 662 663 /// emitImplicitDef - This method emits the specified machine instruction 664 /// that is an implicit def. 665 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 666 unsigned RegNo = MI->getOperand(0).getReg(); 667 668 SmallString<128> Str; 669 raw_svector_ostream OS(Str); 670 OS << "implicit-def: " 671 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 672 673 OutStreamer->AddComment(OS.str()); 674 OutStreamer->AddBlankLine(); 675 } 676 677 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 678 std::string Str; 679 raw_string_ostream OS(Str); 680 OS << "kill:"; 681 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 682 const MachineOperand &Op = MI->getOperand(i); 683 assert(Op.isReg() && "KILL instruction must have only register operands"); 684 OS << ' ' 685 << PrintReg(Op.getReg(), 686 AP.MF->getSubtarget().getRegisterInfo()) 687 << (Op.isDef() ? "<def>" : "<kill>"); 688 } 689 AP.OutStreamer->AddComment(Str); 690 AP.OutStreamer->AddBlankLine(); 691 } 692 693 /// emitDebugValueComment - This method handles the target-independent form 694 /// of DBG_VALUE, returning true if it was able to do so. A false return 695 /// means the target will need to handle MI in EmitInstruction. 696 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 697 // This code handles only the 4-operand target-independent form. 698 if (MI->getNumOperands() != 4) 699 return false; 700 701 SmallString<128> Str; 702 raw_svector_ostream OS(Str); 703 OS << "DEBUG_VALUE: "; 704 705 const DILocalVariable *V = MI->getDebugVariable(); 706 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 707 StringRef Name = SP->getDisplayName(); 708 if (!Name.empty()) 709 OS << Name << ":"; 710 } 711 OS << V->getName(); 712 713 const DIExpression *Expr = MI->getDebugExpression(); 714 if (Expr->isBitPiece()) 715 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 716 << " size=" << Expr->getBitPieceSize() << "]"; 717 OS << " <- "; 718 719 // The second operand is only an offset if it's an immediate. 720 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 721 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 722 723 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 724 if (Deref) { 725 // We currently don't support extra Offsets or derefs after the first 726 // one. Bail out early instead of emitting an incorrect comment 727 OS << " [complex expression]"; 728 AP.OutStreamer->emitRawComment(OS.str()); 729 return true; 730 } 731 uint64_t Op = Expr->getElement(i); 732 if (Op == dwarf::DW_OP_deref) { 733 Deref = true; 734 continue; 735 } else if (Op == dwarf::DW_OP_bit_piece) { 736 // There can't be any operands after this in a valid expression 737 break; 738 } 739 uint64_t ExtraOffset = Expr->getElement(i++); 740 if (Op == dwarf::DW_OP_plus) 741 Offset += ExtraOffset; 742 else { 743 assert(Op == dwarf::DW_OP_minus); 744 Offset -= ExtraOffset; 745 } 746 } 747 748 // Register or immediate value. Register 0 means undef. 749 if (MI->getOperand(0).isFPImm()) { 750 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 751 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 752 OS << (double)APF.convertToFloat(); 753 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 754 OS << APF.convertToDouble(); 755 } else { 756 // There is no good way to print long double. Convert a copy to 757 // double. Ah well, it's only a comment. 758 bool ignored; 759 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 760 &ignored); 761 OS << "(long double) " << APF.convertToDouble(); 762 } 763 } else if (MI->getOperand(0).isImm()) { 764 OS << MI->getOperand(0).getImm(); 765 } else if (MI->getOperand(0).isCImm()) { 766 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 767 } else { 768 unsigned Reg; 769 if (MI->getOperand(0).isReg()) { 770 Reg = MI->getOperand(0).getReg(); 771 } else { 772 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 773 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 774 Offset += TFI->getFrameIndexReference(*AP.MF, 775 MI->getOperand(0).getIndex(), Reg); 776 Deref = true; 777 } 778 if (Reg == 0) { 779 // Suppress offset, it is not meaningful here. 780 OS << "undef"; 781 // NOTE: Want this comment at start of line, don't emit with AddComment. 782 AP.OutStreamer->emitRawComment(OS.str()); 783 return true; 784 } 785 if (Deref) 786 OS << '['; 787 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 788 } 789 790 if (Deref) 791 OS << '+' << Offset << ']'; 792 793 // NOTE: Want this comment at start of line, don't emit with AddComment. 794 AP.OutStreamer->emitRawComment(OS.str()); 795 return true; 796 } 797 798 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 799 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 800 MF->getFunction()->needsUnwindTableEntry()) 801 return CFI_M_EH; 802 803 if (MMI->hasDebugInfo()) 804 return CFI_M_Debug; 805 806 return CFI_M_None; 807 } 808 809 bool AsmPrinter::needsSEHMoves() { 810 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 811 } 812 813 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 814 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 815 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 816 ExceptionHandlingType != ExceptionHandling::ARM) 817 return; 818 819 if (needsCFIMoves() == CFI_M_None) 820 return; 821 822 const MachineModuleInfo &MMI = MF->getMMI(); 823 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 824 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 825 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 826 emitCFIInstruction(CFI); 827 } 828 829 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 830 // The operands are the MCSymbol and the frame offset of the allocation. 831 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 832 int FrameOffset = MI.getOperand(1).getImm(); 833 834 // Emit a symbol assignment. 835 OutStreamer->EmitAssignment(FrameAllocSym, 836 MCConstantExpr::create(FrameOffset, OutContext)); 837 } 838 839 /// EmitFunctionBody - This method emits the body and trailer for a 840 /// function. 841 void AsmPrinter::EmitFunctionBody() { 842 EmitFunctionHeader(); 843 844 // Emit target-specific gunk before the function body. 845 EmitFunctionBodyStart(); 846 847 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 848 849 // Print out code for the function. 850 bool HasAnyRealCode = false; 851 for (auto &MBB : *MF) { 852 // Print a label for the basic block. 853 EmitBasicBlockStart(MBB); 854 for (auto &MI : MBB) { 855 856 // Print the assembly for the instruction. 857 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 858 !MI.isDebugValue()) { 859 HasAnyRealCode = true; 860 ++EmittedInsts; 861 } 862 863 if (ShouldPrintDebugScopes) { 864 for (const HandlerInfo &HI : Handlers) { 865 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 866 TimePassesIsEnabled); 867 HI.Handler->beginInstruction(&MI); 868 } 869 } 870 871 if (isVerbose()) 872 emitComments(MI, OutStreamer->GetCommentOS()); 873 874 switch (MI.getOpcode()) { 875 case TargetOpcode::CFI_INSTRUCTION: 876 emitCFIInstruction(MI); 877 break; 878 879 case TargetOpcode::LOCAL_ESCAPE: 880 emitFrameAlloc(MI); 881 break; 882 883 case TargetOpcode::EH_LABEL: 884 case TargetOpcode::GC_LABEL: 885 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 886 break; 887 case TargetOpcode::INLINEASM: 888 EmitInlineAsm(&MI); 889 break; 890 case TargetOpcode::DBG_VALUE: 891 if (isVerbose()) { 892 if (!emitDebugValueComment(&MI, *this)) 893 EmitInstruction(&MI); 894 } 895 break; 896 case TargetOpcode::IMPLICIT_DEF: 897 if (isVerbose()) emitImplicitDef(&MI); 898 break; 899 case TargetOpcode::KILL: 900 if (isVerbose()) emitKill(&MI, *this); 901 break; 902 default: 903 EmitInstruction(&MI); 904 break; 905 } 906 907 if (ShouldPrintDebugScopes) { 908 for (const HandlerInfo &HI : Handlers) { 909 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 910 TimePassesIsEnabled); 911 HI.Handler->endInstruction(); 912 } 913 } 914 } 915 916 EmitBasicBlockEnd(MBB); 917 } 918 919 // If the function is empty and the object file uses .subsections_via_symbols, 920 // then we need to emit *something* to the function body to prevent the 921 // labels from collapsing together. Just emit a noop. 922 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 923 MCInst Noop; 924 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 925 OutStreamer->AddComment("avoids zero-length function"); 926 927 // Targets can opt-out of emitting the noop here by leaving the opcode 928 // unspecified. 