1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/RemarkStreamer.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCSectionXCOFF.h" 95 #include "llvm/MC/MCStreamer.h" 96 #include "llvm/MC/MCSubtargetInfo.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/MC/MCSymbolELF.h" 99 #include "llvm/MC/MCSymbolXCOFF.h" 100 #include "llvm/MC/MCTargetOptions.h" 101 #include "llvm/MC/MCValue.h" 102 #include "llvm/MC/SectionKind.h" 103 #include "llvm/Pass.h" 104 #include "llvm/Remarks/Remark.h" 105 #include "llvm/Remarks/RemarkFormat.h" 106 #include "llvm/Remarks/RemarkStringTable.h" 107 #include "llvm/Support/Casting.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Compiler.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/Format.h" 112 #include "llvm/Support/MathExtras.h" 113 #include "llvm/Support/Path.h" 114 #include "llvm/Support/TargetRegistry.h" 115 #include "llvm/Support/Timer.h" 116 #include "llvm/Support/raw_ostream.h" 117 #include "llvm/Target/TargetLoweringObjectFile.h" 118 #include "llvm/Target/TargetMachine.h" 119 #include "llvm/Target/TargetOptions.h" 120 #include <algorithm> 121 #include <cassert> 122 #include <cinttypes> 123 #include <cstdint> 124 #include <iterator> 125 #include <limits> 126 #include <memory> 127 #include <string> 128 #include <utility> 129 #include <vector> 130 131 using namespace llvm; 132 133 #define DEBUG_TYPE "asm-printer" 134 135 static const char *const DWARFGroupName = "dwarf"; 136 static const char *const DWARFGroupDescription = "DWARF Emission"; 137 static const char *const DbgTimerName = "emit"; 138 static const char *const DbgTimerDescription = "Debug Info Emission"; 139 static const char *const EHTimerName = "write_exception"; 140 static const char *const EHTimerDescription = "DWARF Exception Writer"; 141 static const char *const CFGuardName = "Control Flow Guard"; 142 static const char *const CFGuardDescription = "Control Flow Guard"; 143 static const char *const CodeViewLineTablesGroupName = "linetables"; 144 static const char *const CodeViewLineTablesGroupDescription = 145 "CodeView Line Tables"; 146 147 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 148 149 char AsmPrinter::ID = 0; 150 151 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 152 153 static gcp_map_type &getGCMap(void *&P) { 154 if (!P) 155 P = new gcp_map_type(); 156 return *(gcp_map_type*)P; 157 } 158 159 /// getGVAlignment - Return the alignment to use for the specified global 160 /// value. This rounds up to the preferred alignment if possible and legal. 161 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL, 162 Align InAlign) { 163 Align Alignment; 164 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 165 Alignment = Align(DL.getPreferredAlignment(GVar)); 166 167 // If InAlign is specified, round it to it. 168 if (InAlign > Alignment) 169 Alignment = InAlign; 170 171 // If the GV has a specified alignment, take it into account. 172 const MaybeAlign GVAlign(GV->getAlignment()); 173 if (!GVAlign) 174 return Alignment; 175 176 assert(GVAlign && "GVAlign must be set"); 177 178 // If the GVAlign is larger than NumBits, or if we are required to obey 179 // NumBits because the GV has an assigned section, obey it. 180 if (*GVAlign > Alignment || GV->hasSection()) 181 Alignment = *GVAlign; 182 return Alignment; 183 } 184 185 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 186 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 187 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 188 VerboseAsm = OutStreamer->isVerboseAsm(); 189 } 190 191 AsmPrinter::~AsmPrinter() { 192 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 193 194 if (GCMetadataPrinters) { 195 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 196 197 delete &GCMap; 198 GCMetadataPrinters = nullptr; 199 } 200 } 201 202 bool AsmPrinter::isPositionIndependent() const { 203 return TM.isPositionIndependent(); 204 } 205 206 /// getFunctionNumber - Return a unique ID for the current function. 207 unsigned AsmPrinter::getFunctionNumber() const { 208 return MF->getFunctionNumber(); 209 } 210 211 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 212 return *TM.getObjFileLowering(); 213 } 214 215 const DataLayout &AsmPrinter::getDataLayout() const { 216 return MMI->getModule()->getDataLayout(); 217 } 218 219 // Do not use the cached DataLayout because some client use it without a Module 220 // (dsymutil, llvm-dwarfdump). 221 unsigned AsmPrinter::getPointerSize() const { 222 return TM.getPointerSize(0); // FIXME: Default address space 223 } 224 225 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 226 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 227 return MF->getSubtarget<MCSubtargetInfo>(); 228 } 229 230 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 231 S.EmitInstruction(Inst, getSubtargetInfo()); 232 } 233 234 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 235 assert(DD && "Dwarf debug file is not defined."); 236 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 237 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 238 } 239 240 /// getCurrentSection() - Return the current section we are emitting to. 241 const MCSection *AsmPrinter::getCurrentSection() const { 242 return OutStreamer->getCurrentSectionOnly(); 243 } 244 245 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 246 AU.setPreservesAll(); 247 MachineFunctionPass::getAnalysisUsage(AU); 248 AU.addRequired<MachineModuleInfoWrapperPass>(); 249 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 250 AU.addRequired<GCModuleInfo>(); 251 } 252 253 bool AsmPrinter::doInitialization(Module &M) { 254 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 255 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 256 257 // Initialize TargetLoweringObjectFile. 258 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 259 .Initialize(OutContext, TM); 260 261 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 262 .getModuleMetadata(M); 263 264 OutStreamer->InitSections(false); 265 266 // Emit the version-min deployment target directive if needed. 267 // 268 // FIXME: If we end up with a collection of these sorts of Darwin-specific 269 // or ELF-specific things, it may make sense to have a platform helper class 270 // that will work with the target helper class. For now keep it here, as the 271 // alternative is duplicated code in each of the target asm printers that 272 // use the directive, where it would need the same conditionalization 273 // anyway. 274 const Triple &Target = TM.getTargetTriple(); 275 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 276 277 // Allow the target to emit any magic that it wants at the start of the file. 278 EmitStartOfAsmFile(M); 279 280 // Very minimal debug info. It is ignored if we emit actual debug info. If we 281 // don't, this at least helps the user find where a global came from. 282 if (MAI->hasSingleParameterDotFile()) { 283 // .file "foo.c" 284 OutStreamer->EmitFileDirective( 285 llvm::sys::path::filename(M.getSourceFileName())); 286 } 287 288 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 289 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 290 for (auto &I : *MI) 291 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 292 MP->beginAssembly(M, *MI, *this); 293 294 // Emit module-level inline asm if it exists. 295 if (!M.getModuleInlineAsm().empty()) { 296 // We're at the module level. Construct MCSubtarget from the default CPU 297 // and target triple. 298 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 299 TM.getTargetTriple().str(), TM.getTargetCPU(), 300 TM.getTargetFeatureString())); 301 OutStreamer->AddComment("Start of file scope inline assembly"); 302 OutStreamer->AddBlankLine(); 303 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 304 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 305 OutStreamer->AddComment("End of file scope inline assembly"); 306 OutStreamer->AddBlankLine(); 307 } 308 309 if (MAI->doesSupportDebugInformation()) { 310 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 311 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 312 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 313 DbgTimerName, DbgTimerDescription, 314 CodeViewLineTablesGroupName, 315 CodeViewLineTablesGroupDescription); 316 } 317 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 318 DD = new DwarfDebug(this, &M); 319 DD->beginModule(); 320 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 321 DbgTimerDescription, DWARFGroupName, 322 DWARFGroupDescription); 323 } 324 } 325 326 switch (MAI->getExceptionHandlingType()) { 327 case ExceptionHandling::SjLj: 328 case ExceptionHandling::DwarfCFI: 329 case ExceptionHandling::ARM: 330 isCFIMoveForDebugging = true; 331 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 332 break; 333 for (auto &F: M.getFunctionList()) { 334 // If the module contains any function with unwind data, 335 // .eh_frame has to be emitted. 336 // Ignore functions that won't get emitted. 337 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 338 isCFIMoveForDebugging = false; 339 break; 340 } 341 } 342 break; 343 default: 344 isCFIMoveForDebugging = false; 345 break; 346 } 347 348 EHStreamer *ES = nullptr; 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::None: 351 break; 352 case ExceptionHandling::SjLj: 353 case ExceptionHandling::DwarfCFI: 354 ES = new DwarfCFIException(this); 355 break; 356 case ExceptionHandling::ARM: 357 ES = new ARMException(this); 358 break; 359 case ExceptionHandling::WinEH: 360 switch (MAI->getWinEHEncodingType()) { 361 default: llvm_unreachable("unsupported unwinding information encoding"); 362 case WinEH::EncodingType::Invalid: 363 break; 364 case WinEH::EncodingType::X86: 365 case WinEH::EncodingType::Itanium: 366 ES = new WinException(this); 367 break; 368 } 369 break; 370 case ExceptionHandling::Wasm: 371 ES = new WasmException(this); 372 break; 373 } 374 if (ES) 375 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 376 EHTimerDescription, DWARFGroupName, 377 DWARFGroupDescription); 378 379 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 380 if (mdconst::extract_or_null<ConstantInt>( 381 MMI->getModule()->getModuleFlag("cfguard"))) 382 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 383 CFGuardDescription, DWARFGroupName, 384 DWARFGroupDescription); 385 return false; 386 } 387 388 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 389 if (!MAI.hasWeakDefCanBeHiddenDirective()) 390 return false; 391 392 return GV->canBeOmittedFromSymbolTable(); 393 } 394 395 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 396 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 397 switch (Linkage) { 398 case GlobalValue::CommonLinkage: 399 case GlobalValue::LinkOnceAnyLinkage: 400 case GlobalValue::LinkOnceODRLinkage: 401 case GlobalValue::WeakAnyLinkage: 402 case GlobalValue::WeakODRLinkage: 403 if (MAI->hasWeakDefDirective()) { 404 // .globl _foo 405 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 406 407 if (!canBeHidden(GV, *MAI)) 408 // .weak_definition _foo 409 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 410 else 411 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 412 } else if (MAI->hasLinkOnceDirective()) { 413 // .globl _foo 414 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 415 //NOTE: linkonce is handled by the section the symbol was assigned to. 416 } else { 417 // .weak _foo 418 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 419 } 420 return; 421 case GlobalValue::ExternalLinkage: 422 // If external, declare as a global symbol: .globl _foo 423 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 424 return; 425 case GlobalValue::PrivateLinkage: 426 return; 427 case GlobalValue::InternalLinkage: 428 if (MAI->hasDotLGloblDirective()) 429 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal); 430 return; 431 case GlobalValue::AppendingLinkage: 432 case GlobalValue::AvailableExternallyLinkage: 433 case GlobalValue::ExternalWeakLinkage: 434 llvm_unreachable("Should never emit this"); 435 } 436 llvm_unreachable("Unknown linkage type!"); 437 } 438 439 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 440 const GlobalValue *GV) const { 441 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 442 } 443 444 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 445 return TM.getSymbol(GV); 446 } 447 448 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 449 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 450 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 451 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 452 "No emulated TLS variables in the common section"); 453 454 // Never emit TLS variable xyz in emulated TLS model. 455 // The initialization value is in __emutls_t.xyz instead of xyz. 456 if (IsEmuTLSVar) 457 return; 458 459 if (GV->hasInitializer()) { 460 // Check to see if this is a special global used by LLVM, if so, emit it. 461 if (EmitSpecialLLVMGlobal(GV)) 462 return; 463 464 // Skip the emission of global equivalents. The symbol can be emitted later 465 // on by emitGlobalGOTEquivs in case it turns out to be needed. 466 if (GlobalGOTEquivs.count(getSymbol(GV))) 467 return; 468 469 if (isVerbose()) { 470 // When printing the control variable __emutls_v.*, 471 // we don't need to print the original TLS variable name. 472 GV->printAsOperand(OutStreamer->GetCommentOS(), 473 /*PrintType=*/false, GV->getParent()); 474 OutStreamer->GetCommentOS() << '\n'; 475 } 476 } 477 478 MCSymbol *GVSym = getSymbol(GV); 479 MCSymbol *EmittedSym = GVSym; 480 481 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 482 // attributes. 483 // GV's or GVSym's attributes will be used for the EmittedSym. 