1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCContext.h" 84 #include "llvm/MC/MCDirectives.h" 85 #include "llvm/MC/MCDwarf.h" 86 #include "llvm/MC/MCExpr.h" 87 #include "llvm/MC/MCInst.h" 88 #include "llvm/MC/MCSection.h" 89 #include "llvm/MC/MCSectionCOFF.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCSectionXCOFF.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCSymbolXCOFF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Remarks/RemarkFormat.h" 104 #include "llvm/Remarks/RemarkStreamer.h" 105 #include "llvm/Remarks/RemarkStringTable.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/Format.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/Path.h" 113 #include "llvm/Support/TargetRegistry.h" 114 #include "llvm/Support/Timer.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include "llvm/Target/TargetLoweringObjectFile.h" 117 #include "llvm/Target/TargetMachine.h" 118 #include "llvm/Target/TargetOptions.h" 119 #include <algorithm> 120 #include <cassert> 121 #include <cinttypes> 122 #include <cstdint> 123 #include <iterator> 124 #include <limits> 125 #include <memory> 126 #include <string> 127 #include <utility> 128 #include <vector> 129 130 using namespace llvm; 131 132 #define DEBUG_TYPE "asm-printer" 133 134 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 135 static cl::opt<bool> 136 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 137 cl::desc("Disable debug info printing")); 138 139 static const char *const DWARFGroupName = "dwarf"; 140 static const char *const DWARFGroupDescription = "DWARF Emission"; 141 static const char *const DbgTimerName = "emit"; 142 static const char *const DbgTimerDescription = "Debug Info Emission"; 143 static const char *const EHTimerName = "write_exception"; 144 static const char *const EHTimerDescription = "DWARF Exception Writer"; 145 static const char *const CFGuardName = "Control Flow Guard"; 146 static const char *const CFGuardDescription = "Control Flow Guard"; 147 static const char *const CodeViewLineTablesGroupName = "linetables"; 148 static const char *const CodeViewLineTablesGroupDescription = 149 "CodeView Line Tables"; 150 151 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 152 153 char AsmPrinter::ID = 0; 154 155 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 156 157 static gcp_map_type &getGCMap(void *&P) { 158 if (!P) 159 P = new gcp_map_type(); 160 return *(gcp_map_type*)P; 161 } 162 163 /// getGVAlignment - Return the alignment to use for the specified global 164 /// value. This rounds up to the preferred alignment if possible and legal. 165 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 166 Align InAlign) { 167 Align Alignment; 168 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 169 Alignment = DL.getPreferredAlign(GVar); 170 171 // If InAlign is specified, round it to it. 172 if (InAlign > Alignment) 173 Alignment = InAlign; 174 175 // If the GV has a specified alignment, take it into account. 176 const MaybeAlign GVAlign(GV->getAlignment()); 177 if (!GVAlign) 178 return Alignment; 179 180 assert(GVAlign && "GVAlign must be set"); 181 182 // If the GVAlign is larger than NumBits, or if we are required to obey 183 // NumBits because the GV has an assigned section, obey it. 184 if (*GVAlign > Alignment || GV->hasSection()) 185 Alignment = *GVAlign; 186 return Alignment; 187 } 188 189 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 190 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 191 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 192 VerboseAsm = OutStreamer->isVerboseAsm(); 193 } 194 195 AsmPrinter::~AsmPrinter() { 196 assert(!DD && Handlers.size() == NumUserHandlers && 197 "Debug/EH info didn't get finalized"); 198 199 if (GCMetadataPrinters) { 200 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 201 202 delete &GCMap; 203 GCMetadataPrinters = nullptr; 204 } 205 } 206 207 bool AsmPrinter::isPositionIndependent() const { 208 return TM.isPositionIndependent(); 209 } 210 211 /// getFunctionNumber - Return a unique ID for the current function. 212 unsigned AsmPrinter::getFunctionNumber() const { 213 return MF->getFunctionNumber(); 214 } 215 216 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 217 return *TM.getObjFileLowering(); 218 } 219 220 const DataLayout &AsmPrinter::getDataLayout() const { 221 return MMI->getModule()->getDataLayout(); 222 } 223 224 // Do not use the cached DataLayout because some client use it without a Module 225 // (dsymutil, llvm-dwarfdump). 226 unsigned AsmPrinter::getPointerSize() const { 227 return TM.getPointerSize(0); // FIXME: Default address space 228 } 229 230 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 231 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 232 return MF->getSubtarget<MCSubtargetInfo>(); 233 } 234 235 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 236 S.emitInstruction(Inst, getSubtargetInfo()); 237 } 238 239 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 240 if (DD) { 241 assert(OutStreamer->hasRawTextSupport() && 242 "Expected assembly output mode."); 243 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 244 } 245 } 246 247 /// getCurrentSection() - Return the current section we are emitting to. 248 const MCSection *AsmPrinter::getCurrentSection() const { 249 return OutStreamer->getCurrentSectionOnly(); 250 } 251 252 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 253 AU.setPreservesAll(); 254 MachineFunctionPass::getAnalysisUsage(AU); 255 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 256 AU.addRequired<GCModuleInfo>(); 257 } 258 259 bool AsmPrinter::doInitialization(Module &M) { 260 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 261 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 262 263 // Initialize TargetLoweringObjectFile. 264 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 265 .Initialize(OutContext, TM); 266 267 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 268 .getModuleMetadata(M); 269 270 OutStreamer->InitSections(false); 271 272 if (DisableDebugInfoPrinting) 273 MMI->setDebugInfoAvailability(false); 274 275 // Emit the version-min deployment target directive if needed. 276 // 277 // FIXME: If we end up with a collection of these sorts of Darwin-specific 278 // or ELF-specific things, it may make sense to have a platform helper class 279 // that will work with the target helper class. For now keep it here, as the 280 // alternative is duplicated code in each of the target asm printers that 281 // use the directive, where it would need the same conditionalization 282 // anyway. 283 const Triple &Target = TM.getTargetTriple(); 284 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 285 286 // Allow the target to emit any magic that it wants at the start of the file. 287 emitStartOfAsmFile(M); 288 289 // Very minimal debug info. It is ignored if we emit actual debug info. If we 290 // don't, this at least helps the user find where a global came from. 291 if (MAI->hasSingleParameterDotFile()) { 292 // .file "foo.c" 293 OutStreamer->emitFileDirective( 294 llvm::sys::path::filename(M.getSourceFileName())); 295 } 296 297 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 298 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 299 for (auto &I : *MI) 300 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 301 MP->beginAssembly(M, *MI, *this); 302 303 // Emit module-level inline asm if it exists. 304 if (!M.getModuleInlineAsm().empty()) { 305 // We're at the module level. Construct MCSubtarget from the default CPU 306 // and target triple. 307 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 308 TM.getTargetTriple().str(), TM.getTargetCPU(), 309 TM.getTargetFeatureString())); 310 OutStreamer->AddComment("Start of file scope inline assembly"); 311 OutStreamer->AddBlankLine(); 312 emitInlineAsm(M.getModuleInlineAsm() + "\n", 313 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 314 OutStreamer->AddComment("End of file scope inline assembly"); 315 OutStreamer->AddBlankLine(); 316 } 317 318 if (MAI->doesSupportDebugInformation()) { 319 bool EmitCodeView = M.getCodeViewFlag(); 320 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 321 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 322 DbgTimerName, DbgTimerDescription, 323 CodeViewLineTablesGroupName, 324 CodeViewLineTablesGroupDescription); 325 } 326 if (!EmitCodeView || M.getDwarfVersion()) { 327 if (!DisableDebugInfoPrinting) { 328 DD = new DwarfDebug(this); 329 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 330 DbgTimerDescription, DWARFGroupName, 331 DWARFGroupDescription); 332 } 333 } 334 } 335 336 switch (MAI->getExceptionHandlingType()) { 337 case ExceptionHandling::SjLj: 338 case ExceptionHandling::DwarfCFI: 339 case ExceptionHandling::ARM: 340 isCFIMoveForDebugging = true; 341 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 342 break; 343 for (auto &F: M.getFunctionList()) { 344 // If the module contains any function with unwind data, 345 // .eh_frame has to be emitted. 346 // Ignore functions that won't get emitted. 347 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 348 isCFIMoveForDebugging = false; 349 break; 350 } 351 } 352 break; 353 default: 354 isCFIMoveForDebugging = false; 355 break; 356 } 357 358 EHStreamer *ES = nullptr; 359 switch (MAI->getExceptionHandlingType()) { 360 case ExceptionHandling::None: 361 break; 362 case ExceptionHandling::SjLj: 363 case ExceptionHandling::DwarfCFI: 364 ES = new DwarfCFIException(this); 365 break; 366 case ExceptionHandling::ARM: 367 ES = new ARMException(this); 368 break; 369 case ExceptionHandling::WinEH: 370 switch (MAI->getWinEHEncodingType()) { 371 default: llvm_unreachable("unsupported unwinding information encoding"); 372 case WinEH::EncodingType::Invalid: 373 break; 374 case WinEH::EncodingType::X86: 375 case WinEH::EncodingType::Itanium: 376 ES = new WinException(this); 377 break; 378 } 379 break; 380 case ExceptionHandling::Wasm: 381 ES = new WasmException(this); 382 break; 383 } 384 if (ES) 385 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 386 EHTimerDescription, DWARFGroupName, 387 DWARFGroupDescription); 388 389 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 390 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 391 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 392 CFGuardDescription, DWARFGroupName, 393 DWARFGroupDescription); 394 395 for (const HandlerInfo &HI : Handlers) { 396 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 397 HI.TimerGroupDescription, TimePassesIsEnabled); 398 HI.Handler->beginModule(&M); 399 } 400 401 return false; 402 } 403 404 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 405 if (!MAI.hasWeakDefCanBeHiddenDirective()) 406 return false; 407 408 return GV->canBeOmittedFromSymbolTable(); 409 } 410 411 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 412 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 413 switch (Linkage) { 414 case GlobalValue::CommonLinkage: 415 case GlobalValue::LinkOnceAnyLinkage: 416 case GlobalValue::LinkOnceODRLinkage: 417 case GlobalValue::WeakAnyLinkage: 418 case GlobalValue::WeakODRLinkage: 419 if (MAI->hasWeakDefDirective()) { 420 // .globl _foo 421 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 422 423 if (!canBeHidden(GV, *MAI)) 424 // .weak_definition _foo 425 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 426 else 427 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 428 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 429 // .globl _foo 430 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 431 //NOTE: linkonce is handled by the section the symbol was assigned to. 432 } else { 433 // .weak _foo 434 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 435 } 436 return; 437 case GlobalValue::ExternalLinkage: 438 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 439 return; 440 case GlobalValue::PrivateLinkage: 441 case GlobalValue::InternalLinkage: 442 return; 443 case GlobalValue::ExternalWeakLinkage: 444 case GlobalValue::AvailableExternallyLinkage: 445 case GlobalValue::AppendingLinkage: 446 llvm_unreachable("Should never emit this"); 447 } 448 llvm_unreachable("Unknown linkage type!"); 449 } 450 451 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 452 const GlobalValue *GV) const { 453 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 454 } 455 456 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 457 return TM.getSymbol(GV); 458 } 459 460 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 461 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 462 // exact definion (intersection of GlobalValue::hasExactDefinition() and 463 // !isInterposable()). These linkages include: external, appending, internal, 464 // private. It may be profitable to use a local alias for external. The 465 // assembler would otherwise be conservative and assume a global default 466 // visibility symbol can be interposable, even if the code generator already 467 // assumed it. 468 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 469 const Module &M = *GV.getParent(); 470 if (TM.getRelocationModel() != Reloc::Static && 471 M.getPIELevel() == PIELevel::Default) 472 if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() && 473 GV.getParent()->noSemanticInterposition())) 474 return getSymbolWithGlobalValueBase(&GV, "$local"); 475 } 476 return TM.getSymbol(&GV); 477 } 478 479 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 480 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 481 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 482 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 483 "No emulated TLS variables in the common section"); 484 485 // Never emit TLS variable xyz in emulated TLS model. 486 // The initialization value is in __emutls_t.xyz instead of xyz. 487 if (IsEmuTLSVar) 488 return; 489 490 if (GV->hasInitializer()) { 491 // Check to see if this is a special global used by LLVM, if so, emit it. 492 if (emitSpecialLLVMGlobal(GV)) 493 return; 494 495 // Skip the emission of global equivalents. The symbol can be emitted later 496 // on by emitGlobalGOTEquivs in case it turns out to be needed. 497 if (GlobalGOTEquivs.count(getSymbol(GV))) 498 return; 499 500 if (isVerbose()) { 501 // When printing the control variable __emutls_v.*, 502 // we don't need to print the original TLS variable name. 503 GV->printAsOperand(OutStreamer->GetCommentOS(), 504 /*PrintType=*/false, GV->getParent()); 505 OutStreamer->GetCommentOS() << '\n'; 506 } 507 } 508 509 MCSymbol *GVSym = getSymbol(GV); 510 MCSymbol *EmittedSym = GVSym; 511 512 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 513 // attributes. 514 // GV's or GVSym's attributes will be used for the EmittedSym. 515 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 516 517 if (!GV->hasInitializer()) // External globals require no extra code. 518 return; 519 520 GVSym->redefineIfPossible(); 521 if (GVSym->isDefined() || GVSym->isVariable()) 522 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 523 "' is already defined"); 524 525 if (MAI->hasDotTypeDotSizeDirective()) 526 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 527 528 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 529 530 const DataLayout &DL = GV->getParent()->getDataLayout(); 531 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 532 533 // If the alignment is specified, we *must* obey it. Overaligning a global 534 // with a specified alignment is a prompt way to break globals emitted to 535 // sections and expected to be contiguous (e.g. ObjC metadata). 