1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "AsmPrinterHandler.h"
16 #include "CodeViewDebug.h"
17 #include "DwarfDebug.h"
18 #include "DwarfException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetLowering.h"
58 #include "llvm/CodeGen/TargetOpcodes.h"
59 #include "llvm/CodeGen/TargetRegisterInfo.h"
60 #include "llvm/CodeGen/TargetSubtargetInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/MC/MCAsmInfo.h"
83 #include "llvm/MC/MCCodePadder.h"
84 #include "llvm/MC/MCContext.h"
85 #include "llvm/MC/MCDirectives.h"
86 #include "llvm/MC/MCDwarf.h"
87 #include "llvm/MC/MCExpr.h"
88 #include "llvm/MC/MCInst.h"
89 #include "llvm/MC/MCSection.h"
90 #include "llvm/MC/MCSectionELF.h"
91 #include "llvm/MC/MCSectionMachO.h"
92 #include "llvm/MC/MCStreamer.h"
93 #include "llvm/MC/MCSubtargetInfo.h"
94 #include "llvm/MC/MCSymbol.h"
95 #include "llvm/MC/MCSymbolELF.h"
96 #include "llvm/MC/MCTargetOptions.h"
97 #include "llvm/MC/MCValue.h"
98 #include "llvm/MC/SectionKind.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/ErrorHandling.h"
104 #include "llvm/Support/Format.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/Path.h"
107 #include "llvm/Support/TargetRegistry.h"
108 #include "llvm/Support/Timer.h"
109 #include "llvm/Support/raw_ostream.h"
110 #include "llvm/Target/TargetLoweringObjectFile.h"
111 #include "llvm/Target/TargetMachine.h"
112 #include "llvm/Target/TargetOptions.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cinttypes>
116 #include <cstdint>
117 #include <iterator>
118 #include <limits>
119 #include <memory>
120 #include <string>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 
126 #define DEBUG_TYPE "asm-printer"
127 
128 static const char *const DWARFGroupName = "dwarf";
129 static const char *const DWARFGroupDescription = "DWARF Emission";
130 static const char *const DbgTimerName = "emit";
131 static const char *const DbgTimerDescription = "Debug Info Emission";
132 static const char *const EHTimerName = "write_exception";
133 static const char *const EHTimerDescription = "DWARF Exception Writer";
134 static const char *const CFGuardName = "Control Flow Guard";
135 static const char *const CFGuardDescription = "Control Flow Guard Tables";
136 static const char *const CodeViewLineTablesGroupName = "linetables";
137 static const char *const CodeViewLineTablesGroupDescription =
138   "CodeView Line Tables";
139 
140 STATISTIC(EmittedInsts, "Number of machine instrs printed");
141 
142 static cl::opt<bool>
143     PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
144                   cl::desc("Print 'sched: [latency:throughput]' in .s output"));
145 
146 char AsmPrinter::ID = 0;
147 
148 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
149 
150 static gcp_map_type &getGCMap(void *&P) {
151   if (!P)
152     P = new gcp_map_type();
153   return *(gcp_map_type*)P;
154 }
155 
156 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
157 /// value in log2 form.  This rounds up to the preferred alignment if possible
158 /// and legal.
159 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
160                                    unsigned InBits = 0) {
161   unsigned NumBits = 0;
162   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
163     NumBits = DL.getPreferredAlignmentLog(GVar);
164 
165   // If InBits is specified, round it to it.
166   if (InBits > NumBits)
167     NumBits = InBits;
168 
169   // If the GV has a specified alignment, take it into account.
170   if (GV->getAlignment() == 0)
171     return NumBits;
172 
173   unsigned GVAlign = Log2_32(GV->getAlignment());
174 
175   // If the GVAlign is larger than NumBits, or if we are required to obey
176   // NumBits because the GV has an assigned section, obey it.
177   if (GVAlign > NumBits || GV->hasSection())
178     NumBits = GVAlign;
179   return NumBits;
180 }
181 
182 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
183     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
184       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
185   VerboseAsm = OutStreamer->isVerboseAsm();
186 }
187 
188 AsmPrinter::~AsmPrinter() {
189   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
190 
191   if (GCMetadataPrinters) {
192     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
193 
194     delete &GCMap;
195     GCMetadataPrinters = nullptr;
196   }
197 }
198 
199 bool AsmPrinter::isPositionIndependent() const {
200   return TM.isPositionIndependent();
201 }
202 
203 /// getFunctionNumber - Return a unique ID for the current function.
204 unsigned AsmPrinter::getFunctionNumber() const {
205   return MF->getFunctionNumber();
206 }
207 
208 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
209   return *TM.getObjFileLowering();
210 }
211 
212 const DataLayout &AsmPrinter::getDataLayout() const {
213   return MMI->getModule()->getDataLayout();
214 }
215 
216 // Do not use the cached DataLayout because some client use it without a Module
217 // (dsymutil, llvm-dwarfdump).
218 unsigned AsmPrinter::getPointerSize() const {
219   return TM.getPointerSize(0); // FIXME: Default address space
220 }
221 
222 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
223   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
224   return MF->getSubtarget<MCSubtargetInfo>();
225 }
226 
227 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
228   S.EmitInstruction(Inst, getSubtargetInfo());
229 }
230 
231 /// getCurrentSection() - Return the current section we are emitting to.
232 const MCSection *AsmPrinter::getCurrentSection() const {
233   return OutStreamer->getCurrentSectionOnly();
234 }
235 
236 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
237   AU.setPreservesAll();
238   MachineFunctionPass::getAnalysisUsage(AU);
239   AU.addRequired<MachineModuleInfo>();
240   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
241   AU.addRequired<GCModuleInfo>();
242 }
243 
244 bool AsmPrinter::doInitialization(Module &M) {
245   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
246 
247   // Initialize TargetLoweringObjectFile.
248   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
249     .Initialize(OutContext, TM);
250 
251   OutStreamer->InitSections(false);
252 
253   // Emit the version-min deployment target directive if needed.
254   //
255   // FIXME: If we end up with a collection of these sorts of Darwin-specific
256   // or ELF-specific things, it may make sense to have a platform helper class
257   // that will work with the target helper class. For now keep it here, as the
258   // alternative is duplicated code in each of the target asm printers that
259   // use the directive, where it would need the same conditionalization
260   // anyway.
261   const Triple &Target = TM.getTargetTriple();
262   OutStreamer->EmitVersionForTarget(Target);
263 
264   // Allow the target to emit any magic that it wants at the start of the file.
265   EmitStartOfAsmFile(M);
266 
267   // Very minimal debug info. It is ignored if we emit actual debug info. If we
268   // don't, this at least helps the user find where a global came from.
269   if (MAI->hasSingleParameterDotFile()) {
270     // .file "foo.c"
271     OutStreamer->EmitFileDirective(
272         llvm::sys::path::filename(M.getSourceFileName()));
273   }
274 
275   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
276   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
277   for (auto &I : *MI)
278     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
279       MP->beginAssembly(M, *MI, *this);
280 
281   // Emit module-level inline asm if it exists.
282   if (!M.getModuleInlineAsm().empty()) {
283     // We're at the module level. Construct MCSubtarget from the default CPU
284     // and target triple.
285     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
286         TM.getTargetTriple().str(), TM.getTargetCPU(),
287         TM.getTargetFeatureString()));
288     OutStreamer->AddComment("Start of file scope inline assembly");
289     OutStreamer->AddBlankLine();
290     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
291                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
292     OutStreamer->AddComment("End of file scope inline assembly");
293     OutStreamer->AddBlankLine();
294   }
295 
296   if (MAI->doesSupportDebugInformation()) {
297     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
298     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
299       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
300                                      DbgTimerName, DbgTimerDescription,
301                                      CodeViewLineTablesGroupName,
302                                      CodeViewLineTablesGroupDescription));
303     }
304     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
305       DD = new DwarfDebug(this, &M);
306       DD->beginModule();
307       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
308                                      DWARFGroupName, DWARFGroupDescription));
309     }
310   }
311 
312   switch (MAI->getExceptionHandlingType()) {
313   case ExceptionHandling::SjLj:
314   case ExceptionHandling::DwarfCFI:
315   case ExceptionHandling::ARM:
316     isCFIMoveForDebugging = true;
317     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
318       break;
319     for (auto &F: M.getFunctionList()) {
320       // If the module contains any function with unwind data,
321       // .eh_frame has to be emitted.
322       // Ignore functions that won't get emitted.
323       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
324         isCFIMoveForDebugging = false;
325         break;
326       }
327     }
328     break;
329   default:
330     isCFIMoveForDebugging = false;
331     break;
332   }
333 
334   EHStreamer *ES = nullptr;
335   switch (MAI->getExceptionHandlingType()) {
336   case ExceptionHandling::None:
337     break;
338   case ExceptionHandling::SjLj:
339   case ExceptionHandling::DwarfCFI:
340     ES = new DwarfCFIException(this);
341     break;
342   case ExceptionHandling::ARM:
343     ES = new ARMException(this);
344     break;
345   case ExceptionHandling::WinEH:
346     switch (MAI->getWinEHEncodingType()) {
347     default: llvm_unreachable("unsupported unwinding information encoding");
348     case WinEH::EncodingType::Invalid:
349       break;
350     case WinEH::EncodingType::X86:
351     case WinEH::EncodingType::Itanium:
352       ES = new WinException(this);
353       break;
354     }
355     break;
356   case ExceptionHandling::Wasm:
357     // TODO to prevent warning
358     break;
359   }
360   if (ES)
361     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
362                                    DWARFGroupName, DWARFGroupDescription));
363 
364   if (mdconst::extract_or_null<ConstantInt>(
365           MMI->getModule()->getModuleFlag("cfguard")))
366     Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName,
367                                    CFGuardDescription, DWARFGroupName,
368                                    DWARFGroupDescription));
369 
370   return false;
371 }
372 
373 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
374   if (!MAI.hasWeakDefCanBeHiddenDirective())
375     return false;
376 
377   return GV->canBeOmittedFromSymbolTable();
378 }
379 
380 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
381   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
382   switch (Linkage) {
383   case GlobalValue::CommonLinkage:
384   case GlobalValue::LinkOnceAnyLinkage:
385   case GlobalValue::LinkOnceODRLinkage:
386   case GlobalValue::WeakAnyLinkage:
387   case GlobalValue::WeakODRLinkage:
388     if (MAI->hasWeakDefDirective()) {
389       // .globl _foo
390       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
391 
392       if (!canBeHidden(GV, *MAI))
393         // .weak_definition _foo
394         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
395       else
396         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
397     } else if (MAI->hasLinkOnceDirective()) {
398       // .globl _foo
399       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
400       //NOTE: linkonce is handled by the section the symbol was assigned to.
401     } else {
402       // .weak _foo
403       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
404     }
405     return;
406   case GlobalValue::ExternalLinkage:
407     // If external, declare as a global symbol: .globl _foo
408     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
409     return;
410   case GlobalValue::PrivateLinkage:
411   case GlobalValue::InternalLinkage:
412     return;
413   case GlobalValue::AppendingLinkage:
414   case GlobalValue::AvailableExternallyLinkage:
415   case GlobalValue::ExternalWeakLinkage:
416     llvm_unreachable("Should never emit this");
417   }
418   llvm_unreachable("Unknown linkage type!");
419 }
420 
421 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
422                                    const GlobalValue *GV) const {
423   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
424 }
425 
426 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
427   return TM.getSymbol(GV);
428 }
429 
430 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
431 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
432   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
433   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
434          "No emulated TLS variables in the common section");
435 
436   // Never emit TLS variable xyz in emulated TLS model.
