1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetLowering.h" 58 #include "llvm/CodeGen/TargetOpcodes.h" 59 #include "llvm/CodeGen/TargetRegisterInfo.h" 60 #include "llvm/CodeGen/TargetSubtargetInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCCodePadder.h" 84 #include "llvm/MC/MCContext.h" 85 #include "llvm/MC/MCDirectives.h" 86 #include "llvm/MC/MCDwarf.h" 87 #include "llvm/MC/MCExpr.h" 88 #include "llvm/MC/MCInst.h" 89 #include "llvm/MC/MCSection.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCStreamer.h" 93 #include "llvm/MC/MCSubtargetInfo.h" 94 #include "llvm/MC/MCSymbol.h" 95 #include "llvm/MC/MCSymbolELF.h" 96 #include "llvm/MC/MCTargetOptions.h" 97 #include "llvm/MC/MCValue.h" 98 #include "llvm/MC/SectionKind.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/ErrorHandling.h" 104 #include "llvm/Support/Format.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/Path.h" 107 #include "llvm/Support/TargetRegistry.h" 108 #include "llvm/Support/Timer.h" 109 #include "llvm/Support/raw_ostream.h" 110 #include "llvm/Target/TargetLoweringObjectFile.h" 111 #include "llvm/Target/TargetMachine.h" 112 #include "llvm/Target/TargetOptions.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cinttypes> 116 #include <cstdint> 117 #include <iterator> 118 #include <limits> 119 #include <memory> 120 #include <string> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 126 #define DEBUG_TYPE "asm-printer" 127 128 static const char *const DWARFGroupName = "dwarf"; 129 static const char *const DWARFGroupDescription = "DWARF Emission"; 130 static const char *const DbgTimerName = "emit"; 131 static const char *const DbgTimerDescription = "Debug Info Emission"; 132 static const char *const EHTimerName = "write_exception"; 133 static const char *const EHTimerDescription = "DWARF Exception Writer"; 134 static const char *const CFGuardName = "Control Flow Guard"; 135 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 136 static const char *const CodeViewLineTablesGroupName = "linetables"; 137 static const char *const CodeViewLineTablesGroupDescription = 138 "CodeView Line Tables"; 139 140 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 141 142 static cl::opt<bool> 143 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 144 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 145 146 char AsmPrinter::ID = 0; 147 148 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 149 150 static gcp_map_type &getGCMap(void *&P) { 151 if (!P) 152 P = new gcp_map_type(); 153 return *(gcp_map_type*)P; 154 } 155 156 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 157 /// value in log2 form. This rounds up to the preferred alignment if possible 158 /// and legal. 159 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 160 unsigned InBits = 0) { 161 unsigned NumBits = 0; 162 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 163 NumBits = DL.getPreferredAlignmentLog(GVar); 164 165 // If InBits is specified, round it to it. 166 if (InBits > NumBits) 167 NumBits = InBits; 168 169 // If the GV has a specified alignment, take it into account. 170 if (GV->getAlignment() == 0) 171 return NumBits; 172 173 unsigned GVAlign = Log2_32(GV->getAlignment()); 174 175 // If the GVAlign is larger than NumBits, or if we are required to obey 176 // NumBits because the GV has an assigned section, obey it. 177 if (GVAlign > NumBits || GV->hasSection()) 178 NumBits = GVAlign; 179 return NumBits; 180 } 181 182 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 183 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 184 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 185 VerboseAsm = OutStreamer->isVerboseAsm(); 186 } 187 188 AsmPrinter::~AsmPrinter() { 189 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 190 191 if (GCMetadataPrinters) { 192 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 193 194 delete &GCMap; 195 GCMetadataPrinters = nullptr; 196 } 197 } 198 199 bool AsmPrinter::isPositionIndependent() const { 200 return TM.isPositionIndependent(); 201 } 202 203 /// getFunctionNumber - Return a unique ID for the current function. 204 unsigned AsmPrinter::getFunctionNumber() const { 205 return MF->getFunctionNumber(); 206 } 207 208 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 209 return *TM.getObjFileLowering(); 210 } 211 212 const DataLayout &AsmPrinter::getDataLayout() const { 213 return MMI->getModule()->getDataLayout(); 214 } 215 216 // Do not use the cached DataLayout because some client use it without a Module 217 // (dsymutil, llvm-dwarfdump). 218 unsigned AsmPrinter::getPointerSize() const { 219 return TM.getPointerSize(0); // FIXME: Default address space 220 } 221 222 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 223 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 224 return MF->getSubtarget<MCSubtargetInfo>(); 225 } 226 227 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 228 S.EmitInstruction(Inst, getSubtargetInfo()); 229 } 230 231 /// getCurrentSection() - Return the current section we are emitting to. 232 const MCSection *AsmPrinter::getCurrentSection() const { 233 return OutStreamer->getCurrentSectionOnly(); 234 } 235 236 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 237 AU.setPreservesAll(); 238 MachineFunctionPass::getAnalysisUsage(AU); 239 AU.addRequired<MachineModuleInfo>(); 240 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 241 AU.addRequired<GCModuleInfo>(); 242 } 243 244 bool AsmPrinter::doInitialization(Module &M) { 245 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 246 247 // Initialize TargetLoweringObjectFile. 248 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 249 .Initialize(OutContext, TM); 250 251 OutStreamer->InitSections(false); 252 253 // Emit the version-min deployment target directive if needed. 254 // 255 // FIXME: If we end up with a collection of these sorts of Darwin-specific 256 // or ELF-specific things, it may make sense to have a platform helper class 257 // that will work with the target helper class. For now keep it here, as the 258 // alternative is duplicated code in each of the target asm printers that 259 // use the directive, where it would need the same conditionalization 260 // anyway. 261 const Triple &Target = TM.getTargetTriple(); 262 OutStreamer->EmitVersionForTarget(Target); 263 264 // Allow the target to emit any magic that it wants at the start of the file. 265 EmitStartOfAsmFile(M); 266 267 // Very minimal debug info. It is ignored if we emit actual debug info. If we 268 // don't, this at least helps the user find where a global came from. 269 if (MAI->hasSingleParameterDotFile()) { 270 // .file "foo.c" 271 OutStreamer->EmitFileDirective( 272 llvm::sys::path::filename(M.getSourceFileName())); 273 } 274 275 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 276 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 277 for (auto &I : *MI) 278 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 279 MP->beginAssembly(M, *MI, *this); 280 281 // Emit module-level inline asm if it exists. 282 if (!M.getModuleInlineAsm().empty()) { 283 // We're at the module level. Construct MCSubtarget from the default CPU 284 // and target triple. 285 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 286 TM.getTargetTriple().str(), TM.getTargetCPU(), 287 TM.getTargetFeatureString())); 288 OutStreamer->AddComment("Start of file scope inline assembly"); 289 OutStreamer->AddBlankLine(); 290 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 291 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 292 OutStreamer->AddComment("End of file scope inline assembly"); 293 OutStreamer->AddBlankLine(); 294 } 295 296 if (MAI->doesSupportDebugInformation()) { 297 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 298 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 299 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 300 DbgTimerName, DbgTimerDescription, 301 CodeViewLineTablesGroupName, 302 CodeViewLineTablesGroupDescription)); 303 } 304 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 305 DD = new DwarfDebug(this, &M); 306 DD->beginModule(); 307 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 308 DWARFGroupName, DWARFGroupDescription)); 309 } 310 } 311 312 switch (MAI->getExceptionHandlingType()) { 313 case ExceptionHandling::SjLj: 314 case ExceptionHandling::DwarfCFI: 315 case ExceptionHandling::ARM: 316 isCFIMoveForDebugging = true; 317 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 318 break; 319 for (auto &F: M.getFunctionList()) { 320 // If the module contains any function with unwind data, 321 // .eh_frame has to be emitted. 322 // Ignore functions that won't get emitted. 