929 if (Noop.getOpcode()) 930 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 931 } 932 933 const Function *F = MF->getFunction(); 934 for (const auto &BB : *F) { 935 if (!BB.hasAddressTaken()) 936 continue; 937 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 938 if (Sym->isDefined()) 939 continue; 940 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 941 OutStreamer->EmitLabel(Sym); 942 } 943 944 // Emit target-specific gunk after the function body. 945 EmitFunctionBodyEnd(); 946 947 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 948 MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 949 // Create a symbol for the end of function. 950 CurrentFnEnd = createTempSymbol("func_end"); 951 OutStreamer->EmitLabel(CurrentFnEnd); 952 } 953 954 // If the target wants a .size directive for the size of the function, emit 955 // it. 956 if (MAI->hasDotTypeDotSizeDirective()) { 957 // We can get the size as difference between the function label and the 958 // temp label. 959 const MCExpr *SizeExp = MCBinaryExpr::createSub( 960 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 961 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 962 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 963 OutStreamer->emitELFSize(Sym, SizeExp); 964 } 965 966 for (const HandlerInfo &HI : Handlers) { 967 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 968 HI.Handler->markFunctionEnd(); 969 } 970 971 // Print out jump tables referenced by the function. 972 EmitJumpTableInfo(); 973 974 // Emit post-function debug and/or EH information. 975 for (const HandlerInfo &HI : Handlers) { 976 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 977 HI.Handler->endFunction(MF); 978 } 979 MMI->EndFunction(); 980 981 OutStreamer->AddBlankLine(); 982 } 983 984 /// \brief Compute the number of Global Variables that uses a Constant. 985 static unsigned getNumGlobalVariableUses(const Constant *C) { 986 if (!C) 987 return 0; 988 989 if (isa<GlobalVariable>(C)) 990 return 1; 991 992 unsigned NumUses = 0; 993 for (auto *CU : C->users()) 994 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 995 996 return NumUses; 997 } 998 999 /// \brief Only consider global GOT equivalents if at least one user is a 1000 /// cstexpr inside an initializer of another global variables. Also, don't 1001 /// handle cstexpr inside instructions. During global variable emission, 1002 /// candidates are skipped and are emitted later in case at least one cstexpr 1003 /// isn't replaced by a PC relative GOT entry access. 1004 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1005 unsigned &NumGOTEquivUsers) { 1006 // Global GOT equivalents are unnamed private globals with a constant 1007 // pointer initializer to another global symbol. They must point to a 1008 // GlobalVariable or Function, i.e., as GlobalValue. 1009 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 1010 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 1011 return false; 1012 1013 // To be a got equivalent, at least one of its users need to be a constant 1014 // expression used by another global variable. 1015 for (auto *U : GV->users()) 1016 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1017 1018 return NumGOTEquivUsers > 0; 1019 } 1020 1021 /// \brief Unnamed constant global variables solely contaning a pointer to 1022 /// another globals variable is equivalent to a GOT table entry; it contains the 1023 /// the address of another symbol. Optimize it and replace accesses to these 1024 /// "GOT equivalents" by using the GOT entry for the final global instead. 1025 /// Compute GOT equivalent candidates among all global variables to avoid 1026 /// emitting them if possible later on, after it use is replaced by a GOT entry 1027 /// access. 1028 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1029 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1030 return; 1031 1032 for (const auto &G : M.globals()) { 1033 unsigned NumGOTEquivUsers = 0; 1034 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1035 continue; 1036 1037 const MCSymbol *GOTEquivSym = getSymbol(&G); 1038 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1039 } 1040 } 1041 1042 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1043 /// for PC relative GOT entry conversion, in such cases we need to emit such 1044 /// globals we previously omitted in EmitGlobalVariable. 1045 void AsmPrinter::emitGlobalGOTEquivs() { 1046 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1047 return; 1048 1049 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1050 for (auto &I : GlobalGOTEquivs) { 1051 const GlobalVariable *GV = I.second.first; 1052 unsigned Cnt = I.second.second; 1053 if (Cnt) 1054 FailedCandidates.push_back(GV); 1055 } 1056 GlobalGOTEquivs.clear(); 1057 1058 for (auto *GV : FailedCandidates) 1059 EmitGlobalVariable(GV); 1060 } 1061 1062 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1063 const GlobalIndirectSymbol& GIS) { 1064 MCSymbol *Name = getSymbol(&GIS); 1065 1066 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1067 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1068 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1069 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1070 else 1071 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1072 1073 // Set the symbol type to function if the alias has a function type. 1074 // This affects codegen when the aliasee is not a function. 1075 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1076 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1077 if (isa<GlobalIFunc>(GIS)) 1078 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1079 } 1080 1081 EmitVisibility(Name, GIS.getVisibility()); 1082 1083 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1084 1085 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1086 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1087 1088 // Emit the directives as assignments aka .set: 1089 OutStreamer->EmitAssignment(Name, Expr); 1090 1091 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1092 // If the aliasee does not correspond to a symbol in the output, i.e. the 1093 // alias is not of an object or the aliased object is private, then set the 1094 // size of the alias symbol from the type of the alias. We don't do this in 1095 // other situations as the alias and aliasee having differing types but same 1096 // size may be intentional. 1097 const GlobalObject *BaseObject = GA->getBaseObject(); 1098 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1099 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1100 const DataLayout &DL = M.getDataLayout(); 1101 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1102 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name), 1103 MCConstantExpr::create(Size, OutContext)); 1104 } 1105 } 1106 } 1107 1108 bool AsmPrinter::doFinalization(Module &M) { 1109 // Set the MachineFunction to nullptr so that we can catch attempted 1110 // accesses to MF specific features at the module level and so that 1111 // we can conditionalize accesses based on whether or not it is nullptr. 1112 MF = nullptr; 1113 1114 // Gather all GOT equivalent globals in the module. We really need two 1115 // passes over the globals: one to compute and another to avoid its emission 1116 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1117 // where the got equivalent shows up before its use. 1118 computeGlobalGOTEquivs(M); 1119 1120 // Emit global variables. 1121 for (const auto &G : M.globals()) 1122 EmitGlobalVariable(&G); 1123 1124 // Emit remaining GOT equivalent globals. 1125 emitGlobalGOTEquivs(); 1126 1127 // Emit visibility info for declarations 1128 for (const Function &F : M) { 1129 if (!F.isDeclarationForLinker()) 1130 continue; 1131 GlobalValue::VisibilityTypes V = F.getVisibility(); 1132 if (V == GlobalValue::DefaultVisibility) 1133 continue; 1134 1135 MCSymbol *Name = getSymbol(&F); 1136 EmitVisibility(Name, V, false); 1137 } 1138 1139 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1140 1141 // Emit module flags. 1142 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1143 M.getModuleFlagsMetadata(ModuleFlags); 1144 if (!ModuleFlags.empty()) 1145 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1146 1147 if (TM.getTargetTriple().isOSBinFormatELF()) { 1148 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1149 1150 // Output stubs for external and common global variables. 1151 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1152 if (!Stubs.empty()) { 1153 OutStreamer->SwitchSection(TLOF.getDataSection()); 1154 const DataLayout &DL = M.getDataLayout(); 1155 1156 for (const auto &Stub : Stubs) { 1157 OutStreamer->EmitLabel(Stub.first); 1158 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1159 DL.getPointerSize()); 1160 } 1161 } 1162 } 1163 1164 // Finalize debug and EH information. 