484 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 485 486 if (!GV->hasInitializer()) // External globals require no extra code. 487 return; 488 489 GVSym->redefineIfPossible(); 490 if (GVSym->isDefined() || GVSym->isVariable()) 491 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 492 "' is already defined"); 493 494 if (MAI->hasDotTypeDotSizeDirective()) 495 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 496 497 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 498 499 const DataLayout &DL = GV->getParent()->getDataLayout(); 500 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 501 502 // If the alignment is specified, we *must* obey it. Overaligning a global 503 // with a specified alignment is a prompt way to break globals emitted to 504 // sections and expected to be contiguous (e.g. ObjC metadata). 505 const Align Alignment = getGVAlignment(GV, DL); 506 507 for (const HandlerInfo &HI : Handlers) { 508 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 509 HI.TimerGroupName, HI.TimerGroupDescription, 510 TimePassesIsEnabled); 511 HI.Handler->setSymbolSize(GVSym, Size); 512 } 513 514 // Handle common symbols 515 if (GVKind.isCommon()) { 516 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 517 // .comm _foo, 42, 4 518 const bool SupportsAlignment = 519 getObjFileLowering().getCommDirectiveSupportsAlignment(); 520 OutStreamer->EmitCommonSymbol(GVSym, Size, 521 SupportsAlignment ? Alignment.value() : 0); 522 return; 523 } 524 525 // Determine to which section this global should be emitted. 526 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 527 528 // If we have a bss global going to a section that supports the 529 // zerofill directive, do so here. 530 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 531 TheSection->isVirtualSection()) { 532 if (Size == 0) 533 Size = 1; // zerofill of 0 bytes is undefined. 534 EmitLinkage(GV, GVSym); 535 // .zerofill __DATA, __bss, _foo, 400, 5 536 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value()); 537 return; 538 } 539 540 // If this is a BSS local symbol and we are emitting in the BSS 541 // section use .lcomm/.comm directive. 542 if (GVKind.isBSSLocal() && 543 getObjFileLowering().getBSSSection() == TheSection) { 544 if (Size == 0) 545 Size = 1; // .comm Foo, 0 is undefined, avoid it. 546 547 // Use .lcomm only if it supports user-specified alignment. 548 // Otherwise, while it would still be correct to use .lcomm in some 549 // cases (e.g. when Align == 1), the external assembler might enfore 550 // some -unknown- default alignment behavior, which could cause 551 // spurious differences between external and integrated assembler. 552 // Prefer to simply fall back to .local / .comm in this case. 553 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 554 // .lcomm _foo, 42 555 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value()); 556 return; 557 } 558 559 // .local _foo 560 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 561 // .comm _foo, 42, 4 562 const bool SupportsAlignment = 563 getObjFileLowering().getCommDirectiveSupportsAlignment(); 564 OutStreamer->EmitCommonSymbol(GVSym, Size, 565 SupportsAlignment ? Alignment.value() : 0); 566 return; 567 } 568 569 // Handle thread local data for mach-o which requires us to output an 570 // additional structure of data and mangle the original symbol so that we 571 // can reference it later. 572 // 573 // TODO: This should become an "emit thread local global" method on TLOF. 574 // All of this macho specific stuff should be sunk down into TLOFMachO and 575 // stuff like "TLSExtraDataSection" should no longer be part of the parent 576 // TLOF class. This will also make it more obvious that stuff like 577 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 578 // specific code. 579 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 580 // Emit the .tbss symbol 581 MCSymbol *MangSym = 582 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 583 584 if (GVKind.isThreadBSS()) { 585 TheSection = getObjFileLowering().getTLSBSSSection(); 586 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 587 } else if (GVKind.isThreadData()) { 588 OutStreamer->SwitchSection(TheSection); 589 590 EmitAlignment(Alignment, GV); 591 OutStreamer->EmitLabel(MangSym); 592 593 EmitGlobalConstant(GV->getParent()->getDataLayout(), 594 GV->getInitializer()); 595 } 596 597 OutStreamer->AddBlankLine(); 598 599 // Emit the variable struct for the runtime. 600 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 601 602 OutStreamer->SwitchSection(TLVSect); 603 // Emit the linkage here. 604 EmitLinkage(GV, GVSym); 605 OutStreamer->EmitLabel(GVSym); 606 607 // Three pointers in size: 608 // - __tlv_bootstrap - used to make sure support exists 609 // - spare pointer, used when mapped by the runtime 610 // - pointer to mangled symbol above with initializer 611 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 612 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 613 PtrSize); 614 OutStreamer->EmitIntValue(0, PtrSize); 615 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 616 617 OutStreamer->AddBlankLine(); 618 return; 619 } 620 621 MCSymbol *EmittedInitSym = GVSym; 622 623 OutStreamer->SwitchSection(TheSection); 624 625 EmitLinkage(GV, EmittedInitSym); 626 EmitAlignment(Alignment, GV); 627 628 OutStreamer->EmitLabel(EmittedInitSym); 629 630 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 631 632 if (MAI->hasDotTypeDotSizeDirective()) 633 // .size foo, 42 634 OutStreamer->emitELFSize(EmittedInitSym, 635 MCConstantExpr::create(Size, OutContext)); 636 637 OutStreamer->AddBlankLine(); 638 } 639 640 /// Emit the directive and value for debug thread local expression 641 /// 642 /// \p Value - The value to emit. 643 /// \p Size - The size of the integer (in bytes) to emit. 644 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 645 OutStreamer->EmitValue(Value, Size); 646 } 647 648 /// EmitFunctionHeader - This method emits the header for the current 649 /// function. 650 void AsmPrinter::EmitFunctionHeader() { 651 const Function &F = MF->getFunction(); 652 653 if (isVerbose()) 654 OutStreamer->GetCommentOS() 655 << "-- Begin function " 656 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 657 658 // Print out constants referenced by the function 659 EmitConstantPool(); 660 661 // Print the 'header' of function. 662 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 663 EmitVisibility(CurrentFnSym, F.getVisibility()); 664 665 if (MAI->needsFunctionDescriptors() && 666 F.getLinkage() != GlobalValue::InternalLinkage) 667 EmitLinkage(&F, CurrentFnDescSym); 668 669 EmitLinkage(&F, CurrentFnSym); 670 if (MAI->hasFunctionAlignment()) 671 EmitAlignment(MF->getAlignment(), &F); 672 673 if (MAI->hasDotTypeDotSizeDirective()) 674 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 675 676 if (F.hasFnAttribute(Attribute::Cold)) 677 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 678 679 if (isVerbose()) { 680 F.printAsOperand(OutStreamer->GetCommentOS(), 681 /*PrintType=*/false, F.getParent()); 682 OutStreamer->GetCommentOS() << '\n'; 683 } 684 685 // Emit the prefix data. 686 if (F.hasPrefixData()) { 687 if (MAI->hasSubsectionsViaSymbols()) { 688 // Preserving prefix data on platforms which use subsections-via-symbols 689 // is a bit tricky. Here we introduce a symbol for the prefix data 690 // and use the .alt_entry attribute to mark the function's real entry point 691 // as an alternative entry point to the prefix-data symbol. 692 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 693 OutStreamer->EmitLabel(PrefixSym); 694 695 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 696 697 // Emit an .alt_entry directive for the actual function symbol. 698 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 699 } else { 700 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 701 } 702 } 703 704 // Emit the function descriptor. This is a virtual function to allow targets 705 // to emit their specific function descriptor. 706 if (MAI->needsFunctionDescriptors()) 707 EmitFunctionDescriptor(); 708 709 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 710 // their wild and crazy things as required. 711 EmitFunctionEntryLabel(); 712 713 // If the function had address-taken blocks that got deleted, then we have 714 // references to the dangling symbols. Emit them at the start of the function 715 // so that we don't get references to undefined symbols. 716 std::vector<MCSymbol*> DeadBlockSyms; 717 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 718 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 719 OutStreamer->AddComment("Address taken block that was later removed"); 720 OutStreamer->EmitLabel(DeadBlockSyms[i]); 721 } 722 723 if (CurrentFnBegin) { 724 if (MAI->useAssignmentForEHBegin()) { 725 MCSymbol *CurPos = OutContext.createTempSymbol(); 726 OutStreamer->EmitLabel(CurPos); 727 OutStreamer->EmitAssignment(CurrentFnBegin, 728 MCSymbolRefExpr::create(CurPos, OutContext)); 729 } else { 730 OutStreamer->EmitLabel(CurrentFnBegin); 731 } 732 } 733 734 // Emit pre-function debug and/or EH information. 735 for (const HandlerInfo &HI : Handlers) { 736 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 737 HI.TimerGroupDescription, TimePassesIsEnabled); 738 HI.Handler->beginFunction(MF); 739 } 740 741 // Emit the prologue data. 742 if (F.hasPrologueData()) 743 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 744 } 745 746 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 747 /// function. This can be overridden by targets as required to do custom stuff. 748 void AsmPrinter::EmitFunctionEntryLabel() { 749 CurrentFnSym->redefineIfPossible(); 750 751 // The function label could have already been emitted if two symbols end up 752 // conflicting due to asm renaming. Detect this and emit an error. 753 if (CurrentFnSym->isVariable()) 754 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 755 "' is a protected alias"); 756 if (CurrentFnSym->isDefined()) 757 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 758 "' label emitted multiple times to assembly file"); 759 760 return OutStreamer->EmitLabel(CurrentFnSym); 761 } 762 763 /// emitComments - Pretty-print comments for instructions. 764 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 765 const MachineFunction *MF = MI.getMF(); 766 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 767 768 // Check for spills and reloads 769 770 // We assume a single instruction only has a spill or reload, not 771 // both. 772 Optional<unsigned> Size; 773 if ((Size = MI.getRestoreSize(TII))) { 774 CommentOS << *Size << "-byte Reload\n"; 775 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 776 if (*Size) 777 CommentOS << *Size << "-byte Folded Reload\n"; 778 } else if ((Size = MI.getSpillSize(TII))) { 779 CommentOS << *Size << "-byte Spill\n"; 780 } else if ((Size = MI.getFoldedSpillSize(TII))) { 781 if (*Size) 782 CommentOS << *Size << "-byte Folded Spill\n"; 783 } 784 785 // Check for spill-induced copies 786 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 787 CommentOS << " Reload Reuse\n"; 788 } 789 790 /// emitImplicitDef - This method emits the specified machine instruction 791 /// that is an implicit def. 792 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 793 Register RegNo = MI->getOperand(0).getReg(); 794 795 SmallString<128> Str; 796 raw_svector_ostream OS(Str); 797 OS << "implicit-def: " 798 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 799 800 OutStreamer->AddComment(OS.str()); 801 OutStreamer->AddBlankLine(); 802 } 803 804 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 805 std::string Str; 806 raw_string_ostream OS(Str); 807 OS << "kill:"; 808 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 809 const MachineOperand &Op = MI->getOperand(i); 810 assert(Op.isReg() && "KILL instruction must have only register operands"); 811 OS << ' ' << (Op.isDef() ? "def " : "killed ") 812 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 813 } 814 AP.OutStreamer->AddComment(OS.str()); 815 AP.OutStreamer->AddBlankLine(); 816 } 817 818 /// emitDebugValueComment - This method handles the target-independent form 819 /// of DBG_VALUE, returning true if it was able to do so. A false return 820 /// means the target will need to handle MI in EmitInstruction. 821 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 822 // This code handles only the 4-operand target-independent form. 823 if (MI->getNumOperands() != 4) 824 return false; 825 826 SmallString<128> Str; 827 raw_svector_ostream OS(Str); 828 OS << "DEBUG_VALUE: "; 829 830 const DILocalVariable *V = MI->getDebugVariable(); 831 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 832 StringRef Name = SP->getName(); 833 if (!Name.empty()) 834 OS << Name << ":"; 835 } 836 OS << V->getName(); 837 OS << " <- "; 838 839 // The second operand is only an offset if it's an immediate. 840 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 841 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 842 const DIExpression *Expr = MI->getDebugExpression(); 843 if (Expr->getNumElements()) { 844 OS << '['; 845 bool NeedSep = false; 846 for (auto Op : Expr->expr_ops()) { 847 if (NeedSep) 848 OS << ", "; 849 else 850 NeedSep = true; 851 OS << dwarf::OperationEncodingString(Op.getOp()); 852 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 853 OS << ' ' << Op.getArg(I); 854 } 855 OS << "] "; 856 } 857 858 // Register or immediate value. Register 0 means undef. 859 if (MI->getOperand(0).isFPImm()) { 860 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 861 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 862 OS << (double)APF.convertToFloat(); 863 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 864 OS << APF.convertToDouble(); 865 } else { 866 // There is no good way to print long double. Convert a copy to 867 // double. Ah well, it's only a comment. 868 bool ignored; 869 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 870 &ignored); 871 OS << "(long double) " << APF.convertToDouble(); 872 } 873 } else if (MI->getOperand(0).isImm()) { 874 OS << MI->getOperand(0).getImm(); 875 } else if (MI->getOperand(0).isCImm()) { 876 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 877 } else { 878 unsigned Reg; 879 if (MI->getOperand(0).isReg()) { 880 Reg = MI->getOperand(0).getReg(); 881 } else { 882 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 883 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 884 Offset += TFI->getFrameIndexReference(*AP.MF, 885 MI->getOperand(0).getIndex(), Reg); 886 MemLoc = true; 887 } 888 if (Reg == 0) { 889 // Suppress offset, it is not meaningful here. 890 OS << "undef"; 891 // NOTE: Want this comment at start of line, don't emit with AddComment. 