536 const Align Alignment = getGVAlignment(GV, DL); 537 538 for (const HandlerInfo &HI : Handlers) { 539 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 540 HI.TimerGroupName, HI.TimerGroupDescription, 541 TimePassesIsEnabled); 542 HI.Handler->setSymbolSize(GVSym, Size); 543 } 544 545 // Handle common symbols 546 if (GVKind.isCommon()) { 547 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 548 // .comm _foo, 42, 4 549 const bool SupportsAlignment = 550 getObjFileLowering().getCommDirectiveSupportsAlignment(); 551 OutStreamer->emitCommonSymbol(GVSym, Size, 552 SupportsAlignment ? Alignment.value() : 0); 553 return; 554 } 555 556 // Determine to which section this global should be emitted. 557 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 558 559 // If we have a bss global going to a section that supports the 560 // zerofill directive, do so here. 561 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 562 TheSection->isVirtualSection()) { 563 if (Size == 0) 564 Size = 1; // zerofill of 0 bytes is undefined. 565 emitLinkage(GV, GVSym); 566 // .zerofill __DATA, __bss, _foo, 400, 5 567 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 568 return; 569 } 570 571 // If this is a BSS local symbol and we are emitting in the BSS 572 // section use .lcomm/.comm directive. 573 if (GVKind.isBSSLocal() && 574 getObjFileLowering().getBSSSection() == TheSection) { 575 if (Size == 0) 576 Size = 1; // .comm Foo, 0 is undefined, avoid it. 577 578 // Use .lcomm only if it supports user-specified alignment. 579 // Otherwise, while it would still be correct to use .lcomm in some 580 // cases (e.g. when Align == 1), the external assembler might enfore 581 // some -unknown- default alignment behavior, which could cause 582 // spurious differences between external and integrated assembler. 583 // Prefer to simply fall back to .local / .comm in this case. 584 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 585 // .lcomm _foo, 42 586 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 587 return; 588 } 589 590 // .local _foo 591 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 592 // .comm _foo, 42, 4 593 const bool SupportsAlignment = 594 getObjFileLowering().getCommDirectiveSupportsAlignment(); 595 OutStreamer->emitCommonSymbol(GVSym, Size, 596 SupportsAlignment ? Alignment.value() : 0); 597 return; 598 } 599 600 // Handle thread local data for mach-o which requires us to output an 601 // additional structure of data and mangle the original symbol so that we 602 // can reference it later. 603 // 604 // TODO: This should become an "emit thread local global" method on TLOF. 605 // All of this macho specific stuff should be sunk down into TLOFMachO and 606 // stuff like "TLSExtraDataSection" should no longer be part of the parent 607 // TLOF class. This will also make it more obvious that stuff like 608 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 609 // specific code. 610 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 611 // Emit the .tbss symbol 612 MCSymbol *MangSym = 613 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 614 615 if (GVKind.isThreadBSS()) { 616 TheSection = getObjFileLowering().getTLSBSSSection(); 617 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 618 } else if (GVKind.isThreadData()) { 619 OutStreamer->SwitchSection(TheSection); 620 621 emitAlignment(Alignment, GV); 622 OutStreamer->emitLabel(MangSym); 623 624 emitGlobalConstant(GV->getParent()->getDataLayout(), 625 GV->getInitializer()); 626 } 627 628 OutStreamer->AddBlankLine(); 629 630 // Emit the variable struct for the runtime. 631 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 632 633 OutStreamer->SwitchSection(TLVSect); 634 // Emit the linkage here. 635 emitLinkage(GV, GVSym); 636 OutStreamer->emitLabel(GVSym); 637 638 // Three pointers in size: 639 // - __tlv_bootstrap - used to make sure support exists 640 // - spare pointer, used when mapped by the runtime 641 // - pointer to mangled symbol above with initializer 642 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 643 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 644 PtrSize); 645 OutStreamer->emitIntValue(0, PtrSize); 646 OutStreamer->emitSymbolValue(MangSym, PtrSize); 647 648 OutStreamer->AddBlankLine(); 649 return; 650 } 651 652 MCSymbol *EmittedInitSym = GVSym; 653 654 OutStreamer->SwitchSection(TheSection); 655 656 emitLinkage(GV, EmittedInitSym); 657 emitAlignment(Alignment, GV); 658 659 OutStreamer->emitLabel(EmittedInitSym); 660 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 661 if (LocalAlias != EmittedInitSym) 662 OutStreamer->emitLabel(LocalAlias); 663 664 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 665 666 if (MAI->hasDotTypeDotSizeDirective()) 667 // .size foo, 42 668 OutStreamer->emitELFSize(EmittedInitSym, 669 MCConstantExpr::create(Size, OutContext)); 670 671 OutStreamer->AddBlankLine(); 672 } 673 674 /// Emit the directive and value for debug thread local expression 675 /// 676 /// \p Value - The value to emit. 677 /// \p Size - The size of the integer (in bytes) to emit. 678 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 679 OutStreamer->emitValue(Value, Size); 680 } 681 682 void AsmPrinter::emitFunctionHeaderComment() {} 683 684 /// EmitFunctionHeader - This method emits the header for the current 685 /// function. 686 void AsmPrinter::emitFunctionHeader() { 687 const Function &F = MF->getFunction(); 688 689 if (isVerbose()) 690 OutStreamer->GetCommentOS() 691 << "-- Begin function " 692 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 693 694 // Print out constants referenced by the function 695 emitConstantPool(); 696 697 // Print the 'header' of function. 698 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 699 OutStreamer->SwitchSection(MF->getSection()); 700 701 if (!MAI->hasVisibilityOnlyWithLinkage()) 702 emitVisibility(CurrentFnSym, F.getVisibility()); 703 704 if (MAI->needsFunctionDescriptors()) 705 emitLinkage(&F, CurrentFnDescSym); 706 707 emitLinkage(&F, CurrentFnSym); 708 if (MAI->hasFunctionAlignment()) 709 emitAlignment(MF->getAlignment(), &F); 710 711 if (MAI->hasDotTypeDotSizeDirective()) 712 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 713 714 if (F.hasFnAttribute(Attribute::Cold)) 715 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 716 717 if (isVerbose()) { 718 F.printAsOperand(OutStreamer->GetCommentOS(), 719 /*PrintType=*/false, F.getParent()); 720 emitFunctionHeaderComment(); 721 OutStreamer->GetCommentOS() << '\n'; 722 } 723 724 // Emit the prefix data. 725 if (F.hasPrefixData()) { 726 if (MAI->hasSubsectionsViaSymbols()) { 727 // Preserving prefix data on platforms which use subsections-via-symbols 728 // is a bit tricky. Here we introduce a symbol for the prefix data 729 // and use the .alt_entry attribute to mark the function's real entry point 730 // as an alternative entry point to the prefix-data symbol. 731 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 732 OutStreamer->emitLabel(PrefixSym); 733 734 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 735 736 // Emit an .alt_entry directive for the actual function symbol. 737 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 738 } else { 739 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 740 } 741 } 742 743 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 744 // place prefix data before NOPs. 745 unsigned PatchableFunctionPrefix = 0; 746 unsigned PatchableFunctionEntry = 0; 747 (void)F.getFnAttribute("patchable-function-prefix") 748 .getValueAsString() 749 .getAsInteger(10, PatchableFunctionPrefix); 750 (void)F.getFnAttribute("patchable-function-entry") 751 .getValueAsString() 752 .getAsInteger(10, PatchableFunctionEntry); 753 if (PatchableFunctionPrefix) { 754 CurrentPatchableFunctionEntrySym = 755 OutContext.createLinkerPrivateTempSymbol(); 756 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 757 emitNops(PatchableFunctionPrefix); 758 } else if (PatchableFunctionEntry) { 759 // May be reassigned when emitting the body, to reference the label after 760 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 761 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 762 } 763 764 // Emit the function descriptor. This is a virtual function to allow targets 765 // to emit their specific function descriptor. Right now it is only used by 766 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 767 // descriptors and should be converted to use this hook as well. 768 if (MAI->needsFunctionDescriptors()) 769 emitFunctionDescriptor(); 770 771 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 772 // their wild and crazy things as required. 773 emitFunctionEntryLabel(); 774 775 if (CurrentFnBegin) { 776 if (MAI->useAssignmentForEHBegin()) { 777 MCSymbol *CurPos = OutContext.createTempSymbol(); 778 OutStreamer->emitLabel(CurPos); 779 OutStreamer->emitAssignment(CurrentFnBegin, 780 MCSymbolRefExpr::create(CurPos, OutContext)); 781 } else { 782 OutStreamer->emitLabel(CurrentFnBegin); 783 } 784 } 785 786 // Emit pre-function debug and/or EH information. 787 for (const HandlerInfo &HI : Handlers) { 788 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 789 HI.TimerGroupDescription, TimePassesIsEnabled); 790 HI.Handler->beginFunction(MF); 791 } 792 793 // Emit the prologue data. 794 if (F.hasPrologueData()) 795 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 796 } 797 798 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 799 /// function. This can be overridden by targets as required to do custom stuff. 800 void AsmPrinter::emitFunctionEntryLabel() { 801 CurrentFnSym->redefineIfPossible(); 802 803 // The function label could have already been emitted if two symbols end up 804 // conflicting due to asm renaming. Detect this and emit an error. 805 if (CurrentFnSym->isVariable()) 806 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 807 "' is a protected alias"); 808 if (CurrentFnSym->isDefined()) 809 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 810 "' label emitted multiple times to assembly file"); 811 812 OutStreamer->emitLabel(CurrentFnSym); 813 814 if (TM.getTargetTriple().isOSBinFormatELF()) { 815 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 816 if (Sym != CurrentFnSym) 817 OutStreamer->emitLabel(Sym); 818 } 819 } 820 821 /// emitComments - Pretty-print comments for instructions. 822 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 823 const MachineFunction *MF = MI.getMF(); 824 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 825 826 // Check for spills and reloads 827 828 // We assume a single instruction only has a spill or reload, not 829 // both. 830 Optional<unsigned> Size; 831 if ((Size = MI.getRestoreSize(TII))) { 832 CommentOS << *Size << "-byte Reload\n"; 833 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 834 if (*Size) 835 CommentOS << *Size << "-byte Folded Reload\n"; 836 } else if ((Size = MI.getSpillSize(TII))) { 837 CommentOS << *Size << "-byte Spill\n"; 838 } else if ((Size = MI.getFoldedSpillSize(TII))) { 839 if (*Size) 840 CommentOS << *Size << "-byte Folded Spill\n"; 841 } 842 843 // Check for spill-induced copies 844 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 845 CommentOS << " Reload Reuse\n"; 846 } 847 848 /// emitImplicitDef - This method emits the specified machine instruction 849 /// that is an implicit def. 850 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 851 Register RegNo = MI->getOperand(0).getReg(); 852 853 SmallString<128> Str; 854 raw_svector_ostream OS(Str); 855 OS << "implicit-def: " 856 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 857 858 OutStreamer->AddComment(OS.str()); 859 OutStreamer->AddBlankLine(); 860 } 861 862 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 863 std::string Str; 864 raw_string_ostream OS(Str); 865 OS << "kill:"; 866 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 867 const MachineOperand &Op = MI->getOperand(i); 868 assert(Op.isReg() && "KILL instruction must have only register operands"); 869 OS << ' ' << (Op.isDef() ? "def " : "killed ") 870 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 871 } 872 AP.OutStreamer->AddComment(OS.str()); 873 AP.OutStreamer->AddBlankLine(); 874 } 875 876 /// emitDebugValueComment - This method handles the target-independent form 877 /// of DBG_VALUE, returning true if it was able to do so. A false return 878 /// means the target will need to handle MI in EmitInstruction. 879 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 880 // This code handles only the 4-operand target-independent form. 881 if (MI->getNumOperands() != 4) 882 return false; 883 884 SmallString<128> Str; 885 raw_svector_ostream OS(Str); 886 OS << "DEBUG_VALUE: "; 887 888 const DILocalVariable *V = MI->getDebugVariable(); 889 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 890 StringRef Name = SP->getName(); 891 if (!Name.empty()) 892 OS << Name << ":"; 893 } 894 OS << V->getName(); 895 OS << " <- "; 896 897 // The second operand is only an offset if it's an immediate. 898 bool MemLoc = MI->isIndirectDebugValue(); 899 auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0); 900 const DIExpression *Expr = MI->getDebugExpression(); 901 if (Expr->getNumElements()) { 902 OS << '['; 903 bool NeedSep = false; 904 for (auto Op : Expr->expr_ops()) { 905 if (NeedSep) 906 OS << ", "; 907 else 908 NeedSep = true; 909 OS << dwarf::OperationEncodingString(Op.getOp()); 910 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 911 OS << ' ' << Op.getArg(I); 912 } 913 OS << "] "; 914 } 915 916 // Register or immediate value. Register 0 means undef. 917 if (MI->getDebugOperand(0).isFPImm()) { 918 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF()); 919 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) { 920 OS << (double)APF.convertToFloat(); 921 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) { 922 OS << APF.convertToDouble(); 923 } else { 924 // There is no good way to print long double. Convert a copy to 925 // double. Ah well, it's only a comment. 926 bool ignored; 927 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 928 &ignored); 929 OS << "(long double) " << APF.convertToDouble(); 930 } 931 } else if (MI->getDebugOperand(0).isImm()) { 932 OS << MI->getDebugOperand(0).getImm(); 933 } else if (MI->getDebugOperand(0).isCImm()) { 934 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 935 } else if (MI->getDebugOperand(0).isTargetIndex()) { 936 auto Op = MI->getDebugOperand(0); 937 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 938 return true; 939 } else { 940 Register Reg; 941 if (MI->getDebugOperand(0).isReg()) { 942 Reg = MI->getDebugOperand(0).getReg(); 943 } else { 944 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type"); 945 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 946 Offset += TFI->getFrameIndexReference( 947 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg); 948 MemLoc = true; 949 } 950 if (Reg == 0) { 951 // Suppress offset, it is not meaningful here. 952 OS << "undef"; 953 // NOTE: Want this comment at start of line, don't emit with AddComment. 