1165 for (const HandlerInfo &HI : Handlers) { 1166 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1167 TimePassesIsEnabled); 1168 HI.Handler->endModule(); 1169 delete HI.Handler; 1170 } 1171 Handlers.clear(); 1172 DD = nullptr; 1173 1174 // If the target wants to know about weak references, print them all. 1175 if (MAI->getWeakRefDirective()) { 1176 // FIXME: This is not lazy, it would be nice to only print weak references 1177 // to stuff that is actually used. Note that doing so would require targets 1178 // to notice uses in operands (due to constant exprs etc). This should 1179 // happen with the MC stuff eventually. 1180 1181 // Print out module-level global variables here. 1182 for (const auto &G : M.globals()) { 1183 if (!G.hasExternalWeakLinkage()) 1184 continue; 1185 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1186 } 1187 1188 for (const auto &F : M) { 1189 if (!F.hasExternalWeakLinkage()) 1190 continue; 1191 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1192 } 1193 } 1194 1195 OutStreamer->AddBlankLine(); 1196 1197 // Print aliases in topological order, that is, for each alias a = b, 1198 // b must be printed before a. 1199 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1200 // such an order to generate correct TOC information. 1201 SmallVector<const GlobalAlias *, 16> AliasStack; 1202 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1203 for (const auto &Alias : M.aliases()) { 1204 for (const GlobalAlias *Cur = &Alias; Cur; 1205 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1206 if (!AliasVisited.insert(Cur).second) 1207 break; 1208 AliasStack.push_back(Cur); 1209 } 1210 for (const GlobalAlias *AncestorAlias : reverse(AliasStack)) 1211 emitGlobalIndirectSymbol(M, *AncestorAlias); 1212 AliasStack.clear(); 1213 } 1214 for (const auto &IFunc : M.ifuncs()) 1215 emitGlobalIndirectSymbol(M, IFunc); 1216 1217 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1218 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1219 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1220 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1221 MP->finishAssembly(M, *MI, *this); 1222 1223 // Emit llvm.ident metadata in an '.ident' directive. 1224 EmitModuleIdents(M); 1225 1226 // Emit __morestack address if needed for indirect calls. 1227 if (MMI->usesMorestackAddr()) { 1228 unsigned Align = 1; 1229 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1230 getDataLayout(), SectionKind::getReadOnly(), 1231 /*C=*/nullptr, Align); 1232 OutStreamer->SwitchSection(ReadOnlySection); 1233 1234 MCSymbol *AddrSymbol = 1235 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1236 OutStreamer->EmitLabel(AddrSymbol); 1237 1238 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1239 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1240 PtrSize); 1241 } 1242 1243 // If we don't have any trampolines, then we don't require stack memory 1244 // to be executable. Some targets have a directive to declare this. 1245 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1246 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1247 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1248 OutStreamer->SwitchSection(S); 1249 1250 // Allow the target to emit any magic that it wants at the end of the file, 1251 // after everything else has gone out. 1252 EmitEndOfAsmFile(M); 1253 1254 delete Mang; Mang = nullptr; 1255 MMI = nullptr; 1256 1257 OutStreamer->Finish(); 1258 OutStreamer->reset(); 1259 1260 return false; 1261 } 1262 1263 MCSymbol *AsmPrinter::getCurExceptionSym() { 1264 if (!CurExceptionSym) 1265 CurExceptionSym = createTempSymbol("exception"); 1266 return CurExceptionSym; 1267 } 1268 1269 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1270 this->MF = &MF; 1271 // Get the function symbol. 1272 CurrentFnSym = getSymbol(MF.getFunction()); 1273 CurrentFnSymForSize = CurrentFnSym; 1274 CurrentFnBegin = nullptr; 1275 CurExceptionSym = nullptr; 1276 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1277 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1278 MMI->hasEHFunclets() || NeedsLocalForSize) { 1279 CurrentFnBegin = createTempSymbol("func_begin"); 1280 if (NeedsLocalForSize) 1281 CurrentFnSymForSize = CurrentFnBegin; 1282 } 1283 1284 if (isVerbose()) 1285 LI = &getAnalysis<MachineLoopInfo>(); 1286 } 1287 1288 namespace { 1289 // Keep track the alignment, constpool entries per Section. 1290 struct SectionCPs { 1291 MCSection *S; 1292 unsigned Alignment; 1293 SmallVector<unsigned, 4> CPEs; 1294 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1295 }; 1296 } 1297 1298 /// EmitConstantPool - Print to the current output stream assembly 1299 /// representations of the constants in the constant pool MCP. This is 1300 /// used to print out constants which have been "spilled to memory" by 1301 /// the code generator. 1302 /// 1303 void AsmPrinter::EmitConstantPool() { 1304 const MachineConstantPool *MCP = MF->getConstantPool(); 1305 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1306 if (CP.empty()) return; 1307 1308 // Calculate sections for constant pool entries. We collect entries to go into 1309 // the same section together to reduce amount of section switch statements. 1310 SmallVector<SectionCPs, 4> CPSections; 1311 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1312 const MachineConstantPoolEntry &CPE = CP[i]; 1313 unsigned Align = CPE.getAlignment(); 1314 1315 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1316 1317 const Constant *C = nullptr; 1318 if (!CPE.isMachineConstantPoolEntry()) 1319 C = CPE.Val.ConstVal; 1320 1321 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1322 Kind, C, Align); 1323 1324 // The number of sections are small, just do a linear search from the 1325 // last section to the first. 1326 bool Found = false; 1327 unsigned SecIdx = CPSections.size(); 1328 while (SecIdx != 0) { 1329 if (CPSections[--SecIdx].S == S) { 1330 Found = true; 1331 break; 1332 } 1333 } 1334 if (!Found) { 1335 SecIdx = CPSections.size(); 1336 CPSections.push_back(SectionCPs(S, Align)); 1337 } 1338 1339 if (Align > CPSections[SecIdx].Alignment) 1340 CPSections[SecIdx].Alignment = Align; 1341 CPSections[SecIdx].CPEs.push_back(i); 1342 } 1343 1344 // Now print stuff into the calculated sections. 1345 const MCSection *CurSection = nullptr; 1346 unsigned Offset = 0; 1347 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1348 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1349 unsigned CPI = CPSections[i].CPEs[j]; 1350 MCSymbol *Sym = GetCPISymbol(CPI); 1351 if (!Sym->isUndefined()) 1352 continue; 1353 1354 if (CurSection != CPSections[i].S) { 1355 OutStreamer->SwitchSection(CPSections[i].S); 1356 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1357 CurSection = CPSections[i].S; 1358 Offset = 0; 1359 } 1360 1361 MachineConstantPoolEntry CPE = CP[CPI]; 1362 1363 // Emit inter-object padding for alignment. 1364 unsigned AlignMask = CPE.getAlignment() - 1; 1365 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1366 OutStreamer->EmitZeros(NewOffset - Offset); 1367 1368 Type *Ty = CPE.getType(); 1369 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1370 1371 OutStreamer->EmitLabel(Sym); 1372 if (CPE.isMachineConstantPoolEntry()) 1373 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1374 else 1375 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1376 } 1377 } 1378 } 1379 1380 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1381 /// by the current function to the current output stream. 1382 /// 1383 void AsmPrinter::EmitJumpTableInfo() { 1384 const DataLayout &DL = MF->getDataLayout(); 1385 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1386 if (!MJTI) return; 1387 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1388 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1389 if (JT.empty()) return; 1390 1391 // Pick the directive to use to print the jump table entries, and switch to 1392 // the appropriate section. 1393 const Function *F = MF->getFunction(); 1394 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1395 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1396 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1397 *F); 1398 if (JTInDiffSection) { 1399 // Drop it in the readonly section. 1400 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1401 OutStreamer->SwitchSection(ReadOnlySection); 1402 } 1403 1404 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1405 1406 // Jump tables in code sections are marked with a data_region directive 1407 // where that's supported. 