892 AP.OutStreamer->emitRawComment(OS.str()); 893 return true; 894 } 895 if (MemLoc) 896 OS << '['; 897 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 898 } 899 900 if (MemLoc) 901 OS << '+' << Offset << ']'; 902 903 // NOTE: Want this comment at start of line, don't emit with AddComment. 904 AP.OutStreamer->emitRawComment(OS.str()); 905 return true; 906 } 907 908 /// This method handles the target-independent form of DBG_LABEL, returning 909 /// true if it was able to do so. A false return means the target will need 910 /// to handle MI in EmitInstruction. 911 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 912 if (MI->getNumOperands() != 1) 913 return false; 914 915 SmallString<128> Str; 916 raw_svector_ostream OS(Str); 917 OS << "DEBUG_LABEL: "; 918 919 const DILabel *V = MI->getDebugLabel(); 920 if (auto *SP = dyn_cast<DISubprogram>( 921 V->getScope()->getNonLexicalBlockFileScope())) { 922 StringRef Name = SP->getName(); 923 if (!Name.empty()) 924 OS << Name << ":"; 925 } 926 OS << V->getName(); 927 928 // NOTE: Want this comment at start of line, don't emit with AddComment. 929 AP.OutStreamer->emitRawComment(OS.str()); 930 return true; 931 } 932 933 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 934 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 935 MF->getFunction().needsUnwindTableEntry()) 936 return CFI_M_EH; 937 938 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 939 return CFI_M_Debug; 940 941 return CFI_M_None; 942 } 943 944 bool AsmPrinter::needsSEHMoves() { 945 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 946 } 947 948 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 949 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 950 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 951 ExceptionHandlingType != ExceptionHandling::ARM) 952 return; 953 954 if (needsCFIMoves() == CFI_M_None) 955 return; 956 957 // If there is no "real" instruction following this CFI instruction, skip 958 // emitting it; it would be beyond the end of the function's FDE range. 959 auto *MBB = MI.getParent(); 960 auto I = std::next(MI.getIterator()); 961 while (I != MBB->end() && I->isTransient()) 962 ++I; 963 if (I == MBB->instr_end() && 964 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 965 return; 966 967 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 968 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 969 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 970 emitCFIInstruction(CFI); 971 } 972 973 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 974 // The operands are the MCSymbol and the frame offset of the allocation. 975 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 976 int FrameOffset = MI.getOperand(1).getImm(); 977 978 // Emit a symbol assignment. 979 OutStreamer->EmitAssignment(FrameAllocSym, 980 MCConstantExpr::create(FrameOffset, OutContext)); 981 } 982 983 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 984 if (!MF.getTarget().Options.EmitStackSizeSection) 985 return; 986 987 MCSection *StackSizeSection = 988 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 989 if (!StackSizeSection) 990 return; 991 992 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 993 // Don't emit functions with dynamic stack allocations. 994 if (FrameInfo.hasVarSizedObjects()) 995 return; 996 997 OutStreamer->PushSection(); 998 OutStreamer->SwitchSection(StackSizeSection); 999 1000 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1001 uint64_t StackSize = FrameInfo.getStackSize(); 1002 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1003 OutStreamer->EmitULEB128IntValue(StackSize); 1004 1005 OutStreamer->PopSection(); 1006 } 1007 1008 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1009 MachineModuleInfo *MMI) { 1010 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1011 return true; 1012 1013 // We might emit an EH table that uses function begin and end labels even if 1014 // we don't have any landingpads. 1015 if (!MF.getFunction().hasPersonalityFn()) 1016 return false; 1017 return !isNoOpWithoutInvoke( 1018 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1019 } 1020 1021 /// EmitFunctionBody - This method emits the body and trailer for a 1022 /// function. 1023 void AsmPrinter::EmitFunctionBody() { 1024 EmitFunctionHeader(); 1025 1026 // Emit target-specific gunk before the function body. 1027 EmitFunctionBodyStart(); 1028 1029 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1030 1031 if (isVerbose()) { 1032 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1033 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1034 if (!MDT) { 1035 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1036 OwnedMDT->getBase().recalculate(*MF); 1037 MDT = OwnedMDT.get(); 1038 } 1039 1040 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1041 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1042 if (!MLI) { 1043 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1044 OwnedMLI->getBase().analyze(MDT->getBase()); 1045 MLI = OwnedMLI.get(); 1046 } 1047 } 1048 1049 // Print out code for the function. 1050 bool HasAnyRealCode = false; 1051 int NumInstsInFunction = 0; 1052 for (auto &MBB : *MF) { 1053 // Print a label for the basic block. 1054 EmitBasicBlockStart(MBB); 1055 for (auto &MI : MBB) { 1056 // Print the assembly for the instruction. 1057 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1058 !MI.isDebugInstr()) { 1059 HasAnyRealCode = true; 1060 ++NumInstsInFunction; 1061 } 1062 1063 // If there is a pre-instruction symbol, emit a label for it here. 1064 if (MCSymbol *S = MI.getPreInstrSymbol()) 1065 OutStreamer->EmitLabel(S); 1066 1067 if (ShouldPrintDebugScopes) { 1068 for (const HandlerInfo &HI : Handlers) { 1069 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1070 HI.TimerGroupName, HI.TimerGroupDescription, 1071 TimePassesIsEnabled); 1072 HI.Handler->beginInstruction(&MI); 1073 } 1074 } 1075 1076 if (isVerbose()) 1077 emitComments(MI, OutStreamer->GetCommentOS()); 1078 1079 switch (MI.getOpcode()) { 1080 case TargetOpcode::CFI_INSTRUCTION: 1081 emitCFIInstruction(MI); 1082 break; 1083 case TargetOpcode::LOCAL_ESCAPE: 1084 emitFrameAlloc(MI); 1085 break; 1086 case TargetOpcode::ANNOTATION_LABEL: 1087 case TargetOpcode::EH_LABEL: 1088 case TargetOpcode::GC_LABEL: 1089 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1090 break; 1091 case TargetOpcode::INLINEASM: 1092 case TargetOpcode::INLINEASM_BR: 1093 EmitInlineAsm(&MI); 1094 break; 1095 case TargetOpcode::DBG_VALUE: 1096 if (isVerbose()) { 1097 if (!emitDebugValueComment(&MI, *this)) 1098 EmitInstruction(&MI); 1099 } 1100 break; 1101 case TargetOpcode::DBG_LABEL: 1102 if (isVerbose()) { 1103 if (!emitDebugLabelComment(&MI, *this)) 1104 EmitInstruction(&MI); 1105 } 1106 break; 1107 case TargetOpcode::IMPLICIT_DEF: 1108 if (isVerbose()) emitImplicitDef(&MI); 1109 break; 1110 case TargetOpcode::KILL: 1111 if (isVerbose()) emitKill(&MI, *this); 1112 break; 1113 default: 1114 EmitInstruction(&MI); 1115 break; 1116 } 1117 1118 // If there is a post-instruction symbol, emit a label for it here. 1119 if (MCSymbol *S = MI.getPostInstrSymbol()) 1120 OutStreamer->EmitLabel(S); 1121 1122 if (ShouldPrintDebugScopes) { 1123 for (const HandlerInfo &HI : Handlers) { 1124 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1125 HI.TimerGroupName, HI.TimerGroupDescription, 1126 TimePassesIsEnabled); 1127 HI.Handler->endInstruction(); 1128 } 1129 } 1130 } 1131 1132 EmitBasicBlockEnd(MBB); 1133 } 1134 1135 EmittedInsts += NumInstsInFunction; 1136 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1137 MF->getFunction().getSubprogram(), 1138 &MF->front()); 1139 R << ore::NV("NumInstructions", NumInstsInFunction) 1140 << " instructions in function"; 1141 ORE->emit(R); 1142 1143 // If the function is empty and the object file uses .subsections_via_symbols, 1144 // then we need to emit *something* to the function body to prevent the 1145 // labels from collapsing together. Just emit a noop. 1146 // Similarly, don't emit empty functions on Windows either. It can lead to 1147 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1148 // after linking, causing the kernel not to load the binary: 1149 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1150 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1151 const Triple &TT = TM.getTargetTriple(); 1152 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1153 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1154 MCInst Noop; 1155 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1156 1157 // Targets can opt-out of emitting the noop here by leaving the opcode 1158 // unspecified. 1159 if (Noop.getOpcode()) { 1160 OutStreamer->AddComment("avoids zero-length function"); 1161 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1162 } 1163 } 1164 1165 const Function &F = MF->getFunction(); 1166 for (const auto &BB : F) { 1167 if (!BB.hasAddressTaken()) 1168 continue; 1169 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1170 if (Sym->isDefined()) 1171 continue; 1172 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1173 OutStreamer->EmitLabel(Sym); 1174 } 1175 1176 // Emit target-specific gunk after the function body. 1177 EmitFunctionBodyEnd(); 1178 1179 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1180 MAI->hasDotTypeDotSizeDirective()) { 1181 // Create a symbol for the end of function. 1182 CurrentFnEnd = createTempSymbol("func_end"); 1183 OutStreamer->EmitLabel(CurrentFnEnd); 1184 } 1185 1186 // If the target wants a .size directive for the size of the function, emit 1187 // it. 1188 if (MAI->hasDotTypeDotSizeDirective()) { 1189 // We can get the size as difference between the function label and the 1190 // temp label. 1191 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1192 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1193 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1194 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1195 } 1196 1197 for (const HandlerInfo &HI : Handlers) { 1198 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1199 HI.TimerGroupDescription, TimePassesIsEnabled); 1200 HI.Handler->markFunctionEnd(); 1201 } 1202 1203 // Print out jump tables referenced by the function. 1204 EmitJumpTableInfo(); 1205 1206 // Emit post-function debug and/or EH information. 1207 for (const HandlerInfo &HI : Handlers) { 1208 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1209 HI.TimerGroupDescription, TimePassesIsEnabled); 1210 HI.Handler->endFunction(MF); 1211 } 1212 1213 // Emit section containing stack size metadata. 1214 emitStackSizeSection(*MF); 1215 1216 if (isVerbose()) 1217 OutStreamer->GetCommentOS() << "-- End function\n"; 1218 1219 OutStreamer->AddBlankLine(); 1220 } 1221 1222 /// Compute the number of Global Variables that uses a Constant. 1223 static unsigned getNumGlobalVariableUses(const Constant *C) { 1224 if (!C) 1225 return 0; 1226 1227 if (isa<GlobalVariable>(C)) 1228 return 1; 1229 1230 unsigned NumUses = 0; 1231 for (auto *CU : C->users()) 1232 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1233 1234 return NumUses; 1235 } 1236 1237 /// Only consider global GOT equivalents if at least one user is a 1238 /// cstexpr inside an initializer of another global variables. Also, don't 1239 /// handle cstexpr inside instructions. During global variable emission, 1240 /// candidates are skipped and are emitted later in case at least one cstexpr 1241 /// isn't replaced by a PC relative GOT entry access. 1242 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1243 unsigned &NumGOTEquivUsers) { 1244 // Global GOT equivalents are unnamed private globals with a constant 1245 // pointer initializer to another global symbol. They must point to a 1246 // GlobalVariable or Function, i.e., as GlobalValue. 1247 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1248 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1249 !isa<GlobalValue>(GV->getOperand(0))) 1250 return false; 1251 1252 // To be a got equivalent, at least one of its users need to be a constant 1253 // expression used by another global variable. 1254 for (auto *U : GV->users()) 1255 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1256 1257 return NumGOTEquivUsers > 0; 1258 } 1259 1260 /// Unnamed constant global variables solely contaning a pointer to 1261 /// another globals variable is equivalent to a GOT table entry; it contains the 1262 /// the address of another symbol. Optimize it and replace accesses to these 1263 /// "GOT equivalents" by using the GOT entry for the final global instead. 1264 /// Compute GOT equivalent candidates among all global variables to avoid 1265 /// emitting them if possible later on, after it use is replaced by a GOT entry 1266 /// access. 1267 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1268 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1269 return; 1270 1271 for (const auto &G : M.globals()) { 1272 unsigned NumGOTEquivUsers = 0; 1273 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1274 continue; 1275 1276 const MCSymbol *GOTEquivSym = getSymbol(&G); 1277 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1278 } 1279 } 1280 1281 /// Constant expressions using GOT equivalent globals may not be eligible 1282 /// for PC relative GOT entry conversion, in such cases we need to emit such 1283 /// globals we previously omitted in EmitGlobalVariable. 