323 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 324 isCFIMoveForDebugging = false; 325 break; 326 } 327 } 328 break; 329 default: 330 isCFIMoveForDebugging = false; 331 break; 332 } 333 334 EHStreamer *ES = nullptr; 335 switch (MAI->getExceptionHandlingType()) { 336 case ExceptionHandling::None: 337 break; 338 case ExceptionHandling::SjLj: 339 case ExceptionHandling::DwarfCFI: 340 ES = new DwarfCFIException(this); 341 break; 342 case ExceptionHandling::ARM: 343 ES = new ARMException(this); 344 break; 345 case ExceptionHandling::WinEH: 346 switch (MAI->getWinEHEncodingType()) { 347 default: llvm_unreachable("unsupported unwinding information encoding"); 348 case WinEH::EncodingType::Invalid: 349 break; 350 case WinEH::EncodingType::X86: 351 case WinEH::EncodingType::Itanium: 352 ES = new WinException(this); 353 break; 354 } 355 break; 356 case ExceptionHandling::Wasm: 357 // TODO to prevent warning 358 break; 359 } 360 if (ES) 361 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 362 DWARFGroupName, DWARFGroupDescription)); 363 364 if (mdconst::extract_or_null<ConstantInt>( 365 MMI->getModule()->getModuleFlag("cfguard"))) 366 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName, 367 CFGuardDescription, DWARFGroupName, 368 DWARFGroupDescription)); 369 370 return false; 371 } 372 373 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 374 if (!MAI.hasWeakDefCanBeHiddenDirective()) 375 return false; 376 377 return GV->canBeOmittedFromSymbolTable(); 378 } 379 380 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 381 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 382 switch (Linkage) { 383 case GlobalValue::CommonLinkage: 384 case GlobalValue::LinkOnceAnyLinkage: 385 case GlobalValue::LinkOnceODRLinkage: 386 case GlobalValue::WeakAnyLinkage: 387 case GlobalValue::WeakODRLinkage: 388 if (MAI->hasWeakDefDirective()) { 389 // .globl _foo 390 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 391 392 if (!canBeHidden(GV, *MAI)) 393 // .weak_definition _foo 394 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 395 else 396 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 397 } else if (MAI->hasLinkOnceDirective()) { 398 // .globl _foo 399 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 400 //NOTE: linkonce is handled by the section the symbol was assigned to. 401 } else { 402 // .weak _foo 403 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 404 } 405 return; 406 case GlobalValue::ExternalLinkage: 407 // If external, declare as a global symbol: .globl _foo 408 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 409 return; 410 case GlobalValue::PrivateLinkage: 411 case GlobalValue::InternalLinkage: 412 return; 413 case GlobalValue::AppendingLinkage: 414 case GlobalValue::AvailableExternallyLinkage: 415 case GlobalValue::ExternalWeakLinkage: 416 llvm_unreachable("Should never emit this"); 417 } 418 llvm_unreachable("Unknown linkage type!"); 419 } 420 421 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 422 const GlobalValue *GV) const { 423 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 424 } 425 426 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 427 return TM.getSymbol(GV); 428 } 429 430 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 431 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 432 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 433 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 434 "No emulated TLS variables in the common section"); 435 436 // Never emit TLS variable xyz in emulated TLS model. 437 // The initialization value is in __emutls_t.xyz instead of xyz. 438 if (IsEmuTLSVar) 439 return; 440 441 if (GV->hasInitializer()) { 442 // Check to see if this is a special global used by LLVM, if so, emit it. 443 if (EmitSpecialLLVMGlobal(GV)) 444 return; 445 446 // Skip the emission of global equivalents. The symbol can be emitted later 447 // on by emitGlobalGOTEquivs in case it turns out to be needed. 448 if (GlobalGOTEquivs.count(getSymbol(GV))) 449 return; 450 451 if (isVerbose()) { 452 // When printing the control variable __emutls_v.*, 453 // we don't need to print the original TLS variable name. 454 GV->printAsOperand(OutStreamer->GetCommentOS(), 455 /*PrintType=*/false, GV->getParent()); 456 OutStreamer->GetCommentOS() << '\n'; 457 } 458 } 459 460 MCSymbol *GVSym = getSymbol(GV); 461 MCSymbol *EmittedSym = GVSym; 462 463 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 464 // attributes. 465 // GV's or GVSym's attributes will be used for the EmittedSym. 466 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 467 468 if (!GV->hasInitializer()) // External globals require no extra code. 469 return; 470 471 GVSym->redefineIfPossible(); 472 if (GVSym->isDefined() || GVSym->isVariable()) 473 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 474 "' is already defined"); 475 476 if (MAI->hasDotTypeDotSizeDirective()) 477 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 478 479 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 480 481 const DataLayout &DL = GV->getParent()->getDataLayout(); 482 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 483 484 // If the alignment is specified, we *must* obey it. Overaligning a global 485 // with a specified alignment is a prompt way to break globals emitted to 486 // sections and expected to be contiguous (e.g. ObjC metadata). 487 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 488 489 for (const HandlerInfo &HI : Handlers) { 490 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 491 HI.TimerGroupName, HI.TimerGroupDescription, 492 TimePassesIsEnabled); 493 HI.Handler->setSymbolSize(GVSym, Size); 494 } 495 496 // Handle common symbols 497 if (GVKind.isCommon()) { 498 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 499 unsigned Align = 1 << AlignLog; 500 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 501 Align = 0; 502 503 // .comm _foo, 42, 4 504 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 505 return; 506 } 507 508 // Determine to which section this global should be emitted. 509 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 510 511 // If we have a bss global going to a section that supports the 512 // zerofill directive, do so here. 513 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 514 TheSection->isVirtualSection()) { 515 if (Size == 0) 516 Size = 1; // zerofill of 0 bytes is undefined. 517 unsigned Align = 1 << AlignLog; 518 EmitLinkage(GV, GVSym); 519 // .zerofill __DATA, __bss, _foo, 400, 5 520 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 521 return; 522 } 523 524 // If this is a BSS local symbol and we are emitting in the BSS 525 // section use .lcomm/.comm directive. 526 if (GVKind.isBSSLocal() && 527 getObjFileLowering().getBSSSection() == TheSection) { 528 if (Size == 0) 529 Size = 1; // .comm Foo, 0 is undefined, avoid it. 530 unsigned Align = 1 << AlignLog; 531 532 // Use .lcomm only if it supports user-specified alignment. 533 // Otherwise, while it would still be correct to use .lcomm in some 534 // cases (e.g. when Align == 1), the external assembler might enfore 535 // some -unknown- default alignment behavior, which could cause 536 // spurious differences between external and integrated assembler. 537 // Prefer to simply fall back to .local / .comm in this case. 538 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 539 // .lcomm _foo, 42 540 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 541 return; 542 } 543 544 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 545 Align = 0; 546 547 // .local _foo 548 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 549 // .comm _foo, 42, 4 550 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 551 return; 552 } 553 554 // Handle thread local data for mach-o which requires us to output an 555 // additional structure of data and mangle the original symbol so that we 556 // can reference it later. 557 // 558 // TODO: This should become an "emit thread local global" method on TLOF. 559 // All of this macho specific stuff should be sunk down into TLOFMachO and 560 // stuff like "TLSExtraDataSection" should no longer be part of the parent 561 // TLOF class. This will also make it more obvious that stuff like 562 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 563 // specific code. 564 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 565 // Emit the .tbss symbol 566 MCSymbol *MangSym = 567 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 568 569 if (GVKind.isThreadBSS()) { 570 TheSection = getObjFileLowering().getTLSBSSSection(); 571 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 572 } else if (GVKind.isThreadData()) { 573 OutStreamer->SwitchSection(TheSection); 574 575 EmitAlignment(AlignLog, GV); 576 OutStreamer->EmitLabel(MangSym); 577 578 EmitGlobalConstant(GV->getParent()->getDataLayout(), 579 GV->getInitializer()); 580 } 581 582 OutStreamer->AddBlankLine(); 583 584 // Emit the variable struct for the runtime. 585 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 586 587 OutStreamer->SwitchSection(TLVSect); 588 // Emit the linkage here. 589 EmitLinkage(GV, GVSym); 590 OutStreamer->EmitLabel(GVSym); 591 592 // Three pointers in size: 593 // - __tlv_bootstrap - used to make sure support exists 594 // - spare pointer, used when mapped by the runtime 595 // - pointer to mangled symbol above with initializer 596 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 597 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 598 PtrSize); 599 OutStreamer->EmitIntValue(0, PtrSize); 600 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 601 602 OutStreamer->AddBlankLine(); 603 return; 604 } 605 606 MCSymbol *EmittedInitSym = GVSym; 607 608 OutStreamer->SwitchSection(TheSection); 609 610 EmitLinkage(GV, EmittedInitSym); 611 EmitAlignment(AlignLog, GV); 612 613 OutStreamer->EmitLabel(EmittedInitSym); 614 615 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 616 617 if (MAI->hasDotTypeDotSizeDirective()) 618 // .size foo, 42 619 OutStreamer->emitELFSize(EmittedInitSym, 620 MCConstantExpr::create(Size, OutContext)); 621 622 OutStreamer->AddBlankLine(); 623 } 624 625 /// Emit the directive and value for debug thread local expression 626 /// 627 /// \p Value - The value to emit. 628 /// \p Size - The size of the integer (in bytes) to emit. 629 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 630 unsigned Size) const { 631 OutStreamer->EmitValue(Value, Size); 632 } 633 634 /// EmitFunctionHeader - This method emits the header for the current 635 /// function. 636 void AsmPrinter::EmitFunctionHeader() { 637 const Function &F = MF->getFunction(); 638 639 if (isVerbose()) 640 OutStreamer->GetCommentOS() 641 << "-- Begin function " 642 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 643 644 // Print out constants referenced by the function 645 EmitConstantPool(); 646 647 // Print the 'header' of function. 648 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 649 EmitVisibility(CurrentFnSym, F.getVisibility()); 650 651 EmitLinkage(&F, CurrentFnSym); 652 if (MAI->hasFunctionAlignment()) 653 EmitAlignment(MF->getAlignment(), &F); 654 655 if (MAI->hasDotTypeDotSizeDirective()) 656 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 657 658 if (isVerbose()) { 659 F.printAsOperand(OutStreamer->GetCommentOS(), 660 /*PrintType=*/false, F.getParent()); 661 OutStreamer->GetCommentOS() << '\n'; 662 } 663 664 // Emit the prefix data. 665 if (F.hasPrefixData()) { 666 if (MAI->hasSubsectionsViaSymbols()) { 667 // Preserving prefix data on platforms which use subsections-via-symbols 668 // is a bit tricky. Here we introduce a symbol for the prefix data 669 // and use the .alt_entry attribute to mark the function's real entry point 670 // as an alternative entry point to the prefix-data symbol. 