437   // The initialization value is in __emutls_t.xyz instead of xyz.
438   if (IsEmuTLSVar)
439     return;
440 
441   if (GV->hasInitializer()) {
442     // Check to see if this is a special global used by LLVM, if so, emit it.
443     if (EmitSpecialLLVMGlobal(GV))
444       return;
445 
446     // Skip the emission of global equivalents. The symbol can be emitted later
447     // on by emitGlobalGOTEquivs in case it turns out to be needed.
448     if (GlobalGOTEquivs.count(getSymbol(GV)))
449       return;
450 
451     if (isVerbose()) {
452       // When printing the control variable __emutls_v.*,
453       // we don't need to print the original TLS variable name.
454       GV->printAsOperand(OutStreamer->GetCommentOS(),
455                      /*PrintType=*/false, GV->getParent());
456       OutStreamer->GetCommentOS() << '\n';
457     }
458   }
459 
460   MCSymbol *GVSym = getSymbol(GV);
461   MCSymbol *EmittedSym = GVSym;
462 
463   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
464   // attributes.
465   // GV's or GVSym's attributes will be used for the EmittedSym.
466   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
467 
468   if (!GV->hasInitializer())   // External globals require no extra code.
469     return;
470 
471   GVSym->redefineIfPossible();
472   if (GVSym->isDefined() || GVSym->isVariable())
473     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
474                        "' is already defined");
475 
476   if (MAI->hasDotTypeDotSizeDirective())
477     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
478 
479   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
480 
481   const DataLayout &DL = GV->getParent()->getDataLayout();
482   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
483 
484   // If the alignment is specified, we *must* obey it.  Overaligning a global
485   // with a specified alignment is a prompt way to break globals emitted to
486   // sections and expected to be contiguous (e.g. ObjC metadata).
487   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
488 
489   for (const HandlerInfo &HI : Handlers) {
490     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
491                        HI.TimerGroupName, HI.TimerGroupDescription,
492                        TimePassesIsEnabled);
493     HI.Handler->setSymbolSize(GVSym, Size);
494   }
495 
496   // Handle common symbols
497   if (GVKind.isCommon()) {
498     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
499     unsigned Align = 1 << AlignLog;
500     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
501       Align = 0;
502 
503     // .comm _foo, 42, 4
504     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
505     return;
506   }
507 
508   // Determine to which section this global should be emitted.
509   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
510 
511   // If we have a bss global going to a section that supports the
512   // zerofill directive, do so here.
513   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
514       TheSection->isVirtualSection()) {
515     if (Size == 0)
516       Size = 1; // zerofill of 0 bytes is undefined.
517     unsigned Align = 1 << AlignLog;
518     EmitLinkage(GV, GVSym);
519     // .zerofill __DATA, __bss, _foo, 400, 5
520     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
521     return;
522   }
523 
524   // If this is a BSS local symbol and we are emitting in the BSS
525   // section use .lcomm/.comm directive.
526   if (GVKind.isBSSLocal() &&
527       getObjFileLowering().getBSSSection() == TheSection) {
528     if (Size == 0)
529       Size = 1; // .comm Foo, 0 is undefined, avoid it.
530     unsigned Align = 1 << AlignLog;
531 
532     // Use .lcomm only if it supports user-specified alignment.
533     // Otherwise, while it would still be correct to use .lcomm in some
534     // cases (e.g. when Align == 1), the external assembler might enfore
535     // some -unknown- default alignment behavior, which could cause
536     // spurious differences between external and integrated assembler.
537     // Prefer to simply fall back to .local / .comm in this case.
538     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
539       // .lcomm _foo, 42
540       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
541       return;
542     }
543 
544     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
545       Align = 0;
546 
547     // .local _foo
548     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
549     // .comm _foo, 42, 4
550     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
551     return;
552   }
553 
554   // Handle thread local data for mach-o which requires us to output an
555   // additional structure of data and mangle the original symbol so that we
556   // can reference it later.
557   //
558   // TODO: This should become an "emit thread local global" method on TLOF.
559   // All of this macho specific stuff should be sunk down into TLOFMachO and
560   // stuff like "TLSExtraDataSection" should no longer be part of the parent
561   // TLOF class.  This will also make it more obvious that stuff like
562   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
563   // specific code.
564   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
565     // Emit the .tbss symbol
566     MCSymbol *MangSym =
567         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
568 
569     if (GVKind.isThreadBSS()) {
570       TheSection = getObjFileLowering().getTLSBSSSection();
571       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
572     } else if (GVKind.isThreadData()) {
573       OutStreamer->SwitchSection(TheSection);
574 
575       EmitAlignment(AlignLog, GV);
576       OutStreamer->EmitLabel(MangSym);
577 
578       EmitGlobalConstant(GV->getParent()->getDataLayout(),
579                          GV->getInitializer());
580     }
581 
582     OutStreamer->AddBlankLine();
583 
584     // Emit the variable struct for the runtime.
585     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
586 
587     OutStreamer->SwitchSection(TLVSect);
588     // Emit the linkage here.
589     EmitLinkage(GV, GVSym);
590     OutStreamer->EmitLabel(GVSym);
591 
592     // Three pointers in size:
593     //   - __tlv_bootstrap - used to make sure support exists
594     //   - spare pointer, used when mapped by the runtime
595     //   - pointer to mangled symbol above with initializer
596     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
597     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
598                                 PtrSize);
599     OutStreamer->EmitIntValue(0, PtrSize);
600     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
601 
602     OutStreamer->AddBlankLine();
603     return;
604   }
605 
606   MCSymbol *EmittedInitSym = GVSym;
607 
608   OutStreamer->SwitchSection(TheSection);
609 
610   EmitLinkage(GV, EmittedInitSym);
611   EmitAlignment(AlignLog, GV);
612 
613   OutStreamer->EmitLabel(EmittedInitSym);
614 
615   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
616 
617   if (MAI->hasDotTypeDotSizeDirective())
618     // .size foo, 42
619     OutStreamer->emitELFSize(EmittedInitSym,
620                              MCConstantExpr::create(Size, OutContext));
621 
622   OutStreamer->AddBlankLine();
623 }
624 
625 /// Emit the directive and value for debug thread local expression
626 ///
627 /// \p Value - The value to emit.
628 /// \p Size - The size of the integer (in bytes) to emit.
629 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
630                                       unsigned Size) const {
631   OutStreamer->EmitValue(Value, Size);
632 }
633 
634 /// EmitFunctionHeader - This method emits the header for the current
635 /// function.
636 void AsmPrinter::EmitFunctionHeader() {
637   const Function &F = MF->getFunction();
638 
639   if (isVerbose())
640     OutStreamer->GetCommentOS()
641         << "-- Begin function "
642         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
643 
644   // Print out constants referenced by the function
645   EmitConstantPool();
646 
647   // Print the 'header' of function.
648   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
649   EmitVisibility(CurrentFnSym, F.getVisibility());
650 
651   EmitLinkage(&F, CurrentFnSym);
652   if (MAI->hasFunctionAlignment())
653     EmitAlignment(MF->getAlignment(), &F);
654 
655   if (MAI->hasDotTypeDotSizeDirective())
656     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
657 
658   if (isVerbose()) {
659     F.printAsOperand(OutStreamer->GetCommentOS(),
660                    /*PrintType=*/false, F.getParent());
661     OutStreamer->GetCommentOS() << '\n';
662   }
663 
664   // Emit the prefix data.
665   if (F.hasPrefixData()) {
666     if (MAI->hasSubsectionsViaSymbols()) {
667       // Preserving prefix data on platforms which use subsections-via-symbols
668       // is a bit tricky. Here we introduce a symbol for the prefix data
669       // and use the .alt_entry attribute to mark the function's real entry point
670       // as an alternative entry point to the prefix-data symbol.
671       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
672       OutStreamer->EmitLabel(PrefixSym);
673 
674       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
675 
676       // Emit an .alt_entry directive for the actual function symbol.
677       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
678     } else {
679       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
680     }
681   }
682 
683   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
684   // do their wild and crazy things as required.
685   EmitFunctionEntryLabel();
686 
687   // If the function had address-taken blocks that got deleted, then we have
688   // references to the dangling symbols.  Emit them at the start of the function
689   // so that we don't get references to undefined symbols.
690   std::vector<MCSymbol*> DeadBlockSyms;
691   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
692   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
693     OutStreamer->AddComment("Address taken block that was later removed");
694     OutStreamer->EmitLabel(DeadBlockSyms[i]);
695   }
696 
697   if (CurrentFnBegin) {
698     if (MAI->useAssignmentForEHBegin()) {
699       MCSymbol *CurPos = OutContext.createTempSymbol();
700       OutStreamer->EmitLabel(CurPos);
701       OutStreamer->EmitAssignment(CurrentFnBegin,
702                                  MCSymbolRefExpr::create(CurPos, OutContext));
703     } else {
704       OutStreamer->EmitLabel(CurrentFnBegin);
705     }
706   }
707 
708   // Emit pre-function debug and/or EH information.
709   for (const HandlerInfo &HI : Handlers) {
710     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
711                        HI.TimerGroupDescription, TimePassesIsEnabled);
712     HI.Handler->beginFunction(MF);
713   }
714 
715   // Emit the prologue data.
716   if (F.hasPrologueData())
717     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
718 }
719 
720 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
721 /// function.  This can be overridden by targets as required to do custom stuff.
722 void AsmPrinter::EmitFunctionEntryLabel() {
723   CurrentFnSym->redefineIfPossible();
724 
725   // The function label could have already been emitted if two symbols end up
726   // conflicting due to asm renaming.  Detect this and emit an error.
727   if (CurrentFnSym->isVariable())
728     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
729                        "' is a protected alias");
730   if (CurrentFnSym->isDefined())
731     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
732                        "' label emitted multiple times to assembly file");
733 
734   return OutStreamer->EmitLabel(CurrentFnSym);
735 }
736 
737 /// emitComments - Pretty-print comments for instructions.
738 /// It returns true iff the sched comment was emitted.
739 ///   Otherwise it returns false.
740 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
741                          AsmPrinter *AP) {
742   const MachineFunction *MF = MI.getMF();
743   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
744 
745   // Check for spills and reloads
746   int FI;
747 
748   const MachineFrameInfo &MFI = MF->getFrameInfo();
749   bool Commented = false;
750 
751   // We assume a single instruction only has a spill or reload, not
752   // both.
753   const MachineMemOperand *MMO;
754   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
755     if (MFI.isSpillSlotObjectIndex(FI)) {
756       MMO = *MI.memoperands_begin();
757       CommentOS << MMO->getSize() << "-byte Reload";
758       Commented = true;
759     }
760   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
761     if (MFI.isSpillSlotObjectIndex(FI)) {
762       CommentOS << MMO->getSize() << "-byte Folded Reload";
763       Commented = true;
764     }
765   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
766     if (MFI.isSpillSlotObjectIndex(FI)) {
767       MMO = *MI.memoperands_begin();
768       CommentOS << MMO->getSize() << "-byte Spill";
769       Commented = true;
770     }
771   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
772     if (MFI.isSpillSlotObjectIndex(FI)) {
773       CommentOS << MMO->getSize() << "-byte Folded Spill";
774       Commented = true;
775     }
776   }
777 
778   // Check for spill-induced copies
779   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
780     Commented = true;
781     CommentOS << " Reload Reuse";
782   }
783 
784   if (Commented) {
785     if (AP->EnablePrintSchedInfo) {
786       // If any comment was added above and we need sched info comment then add
787       // this new comment just after the above comment w/o "\n" between them.