954 AP.OutStreamer->emitRawComment(OS.str()); 955 return true; 956 } 957 if (MemLoc) 958 OS << '['; 959 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 960 } 961 962 if (MemLoc) 963 OS << '+' << Offset.getFixed() << ']'; 964 965 // NOTE: Want this comment at start of line, don't emit with AddComment. 966 AP.OutStreamer->emitRawComment(OS.str()); 967 return true; 968 } 969 970 /// This method handles the target-independent form of DBG_LABEL, returning 971 /// true if it was able to do so. A false return means the target will need 972 /// to handle MI in EmitInstruction. 973 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 974 if (MI->getNumOperands() != 1) 975 return false; 976 977 SmallString<128> Str; 978 raw_svector_ostream OS(Str); 979 OS << "DEBUG_LABEL: "; 980 981 const DILabel *V = MI->getDebugLabel(); 982 if (auto *SP = dyn_cast<DISubprogram>( 983 V->getScope()->getNonLexicalBlockFileScope())) { 984 StringRef Name = SP->getName(); 985 if (!Name.empty()) 986 OS << Name << ":"; 987 } 988 OS << V->getName(); 989 990 // NOTE: Want this comment at start of line, don't emit with AddComment. 991 AP.OutStreamer->emitRawComment(OS.str()); 992 return true; 993 } 994 995 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 996 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 997 MF->getFunction().needsUnwindTableEntry()) 998 return CFI_M_EH; 999 1000 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1001 return CFI_M_Debug; 1002 1003 return CFI_M_None; 1004 } 1005 1006 bool AsmPrinter::needsSEHMoves() { 1007 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1008 } 1009 1010 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1011 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1012 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1013 ExceptionHandlingType != ExceptionHandling::ARM) 1014 return; 1015 1016 if (needsCFIMoves() == CFI_M_None) 1017 return; 1018 1019 // If there is no "real" instruction following this CFI instruction, skip 1020 // emitting it; it would be beyond the end of the function's FDE range. 1021 auto *MBB = MI.getParent(); 1022 auto I = std::next(MI.getIterator()); 1023 while (I != MBB->end() && I->isTransient()) 1024 ++I; 1025 if (I == MBB->instr_end() && 1026 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1027 return; 1028 1029 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1030 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1031 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1032 emitCFIInstruction(CFI); 1033 } 1034 1035 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1036 // The operands are the MCSymbol and the frame offset of the allocation. 1037 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1038 int FrameOffset = MI.getOperand(1).getImm(); 1039 1040 // Emit a symbol assignment. 1041 OutStreamer->emitAssignment(FrameAllocSym, 1042 MCConstantExpr::create(FrameOffset, OutContext)); 1043 } 1044 1045 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1046 /// given basic block. This can be used to capture more precise profile 1047 /// information. We use the last 3 bits (LSBs) to ecnode the following 1048 /// information: 1049 /// * (1): set if return block (ret or tail call). 1050 /// * (2): set if ends with a tail call. 1051 /// * (3): set if exception handling (EH) landing pad. 1052 /// The remaining bits are zero. 1053 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1054 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1055 return ((unsigned)MBB.isReturnBlock()) | 1056 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1057 (MBB.isEHPad() << 2); 1058 } 1059 1060 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1061 MCSection *BBAddrMapSection = 1062 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1063 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1064 1065 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1066 1067 OutStreamer->PushSection(); 1068 OutStreamer->SwitchSection(BBAddrMapSection); 1069 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1070 // Emit the total number of basic blocks in this function. 1071 OutStreamer->emitULEB128IntValue(MF.size()); 1072 // Emit BB Information for each basic block in the funciton. 1073 for (const MachineBasicBlock &MBB : MF) { 1074 const MCSymbol *MBBSymbol = 1075 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1076 // Emit the basic block offset. 1077 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1078 // Emit the basic block size. When BBs have alignments, their size cannot 1079 // always be computed from their offsets. 1080 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1081 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1082 } 1083 OutStreamer->PopSection(); 1084 } 1085 1086 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1087 if (!MF.getTarget().Options.EmitStackSizeSection) 1088 return; 1089 1090 MCSection *StackSizeSection = 1091 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1092 if (!StackSizeSection) 1093 return; 1094 1095 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1096 // Don't emit functions with dynamic stack allocations. 1097 if (FrameInfo.hasVarSizedObjects()) 1098 return; 1099 1100 OutStreamer->PushSection(); 1101 OutStreamer->SwitchSection(StackSizeSection); 1102 1103 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1104 uint64_t StackSize = FrameInfo.getStackSize(); 1105 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1106 OutStreamer->emitULEB128IntValue(StackSize); 1107 1108 OutStreamer->PopSection(); 1109 } 1110 1111 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1112 MachineModuleInfo &MMI = MF.getMMI(); 1113 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1114 return true; 1115 1116 // We might emit an EH table that uses function begin and end labels even if 1117 // we don't have any landingpads. 1118 if (!MF.getFunction().hasPersonalityFn()) 1119 return false; 1120 return !isNoOpWithoutInvoke( 1121 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1122 } 1123 1124 /// EmitFunctionBody - This method emits the body and trailer for a 1125 /// function. 1126 void AsmPrinter::emitFunctionBody() { 1127 emitFunctionHeader(); 1128 1129 // Emit target-specific gunk before the function body. 1130 emitFunctionBodyStart(); 1131 1132 if (isVerbose()) { 1133 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1134 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1135 if (!MDT) { 1136 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1137 OwnedMDT->getBase().recalculate(*MF); 1138 MDT = OwnedMDT.get(); 1139 } 1140 1141 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1142 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1143 if (!MLI) { 1144 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1145 OwnedMLI->getBase().analyze(MDT->getBase()); 1146 MLI = OwnedMLI.get(); 1147 } 1148 } 1149 1150 // Print out code for the function. 1151 bool HasAnyRealCode = false; 1152 int NumInstsInFunction = 0; 1153 1154 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1155 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1156 for (auto &MBB : *MF) { 1157 // Print a label for the basic block. 1158 emitBasicBlockStart(MBB); 1159 DenseMap<unsigned, unsigned> OpcodeCounts; 1160 for (auto &MI : MBB) { 1161 // Print the assembly for the instruction. 1162 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1163 !MI.isDebugInstr()) { 1164 HasAnyRealCode = true; 1165 ++NumInstsInFunction; 1166 } 1167 1168 // If there is a pre-instruction symbol, emit a label for it here. 1169 if (MCSymbol *S = MI.getPreInstrSymbol()) 1170 OutStreamer->emitLabel(S); 1171 1172 for (const HandlerInfo &HI : Handlers) { 1173 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1174 HI.TimerGroupDescription, TimePassesIsEnabled); 1175 HI.Handler->beginInstruction(&MI); 1176 } 1177 1178 if (isVerbose()) 1179 emitComments(MI, OutStreamer->GetCommentOS()); 1180 1181 switch (MI.getOpcode()) { 1182 case TargetOpcode::CFI_INSTRUCTION: 1183 emitCFIInstruction(MI); 1184 break; 1185 case TargetOpcode::LOCAL_ESCAPE: 1186 emitFrameAlloc(MI); 1187 break; 1188 case TargetOpcode::ANNOTATION_LABEL: 1189 case TargetOpcode::EH_LABEL: 1190 case TargetOpcode::GC_LABEL: 1191 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1192 break; 1193 case TargetOpcode::INLINEASM: 1194 case TargetOpcode::INLINEASM_BR: 1195 emitInlineAsm(&MI); 1196 break; 1197 case TargetOpcode::DBG_VALUE: 1198 if (isVerbose()) { 1199 if (!emitDebugValueComment(&MI, *this)) 1200 emitInstruction(&MI); 1201 } 1202 break; 1203 case TargetOpcode::DBG_INSTR_REF: 1204 // This instruction reference will have been resolved to a machine 1205 // location, and a nearby DBG_VALUE created. We can safely ignore 1206 // the instruction reference. 1207 break; 1208 case TargetOpcode::DBG_LABEL: 1209 if (isVerbose()) { 1210 if (!emitDebugLabelComment(&MI, *this)) 1211 emitInstruction(&MI); 1212 } 1213 break; 1214 case TargetOpcode::IMPLICIT_DEF: 1215 if (isVerbose()) emitImplicitDef(&MI); 1216 break; 1217 case TargetOpcode::KILL: 1218 if (isVerbose()) emitKill(&MI, *this); 1219 break; 1220 default: 1221 emitInstruction(&MI); 1222 if (CanDoExtraAnalysis) { 1223 auto I = OpcodeCounts.insert({MI.getOpcode(), 0u}); 1224 I.first->second++; 1225 } 1226 break; 1227 } 1228 1229 // If there is a post-instruction symbol, emit a label for it here. 1230 if (MCSymbol *S = MI.getPostInstrSymbol()) 1231 OutStreamer->emitLabel(S); 1232 1233 for (const HandlerInfo &HI : Handlers) { 1234 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1235 HI.TimerGroupDescription, TimePassesIsEnabled); 1236 HI.Handler->endInstruction(); 1237 } 1238 } 1239 1240 // We must emit temporary symbol for the end of this basic block, if either 1241 // we have BBLabels enabled or if this basic blocks marks the end of a 1242 // section (except the section containing the entry basic block as the end 1243 // symbol for that section is CurrentFnEnd). 1244 if (MF->hasBBLabels() || 1245 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1246 !MBB.sameSection(&MF->front()))) 1247 OutStreamer->emitLabel(MBB.getEndSymbol()); 1248 1249 if (MBB.isEndSection()) { 1250 // The size directive for the section containing the entry block is 1251 // handled separately by the function section. 1252 if (!MBB.sameSection(&MF->front())) { 1253 if (MAI->hasDotTypeDotSizeDirective()) { 1254 // Emit the size directive for the basic block section. 1255 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1256 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1257 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1258 OutContext); 1259 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1260 } 1261 MBBSectionRanges[MBB.getSectionIDNum()] = 1262 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1263 } 1264 } 1265 emitBasicBlockEnd(MBB); 1266 1267 if (CanDoExtraAnalysis) { 1268 // Skip empty blocks. 1269 if (MBB.empty()) 1270 continue; 1271 1272 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1273 MBB.begin()->getDebugLoc(), &MBB); 1274 1275 // Generate instruction mix remark. First, convert opcodes to string 1276 // names, then sort them in descending order by count and name. 1277 SmallVector<std::pair<std::string, unsigned>, 128> OpcodeCountsVec; 1278 for (auto &KV : OpcodeCounts) { 1279 auto Name = (Twine("INST_") + TII->getName(KV.first)).str(); 1280 OpcodeCountsVec.emplace_back(Name, KV.second); 1281 } 1282 sort(OpcodeCountsVec, [](const std::pair<std::string, unsigned> &A, 1283 const std::pair<std::string, unsigned> &B) { 1284 if (A.second > B.second) 1285 return true; 1286 if (A.second == B.second) 1287 return A.first < B.first; 1288 return false; 1289 }); 1290 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1291 for (auto &KV : OpcodeCountsVec) 1292 R << KV.first << ": " << ore::NV(KV.first, KV.second) << "\n"; 1293 ORE->emit(R); 1294 } 1295 } 1296 1297 EmittedInsts += NumInstsInFunction; 1298 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1299 MF->getFunction().getSubprogram(), 1300 &MF->front()); 1301 R << ore::NV("NumInstructions", NumInstsInFunction) 1302 << " instructions in function"; 1303 ORE->emit(R); 1304 1305 // If the function is empty and the object file uses .subsections_via_symbols, 1306 // then we need to emit *something* to the function body to prevent the 1307 // labels from collapsing together. Just emit a noop. 1308 // Similarly, don't emit empty functions on Windows either. It can lead to 1309 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1310 // after linking, causing the kernel not to load the binary: 1311 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1312 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1313 const Triple &TT = TM.getTargetTriple(); 1314 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1315 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1316 MCInst Noop; 1317 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1318 1319 // Targets can opt-out of emitting the noop here by leaving the opcode 1320 // unspecified. 1321 if (Noop.getOpcode()) { 1322 OutStreamer->AddComment("avoids zero-length function"); 1323 emitNops(1); 1324 } 1325 } 1326 1327 // Switch to the original section in case basic block sections was used. 1328 OutStreamer->SwitchSection(MF->getSection()); 1329 1330 const Function &F = MF->getFunction(); 1331 for (const auto &BB : F) { 1332 if (!BB.hasAddressTaken()) 1333 continue; 1334 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1335 if (Sym->isDefined()) 1336 continue; 1337 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1338 OutStreamer->emitLabel(Sym); 1339 } 1340 1341 // Emit target-specific gunk after the function body. 1342 emitFunctionBodyEnd(); 1343 1344 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1345 MAI->hasDotTypeDotSizeDirective()) { 1346 // Create a symbol for the end of function. 1347 CurrentFnEnd = createTempSymbol("func_end"); 1348 OutStreamer->emitLabel(CurrentFnEnd); 1349 } 1350 1351 // If the target wants a .size directive for the size of the function, emit 1352 // it. 1353 if (MAI->hasDotTypeDotSizeDirective()) { 1354 // We can get the size as difference between the function label and the 1355 // temp label. 1356 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1357 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1358 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1359 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1360 } 1361 1362 for (const HandlerInfo &HI : Handlers) { 1363 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1364 HI.TimerGroupDescription, TimePassesIsEnabled); 1365 HI.Handler->markFunctionEnd(); 1366 } 1367 1368 MBBSectionRanges[MF->front().getSectionIDNum()] = 1369 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1370 1371 // Print out jump tables referenced by the function. 1372 emitJumpTableInfo(); 1373 1374 // Emit post-function debug and/or EH information. 1375 for (const HandlerInfo &HI : Handlers) { 1376 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1377 HI.TimerGroupDescription, TimePassesIsEnabled); 1378 HI.Handler->endFunction(MF); 1379 } 1380 1381 // Emit section containing BB address offsets and their metadata, when 1382 // BB labels are requested for this function. 1383 if (MF->hasBBLabels()) 1384 emitBBAddrMapSection(*MF); 1385 1386 // Emit section containing stack size metadata. 