1284 void AsmPrinter::emitGlobalGOTEquivs() { 1285 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1286 return; 1287 1288 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1289 for (auto &I : GlobalGOTEquivs) { 1290 const GlobalVariable *GV = I.second.first; 1291 unsigned Cnt = I.second.second; 1292 if (Cnt) 1293 FailedCandidates.push_back(GV); 1294 } 1295 GlobalGOTEquivs.clear(); 1296 1297 for (auto *GV : FailedCandidates) 1298 EmitGlobalVariable(GV); 1299 } 1300 1301 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1302 const GlobalIndirectSymbol& GIS) { 1303 MCSymbol *Name = getSymbol(&GIS); 1304 1305 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1306 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1307 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1308 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1309 else 1310 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1311 1312 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1313 1314 // Treat bitcasts of functions as functions also. This is important at least 1315 // on WebAssembly where object and function addresses can't alias each other. 1316 if (!IsFunction) 1317 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1318 if (CE->getOpcode() == Instruction::BitCast) 1319 IsFunction = 1320 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1321 1322 // Set the symbol type to function if the alias has a function type. 1323 // This affects codegen when the aliasee is not a function. 1324 if (IsFunction) 1325 OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1326 ? MCSA_ELF_TypeIndFunction 1327 : MCSA_ELF_TypeFunction); 1328 1329 EmitVisibility(Name, GIS.getVisibility()); 1330 1331 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1332 1333 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1334 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1335 1336 // Emit the directives as assignments aka .set: 1337 OutStreamer->EmitAssignment(Name, Expr); 1338 1339 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1340 // If the aliasee does not correspond to a symbol in the output, i.e. the 1341 // alias is not of an object or the aliased object is private, then set the 1342 // size of the alias symbol from the type of the alias. We don't do this in 1343 // other situations as the alias and aliasee having differing types but same 1344 // size may be intentional. 1345 const GlobalObject *BaseObject = GA->getBaseObject(); 1346 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1347 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1348 const DataLayout &DL = M.getDataLayout(); 1349 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1350 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1351 } 1352 } 1353 } 1354 1355 void AsmPrinter::emitRemarksSection(RemarkStreamer &RS) { 1356 if (!RS.needsSection()) 1357 return; 1358 1359 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1360 1361 Optional<SmallString<128>> Filename; 1362 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1363 Filename = *FilenameRef; 1364 sys::fs::make_absolute(*Filename); 1365 assert(!Filename->empty() && "The filename can't be empty."); 1366 } 1367 1368 std::string Buf; 1369 raw_string_ostream OS(Buf); 1370 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1371 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1372 : RemarkSerializer.metaSerializer(OS); 1373 MetaSerializer->emit(); 1374 1375 // Switch to the remarks section. 1376 MCSection *RemarksSection = 1377 OutContext.getObjectFileInfo()->getRemarksSection(); 1378 OutStreamer->SwitchSection(RemarksSection); 1379 1380 OutStreamer->EmitBinaryData(OS.str()); 1381 } 1382 1383 bool AsmPrinter::doFinalization(Module &M) { 1384 // Set the MachineFunction to nullptr so that we can catch attempted 1385 // accesses to MF specific features at the module level and so that 1386 // we can conditionalize accesses based on whether or not it is nullptr. 1387 MF = nullptr; 1388 1389 // Gather all GOT equivalent globals in the module. We really need two 1390 // passes over the globals: one to compute and another to avoid its emission 1391 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1392 // where the got equivalent shows up before its use. 1393 computeGlobalGOTEquivs(M); 1394 1395 // Emit global variables. 1396 for (const auto &G : M.globals()) 1397 EmitGlobalVariable(&G); 1398 1399 // Emit remaining GOT equivalent globals. 1400 emitGlobalGOTEquivs(); 1401 1402 // Emit visibility info for declarations 1403 for (const Function &F : M) { 1404 if (!F.isDeclarationForLinker()) 1405 continue; 1406 GlobalValue::VisibilityTypes V = F.getVisibility(); 1407 if (V == GlobalValue::DefaultVisibility) 1408 continue; 1409 1410 MCSymbol *Name = getSymbol(&F); 1411 EmitVisibility(Name, V, false); 1412 } 1413 1414 // Emit the remarks section contents. 1415 // FIXME: Figure out when is the safest time to emit this section. It should 1416 // not come after debug info. 1417 if (RemarkStreamer *RS = M.getContext().getRemarkStreamer()) 1418 emitRemarksSection(*RS); 1419 1420 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1421 1422 TLOF.emitModuleMetadata(*OutStreamer, M); 1423 1424 if (TM.getTargetTriple().isOSBinFormatELF()) { 1425 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1426 1427 // Output stubs for external and common global variables. 1428 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1429 if (!Stubs.empty()) { 1430 OutStreamer->SwitchSection(TLOF.getDataSection()); 1431 const DataLayout &DL = M.getDataLayout(); 1432 1433 EmitAlignment(Align(DL.getPointerSize())); 1434 for (const auto &Stub : Stubs) { 1435 OutStreamer->EmitLabel(Stub.first); 1436 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1437 DL.getPointerSize()); 1438 } 1439 } 1440 } 1441 1442 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1443 MachineModuleInfoCOFF &MMICOFF = 1444 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1445 1446 // Output stubs for external and common global variables. 1447 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1448 if (!Stubs.empty()) { 1449 const DataLayout &DL = M.getDataLayout(); 1450 1451 for (const auto &Stub : Stubs) { 1452 SmallString<256> SectionName = StringRef(".rdata$"); 1453 SectionName += Stub.first->getName(); 1454 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1455 SectionName, 1456 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1457 COFF::IMAGE_SCN_LNK_COMDAT, 1458 SectionKind::getReadOnly(), Stub.first->getName(), 1459 COFF::IMAGE_COMDAT_SELECT_ANY)); 1460 EmitAlignment(Align(DL.getPointerSize())); 1461 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1462 OutStreamer->EmitLabel(Stub.first); 1463 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1464 DL.getPointerSize()); 1465 } 1466 } 1467 } 1468 1469 // Finalize debug and EH information. 1470 for (const HandlerInfo &HI : Handlers) { 1471 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1472 HI.TimerGroupDescription, TimePassesIsEnabled); 1473 HI.Handler->endModule(); 1474 } 1475 Handlers.clear(); 1476 DD = nullptr; 1477 1478 // If the target wants to know about weak references, print them all. 1479 if (MAI->getWeakRefDirective()) { 1480 // FIXME: This is not lazy, it would be nice to only print weak references 1481 // to stuff that is actually used. Note that doing so would require targets 1482 // to notice uses in operands (due to constant exprs etc). This should 1483 // happen with the MC stuff eventually. 1484 1485 // Print out module-level global objects here. 1486 for (const auto &GO : M.global_objects()) { 1487 if (!GO.hasExternalWeakLinkage()) 1488 continue; 1489 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1490 } 1491 } 1492 1493 // Print aliases in topological order, that is, for each alias a = b, 1494 // b must be printed before a. 1495 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1496 // such an order to generate correct TOC information. 1497 SmallVector<const GlobalAlias *, 16> AliasStack; 1498 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1499 for (const auto &Alias : M.aliases()) { 1500 for (const GlobalAlias *Cur = &Alias; Cur; 1501 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1502 if (!AliasVisited.insert(Cur).second) 1503 break; 1504 AliasStack.push_back(Cur); 1505 } 1506 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1507 emitGlobalIndirectSymbol(M, *AncestorAlias); 1508 AliasStack.clear(); 1509 } 1510 for (const auto &IFunc : M.ifuncs()) 1511 emitGlobalIndirectSymbol(M, IFunc); 1512 1513 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1514 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1515 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1516 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1517 MP->finishAssembly(M, *MI, *this); 1518 1519 // Emit llvm.ident metadata in an '.ident' directive. 1520 EmitModuleIdents(M); 1521 1522 // Emit bytes for llvm.commandline metadata. 1523 EmitModuleCommandLines(M); 1524 1525 // Emit __morestack address if needed for indirect calls. 1526 if (MMI->usesMorestackAddr()) { 1527 unsigned Align = 1; 1528 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1529 getDataLayout(), SectionKind::getReadOnly(), 1530 /*C=*/nullptr, Align); 1531 OutStreamer->SwitchSection(ReadOnlySection); 1532 1533 MCSymbol *AddrSymbol = 1534 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1535 OutStreamer->EmitLabel(AddrSymbol); 1536 1537 unsigned PtrSize = MAI->getCodePointerSize(); 1538 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1539 PtrSize); 1540 } 1541 1542 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1543 // split-stack is used. 1544 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1545 OutStreamer->SwitchSection( 1546 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1547 if (MMI->hasNosplitStack()) 1548 OutStreamer->SwitchSection( 1549 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1550 } 1551 1552 // If we don't have any trampolines, then we don't require stack memory 1553 // to be executable. Some targets have a directive to declare this. 1554 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1555 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1556 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1557 OutStreamer->SwitchSection(S); 1558 1559 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1560 // Emit /EXPORT: flags for each exported global as necessary. 1561 const auto &TLOF = getObjFileLowering(); 1562 std::string Flags; 1563 1564 for (const GlobalValue &GV : M.global_values()) { 1565 raw_string_ostream OS(Flags); 1566 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1567 OS.flush(); 1568 if (!Flags.empty()) { 1569 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1570 OutStreamer->EmitBytes(Flags); 1571 } 1572 Flags.clear(); 1573 } 1574 1575 // Emit /INCLUDE: flags for each used global as necessary. 1576 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1577 assert(LU->hasInitializer() && 1578 "expected llvm.used to have an initializer"); 1579 assert(isa<ArrayType>(LU->getValueType()) && 1580 "expected llvm.used to be an array type"); 1581 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1582 for (const Value *Op : A->operands()) { 1583 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1584 // Global symbols with internal or private linkage are not visible to 1585 // the linker, and thus would cause an error when the linker tried to 1586 // preserve the symbol due to the `/include:` directive. 1587 if (GV->hasLocalLinkage()) 1588 continue; 1589 1590 raw_string_ostream OS(Flags); 1591 TLOF.emitLinkerFlagsForUsed(OS, GV); 1592 OS.flush(); 1593 1594 if (!Flags.empty()) { 1595 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1596 OutStreamer->EmitBytes(Flags); 1597 } 1598 Flags.clear(); 1599 } 1600 } 1601 } 1602 } 1603 1604 if (TM.Options.EmitAddrsig) { 1605 // Emit address-significance attributes for all globals. 1606 OutStreamer->EmitAddrsig(); 1607 for (const GlobalValue &GV : M.global_values()) 1608 if (!GV.use_empty() && !GV.isThreadLocal() && 1609 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1610 !GV.hasAtLeastLocalUnnamedAddr()) 1611 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1612 } 1613 1614 // Emit symbol partition specifications (ELF only). 1615 if (TM.getTargetTriple().isOSBinFormatELF()) { 1616 unsigned UniqueID = 0; 1617 for (const GlobalValue &GV : M.global_values()) { 1618 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1619 GV.getVisibility() != GlobalValue::DefaultVisibility) 1620 continue; 1621 1622 OutStreamer->SwitchSection(OutContext.getELFSection( 1623 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID)); 1624 OutStreamer->EmitBytes(GV.getPartition()); 1625 OutStreamer->EmitZeros(1); 1626 OutStreamer->EmitValue( 1627 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1628 MAI->getCodePointerSize()); 1629 } 1630 } 1631 1632 // Allow the target to emit any magic that it wants at the end of the file, 1633 // after everything else has gone out. 1634 EmitEndOfAsmFile(M); 1635 1636 MMI = nullptr; 1637 1638 OutStreamer->Finish(); 1639 OutStreamer->reset(); 1640 OwnedMLI.reset(); 1641 OwnedMDT.reset(); 1642 1643 return false; 1644 } 1645 1646 MCSymbol *AsmPrinter::getCurExceptionSym() { 1647 if (!CurExceptionSym) 1648 CurExceptionSym = createTempSymbol("exception"); 1649 return CurExceptionSym; 1650 } 1651 1652 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1653 this->MF = &MF; 1654 1655 // Get the function symbol. 1656 if (MAI->needsFunctionDescriptors()) { 1657 assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only" 1658 " supported on AIX."); 1659 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1660 " initalized first."); 1661 1662 // Get the function entry point symbol. 1663 CurrentFnSym = 1664 OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName()); 1665 1666 const Function &F = MF.getFunction(); 1667 MCSectionXCOFF *FnEntryPointSec = 1668 cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM)); 1669 // Set the containing csect. 