671 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 672 OutStreamer->EmitLabel(PrefixSym); 673 674 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 675 676 // Emit an .alt_entry directive for the actual function symbol. 677 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 678 } else { 679 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 680 } 681 } 682 683 // Emit the CurrentFnSym. This is a virtual function to allow targets to 684 // do their wild and crazy things as required. 685 EmitFunctionEntryLabel(); 686 687 // If the function had address-taken blocks that got deleted, then we have 688 // references to the dangling symbols. Emit them at the start of the function 689 // so that we don't get references to undefined symbols. 690 std::vector<MCSymbol*> DeadBlockSyms; 691 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 692 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 693 OutStreamer->AddComment("Address taken block that was later removed"); 694 OutStreamer->EmitLabel(DeadBlockSyms[i]); 695 } 696 697 if (CurrentFnBegin) { 698 if (MAI->useAssignmentForEHBegin()) { 699 MCSymbol *CurPos = OutContext.createTempSymbol(); 700 OutStreamer->EmitLabel(CurPos); 701 OutStreamer->EmitAssignment(CurrentFnBegin, 702 MCSymbolRefExpr::create(CurPos, OutContext)); 703 } else { 704 OutStreamer->EmitLabel(CurrentFnBegin); 705 } 706 } 707 708 // Emit pre-function debug and/or EH information. 709 for (const HandlerInfo &HI : Handlers) { 710 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 711 HI.TimerGroupDescription, TimePassesIsEnabled); 712 HI.Handler->beginFunction(MF); 713 } 714 715 // Emit the prologue data. 716 if (F.hasPrologueData()) 717 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 718 } 719 720 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 721 /// function. This can be overridden by targets as required to do custom stuff. 722 void AsmPrinter::EmitFunctionEntryLabel() { 723 CurrentFnSym->redefineIfPossible(); 724 725 // The function label could have already been emitted if two symbols end up 726 // conflicting due to asm renaming. Detect this and emit an error. 727 if (CurrentFnSym->isVariable()) 728 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 729 "' is a protected alias"); 730 if (CurrentFnSym->isDefined()) 731 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 732 "' label emitted multiple times to assembly file"); 733 734 return OutStreamer->EmitLabel(CurrentFnSym); 735 } 736 737 /// emitComments - Pretty-print comments for instructions. 738 /// It returns true iff the sched comment was emitted. 739 /// Otherwise it returns false. 740 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 741 AsmPrinter *AP) { 742 const MachineFunction *MF = MI.getMF(); 743 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 744 745 // Check for spills and reloads 746 int FI; 747 748 const MachineFrameInfo &MFI = MF->getFrameInfo(); 749 bool Commented = false; 750 751 // We assume a single instruction only has a spill or reload, not 752 // both. 753 const MachineMemOperand *MMO; 754 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 755 if (MFI.isSpillSlotObjectIndex(FI)) { 756 MMO = *MI.memoperands_begin(); 757 CommentOS << MMO->getSize() << "-byte Reload"; 758 Commented = true; 759 } 760 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 761 if (MFI.isSpillSlotObjectIndex(FI)) { 762 CommentOS << MMO->getSize() << "-byte Folded Reload"; 763 Commented = true; 764 } 765 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 766 if (MFI.isSpillSlotObjectIndex(FI)) { 767 MMO = *MI.memoperands_begin(); 768 CommentOS << MMO->getSize() << "-byte Spill"; 769 Commented = true; 770 } 771 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 772 if (MFI.isSpillSlotObjectIndex(FI)) { 773 CommentOS << MMO->getSize() << "-byte Folded Spill"; 774 Commented = true; 775 } 776 } 777 778 // Check for spill-induced copies 779 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 780 Commented = true; 781 CommentOS << " Reload Reuse"; 782 } 783 784 if (Commented) { 785 if (AP->EnablePrintSchedInfo) { 786 // If any comment was added above and we need sched info comment then add 787 // this new comment just after the above comment w/o "\n" between them. 788 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 789 return true; 790 } 791 CommentOS << "\n"; 792 } 793 return false; 794 } 795 796 /// emitImplicitDef - This method emits the specified machine instruction 797 /// that is an implicit def. 798 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 799 unsigned RegNo = MI->getOperand(0).getReg(); 800 801 SmallString<128> Str; 802 raw_svector_ostream OS(Str); 803 OS << "implicit-def: " 804 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 805 806 OutStreamer->AddComment(OS.str()); 807 OutStreamer->AddBlankLine(); 808 } 809 810 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 811 std::string Str; 812 raw_string_ostream OS(Str); 813 OS << "kill:"; 814 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 815 const MachineOperand &Op = MI->getOperand(i); 816 assert(Op.isReg() && "KILL instruction must have only register operands"); 817 OS << ' ' << (Op.isDef() ? "def " : "killed ") 818 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 819 } 820 AP.OutStreamer->AddComment(OS.str()); 821 AP.OutStreamer->AddBlankLine(); 822 } 823 824 /// emitDebugValueComment - This method handles the target-independent form 825 /// of DBG_VALUE, returning true if it was able to do so. A false return 826 /// means the target will need to handle MI in EmitInstruction. 827 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 828 // This code handles only the 4-operand target-independent form. 829 if (MI->getNumOperands() != 4) 830 return false; 831 832 SmallString<128> Str; 833 raw_svector_ostream OS(Str); 834 OS << "DEBUG_VALUE: "; 835 836 const DILocalVariable *V = MI->getDebugVariable(); 837 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 838 StringRef Name = SP->getName(); 839 if (!Name.empty()) 840 OS << Name << ":"; 841 } 842 OS << V->getName(); 843 OS << " <- "; 844 845 // The second operand is only an offset if it's an immediate. 846 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 847 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 848 const DIExpression *Expr = MI->getDebugExpression(); 849 if (Expr->getNumElements()) { 850 OS << '['; 851 bool NeedSep = false; 852 for (auto Op : Expr->expr_ops()) { 853 if (NeedSep) 854 OS << ", "; 855 else 856 NeedSep = true; 857 OS << dwarf::OperationEncodingString(Op.getOp()); 858 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 859 OS << ' ' << Op.getArg(I); 860 } 861 OS << "] "; 862 } 863 864 // Register or immediate value. Register 0 means undef. 865 if (MI->getOperand(0).isFPImm()) { 866 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 867 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 868 OS << (double)APF.convertToFloat(); 869 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 870 OS << APF.convertToDouble(); 871 } else { 872 // There is no good way to print long double. Convert a copy to 873 // double. Ah well, it's only a comment. 874 bool ignored; 875 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 876 &ignored); 877 OS << "(long double) " << APF.convertToDouble(); 878 } 879 } else if (MI->getOperand(0).isImm()) { 880 OS << MI->getOperand(0).getImm(); 881 } else if (MI->getOperand(0).isCImm()) { 882 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 883 } else { 884 unsigned Reg; 885 if (MI->getOperand(0).isReg()) { 886 Reg = MI->getOperand(0).getReg(); 887 } else { 888 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 889 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 890 Offset += TFI->getFrameIndexReference(*AP.MF, 891 MI->getOperand(0).getIndex(), Reg); 892 MemLoc = true; 893 } 894 if (Reg == 0) { 895 // Suppress offset, it is not meaningful here. 896 OS << "undef"; 897 // NOTE: Want this comment at start of line, don't emit with AddComment. 898 AP.OutStreamer->emitRawComment(OS.str()); 899 return true; 900 } 901 if (MemLoc) 902 OS << '['; 903 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 904 } 905 906 if (MemLoc) 907 OS << '+' << Offset << ']'; 908 909 // NOTE: Want this comment at start of line, don't emit with AddComment. 910 AP.OutStreamer->emitRawComment(OS.str()); 911 return true; 912 } 913 914 /// This method handles the target-independent form of DBG_LABEL, returning 915 /// true if it was able to do so. A false return means the target will need 916 /// to handle MI in EmitInstruction. 917 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 918 if (MI->getNumOperands() != 1) 919 return false; 920 921 SmallString<128> Str; 922 raw_svector_ostream OS(Str); 923 OS << "DEBUG_LABEL: "; 924 925 const DILabel *V = MI->getDebugLabel(); 926 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 927 StringRef Name = SP->getName(); 928 if (!Name.empty()) 929 OS << Name << ":"; 930 } 931 OS << V->getName(); 932 933 // NOTE: Want this comment at start of line, don't emit with AddComment. 934 AP.OutStreamer->emitRawComment(OS.str()); 935 return true; 936 } 937 938 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 939 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 940 MF->getFunction().needsUnwindTableEntry()) 941 return CFI_M_EH; 942 943 if (MMI->hasDebugInfo()) 944 return CFI_M_Debug; 945 946 return CFI_M_None; 947 } 948 949 bool AsmPrinter::needsSEHMoves() { 950 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 951 } 952 953 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 954 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 955 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 956 ExceptionHandlingType != ExceptionHandling::ARM) 957 return; 958 959 if (needsCFIMoves() == CFI_M_None) 960 return; 961 962 // If there is no "real" instruction following this CFI instruction, skip 963 // emitting it; it would be beyond the end of the function's FDE range. 