788       CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
789       return true;
790     }
791     CommentOS << "\n";
792   }
793   return false;
794 }
795 
796 /// emitImplicitDef - This method emits the specified machine instruction
797 /// that is an implicit def.
798 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
799   unsigned RegNo = MI->getOperand(0).getReg();
800 
801   SmallString<128> Str;
802   raw_svector_ostream OS(Str);
803   OS << "implicit-def: "
804      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
805 
806   OutStreamer->AddComment(OS.str());
807   OutStreamer->AddBlankLine();
808 }
809 
810 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
811   std::string Str;
812   raw_string_ostream OS(Str);
813   OS << "kill:";
814   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
815     const MachineOperand &Op = MI->getOperand(i);
816     assert(Op.isReg() && "KILL instruction must have only register operands");
817     OS << ' ' << (Op.isDef() ? "def " : "killed ")
818        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
819   }
820   AP.OutStreamer->AddComment(OS.str());
821   AP.OutStreamer->AddBlankLine();
822 }
823 
824 /// emitDebugValueComment - This method handles the target-independent form
825 /// of DBG_VALUE, returning true if it was able to do so.  A false return
826 /// means the target will need to handle MI in EmitInstruction.
827 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
828   // This code handles only the 4-operand target-independent form.
829   if (MI->getNumOperands() != 4)
830     return false;
831 
832   SmallString<128> Str;
833   raw_svector_ostream OS(Str);
834   OS << "DEBUG_VALUE: ";
835 
836   const DILocalVariable *V = MI->getDebugVariable();
837   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
838     StringRef Name = SP->getName();
839     if (!Name.empty())
840       OS << Name << ":";
841   }
842   OS << V->getName();
843   OS << " <- ";
844 
845   // The second operand is only an offset if it's an immediate.
846   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
847   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
848   const DIExpression *Expr = MI->getDebugExpression();
849   if (Expr->getNumElements()) {
850     OS << '[';
851     bool NeedSep = false;
852     for (auto Op : Expr->expr_ops()) {
853       if (NeedSep)
854         OS << ", ";
855       else
856         NeedSep = true;
857       OS << dwarf::OperationEncodingString(Op.getOp());
858       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
859         OS << ' ' << Op.getArg(I);
860     }
861     OS << "] ";
862   }
863 
864   // Register or immediate value. Register 0 means undef.
865   if (MI->getOperand(0).isFPImm()) {
866     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
867     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
868       OS << (double)APF.convertToFloat();
869     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
870       OS << APF.convertToDouble();
871     } else {
872       // There is no good way to print long double.  Convert a copy to
873       // double.  Ah well, it's only a comment.
874       bool ignored;
875       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
876                   &ignored);
877       OS << "(long double) " << APF.convertToDouble();
878     }
879   } else if (MI->getOperand(0).isImm()) {
880     OS << MI->getOperand(0).getImm();
881   } else if (MI->getOperand(0).isCImm()) {
882     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
883   } else {
884     unsigned Reg;
885     if (MI->getOperand(0).isReg()) {
886       Reg = MI->getOperand(0).getReg();
887     } else {
888       assert(MI->getOperand(0).isFI() && "Unknown operand type");
889       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
890       Offset += TFI->getFrameIndexReference(*AP.MF,
891                                             MI->getOperand(0).getIndex(), Reg);
892       MemLoc = true;
893     }
894     if (Reg == 0) {
895       // Suppress offset, it is not meaningful here.
896       OS << "undef";
897       // NOTE: Want this comment at start of line, don't emit with AddComment.
898       AP.OutStreamer->emitRawComment(OS.str());
899       return true;
900     }
901     if (MemLoc)
902       OS << '[';
903     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
904   }
905 
906   if (MemLoc)
907     OS << '+' << Offset << ']';
908 
909   // NOTE: Want this comment at start of line, don't emit with AddComment.
910   AP.OutStreamer->emitRawComment(OS.str());
911   return true;
912 }
913 
914 /// This method handles the target-independent form of DBG_LABEL, returning
915 /// true if it was able to do so.  A false return means the target will need
916 /// to handle MI in EmitInstruction.
917 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
918   if (MI->getNumOperands() != 1)
919     return false;
920 
921   SmallString<128> Str;
922   raw_svector_ostream OS(Str);
923   OS << "DEBUG_LABEL: ";
924 
925   const DILabel *V = MI->getDebugLabel();
926   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
927     StringRef Name = SP->getName();
928     if (!Name.empty())
929       OS << Name << ":";
930   }
931   OS << V->getName();
932 
933   // NOTE: Want this comment at start of line, don't emit with AddComment.
934   AP.OutStreamer->emitRawComment(OS.str());
935   return true;
936 }
937 
938 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
939   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
940       MF->getFunction().needsUnwindTableEntry())
941     return CFI_M_EH;
942 
943   if (MMI->hasDebugInfo())
944     return CFI_M_Debug;
945 
946   return CFI_M_None;
947 }
948 
949 bool AsmPrinter::needsSEHMoves() {
950   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
951 }
952 
953 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
954   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
955   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
956       ExceptionHandlingType != ExceptionHandling::ARM)
957     return;
958 
959   if (needsCFIMoves() == CFI_M_None)
960     return;
961 
962   // If there is no "real" instruction following this CFI instruction, skip
963   // emitting it; it would be beyond the end of the function's FDE range.
964   auto *MBB = MI.getParent();
965   auto I = std::next(MI.getIterator());
966   while (I != MBB->end() && I->isTransient())
967     ++I;
968   if (I == MBB->instr_end() &&
969       MBB->getReverseIterator() == MBB->getParent()->rbegin())
970     return;
971 
972   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
973   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
974   const MCCFIInstruction &CFI = Instrs[CFIIndex];
975   emitCFIInstruction(CFI);
976 }
977 
978 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
979   // The operands are the MCSymbol and the frame offset of the allocation.
980   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
981   int FrameOffset = MI.getOperand(1).getImm();
982 
983   // Emit a symbol assignment.
984   OutStreamer->EmitAssignment(FrameAllocSym,
985                              MCConstantExpr::create(FrameOffset, OutContext));
986 }
987 
988 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
989   if (!MF.getTarget().Options.EmitStackSizeSection)
990     return;
991 
992   MCSection *StackSizeSection = getObjFileLowering().getStackSizesSection();
993   if (!StackSizeSection)
994     return;
995 
996   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
997   // Don't emit functions with dynamic stack allocations.
998   if (FrameInfo.hasVarSizedObjects())
999     return;
1000 
1001   OutStreamer->PushSection();
1002   OutStreamer->SwitchSection(StackSizeSection);
1003 
1004   const MCSymbol *FunctionSymbol = getFunctionBegin();
1005   uint64_t StackSize = FrameInfo.getStackSize();
1006   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1007   OutStreamer->EmitULEB128IntValue(StackSize);
1008 
1009   OutStreamer->PopSection();
1010 }
1011 
1012 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1013                                            MachineModuleInfo *MMI) {
1014   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1015     return true;
1016 
1017   // We might emit an EH table that uses function begin and end labels even if
1018   // we don't have any landingpads.
1019   if (!MF.getFunction().hasPersonalityFn())
1020     return false;
1021   return !isNoOpWithoutInvoke(
1022       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1023 }
1024 
1025 /// EmitFunctionBody - This method emits the body and trailer for a
1026 /// function.
1027 void AsmPrinter::EmitFunctionBody() {
1028   EmitFunctionHeader();
1029 
1030   // Emit target-specific gunk before the function body.
1031   EmitFunctionBodyStart();
1032 
1033   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1034 
1035   if (isVerbose()) {
1036     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1037     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1038     if (!MDT) {
1039       OwnedMDT = make_unique<MachineDominatorTree>();
1040       OwnedMDT->getBase().recalculate(*MF);
1041       MDT = OwnedMDT.get();
1042     }
1043 
1044     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1045     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1046     if (!MLI) {
1047       OwnedMLI = make_unique<MachineLoopInfo>();
1048       OwnedMLI->getBase().analyze(MDT->getBase());
1049       MLI = OwnedMLI.get();
1050     }
1051   }
1052 
1053   // Print out code for the function.
1054   bool HasAnyRealCode = false;
1055   int NumInstsInFunction = 0;
1056   for (auto &MBB : *MF) {
1057     // Print a label for the basic block.
1058     EmitBasicBlockStart(MBB);
1059     for (auto &MI : MBB) {
1060       // Print the assembly for the instruction.
1061       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1062           !MI.isDebugInstr()) {
1063         HasAnyRealCode = true;
1064         ++NumInstsInFunction;
1065       }
1066 
1067       if (ShouldPrintDebugScopes) {
1068         for (const HandlerInfo &HI : Handlers) {
1069           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1070                              HI.TimerGroupName, HI.TimerGroupDescription,
1071                              TimePassesIsEnabled);
1072           HI.Handler->beginInstruction(&MI);
1073         }
1074       }
1075 
1076       if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) {
1077         MachineInstr *MIP = const_cast<MachineInstr *>(&MI);
1078         MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment);
1079       }
1080 
1081       switch (MI.getOpcode()) {
1082       case TargetOpcode::CFI_INSTRUCTION:
1083         emitCFIInstruction(MI);
1084         break;
1085       case TargetOpcode::LOCAL_ESCAPE:
1086         emitFrameAlloc(MI);
1087         break;
1088       case TargetOpcode::EH_LABEL:
1089       case TargetOpcode::GC_LABEL:
1090         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1091         break;
1092       case TargetOpcode::INLINEASM:
1093         EmitInlineAsm(&MI);
1094         break;
1095       case TargetOpcode::DBG_VALUE:
1096         if (isVerbose()) {
1097           if (!emitDebugValueComment(&MI, *this))
1098             EmitInstruction(&MI);
1099         }
1100         break;
1101       case TargetOpcode::DBG_LABEL:
1102         if (isVerbose()) {
1103           if (!emitDebugLabelComment(&MI, *this))
1104             EmitInstruction(&MI);
1105         }
1106         break;
1107       case TargetOpcode::IMPLICIT_DEF:
1108         if (isVerbose()) emitImplicitDef(&MI);
1109         break;
1110       case TargetOpcode::KILL:
1111         if (isVerbose()) emitKill(&MI, *this);
1112         break;
1113       default:
1114         EmitInstruction(&MI);
1115         break;
1116       }
1117 
1118       if (ShouldPrintDebugScopes) {
1119         for (const HandlerInfo &HI : Handlers) {
1120           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1121                              HI.TimerGroupName, HI.TimerGroupDescription,
1122                              TimePassesIsEnabled);
1123           HI.Handler->endInstruction();
1124         }
1125       }
1126     }
1127 
1128     EmitBasicBlockEnd(MBB);
1129   }
1130 
1131   EmittedInsts += NumInstsInFunction;
1132   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1133                                       MF->getFunction().getSubprogram(),
1134                                       &MF->front());
1135   R << ore::NV("NumInstructions", NumInstsInFunction)
1136     << " instructions in function";
1137   ORE->emit(R);
1138 
1139   // If the function is empty and the object file uses .subsections_via_symbols,
1140   // then we need to emit *something* to the function body to prevent the
1141   // labels from collapsing together.  Just emit a noop.
1142   // Similarly, don't emit empty functions on Windows either. It can lead to
1143   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1144   // after linking, causing the kernel not to load the binary:
1145   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1146   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1147   const Triple &TT = TM.getTargetTriple();
1148   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1149                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1150     MCInst Noop;
1151     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1152 
1153     // Targets can opt-out of emitting the noop here by leaving the opcode
1154     // unspecified.