1670 cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec); 1671 } else { 1672 CurrentFnSym = getSymbol(&MF.getFunction()); 1673 } 1674 1675 CurrentFnSymForSize = CurrentFnSym; 1676 CurrentFnBegin = nullptr; 1677 CurExceptionSym = nullptr; 1678 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1679 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1680 MF.getTarget().Options.EmitStackSizeSection) { 1681 CurrentFnBegin = createTempSymbol("func_begin"); 1682 if (NeedsLocalForSize) 1683 CurrentFnSymForSize = CurrentFnBegin; 1684 } 1685 1686 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1687 } 1688 1689 namespace { 1690 1691 // Keep track the alignment, constpool entries per Section. 1692 struct SectionCPs { 1693 MCSection *S; 1694 unsigned Alignment; 1695 SmallVector<unsigned, 4> CPEs; 1696 1697 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1698 }; 1699 1700 } // end anonymous namespace 1701 1702 /// EmitConstantPool - Print to the current output stream assembly 1703 /// representations of the constants in the constant pool MCP. This is 1704 /// used to print out constants which have been "spilled to memory" by 1705 /// the code generator. 1706 void AsmPrinter::EmitConstantPool() { 1707 const MachineConstantPool *MCP = MF->getConstantPool(); 1708 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1709 if (CP.empty()) return; 1710 1711 // Calculate sections for constant pool entries. We collect entries to go into 1712 // the same section together to reduce amount of section switch statements. 1713 SmallVector<SectionCPs, 4> CPSections; 1714 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1715 const MachineConstantPoolEntry &CPE = CP[i]; 1716 unsigned Align = CPE.getAlignment(); 1717 1718 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1719 1720 const Constant *C = nullptr; 1721 if (!CPE.isMachineConstantPoolEntry()) 1722 C = CPE.Val.ConstVal; 1723 1724 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1725 Kind, C, Align); 1726 1727 // The number of sections are small, just do a linear search from the 1728 // last section to the first. 1729 bool Found = false; 1730 unsigned SecIdx = CPSections.size(); 1731 while (SecIdx != 0) { 1732 if (CPSections[--SecIdx].S == S) { 1733 Found = true; 1734 break; 1735 } 1736 } 1737 if (!Found) { 1738 SecIdx = CPSections.size(); 1739 CPSections.push_back(SectionCPs(S, Align)); 1740 } 1741 1742 if (Align > CPSections[SecIdx].Alignment) 1743 CPSections[SecIdx].Alignment = Align; 1744 CPSections[SecIdx].CPEs.push_back(i); 1745 } 1746 1747 // Now print stuff into the calculated sections. 1748 const MCSection *CurSection = nullptr; 1749 unsigned Offset = 0; 1750 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1751 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1752 unsigned CPI = CPSections[i].CPEs[j]; 1753 MCSymbol *Sym = GetCPISymbol(CPI); 1754 if (!Sym->isUndefined()) 1755 continue; 1756 1757 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1758 cast<MCSymbolXCOFF>(Sym)->setContainingCsect( 1759 cast<MCSectionXCOFF>(CPSections[i].S)); 1760 } 1761 1762 if (CurSection != CPSections[i].S) { 1763 OutStreamer->SwitchSection(CPSections[i].S); 1764 EmitAlignment(Align(CPSections[i].Alignment)); 1765 CurSection = CPSections[i].S; 1766 Offset = 0; 1767 } 1768 1769 MachineConstantPoolEntry CPE = CP[CPI]; 1770 1771 // Emit inter-object padding for alignment. 1772 unsigned AlignMask = CPE.getAlignment() - 1; 1773 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1774 OutStreamer->EmitZeros(NewOffset - Offset); 1775 1776 Type *Ty = CPE.getType(); 1777 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1778 1779 OutStreamer->EmitLabel(Sym); 1780 if (CPE.isMachineConstantPoolEntry()) 1781 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1782 else 1783 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1784 } 1785 } 1786 } 1787 1788 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1789 /// by the current function to the current output stream. 1790 void AsmPrinter::EmitJumpTableInfo() { 1791 const DataLayout &DL = MF->getDataLayout(); 1792 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1793 if (!MJTI) return; 1794 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1795 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1796 if (JT.empty()) return; 1797 1798 // Pick the directive to use to print the jump table entries, and switch to 1799 // the appropriate section. 1800 const Function &F = MF->getFunction(); 1801 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1802 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1803 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1804 F); 1805 if (JTInDiffSection) { 1806 // Drop it in the readonly section. 1807 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1808 OutStreamer->SwitchSection(ReadOnlySection); 1809 } 1810 1811 EmitAlignment(Align(MJTI->getEntryAlignment(DL))); 1812 1813 // Jump tables in code sections are marked with a data_region directive 1814 // where that's supported. 1815 if (!JTInDiffSection) 1816 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1817 1818 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1819 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1820 1821 // If this jump table was deleted, ignore it. 1822 if (JTBBs.empty()) continue; 1823 1824 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1825 /// emit a .set directive for each unique entry. 1826 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1827 MAI->doesSetDirectiveSuppressReloc()) { 1828 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1829 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1830 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1831 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1832 const MachineBasicBlock *MBB = JTBBs[ii]; 1833 if (!EmittedSets.insert(MBB).second) 1834 continue; 1835 1836 // .set LJTSet, LBB32-base 1837 const MCExpr *LHS = 1838 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1839 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1840 MCBinaryExpr::createSub(LHS, Base, 1841 OutContext)); 1842 } 1843 } 1844 1845 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1846 // before each jump table. The first label is never referenced, but tells 1847 // the assembler and linker the extents of the jump table object. The 1848 // second label is actually referenced by the code. 1849 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1850 // FIXME: This doesn't have to have any specific name, just any randomly 1851 // named and numbered local label started with 'l' would work. Simplify 1852 // GetJTISymbol. 1853 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1854 1855 MCSymbol* JTISymbol = GetJTISymbol(JTI); 1856 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1857 cast<MCSymbolXCOFF>(JTISymbol)->setContainingCsect( 1858 cast<MCSectionXCOFF>(TLOF.getSectionForJumpTable(F, TM))); 1859 } 1860 OutStreamer->EmitLabel(JTISymbol); 1861 1862 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1863 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1864 } 1865 if (!JTInDiffSection) 1866 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1867 } 1868 1869 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1870 /// current stream. 1871 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1872 const MachineBasicBlock *MBB, 1873 unsigned UID) const { 1874 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1875 const MCExpr *Value = nullptr; 1876 switch (MJTI->getEntryKind()) { 1877 case MachineJumpTableInfo::EK_Inline: 1878 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1879 case MachineJumpTableInfo::EK_Custom32: 1880 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1881 MJTI, MBB, UID, OutContext); 1882 break; 1883 case MachineJumpTableInfo::EK_BlockAddress: 1884 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1885 // .word LBB123 1886 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1887 break; 1888 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1889 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1890 // with a relocation as gp-relative, e.g.: 1891 // .gprel32 LBB123 1892 MCSymbol *MBBSym = MBB->getSymbol(); 1893 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1894 return; 1895 } 1896 1897 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1898 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1899 // with a relocation as gp-relative, e.g.: 1900 // .gpdword LBB123 1901 MCSymbol *MBBSym = MBB->getSymbol(); 1902 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1903 return; 1904 } 1905 1906 case MachineJumpTableInfo::EK_LabelDifference32: { 1907 // Each entry is the address of the block minus the address of the jump 1908 // table. This is used for PIC jump tables where gprel32 is not supported. 1909 // e.g.: 1910 // .word LBB123 - LJTI1_2 1911 // If the .set directive avoids relocations, this is emitted as: 1912 // .set L4_5_set_123, LBB123 - LJTI1_2 1913 // .word L4_5_set_123 1914 if (MAI->doesSetDirectiveSuppressReloc()) { 1915 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1916 OutContext); 1917 break; 1918 } 1919 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1920 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1921 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1922 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1923 break; 1924 } 1925 } 1926 1927 assert(Value && "Unknown entry kind!"); 1928 1929 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1930 OutStreamer->EmitValue(Value, EntrySize); 1931 } 1932 1933 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1934 /// special global used by LLVM. If so, emit it and return true, otherwise 1935 /// do nothing and return false. 1936 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1937 if (GV->getName() == "llvm.used") { 1938 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1939 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1940 return true; 1941 } 1942 1943 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1944 if (GV->getSection() == "llvm.metadata" || 1945 GV->hasAvailableExternallyLinkage()) 1946 return true; 1947 1948 if (!GV->hasAppendingLinkage()) return false; 1949 1950 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1951 1952 if (GV->getName() == "llvm.global_ctors") { 1953 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1954 /* isCtor */ true); 1955 1956 return true; 1957 } 1958 1959 if (GV->getName() == "llvm.global_dtors") { 1960 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1961 /* isCtor */ false); 1962 1963 return true; 1964 } 1965 1966 report_fatal_error("unknown special variable"); 1967 } 1968 1969 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1970 /// global in the specified llvm.used list. 1971 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1972 // Should be an array of 'i8*'. 1973 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1974 const GlobalValue *GV = 1975 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1976 if (GV) 1977 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1978 } 1979 } 1980 1981 namespace { 1982 1983 struct Structor { 1984 int Priority = 0; 1985 Constant *Func = nullptr; 1986 GlobalValue *ComdatKey = nullptr; 1987 1988 Structor() = default; 1989 }; 1990 1991 } // end anonymous namespace 1992 1993 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1994 /// priority. 1995 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1996 bool isCtor) { 1997 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 1998 // init priority. 1999 if (!isa<ConstantArray>(List)) return; 2000 2001 // Sanity check the structors list. 2002 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 2003 if (!InitList) return; // Not an array! 2004 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 2005 if (!ETy || ETy->getNumElements() != 3 || 2006 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 2007 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 2008 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 2009 return; // Not (int, ptr, ptr). 2010 2011 // Gather the structors in a form that's convenient for sorting by priority. 2012 SmallVector<Structor, 8> Structors; 2013 for (Value *O : InitList->operands()) { 2014 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 2015 if (!CS) continue; // Malformed. 2016 if (CS->getOperand(1)->isNullValue()) 2017 break; // Found a null terminator, skip the rest. 2018 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2019 if (!Priority) continue; // Malformed. 2020 Structors.push_back(Structor()); 2021 Structor &S = Structors.back(); 2022 S.Priority = Priority->getLimitedValue(65535); 2023 S.Func = CS->getOperand(1); 2024 if (!CS->getOperand(2)->isNullValue()) 2025 S.ComdatKey = 2026 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2027 } 2028 2029 // Emit the function pointers in the target-specific order 2030 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2031 return L.Priority < R.Priority; 2032 }); 2033 const Align Align = DL.getPointerPrefAlignment(); 2034 for (Structor &S : Structors) { 2035 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2036 const MCSymbol *KeySym = nullptr; 2037 if (GlobalValue *GV = S.ComdatKey) { 2038 if (GV->isDeclarationForLinker()) 2039 // If the associated variable is not defined in this module 2040 // (it might be available_externally, or have been an 2041 // available_externally definition that was dropped by the 2042 // EliminateAvailableExternally pass), some other TU 2043 // will provide its dynamic initializer. 