964 auto *MBB = MI.getParent(); 965 auto I = std::next(MI.getIterator()); 966 while (I != MBB->end() && I->isTransient()) 967 ++I; 968 if (I == MBB->instr_end() && 969 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 970 return; 971 972 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 973 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 974 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 975 emitCFIInstruction(CFI); 976 } 977 978 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 979 // The operands are the MCSymbol and the frame offset of the allocation. 980 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 981 int FrameOffset = MI.getOperand(1).getImm(); 982 983 // Emit a symbol assignment. 984 OutStreamer->EmitAssignment(FrameAllocSym, 985 MCConstantExpr::create(FrameOffset, OutContext)); 986 } 987 988 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 989 if (!MF.getTarget().Options.EmitStackSizeSection) 990 return; 991 992 MCSection *StackSizeSection = getObjFileLowering().getStackSizesSection(); 993 if (!StackSizeSection) 994 return; 995 996 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 997 // Don't emit functions with dynamic stack allocations. 998 if (FrameInfo.hasVarSizedObjects()) 999 return; 1000 1001 OutStreamer->PushSection(); 1002 OutStreamer->SwitchSection(StackSizeSection); 1003 1004 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1005 uint64_t StackSize = FrameInfo.getStackSize(); 1006 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1007 OutStreamer->EmitULEB128IntValue(StackSize); 1008 1009 OutStreamer->PopSection(); 1010 } 1011 1012 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1013 MachineModuleInfo *MMI) { 1014 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1015 return true; 1016 1017 // We might emit an EH table that uses function begin and end labels even if 1018 // we don't have any landingpads. 1019 if (!MF.getFunction().hasPersonalityFn()) 1020 return false; 1021 return !isNoOpWithoutInvoke( 1022 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1023 } 1024 1025 /// EmitFunctionBody - This method emits the body and trailer for a 1026 /// function. 1027 void AsmPrinter::EmitFunctionBody() { 1028 EmitFunctionHeader(); 1029 1030 // Emit target-specific gunk before the function body. 1031 EmitFunctionBodyStart(); 1032 1033 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1034 1035 if (isVerbose()) { 1036 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1037 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1038 if (!MDT) { 1039 OwnedMDT = make_unique<MachineDominatorTree>(); 1040 OwnedMDT->getBase().recalculate(*MF); 1041 MDT = OwnedMDT.get(); 1042 } 1043 1044 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1045 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1046 if (!MLI) { 1047 OwnedMLI = make_unique<MachineLoopInfo>(); 1048 OwnedMLI->getBase().analyze(MDT->getBase()); 1049 MLI = OwnedMLI.get(); 1050 } 1051 } 1052 1053 // Print out code for the function. 1054 bool HasAnyRealCode = false; 1055 int NumInstsInFunction = 0; 1056 for (auto &MBB : *MF) { 1057 // Print a label for the basic block. 1058 EmitBasicBlockStart(MBB); 1059 for (auto &MI : MBB) { 1060 // Print the assembly for the instruction. 1061 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1062 !MI.isDebugInstr()) { 1063 HasAnyRealCode = true; 1064 ++NumInstsInFunction; 1065 } 1066 1067 if (ShouldPrintDebugScopes) { 1068 for (const HandlerInfo &HI : Handlers) { 1069 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1070 HI.TimerGroupName, HI.TimerGroupDescription, 1071 TimePassesIsEnabled); 1072 HI.Handler->beginInstruction(&MI); 1073 } 1074 } 1075 1076 if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) { 1077 MachineInstr *MIP = const_cast<MachineInstr *>(&MI); 1078 MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment); 1079 } 1080 1081 switch (MI.getOpcode()) { 1082 case TargetOpcode::CFI_INSTRUCTION: 1083 emitCFIInstruction(MI); 1084 break; 1085 case TargetOpcode::LOCAL_ESCAPE: 1086 emitFrameAlloc(MI); 1087 break; 1088 case TargetOpcode::EH_LABEL: 1089 case TargetOpcode::GC_LABEL: 1090 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1091 break; 1092 case TargetOpcode::INLINEASM: 1093 EmitInlineAsm(&MI); 1094 break; 1095 case TargetOpcode::DBG_VALUE: 1096 if (isVerbose()) { 1097 if (!emitDebugValueComment(&MI, *this)) 1098 EmitInstruction(&MI); 1099 } 1100 break; 1101 case TargetOpcode::DBG_LABEL: 1102 if (isVerbose()) { 1103 if (!emitDebugLabelComment(&MI, *this)) 1104 EmitInstruction(&MI); 1105 } 1106 break; 1107 case TargetOpcode::IMPLICIT_DEF: 1108 if (isVerbose()) emitImplicitDef(&MI); 1109 break; 1110 case TargetOpcode::KILL: 1111 if (isVerbose()) emitKill(&MI, *this); 1112 break; 1113 default: 1114 EmitInstruction(&MI); 1115 break; 1116 } 1117 1118 if (ShouldPrintDebugScopes) { 1119 for (const HandlerInfo &HI : Handlers) { 1120 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1121 HI.TimerGroupName, HI.TimerGroupDescription, 1122 TimePassesIsEnabled); 1123 HI.Handler->endInstruction(); 1124 } 1125 } 1126 } 1127 1128 EmitBasicBlockEnd(MBB); 1129 } 1130 1131 EmittedInsts += NumInstsInFunction; 1132 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1133 MF->getFunction().getSubprogram(), 1134 &MF->front()); 1135 R << ore::NV("NumInstructions", NumInstsInFunction) 1136 << " instructions in function"; 1137 ORE->emit(R); 1138 1139 // If the function is empty and the object file uses .subsections_via_symbols, 1140 // then we need to emit *something* to the function body to prevent the 1141 // labels from collapsing together. Just emit a noop. 1142 // Similarly, don't emit empty functions on Windows either. It can lead to 1143 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1144 // after linking, causing the kernel not to load the binary: 1145 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1146 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1147 const Triple &TT = TM.getTargetTriple(); 1148 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1149 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1150 MCInst Noop; 1151 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1152 1153 // Targets can opt-out of emitting the noop here by leaving the opcode 1154 // unspecified. 1155 if (Noop.getOpcode()) { 1156 OutStreamer->AddComment("avoids zero-length function"); 1157 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1158 } 1159 } 1160 1161 const Function &F = MF->getFunction(); 1162 for (const auto &BB : F) { 1163 if (!BB.hasAddressTaken()) 1164 continue; 1165 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1166 if (Sym->isDefined()) 1167 continue; 1168 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1169 OutStreamer->EmitLabel(Sym); 1170 } 1171 1172 // Emit target-specific gunk after the function body. 1173 EmitFunctionBodyEnd(); 1174 1175 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1176 MAI->hasDotTypeDotSizeDirective()) { 1177 // Create a symbol for the end of function. 1178 CurrentFnEnd = createTempSymbol("func_end"); 1179 OutStreamer->EmitLabel(CurrentFnEnd); 1180 } 1181 1182 // If the target wants a .size directive for the size of the function, emit 1183 // it. 1184 if (MAI->hasDotTypeDotSizeDirective()) { 1185 // We can get the size as difference between the function label and the 1186 // temp label. 1187 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1188 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1189 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1190 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1191 } 1192 1193 for (const HandlerInfo &HI : Handlers) { 1194 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1195 HI.TimerGroupDescription, TimePassesIsEnabled); 1196 HI.Handler->markFunctionEnd(); 1197 } 1198 1199 // Print out jump tables referenced by the function. 1200 EmitJumpTableInfo(); 1201 1202 // Emit post-function debug and/or EH information. 1203 for (const HandlerInfo &HI : Handlers) { 1204 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1205 HI.TimerGroupDescription, TimePassesIsEnabled); 1206 HI.Handler->endFunction(MF); 1207 } 1208 1209 // Emit section containing stack size metadata. 1210 emitStackSizeSection(*MF); 1211 1212 if (isVerbose()) 1213 OutStreamer->GetCommentOS() << "-- End function\n"; 1214 1215 OutStreamer->AddBlankLine(); 1216 } 1217 1218 /// Compute the number of Global Variables that uses a Constant. 1219 static unsigned getNumGlobalVariableUses(const Constant *C) { 1220 if (!C) 1221 return 0; 1222 1223 if (isa<GlobalVariable>(C)) 1224 return 1; 1225 1226 unsigned NumUses = 0; 1227 for (auto *CU : C->users()) 1228 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1229 1230 return NumUses; 1231 } 1232 1233 /// Only consider global GOT equivalents if at least one user is a 1234 /// cstexpr inside an initializer of another global variables. Also, don't 1235 /// handle cstexpr inside instructions. During global variable emission, 1236 /// candidates are skipped and are emitted later in case at least one cstexpr 1237 /// isn't replaced by a PC relative GOT entry access. 1238 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1239 unsigned &NumGOTEquivUsers) { 1240 // Global GOT equivalents are unnamed private globals with a constant 1241 // pointer initializer to another global symbol. They must point to a 1242 // GlobalVariable or Function, i.e., as GlobalValue. 1243 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1244 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1245 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1246 return false; 1247 1248 // To be a got equivalent, at least one of its users need to be a constant 1249 // expression used by another global variable. 