1155     if (Noop.getOpcode()) {
1156       OutStreamer->AddComment("avoids zero-length function");
1157       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1158     }
1159   }
1160 
1161   const Function &F = MF->getFunction();
1162   for (const auto &BB : F) {
1163     if (!BB.hasAddressTaken())
1164       continue;
1165     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1166     if (Sym->isDefined())
1167       continue;
1168     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1169     OutStreamer->EmitLabel(Sym);
1170   }
1171 
1172   // Emit target-specific gunk after the function body.
1173   EmitFunctionBodyEnd();
1174 
1175   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1176       MAI->hasDotTypeDotSizeDirective()) {
1177     // Create a symbol for the end of function.
1178     CurrentFnEnd = createTempSymbol("func_end");
1179     OutStreamer->EmitLabel(CurrentFnEnd);
1180   }
1181 
1182   // If the target wants a .size directive for the size of the function, emit
1183   // it.
1184   if (MAI->hasDotTypeDotSizeDirective()) {
1185     // We can get the size as difference between the function label and the
1186     // temp label.
1187     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1188         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1189         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1190     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1191   }
1192 
1193   for (const HandlerInfo &HI : Handlers) {
1194     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1195                        HI.TimerGroupDescription, TimePassesIsEnabled);
1196     HI.Handler->markFunctionEnd();
1197   }
1198 
1199   // Print out jump tables referenced by the function.
1200   EmitJumpTableInfo();
1201 
1202   // Emit post-function debug and/or EH information.
1203   for (const HandlerInfo &HI : Handlers) {
1204     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1205                        HI.TimerGroupDescription, TimePassesIsEnabled);
1206     HI.Handler->endFunction(MF);
1207   }
1208 
1209   // Emit section containing stack size metadata.
1210   emitStackSizeSection(*MF);
1211 
1212   if (isVerbose())
1213     OutStreamer->GetCommentOS() << "-- End function\n";
1214 
1215   OutStreamer->AddBlankLine();
1216 }
1217 
1218 /// Compute the number of Global Variables that uses a Constant.
1219 static unsigned getNumGlobalVariableUses(const Constant *C) {
1220   if (!C)
1221     return 0;
1222 
1223   if (isa<GlobalVariable>(C))
1224     return 1;
1225 
1226   unsigned NumUses = 0;
1227   for (auto *CU : C->users())
1228     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1229 
1230   return NumUses;
1231 }
1232 
1233 /// Only consider global GOT equivalents if at least one user is a
1234 /// cstexpr inside an initializer of another global variables. Also, don't
1235 /// handle cstexpr inside instructions. During global variable emission,
1236 /// candidates are skipped and are emitted later in case at least one cstexpr
1237 /// isn't replaced by a PC relative GOT entry access.
1238 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1239                                      unsigned &NumGOTEquivUsers) {
1240   // Global GOT equivalents are unnamed private globals with a constant
1241   // pointer initializer to another global symbol. They must point to a
1242   // GlobalVariable or Function, i.e., as GlobalValue.
1243   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1244       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1245       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1246     return false;
1247 
1248   // To be a got equivalent, at least one of its users need to be a constant
1249   // expression used by another global variable.
1250   for (auto *U : GV->users())
1251     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1252 
1253   return NumGOTEquivUsers > 0;
1254 }
1255 
1256 /// Unnamed constant global variables solely contaning a pointer to
1257 /// another globals variable is equivalent to a GOT table entry; it contains the
1258 /// the address of another symbol. Optimize it and replace accesses to these
1259 /// "GOT equivalents" by using the GOT entry for the final global instead.
1260 /// Compute GOT equivalent candidates among all global variables to avoid
1261 /// emitting them if possible later on, after it use is replaced by a GOT entry
1262 /// access.
1263 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1264   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1265     return;
1266 
1267   for (const auto &G : M.globals()) {
1268     unsigned NumGOTEquivUsers = 0;
1269     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1270       continue;
1271 
1272     const MCSymbol *GOTEquivSym = getSymbol(&G);
1273     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1274   }
1275 }
1276 
1277 /// Constant expressions using GOT equivalent globals may not be eligible
1278 /// for PC relative GOT entry conversion, in such cases we need to emit such
1279 /// globals we previously omitted in EmitGlobalVariable.
1280 void AsmPrinter::emitGlobalGOTEquivs() {
1281   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1282     return;
1283 
1284   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1285   for (auto &I : GlobalGOTEquivs) {
1286     const GlobalVariable *GV = I.second.first;
1287     unsigned Cnt = I.second.second;
1288     if (Cnt)
1289       FailedCandidates.push_back(GV);
1290   }
1291   GlobalGOTEquivs.clear();
1292 
1293   for (auto *GV : FailedCandidates)
1294     EmitGlobalVariable(GV);
1295 }
1296 
1297 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1298                                           const GlobalIndirectSymbol& GIS) {
1299   MCSymbol *Name = getSymbol(&GIS);
1300 
1301   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1302     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1303   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1304     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1305   else
1306     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1307 
1308   // Set the symbol type to function if the alias has a function type.
1309   // This affects codegen when the aliasee is not a function.
1310   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1311     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1312     if (isa<GlobalIFunc>(GIS))
1313       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1314   }
1315 
1316   EmitVisibility(Name, GIS.getVisibility());
1317 
1318   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1319 
1320   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1321     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1322 
1323   // Emit the directives as assignments aka .set:
1324   OutStreamer->EmitAssignment(Name, Expr);
1325 
1326   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1327     // If the aliasee does not correspond to a symbol in the output, i.e. the
1328     // alias is not of an object or the aliased object is private, then set the
1329     // size of the alias symbol from the type of the alias. We don't do this in
1330     // other situations as the alias and aliasee having differing types but same
1331     // size may be intentional.
1332     const GlobalObject *BaseObject = GA->getBaseObject();
1333     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1334         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1335       const DataLayout &DL = M.getDataLayout();
1336       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1337       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1338     }
1339   }
1340 }
1341 
1342 bool AsmPrinter::doFinalization(Module &M) {
1343   // Set the MachineFunction to nullptr so that we can catch attempted
1344   // accesses to MF specific features at the module level and so that
1345   // we can conditionalize accesses based on whether or not it is nullptr.
1346   MF = nullptr;
1347 
1348   // Gather all GOT equivalent globals in the module. We really need two
1349   // passes over the globals: one to compute and another to avoid its emission
1350   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1351   // where the got equivalent shows up before its use.
1352   computeGlobalGOTEquivs(M);
1353 
1354   // Emit global variables.
1355   for (const auto &G : M.globals())
1356     EmitGlobalVariable(&G);
1357 
1358   // Emit remaining GOT equivalent globals.
1359   emitGlobalGOTEquivs();
1360 
1361   // Emit visibility info for declarations
1362   for (const Function &F : M) {
1363     if (!F.isDeclarationForLinker())
1364       continue;
1365     GlobalValue::VisibilityTypes V = F.getVisibility();
1366     if (V == GlobalValue::DefaultVisibility)
1367       continue;
1368 
1369     MCSymbol *Name = getSymbol(&F);
1370     EmitVisibility(Name, V, false);
1371   }
1372 
1373   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1374 
1375   TLOF.emitModuleMetadata(*OutStreamer, M);
1376 
1377   if (TM.getTargetTriple().isOSBinFormatELF()) {
1378     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1379 
1380     // Output stubs for external and common global variables.
1381     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1382     if (!Stubs.empty()) {
1383       OutStreamer->SwitchSection(TLOF.getDataSection());
1384       const DataLayout &DL = M.getDataLayout();
1385 
1386       EmitAlignment(Log2_32(DL.getPointerSize()));
1387       for (const auto &Stub : Stubs) {
1388         OutStreamer->EmitLabel(Stub.first);
1389         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1390                                      DL.getPointerSize());
1391       }
1392     }
1393   }
1394 
1395   // Finalize debug and EH information.
1396   for (const HandlerInfo &HI : Handlers) {
1397     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1398                        HI.TimerGroupDescription, TimePassesIsEnabled);
1399     HI.Handler->endModule();
1400     delete HI.Handler;
1401   }
1402   Handlers.clear();
1403   DD = nullptr;
1404 
1405   // If the target wants to know about weak references, print them all.
1406   if (MAI->getWeakRefDirective()) {
1407     // FIXME: This is not lazy, it would be nice to only print weak references
1408     // to stuff that is actually used.  Note that doing so would require targets
1409     // to notice uses in operands (due to constant exprs etc).  This should
1410     // happen with the MC stuff eventually.
1411 
1412     // Print out module-level global objects here.
1413     for (const auto &GO : M.global_objects()) {
1414       if (!GO.hasExternalWeakLinkage())
1415         continue;
1416       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1417     }
1418   }
1419 
1420   OutStreamer->AddBlankLine();
1421 
1422   // Print aliases in topological order, that is, for each alias a = b,
1423   // b must be printed before a.
1424   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1425   // such an order to generate correct TOC information.
1426   SmallVector<const GlobalAlias *, 16> AliasStack;
1427   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1428   for (const auto &Alias : M.aliases()) {
1429     for (const GlobalAlias *Cur = &Alias; Cur;
1430          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1431       if (!AliasVisited.insert(Cur).second)
1432         break;
1433       AliasStack.push_back(Cur);
1434     }
1435     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1436       emitGlobalIndirectSymbol(M, *AncestorAlias);
1437     AliasStack.clear();
1438   }
1439   for (const auto &IFunc : M.ifuncs())
1440     emitGlobalIndirectSymbol(M, IFunc);
1441 
1442   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1443   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1444   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1445     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1446       MP->finishAssembly(M, *MI, *this);
1447 
1448   // Emit llvm.ident metadata in an '.ident' directive.
1449   EmitModuleIdents(M);
1450 
1451   // Emit __morestack address if needed for indirect calls.
1452   if (MMI->usesMorestackAddr()) {
1453     unsigned Align = 1;
1454     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1455         getDataLayout(), SectionKind::getReadOnly(),
1456         /*C=*/nullptr, Align);
1457     OutStreamer->SwitchSection(ReadOnlySection);
1458 
1459     MCSymbol *AddrSymbol =
1460         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1461     OutStreamer->EmitLabel(AddrSymbol);
1462 
1463     unsigned PtrSize = MAI->getCodePointerSize();
1464     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1465                                  PtrSize);
1466   }
1467 
1468   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1469   // split-stack is used.
1470   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1471     OutStreamer->SwitchSection(
1472         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1473     if (MMI->hasNosplitStack())
1474       OutStreamer->SwitchSection(
1475           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1476   }
1477 
1478   // If we don't have any trampolines, then we don't require stack memory
1479   // to be executable. Some targets have a directive to declare this.
1480   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1481   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1482     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1483       OutStreamer->SwitchSection(S);
1484 
1485   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1486     // Emit /EXPORT: flags for each exported global as necessary.
1487     const auto &TLOF = getObjFileLowering();
1488     std::string Flags;
1489 
1490     for (const GlobalValue &GV : M.global_values()) {
1491       raw_string_ostream OS(Flags);
1492       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1493       OS.flush();
1494       if (!Flags.empty()) {
1495         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1496         OutStreamer->EmitBytes(Flags);
1497       }
1498       Flags.clear();
1499     }
1500 
1501     // Emit /INCLUDE: flags for each used global as necessary.
1502     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1503       assert(LU->hasInitializer() &&
1504              "expected llvm.used to have an initializer");
1505       assert(isa<ArrayType>(LU->getValueType()) &&
1506              "expected llvm.used to be an array type");
1507       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1508         for (const Value *Op : A->operands()) {
1509           const auto *GV =
1510               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1511           // Global symbols with internal or private linkage are not visible to
1512           // the linker, and thus would cause an error when the linker tried to
1513           // preserve the symbol due to the `/include:` directive.