1408 if (!JTInDiffSection) 1409 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1410 1411 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1412 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1413 1414 // If this jump table was deleted, ignore it. 1415 if (JTBBs.empty()) continue; 1416 1417 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1418 /// emit a .set directive for each unique entry. 1419 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1420 MAI->doesSetDirectiveSuppressesReloc()) { 1421 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1422 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1423 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1424 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1425 const MachineBasicBlock *MBB = JTBBs[ii]; 1426 if (!EmittedSets.insert(MBB).second) 1427 continue; 1428 1429 // .set LJTSet, LBB32-base 1430 const MCExpr *LHS = 1431 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1432 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1433 MCBinaryExpr::createSub(LHS, Base, 1434 OutContext)); 1435 } 1436 } 1437 1438 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1439 // before each jump table. The first label is never referenced, but tells 1440 // the assembler and linker the extents of the jump table object. The 1441 // second label is actually referenced by the code. 1442 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1443 // FIXME: This doesn't have to have any specific name, just any randomly 1444 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1445 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1446 1447 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1448 1449 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1450 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1451 } 1452 if (!JTInDiffSection) 1453 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1454 } 1455 1456 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1457 /// current stream. 1458 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1459 const MachineBasicBlock *MBB, 1460 unsigned UID) const { 1461 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1462 const MCExpr *Value = nullptr; 1463 switch (MJTI->getEntryKind()) { 1464 case MachineJumpTableInfo::EK_Inline: 1465 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1466 case MachineJumpTableInfo::EK_Custom32: 1467 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1468 MJTI, MBB, UID, OutContext); 1469 break; 1470 case MachineJumpTableInfo::EK_BlockAddress: 1471 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1472 // .word LBB123 1473 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1474 break; 1475 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1476 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1477 // with a relocation as gp-relative, e.g.: 1478 // .gprel32 LBB123 1479 MCSymbol *MBBSym = MBB->getSymbol(); 1480 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1481 return; 1482 } 1483 1484 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1485 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1486 // with a relocation as gp-relative, e.g.: 1487 // .gpdword LBB123 1488 MCSymbol *MBBSym = MBB->getSymbol(); 1489 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1490 return; 1491 } 1492 1493 case MachineJumpTableInfo::EK_LabelDifference32: { 1494 // Each entry is the address of the block minus the address of the jump 1495 // table. This is used for PIC jump tables where gprel32 is not supported. 1496 // e.g.: 1497 // .word LBB123 - LJTI1_2 1498 // If the .set directive avoids relocations, this is emitted as: 1499 // .set L4_5_set_123, LBB123 - LJTI1_2 1500 // .word L4_5_set_123 1501 if (MAI->doesSetDirectiveSuppressesReloc()) { 1502 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1503 OutContext); 1504 break; 1505 } 1506 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1507 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1508 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1509 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1510 break; 1511 } 1512 } 1513 1514 assert(Value && "Unknown entry kind!"); 1515 1516 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1517 OutStreamer->EmitValue(Value, EntrySize); 1518 } 1519 1520 1521 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1522 /// special global used by LLVM. If so, emit it and return true, otherwise 1523 /// do nothing and return false. 1524 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1525 if (GV->getName() == "llvm.used") { 1526 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1527 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1528 return true; 1529 } 1530 1531 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1532 if (StringRef(GV->getSection()) == "llvm.metadata" || 1533 GV->hasAvailableExternallyLinkage()) 1534 return true; 1535 1536 if (!GV->hasAppendingLinkage()) return false; 1537 1538 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1539 1540 if (GV->getName() == "llvm.global_ctors") { 1541 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1542 /* isCtor */ true); 1543 1544 if (TM.getRelocationModel() == Reloc::Static && 1545 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1546 StringRef Sym(".constructors_used"); 1547 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1548 MCSA_Reference); 1549 } 1550 return true; 1551 } 1552 1553 if (GV->getName() == "llvm.global_dtors") { 1554 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1555 /* isCtor */ false); 1556 1557 if (TM.getRelocationModel() == Reloc::Static && 1558 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1559 StringRef Sym(".destructors_used"); 1560 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1561 MCSA_Reference); 1562 } 1563 return true; 1564 } 1565 1566 return false; 1567 } 1568 1569 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1570 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1571 /// is true, as being used with this directive. 1572 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1573 // Should be an array of 'i8*'. 1574 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1575 const GlobalValue *GV = 1576 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1577 if (GV) 1578 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1579 } 1580 } 1581 1582 namespace { 1583 struct Structor { 1584 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1585 int Priority; 1586 llvm::Constant *Func; 1587 llvm::GlobalValue *ComdatKey; 1588 }; 1589 } // end namespace 1590 1591 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1592 /// priority. 1593 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1594 bool isCtor) { 1595 // Should be an array of '{ int, void ()* }' structs. The first value is the 1596 // init priority. 1597 if (!isa<ConstantArray>(List)) return; 1598 1599 // Sanity check the structors list. 1600 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1601 if (!InitList) return; // Not an array! 1602 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1603 // FIXME: Only allow the 3-field form in LLVM 4.0. 1604 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1605 return; // Not an array of two or three elements! 1606 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1607 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1608 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1609 return; // Not (int, ptr, ptr). 1610 1611 // Gather the structors in a form that's convenient for sorting by priority. 1612 SmallVector<Structor, 8> Structors; 1613 for (Value *O : InitList->operands()) { 1614 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1615 if (!CS) continue; // Malformed. 1616 if (CS->getOperand(1)->isNullValue()) 1617 break; // Found a null terminator, skip the rest. 1618 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1619 if (!Priority) continue; // Malformed. 1620 Structors.push_back(Structor()); 1621 Structor &S = Structors.back(); 1622 S.Priority = Priority->getLimitedValue(65535); 1623 S.Func = CS->getOperand(1); 1624 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1625 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1626 } 1627 1628 // Emit the function pointers in the target-specific order 1629 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1630 std::stable_sort(Structors.begin(), Structors.end(), 1631 [](const Structor &L, 1632 const Structor &R) { return L.Priority < R.Priority; }); 1633 for (Structor &S : Structors) { 1634 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1635 const MCSymbol *KeySym = nullptr; 1636 if (GlobalValue *GV = S.ComdatKey) { 1637 if (GV->hasAvailableExternallyLinkage()) 1638 // If the associated variable is available_externally, some other TU 1639 // will provide its dynamic initializer. 