1387 emitStackSizeSection(*MF); 1388 1389 emitPatchableFunctionEntries(); 1390 1391 if (isVerbose()) 1392 OutStreamer->GetCommentOS() << "-- End function\n"; 1393 1394 OutStreamer->AddBlankLine(); 1395 } 1396 1397 /// Compute the number of Global Variables that uses a Constant. 1398 static unsigned getNumGlobalVariableUses(const Constant *C) { 1399 if (!C) 1400 return 0; 1401 1402 if (isa<GlobalVariable>(C)) 1403 return 1; 1404 1405 unsigned NumUses = 0; 1406 for (auto *CU : C->users()) 1407 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1408 1409 return NumUses; 1410 } 1411 1412 /// Only consider global GOT equivalents if at least one user is a 1413 /// cstexpr inside an initializer of another global variables. Also, don't 1414 /// handle cstexpr inside instructions. During global variable emission, 1415 /// candidates are skipped and are emitted later in case at least one cstexpr 1416 /// isn't replaced by a PC relative GOT entry access. 1417 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1418 unsigned &NumGOTEquivUsers) { 1419 // Global GOT equivalents are unnamed private globals with a constant 1420 // pointer initializer to another global symbol. They must point to a 1421 // GlobalVariable or Function, i.e., as GlobalValue. 1422 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1423 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1424 !isa<GlobalValue>(GV->getOperand(0))) 1425 return false; 1426 1427 // To be a got equivalent, at least one of its users need to be a constant 1428 // expression used by another global variable. 1429 for (auto *U : GV->users()) 1430 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1431 1432 return NumGOTEquivUsers > 0; 1433 } 1434 1435 /// Unnamed constant global variables solely contaning a pointer to 1436 /// another globals variable is equivalent to a GOT table entry; it contains the 1437 /// the address of another symbol. Optimize it and replace accesses to these 1438 /// "GOT equivalents" by using the GOT entry for the final global instead. 1439 /// Compute GOT equivalent candidates among all global variables to avoid 1440 /// emitting them if possible later on, after it use is replaced by a GOT entry 1441 /// access. 1442 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1443 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1444 return; 1445 1446 for (const auto &G : M.globals()) { 1447 unsigned NumGOTEquivUsers = 0; 1448 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1449 continue; 1450 1451 const MCSymbol *GOTEquivSym = getSymbol(&G); 1452 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1453 } 1454 } 1455 1456 /// Constant expressions using GOT equivalent globals may not be eligible 1457 /// for PC relative GOT entry conversion, in such cases we need to emit such 1458 /// globals we previously omitted in EmitGlobalVariable. 1459 void AsmPrinter::emitGlobalGOTEquivs() { 1460 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1461 return; 1462 1463 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1464 for (auto &I : GlobalGOTEquivs) { 1465 const GlobalVariable *GV = I.second.first; 1466 unsigned Cnt = I.second.second; 1467 if (Cnt) 1468 FailedCandidates.push_back(GV); 1469 } 1470 GlobalGOTEquivs.clear(); 1471 1472 for (auto *GV : FailedCandidates) 1473 emitGlobalVariable(GV); 1474 } 1475 1476 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1477 const GlobalIndirectSymbol& GIS) { 1478 MCSymbol *Name = getSymbol(&GIS); 1479 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1480 // Treat bitcasts of functions as functions also. This is important at least 1481 // on WebAssembly where object and function addresses can't alias each other. 1482 if (!IsFunction) 1483 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1484 if (CE->getOpcode() == Instruction::BitCast) 1485 IsFunction = 1486 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1487 1488 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1489 // so AIX has to use the extra-label-at-definition strategy. At this 1490 // point, all the extra label is emitted, we just have to emit linkage for 1491 // those labels. 1492 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1493 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1494 assert(MAI->hasVisibilityOnlyWithLinkage() && 1495 "Visibility should be handled with emitLinkage() on AIX."); 1496 emitLinkage(&GIS, Name); 1497 // If it's a function, also emit linkage for aliases of function entry 1498 // point. 1499 if (IsFunction) 1500 emitLinkage(&GIS, 1501 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1502 return; 1503 } 1504 1505 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1506 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1507 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1508 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1509 else 1510 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1511 1512 // Set the symbol type to function if the alias has a function type. 1513 // This affects codegen when the aliasee is not a function. 1514 if (IsFunction) 1515 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1516 ? MCSA_ELF_TypeIndFunction 1517 : MCSA_ELF_TypeFunction); 1518 1519 emitVisibility(Name, GIS.getVisibility()); 1520 1521 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1522 1523 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1524 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1525 1526 // Emit the directives as assignments aka .set: 1527 OutStreamer->emitAssignment(Name, Expr); 1528 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1529 if (LocalAlias != Name) 1530 OutStreamer->emitAssignment(LocalAlias, Expr); 1531 1532 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1533 // If the aliasee does not correspond to a symbol in the output, i.e. the 1534 // alias is not of an object or the aliased object is private, then set the 1535 // size of the alias symbol from the type of the alias. We don't do this in 1536 // other situations as the alias and aliasee having differing types but same 1537 // size may be intentional. 1538 const GlobalObject *BaseObject = GA->getBaseObject(); 1539 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1540 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1541 const DataLayout &DL = M.getDataLayout(); 1542 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1543 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1544 } 1545 } 1546 } 1547 1548 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1549 if (!RS.needsSection()) 1550 return; 1551 1552 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1553 1554 Optional<SmallString<128>> Filename; 1555 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1556 Filename = *FilenameRef; 1557 sys::fs::make_absolute(*Filename); 1558 assert(!Filename->empty() && "The filename can't be empty."); 1559 } 1560 1561 std::string Buf; 1562 raw_string_ostream OS(Buf); 1563 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1564 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1565 : RemarkSerializer.metaSerializer(OS); 1566 MetaSerializer->emit(); 1567 1568 // Switch to the remarks section. 1569 MCSection *RemarksSection = 1570 OutContext.getObjectFileInfo()->getRemarksSection(); 1571 OutStreamer->SwitchSection(RemarksSection); 1572 1573 OutStreamer->emitBinaryData(OS.str()); 1574 } 1575 1576 bool AsmPrinter::doFinalization(Module &M) { 1577 // Set the MachineFunction to nullptr so that we can catch attempted 1578 // accesses to MF specific features at the module level and so that 1579 // we can conditionalize accesses based on whether or not it is nullptr. 1580 MF = nullptr; 1581 1582 // Gather all GOT equivalent globals in the module. We really need two 1583 // passes over the globals: one to compute and another to avoid its emission 1584 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1585 // where the got equivalent shows up before its use. 1586 computeGlobalGOTEquivs(M); 1587 1588 // Emit global variables. 1589 for (const auto &G : M.globals()) 1590 emitGlobalVariable(&G); 1591 1592 // Emit remaining GOT equivalent globals. 1593 emitGlobalGOTEquivs(); 1594 1595 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1596 1597 // Emit linkage(XCOFF) and visibility info for declarations 1598 for (const Function &F : M) { 1599 if (!F.isDeclarationForLinker()) 1600 continue; 1601 1602 MCSymbol *Name = getSymbol(&F); 1603 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1604 1605 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1606 GlobalValue::VisibilityTypes V = F.getVisibility(); 1607 if (V == GlobalValue::DefaultVisibility) 1608 continue; 1609 1610 emitVisibility(Name, V, false); 1611 continue; 1612 } 1613 1614 if (F.isIntrinsic()) 1615 continue; 1616 1617 // Handle the XCOFF case. 1618 // Variable `Name` is the function descriptor symbol (see above). Get the 1619 // function entry point symbol. 1620 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1621 // Emit linkage for the function entry point. 1622 emitLinkage(&F, FnEntryPointSym); 1623 1624 // Emit linkage for the function descriptor. 1625 emitLinkage(&F, Name); 1626 } 1627 1628 // Emit the remarks section contents. 1629 // FIXME: Figure out when is the safest time to emit this section. It should 1630 // not come after debug info. 1631 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1632 emitRemarksSection(*RS); 1633 1634 TLOF.emitModuleMetadata(*OutStreamer, M); 1635 1636 if (TM.getTargetTriple().isOSBinFormatELF()) { 1637 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1638 1639 // Output stubs for external and common global variables. 1640 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1641 if (!Stubs.empty()) { 1642 OutStreamer->SwitchSection(TLOF.getDataSection()); 1643 const DataLayout &DL = M.getDataLayout(); 1644 1645 emitAlignment(Align(DL.getPointerSize())); 1646 for (const auto &Stub : Stubs) { 1647 OutStreamer->emitLabel(Stub.first); 1648 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1649 DL.getPointerSize()); 1650 } 1651 } 1652 } 1653 1654 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1655 MachineModuleInfoCOFF &MMICOFF = 1656 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1657 1658 // Output stubs for external and common global variables. 1659 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1660 if (!Stubs.empty()) { 1661 const DataLayout &DL = M.getDataLayout(); 1662 1663 for (const auto &Stub : Stubs) { 1664 SmallString<256> SectionName = StringRef(".rdata$"); 1665 SectionName += Stub.first->getName(); 1666 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1667 SectionName, 1668 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1669 COFF::IMAGE_SCN_LNK_COMDAT, 1670 SectionKind::getReadOnly(), Stub.first->getName(), 1671 COFF::IMAGE_COMDAT_SELECT_ANY)); 1672 emitAlignment(Align(DL.getPointerSize())); 1673 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1674 OutStreamer->emitLabel(Stub.first); 1675 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1676 DL.getPointerSize()); 1677 } 1678 } 1679 } 1680 1681 // Finalize debug and EH information. 1682 for (const HandlerInfo &HI : Handlers) { 1683 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1684 HI.TimerGroupDescription, TimePassesIsEnabled); 1685 HI.Handler->endModule(); 1686 } 1687 1688 // This deletes all the ephemeral handlers that AsmPrinter added, while 1689 // keeping all the user-added handlers alive until the AsmPrinter is 1690 // destroyed. 1691 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1692 DD = nullptr; 1693 1694 // If the target wants to know about weak references, print them all. 1695 if (MAI->getWeakRefDirective()) { 1696 // FIXME: This is not lazy, it would be nice to only print weak references 1697 // to stuff that is actually used. Note that doing so would require targets 1698 // to notice uses in operands (due to constant exprs etc). This should 1699 // happen with the MC stuff eventually. 1700 1701 // Print out module-level global objects here. 1702 for (const auto &GO : M.global_objects()) { 1703 if (!GO.hasExternalWeakLinkage()) 1704 continue; 1705 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1706 } 1707 } 1708 1709 // Print aliases in topological order, that is, for each alias a = b, 1710 // b must be printed before a. 1711 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1712 // such an order to generate correct TOC information. 1713 SmallVector<const GlobalAlias *, 16> AliasStack; 1714 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1715 for (const auto &Alias : M.aliases()) { 1716 for (const GlobalAlias *Cur = &Alias; Cur; 1717 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1718 if (!AliasVisited.insert(Cur).second) 1719 break; 1720 AliasStack.push_back(Cur); 1721 } 1722 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1723 emitGlobalIndirectSymbol(M, *AncestorAlias); 1724 AliasStack.clear(); 1725 } 1726 for (const auto &IFunc : M.ifuncs()) 1727 emitGlobalIndirectSymbol(M, IFunc); 1728 1729 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1730 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1731 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1732 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1733 MP->finishAssembly(M, *MI, *this); 1734 1735 // Emit llvm.ident metadata in an '.ident' directive. 1736 emitModuleIdents(M); 1737 1738 // Emit bytes for llvm.commandline metadata. 1739 emitModuleCommandLines(M); 1740 1741 // Emit __morestack address if needed for indirect calls. 1742 if (MMI->usesMorestackAddr()) { 1743 Align Alignment(1); 1744 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1745 getDataLayout(), SectionKind::getReadOnly(), 1746 /*C=*/nullptr, Alignment); 1747 OutStreamer->SwitchSection(ReadOnlySection); 1748 1749 MCSymbol *AddrSymbol = 1750 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1751 OutStreamer->emitLabel(AddrSymbol); 1752 1753 unsigned PtrSize = MAI->getCodePointerSize(); 1754 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1755 PtrSize); 1756 } 1757 1758 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1759 // split-stack is used. 1760 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1761 OutStreamer->SwitchSection( 1762 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1763 if (MMI->hasNosplitStack()) 1764 OutStreamer->SwitchSection( 1765 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1766 } 1767 1768 // If we don't have any trampolines, then we don't require stack memory 1769 // to be executable. Some targets have a directive to declare this. 1770 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1771 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1772 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1773 OutStreamer->SwitchSection(S); 1774 1775 if (TM.Options.EmitAddrsig) { 1776 // Emit address-significance attributes for all globals. 1777 OutStreamer->emitAddrsig(); 1778 for (const GlobalValue &GV : M.global_values()) 1779 if (!GV.use_empty() && !GV.isThreadLocal() && 1780 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1781 !GV.hasAtLeastLocalUnnamedAddr()) 1782 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1783 } 1784 1785 // Emit symbol partition specifications (ELF only). 