1514           if (GV->hasLocalLinkage())
1515             continue;
1516 
1517           raw_string_ostream OS(Flags);
1518           TLOF.emitLinkerFlagsForUsed(OS, GV);
1519           OS.flush();
1520 
1521           if (!Flags.empty()) {
1522             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1523             OutStreamer->EmitBytes(Flags);
1524           }
1525           Flags.clear();
1526         }
1527       }
1528     }
1529   }
1530 
1531   // Allow the target to emit any magic that it wants at the end of the file,
1532   // after everything else has gone out.
1533   EmitEndOfAsmFile(M);
1534 
1535   MMI = nullptr;
1536 
1537   OutStreamer->Finish();
1538   OutStreamer->reset();
1539   OwnedMLI.reset();
1540   OwnedMDT.reset();
1541 
1542   return false;
1543 }
1544 
1545 MCSymbol *AsmPrinter::getCurExceptionSym() {
1546   if (!CurExceptionSym)
1547     CurExceptionSym = createTempSymbol("exception");
1548   return CurExceptionSym;
1549 }
1550 
1551 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1552   this->MF = &MF;
1553   // Get the function symbol.
1554   CurrentFnSym = getSymbol(&MF.getFunction());
1555   CurrentFnSymForSize = CurrentFnSym;
1556   CurrentFnBegin = nullptr;
1557   CurExceptionSym = nullptr;
1558   bool NeedsLocalForSize = MAI->needsLocalForSize();
1559   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1560       MF.getTarget().Options.EmitStackSizeSection) {
1561     CurrentFnBegin = createTempSymbol("func_begin");
1562     if (NeedsLocalForSize)
1563       CurrentFnSymForSize = CurrentFnBegin;
1564   }
1565 
1566   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1567 
1568   const TargetSubtargetInfo &STI = MF.getSubtarget();
1569   EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1570                              ? PrintSchedule
1571                              : STI.supportPrintSchedInfo();
1572 }
1573 
1574 namespace {
1575 
1576 // Keep track the alignment, constpool entries per Section.
1577   struct SectionCPs {
1578     MCSection *S;
1579     unsigned Alignment;
1580     SmallVector<unsigned, 4> CPEs;
1581 
1582     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1583   };
1584 
1585 } // end anonymous namespace
1586 
1587 /// EmitConstantPool - Print to the current output stream assembly
1588 /// representations of the constants in the constant pool MCP. This is
1589 /// used to print out constants which have been "spilled to memory" by
1590 /// the code generator.
1591 void AsmPrinter::EmitConstantPool() {
1592   const MachineConstantPool *MCP = MF->getConstantPool();
1593   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1594   if (CP.empty()) return;
1595 
1596   // Calculate sections for constant pool entries. We collect entries to go into
1597   // the same section together to reduce amount of section switch statements.
1598   SmallVector<SectionCPs, 4> CPSections;
1599   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1600     const MachineConstantPoolEntry &CPE = CP[i];
1601     unsigned Align = CPE.getAlignment();
1602 
1603     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1604 
1605     const Constant *C = nullptr;
1606     if (!CPE.isMachineConstantPoolEntry())
1607       C = CPE.Val.ConstVal;
1608 
1609     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1610                                                               Kind, C, Align);
1611 
1612     // The number of sections are small, just do a linear search from the
1613     // last section to the first.
1614     bool Found = false;
1615     unsigned SecIdx = CPSections.size();
1616     while (SecIdx != 0) {
1617       if (CPSections[--SecIdx].S == S) {
1618         Found = true;
1619         break;
1620       }
1621     }
1622     if (!Found) {
1623       SecIdx = CPSections.size();
1624       CPSections.push_back(SectionCPs(S, Align));
1625     }
1626 
1627     if (Align > CPSections[SecIdx].Alignment)
1628       CPSections[SecIdx].Alignment = Align;
1629     CPSections[SecIdx].CPEs.push_back(i);
1630   }
1631 
1632   // Now print stuff into the calculated sections.
1633   const MCSection *CurSection = nullptr;
1634   unsigned Offset = 0;
1635   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1636     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1637       unsigned CPI = CPSections[i].CPEs[j];
1638       MCSymbol *Sym = GetCPISymbol(CPI);
1639       if (!Sym->isUndefined())
1640         continue;
1641 
1642       if (CurSection != CPSections[i].S) {
1643         OutStreamer->SwitchSection(CPSections[i].S);
1644         EmitAlignment(Log2_32(CPSections[i].Alignment));
1645         CurSection = CPSections[i].S;
1646         Offset = 0;
1647       }
1648 
1649       MachineConstantPoolEntry CPE = CP[CPI];
1650 
1651       // Emit inter-object padding for alignment.
1652       unsigned AlignMask = CPE.getAlignment() - 1;
1653       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1654       OutStreamer->EmitZeros(NewOffset - Offset);
1655 
1656       Type *Ty = CPE.getType();
1657       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1658 
1659       OutStreamer->EmitLabel(Sym);
1660       if (CPE.isMachineConstantPoolEntry())
1661         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1662       else
1663         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1664     }
1665   }
1666 }
1667 
1668 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1669 /// by the current function to the current output stream.
1670 void AsmPrinter::EmitJumpTableInfo() {
1671   const DataLayout &DL = MF->getDataLayout();
1672   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1673   if (!MJTI) return;
1674   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1675   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1676   if (JT.empty()) return;
1677 
1678   // Pick the directive to use to print the jump table entries, and switch to
1679   // the appropriate section.
1680   const Function &F = MF->getFunction();
1681   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1682   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1683       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1684       F);
1685   if (JTInDiffSection) {
1686     // Drop it in the readonly section.
1687     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1688     OutStreamer->SwitchSection(ReadOnlySection);
1689   }
1690 
1691   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1692 
1693   // Jump tables in code sections are marked with a data_region directive
1694   // where that's supported.
1695   if (!JTInDiffSection)
1696     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1697 
1698   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1699     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1700 
1701     // If this jump table was deleted, ignore it.
1702     if (JTBBs.empty()) continue;
1703 
1704     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1705     /// emit a .set directive for each unique entry.
1706     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1707         MAI->doesSetDirectiveSuppressReloc()) {
1708       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1709       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1710       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1711       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1712         const MachineBasicBlock *MBB = JTBBs[ii];
1713         if (!EmittedSets.insert(MBB).second)
1714           continue;
1715 
1716         // .set LJTSet, LBB32-base
1717         const MCExpr *LHS =
1718           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1719         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1720                                     MCBinaryExpr::createSub(LHS, Base,
1721                                                             OutContext));
1722       }
1723     }
1724 
1725     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1726     // before each jump table.  The first label is never referenced, but tells
1727     // the assembler and linker the extents of the jump table object.  The
1728     // second label is actually referenced by the code.
1729     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1730       // FIXME: This doesn't have to have any specific name, just any randomly
1731       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1732       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1733 
1734     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1735 
1736     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1737       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1738   }
1739   if (!JTInDiffSection)
1740     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1741 }
1742 
1743 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1744 /// current stream.
1745 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1746                                     const MachineBasicBlock *MBB,
1747                                     unsigned UID) const {
1748   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1749   const MCExpr *Value = nullptr;
1750   switch (MJTI->getEntryKind()) {
1751   case MachineJumpTableInfo::EK_Inline:
1752     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1753   case MachineJumpTableInfo::EK_Custom32:
1754     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1755         MJTI, MBB, UID, OutContext);
1756     break;
1757   case MachineJumpTableInfo::EK_BlockAddress:
1758     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1759     //     .word LBB123
1760     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1761     break;
1762   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1763     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1764     // with a relocation as gp-relative, e.g.:
1765     //     .gprel32 LBB123
1766     MCSymbol *MBBSym = MBB->getSymbol();
1767     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1768     return;
1769   }
1770 
1771   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1772     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1773     // with a relocation as gp-relative, e.g.:
1774     //     .gpdword LBB123
1775     MCSymbol *MBBSym = MBB->getSymbol();
1776     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1777     return;
1778   }
1779 
1780   case MachineJumpTableInfo::EK_LabelDifference32: {
1781     // Each entry is the address of the block minus the address of the jump
1782     // table. This is used for PIC jump tables where gprel32 is not supported.
1783     // e.g.:
1784     //      .word LBB123 - LJTI1_2
1785     // If the .set directive avoids relocations, this is emitted as:
1786     //      .set L4_5_set_123, LBB123 - LJTI1_2
1787     //      .word L4_5_set_123
1788     if (MAI->doesSetDirectiveSuppressReloc()) {
1789       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1790                                       OutContext);
1791       break;
1792     }
1793     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1794     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1795     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1796     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1797     break;
1798   }
1799   }
1800 
1801   assert(Value && "Unknown entry kind!");
1802 
1803   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1804   OutStreamer->EmitValue(Value, EntrySize);
1805 }
1806 
1807 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1808 /// special global used by LLVM.  If so, emit it and return true, otherwise
1809 /// do nothing and return false.
1810 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1811   if (GV->getName() == "llvm.used") {
1812     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1813       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1814     return true;
1815   }
1816 
1817   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1818   if (GV->getSection() == "llvm.metadata" ||
1819       GV->hasAvailableExternallyLinkage())
1820     return true;
1821 
1822   if (!GV->hasAppendingLinkage()) return false;
1823 
1824   assert(GV->hasInitializer() && "Not a special LLVM global!");
1825 
1826   if (GV->getName() == "llvm.global_ctors") {
1827     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1828                        /* isCtor */ true);
1829 
1830     return true;
1831   }
1832 
1833   if (GV->getName() == "llvm.global_dtors") {
1834     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1835                        /* isCtor */ false);
1836 
1837     return true;
1838   }
1839 
1840   report_fatal_error("unknown special variable");
1841 }
1842 
1843 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1844 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1845 /// is true, as being used with this directive.
1846 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1847   // Should be an array of 'i8*'.
1848   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1849     const GlobalValue *GV =
1850       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1851     if (GV)
1852       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1853   }
1854 }
1855 
1856 namespace {
1857 
1858 struct Structor {
1859   int Priority = 0;
1860   Constant *Func = nullptr;
1861   GlobalValue *ComdatKey = nullptr;
1862 
1863   Structor() = default;
1864 };
1865 
1866 } // end anonymous namespace
1867 
1868 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1869 /// priority.
1870 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1871                                     bool isCtor) {
1872   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1873   // init priority.
1874   if (!isa<ConstantArray>(List)) return;
1875 
1876   // Sanity check the structors list.
1877   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1878   if (!InitList) return; // Not an array!
1879   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1880   // FIXME: Only allow the 3-field form in LLVM 4.0.
1881   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1882     return; // Not an array of two or three elements!
1883   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1884       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1885   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1886     return; // Not (int, ptr, ptr).
1887 
1888   // Gather the structors in a form that's convenient for sorting by priority.
1889   SmallVector<Structor, 8> Structors;
1890   for (Value *O : InitList->operands()) {
1891     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1892     if (!CS) continue; // Malformed.
1893     if (CS->getOperand(1)->isNullValue())
1894       break;  // Found a null terminator, skip the rest.
1895     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1896     if (!Priority) continue; // Malformed.