1250 for (auto *U : GV->users()) 1251 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1252 1253 return NumGOTEquivUsers > 0; 1254 } 1255 1256 /// Unnamed constant global variables solely contaning a pointer to 1257 /// another globals variable is equivalent to a GOT table entry; it contains the 1258 /// the address of another symbol. Optimize it and replace accesses to these 1259 /// "GOT equivalents" by using the GOT entry for the final global instead. 1260 /// Compute GOT equivalent candidates among all global variables to avoid 1261 /// emitting them if possible later on, after it use is replaced by a GOT entry 1262 /// access. 1263 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1264 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1265 return; 1266 1267 for (const auto &G : M.globals()) { 1268 unsigned NumGOTEquivUsers = 0; 1269 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1270 continue; 1271 1272 const MCSymbol *GOTEquivSym = getSymbol(&G); 1273 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1274 } 1275 } 1276 1277 /// Constant expressions using GOT equivalent globals may not be eligible 1278 /// for PC relative GOT entry conversion, in such cases we need to emit such 1279 /// globals we previously omitted in EmitGlobalVariable. 1280 void AsmPrinter::emitGlobalGOTEquivs() { 1281 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1282 return; 1283 1284 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1285 for (auto &I : GlobalGOTEquivs) { 1286 const GlobalVariable *GV = I.second.first; 1287 unsigned Cnt = I.second.second; 1288 if (Cnt) 1289 FailedCandidates.push_back(GV); 1290 } 1291 GlobalGOTEquivs.clear(); 1292 1293 for (auto *GV : FailedCandidates) 1294 EmitGlobalVariable(GV); 1295 } 1296 1297 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1298 const GlobalIndirectSymbol& GIS) { 1299 MCSymbol *Name = getSymbol(&GIS); 1300 1301 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1302 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1303 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1304 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1305 else 1306 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1307 1308 // Set the symbol type to function if the alias has a function type. 1309 // This affects codegen when the aliasee is not a function. 1310 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1311 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1312 if (isa<GlobalIFunc>(GIS)) 1313 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1314 } 1315 1316 EmitVisibility(Name, GIS.getVisibility()); 1317 1318 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1319 1320 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1321 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1322 1323 // Emit the directives as assignments aka .set: 1324 OutStreamer->EmitAssignment(Name, Expr); 1325 1326 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1327 // If the aliasee does not correspond to a symbol in the output, i.e. the 1328 // alias is not of an object or the aliased object is private, then set the 1329 // size of the alias symbol from the type of the alias. We don't do this in 1330 // other situations as the alias and aliasee having differing types but same 1331 // size may be intentional. 1332 const GlobalObject *BaseObject = GA->getBaseObject(); 1333 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1334 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1335 const DataLayout &DL = M.getDataLayout(); 1336 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1337 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1338 } 1339 } 1340 } 1341 1342 bool AsmPrinter::doFinalization(Module &M) { 1343 // Set the MachineFunction to nullptr so that we can catch attempted 1344 // accesses to MF specific features at the module level and so that 1345 // we can conditionalize accesses based on whether or not it is nullptr. 1346 MF = nullptr; 1347 1348 // Gather all GOT equivalent globals in the module. We really need two 1349 // passes over the globals: one to compute and another to avoid its emission 1350 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1351 // where the got equivalent shows up before its use. 1352 computeGlobalGOTEquivs(M); 1353 1354 // Emit global variables. 1355 for (const auto &G : M.globals()) 1356 EmitGlobalVariable(&G); 1357 1358 // Emit remaining GOT equivalent globals. 1359 emitGlobalGOTEquivs(); 1360 1361 // Emit visibility info for declarations 1362 for (const Function &F : M) { 1363 if (!F.isDeclarationForLinker()) 1364 continue; 1365 GlobalValue::VisibilityTypes V = F.getVisibility(); 1366 if (V == GlobalValue::DefaultVisibility) 1367 continue; 1368 1369 MCSymbol *Name = getSymbol(&F); 1370 EmitVisibility(Name, V, false); 1371 } 1372 1373 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1374 1375 TLOF.emitModuleMetadata(*OutStreamer, M); 1376 1377 if (TM.getTargetTriple().isOSBinFormatELF()) { 1378 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1379 1380 // Output stubs for external and common global variables. 1381 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1382 if (!Stubs.empty()) { 1383 OutStreamer->SwitchSection(TLOF.getDataSection()); 1384 const DataLayout &DL = M.getDataLayout(); 1385 1386 EmitAlignment(Log2_32(DL.getPointerSize())); 1387 for (const auto &Stub : Stubs) { 1388 OutStreamer->EmitLabel(Stub.first); 1389 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1390 DL.getPointerSize()); 1391 } 1392 } 1393 } 1394 1395 // Finalize debug and EH information. 1396 for (const HandlerInfo &HI : Handlers) { 1397 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1398 HI.TimerGroupDescription, TimePassesIsEnabled); 1399 HI.Handler->endModule(); 1400 delete HI.Handler; 1401 } 1402 Handlers.clear(); 1403 DD = nullptr; 1404 1405 // If the target wants to know about weak references, print them all. 1406 if (MAI->getWeakRefDirective()) { 1407 // FIXME: This is not lazy, it would be nice to only print weak references 1408 // to stuff that is actually used. Note that doing so would require targets 1409 // to notice uses in operands (due to constant exprs etc). This should 1410 // happen with the MC stuff eventually. 1411 1412 // Print out module-level global objects here. 1413 for (const auto &GO : M.global_objects()) { 1414 if (!GO.hasExternalWeakLinkage()) 1415 continue; 1416 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1417 } 1418 } 1419 1420 OutStreamer->AddBlankLine(); 1421 1422 // Print aliases in topological order, that is, for each alias a = b, 1423 // b must be printed before a. 1424 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1425 // such an order to generate correct TOC information. 1426 SmallVector<const GlobalAlias *, 16> AliasStack; 1427 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1428 for (const auto &Alias : M.aliases()) { 1429 for (const GlobalAlias *Cur = &Alias; Cur; 1430 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1431 if (!AliasVisited.insert(Cur).second) 1432 break; 1433 AliasStack.push_back(Cur); 1434 } 1435 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1436 emitGlobalIndirectSymbol(M, *AncestorAlias); 1437 AliasStack.clear(); 1438 } 1439 for (const auto &IFunc : M.ifuncs()) 1440 emitGlobalIndirectSymbol(M, IFunc); 1441 1442 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1443 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1444 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1445 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1446 MP->finishAssembly(M, *MI, *this); 1447 1448 // Emit llvm.ident metadata in an '.ident' directive. 1449 EmitModuleIdents(M); 1450 1451 // Emit __morestack address if needed for indirect calls. 1452 if (MMI->usesMorestackAddr()) { 1453 unsigned Align = 1; 1454 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1455 getDataLayout(), SectionKind::getReadOnly(), 1456 /*C=*/nullptr, Align); 1457 OutStreamer->SwitchSection(ReadOnlySection); 1458 1459 MCSymbol *AddrSymbol = 1460 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1461 OutStreamer->EmitLabel(AddrSymbol); 1462 1463 unsigned PtrSize = MAI->getCodePointerSize(); 1464 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1465 PtrSize); 1466 } 1467 1468 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1469 // split-stack is used. 1470 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1471 OutStreamer->SwitchSection( 1472 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1473 if (MMI->hasNosplitStack()) 1474 OutStreamer->SwitchSection( 1475 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1476 } 1477 1478 // If we don't have any trampolines, then we don't require stack memory 1479 // to be executable. Some targets have a directive to declare this. 1480 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1481 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1482 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1483 OutStreamer->SwitchSection(S); 1484 1485 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1486 // Emit /EXPORT: flags for each exported global as necessary. 1487 const auto &TLOF = getObjFileLowering(); 1488 std::string Flags; 1489 1490 for (const GlobalValue &GV : M.global_values()) { 1491 raw_string_ostream OS(Flags); 1492 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1493 OS.flush(); 1494 if (!Flags.empty()) { 1495 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1496 OutStreamer->EmitBytes(Flags); 1497 } 1498 Flags.clear(); 1499 } 1500 1501 // Emit /INCLUDE: flags for each used global as necessary. 1502 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1503 assert(LU->hasInitializer() && 1504 "expected llvm.used to have an initializer"); 1505 assert(isa<ArrayType>(LU->getValueType()) && 1506 "expected llvm.used to be an array type"); 1507 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1508 for (const Value *Op : A->operands()) { 1509 const auto *GV = 1510 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1511 // Global symbols with internal or private linkage are not visible to 1512 // the linker, and thus would cause an error when the linker tried to 1513 // preserve the symbol due to the `/include:` directive. 