1786 if (TM.getTargetTriple().isOSBinFormatELF()) { 1787 unsigned UniqueID = 0; 1788 for (const GlobalValue &GV : M.global_values()) { 1789 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1790 GV.getVisibility() != GlobalValue::DefaultVisibility) 1791 continue; 1792 1793 OutStreamer->SwitchSection( 1794 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1795 "", ++UniqueID, nullptr)); 1796 OutStreamer->emitBytes(GV.getPartition()); 1797 OutStreamer->emitZeros(1); 1798 OutStreamer->emitValue( 1799 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1800 MAI->getCodePointerSize()); 1801 } 1802 } 1803 1804 // Allow the target to emit any magic that it wants at the end of the file, 1805 // after everything else has gone out. 1806 emitEndOfAsmFile(M); 1807 1808 MMI = nullptr; 1809 1810 OutStreamer->Finish(); 1811 OutStreamer->reset(); 1812 OwnedMLI.reset(); 1813 OwnedMDT.reset(); 1814 1815 return false; 1816 } 1817 1818 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1819 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1820 if (Res.second) 1821 Res.first->second = createTempSymbol("exception"); 1822 return Res.first->second; 1823 } 1824 1825 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1826 this->MF = &MF; 1827 const Function &F = MF.getFunction(); 1828 1829 // Get the function symbol. 1830 if (!MAI->needsFunctionDescriptors()) { 1831 CurrentFnSym = getSymbol(&MF.getFunction()); 1832 } else { 1833 assert(TM.getTargetTriple().isOSAIX() && 1834 "Only AIX uses the function descriptor hooks."); 1835 // AIX is unique here in that the name of the symbol emitted for the 1836 // function body does not have the same name as the source function's 1837 // C-linkage name. 1838 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1839 " initalized first."); 1840 1841 // Get the function entry point symbol. 1842 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1843 } 1844 1845 CurrentFnSymForSize = CurrentFnSym; 1846 CurrentFnBegin = nullptr; 1847 CurrentSectionBeginSym = nullptr; 1848 MBBSectionRanges.clear(); 1849 MBBSectionExceptionSyms.clear(); 1850 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1851 if (F.hasFnAttribute("patchable-function-entry") || 1852 F.hasFnAttribute("function-instrument") || 1853 F.hasFnAttribute("xray-instruction-threshold") || 1854 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1855 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1856 CurrentFnBegin = createTempSymbol("func_begin"); 1857 if (NeedsLocalForSize) 1858 CurrentFnSymForSize = CurrentFnBegin; 1859 } 1860 1861 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1862 } 1863 1864 namespace { 1865 1866 // Keep track the alignment, constpool entries per Section. 1867 struct SectionCPs { 1868 MCSection *S; 1869 Align Alignment; 1870 SmallVector<unsigned, 4> CPEs; 1871 1872 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1873 }; 1874 1875 } // end anonymous namespace 1876 1877 /// EmitConstantPool - Print to the current output stream assembly 1878 /// representations of the constants in the constant pool MCP. This is 1879 /// used to print out constants which have been "spilled to memory" by 1880 /// the code generator. 1881 void AsmPrinter::emitConstantPool() { 1882 const MachineConstantPool *MCP = MF->getConstantPool(); 1883 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1884 if (CP.empty()) return; 1885 1886 // Calculate sections for constant pool entries. We collect entries to go into 1887 // the same section together to reduce amount of section switch statements. 1888 SmallVector<SectionCPs, 4> CPSections; 1889 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1890 const MachineConstantPoolEntry &CPE = CP[i]; 1891 Align Alignment = CPE.getAlign(); 1892 1893 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1894 1895 const Constant *C = nullptr; 1896 if (!CPE.isMachineConstantPoolEntry()) 1897 C = CPE.Val.ConstVal; 1898 1899 MCSection *S = getObjFileLowering().getSectionForConstant( 1900 getDataLayout(), Kind, C, Alignment); 1901 1902 // The number of sections are small, just do a linear search from the 1903 // last section to the first. 1904 bool Found = false; 1905 unsigned SecIdx = CPSections.size(); 1906 while (SecIdx != 0) { 1907 if (CPSections[--SecIdx].S == S) { 1908 Found = true; 1909 break; 1910 } 1911 } 1912 if (!Found) { 1913 SecIdx = CPSections.size(); 1914 CPSections.push_back(SectionCPs(S, Alignment)); 1915 } 1916 1917 if (Alignment > CPSections[SecIdx].Alignment) 1918 CPSections[SecIdx].Alignment = Alignment; 1919 CPSections[SecIdx].CPEs.push_back(i); 1920 } 1921 1922 // Now print stuff into the calculated sections. 1923 const MCSection *CurSection = nullptr; 1924 unsigned Offset = 0; 1925 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1926 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1927 unsigned CPI = CPSections[i].CPEs[j]; 1928 MCSymbol *Sym = GetCPISymbol(CPI); 1929 if (!Sym->isUndefined()) 1930 continue; 1931 1932 if (CurSection != CPSections[i].S) { 1933 OutStreamer->SwitchSection(CPSections[i].S); 1934 emitAlignment(Align(CPSections[i].Alignment)); 1935 CurSection = CPSections[i].S; 1936 Offset = 0; 1937 } 1938 1939 MachineConstantPoolEntry CPE = CP[CPI]; 1940 1941 // Emit inter-object padding for alignment. 1942 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1943 OutStreamer->emitZeros(NewOffset - Offset); 1944 1945 Type *Ty = CPE.getType(); 1946 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1947 1948 OutStreamer->emitLabel(Sym); 1949 if (CPE.isMachineConstantPoolEntry()) 1950 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1951 else 1952 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1953 } 1954 } 1955 } 1956 1957 // Print assembly representations of the jump tables used by the current 1958 // function. 1959 void AsmPrinter::emitJumpTableInfo() { 1960 const DataLayout &DL = MF->getDataLayout(); 1961 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1962 if (!MJTI) return; 1963 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1964 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1965 if (JT.empty()) return; 1966 1967 // Pick the directive to use to print the jump table entries, and switch to 1968 // the appropriate section. 1969 const Function &F = MF->getFunction(); 1970 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1971 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1972 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1973 F); 1974 if (JTInDiffSection) { 1975 // Drop it in the readonly section. 1976 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1977 OutStreamer->SwitchSection(ReadOnlySection); 1978 } 1979 1980 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 1981 1982 // Jump tables in code sections are marked with a data_region directive 1983 // where that's supported. 1984 if (!JTInDiffSection) 1985 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 1986 1987 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1988 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1989 1990 // If this jump table was deleted, ignore it. 1991 if (JTBBs.empty()) continue; 1992 1993 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1994 /// emit a .set directive for each unique entry. 1995 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1996 MAI->doesSetDirectiveSuppressReloc()) { 1997 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1998 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1999 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2000 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2001 const MachineBasicBlock *MBB = JTBBs[ii]; 2002 if (!EmittedSets.insert(MBB).second) 2003 continue; 2004 2005 // .set LJTSet, LBB32-base 2006 const MCExpr *LHS = 2007 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2008 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2009 MCBinaryExpr::createSub(LHS, Base, 2010 OutContext)); 2011 } 2012 } 2013 2014 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2015 // before each jump table. The first label is never referenced, but tells 2016 // the assembler and linker the extents of the jump table object. The 2017 // second label is actually referenced by the code. 2018 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2019 // FIXME: This doesn't have to have any specific name, just any randomly 2020 // named and numbered local label started with 'l' would work. Simplify 2021 // GetJTISymbol. 2022 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2023 2024 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2025 OutStreamer->emitLabel(JTISymbol); 2026 2027 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2028 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2029 } 2030 if (!JTInDiffSection) 2031 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2032 } 2033 2034 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2035 /// current stream. 2036 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2037 const MachineBasicBlock *MBB, 2038 unsigned UID) const { 2039 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2040 const MCExpr *Value = nullptr; 2041 switch (MJTI->getEntryKind()) { 2042 case MachineJumpTableInfo::EK_Inline: 2043 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2044 case MachineJumpTableInfo::EK_Custom32: 2045 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2046 MJTI, MBB, UID, OutContext); 2047 break; 2048 case MachineJumpTableInfo::EK_BlockAddress: 2049 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2050 // .word LBB123 2051 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2052 break; 2053 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2054 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2055 // with a relocation as gp-relative, e.g.: 2056 // .gprel32 LBB123 2057 MCSymbol *MBBSym = MBB->getSymbol(); 2058 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2059 return; 2060 } 2061 2062 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2063 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2064 // with a relocation as gp-relative, e.g.: 2065 // .gpdword LBB123 2066 MCSymbol *MBBSym = MBB->getSymbol(); 2067 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2068 return; 2069 } 2070 2071 case MachineJumpTableInfo::EK_LabelDifference32: { 2072 // Each entry is the address of the block minus the address of the jump 2073 // table. This is used for PIC jump tables where gprel32 is not supported. 2074 // e.g.: 2075 // .word LBB123 - LJTI1_2 2076 // If the .set directive avoids relocations, this is emitted as: 2077 // .set L4_5_set_123, LBB123 - LJTI1_2 2078 // .word L4_5_set_123 2079 if (MAI->doesSetDirectiveSuppressReloc()) { 2080 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2081 OutContext); 2082 break; 2083 } 2084 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2085 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2086 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2087 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2088 break; 2089 } 2090 } 2091 2092 assert(Value && "Unknown entry kind!"); 2093 2094 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2095 OutStreamer->emitValue(Value, EntrySize); 2096 } 2097 2098 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2099 /// special global used by LLVM. If so, emit it and return true, otherwise 2100 /// do nothing and return false. 2101 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2102 if (GV->getName() == "llvm.used") { 2103 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2104 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2105 return true; 2106 } 2107 2108 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2109 if (GV->getSection() == "llvm.metadata" || 2110 GV->hasAvailableExternallyLinkage()) 2111 return true; 2112 2113 if (!GV->hasAppendingLinkage()) return false; 2114 2115 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2116 2117 if (GV->getName() == "llvm.global_ctors") { 2118 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2119 /* isCtor */ true); 2120 2121 return true; 2122 } 2123 2124 if (GV->getName() == "llvm.global_dtors") { 2125 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2126 /* isCtor */ false); 2127 2128 return true; 2129 } 2130 2131 report_fatal_error("unknown special variable"); 2132 } 2133 2134 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2135 /// global in the specified llvm.used list. 2136 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2137 // Should be an array of 'i8*'. 2138 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2139 const GlobalValue *GV = 2140 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2141 if (GV) 2142 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2143 } 2144 } 2145 2146 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2147 const Constant *List, 2148 SmallVector<Structor, 8> &Structors) { 2149 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2150 // the init priority. 2151 if (!isa<ConstantArray>(List)) 2152 return; 2153 2154 // Gather the structors in a form that's convenient for sorting by priority. 2155 for (Value *O : cast<ConstantArray>(List)->operands()) { 2156 auto *CS = cast<ConstantStruct>(O); 2157 if (CS->getOperand(1)->isNullValue()) 2158 break; // Found a null terminator, skip the rest. 2159 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2160 if (!Priority) 2161 continue; // Malformed. 2162 Structors.push_back(Structor()); 2163 Structor &S = Structors.back(); 2164 S.Priority = Priority->getLimitedValue(65535); 2165 S.Func = CS->getOperand(1); 2166 if (!CS->getOperand(2)->isNullValue()) { 2167 if (TM.getTargetTriple().isOSAIX()) 2168 llvm::report_fatal_error( 2169 "associated data of XXStructor list is not yet supported on AIX"); 2170 S.ComdatKey = 2171 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2172 } 2173 } 2174 2175 // Emit the function pointers in the target-specific order 2176 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2177 return L.Priority < R.Priority; 2178 }); 2179 } 2180 2181 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2182 /// priority. 2183 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2184 bool IsCtor) { 2185 SmallVector<Structor, 8> Structors; 2186 preprocessXXStructorList(DL, List, Structors); 2187 if (Structors.empty()) 2188 return; 2189 2190 const Align Align = DL.getPointerPrefAlignment(); 2191 for (Structor &S : Structors) { 2192 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2193 const MCSymbol *KeySym = nullptr; 2194 if (GlobalValue *GV = S.ComdatKey) { 2195 if (GV->isDeclarationForLinker()) 2196 // If the associated variable is not defined in this module 2197 // (it might be available_externally, or have been an 2198 // available_externally definition that was dropped by the 2199 // EliminateAvailableExternally pass), some other TU 2200 // will provide its dynamic initializer. 