1897     Structors.push_back(Structor());
1898     Structor &S = Structors.back();
1899     S.Priority = Priority->getLimitedValue(65535);
1900     S.Func = CS->getOperand(1);
1901     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1902       S.ComdatKey =
1903           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1904   }
1905 
1906   // Emit the function pointers in the target-specific order
1907   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1908   std::stable_sort(Structors.begin(), Structors.end(),
1909                    [](const Structor &L,
1910                       const Structor &R) { return L.Priority < R.Priority; });
1911   for (Structor &S : Structors) {
1912     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1913     const MCSymbol *KeySym = nullptr;
1914     if (GlobalValue *GV = S.ComdatKey) {
1915       if (GV->isDeclarationForLinker())
1916         // If the associated variable is not defined in this module
1917         // (it might be available_externally, or have been an
1918         // available_externally definition that was dropped by the
1919         // EliminateAvailableExternally pass), some other TU
1920         // will provide its dynamic initializer.
1921         continue;
1922 
1923       KeySym = getSymbol(GV);
1924     }
1925     MCSection *OutputSection =
1926         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1927                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1928     OutStreamer->SwitchSection(OutputSection);
1929     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1930       EmitAlignment(Align);
1931     EmitXXStructor(DL, S.Func);
1932   }
1933 }
1934 
1935 void AsmPrinter::EmitModuleIdents(Module &M) {
1936   if (!MAI->hasIdentDirective())
1937     return;
1938 
1939   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1940     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1941       const MDNode *N = NMD->getOperand(i);
1942       assert(N->getNumOperands() == 1 &&
1943              "llvm.ident metadata entry can have only one operand");
1944       const MDString *S = cast<MDString>(N->getOperand(0));
1945       OutStreamer->EmitIdent(S->getString());
1946     }
1947   }
1948 }
1949 
1950 //===--------------------------------------------------------------------===//
1951 // Emission and print routines
1952 //
1953 
1954 /// Emit a byte directive and value.
1955 ///
1956 void AsmPrinter::emitInt8(int Value) const {
1957   OutStreamer->EmitIntValue(Value, 1);
1958 }
1959 
1960 /// Emit a short directive and value.
1961 void AsmPrinter::emitInt16(int Value) const {
1962   OutStreamer->EmitIntValue(Value, 2);
1963 }
1964 
1965 /// Emit a long directive and value.
1966 void AsmPrinter::emitInt32(int Value) const {
1967   OutStreamer->EmitIntValue(Value, 4);
1968 }
1969 
1970 /// Emit a long long directive and value.
1971 void AsmPrinter::emitInt64(uint64_t Value) const {
1972   OutStreamer->EmitIntValue(Value, 8);
1973 }
1974 
1975 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1976 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1977 /// .set if it avoids relocations.
1978 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1979                                      unsigned Size) const {
1980   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1981 }
1982 
1983 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1984 /// where the size in bytes of the directive is specified by Size and Label
1985 /// specifies the label.  This implicitly uses .set if it is available.
1986 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1987                                      unsigned Size,
1988                                      bool IsSectionRelative) const {
1989   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1990     OutStreamer->EmitCOFFSecRel32(Label, Offset);
1991     if (Size > 4)
1992       OutStreamer->EmitZeros(Size - 4);
1993     return;
1994   }
1995 
1996   // Emit Label+Offset (or just Label if Offset is zero)
1997   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1998   if (Offset)
1999     Expr = MCBinaryExpr::createAdd(
2000         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2001 
2002   OutStreamer->EmitValue(Expr, Size);
2003 }
2004 
2005 //===----------------------------------------------------------------------===//
2006 
2007 // EmitAlignment - Emit an alignment directive to the specified power of
2008 // two boundary.  For example, if you pass in 3 here, you will get an 8
2009 // byte alignment.  If a global value is specified, and if that global has
2010 // an explicit alignment requested, it will override the alignment request
2011 // if required for correctness.
2012 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2013   if (GV)
2014     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2015 
2016   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
2017 
2018   assert(NumBits <
2019              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2020          "undefined behavior");
2021   if (getCurrentSection()->getKind().isText())
2022     OutStreamer->EmitCodeAlignment(1u << NumBits);
2023   else
2024     OutStreamer->EmitValueToAlignment(1u << NumBits);
2025 }
2026 
2027 //===----------------------------------------------------------------------===//
2028 // Constant emission.
2029 //===----------------------------------------------------------------------===//
2030 
2031 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2032   MCContext &Ctx = OutContext;
2033 
2034   if (CV->isNullValue() || isa<UndefValue>(CV))
2035     return MCConstantExpr::create(0, Ctx);
2036 
2037   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2038     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2039 
2040   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2041     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2042 
2043   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2044     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2045 
2046   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2047   if (!CE) {
2048     llvm_unreachable("Unknown constant value to lower!");
2049   }
2050 
2051   switch (CE->getOpcode()) {
2052   default:
2053     // If the code isn't optimized, there may be outstanding folding
2054     // opportunities. Attempt to fold the expression using DataLayout as a
2055     // last resort before giving up.
2056     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2057       if (C != CE)
2058         return lowerConstant(C);
2059 
2060     // Otherwise report the problem to the user.
2061     {
2062       std::string S;
2063       raw_string_ostream OS(S);
2064       OS << "Unsupported expression in static initializer: ";
2065       CE->printAsOperand(OS, /*PrintType=*/false,
2066                      !MF ? nullptr : MF->getFunction().getParent());
2067       report_fatal_error(OS.str());
2068     }
2069   case Instruction::GetElementPtr: {
2070     // Generate a symbolic expression for the byte address
2071     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2072     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2073 
2074     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2075     if (!OffsetAI)
2076       return Base;
2077 
2078     int64_t Offset = OffsetAI.getSExtValue();
2079     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2080                                    Ctx);
2081   }
2082 
2083   case Instruction::Trunc:
2084     // We emit the value and depend on the assembler to truncate the generated
2085     // expression properly.  This is important for differences between
2086     // blockaddress labels.  Since the two labels are in the same function, it
2087     // is reasonable to treat their delta as a 32-bit value.
2088     LLVM_FALLTHROUGH;
2089   case Instruction::BitCast:
2090     return lowerConstant(CE->getOperand(0));
2091 
2092   case Instruction::IntToPtr: {
2093     const DataLayout &DL = getDataLayout();
2094 
2095     // Handle casts to pointers by changing them into casts to the appropriate
2096     // integer type.  This promotes constant folding and simplifies this code.
2097     Constant *Op = CE->getOperand(0);
2098     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2099                                       false/*ZExt*/);
2100     return lowerConstant(Op);
2101   }
2102 
2103   case Instruction::PtrToInt: {
2104     const DataLayout &DL = getDataLayout();
2105 
2106     // Support only foldable casts to/from pointers that can be eliminated by
2107     // changing the pointer to the appropriately sized integer type.
2108     Constant *Op = CE->getOperand(0);
2109     Type *Ty = CE->getType();
2110 
2111     const MCExpr *OpExpr = lowerConstant(Op);
2112 
2113     // We can emit the pointer value into this slot if the slot is an
2114     // integer slot equal to the size of the pointer.
2115     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2116       return OpExpr;
2117 
2118     // Otherwise the pointer is smaller than the resultant integer, mask off
2119     // the high bits so we are sure to get a proper truncation if the input is
2120     // a constant expr.
2121     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2122     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2123     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2124   }
2125 
2126   case Instruction::Sub: {
2127     GlobalValue *LHSGV;
2128     APInt LHSOffset;
2129     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2130                                    getDataLayout())) {
2131       GlobalValue *RHSGV;
2132       APInt RHSOffset;
2133       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2134                                      getDataLayout())) {
2135         const MCExpr *RelocExpr =
2136             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2137         if (!RelocExpr)
2138           RelocExpr = MCBinaryExpr::createSub(
2139               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2140               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2141         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2142         if (Addend != 0)
2143           RelocExpr = MCBinaryExpr::createAdd(
2144               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2145         return RelocExpr;
2146       }
2147     }
2148   }
2149   // else fallthrough
2150   LLVM_FALLTHROUGH;
2151 
2152   // The MC library also has a right-shift operator, but it isn't consistently
2153   // signed or unsigned between different targets.
2154   case Instruction::Add:
2155   case Instruction::Mul:
2156   case Instruction::SDiv:
2157   case Instruction::SRem:
2158   case Instruction::Shl:
2159   case Instruction::And:
2160   case Instruction::Or:
2161   case Instruction::Xor: {
2162     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2163     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2164     switch (CE->getOpcode()) {
2165     default: llvm_unreachable("Unknown binary operator constant cast expr");
2166     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2167     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2168     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2169     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2170     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2171     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2172     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2173     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2174     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2175     }
2176   }
2177   }
2178 }
2179 
2180 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2181                                    AsmPrinter &AP,
2182                                    const Constant *BaseCV = nullptr,
2183                                    uint64_t Offset = 0);
2184 
2185 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2186 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2187 
2188 /// isRepeatedByteSequence - Determine whether the given value is
2189 /// composed of a repeated sequence of identical bytes and return the
2190 /// byte value.  If it is not a repeated sequence, return -1.
2191 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2192   StringRef Data = V->getRawDataValues();
2193   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2194   char C = Data[0];
2195   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2196     if (Data[i] != C) return -1;
2197   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2198 }
2199 
2200 /// isRepeatedByteSequence - Determine whether the given value is
2201 /// composed of a repeated sequence of identical bytes and return the
2202 /// byte value.  If it is not a repeated sequence, return -1.
2203 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2204   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2205     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2206     assert(Size % 8 == 0);
2207 
2208     // Extend the element to take zero padding into account.
2209     APInt Value = CI->getValue().zextOrSelf(Size);
2210     if (!Value.isSplat(8))
2211       return -1;
2212 
2213     return Value.zextOrTrunc(8).getZExtValue();
2214   }
2215   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2216     // Make sure all array elements are sequences of the same repeated
2217     // byte.
2218     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2219     Constant *Op0 = CA->getOperand(0);
2220     int Byte = isRepeatedByteSequence(Op0, DL);
2221     if (Byte == -1)
2222       return -1;
2223 
2224     // All array elements must be equal.
2225     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2226       if (CA->getOperand(i) != Op0)
2227         return -1;
2228     return Byte;
2229   }
2230 
2231   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2232     return isRepeatedByteSequence(CDS);
2233 
2234   return -1;
2235 }
2236 
2237 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2238                                              const ConstantDataSequential *CDS,
2239                                              AsmPrinter &AP) {
2240   // See if we can aggregate this into a .fill, if so, emit it as such.
2241   int Value = isRepeatedByteSequence(CDS, DL);
2242   if (Value != -1) {
2243     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2244     // Don't emit a 1-byte object as a .fill.
2245     if (Bytes > 1)
2246       return AP.OutStreamer->emitFill(Bytes, Value);
2247   }
2248 
2249   // If this can be emitted with .ascii/.asciz, emit it as such.
2250   if (CDS->isString())
2251     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2252 
2253   // Otherwise, emit the values in successive locations.
2254   unsigned ElementByteSize = CDS->getElementByteSize();
2255   if (isa<IntegerType>(CDS->getElementType())) {
2256     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2257       if (AP.isVerbose())
2258         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2259                                                  CDS->getElementAsInteger(i));
2260       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2261                                    ElementByteSize);
2262     }
2263   } else {
2264     Type *ET = CDS->getElementType();
2265     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2266       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2267   }
2268 
2269   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2270   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2271                         CDS->getNumElements();
2272   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2273   if (unsigned Padding = Size - EmittedSize)
2274     AP.OutStreamer->EmitZeros(Padding);
2275 }
2276 
2277 static void emitGlobalConstantArray(const DataLayout &DL,
2278                                     const ConstantArray *CA, AsmPrinter &AP,
2279                                     const Constant *BaseCV, uint64_t Offset) {
2280   // See if we can aggregate some values.  Make sure it can be
2281   // represented as a series of bytes of the constant value.