1514 if (GV->hasLocalLinkage()) 1515 continue; 1516 1517 raw_string_ostream OS(Flags); 1518 TLOF.emitLinkerFlagsForUsed(OS, GV); 1519 OS.flush(); 1520 1521 if (!Flags.empty()) { 1522 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1523 OutStreamer->EmitBytes(Flags); 1524 } 1525 Flags.clear(); 1526 } 1527 } 1528 } 1529 } 1530 1531 // Allow the target to emit any magic that it wants at the end of the file, 1532 // after everything else has gone out. 1533 EmitEndOfAsmFile(M); 1534 1535 MMI = nullptr; 1536 1537 OutStreamer->Finish(); 1538 OutStreamer->reset(); 1539 OwnedMLI.reset(); 1540 OwnedMDT.reset(); 1541 1542 return false; 1543 } 1544 1545 MCSymbol *AsmPrinter::getCurExceptionSym() { 1546 if (!CurExceptionSym) 1547 CurExceptionSym = createTempSymbol("exception"); 1548 return CurExceptionSym; 1549 } 1550 1551 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1552 this->MF = &MF; 1553 // Get the function symbol. 1554 CurrentFnSym = getSymbol(&MF.getFunction()); 1555 CurrentFnSymForSize = CurrentFnSym; 1556 CurrentFnBegin = nullptr; 1557 CurExceptionSym = nullptr; 1558 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1559 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1560 MF.getTarget().Options.EmitStackSizeSection) { 1561 CurrentFnBegin = createTempSymbol("func_begin"); 1562 if (NeedsLocalForSize) 1563 CurrentFnSymForSize = CurrentFnBegin; 1564 } 1565 1566 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1567 1568 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1569 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1570 ? PrintSchedule 1571 : STI.supportPrintSchedInfo(); 1572 } 1573 1574 namespace { 1575 1576 // Keep track the alignment, constpool entries per Section. 1577 struct SectionCPs { 1578 MCSection *S; 1579 unsigned Alignment; 1580 SmallVector<unsigned, 4> CPEs; 1581 1582 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1583 }; 1584 1585 } // end anonymous namespace 1586 1587 /// EmitConstantPool - Print to the current output stream assembly 1588 /// representations of the constants in the constant pool MCP. This is 1589 /// used to print out constants which have been "spilled to memory" by 1590 /// the code generator. 1591 void AsmPrinter::EmitConstantPool() { 1592 const MachineConstantPool *MCP = MF->getConstantPool(); 1593 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1594 if (CP.empty()) return; 1595 1596 // Calculate sections for constant pool entries. We collect entries to go into 1597 // the same section together to reduce amount of section switch statements. 1598 SmallVector<SectionCPs, 4> CPSections; 1599 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1600 const MachineConstantPoolEntry &CPE = CP[i]; 1601 unsigned Align = CPE.getAlignment(); 1602 1603 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1604 1605 const Constant *C = nullptr; 1606 if (!CPE.isMachineConstantPoolEntry()) 1607 C = CPE.Val.ConstVal; 1608 1609 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1610 Kind, C, Align); 1611 1612 // The number of sections are small, just do a linear search from the 1613 // last section to the first. 1614 bool Found = false; 1615 unsigned SecIdx = CPSections.size(); 1616 while (SecIdx != 0) { 1617 if (CPSections[--SecIdx].S == S) { 1618 Found = true; 1619 break; 1620 } 1621 } 1622 if (!Found) { 1623 SecIdx = CPSections.size(); 1624 CPSections.push_back(SectionCPs(S, Align)); 1625 } 1626 1627 if (Align > CPSections[SecIdx].Alignment) 1628 CPSections[SecIdx].Alignment = Align; 1629 CPSections[SecIdx].CPEs.push_back(i); 1630 } 1631 1632 // Now print stuff into the calculated sections. 1633 const MCSection *CurSection = nullptr; 1634 unsigned Offset = 0; 1635 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1636 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1637 unsigned CPI = CPSections[i].CPEs[j]; 1638 MCSymbol *Sym = GetCPISymbol(CPI); 1639 if (!Sym->isUndefined()) 1640 continue; 1641 1642 if (CurSection != CPSections[i].S) { 1643 OutStreamer->SwitchSection(CPSections[i].S); 1644 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1645 CurSection = CPSections[i].S; 1646 Offset = 0; 1647 } 1648 1649 MachineConstantPoolEntry CPE = CP[CPI]; 1650 1651 // Emit inter-object padding for alignment. 1652 unsigned AlignMask = CPE.getAlignment() - 1; 1653 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1654 OutStreamer->EmitZeros(NewOffset - Offset); 1655 1656 Type *Ty = CPE.getType(); 1657 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1658 1659 OutStreamer->EmitLabel(Sym); 1660 if (CPE.isMachineConstantPoolEntry()) 1661 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1662 else 1663 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1664 } 1665 } 1666 } 1667 1668 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1669 /// by the current function to the current output stream. 1670 void AsmPrinter::EmitJumpTableInfo() { 1671 const DataLayout &DL = MF->getDataLayout(); 1672 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1673 if (!MJTI) return; 1674 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1675 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1676 if (JT.empty()) return; 1677 1678 // Pick the directive to use to print the jump table entries, and switch to 1679 // the appropriate section. 1680 const Function &F = MF->getFunction(); 1681 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1682 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1683 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1684 F); 1685 if (JTInDiffSection) { 1686 // Drop it in the readonly section. 1687 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1688 OutStreamer->SwitchSection(ReadOnlySection); 1689 } 1690 1691 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1692 1693 // Jump tables in code sections are marked with a data_region directive 1694 // where that's supported. 1695 if (!JTInDiffSection) 1696 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1697 1698 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1699 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1700 1701 // If this jump table was deleted, ignore it. 1702 if (JTBBs.empty()) continue; 1703 1704 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1705 /// emit a .set directive for each unique entry. 1706 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1707 MAI->doesSetDirectiveSuppressReloc()) { 1708 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1709 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1710 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1711 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1712 const MachineBasicBlock *MBB = JTBBs[ii]; 1713 if (!EmittedSets.insert(MBB).second) 1714 continue; 1715 1716 // .set LJTSet, LBB32-base 1717 const MCExpr *LHS = 1718 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1719 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1720 MCBinaryExpr::createSub(LHS, Base, 1721 OutContext)); 1722 } 1723 } 1724 1725 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1726 // before each jump table. The first label is never referenced, but tells 1727 // the assembler and linker the extents of the jump table object. The 1728 // second label is actually referenced by the code. 1729 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1730 // FIXME: This doesn't have to have any specific name, just any randomly 1731 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1732 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1733 1734 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1735 1736 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1737 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1738 } 1739 if (!JTInDiffSection) 1740 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1741 } 1742 1743 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1744 /// current stream. 1745 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1746 const MachineBasicBlock *MBB, 1747 unsigned UID) const { 1748 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1749 const MCExpr *Value = nullptr; 1750 switch (MJTI->getEntryKind()) { 1751 case MachineJumpTableInfo::EK_Inline: 1752 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1753 case MachineJumpTableInfo::EK_Custom32: 1754 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1755 MJTI, MBB, UID, OutContext); 1756 break; 1757 case MachineJumpTableInfo::EK_BlockAddress: 1758 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1759 // .word LBB123 1760 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1761 break; 1762 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1763 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1764 // with a relocation as gp-relative, e.g.: 1765 // .gprel32 LBB123 1766 MCSymbol *MBBSym = MBB->getSymbol(); 1767 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1768 return; 1769 } 1770 1771 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1772 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1773 // with a relocation as gp-relative, e.g.: 1774 // .gpdword LBB123 1775 MCSymbol *MBBSym = MBB->getSymbol(); 1776 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1777 return; 1778 } 1779 1780 case MachineJumpTableInfo::EK_LabelDifference32: { 1781 // Each entry is the address of the block minus the address of the jump 1782 // table. This is used for PIC jump tables where gprel32 is not supported. 