2201 continue; 2202 2203 KeySym = getSymbol(GV); 2204 } 2205 2206 MCSection *OutputSection = 2207 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2208 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2209 OutStreamer->SwitchSection(OutputSection); 2210 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2211 emitAlignment(Align); 2212 emitXXStructor(DL, S.Func); 2213 } 2214 } 2215 2216 void AsmPrinter::emitModuleIdents(Module &M) { 2217 if (!MAI->hasIdentDirective()) 2218 return; 2219 2220 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2221 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2222 const MDNode *N = NMD->getOperand(i); 2223 assert(N->getNumOperands() == 1 && 2224 "llvm.ident metadata entry can have only one operand"); 2225 const MDString *S = cast<MDString>(N->getOperand(0)); 2226 OutStreamer->emitIdent(S->getString()); 2227 } 2228 } 2229 } 2230 2231 void AsmPrinter::emitModuleCommandLines(Module &M) { 2232 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2233 if (!CommandLine) 2234 return; 2235 2236 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2237 if (!NMD || !NMD->getNumOperands()) 2238 return; 2239 2240 OutStreamer->PushSection(); 2241 OutStreamer->SwitchSection(CommandLine); 2242 OutStreamer->emitZeros(1); 2243 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2244 const MDNode *N = NMD->getOperand(i); 2245 assert(N->getNumOperands() == 1 && 2246 "llvm.commandline metadata entry can have only one operand"); 2247 const MDString *S = cast<MDString>(N->getOperand(0)); 2248 OutStreamer->emitBytes(S->getString()); 2249 OutStreamer->emitZeros(1); 2250 } 2251 OutStreamer->PopSection(); 2252 } 2253 2254 //===--------------------------------------------------------------------===// 2255 // Emission and print routines 2256 // 2257 2258 /// Emit a byte directive and value. 2259 /// 2260 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2261 2262 /// Emit a short directive and value. 2263 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2264 2265 /// Emit a long directive and value. 2266 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2267 2268 /// Emit a long long directive and value. 2269 void AsmPrinter::emitInt64(uint64_t Value) const { 2270 OutStreamer->emitInt64(Value); 2271 } 2272 2273 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2274 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2275 /// .set if it avoids relocations. 2276 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2277 unsigned Size) const { 2278 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2279 } 2280 2281 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2282 /// where the size in bytes of the directive is specified by Size and Label 2283 /// specifies the label. This implicitly uses .set if it is available. 2284 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2285 unsigned Size, 2286 bool IsSectionRelative) const { 2287 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2288 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2289 if (Size > 4) 2290 OutStreamer->emitZeros(Size - 4); 2291 return; 2292 } 2293 2294 // Emit Label+Offset (or just Label if Offset is zero) 2295 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2296 if (Offset) 2297 Expr = MCBinaryExpr::createAdd( 2298 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2299 2300 OutStreamer->emitValue(Expr, Size); 2301 } 2302 2303 //===----------------------------------------------------------------------===// 2304 2305 // EmitAlignment - Emit an alignment directive to the specified power of 2306 // two boundary. If a global value is specified, and if that global has 2307 // an explicit alignment requested, it will override the alignment request 2308 // if required for correctness. 2309 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2310 if (GV) 2311 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2312 2313 if (Alignment == Align(1)) 2314 return; // 1-byte aligned: no need to emit alignment. 2315 2316 if (getCurrentSection()->getKind().isText()) 2317 OutStreamer->emitCodeAlignment(Alignment.value()); 2318 else 2319 OutStreamer->emitValueToAlignment(Alignment.value()); 2320 } 2321 2322 //===----------------------------------------------------------------------===// 2323 // Constant emission. 2324 //===----------------------------------------------------------------------===// 2325 2326 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2327 MCContext &Ctx = OutContext; 2328 2329 if (CV->isNullValue() || isa<UndefValue>(CV)) 2330 return MCConstantExpr::create(0, Ctx); 2331 2332 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2333 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2334 2335 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2336 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2337 2338 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2339 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2340 2341 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2342 if (!CE) { 2343 llvm_unreachable("Unknown constant value to lower!"); 2344 } 2345 2346 switch (CE->getOpcode()) { 2347 case Instruction::AddrSpaceCast: { 2348 const Constant *Op = CE->getOperand(0); 2349 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2350 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2351 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2352 return lowerConstant(Op); 2353 2354 // Fallthrough to error. 2355 LLVM_FALLTHROUGH; 2356 } 2357 default: { 2358 // If the code isn't optimized, there may be outstanding folding 2359 // opportunities. Attempt to fold the expression using DataLayout as a 2360 // last resort before giving up. 2361 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2362 if (C != CE) 2363 return lowerConstant(C); 2364 2365 // Otherwise report the problem to the user. 2366 std::string S; 2367 raw_string_ostream OS(S); 2368 OS << "Unsupported expression in static initializer: "; 2369 CE->printAsOperand(OS, /*PrintType=*/false, 2370 !MF ? nullptr : MF->getFunction().getParent()); 2371 report_fatal_error(OS.str()); 2372 } 2373 case Instruction::GetElementPtr: { 2374 // Generate a symbolic expression for the byte address 2375 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2376 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2377 2378 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2379 if (!OffsetAI) 2380 return Base; 2381 2382 int64_t Offset = OffsetAI.getSExtValue(); 2383 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2384 Ctx); 2385 } 2386 2387 case Instruction::Trunc: 2388 // We emit the value and depend on the assembler to truncate the generated 2389 // expression properly. This is important for differences between 2390 // blockaddress labels. Since the two labels are in the same function, it 2391 // is reasonable to treat their delta as a 32-bit value. 2392 LLVM_FALLTHROUGH; 2393 case Instruction::BitCast: 2394 return lowerConstant(CE->getOperand(0)); 2395 2396 case Instruction::IntToPtr: { 2397 const DataLayout &DL = getDataLayout(); 2398 2399 // Handle casts to pointers by changing them into casts to the appropriate 2400 // integer type. This promotes constant folding and simplifies this code. 2401 Constant *Op = CE->getOperand(0); 2402 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2403 false/*ZExt*/); 2404 return lowerConstant(Op); 2405 } 2406 2407 case Instruction::PtrToInt: { 2408 const DataLayout &DL = getDataLayout(); 2409 2410 // Support only foldable casts to/from pointers that can be eliminated by 2411 // changing the pointer to the appropriately sized integer type. 2412 Constant *Op = CE->getOperand(0); 2413 Type *Ty = CE->getType(); 2414 2415 const MCExpr *OpExpr = lowerConstant(Op); 2416 2417 // We can emit the pointer value into this slot if the slot is an 2418 // integer slot equal to the size of the pointer. 2419 // 2420 // If the pointer is larger than the resultant integer, then 2421 // as with Trunc just depend on the assembler to truncate it. 2422 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2423 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2424 return OpExpr; 2425 2426 // Otherwise the pointer is smaller than the resultant integer, mask off 2427 // the high bits so we are sure to get a proper truncation if the input is 2428 // a constant expr. 2429 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2430 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2431 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2432 } 2433 2434 case Instruction::Sub: { 2435 GlobalValue *LHSGV; 2436 APInt LHSOffset; 2437 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2438 getDataLayout())) { 2439 GlobalValue *RHSGV; 2440 APInt RHSOffset; 2441 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2442 getDataLayout())) { 2443 const MCExpr *RelocExpr = 2444 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2445 if (!RelocExpr) 2446 RelocExpr = MCBinaryExpr::createSub( 2447 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2448 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2449 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2450 if (Addend != 0) 2451 RelocExpr = MCBinaryExpr::createAdd( 2452 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2453 return RelocExpr; 2454 } 2455 } 2456 } 2457 // else fallthrough 2458 LLVM_FALLTHROUGH; 2459 2460 // The MC library also has a right-shift operator, but it isn't consistently 2461 // signed or unsigned between different targets. 2462 case Instruction::Add: 2463 case Instruction::Mul: 2464 case Instruction::SDiv: 2465 case Instruction::SRem: 2466 case Instruction::Shl: 2467 case Instruction::And: 2468 case Instruction::Or: 2469 case Instruction::Xor: { 2470 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2471 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2472 switch (CE->getOpcode()) { 2473 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2474 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2475 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2476 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2477 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2478 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2479 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2480 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2481 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2482 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2483 } 2484 } 2485 } 2486 } 2487 2488 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2489 AsmPrinter &AP, 2490 const Constant *BaseCV = nullptr, 2491 uint64_t Offset = 0); 2492 2493 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2494 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2495 2496 /// isRepeatedByteSequence - Determine whether the given value is 2497 /// composed of a repeated sequence of identical bytes and return the 2498 /// byte value. If it is not a repeated sequence, return -1. 2499 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2500 StringRef Data = V->getRawDataValues(); 2501 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2502 char C = Data[0]; 2503 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2504 if (Data[i] != C) return -1; 2505 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2506 } 2507 2508 /// isRepeatedByteSequence - Determine whether the given value is 2509 /// composed of a repeated sequence of identical bytes and return the 2510 /// byte value. If it is not a repeated sequence, return -1. 2511 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2512 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2513 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2514 assert(Size % 8 == 0); 2515 2516 // Extend the element to take zero padding into account. 2517 APInt Value = CI->getValue().zextOrSelf(Size); 2518 if (!Value.isSplat(8)) 2519 return -1; 2520 2521 return Value.zextOrTrunc(8).getZExtValue(); 2522 } 2523 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2524 // Make sure all array elements are sequences of the same repeated 2525 // byte. 2526 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2527 Constant *Op0 = CA->getOperand(0); 2528 int Byte = isRepeatedByteSequence(Op0, DL); 2529 if (Byte == -1) 2530 return -1; 2531 2532 // All array elements must be equal. 2533 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2534 if (CA->getOperand(i) != Op0) 2535 return -1; 2536 return Byte; 2537 } 2538 2539 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2540 return isRepeatedByteSequence(CDS); 2541 2542 return -1; 2543 } 2544 2545 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2546 const ConstantDataSequential *CDS, 2547 AsmPrinter &AP) { 2548 // See if we can aggregate this into a .fill, if so, emit it as such. 2549 int Value = isRepeatedByteSequence(CDS, DL); 2550 if (Value != -1) { 2551 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2552 // Don't emit a 1-byte object as a .fill. 2553 if (Bytes > 1) 2554 return AP.OutStreamer->emitFill(Bytes, Value); 2555 } 2556 2557 // If this can be emitted with .ascii/.asciz, emit it as such. 2558 if (CDS->isString()) 2559 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2560 2561 // Otherwise, emit the values in successive locations. 2562 unsigned ElementByteSize = CDS->getElementByteSize(); 2563 if (isa<IntegerType>(CDS->getElementType())) { 2564 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2565 if (AP.isVerbose()) 2566 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2567 CDS->getElementAsInteger(i)); 2568 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2569 ElementByteSize); 2570 } 2571 } else { 2572 Type *ET = CDS->getElementType(); 2573 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2574 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2575 } 2576 2577 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2578 unsigned EmittedSize = 2579 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2580 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2581 if (unsigned Padding = Size - EmittedSize) 2582 AP.OutStreamer->emitZeros(Padding); 2583 } 2584 2585 static void emitGlobalConstantArray(const DataLayout &DL, 2586 const ConstantArray *CA, AsmPrinter &AP, 2587 const Constant *BaseCV, uint64_t Offset) { 2588 // See if we can aggregate some values. Make sure it can be 2589 // represented as a series of bytes of the constant value. 2590 int Value = isRepeatedByteSequence(CA, DL); 2591 2592 if (Value != -1) { 2593 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2594 AP.OutStreamer->emitFill(Bytes, Value); 2595 } 2596 else { 2597 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2598 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2599 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2600 } 2601 } 2602 } 2603 2604 static void emitGlobalConstantVector(const DataLayout &DL, 2605 const ConstantVector *CV, AsmPrinter &AP) { 2606 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2607 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2608 2609 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2610 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2611 CV->getType()->getNumElements(); 2612 if (unsigned Padding = Size - EmittedSize) 2613 AP.OutStreamer->emitZeros(Padding); 2614 } 2615 2616 static void emitGlobalConstantStruct(const DataLayout &DL, 2617 const ConstantStruct *CS, AsmPrinter &AP, 2618 const Constant *BaseCV, uint64_t Offset) { 2619 // Print the fields in successive locations. Pad to align if needed! 2620 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2621 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2622 uint64_t SizeSoFar = 0; 2623 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2624 const Constant *Field = CS->getOperand(i); 2625 2626 // Print the actual field value. 