2044 continue; 2045 2046 KeySym = getSymbol(GV); 2047 } 2048 MCSection *OutputSection = 2049 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2050 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2051 OutStreamer->SwitchSection(OutputSection); 2052 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2053 EmitAlignment(Align); 2054 EmitXXStructor(DL, S.Func); 2055 } 2056 } 2057 2058 void AsmPrinter::EmitModuleIdents(Module &M) { 2059 if (!MAI->hasIdentDirective()) 2060 return; 2061 2062 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2063 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2064 const MDNode *N = NMD->getOperand(i); 2065 assert(N->getNumOperands() == 1 && 2066 "llvm.ident metadata entry can have only one operand"); 2067 const MDString *S = cast<MDString>(N->getOperand(0)); 2068 OutStreamer->EmitIdent(S->getString()); 2069 } 2070 } 2071 } 2072 2073 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2074 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2075 if (!CommandLine) 2076 return; 2077 2078 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2079 if (!NMD || !NMD->getNumOperands()) 2080 return; 2081 2082 OutStreamer->PushSection(); 2083 OutStreamer->SwitchSection(CommandLine); 2084 OutStreamer->EmitZeros(1); 2085 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2086 const MDNode *N = NMD->getOperand(i); 2087 assert(N->getNumOperands() == 1 && 2088 "llvm.commandline metadata entry can have only one operand"); 2089 const MDString *S = cast<MDString>(N->getOperand(0)); 2090 OutStreamer->EmitBytes(S->getString()); 2091 OutStreamer->EmitZeros(1); 2092 } 2093 OutStreamer->PopSection(); 2094 } 2095 2096 //===--------------------------------------------------------------------===// 2097 // Emission and print routines 2098 // 2099 2100 /// Emit a byte directive and value. 2101 /// 2102 void AsmPrinter::emitInt8(int Value) const { 2103 OutStreamer->EmitIntValue(Value, 1); 2104 } 2105 2106 /// Emit a short directive and value. 2107 void AsmPrinter::emitInt16(int Value) const { 2108 OutStreamer->EmitIntValue(Value, 2); 2109 } 2110 2111 /// Emit a long directive and value. 2112 void AsmPrinter::emitInt32(int Value) const { 2113 OutStreamer->EmitIntValue(Value, 4); 2114 } 2115 2116 /// Emit a long long directive and value. 2117 void AsmPrinter::emitInt64(uint64_t Value) const { 2118 OutStreamer->EmitIntValue(Value, 8); 2119 } 2120 2121 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2122 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2123 /// .set if it avoids relocations. 2124 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2125 unsigned Size) const { 2126 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2127 } 2128 2129 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2130 /// where the size in bytes of the directive is specified by Size and Label 2131 /// specifies the label. This implicitly uses .set if it is available. 2132 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2133 unsigned Size, 2134 bool IsSectionRelative) const { 2135 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2136 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2137 if (Size > 4) 2138 OutStreamer->EmitZeros(Size - 4); 2139 return; 2140 } 2141 2142 // Emit Label+Offset (or just Label if Offset is zero) 2143 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2144 if (Offset) 2145 Expr = MCBinaryExpr::createAdd( 2146 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2147 2148 OutStreamer->EmitValue(Expr, Size); 2149 } 2150 2151 //===----------------------------------------------------------------------===// 2152 2153 // EmitAlignment - Emit an alignment directive to the specified power of 2154 // two boundary. If a global value is specified, and if that global has 2155 // an explicit alignment requested, it will override the alignment request 2156 // if required for correctness. 2157 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const { 2158 if (GV) 2159 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2160 2161 if (Alignment == Align::None()) 2162 return; // 1-byte aligned: no need to emit alignment. 2163 2164 if (getCurrentSection()->getKind().isText()) 2165 OutStreamer->EmitCodeAlignment(Alignment.value()); 2166 else 2167 OutStreamer->EmitValueToAlignment(Alignment.value()); 2168 } 2169 2170 //===----------------------------------------------------------------------===// 2171 // Constant emission. 2172 //===----------------------------------------------------------------------===// 2173 2174 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2175 MCContext &Ctx = OutContext; 2176 2177 if (CV->isNullValue() || isa<UndefValue>(CV)) 2178 return MCConstantExpr::create(0, Ctx); 2179 2180 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2181 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2182 2183 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2184 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2185 2186 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2187 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2188 2189 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2190 if (!CE) { 2191 llvm_unreachable("Unknown constant value to lower!"); 2192 } 2193 2194 switch (CE->getOpcode()) { 2195 default: 2196 // If the code isn't optimized, there may be outstanding folding 2197 // opportunities. Attempt to fold the expression using DataLayout as a 2198 // last resort before giving up. 2199 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2200 if (C != CE) 2201 return lowerConstant(C); 2202 2203 // Otherwise report the problem to the user. 2204 { 2205 std::string S; 2206 raw_string_ostream OS(S); 2207 OS << "Unsupported expression in static initializer: "; 2208 CE->printAsOperand(OS, /*PrintType=*/false, 2209 !MF ? nullptr : MF->getFunction().getParent()); 2210 report_fatal_error(OS.str()); 2211 } 2212 case Instruction::GetElementPtr: { 2213 // Generate a symbolic expression for the byte address 2214 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2215 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2216 2217 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2218 if (!OffsetAI) 2219 return Base; 2220 2221 int64_t Offset = OffsetAI.getSExtValue(); 2222 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2223 Ctx); 2224 } 2225 2226 case Instruction::Trunc: 2227 // We emit the value and depend on the assembler to truncate the generated 2228 // expression properly. This is important for differences between 2229 // blockaddress labels. Since the two labels are in the same function, it 2230 // is reasonable to treat their delta as a 32-bit value. 2231 LLVM_FALLTHROUGH; 2232 case Instruction::BitCast: 2233 return lowerConstant(CE->getOperand(0)); 2234 2235 case Instruction::IntToPtr: { 2236 const DataLayout &DL = getDataLayout(); 2237 2238 // Handle casts to pointers by changing them into casts to the appropriate 2239 // integer type. This promotes constant folding and simplifies this code. 2240 Constant *Op = CE->getOperand(0); 2241 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2242 false/*ZExt*/); 2243 return lowerConstant(Op); 2244 } 2245 2246 case Instruction::PtrToInt: { 2247 const DataLayout &DL = getDataLayout(); 2248 2249 // Support only foldable casts to/from pointers that can be eliminated by 2250 // changing the pointer to the appropriately sized integer type. 2251 Constant *Op = CE->getOperand(0); 2252 Type *Ty = CE->getType(); 2253 2254 const MCExpr *OpExpr = lowerConstant(Op); 2255 2256 // We can emit the pointer value into this slot if the slot is an 2257 // integer slot equal to the size of the pointer. 2258 // 2259 // If the pointer is larger than the resultant integer, then 2260 // as with Trunc just depend on the assembler to truncate it. 2261 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2262 return OpExpr; 2263 2264 // Otherwise the pointer is smaller than the resultant integer, mask off 2265 // the high bits so we are sure to get a proper truncation if the input is 2266 // a constant expr. 2267 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2268 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2269 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2270 } 2271 2272 case Instruction::Sub: { 2273 GlobalValue *LHSGV; 2274 APInt LHSOffset; 2275 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2276 getDataLayout())) { 2277 GlobalValue *RHSGV; 2278 APInt RHSOffset; 2279 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2280 getDataLayout())) { 2281 const MCExpr *RelocExpr = 2282 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2283 if (!RelocExpr) 2284 RelocExpr = MCBinaryExpr::createSub( 2285 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2286 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2287 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2288 if (Addend != 0) 2289 RelocExpr = MCBinaryExpr::createAdd( 2290 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2291 return RelocExpr; 2292 } 2293 } 2294 } 2295 // else fallthrough 2296 LLVM_FALLTHROUGH; 2297 2298 // The MC library also has a right-shift operator, but it isn't consistently 2299 // signed or unsigned between different targets. 2300 case Instruction::Add: 2301 case Instruction::Mul: 2302 case Instruction::SDiv: 2303 case Instruction::SRem: 2304 case Instruction::Shl: 2305 case Instruction::And: 2306 case Instruction::Or: 2307 case Instruction::Xor: { 2308 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2309 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2310 switch (CE->getOpcode()) { 2311 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2312 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2313 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2314 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2315 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2316 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2317 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2318 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2319 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2320 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2321 } 2322 } 2323 } 2324 } 2325 2326 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2327 AsmPrinter &AP, 2328 const Constant *BaseCV = nullptr, 2329 uint64_t Offset = 0); 2330 2331 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2332 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2333 2334 /// isRepeatedByteSequence - Determine whether the given value is 2335 /// composed of a repeated sequence of identical bytes and return the 2336 /// byte value. If it is not a repeated sequence, return -1. 2337 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2338 StringRef Data = V->getRawDataValues(); 2339 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2340 char C = Data[0]; 2341 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2342 if (Data[i] != C) return -1; 2343 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2344 } 2345 2346 /// isRepeatedByteSequence - Determine whether the given value is 2347 /// composed of a repeated sequence of identical bytes and return the 2348 /// byte value. If it is not a repeated sequence, return -1. 2349 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2350 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2351 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2352 assert(Size % 8 == 0); 2353 2354 // Extend the element to take zero padding into account. 2355 APInt Value = CI->getValue().zextOrSelf(Size); 2356 if (!Value.isSplat(8)) 2357 return -1; 2358 2359 return Value.zextOrTrunc(8).getZExtValue(); 2360 } 2361 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2362 // Make sure all array elements are sequences of the same repeated 2363 // byte. 2364 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2365 Constant *Op0 = CA->getOperand(0); 2366 int Byte = isRepeatedByteSequence(Op0, DL); 2367 if (Byte == -1) 2368 return -1; 2369 2370 // All array elements must be equal. 2371 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2372 if (CA->getOperand(i) != Op0) 2373 return -1; 2374 return Byte; 2375 } 2376 2377 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2378 return isRepeatedByteSequence(CDS); 2379 2380 return -1; 2381 } 2382 2383 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2384 const ConstantDataSequential *CDS, 2385 AsmPrinter &AP) { 2386 // See if we can aggregate this into a .fill, if so, emit it as such. 2387 int Value = isRepeatedByteSequence(CDS, DL); 2388 if (Value != -1) { 2389 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2390 // Don't emit a 1-byte object as a .fill. 2391 if (Bytes > 1) 2392 return AP.OutStreamer->emitFill(Bytes, Value); 2393 } 2394 2395 // If this can be emitted with .ascii/.asciz, emit it as such. 2396 if (CDS->isString()) 2397 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2398 2399 // Otherwise, emit the values in successive locations. 2400 unsigned ElementByteSize = CDS->getElementByteSize(); 2401 if (isa<IntegerType>(CDS->getElementType())) { 2402 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2403 if (AP.isVerbose()) 2404 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2405 CDS->getElementAsInteger(i)); 2406 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2407 ElementByteSize); 2408 } 2409 } else { 2410 Type *ET = CDS->getElementType(); 2411 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2412 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2413 } 2414 2415 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2416 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2417 CDS->getNumElements(); 2418 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2419 if (unsigned Padding = Size - EmittedSize) 2420 AP.OutStreamer->EmitZeros(Padding); 2421 } 2422 2423 static void emitGlobalConstantArray(const DataLayout &DL, 2424 const ConstantArray *CA, AsmPrinter &AP, 2425 const Constant *BaseCV, uint64_t Offset) { 2426 // See if we can aggregate some values. Make sure it can be 2427 // represented as a series of bytes of the constant value. 