1640 continue; 1641 1642 KeySym = getSymbol(GV); 1643 } 1644 MCSection *OutputSection = 1645 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1646 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1647 OutStreamer->SwitchSection(OutputSection); 1648 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1649 EmitAlignment(Align); 1650 EmitXXStructor(DL, S.Func); 1651 } 1652 } 1653 1654 void AsmPrinter::EmitModuleIdents(Module &M) { 1655 if (!MAI->hasIdentDirective()) 1656 return; 1657 1658 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1659 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1660 const MDNode *N = NMD->getOperand(i); 1661 assert(N->getNumOperands() == 1 && 1662 "llvm.ident metadata entry can have only one operand"); 1663 const MDString *S = cast<MDString>(N->getOperand(0)); 1664 OutStreamer->EmitIdent(S->getString()); 1665 } 1666 } 1667 } 1668 1669 //===--------------------------------------------------------------------===// 1670 // Emission and print routines 1671 // 1672 1673 /// EmitInt8 - Emit a byte directive and value. 1674 /// 1675 void AsmPrinter::EmitInt8(int Value) const { 1676 OutStreamer->EmitIntValue(Value, 1); 1677 } 1678 1679 /// EmitInt16 - Emit a short directive and value. 1680 /// 1681 void AsmPrinter::EmitInt16(int Value) const { 1682 OutStreamer->EmitIntValue(Value, 2); 1683 } 1684 1685 /// EmitInt32 - Emit a long directive and value. 1686 /// 1687 void AsmPrinter::EmitInt32(int Value) const { 1688 OutStreamer->EmitIntValue(Value, 4); 1689 } 1690 1691 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1692 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1693 /// .set if it avoids relocations. 1694 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1695 unsigned Size) const { 1696 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1697 } 1698 1699 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1700 /// where the size in bytes of the directive is specified by Size and Label 1701 /// specifies the label. This implicitly uses .set if it is available. 1702 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1703 unsigned Size, 1704 bool IsSectionRelative) const { 1705 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1706 OutStreamer->EmitCOFFSecRel32(Label); 1707 return; 1708 } 1709 1710 // Emit Label+Offset (or just Label if Offset is zero) 1711 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1712 if (Offset) 1713 Expr = MCBinaryExpr::createAdd( 1714 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1715 1716 OutStreamer->EmitValue(Expr, Size); 1717 } 1718 1719 //===----------------------------------------------------------------------===// 1720 1721 // EmitAlignment - Emit an alignment directive to the specified power of 1722 // two boundary. For example, if you pass in 3 here, you will get an 8 1723 // byte alignment. If a global value is specified, and if that global has 1724 // an explicit alignment requested, it will override the alignment request 1725 // if required for correctness. 1726 // 1727 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1728 if (GV) 1729 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1730 1731 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1732 1733 assert(NumBits < 1734 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1735 "undefined behavior"); 1736 if (getCurrentSection()->getKind().isText()) 1737 OutStreamer->EmitCodeAlignment(1u << NumBits); 1738 else 1739 OutStreamer->EmitValueToAlignment(1u << NumBits); 1740 } 1741 1742 //===----------------------------------------------------------------------===// 1743 // Constant emission. 1744 //===----------------------------------------------------------------------===// 1745 1746 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1747 MCContext &Ctx = OutContext; 1748 1749 if (CV->isNullValue() || isa<UndefValue>(CV)) 1750 return MCConstantExpr::create(0, Ctx); 1751 1752 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1753 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1754 1755 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1756 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1757 1758 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1759 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1760 1761 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1762 if (!CE) { 1763 llvm_unreachable("Unknown constant value to lower!"); 1764 } 1765 1766 if (const MCExpr *RelocExpr 1767 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1768 return RelocExpr; 1769 1770 switch (CE->getOpcode()) { 1771 default: 1772 // If the code isn't optimized, there may be outstanding folding 1773 // opportunities. Attempt to fold the expression using DataLayout as a 1774 // last resort before giving up. 1775 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout())) 1776 if (C != CE) 1777 return lowerConstant(C); 1778 1779 // Otherwise report the problem to the user. 1780 { 1781 std::string S; 1782 raw_string_ostream OS(S); 1783 OS << "Unsupported expression in static initializer: "; 1784 CE->printAsOperand(OS, /*PrintType=*/false, 1785 !MF ? nullptr : MF->getFunction()->getParent()); 1786 report_fatal_error(OS.str()); 1787 } 1788 case Instruction::GetElementPtr: { 1789 // Generate a symbolic expression for the byte address 1790 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1791 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1792 1793 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1794 if (!OffsetAI) 1795 return Base; 1796 1797 int64_t Offset = OffsetAI.getSExtValue(); 1798 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1799 Ctx); 1800 } 1801 1802 case Instruction::Trunc: 1803 // We emit the value and depend on the assembler to truncate the generated 1804 // expression properly. This is important for differences between 1805 // blockaddress labels. Since the two labels are in the same function, it 1806 // is reasonable to treat their delta as a 32-bit value. 1807 // FALL THROUGH. 1808 case Instruction::BitCast: 1809 return lowerConstant(CE->getOperand(0)); 1810 1811 case Instruction::IntToPtr: { 1812 const DataLayout &DL = getDataLayout(); 1813 1814 // Handle casts to pointers by changing them into casts to the appropriate 1815 // integer type. This promotes constant folding and simplifies this code. 1816 Constant *Op = CE->getOperand(0); 1817 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1818 false/*ZExt*/); 1819 return lowerConstant(Op); 1820 } 1821 1822 case Instruction::PtrToInt: { 1823 const DataLayout &DL = getDataLayout(); 1824 1825 // Support only foldable casts to/from pointers that can be eliminated by 1826 // changing the pointer to the appropriately sized integer type. 1827 Constant *Op = CE->getOperand(0); 1828 Type *Ty = CE->getType(); 1829 1830 const MCExpr *OpExpr = lowerConstant(Op); 1831 1832 // We can emit the pointer value into this slot if the slot is an 1833 // integer slot equal to the size of the pointer. 1834 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1835 return OpExpr; 1836 1837 // Otherwise the pointer is smaller than the resultant integer, mask off 1838 // the high bits so we are sure to get a proper truncation if the input is 1839 // a constant expr. 1840 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1841 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1842 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1843 } 1844 1845 // The MC library also has a right-shift operator, but it isn't consistently 1846 // signed or unsigned between different targets. 1847 case Instruction::Add: 1848 case Instruction::Sub: 1849 case Instruction::Mul: 1850 case Instruction::SDiv: 1851 case Instruction::SRem: 1852 case Instruction::Shl: 1853 case Instruction::And: 1854 case Instruction::Or: 1855 case Instruction::Xor: { 1856 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1857 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1858 switch (CE->getOpcode()) { 1859 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1860 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1861 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1862 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1863 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1864 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1865 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1866 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1867 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1868 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1869 } 1870 } 1871 } 1872 } 1873 1874 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1875 AsmPrinter &AP, 1876 const Constant *BaseCV = nullptr, 1877 uint64_t Offset = 0); 1878 1879 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1880 1881 /// isRepeatedByteSequence - Determine whether the given value is 1882 /// composed of a repeated sequence of identical bytes and return the 1883 /// byte value. If it is not a repeated sequence, return -1. 