2627 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2628 2629 // Check if padding is needed and insert one or more 0s. 2630 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2631 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2632 - Layout->getElementOffset(i)) - FieldSize; 2633 SizeSoFar += FieldSize + PadSize; 2634 2635 // Insert padding - this may include padding to increase the size of the 2636 // current field up to the ABI size (if the struct is not packed) as well 2637 // as padding to ensure that the next field starts at the right offset. 2638 AP.OutStreamer->emitZeros(PadSize); 2639 } 2640 assert(SizeSoFar == Layout->getSizeInBytes() && 2641 "Layout of constant struct may be incorrect!"); 2642 } 2643 2644 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2645 assert(ET && "Unknown float type"); 2646 APInt API = APF.bitcastToAPInt(); 2647 2648 // First print a comment with what we think the original floating-point value 2649 // should have been. 2650 if (AP.isVerbose()) { 2651 SmallString<8> StrVal; 2652 APF.toString(StrVal); 2653 ET->print(AP.OutStreamer->GetCommentOS()); 2654 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2655 } 2656 2657 // Now iterate through the APInt chunks, emitting them in endian-correct 2658 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2659 // floats). 2660 unsigned NumBytes = API.getBitWidth() / 8; 2661 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2662 const uint64_t *p = API.getRawData(); 2663 2664 // PPC's long double has odd notions of endianness compared to how LLVM 2665 // handles it: p[0] goes first for *big* endian on PPC. 2666 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2667 int Chunk = API.getNumWords() - 1; 2668 2669 if (TrailingBytes) 2670 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2671 2672 for (; Chunk >= 0; --Chunk) 2673 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2674 } else { 2675 unsigned Chunk; 2676 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2677 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2678 2679 if (TrailingBytes) 2680 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2681 } 2682 2683 // Emit the tail padding for the long double. 2684 const DataLayout &DL = AP.getDataLayout(); 2685 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2686 } 2687 2688 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2689 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2690 } 2691 2692 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2693 const DataLayout &DL = AP.getDataLayout(); 2694 unsigned BitWidth = CI->getBitWidth(); 2695 2696 // Copy the value as we may massage the layout for constants whose bit width 2697 // is not a multiple of 64-bits. 2698 APInt Realigned(CI->getValue()); 2699 uint64_t ExtraBits = 0; 2700 unsigned ExtraBitsSize = BitWidth & 63; 2701 2702 if (ExtraBitsSize) { 2703 // The bit width of the data is not a multiple of 64-bits. 2704 // The extra bits are expected to be at the end of the chunk of the memory. 2705 // Little endian: 2706 // * Nothing to be done, just record the extra bits to emit. 2707 // Big endian: 2708 // * Record the extra bits to emit. 2709 // * Realign the raw data to emit the chunks of 64-bits. 2710 if (DL.isBigEndian()) { 2711 // Basically the structure of the raw data is a chunk of 64-bits cells: 2712 // 0 1 BitWidth / 64 2713 // [chunk1][chunk2] ... [chunkN]. 2714 // The most significant chunk is chunkN and it should be emitted first. 2715 // However, due to the alignment issue chunkN contains useless bits. 2716 // Realign the chunks so that they contain only useful information: 2717 // ExtraBits 0 1 (BitWidth / 64) - 1 2718 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2719 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2720 ExtraBits = Realigned.getRawData()[0] & 2721 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2722 Realigned.lshrInPlace(ExtraBitsSize); 2723 } else 2724 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2725 } 2726 2727 // We don't expect assemblers to support integer data directives 2728 // for more than 64 bits, so we emit the data in at most 64-bit 2729 // quantities at a time. 2730 const uint64_t *RawData = Realigned.getRawData(); 2731 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2732 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2733 AP.OutStreamer->emitIntValue(Val, 8); 2734 } 2735 2736 if (ExtraBitsSize) { 2737 // Emit the extra bits after the 64-bits chunks. 2738 2739 // Emit a directive that fills the expected size. 2740 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2741 Size -= (BitWidth / 64) * 8; 2742 assert(Size && Size * 8 >= ExtraBitsSize && 2743 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2744 == ExtraBits && "Directive too small for extra bits."); 2745 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2746 } 2747 } 2748 2749 /// Transform a not absolute MCExpr containing a reference to a GOT 2750 /// equivalent global, by a target specific GOT pc relative access to the 2751 /// final symbol. 2752 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2753 const Constant *BaseCst, 2754 uint64_t Offset) { 2755 // The global @foo below illustrates a global that uses a got equivalent. 2756 // 2757 // @bar = global i32 42 2758 // @gotequiv = private unnamed_addr constant i32* @bar 2759 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2760 // i64 ptrtoint (i32* @foo to i64)) 2761 // to i32) 2762 // 2763 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2764 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2765 // form: 2766 // 2767 // foo = cstexpr, where 2768 // cstexpr := <gotequiv> - "." + <cst> 2769 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2770 // 2771 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2772 // 2773 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2774 // gotpcrelcst := <offset from @foo base> + <cst> 2775 MCValue MV; 2776 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2777 return; 2778 const MCSymbolRefExpr *SymA = MV.getSymA(); 2779 if (!SymA) 2780 return; 2781 2782 // Check that GOT equivalent symbol is cached. 2783 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2784 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2785 return; 2786 2787 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2788 if (!BaseGV) 2789 return; 2790 2791 // Check for a valid base symbol 2792 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2793 const MCSymbolRefExpr *SymB = MV.getSymB(); 2794 2795 if (!SymB || BaseSym != &SymB->getSymbol()) 2796 return; 2797 2798 // Make sure to match: 2799 // 2800 // gotpcrelcst := <offset from @foo base> + <cst> 2801 // 2802 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2803 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2804 // if the target knows how to encode it. 2805 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2806 if (GOTPCRelCst < 0) 2807 return; 2808 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2809 return; 2810 2811 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2812 // 2813 // bar: 2814 // .long 42 2815 // gotequiv: 2816 // .quad bar 2817 // foo: 2818 // .long gotequiv - "." + <cst> 2819 // 2820 // is replaced by the target specific equivalent to: 2821 // 2822 // bar: 2823 // .long 42 2824 // foo: 2825 // .long bar@GOTPCREL+<gotpcrelcst> 2826 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2827 const GlobalVariable *GV = Result.first; 2828 int NumUses = (int)Result.second; 2829 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2830 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2831 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2832 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2833 2834 // Update GOT equivalent usage information 2835 --NumUses; 2836 if (NumUses >= 0) 2837 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2838 } 2839 2840 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2841 AsmPrinter &AP, const Constant *BaseCV, 2842 uint64_t Offset) { 2843 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2844 2845 // Globals with sub-elements such as combinations of arrays and structs 2846 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2847 // constant symbol base and the current position with BaseCV and Offset. 2848 if (!BaseCV && CV->hasOneUse()) 2849 BaseCV = dyn_cast<Constant>(CV->user_back()); 2850 2851 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2852 return AP.OutStreamer->emitZeros(Size); 2853 2854 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2855 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2856 2857 if (StoreSize <= 8) { 2858 if (AP.isVerbose()) 2859 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2860 CI->getZExtValue()); 2861 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2862 } else { 2863 emitGlobalConstantLargeInt(CI, AP); 2864 } 2865 2866 // Emit tail padding if needed 2867 if (Size != StoreSize) 2868 AP.OutStreamer->emitZeros(Size - StoreSize); 2869 2870 return; 2871 } 2872 2873 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2874 return emitGlobalConstantFP(CFP, AP); 2875 2876 if (isa<ConstantPointerNull>(CV)) { 2877 AP.OutStreamer->emitIntValue(0, Size); 2878 return; 2879 } 2880 2881 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2882 return emitGlobalConstantDataSequential(DL, CDS, AP); 2883 2884 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2885 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2886 2887 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2888 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2889 2890 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2891 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2892 // vectors). 2893 if (CE->getOpcode() == Instruction::BitCast) 2894 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2895 2896 if (Size > 8) { 2897 // If the constant expression's size is greater than 64-bits, then we have 2898 // to emit the value in chunks. Try to constant fold the value and emit it 2899 // that way. 2900 Constant *New = ConstantFoldConstant(CE, DL); 2901 if (New != CE) 2902 return emitGlobalConstantImpl(DL, New, AP); 2903 } 2904 } 2905 2906 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2907 return emitGlobalConstantVector(DL, V, AP); 2908 2909 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2910 // thread the streamer with EmitValue. 2911 const MCExpr *ME = AP.lowerConstant(CV); 2912 2913 // Since lowerConstant already folded and got rid of all IR pointer and 2914 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2915 // directly. 2916 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2917 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2918 2919 AP.OutStreamer->emitValue(ME, Size); 2920 } 2921 2922 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2923 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2924 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2925 if (Size) 2926 emitGlobalConstantImpl(DL, CV, *this); 2927 else if (MAI->hasSubsectionsViaSymbols()) { 2928 // If the global has zero size, emit a single byte so that two labels don't 2929 // look like they are at the same location. 2930 OutStreamer->emitIntValue(0, 1); 2931 } 2932 } 2933 2934 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2935 // Target doesn't support this yet! 2936 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2937 } 2938 2939 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2940 if (Offset > 0) 2941 OS << '+' << Offset; 2942 else if (Offset < 0) 2943 OS << Offset; 2944 } 2945 2946 void AsmPrinter::emitNops(unsigned N) { 2947 MCInst Nop; 2948 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2949 for (; N; --N) 2950 EmitToStreamer(*OutStreamer, Nop); 2951 } 2952 2953 //===----------------------------------------------------------------------===// 2954 // Symbol Lowering Routines. 2955 //===----------------------------------------------------------------------===// 2956 2957 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2958 return OutContext.createTempSymbol(Name, true); 2959 } 2960 2961 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2962 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2963 } 2964 2965 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2966 return MMI->getAddrLabelSymbol(BB); 2967 } 2968 2969 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2970 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2971 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2972 const MachineConstantPoolEntry &CPE = 2973 MF->getConstantPool()->getConstants()[CPID]; 2974 if (!CPE.isMachineConstantPoolEntry()) { 2975 const DataLayout &DL = MF->getDataLayout(); 2976 SectionKind Kind = CPE.getSectionKind(&DL); 2977 const Constant *C = CPE.Val.ConstVal; 2978 Align Alignment = CPE.Alignment; 2979 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2980 getObjFileLowering().getSectionForConstant(DL, Kind, C, 2981 Alignment))) { 2982 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2983 if (Sym->isUndefined()) 2984 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2985 return Sym; 2986 } 2987 } 2988 } 2989 } 2990 2991 const DataLayout &DL = getDataLayout(); 2992 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2993 "CPI" + Twine(getFunctionNumber()) + "_" + 2994 Twine(CPID)); 2995 } 2996 2997 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2998 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2999 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3000 } 3001 3002 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3003 /// FIXME: privatize to AsmPrinter. 3004 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3005 const DataLayout &DL = getDataLayout(); 3006 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3007 Twine(getFunctionNumber()) + "_" + 3008 Twine(UID) + "_set_" + Twine(MBBID)); 3009 } 3010 3011 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3012 StringRef Suffix) const { 3013 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3014 } 3015 3016 /// Return the MCSymbol for the specified ExternalSymbol. 3017 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3018 SmallString<60> NameStr; 3019 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3020 return OutContext.getOrCreateSymbol(NameStr); 3021 } 3022 3023 /// PrintParentLoopComment - Print comments about parent loops of this one. 3024 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3025 unsigned FunctionNumber) { 3026 if (!Loop) return; 3027 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3028 OS.indent(Loop->getLoopDepth()*2) 3029 << "Parent Loop BB" << FunctionNumber << "_" 3030 << Loop->getHeader()->getNumber() 3031 << " Depth=" << Loop->getLoopDepth() << '\n'; 3032 } 3033 3034 /// PrintChildLoopComment - Print comments about child loops within 3035 /// the loop for this basic block, with nesting. 