2428 int Value = isRepeatedByteSequence(CA, DL); 2429 2430 if (Value != -1) { 2431 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2432 AP.OutStreamer->emitFill(Bytes, Value); 2433 } 2434 else { 2435 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2436 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2437 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2438 } 2439 } 2440 } 2441 2442 static void emitGlobalConstantVector(const DataLayout &DL, 2443 const ConstantVector *CV, AsmPrinter &AP) { 2444 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2445 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2446 2447 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2448 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2449 CV->getType()->getNumElements(); 2450 if (unsigned Padding = Size - EmittedSize) 2451 AP.OutStreamer->EmitZeros(Padding); 2452 } 2453 2454 static void emitGlobalConstantStruct(const DataLayout &DL, 2455 const ConstantStruct *CS, AsmPrinter &AP, 2456 const Constant *BaseCV, uint64_t Offset) { 2457 // Print the fields in successive locations. Pad to align if needed! 2458 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2459 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2460 uint64_t SizeSoFar = 0; 2461 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2462 const Constant *Field = CS->getOperand(i); 2463 2464 // Print the actual field value. 2465 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2466 2467 // Check if padding is needed and insert one or more 0s. 2468 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2469 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2470 - Layout->getElementOffset(i)) - FieldSize; 2471 SizeSoFar += FieldSize + PadSize; 2472 2473 // Insert padding - this may include padding to increase the size of the 2474 // current field up to the ABI size (if the struct is not packed) as well 2475 // as padding to ensure that the next field starts at the right offset. 2476 AP.OutStreamer->EmitZeros(PadSize); 2477 } 2478 assert(SizeSoFar == Layout->getSizeInBytes() && 2479 "Layout of constant struct may be incorrect!"); 2480 } 2481 2482 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2483 assert(ET && "Unknown float type"); 2484 APInt API = APF.bitcastToAPInt(); 2485 2486 // First print a comment with what we think the original floating-point value 2487 // should have been. 2488 if (AP.isVerbose()) { 2489 SmallString<8> StrVal; 2490 APF.toString(StrVal); 2491 ET->print(AP.OutStreamer->GetCommentOS()); 2492 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2493 } 2494 2495 // Now iterate through the APInt chunks, emitting them in endian-correct 2496 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2497 // floats). 2498 unsigned NumBytes = API.getBitWidth() / 8; 2499 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2500 const uint64_t *p = API.getRawData(); 2501 2502 // PPC's long double has odd notions of endianness compared to how LLVM 2503 // handles it: p[0] goes first for *big* endian on PPC. 2504 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2505 int Chunk = API.getNumWords() - 1; 2506 2507 if (TrailingBytes) 2508 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2509 2510 for (; Chunk >= 0; --Chunk) 2511 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2512 } else { 2513 unsigned Chunk; 2514 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2515 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2516 2517 if (TrailingBytes) 2518 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2519 } 2520 2521 // Emit the tail padding for the long double. 2522 const DataLayout &DL = AP.getDataLayout(); 2523 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2524 } 2525 2526 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2527 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2528 } 2529 2530 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2531 const DataLayout &DL = AP.getDataLayout(); 2532 unsigned BitWidth = CI->getBitWidth(); 2533 2534 // Copy the value as we may massage the layout for constants whose bit width 2535 // is not a multiple of 64-bits. 2536 APInt Realigned(CI->getValue()); 2537 uint64_t ExtraBits = 0; 2538 unsigned ExtraBitsSize = BitWidth & 63; 2539 2540 if (ExtraBitsSize) { 2541 // The bit width of the data is not a multiple of 64-bits. 2542 // The extra bits are expected to be at the end of the chunk of the memory. 2543 // Little endian: 2544 // * Nothing to be done, just record the extra bits to emit. 2545 // Big endian: 2546 // * Record the extra bits to emit. 2547 // * Realign the raw data to emit the chunks of 64-bits. 2548 if (DL.isBigEndian()) { 2549 // Basically the structure of the raw data is a chunk of 64-bits cells: 2550 // 0 1 BitWidth / 64 2551 // [chunk1][chunk2] ... [chunkN]. 2552 // The most significant chunk is chunkN and it should be emitted first. 2553 // However, due to the alignment issue chunkN contains useless bits. 2554 // Realign the chunks so that they contain only useless information: 2555 // ExtraBits 0 1 (BitWidth / 64) - 1 2556 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2557 ExtraBits = Realigned.getRawData()[0] & 2558 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2559 Realigned.lshrInPlace(ExtraBitsSize); 2560 } else 2561 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2562 } 2563 2564 // We don't expect assemblers to support integer data directives 2565 // for more than 64 bits, so we emit the data in at most 64-bit 2566 // quantities at a time. 2567 const uint64_t *RawData = Realigned.getRawData(); 2568 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2569 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2570 AP.OutStreamer->EmitIntValue(Val, 8); 2571 } 2572 2573 if (ExtraBitsSize) { 2574 // Emit the extra bits after the 64-bits chunks. 2575 2576 // Emit a directive that fills the expected size. 2577 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2578 Size -= (BitWidth / 64) * 8; 2579 assert(Size && Size * 8 >= ExtraBitsSize && 2580 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2581 == ExtraBits && "Directive too small for extra bits."); 2582 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2583 } 2584 } 2585 2586 /// Transform a not absolute MCExpr containing a reference to a GOT 2587 /// equivalent global, by a target specific GOT pc relative access to the 2588 /// final symbol. 2589 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2590 const Constant *BaseCst, 2591 uint64_t Offset) { 2592 // The global @foo below illustrates a global that uses a got equivalent. 2593 // 2594 // @bar = global i32 42 2595 // @gotequiv = private unnamed_addr constant i32* @bar 2596 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2597 // i64 ptrtoint (i32* @foo to i64)) 2598 // to i32) 2599 // 2600 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2601 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2602 // form: 2603 // 2604 // foo = cstexpr, where 2605 // cstexpr := <gotequiv> - "." + <cst> 2606 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2607 // 2608 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2609 // 2610 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2611 // gotpcrelcst := <offset from @foo base> + <cst> 2612 MCValue MV; 2613 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2614 return; 2615 const MCSymbolRefExpr *SymA = MV.getSymA(); 2616 if (!SymA) 2617 return; 2618 2619 // Check that GOT equivalent symbol is cached. 2620 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2621 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2622 return; 2623 2624 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2625 if (!BaseGV) 2626 return; 2627 2628 // Check for a valid base symbol 2629 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2630 const MCSymbolRefExpr *SymB = MV.getSymB(); 2631 2632 if (!SymB || BaseSym != &SymB->getSymbol()) 2633 return; 2634 2635 // Make sure to match: 2636 // 2637 // gotpcrelcst := <offset from @foo base> + <cst> 2638 // 2639 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2640 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2641 // if the target knows how to encode it. 2642 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2643 if (GOTPCRelCst < 0) 2644 return; 2645 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2646 return; 2647 2648 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2649 // 2650 // bar: 2651 // .long 42 2652 // gotequiv: 2653 // .quad bar 2654 // foo: 2655 // .long gotequiv - "." + <cst> 2656 // 2657 // is replaced by the target specific equivalent to: 2658 // 2659 // bar: 2660 // .long 42 2661 // foo: 2662 // .long bar@GOTPCREL+<gotpcrelcst> 2663 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2664 const GlobalVariable *GV = Result.first; 2665 int NumUses = (int)Result.second; 2666 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2667 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2668 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2669 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2670 2671 // Update GOT equivalent usage information 2672 --NumUses; 2673 if (NumUses >= 0) 2674 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2675 } 2676 2677 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2678 AsmPrinter &AP, const Constant *BaseCV, 2679 uint64_t Offset) { 2680 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2681 2682 // Globals with sub-elements such as combinations of arrays and structs 2683 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2684 // constant symbol base and the current position with BaseCV and Offset. 2685 if (!BaseCV && CV->hasOneUse()) 2686 BaseCV = dyn_cast<Constant>(CV->user_back()); 2687 2688 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2689 return AP.OutStreamer->EmitZeros(Size); 2690 2691 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2692 switch (Size) { 2693 case 1: 2694 case 2: 2695 case 4: 2696 case 8: 2697 if (AP.isVerbose()) 2698 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2699 CI->getZExtValue()); 2700 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2701 return; 2702 default: 2703 emitGlobalConstantLargeInt(CI, AP); 2704 return; 2705 } 2706 } 2707 2708 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2709 return emitGlobalConstantFP(CFP, AP); 2710 2711 if (isa<ConstantPointerNull>(CV)) { 2712 AP.OutStreamer->EmitIntValue(0, Size); 2713 return; 2714 } 2715 2716 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2717 return emitGlobalConstantDataSequential(DL, CDS, AP); 2718 2719 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2720 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2721 2722 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2723 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2724 2725 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2726 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2727 // vectors). 2728 if (CE->getOpcode() == Instruction::BitCast) 2729 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2730 2731 if (Size > 8) { 2732 // If the constant expression's size is greater than 64-bits, then we have 2733 // to emit the value in chunks. Try to constant fold the value and emit it 2734 // that way. 2735 Constant *New = ConstantFoldConstant(CE, DL); 2736 if (New && New != CE) 2737 return emitGlobalConstantImpl(DL, New, AP); 2738 } 2739 } 2740 2741 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2742 return emitGlobalConstantVector(DL, V, AP); 2743 2744 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2745 // thread the streamer with EmitValue. 2746 const MCExpr *ME = AP.lowerConstant(CV); 2747 2748 // Since lowerConstant already folded and got rid of all IR pointer and 2749 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2750 // directly. 2751 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2752 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2753 2754 AP.OutStreamer->EmitValue(ME, Size); 2755 } 2756 2757 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2758 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2759 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2760 if (Size) 2761 emitGlobalConstantImpl(DL, CV, *this); 2762 else if (MAI->hasSubsectionsViaSymbols()) { 2763 // If the global has zero size, emit a single byte so that two labels don't 2764 // look like they are at the same location. 2765 OutStreamer->EmitIntValue(0, 1); 2766 } 2767 } 2768 2769 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2770 // Target doesn't support this yet! 2771 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2772 } 2773 2774 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2775 if (Offset > 0) 2776 OS << '+' << Offset; 2777 else if (Offset < 0) 2778 OS << Offset; 2779 } 2780 2781 //===----------------------------------------------------------------------===// 2782 // Symbol Lowering Routines. 2783 //===----------------------------------------------------------------------===// 2784 2785 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2786 return OutContext.createTempSymbol(Name, true); 2787 } 2788 2789 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2790 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2791 } 2792 2793 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2794 return MMI->getAddrLabelSymbol(BB); 2795 } 2796 2797 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2798 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2799 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2800 const MachineConstantPoolEntry &CPE = 2801 MF->getConstantPool()->getConstants()[CPID]; 2802 if (!CPE.isMachineConstantPoolEntry()) { 2803 const DataLayout &DL = MF->getDataLayout(); 2804 SectionKind Kind = CPE.getSectionKind(&DL); 2805 const Constant *C = CPE.Val.ConstVal; 2806 unsigned Align = CPE.Alignment; 2807 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2808 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2809 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2810 if (Sym->isUndefined()) 2811 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2812 return Sym; 2813 } 2814 } 2815 } 2816 } 2817 2818 const DataLayout &DL = getDataLayout(); 2819 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2820 "CPI" + Twine(getFunctionNumber()) + "_" + 2821 Twine(CPID)); 2822 } 2823 2824 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2825 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2826 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2827 } 2828 2829 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2830 /// FIXME: privatize to AsmPrinter. 