1783 // e.g.: 1784 // .word LBB123 - LJTI1_2 1785 // If the .set directive avoids relocations, this is emitted as: 1786 // .set L4_5_set_123, LBB123 - LJTI1_2 1787 // .word L4_5_set_123 1788 if (MAI->doesSetDirectiveSuppressReloc()) { 1789 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1790 OutContext); 1791 break; 1792 } 1793 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1794 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1795 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1796 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1797 break; 1798 } 1799 } 1800 1801 assert(Value && "Unknown entry kind!"); 1802 1803 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1804 OutStreamer->EmitValue(Value, EntrySize); 1805 } 1806 1807 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1808 /// special global used by LLVM. If so, emit it and return true, otherwise 1809 /// do nothing and return false. 1810 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1811 if (GV->getName() == "llvm.used") { 1812 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1813 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1814 return true; 1815 } 1816 1817 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1818 if (GV->getSection() == "llvm.metadata" || 1819 GV->hasAvailableExternallyLinkage()) 1820 return true; 1821 1822 if (!GV->hasAppendingLinkage()) return false; 1823 1824 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1825 1826 if (GV->getName() == "llvm.global_ctors") { 1827 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1828 /* isCtor */ true); 1829 1830 return true; 1831 } 1832 1833 if (GV->getName() == "llvm.global_dtors") { 1834 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1835 /* isCtor */ false); 1836 1837 return true; 1838 } 1839 1840 report_fatal_error("unknown special variable"); 1841 } 1842 1843 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1844 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1845 /// is true, as being used with this directive. 1846 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1847 // Should be an array of 'i8*'. 1848 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1849 const GlobalValue *GV = 1850 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1851 if (GV) 1852 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1853 } 1854 } 1855 1856 namespace { 1857 1858 struct Structor { 1859 int Priority = 0; 1860 Constant *Func = nullptr; 1861 GlobalValue *ComdatKey = nullptr; 1862 1863 Structor() = default; 1864 }; 1865 1866 } // end anonymous namespace 1867 1868 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1869 /// priority. 1870 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1871 bool isCtor) { 1872 // Should be an array of '{ int, void ()* }' structs. The first value is the 1873 // init priority. 1874 if (!isa<ConstantArray>(List)) return; 1875 1876 // Sanity check the structors list. 1877 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1878 if (!InitList) return; // Not an array! 1879 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1880 // FIXME: Only allow the 3-field form in LLVM 4.0. 1881 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1882 return; // Not an array of two or three elements! 1883 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1884 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1885 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1886 return; // Not (int, ptr, ptr). 1887 1888 // Gather the structors in a form that's convenient for sorting by priority. 1889 SmallVector<Structor, 8> Structors; 1890 for (Value *O : InitList->operands()) { 1891 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1892 if (!CS) continue; // Malformed. 1893 if (CS->getOperand(1)->isNullValue()) 1894 break; // Found a null terminator, skip the rest. 1895 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1896 if (!Priority) continue; // Malformed. 1897 Structors.push_back(Structor()); 1898 Structor &S = Structors.back(); 1899 S.Priority = Priority->getLimitedValue(65535); 1900 S.Func = CS->getOperand(1); 1901 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1902 S.ComdatKey = 1903 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1904 } 1905 1906 // Emit the function pointers in the target-specific order 1907 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1908 std::stable_sort(Structors.begin(), Structors.end(), 1909 [](const Structor &L, 1910 const Structor &R) { return L.Priority < R.Priority; }); 1911 for (Structor &S : Structors) { 1912 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1913 const MCSymbol *KeySym = nullptr; 1914 if (GlobalValue *GV = S.ComdatKey) { 1915 if (GV->isDeclarationForLinker()) 1916 // If the associated variable is not defined in this module 1917 // (it might be available_externally, or have been an 1918 // available_externally definition that was dropped by the 1919 // EliminateAvailableExternally pass), some other TU 1920 // will provide its dynamic initializer. 1921 continue; 1922 1923 KeySym = getSymbol(GV); 1924 } 1925 MCSection *OutputSection = 1926 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1927 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1928 OutStreamer->SwitchSection(OutputSection); 1929 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1930 EmitAlignment(Align); 1931 EmitXXStructor(DL, S.Func); 1932 } 1933 } 1934 1935 void AsmPrinter::EmitModuleIdents(Module &M) { 1936 if (!MAI->hasIdentDirective()) 1937 return; 1938 1939 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1940 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1941 const MDNode *N = NMD->getOperand(i); 1942 assert(N->getNumOperands() == 1 && 1943 "llvm.ident metadata entry can have only one operand"); 1944 const MDString *S = cast<MDString>(N->getOperand(0)); 1945 OutStreamer->EmitIdent(S->getString()); 1946 } 1947 } 1948 } 1949 1950 //===--------------------------------------------------------------------===// 1951 // Emission and print routines 1952 // 1953 1954 /// Emit a byte directive and value. 1955 /// 1956 void AsmPrinter::emitInt8(int Value) const { 1957 OutStreamer->EmitIntValue(Value, 1); 1958 } 1959 1960 /// Emit a short directive and value. 1961 void AsmPrinter::emitInt16(int Value) const { 1962 OutStreamer->EmitIntValue(Value, 2); 1963 } 1964 1965 /// Emit a long directive and value. 1966 void AsmPrinter::emitInt32(int Value) const { 1967 OutStreamer->EmitIntValue(Value, 4); 1968 } 1969 1970 /// Emit a long long directive and value. 1971 void AsmPrinter::emitInt64(uint64_t Value) const { 1972 OutStreamer->EmitIntValue(Value, 8); 1973 } 1974 1975 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1976 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1977 /// .set if it avoids relocations. 1978 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1979 unsigned Size) const { 1980 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1981 } 1982 1983 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1984 /// where the size in bytes of the directive is specified by Size and Label 1985 /// specifies the label. This implicitly uses .set if it is available. 1986 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1987 unsigned Size, 1988 bool IsSectionRelative) const { 1989 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1990 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1991 if (Size > 4) 1992 OutStreamer->EmitZeros(Size - 4); 1993 return; 1994 } 1995 1996 // Emit Label+Offset (or just Label if Offset is zero) 1997 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1998 if (Offset) 1999 Expr = MCBinaryExpr::createAdd( 2000 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2001 2002 OutStreamer->EmitValue(Expr, Size); 2003 } 2004 2005 //===----------------------------------------------------------------------===// 2006 2007 // EmitAlignment - Emit an alignment directive to the specified power of 2008 // two boundary. For example, if you pass in 3 here, you will get an 8 2009 // byte alignment. If a global value is specified, and if that global has 2010 // an explicit alignment requested, it will override the alignment request 2011 // if required for correctness. 2012 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2013 if (GV) 2014 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2015 2016 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2017 2018 assert(NumBits < 2019 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2020 "undefined behavior"); 2021 if (getCurrentSection()->getKind().isText()) 2022 OutStreamer->EmitCodeAlignment(1u << NumBits); 2023 else 2024 OutStreamer->EmitValueToAlignment(1u << NumBits); 2025 } 2026 2027 //===----------------------------------------------------------------------===// 2028 // Constant emission. 2029 //===----------------------------------------------------------------------===// 2030 2031 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2032 MCContext &Ctx = OutContext; 2033 2034 if (CV->isNullValue() || isa<UndefValue>(CV)) 2035 return MCConstantExpr::create(0, Ctx); 2036 2037 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2038 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2039 2040 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2041 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2042 2043 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2044 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2045 2046 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2047 if (!CE) { 2048 llvm_unreachable("Unknown constant value to lower!"); 2049 } 2050 2051 switch (CE->getOpcode()) { 2052 default: 2053 // If the code isn't optimized, there may be outstanding folding 2054 // opportunities. Attempt to fold the expression using DataLayout as a 2055 // last resort before giving up. 2056 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2057 if (C != CE) 2058 return lowerConstant(C); 2059 2060 // Otherwise report the problem to the user. 2061 { 2062 std::string S; 2063 raw_string_ostream OS(S); 2064 OS << "Unsupported expression in static initializer: "; 2065 CE->printAsOperand(OS, /*PrintType=*/false, 2066 !MF ? nullptr : MF->getFunction().getParent()); 2067 report_fatal_error(OS.str()); 2068 } 2069 case Instruction::GetElementPtr: { 2070 // Generate a symbolic expression for the byte address 2071 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2072 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2073 2074 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2075 if (!OffsetAI) 2076 return Base; 2077 2078 int64_t Offset = OffsetAI.getSExtValue(); 2079 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2080 Ctx); 2081 } 2082 2083 case Instruction::Trunc: 2084 // We emit the value and depend on the assembler to truncate the generated 2085 // expression properly. This is important for differences between 2086 // blockaddress labels. Since the two labels are in the same function, it 2087 // is reasonable to treat their delta as a 32-bit value. 