2282   int Value = isRepeatedByteSequence(CA, DL);
2283 
2284   if (Value != -1) {
2285     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2286     AP.OutStreamer->emitFill(Bytes, Value);
2287   }
2288   else {
2289     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2290       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2291       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2292     }
2293   }
2294 }
2295 
2296 static void emitGlobalConstantVector(const DataLayout &DL,
2297                                      const ConstantVector *CV, AsmPrinter &AP) {
2298   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2299     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2300 
2301   unsigned Size = DL.getTypeAllocSize(CV->getType());
2302   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2303                          CV->getType()->getNumElements();
2304   if (unsigned Padding = Size - EmittedSize)
2305     AP.OutStreamer->EmitZeros(Padding);
2306 }
2307 
2308 static void emitGlobalConstantStruct(const DataLayout &DL,
2309                                      const ConstantStruct *CS, AsmPrinter &AP,
2310                                      const Constant *BaseCV, uint64_t Offset) {
2311   // Print the fields in successive locations. Pad to align if needed!
2312   unsigned Size = DL.getTypeAllocSize(CS->getType());
2313   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2314   uint64_t SizeSoFar = 0;
2315   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2316     const Constant *Field = CS->getOperand(i);
2317 
2318     // Print the actual field value.
2319     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2320 
2321     // Check if padding is needed and insert one or more 0s.
2322     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2323     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2324                         - Layout->getElementOffset(i)) - FieldSize;
2325     SizeSoFar += FieldSize + PadSize;
2326 
2327     // Insert padding - this may include padding to increase the size of the
2328     // current field up to the ABI size (if the struct is not packed) as well
2329     // as padding to ensure that the next field starts at the right offset.
2330     AP.OutStreamer->EmitZeros(PadSize);
2331   }
2332   assert(SizeSoFar == Layout->getSizeInBytes() &&
2333          "Layout of constant struct may be incorrect!");
2334 }
2335 
2336 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2337   APInt API = APF.bitcastToAPInt();
2338 
2339   // First print a comment with what we think the original floating-point value
2340   // should have been.
2341   if (AP.isVerbose()) {
2342     SmallString<8> StrVal;
2343     APF.toString(StrVal);
2344 
2345     if (ET)
2346       ET->print(AP.OutStreamer->GetCommentOS());
2347     else
2348       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2349     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2350   }
2351 
2352   // Now iterate through the APInt chunks, emitting them in endian-correct
2353   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2354   // floats).
2355   unsigned NumBytes = API.getBitWidth() / 8;
2356   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2357   const uint64_t *p = API.getRawData();
2358 
2359   // PPC's long double has odd notions of endianness compared to how LLVM
2360   // handles it: p[0] goes first for *big* endian on PPC.
2361   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2362     int Chunk = API.getNumWords() - 1;
2363 
2364     if (TrailingBytes)
2365       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2366 
2367     for (; Chunk >= 0; --Chunk)
2368       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2369   } else {
2370     unsigned Chunk;
2371     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2372       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2373 
2374     if (TrailingBytes)
2375       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2376   }
2377 
2378   // Emit the tail padding for the long double.
2379   const DataLayout &DL = AP.getDataLayout();
2380   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2381 }
2382 
2383 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2384   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2385 }
2386 
2387 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2388   const DataLayout &DL = AP.getDataLayout();
2389   unsigned BitWidth = CI->getBitWidth();
2390 
2391   // Copy the value as we may massage the layout for constants whose bit width
2392   // is not a multiple of 64-bits.
2393   APInt Realigned(CI->getValue());
2394   uint64_t ExtraBits = 0;
2395   unsigned ExtraBitsSize = BitWidth & 63;
2396 
2397   if (ExtraBitsSize) {
2398     // The bit width of the data is not a multiple of 64-bits.
2399     // The extra bits are expected to be at the end of the chunk of the memory.
2400     // Little endian:
2401     // * Nothing to be done, just record the extra bits to emit.
2402     // Big endian:
2403     // * Record the extra bits to emit.
2404     // * Realign the raw data to emit the chunks of 64-bits.
2405     if (DL.isBigEndian()) {
2406       // Basically the structure of the raw data is a chunk of 64-bits cells:
2407       //    0        1         BitWidth / 64
2408       // [chunk1][chunk2] ... [chunkN].
2409       // The most significant chunk is chunkN and it should be emitted first.
2410       // However, due to the alignment issue chunkN contains useless bits.
2411       // Realign the chunks so that they contain only useless information:
2412       // ExtraBits     0       1       (BitWidth / 64) - 1
2413       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2414       ExtraBits = Realigned.getRawData()[0] &
2415         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2416       Realigned.lshrInPlace(ExtraBitsSize);
2417     } else
2418       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2419   }
2420 
2421   // We don't expect assemblers to support integer data directives
2422   // for more than 64 bits, so we emit the data in at most 64-bit
2423   // quantities at a time.
2424   const uint64_t *RawData = Realigned.getRawData();
2425   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2426     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2427     AP.OutStreamer->EmitIntValue(Val, 8);
2428   }
2429 
2430   if (ExtraBitsSize) {
2431     // Emit the extra bits after the 64-bits chunks.
2432 
2433     // Emit a directive that fills the expected size.
2434     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2435     Size -= (BitWidth / 64) * 8;
2436     assert(Size && Size * 8 >= ExtraBitsSize &&
2437            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2438            == ExtraBits && "Directive too small for extra bits.");
2439     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2440   }
2441 }
2442 
2443 /// Transform a not absolute MCExpr containing a reference to a GOT
2444 /// equivalent global, by a target specific GOT pc relative access to the
2445 /// final symbol.
2446 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2447                                          const Constant *BaseCst,
2448                                          uint64_t Offset) {
2449   // The global @foo below illustrates a global that uses a got equivalent.
2450   //
2451   //  @bar = global i32 42
2452   //  @gotequiv = private unnamed_addr constant i32* @bar
2453   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2454   //                             i64 ptrtoint (i32* @foo to i64))
2455   //                        to i32)
2456   //
2457   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2458   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2459   // form:
2460   //
2461   //  foo = cstexpr, where
2462   //    cstexpr := <gotequiv> - "." + <cst>
2463   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2464   //
2465   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2466   //
2467   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2468   //    gotpcrelcst := <offset from @foo base> + <cst>
2469   MCValue MV;
2470   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2471     return;
2472   const MCSymbolRefExpr *SymA = MV.getSymA();
2473   if (!SymA)
2474     return;
2475 
2476   // Check that GOT equivalent symbol is cached.
2477   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2478   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2479     return;
2480 
2481   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2482   if (!BaseGV)
2483     return;
2484 
2485   // Check for a valid base symbol
2486   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2487   const MCSymbolRefExpr *SymB = MV.getSymB();
2488 
2489   if (!SymB || BaseSym != &SymB->getSymbol())
2490     return;
2491 
2492   // Make sure to match:
2493   //
2494   //    gotpcrelcst := <offset from @foo base> + <cst>
2495   //
2496   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2497   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2498   // if the target knows how to encode it.
2499   int64_t GOTPCRelCst = Offset + MV.getConstant();
2500   if (GOTPCRelCst < 0)
2501     return;
2502   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2503     return;
2504 
2505   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2506   //
2507   //  bar:
2508   //    .long 42
2509   //  gotequiv:
2510   //    .quad bar
2511   //  foo:
2512   //    .long gotequiv - "." + <cst>
2513   //
2514   // is replaced by the target specific equivalent to:
2515   //
2516   //  bar:
2517   //    .long 42
2518   //  foo:
2519   //    .long bar@GOTPCREL+<gotpcrelcst>
2520   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2521   const GlobalVariable *GV = Result.first;
2522   int NumUses = (int)Result.second;
2523   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2524   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2525   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2526       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2527 
2528   // Update GOT equivalent usage information
2529   --NumUses;
2530   if (NumUses >= 0)
2531     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2532 }
2533 
2534 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2535                                    AsmPrinter &AP, const Constant *BaseCV,
2536                                    uint64_t Offset) {
2537   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2538 
2539   // Globals with sub-elements such as combinations of arrays and structs
2540   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2541   // constant symbol base and the current position with BaseCV and Offset.
2542   if (!BaseCV && CV->hasOneUse())
2543     BaseCV = dyn_cast<Constant>(CV->user_back());
2544 
2545   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2546     return AP.OutStreamer->EmitZeros(Size);
2547 
2548   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2549     switch (Size) {
2550     case 1:
2551     case 2:
2552     case 4:
2553     case 8:
2554       if (AP.isVerbose())
2555         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2556                                                  CI->getZExtValue());
2557       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2558       return;
2559     default:
2560       emitGlobalConstantLargeInt(CI, AP);
2561       return;
2562     }
2563   }
2564 
2565   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2566     return emitGlobalConstantFP(CFP, AP);
2567 
2568   if (isa<ConstantPointerNull>(CV)) {
2569     AP.OutStreamer->EmitIntValue(0, Size);
2570     return;
2571   }
2572 
2573   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2574     return emitGlobalConstantDataSequential(DL, CDS, AP);
2575 
2576   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2577     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2578 
2579   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2580     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2581 
2582   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2583     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2584     // vectors).
2585     if (CE->getOpcode() == Instruction::BitCast)
2586       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2587 
2588     if (Size > 8) {
2589       // If the constant expression's size is greater than 64-bits, then we have
2590       // to emit the value in chunks. Try to constant fold the value and emit it
2591       // that way.
2592       Constant *New = ConstantFoldConstant(CE, DL);
2593       if (New && New != CE)
2594         return emitGlobalConstantImpl(DL, New, AP);
2595     }
2596   }
2597 
2598   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2599     return emitGlobalConstantVector(DL, V, AP);
2600 
2601   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2602   // thread the streamer with EmitValue.
2603   const MCExpr *ME = AP.lowerConstant(CV);
2604 
2605   // Since lowerConstant already folded and got rid of all IR pointer and
2606   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2607   // directly.
2608   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2609     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2610 
2611   AP.OutStreamer->EmitValue(ME, Size);
2612 }
2613 
2614 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2615 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2616   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2617   if (Size)
2618     emitGlobalConstantImpl(DL, CV, *this);
2619   else if (MAI->hasSubsectionsViaSymbols()) {
2620     // If the global has zero size, emit a single byte so that two labels don't
2621     // look like they are at the same location.
2622     OutStreamer->EmitIntValue(0, 1);
2623   }
2624 }
2625 
2626 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2627   // Target doesn't support this yet!
2628   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2629 }
2630 
2631 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2632   if (Offset > 0)
2633     OS << '+' << Offset;
2634   else if (Offset < 0)
2635     OS << Offset;
2636 }
2637 
2638 //===----------------------------------------------------------------------===//
2639 // Symbol Lowering Routines.
2640 //===----------------------------------------------------------------------===//
2641 
2642 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2643   return OutContext.createTempSymbol(Name, true);
2644 }
2645 
2646 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2647   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2648 }
2649 
2650 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2651   return MMI->getAddrLabelSymbol(BB);
2652 }
2653 
2654 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2655 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2656   const DataLayout &DL = getDataLayout();
2657   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2658                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2659                                       Twine(CPID));
2660 }
2661 
2662 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2663 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2664   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2665 }
2666 
2667 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2668 /// FIXME: privatize to AsmPrinter.