1884 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1885 StringRef Data = V->getRawDataValues(); 1886 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1887 char C = Data[0]; 1888 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1889 if (Data[i] != C) return -1; 1890 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1891 } 1892 1893 1894 /// isRepeatedByteSequence - Determine whether the given value is 1895 /// composed of a repeated sequence of identical bytes and return the 1896 /// byte value. If it is not a repeated sequence, return -1. 1897 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1898 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1899 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1900 assert(Size % 8 == 0); 1901 1902 // Extend the element to take zero padding into account. 1903 APInt Value = CI->getValue().zextOrSelf(Size); 1904 if (!Value.isSplat(8)) 1905 return -1; 1906 1907 return Value.zextOrTrunc(8).getZExtValue(); 1908 } 1909 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1910 // Make sure all array elements are sequences of the same repeated 1911 // byte. 1912 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1913 Constant *Op0 = CA->getOperand(0); 1914 int Byte = isRepeatedByteSequence(Op0, DL); 1915 if (Byte == -1) 1916 return -1; 1917 1918 // All array elements must be equal. 1919 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1920 if (CA->getOperand(i) != Op0) 1921 return -1; 1922 return Byte; 1923 } 1924 1925 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1926 return isRepeatedByteSequence(CDS); 1927 1928 return -1; 1929 } 1930 1931 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1932 const ConstantDataSequential *CDS, 1933 AsmPrinter &AP) { 1934 1935 // See if we can aggregate this into a .fill, if so, emit it as such. 1936 int Value = isRepeatedByteSequence(CDS, DL); 1937 if (Value != -1) { 1938 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1939 // Don't emit a 1-byte object as a .fill. 1940 if (Bytes > 1) 1941 return AP.OutStreamer->EmitFill(Bytes, Value); 1942 } 1943 1944 // If this can be emitted with .ascii/.asciz, emit it as such. 1945 if (CDS->isString()) 1946 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1947 1948 // Otherwise, emit the values in successive locations. 1949 unsigned ElementByteSize = CDS->getElementByteSize(); 1950 if (isa<IntegerType>(CDS->getElementType())) { 1951 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1952 if (AP.isVerbose()) 1953 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1954 CDS->getElementAsInteger(i)); 1955 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1956 ElementByteSize); 1957 } 1958 } else { 1959 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 1960 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 1961 } 1962 1963 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1964 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1965 CDS->getNumElements(); 1966 if (unsigned Padding = Size - EmittedSize) 1967 AP.OutStreamer->EmitZeros(Padding); 1968 1969 } 1970 1971 static void emitGlobalConstantArray(const DataLayout &DL, 1972 const ConstantArray *CA, AsmPrinter &AP, 1973 const Constant *BaseCV, uint64_t Offset) { 1974 // See if we can aggregate some values. Make sure it can be 1975 // represented as a series of bytes of the constant value. 1976 int Value = isRepeatedByteSequence(CA, DL); 1977 1978 if (Value != -1) { 1979 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1980 AP.OutStreamer->EmitFill(Bytes, Value); 1981 } 1982 else { 1983 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1984 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 1985 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1986 } 1987 } 1988 } 1989 1990 static void emitGlobalConstantVector(const DataLayout &DL, 1991 const ConstantVector *CV, AsmPrinter &AP) { 1992 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1993 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 1994 1995 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1996 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1997 CV->getType()->getNumElements(); 1998 if (unsigned Padding = Size - EmittedSize) 1999 AP.OutStreamer->EmitZeros(Padding); 2000 } 2001 2002 static void emitGlobalConstantStruct(const DataLayout &DL, 2003 const ConstantStruct *CS, AsmPrinter &AP, 2004 const Constant *BaseCV, uint64_t Offset) { 2005 // Print the fields in successive locations. Pad to align if needed! 2006 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2007 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2008 uint64_t SizeSoFar = 0; 2009 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2010 const Constant *Field = CS->getOperand(i); 2011 2012 // Print the actual field value. 2013 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2014 2015 // Check if padding is needed and insert one or more 0s. 2016 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2017 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2018 - Layout->getElementOffset(i)) - FieldSize; 2019 SizeSoFar += FieldSize + PadSize; 2020 2021 // Insert padding - this may include padding to increase the size of the 2022 // current field up to the ABI size (if the struct is not packed) as well 2023 // as padding to ensure that the next field starts at the right offset. 2024 AP.OutStreamer->EmitZeros(PadSize); 2025 } 2026 assert(SizeSoFar == Layout->getSizeInBytes() && 2027 "Layout of constant struct may be incorrect!"); 2028 } 2029 2030 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2031 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2032 2033 // First print a comment with what we think the original floating-point value 2034 // should have been. 2035 if (AP.isVerbose()) { 2036 SmallString<8> StrVal; 2037 CFP->getValueAPF().toString(StrVal); 2038 2039 if (CFP->getType()) 2040 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2041 else 2042 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2043 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2044 } 2045 2046 // Now iterate through the APInt chunks, emitting them in endian-correct 2047 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2048 // floats). 2049 unsigned NumBytes = API.getBitWidth() / 8; 2050 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2051 const uint64_t *p = API.getRawData(); 2052 2053 // PPC's long double has odd notions of endianness compared to how LLVM 2054 // handles it: p[0] goes first for *big* endian on PPC. 2055 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2056 int Chunk = API.getNumWords() - 1; 2057 2058 if (TrailingBytes) 2059 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2060 2061 for (; Chunk >= 0; --Chunk) 2062 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2063 } else { 2064 unsigned Chunk; 2065 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2066 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2067 2068 if (TrailingBytes) 2069 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2070 } 2071 2072 // Emit the tail padding for the long double. 2073 const DataLayout &DL = AP.getDataLayout(); 2074 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2075 DL.getTypeStoreSize(CFP->getType())); 2076 } 2077 2078 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2079 const DataLayout &DL = AP.getDataLayout(); 2080 unsigned BitWidth = CI->getBitWidth(); 2081 2082 // Copy the value as we may massage the layout for constants whose bit width 2083 // is not a multiple of 64-bits. 2084 APInt Realigned(CI->getValue()); 2085 uint64_t ExtraBits = 0; 2086 unsigned ExtraBitsSize = BitWidth & 63; 2087 2088 if (ExtraBitsSize) { 2089 // The bit width of the data is not a multiple of 64-bits. 2090 // The extra bits are expected to be at the end of the chunk of the memory. 2091 // Little endian: 2092 // * Nothing to be done, just record the extra bits to emit. 2093 // Big endian: 2094 // * Record the extra bits to emit. 2095 // * Realign the raw data to emit the chunks of 64-bits. 2096 if (DL.isBigEndian()) { 2097 // Basically the structure of the raw data is a chunk of 64-bits cells: 2098 // 0 1 BitWidth / 64 2099 // [chunk1][chunk2] ... [chunkN]. 2100 // The most significant chunk is chunkN and it should be emitted first. 