3036 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3037 unsigned FunctionNumber) { 3038 // Add child loop information 3039 for (const MachineLoop *CL : *Loop) { 3040 OS.indent(CL->getLoopDepth()*2) 3041 << "Child Loop BB" << FunctionNumber << "_" 3042 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3043 << '\n'; 3044 PrintChildLoopComment(OS, CL, FunctionNumber); 3045 } 3046 } 3047 3048 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3049 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3050 const MachineLoopInfo *LI, 3051 const AsmPrinter &AP) { 3052 // Add loop depth information 3053 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3054 if (!Loop) return; 3055 3056 MachineBasicBlock *Header = Loop->getHeader(); 3057 assert(Header && "No header for loop"); 3058 3059 // If this block is not a loop header, just print out what is the loop header 3060 // and return. 3061 if (Header != &MBB) { 3062 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3063 Twine(AP.getFunctionNumber())+"_" + 3064 Twine(Loop->getHeader()->getNumber())+ 3065 " Depth="+Twine(Loop->getLoopDepth())); 3066 return; 3067 } 3068 3069 // Otherwise, it is a loop header. Print out information about child and 3070 // parent loops. 3071 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3072 3073 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3074 3075 OS << "=>"; 3076 OS.indent(Loop->getLoopDepth()*2-2); 3077 3078 OS << "This "; 3079 if (Loop->isInnermost()) 3080 OS << "Inner "; 3081 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3082 3083 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3084 } 3085 3086 /// emitBasicBlockStart - This method prints the label for the specified 3087 /// MachineBasicBlock, an alignment (if present) and a comment describing 3088 /// it if appropriate. 3089 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3090 // End the previous funclet and start a new one. 3091 if (MBB.isEHFuncletEntry()) { 3092 for (const HandlerInfo &HI : Handlers) { 3093 HI.Handler->endFunclet(); 3094 HI.Handler->beginFunclet(MBB); 3095 } 3096 } 3097 3098 // Emit an alignment directive for this block, if needed. 3099 const Align Alignment = MBB.getAlignment(); 3100 if (Alignment != Align(1)) 3101 emitAlignment(Alignment); 3102 3103 // Switch to a new section if this basic block must begin a section. The 3104 // entry block is always placed in the function section and is handled 3105 // separately. 3106 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3107 OutStreamer->SwitchSection( 3108 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3109 MBB, TM)); 3110 CurrentSectionBeginSym = MBB.getSymbol(); 3111 } 3112 3113 // If the block has its address taken, emit any labels that were used to 3114 // reference the block. It is possible that there is more than one label 3115 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3116 // the references were generated. 3117 if (MBB.hasAddressTaken()) { 3118 const BasicBlock *BB = MBB.getBasicBlock(); 3119 if (isVerbose()) 3120 OutStreamer->AddComment("Block address taken"); 3121 3122 // MBBs can have their address taken as part of CodeGen without having 3123 // their corresponding BB's address taken in IR 3124 if (BB->hasAddressTaken()) 3125 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3126 OutStreamer->emitLabel(Sym); 3127 } 3128 3129 // Print some verbose block comments. 3130 if (isVerbose()) { 3131 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3132 if (BB->hasName()) { 3133 BB->printAsOperand(OutStreamer->GetCommentOS(), 3134 /*PrintType=*/false, BB->getModule()); 3135 OutStreamer->GetCommentOS() << '\n'; 3136 } 3137 } 3138 3139 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3140 emitBasicBlockLoopComments(MBB, MLI, *this); 3141 } 3142 3143 // Print the main label for the block. 3144 if (shouldEmitLabelForBasicBlock(MBB)) { 3145 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3146 OutStreamer->AddComment("Label of block must be emitted"); 3147 OutStreamer->emitLabel(MBB.getSymbol()); 3148 } else { 3149 if (isVerbose()) { 3150 // NOTE: Want this comment at start of line, don't emit with AddComment. 3151 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3152 false); 3153 } 3154 } 3155 3156 // With BB sections, each basic block must handle CFI information on its own 3157 // if it begins a section (Entry block is handled separately by 3158 // AsmPrinterHandler::beginFunction). 3159 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3160 for (const HandlerInfo &HI : Handlers) 3161 HI.Handler->beginBasicBlock(MBB); 3162 } 3163 3164 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3165 // Check if CFI information needs to be updated for this MBB with basic block 3166 // sections. 3167 if (MBB.isEndSection()) 3168 for (const HandlerInfo &HI : Handlers) 3169 HI.Handler->endBasicBlock(MBB); 3170 } 3171 3172 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3173 bool IsDefinition) const { 3174 MCSymbolAttr Attr = MCSA_Invalid; 3175 3176 switch (Visibility) { 3177 default: break; 3178 case GlobalValue::HiddenVisibility: 3179 if (IsDefinition) 3180 Attr = MAI->getHiddenVisibilityAttr(); 3181 else 3182 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3183 break; 3184 case GlobalValue::ProtectedVisibility: 3185 Attr = MAI->getProtectedVisibilityAttr(); 3186 break; 3187 } 3188 3189 if (Attr != MCSA_Invalid) 3190 OutStreamer->emitSymbolAttribute(Sym, Attr); 3191 } 3192 3193 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3194 const MachineBasicBlock &MBB) const { 3195 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3196 // in the labels mode (option `=labels`) and every section beginning in the 3197 // sections mode (`=all` and `=list=`). 3198 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3199 return true; 3200 // A label is needed for any block with at least one predecessor (when that 3201 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3202 // entry, or if a label is forced). 3203 return !MBB.pred_empty() && 3204 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3205 MBB.hasLabelMustBeEmitted()); 3206 } 3207 3208 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3209 /// exactly one predecessor and the control transfer mechanism between 3210 /// the predecessor and this block is a fall-through. 3211 bool AsmPrinter:: 3212 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3213 // If this is a landing pad, it isn't a fall through. If it has no preds, 3214 // then nothing falls through to it. 3215 if (MBB->isEHPad() || MBB->pred_empty()) 3216 return false; 3217 3218 // If there isn't exactly one predecessor, it can't be a fall through. 3219 if (MBB->pred_size() > 1) 3220 return false; 3221 3222 // The predecessor has to be immediately before this block. 3223 MachineBasicBlock *Pred = *MBB->pred_begin(); 3224 if (!Pred->isLayoutSuccessor(MBB)) 3225 return false; 3226 3227 // If the block is completely empty, then it definitely does fall through. 3228 if (Pred->empty()) 3229 return true; 3230 3231 // Check the terminators in the previous blocks 3232 for (const auto &MI : Pred->terminators()) { 3233 // If it is not a simple branch, we are in a table somewhere. 3234 if (!MI.isBranch() || MI.isIndirectBranch()) 3235 return false; 3236 3237 // If we are the operands of one of the branches, this is not a fall 3238 // through. Note that targets with delay slots will usually bundle 3239 // terminators with the delay slot instruction. 3240 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3241 if (OP->isJTI()) 3242 return false; 3243 if (OP->isMBB() && OP->getMBB() == MBB) 3244 return false; 3245 } 3246 } 3247 3248 return true; 3249 } 3250 3251 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3252 if (!S.usesMetadata()) 3253 return nullptr; 3254 3255 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3256 gcp_map_type::iterator GCPI = GCMap.find(&S); 3257 if (GCPI != GCMap.end()) 3258 return GCPI->second.get(); 3259 3260 auto Name = S.getName(); 3261 3262 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3263 GCMetadataPrinterRegistry::entries()) 3264 if (Name == GCMetaPrinter.getName()) { 3265 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3266 GMP->S = &S; 3267 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3268 return IterBool.first->second.get(); 3269 } 3270 3271 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3272 } 3273 3274 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3275 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3276 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3277 bool NeedsDefault = false; 3278 if (MI->begin() == MI->end()) 3279 // No GC strategy, use the default format. 3280 NeedsDefault = true; 3281 else 3282 for (auto &I : *MI) { 3283 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3284 if (MP->emitStackMaps(SM, *this)) 3285 continue; 3286 // The strategy doesn't have printer or doesn't emit custom stack maps. 3287 // Use the default format. 3288 NeedsDefault = true; 3289 } 3290 3291 if (NeedsDefault) 3292 SM.serializeToStackMapSection(); 3293 } 3294 3295 /// Pin vtable to this file. 3296 AsmPrinterHandler::~AsmPrinterHandler() = default; 3297 3298 void AsmPrinterHandler::markFunctionEnd() {} 3299 3300 // In the binary's "xray_instr_map" section, an array of these function entries 3301 // describes each instrumentation point. When XRay patches your code, the index 3302 // into this table will be given to your handler as a patch point identifier. 3303 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3304 auto Kind8 = static_cast<uint8_t>(Kind); 3305 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3306 Out->emitBinaryData( 3307 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3308 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3309 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3310 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3311 Out->emitZeros(Padding); 3312 } 3313 3314 void AsmPrinter::emitXRayTable() { 3315 if (Sleds.empty()) 3316 return; 3317 3318 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3319 const Function &F = MF->getFunction(); 3320 MCSection *InstMap = nullptr; 3321 MCSection *FnSledIndex = nullptr; 3322 const Triple &TT = TM.getTargetTriple(); 3323 // Use PC-relative addresses on all targets. 3324 if (TT.isOSBinFormatELF()) { 3325 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3326 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3327 StringRef GroupName; 3328 if (F.hasComdat()) { 3329 Flags |= ELF::SHF_GROUP; 3330 GroupName = F.getComdat()->getName(); 3331 } 3332 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3333 Flags, 0, GroupName, 3334 MCSection::NonUniqueID, LinkedToSym); 3335 3336 if (!TM.Options.XRayOmitFunctionIndex) 3337 FnSledIndex = OutContext.getELFSection( 3338 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3339 GroupName, MCSection::NonUniqueID, LinkedToSym); 3340 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3341 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3342 SectionKind::getReadOnlyWithRel()); 3343 if (!TM.Options.XRayOmitFunctionIndex) 3344 FnSledIndex = OutContext.getMachOSection( 3345 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3346 } else { 3347 llvm_unreachable("Unsupported target"); 3348 } 3349 3350 auto WordSizeBytes = MAI->getCodePointerSize(); 3351 3352 // Now we switch to the instrumentation map section. Because this is done 3353 // per-function, we are able to create an index entry that will represent the 3354 // range of sleds associated with a function. 3355 auto &Ctx = OutContext; 3356 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3357 OutStreamer->SwitchSection(InstMap); 3358 OutStreamer->emitLabel(SledsStart); 3359 for (const auto &Sled : Sleds) { 3360 MCSymbol *Dot = Ctx.createTempSymbol(); 3361 OutStreamer->emitLabel(Dot); 3362 OutStreamer->emitValueImpl( 3363 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3364 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3365 WordSizeBytes); 3366 OutStreamer->emitValueImpl( 3367 MCBinaryExpr::createSub( 3368 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3369 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3370 MCConstantExpr::create(WordSizeBytes, Ctx), 3371 Ctx), 3372 Ctx), 3373 WordSizeBytes); 3374 Sled.emit(WordSizeBytes, OutStreamer.get()); 3375 } 3376 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3377 OutStreamer->emitLabel(SledsEnd); 3378 3379 // We then emit a single entry in the index per function. We use the symbols 3380 // that bound the instrumentation map as the range for a specific function. 3381 // Each entry here will be 2 * word size aligned, as we're writing down two 3382 // pointers. This should work for both 32-bit and 64-bit platforms. 3383 if (FnSledIndex) { 3384 OutStreamer->SwitchSection(FnSledIndex); 3385 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3386 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3387 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3388 OutStreamer->SwitchSection(PrevSection); 3389 } 3390 Sleds.clear(); 3391 } 3392 3393 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3394 SledKind Kind, uint8_t Version) { 3395 const Function &F = MI.getMF()->getFunction(); 3396 auto Attr = F.getFnAttribute("function-instrument"); 3397 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3398 bool AlwaysInstrument = 3399 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3400 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3401 Kind = SledKind::LOG_ARGS_ENTER; 3402 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3403 AlwaysInstrument, &F, Version}); 3404 } 3405 3406 void AsmPrinter::emitPatchableFunctionEntries() { 3407 const Function &F = MF->getFunction(); 3408 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3409 (void)F.getFnAttribute("patchable-function-prefix") 3410 .getValueAsString() 3411 .getAsInteger(10, PatchableFunctionPrefix); 3412 (void)F.getFnAttribute("patchable-function-entry") 3413 .getValueAsString() 3414 .getAsInteger(10, PatchableFunctionEntry); 3415 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3416 return; 3417 const unsigned PointerSize = getPointerSize(); 3418 if (TM.getTargetTriple().isOSBinFormatELF()) { 3419 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3420 const MCSymbolELF *LinkedToSym = nullptr; 3421 StringRef GroupName; 3422 3423 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3424 // if we are using the integrated assembler. 3425 if (MAI->useIntegratedAssembler()) { 3426 Flags |= ELF::SHF_LINK_ORDER; 3427 if (F.hasComdat()) { 3428 Flags |= ELF::SHF_GROUP; 3429 GroupName = F.getComdat()->getName(); 3430 } 3431 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3432 } 3433 OutStreamer->SwitchSection(OutContext.getELFSection( 3434 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3435 MCSection::NonUniqueID, LinkedToSym)); 3436 emitAlignment(Align(PointerSize)); 3437 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3438 } 3439 } 3440 3441 uint16_t AsmPrinter::getDwarfVersion() const { 3442 return OutStreamer->getContext().getDwarfVersion(); 3443 } 3444 3445 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3446 OutStreamer->getContext().setDwarfVersion(Version); 3447 } 3448 3449 bool AsmPrinter::isDwarf64() const { 3450 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3451 } 3452 3453 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3454 return dwarf::getDwarfOffsetByteSize( 3455 OutStreamer->getContext().getDwarfFormat()); 3456 } 3457 3458 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3459 return dwarf::getUnitLengthFieldByteSize( 3460 OutStreamer->getContext().getDwarfFormat()); 3461 } 3462