2831 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2832 const DataLayout &DL = getDataLayout(); 2833 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2834 Twine(getFunctionNumber()) + "_" + 2835 Twine(UID) + "_set_" + Twine(MBBID)); 2836 } 2837 2838 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2839 StringRef Suffix) const { 2840 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2841 } 2842 2843 /// Return the MCSymbol for the specified ExternalSymbol. 2844 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2845 SmallString<60> NameStr; 2846 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2847 return OutContext.getOrCreateSymbol(NameStr); 2848 } 2849 2850 /// PrintParentLoopComment - Print comments about parent loops of this one. 2851 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2852 unsigned FunctionNumber) { 2853 if (!Loop) return; 2854 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2855 OS.indent(Loop->getLoopDepth()*2) 2856 << "Parent Loop BB" << FunctionNumber << "_" 2857 << Loop->getHeader()->getNumber() 2858 << " Depth=" << Loop->getLoopDepth() << '\n'; 2859 } 2860 2861 /// PrintChildLoopComment - Print comments about child loops within 2862 /// the loop for this basic block, with nesting. 2863 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2864 unsigned FunctionNumber) { 2865 // Add child loop information 2866 for (const MachineLoop *CL : *Loop) { 2867 OS.indent(CL->getLoopDepth()*2) 2868 << "Child Loop BB" << FunctionNumber << "_" 2869 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2870 << '\n'; 2871 PrintChildLoopComment(OS, CL, FunctionNumber); 2872 } 2873 } 2874 2875 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2876 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2877 const MachineLoopInfo *LI, 2878 const AsmPrinter &AP) { 2879 // Add loop depth information 2880 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2881 if (!Loop) return; 2882 2883 MachineBasicBlock *Header = Loop->getHeader(); 2884 assert(Header && "No header for loop"); 2885 2886 // If this block is not a loop header, just print out what is the loop header 2887 // and return. 2888 if (Header != &MBB) { 2889 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2890 Twine(AP.getFunctionNumber())+"_" + 2891 Twine(Loop->getHeader()->getNumber())+ 2892 " Depth="+Twine(Loop->getLoopDepth())); 2893 return; 2894 } 2895 2896 // Otherwise, it is a loop header. Print out information about child and 2897 // parent loops. 2898 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2899 2900 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2901 2902 OS << "=>"; 2903 OS.indent(Loop->getLoopDepth()*2-2); 2904 2905 OS << "This "; 2906 if (Loop->empty()) 2907 OS << "Inner "; 2908 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2909 2910 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2911 } 2912 2913 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2914 MCCodePaddingContext &Context) const { 2915 assert(MF != nullptr && "Machine function must be valid"); 2916 Context.IsPaddingActive = !MF->hasInlineAsm() && 2917 !MF->getFunction().hasOptSize() && 2918 TM.getOptLevel() != CodeGenOpt::None; 2919 Context.IsBasicBlockReachableViaFallthrough = 2920 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2921 MBB.pred_end(); 2922 Context.IsBasicBlockReachableViaBranch = 2923 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2924 } 2925 2926 /// EmitBasicBlockStart - This method prints the label for the specified 2927 /// MachineBasicBlock, an alignment (if present) and a comment describing 2928 /// it if appropriate. 2929 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) { 2930 // End the previous funclet and start a new one. 2931 if (MBB.isEHFuncletEntry()) { 2932 for (const HandlerInfo &HI : Handlers) { 2933 HI.Handler->endFunclet(); 2934 HI.Handler->beginFunclet(MBB); 2935 } 2936 } 2937 2938 // Emit an alignment directive for this block, if needed. 2939 const Align Alignment = MBB.getAlignment(); 2940 if (Alignment != Align::None()) 2941 EmitAlignment(Alignment); 2942 MCCodePaddingContext Context; 2943 setupCodePaddingContext(MBB, Context); 2944 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2945 2946 // If the block has its address taken, emit any labels that were used to 2947 // reference the block. It is possible that there is more than one label 2948 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2949 // the references were generated. 2950 if (MBB.hasAddressTaken()) { 2951 const BasicBlock *BB = MBB.getBasicBlock(); 2952 if (isVerbose()) 2953 OutStreamer->AddComment("Block address taken"); 2954 2955 // MBBs can have their address taken as part of CodeGen without having 2956 // their corresponding BB's address taken in IR 2957 if (BB->hasAddressTaken()) 2958 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2959 OutStreamer->EmitLabel(Sym); 2960 } 2961 2962 // Print some verbose block comments. 2963 if (isVerbose()) { 2964 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2965 if (BB->hasName()) { 2966 BB->printAsOperand(OutStreamer->GetCommentOS(), 2967 /*PrintType=*/false, BB->getModule()); 2968 OutStreamer->GetCommentOS() << '\n'; 2969 } 2970 } 2971 2972 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2973 emitBasicBlockLoopComments(MBB, MLI, *this); 2974 } 2975 2976 // Print the main label for the block. 2977 if (MBB.pred_empty() || 2978 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2979 !MBB.hasLabelMustBeEmitted())) { 2980 if (isVerbose()) { 2981 // NOTE: Want this comment at start of line, don't emit with AddComment. 2982 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2983 false); 2984 } 2985 } else { 2986 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 2987 OutStreamer->AddComment("Label of block must be emitted"); 2988 OutStreamer->EmitLabel(MBB.getSymbol()); 2989 } 2990 } 2991 2992 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2993 MCCodePaddingContext Context; 2994 setupCodePaddingContext(MBB, Context); 2995 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2996 } 2997 2998 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2999 bool IsDefinition) const { 3000 MCSymbolAttr Attr = MCSA_Invalid; 3001 3002 switch (Visibility) { 3003 default: break; 3004 case GlobalValue::HiddenVisibility: 3005 if (IsDefinition) 3006 Attr = MAI->getHiddenVisibilityAttr(); 3007 else 3008 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3009 break; 3010 case GlobalValue::ProtectedVisibility: 3011 Attr = MAI->getProtectedVisibilityAttr(); 3012 break; 3013 } 3014 3015 if (Attr != MCSA_Invalid) 3016 OutStreamer->EmitSymbolAttribute(Sym, Attr); 3017 } 3018 3019 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3020 /// exactly one predecessor and the control transfer mechanism between 3021 /// the predecessor and this block is a fall-through. 3022 bool AsmPrinter:: 3023 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3024 // If this is a landing pad, it isn't a fall through. If it has no preds, 3025 // then nothing falls through to it. 3026 if (MBB->isEHPad() || MBB->pred_empty()) 3027 return false; 3028 3029 // If there isn't exactly one predecessor, it can't be a fall through. 3030 if (MBB->pred_size() > 1) 3031 return false; 3032 3033 // The predecessor has to be immediately before this block. 3034 MachineBasicBlock *Pred = *MBB->pred_begin(); 3035 if (!Pred->isLayoutSuccessor(MBB)) 3036 return false; 3037 3038 // If the block is completely empty, then it definitely does fall through. 3039 if (Pred->empty()) 3040 return true; 3041 3042 // Check the terminators in the previous blocks 3043 for (const auto &MI : Pred->terminators()) { 3044 // If it is not a simple branch, we are in a table somewhere. 3045 if (!MI.isBranch() || MI.isIndirectBranch()) 3046 return false; 3047 3048 // If we are the operands of one of the branches, this is not a fall 3049 // through. Note that targets with delay slots will usually bundle 3050 // terminators with the delay slot instruction. 3051 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3052 if (OP->isJTI()) 3053 return false; 3054 if (OP->isMBB() && OP->getMBB() == MBB) 3055 return false; 3056 } 3057 } 3058 3059 return true; 3060 } 3061 3062 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3063 if (!S.usesMetadata()) 3064 return nullptr; 3065 3066 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3067 gcp_map_type::iterator GCPI = GCMap.find(&S); 3068 if (GCPI != GCMap.end()) 3069 return GCPI->second.get(); 3070 3071 auto Name = S.getName(); 3072 3073 for (GCMetadataPrinterRegistry::iterator 3074 I = GCMetadataPrinterRegistry::begin(), 3075 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3076 if (Name == I->getName()) { 3077 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3078 GMP->S = &S; 3079 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3080 return IterBool.first->second.get(); 3081 } 3082 3083 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3084 } 3085 3086 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3087 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3088 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3089 bool NeedsDefault = false; 3090 if (MI->begin() == MI->end()) 3091 // No GC strategy, use the default format. 3092 NeedsDefault = true; 3093 else 3094 for (auto &I : *MI) { 3095 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3096 if (MP->emitStackMaps(SM, *this)) 3097 continue; 3098 // The strategy doesn't have printer or doesn't emit custom stack maps. 3099 // Use the default format. 3100 NeedsDefault = true; 3101 } 3102 3103 if (NeedsDefault) 3104 SM.serializeToStackMapSection(); 3105 } 3106 3107 /// Pin vtable to this file. 3108 AsmPrinterHandler::~AsmPrinterHandler() = default; 3109 3110 void AsmPrinterHandler::markFunctionEnd() {} 3111 3112 // In the binary's "xray_instr_map" section, an array of these function entries 3113 // describes each instrumentation point. When XRay patches your code, the index 3114 // into this table will be given to your handler as a patch point identifier. 3115 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3116 const MCSymbol *CurrentFnSym) const { 3117 Out->EmitSymbolValue(Sled, Bytes); 3118 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3119 auto Kind8 = static_cast<uint8_t>(Kind); 3120 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3121 Out->EmitBinaryData( 3122 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3123 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3124 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3125 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3126 Out->EmitZeros(Padding); 3127 } 3128 3129 void AsmPrinter::emitXRayTable() { 3130 if (Sleds.empty()) 3131 return; 3132 3133 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3134 const Function &F = MF->getFunction(); 3135 MCSection *InstMap = nullptr; 3136 MCSection *FnSledIndex = nullptr; 3137 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3138 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3139 assert(Associated != nullptr); 3140 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3141 std::string GroupName; 3142 if (F.hasComdat()) { 3143 Flags |= ELF::SHF_GROUP; 3144 GroupName = F.getComdat()->getName(); 3145 } 3146 3147 auto UniqueID = ++XRayFnUniqueID; 3148 InstMap = 3149 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3150 GroupName, UniqueID, Associated); 3151 FnSledIndex = 3152 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3153 GroupName, UniqueID, Associated); 3154 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3155 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3156 SectionKind::getReadOnlyWithRel()); 3157 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3158 SectionKind::getReadOnlyWithRel()); 3159 } else { 3160 llvm_unreachable("Unsupported target"); 3161 } 3162 3163 auto WordSizeBytes = MAI->getCodePointerSize(); 3164 3165 // Now we switch to the instrumentation map section. Because this is done 3166 // per-function, we are able to create an index entry that will represent the 3167 // range of sleds associated with a function. 3168 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3169 OutStreamer->SwitchSection(InstMap); 3170 OutStreamer->EmitLabel(SledsStart); 3171 for (const auto &Sled : Sleds) 3172 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3173 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3174 OutStreamer->EmitLabel(SledsEnd); 3175 3176 // We then emit a single entry in the index per function. We use the symbols 3177 // that bound the instrumentation map as the range for a specific function. 3178 // Each entry here will be 2 * word size aligned, as we're writing down two 3179 // pointers. This should work for both 32-bit and 64-bit platforms. 3180 OutStreamer->SwitchSection(FnSledIndex); 3181 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3182 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3183 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3184 OutStreamer->SwitchSection(PrevSection); 3185 Sleds.clear(); 3186 } 3187 3188 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3189 SledKind Kind, uint8_t Version) { 3190 const Function &F = MI.getMF()->getFunction(); 3191 auto Attr = F.getFnAttribute("function-instrument"); 3192 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3193 bool AlwaysInstrument = 3194 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3195 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3196 Kind = SledKind::LOG_ARGS_ENTER; 3197 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3198 AlwaysInstrument, &F, Version}); 3199 } 3200 3201 uint16_t AsmPrinter::getDwarfVersion() const { 3202 return OutStreamer->getContext().getDwarfVersion(); 3203 } 3204 3205 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3206 OutStreamer->getContext().setDwarfVersion(Version); 3207 } 3208