2101 // However, due to the alignment issue chunkN contains useless bits. 2102 // Realign the chunks so that they contain only useless information: 2103 // ExtraBits 0 1 (BitWidth / 64) - 1 2104 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2105 ExtraBits = Realigned.getRawData()[0] & 2106 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2107 Realigned = Realigned.lshr(ExtraBitsSize); 2108 } else 2109 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2110 } 2111 2112 // We don't expect assemblers to support integer data directives 2113 // for more than 64 bits, so we emit the data in at most 64-bit 2114 // quantities at a time. 2115 const uint64_t *RawData = Realigned.getRawData(); 2116 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2117 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2118 AP.OutStreamer->EmitIntValue(Val, 8); 2119 } 2120 2121 if (ExtraBitsSize) { 2122 // Emit the extra bits after the 64-bits chunks. 2123 2124 // Emit a directive that fills the expected size. 2125 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2126 Size -= (BitWidth / 64) * 8; 2127 assert(Size && Size * 8 >= ExtraBitsSize && 2128 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2129 == ExtraBits && "Directive too small for extra bits."); 2130 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2131 } 2132 } 2133 2134 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2135 /// equivalent global, by a target specific GOT pc relative access to the 2136 /// final symbol. 2137 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2138 const Constant *BaseCst, 2139 uint64_t Offset) { 2140 // The global @foo below illustrates a global that uses a got equivalent. 2141 // 2142 // @bar = global i32 42 2143 // @gotequiv = private unnamed_addr constant i32* @bar 2144 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2145 // i64 ptrtoint (i32* @foo to i64)) 2146 // to i32) 2147 // 2148 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2149 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2150 // form: 2151 // 2152 // foo = cstexpr, where 2153 // cstexpr := <gotequiv> - "." + <cst> 2154 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2155 // 2156 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2157 // 2158 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2159 // gotpcrelcst := <offset from @foo base> + <cst> 2160 // 2161 MCValue MV; 2162 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2163 return; 2164 const MCSymbolRefExpr *SymA = MV.getSymA(); 2165 if (!SymA) 2166 return; 2167 2168 // Check that GOT equivalent symbol is cached. 2169 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2170 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2171 return; 2172 2173 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2174 if (!BaseGV) 2175 return; 2176 2177 // Check for a valid base symbol 2178 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2179 const MCSymbolRefExpr *SymB = MV.getSymB(); 2180 2181 if (!SymB || BaseSym != &SymB->getSymbol()) 2182 return; 2183 2184 // Make sure to match: 2185 // 2186 // gotpcrelcst := <offset from @foo base> + <cst> 2187 // 2188 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2189 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2190 // if the target knows how to encode it. 2191 // 2192 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2193 if (GOTPCRelCst < 0) 2194 return; 2195 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2196 return; 2197 2198 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2199 // 2200 // bar: 2201 // .long 42 2202 // gotequiv: 2203 // .quad bar 2204 // foo: 2205 // .long gotequiv - "." + <cst> 2206 // 2207 // is replaced by the target specific equivalent to: 2208 // 2209 // bar: 2210 // .long 42 2211 // foo: 2212 // .long bar@GOTPCREL+<gotpcrelcst> 2213 // 2214 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2215 const GlobalVariable *GV = Result.first; 2216 int NumUses = (int)Result.second; 2217 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2218 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2219 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2220 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2221 2222 // Update GOT equivalent usage information 2223 --NumUses; 2224 if (NumUses >= 0) 2225 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2226 } 2227 2228 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2229 AsmPrinter &AP, const Constant *BaseCV, 2230 uint64_t Offset) { 2231 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2232 2233 // Globals with sub-elements such as combinations of arrays and structs 2234 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2235 // constant symbol base and the current position with BaseCV and Offset. 2236 if (!BaseCV && CV->hasOneUse()) 2237 BaseCV = dyn_cast<Constant>(CV->user_back()); 2238 2239 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2240 return AP.OutStreamer->EmitZeros(Size); 2241 2242 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2243 switch (Size) { 2244 case 1: 2245 case 2: 2246 case 4: 2247 case 8: 2248 if (AP.isVerbose()) 2249 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2250 CI->getZExtValue()); 2251 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2252 return; 2253 default: 2254 emitGlobalConstantLargeInt(CI, AP); 2255 return; 2256 } 2257 } 2258 2259 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2260 return emitGlobalConstantFP(CFP, AP); 2261 2262 if (isa<ConstantPointerNull>(CV)) { 2263 AP.OutStreamer->EmitIntValue(0, Size); 2264 return; 2265 } 2266 2267 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2268 return emitGlobalConstantDataSequential(DL, CDS, AP); 2269 2270 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2271 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2272 2273 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2274 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2275 2276 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2277 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2278 // vectors). 2279 if (CE->getOpcode() == Instruction::BitCast) 2280 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2281 2282 if (Size > 8) { 2283 // If the constant expression's size is greater than 64-bits, then we have 2284 // to emit the value in chunks. Try to constant fold the value and emit it 2285 // that way. 2286 Constant *New = ConstantFoldConstantExpression(CE, DL); 2287 if (New && New != CE) 2288 return emitGlobalConstantImpl(DL, New, AP); 2289 } 2290 } 2291 2292 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2293 return emitGlobalConstantVector(DL, V, AP); 2294 2295 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2296 // thread the streamer with EmitValue. 2297 const MCExpr *ME = AP.lowerConstant(CV); 2298 2299 // Since lowerConstant already folded and got rid of all IR pointer and 2300 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2301 // directly. 2302 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2303 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2304 2305 AP.OutStreamer->EmitValue(ME, Size); 2306 } 2307 2308 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2309 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2310 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2311 if (Size) 2312 emitGlobalConstantImpl(DL, CV, *this); 2313 else if (MAI->hasSubsectionsViaSymbols()) { 2314 // If the global has zero size, emit a single byte so that two labels don't 2315 // look like they are at the same location. 2316 OutStreamer->EmitIntValue(0, 1); 2317 } 2318 } 2319 2320 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2321 // Target doesn't support this yet! 2322 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2323 } 2324 2325 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2326 if (Offset > 0) 2327 OS << '+' << Offset; 2328 else if (Offset < 0) 2329 OS << Offset; 2330 } 2331 2332 //===----------------------------------------------------------------------===// 2333 // Symbol Lowering Routines. 2334 //===----------------------------------------------------------------------===// 2335 2336 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2337 return OutContext.createTempSymbol(Name, true); 2338 } 2339 2340 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2341 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2342 } 2343 2344 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2345 return MMI->getAddrLabelSymbol(BB); 2346 } 2347 2348 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2349 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2350 const DataLayout &DL = getDataLayout(); 2351 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2352 "CPI" + Twine(getFunctionNumber()) + "_" + 2353 Twine(CPID)); 2354 } 2355 2356 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2357 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2358 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2359 } 2360 2361 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2362 /// FIXME: privatize to AsmPrinter. 