2669 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2670   const DataLayout &DL = getDataLayout();
2671   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2672                                       Twine(getFunctionNumber()) + "_" +
2673                                       Twine(UID) + "_set_" + Twine(MBBID));
2674 }
2675 
2676 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2677                                                    StringRef Suffix) const {
2678   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2679 }
2680 
2681 /// Return the MCSymbol for the specified ExternalSymbol.
2682 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2683   SmallString<60> NameStr;
2684   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2685   return OutContext.getOrCreateSymbol(NameStr);
2686 }
2687 
2688 /// PrintParentLoopComment - Print comments about parent loops of this one.
2689 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2690                                    unsigned FunctionNumber) {
2691   if (!Loop) return;
2692   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2693   OS.indent(Loop->getLoopDepth()*2)
2694     << "Parent Loop BB" << FunctionNumber << "_"
2695     << Loop->getHeader()->getNumber()
2696     << " Depth=" << Loop->getLoopDepth() << '\n';
2697 }
2698 
2699 /// PrintChildLoopComment - Print comments about child loops within
2700 /// the loop for this basic block, with nesting.
2701 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2702                                   unsigned FunctionNumber) {
2703   // Add child loop information
2704   for (const MachineLoop *CL : *Loop) {
2705     OS.indent(CL->getLoopDepth()*2)
2706       << "Child Loop BB" << FunctionNumber << "_"
2707       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2708       << '\n';
2709     PrintChildLoopComment(OS, CL, FunctionNumber);
2710   }
2711 }
2712 
2713 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2714 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2715                                        const MachineLoopInfo *LI,
2716                                        const AsmPrinter &AP) {
2717   // Add loop depth information
2718   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2719   if (!Loop) return;
2720 
2721   MachineBasicBlock *Header = Loop->getHeader();
2722   assert(Header && "No header for loop");
2723 
2724   // If this block is not a loop header, just print out what is the loop header
2725   // and return.
2726   if (Header != &MBB) {
2727     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2728                                Twine(AP.getFunctionNumber())+"_" +
2729                                Twine(Loop->getHeader()->getNumber())+
2730                                " Depth="+Twine(Loop->getLoopDepth()));
2731     return;
2732   }
2733 
2734   // Otherwise, it is a loop header.  Print out information about child and
2735   // parent loops.
2736   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2737 
2738   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2739 
2740   OS << "=>";
2741   OS.indent(Loop->getLoopDepth()*2-2);
2742 
2743   OS << "This ";
2744   if (Loop->empty())
2745     OS << "Inner ";
2746   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2747 
2748   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2749 }
2750 
2751 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2752                                          MCCodePaddingContext &Context) const {
2753   assert(MF != nullptr && "Machine function must be valid");
2754   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2755                             !MF->getFunction().optForSize() &&
2756                             TM.getOptLevel() != CodeGenOpt::None;
2757   Context.IsBasicBlockReachableViaFallthrough =
2758       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2759       MBB.pred_end();
2760   Context.IsBasicBlockReachableViaBranch =
2761       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2762 }
2763 
2764 /// EmitBasicBlockStart - This method prints the label for the specified
2765 /// MachineBasicBlock, an alignment (if present) and a comment describing
2766 /// it if appropriate.
2767 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2768   // End the previous funclet and start a new one.
2769   if (MBB.isEHFuncletEntry()) {
2770     for (const HandlerInfo &HI : Handlers) {
2771       HI.Handler->endFunclet();
2772       HI.Handler->beginFunclet(MBB);
2773     }
2774   }
2775 
2776   // Emit an alignment directive for this block, if needed.
2777   if (unsigned Align = MBB.getAlignment())
2778     EmitAlignment(Align);
2779   MCCodePaddingContext Context;
2780   setupCodePaddingContext(MBB, Context);
2781   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2782 
2783   // If the block has its address taken, emit any labels that were used to
2784   // reference the block.  It is possible that there is more than one label
2785   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2786   // the references were generated.
2787   if (MBB.hasAddressTaken()) {
2788     const BasicBlock *BB = MBB.getBasicBlock();
2789     if (isVerbose())
2790       OutStreamer->AddComment("Block address taken");
2791 
2792     // MBBs can have their address taken as part of CodeGen without having
2793     // their corresponding BB's address taken in IR
2794     if (BB->hasAddressTaken())
2795       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2796         OutStreamer->EmitLabel(Sym);
2797   }
2798 
2799   // Print some verbose block comments.
2800   if (isVerbose()) {
2801     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2802       if (BB->hasName()) {
2803         BB->printAsOperand(OutStreamer->GetCommentOS(),
2804                            /*PrintType=*/false, BB->getModule());
2805         OutStreamer->GetCommentOS() << '\n';
2806       }
2807     }
2808 
2809     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2810     emitBasicBlockLoopComments(MBB, MLI, *this);
2811   }
2812 
2813   // Print the main label for the block.
2814   if (MBB.pred_empty() ||
2815       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2816     if (isVerbose()) {
2817       // NOTE: Want this comment at start of line, don't emit with AddComment.
2818       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2819                                   false);
2820     }
2821   } else {
2822     OutStreamer->EmitLabel(MBB.getSymbol());
2823   }
2824 }
2825 
2826 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2827   MCCodePaddingContext Context;
2828   setupCodePaddingContext(MBB, Context);
2829   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2830 }
2831 
2832 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2833                                 bool IsDefinition) const {
2834   MCSymbolAttr Attr = MCSA_Invalid;
2835 
2836   switch (Visibility) {
2837   default: break;
2838   case GlobalValue::HiddenVisibility:
2839     if (IsDefinition)
2840       Attr = MAI->getHiddenVisibilityAttr();
2841     else
2842       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2843     break;
2844   case GlobalValue::ProtectedVisibility:
2845     Attr = MAI->getProtectedVisibilityAttr();
2846     break;
2847   }
2848 
2849   if (Attr != MCSA_Invalid)
2850     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2851 }
2852 
2853 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2854 /// exactly one predecessor and the control transfer mechanism between
2855 /// the predecessor and this block is a fall-through.
2856 bool AsmPrinter::
2857 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2858   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2859   // then nothing falls through to it.
2860   if (MBB->isEHPad() || MBB->pred_empty())
2861     return false;
2862 
2863   // If there isn't exactly one predecessor, it can't be a fall through.
2864   if (MBB->pred_size() > 1)
2865     return false;
2866 
2867   // The predecessor has to be immediately before this block.
2868   MachineBasicBlock *Pred = *MBB->pred_begin();
2869   if (!Pred->isLayoutSuccessor(MBB))
2870     return false;
2871 
2872   // If the block is completely empty, then it definitely does fall through.
2873   if (Pred->empty())
2874     return true;
2875 
2876   // Check the terminators in the previous blocks
2877   for (const auto &MI : Pred->terminators()) {
2878     // If it is not a simple branch, we are in a table somewhere.
2879     if (!MI.isBranch() || MI.isIndirectBranch())
2880       return false;
2881 
2882     // If we are the operands of one of the branches, this is not a fall
2883     // through. Note that targets with delay slots will usually bundle
2884     // terminators with the delay slot instruction.
2885     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2886       if (OP->isJTI())
2887         return false;
2888       if (OP->isMBB() && OP->getMBB() == MBB)
2889         return false;
2890     }
2891   }
2892 
2893   return true;
2894 }
2895 
2896 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2897   if (!S.usesMetadata())
2898     return nullptr;
2899 
2900   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2901          " stackmap formats, please see the documentation for a description of"
2902          " the default format.  If you really need a custom serialized format,"
2903          " please file a bug");
2904 
2905   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2906   gcp_map_type::iterator GCPI = GCMap.find(&S);
2907   if (GCPI != GCMap.end())
2908     return GCPI->second.get();
2909 
2910   auto Name = S.getName();
2911 
2912   for (GCMetadataPrinterRegistry::iterator
2913          I = GCMetadataPrinterRegistry::begin(),
2914          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2915     if (Name == I->getName()) {
2916       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2917       GMP->S = &S;
2918       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2919       return IterBool.first->second.get();
2920     }
2921 
2922   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2923 }
2924 
2925 /// Pin vtable to this file.
2926 AsmPrinterHandler::~AsmPrinterHandler() = default;
2927 
2928 void AsmPrinterHandler::markFunctionEnd() {}
2929 
2930 // In the binary's "xray_instr_map" section, an array of these function entries
2931 // describes each instrumentation point.  When XRay patches your code, the index
2932 // into this table will be given to your handler as a patch point identifier.
2933 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
2934                                          const MCSymbol *CurrentFnSym) const {
2935   Out->EmitSymbolValue(Sled, Bytes);
2936   Out->EmitSymbolValue(CurrentFnSym, Bytes);
2937   auto Kind8 = static_cast<uint8_t>(Kind);
2938   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
2939   Out->EmitBinaryData(
2940       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
2941   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
2942   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
2943   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
2944   Out->EmitZeros(Padding);
2945 }
2946 
2947 void AsmPrinter::emitXRayTable() {
2948   if (Sleds.empty())
2949     return;
2950 
2951   auto PrevSection = OutStreamer->getCurrentSectionOnly();
2952   const Function &F = MF->getFunction();
2953   MCSection *InstMap = nullptr;
2954   MCSection *FnSledIndex = nullptr;
2955   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
2956     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
2957     assert(Associated != nullptr);
2958     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
2959     std::string GroupName;
2960     if (F.hasComdat()) {
2961       Flags |= ELF::SHF_GROUP;
2962       GroupName = F.getComdat()->getName();
2963     }
2964 
2965     auto UniqueID = ++XRayFnUniqueID;
2966     InstMap =
2967         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
2968                                  GroupName, UniqueID, Associated);
2969     FnSledIndex =
2970         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
2971                                  GroupName, UniqueID, Associated);
2972   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
2973     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
2974                                          SectionKind::getReadOnlyWithRel());
2975     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
2976                                              SectionKind::getReadOnlyWithRel());
2977   } else {
2978     llvm_unreachable("Unsupported target");
2979   }
2980 
2981   auto WordSizeBytes = MAI->getCodePointerSize();
2982 
2983   // Now we switch to the instrumentation map section. Because this is done
2984   // per-function, we are able to create an index entry that will represent the
2985   // range of sleds associated with a function.
2986   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
2987   OutStreamer->SwitchSection(InstMap);
2988   OutStreamer->EmitLabel(SledsStart);
2989   for (const auto &Sled : Sleds)
2990     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
2991   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
2992   OutStreamer->EmitLabel(SledsEnd);
2993 
2994   // We then emit a single entry in the index per function. We use the symbols
2995   // that bound the instrumentation map as the range for a specific function.
2996   // Each entry here will be 2 * word size aligned, as we're writing down two
2997   // pointers. This should work for both 32-bit and 64-bit platforms.
2998   OutStreamer->SwitchSection(FnSledIndex);
2999   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3000   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3001   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3002   OutStreamer->SwitchSection(PrevSection);
3003   Sleds.clear();
3004 }
3005 
3006 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3007                             SledKind Kind, uint8_t Version) {
3008   const Function &F = MI.getMF()->getFunction();
3009   auto Attr = F.getFnAttribute("function-instrument");
3010   bool LogArgs = F.hasFnAttribute("xray-log-args");
3011   bool AlwaysInstrument =
3012     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3013   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3014     Kind = SledKind::LOG_ARGS_ENTER;
3015   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3016                                        AlwaysInstrument, &F, Version});
3017 }
3018 
3019 uint16_t AsmPrinter::getDwarfVersion() const {
3020   return OutStreamer->getContext().getDwarfVersion();
3021 }
3022 
3023 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3024   OutStreamer->getContext().setDwarfVersion(Version);
3025 }
3026