2363 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2364 const DataLayout &DL = getDataLayout(); 2365 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2366 Twine(getFunctionNumber()) + "_" + 2367 Twine(UID) + "_set_" + Twine(MBBID)); 2368 } 2369 2370 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2371 StringRef Suffix) const { 2372 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2373 TM); 2374 } 2375 2376 /// Return the MCSymbol for the specified ExternalSymbol. 2377 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2378 SmallString<60> NameStr; 2379 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2380 return OutContext.getOrCreateSymbol(NameStr); 2381 } 2382 2383 2384 2385 /// PrintParentLoopComment - Print comments about parent loops of this one. 2386 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2387 unsigned FunctionNumber) { 2388 if (!Loop) return; 2389 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2390 OS.indent(Loop->getLoopDepth()*2) 2391 << "Parent Loop BB" << FunctionNumber << "_" 2392 << Loop->getHeader()->getNumber() 2393 << " Depth=" << Loop->getLoopDepth() << '\n'; 2394 } 2395 2396 2397 /// PrintChildLoopComment - Print comments about child loops within 2398 /// the loop for this basic block, with nesting. 2399 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2400 unsigned FunctionNumber) { 2401 // Add child loop information 2402 for (const MachineLoop *CL : *Loop) { 2403 OS.indent(CL->getLoopDepth()*2) 2404 << "Child Loop BB" << FunctionNumber << "_" 2405 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2406 << '\n'; 2407 PrintChildLoopComment(OS, CL, FunctionNumber); 2408 } 2409 } 2410 2411 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2412 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2413 const MachineLoopInfo *LI, 2414 const AsmPrinter &AP) { 2415 // Add loop depth information 2416 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2417 if (!Loop) return; 2418 2419 MachineBasicBlock *Header = Loop->getHeader(); 2420 assert(Header && "No header for loop"); 2421 2422 // If this block is not a loop header, just print out what is the loop header 2423 // and return. 2424 if (Header != &MBB) { 2425 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2426 Twine(AP.getFunctionNumber())+"_" + 2427 Twine(Loop->getHeader()->getNumber())+ 2428 " Depth="+Twine(Loop->getLoopDepth())); 2429 return; 2430 } 2431 2432 // Otherwise, it is a loop header. Print out information about child and 2433 // parent loops. 2434 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2435 2436 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2437 2438 OS << "=>"; 2439 OS.indent(Loop->getLoopDepth()*2-2); 2440 2441 OS << "This "; 2442 if (Loop->empty()) 2443 OS << "Inner "; 2444 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2445 2446 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2447 } 2448 2449 2450 /// EmitBasicBlockStart - This method prints the label for the specified 2451 /// MachineBasicBlock, an alignment (if present) and a comment describing 2452 /// it if appropriate. 2453 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2454 // End the previous funclet and start a new one. 2455 if (MBB.isEHFuncletEntry()) { 2456 for (const HandlerInfo &HI : Handlers) { 2457 HI.Handler->endFunclet(); 2458 HI.Handler->beginFunclet(MBB); 2459 } 2460 } 2461 2462 // Emit an alignment directive for this block, if needed. 2463 if (unsigned Align = MBB.getAlignment()) 2464 EmitAlignment(Align); 2465 2466 // If the block has its address taken, emit any labels that were used to 2467 // reference the block. It is possible that there is more than one label 2468 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2469 // the references were generated. 2470 if (MBB.hasAddressTaken()) { 2471 const BasicBlock *BB = MBB.getBasicBlock(); 2472 if (isVerbose()) 2473 OutStreamer->AddComment("Block address taken"); 2474 2475 // MBBs can have their address taken as part of CodeGen without having 2476 // their corresponding BB's address taken in IR 2477 if (BB->hasAddressTaken()) 2478 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2479 OutStreamer->EmitLabel(Sym); 2480 } 2481 2482 // Print some verbose block comments. 2483 if (isVerbose()) { 2484 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2485 if (BB->hasName()) { 2486 BB->printAsOperand(OutStreamer->GetCommentOS(), 2487 /*PrintType=*/false, BB->getModule()); 2488 OutStreamer->GetCommentOS() << '\n'; 2489 } 2490 } 2491 emitBasicBlockLoopComments(MBB, LI, *this); 2492 } 2493 2494 // Print the main label for the block. 2495 if (MBB.pred_empty() || 2496 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2497 if (isVerbose()) { 2498 // NOTE: Want this comment at start of line, don't emit with AddComment. 2499 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2500 } 2501 } else { 2502 OutStreamer->EmitLabel(MBB.getSymbol()); 2503 } 2504 } 2505 2506 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2507 bool IsDefinition) const { 2508 MCSymbolAttr Attr = MCSA_Invalid; 2509 2510 switch (Visibility) { 2511 default: break; 2512 case GlobalValue::HiddenVisibility: 2513 if (IsDefinition) 2514 Attr = MAI->getHiddenVisibilityAttr(); 2515 else 2516 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2517 break; 2518 case GlobalValue::ProtectedVisibility: 2519 Attr = MAI->getProtectedVisibilityAttr(); 2520 break; 2521 } 2522 2523 if (Attr != MCSA_Invalid) 2524 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2525 } 2526 2527 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2528 /// exactly one predecessor and the control transfer mechanism between 2529 /// the predecessor and this block is a fall-through. 2530 bool AsmPrinter:: 2531 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2532 // If this is a landing pad, it isn't a fall through. If it has no preds, 2533 // then nothing falls through to it. 2534 if (MBB->isEHPad() || MBB->pred_empty()) 2535 return false; 2536 2537 // If there isn't exactly one predecessor, it can't be a fall through. 2538 if (MBB->pred_size() > 1) 2539 return false; 2540 2541 // The predecessor has to be immediately before this block. 2542 MachineBasicBlock *Pred = *MBB->pred_begin(); 2543 if (!Pred->isLayoutSuccessor(MBB)) 2544 return false; 2545 2546 // If the block is completely empty, then it definitely does fall through. 2547 if (Pred->empty()) 2548 return true; 2549 2550 // Check the terminators in the previous blocks 2551 for (const auto &MI : Pred->terminators()) { 2552 // If it is not a simple branch, we are in a table somewhere. 2553 if (!MI.isBranch() || MI.isIndirectBranch()) 2554 return false; 2555 2556 // If we are the operands of one of the branches, this is not a fall 2557 // through. Note that targets with delay slots will usually bundle 2558 // terminators with the delay slot instruction. 2559 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2560 if (OP->isJTI()) 2561 return false; 2562 if (OP->isMBB() && OP->getMBB() == MBB) 2563 return false; 2564 } 2565 } 2566 2567 return true; 2568 } 2569 2570 2571 2572 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2573 if (!S.usesMetadata()) 2574 return nullptr; 2575 2576 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2577 " stackmap formats, please see the documentation for a description of" 2578 " the default format. If you really need a custom serialized format," 2579 " please file a bug"); 2580 2581 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2582 gcp_map_type::iterator GCPI = GCMap.find(&S); 2583 if (GCPI != GCMap.end()) 2584 return GCPI->second.get(); 2585 2586 const char *Name = S.getName().c_str(); 2587 2588 for (GCMetadataPrinterRegistry::iterator 2589 I = GCMetadataPrinterRegistry::begin(), 2590 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2591 if (strcmp(Name, I->getName()) == 0) { 2592 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2593 GMP->S = &S; 2594 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2595 return IterBool.first->second.get(); 2596 } 2597 2598 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2599 } 2600 2601 /// Pin vtable to this file. 2602 AsmPrinterHandler::~AsmPrinterHandler() {} 2603 2604 void AsmPrinterHandler::markFunctionEnd() {} 2605