2088 LLVM_FALLTHROUGH; 2089 case Instruction::BitCast: 2090 return lowerConstant(CE->getOperand(0)); 2091 2092 case Instruction::IntToPtr: { 2093 const DataLayout &DL = getDataLayout(); 2094 2095 // Handle casts to pointers by changing them into casts to the appropriate 2096 // integer type. This promotes constant folding and simplifies this code. 2097 Constant *Op = CE->getOperand(0); 2098 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2099 false/*ZExt*/); 2100 return lowerConstant(Op); 2101 } 2102 2103 case Instruction::PtrToInt: { 2104 const DataLayout &DL = getDataLayout(); 2105 2106 // Support only foldable casts to/from pointers that can be eliminated by 2107 // changing the pointer to the appropriately sized integer type. 2108 Constant *Op = CE->getOperand(0); 2109 Type *Ty = CE->getType(); 2110 2111 const MCExpr *OpExpr = lowerConstant(Op); 2112 2113 // We can emit the pointer value into this slot if the slot is an 2114 // integer slot equal to the size of the pointer. 2115 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2116 return OpExpr; 2117 2118 // Otherwise the pointer is smaller than the resultant integer, mask off 2119 // the high bits so we are sure to get a proper truncation if the input is 2120 // a constant expr. 2121 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2122 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2123 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2124 } 2125 2126 case Instruction::Sub: { 2127 GlobalValue *LHSGV; 2128 APInt LHSOffset; 2129 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2130 getDataLayout())) { 2131 GlobalValue *RHSGV; 2132 APInt RHSOffset; 2133 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2134 getDataLayout())) { 2135 const MCExpr *RelocExpr = 2136 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2137 if (!RelocExpr) 2138 RelocExpr = MCBinaryExpr::createSub( 2139 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2140 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2141 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2142 if (Addend != 0) 2143 RelocExpr = MCBinaryExpr::createAdd( 2144 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2145 return RelocExpr; 2146 } 2147 } 2148 } 2149 // else fallthrough 2150 LLVM_FALLTHROUGH; 2151 2152 // The MC library also has a right-shift operator, but it isn't consistently 2153 // signed or unsigned between different targets. 2154 case Instruction::Add: 2155 case Instruction::Mul: 2156 case Instruction::SDiv: 2157 case Instruction::SRem: 2158 case Instruction::Shl: 2159 case Instruction::And: 2160 case Instruction::Or: 2161 case Instruction::Xor: { 2162 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2163 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2164 switch (CE->getOpcode()) { 2165 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2166 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2167 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2168 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2169 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2170 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2171 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2172 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2173 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2174 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2175 } 2176 } 2177 } 2178 } 2179 2180 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2181 AsmPrinter &AP, 2182 const Constant *BaseCV = nullptr, 2183 uint64_t Offset = 0); 2184 2185 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2186 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2187 2188 /// isRepeatedByteSequence - Determine whether the given value is 2189 /// composed of a repeated sequence of identical bytes and return the 2190 /// byte value. If it is not a repeated sequence, return -1. 2191 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2192 StringRef Data = V->getRawDataValues(); 2193 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2194 char C = Data[0]; 2195 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2196 if (Data[i] != C) return -1; 2197 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2198 } 2199 2200 /// isRepeatedByteSequence - Determine whether the given value is 2201 /// composed of a repeated sequence of identical bytes and return the 2202 /// byte value. If it is not a repeated sequence, return -1. 2203 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2204 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2205 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2206 assert(Size % 8 == 0); 2207 2208 // Extend the element to take zero padding into account. 2209 APInt Value = CI->getValue().zextOrSelf(Size); 2210 if (!Value.isSplat(8)) 2211 return -1; 2212 2213 return Value.zextOrTrunc(8).getZExtValue(); 2214 } 2215 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2216 // Make sure all array elements are sequences of the same repeated 2217 // byte. 2218 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2219 Constant *Op0 = CA->getOperand(0); 2220 int Byte = isRepeatedByteSequence(Op0, DL); 2221 if (Byte == -1) 2222 return -1; 2223 2224 // All array elements must be equal. 2225 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2226 if (CA->getOperand(i) != Op0) 2227 return -1; 2228 return Byte; 2229 } 2230 2231 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2232 return isRepeatedByteSequence(CDS); 2233 2234 return -1; 2235 } 2236 2237 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2238 const ConstantDataSequential *CDS, 2239 AsmPrinter &AP) { 2240 // See if we can aggregate this into a .fill, if so, emit it as such. 2241 int Value = isRepeatedByteSequence(CDS, DL); 2242 if (Value != -1) { 2243 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2244 // Don't emit a 1-byte object as a .fill. 2245 if (Bytes > 1) 2246 return AP.OutStreamer->emitFill(Bytes, Value); 2247 } 2248 2249 // If this can be emitted with .ascii/.asciz, emit it as such. 2250 if (CDS->isString()) 2251 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2252 2253 // Otherwise, emit the values in successive locations. 2254 unsigned ElementByteSize = CDS->getElementByteSize(); 2255 if (isa<IntegerType>(CDS->getElementType())) { 2256 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2257 if (AP.isVerbose()) 2258 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2259 CDS->getElementAsInteger(i)); 2260 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2261 ElementByteSize); 2262 } 2263 } else { 2264 Type *ET = CDS->getElementType(); 2265 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2266 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2267 } 2268 2269 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2270 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2271 CDS->getNumElements(); 2272 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2273 if (unsigned Padding = Size - EmittedSize) 2274 AP.OutStreamer->EmitZeros(Padding); 2275 } 2276 2277 static void emitGlobalConstantArray(const DataLayout &DL, 2278 const ConstantArray *CA, AsmPrinter &AP, 2279 const Constant *BaseCV, uint64_t Offset) { 2280 // See if we can aggregate some values. Make sure it can be 2281 // represented as a series of bytes of the constant value. 2282 int Value = isRepeatedByteSequence(CA, DL); 2283 2284 if (Value != -1) { 2285 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2286 AP.OutStreamer->emitFill(Bytes, Value); 2287 } 2288 else { 2289 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2290 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2291 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2292 } 2293 } 2294 } 2295 2296 static void emitGlobalConstantVector(const DataLayout &DL, 2297 const ConstantVector *CV, AsmPrinter &AP) { 2298 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2299 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2300 2301 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2302 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2303 CV->getType()->getNumElements(); 2304 if (unsigned Padding = Size - EmittedSize) 2305 AP.OutStreamer->EmitZeros(Padding); 2306 } 2307 2308 static void emitGlobalConstantStruct(const DataLayout &DL, 2309 const ConstantStruct *CS, AsmPrinter &AP, 2310 const Constant *BaseCV, uint64_t Offset) { 2311 // Print the fields in successive locations. Pad to align if needed! 2312 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2313 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2314 uint64_t SizeSoFar = 0; 2315 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2316 const Constant *Field = CS->getOperand(i); 2317 2318 // Print the actual field value. 2319 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2320 2321 // Check if padding is needed and insert one or more 0s. 2322 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2323 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2324 - Layout->getElementOffset(i)) - FieldSize; 2325 SizeSoFar += FieldSize + PadSize; 2326 2327 // Insert padding - this may include padding to increase the size of the 2328 // current field up to the ABI size (if the struct is not packed) as well 2329 // as padding to ensure that the next field starts at the right offset. 2330 AP.OutStreamer->EmitZeros(PadSize); 2331 } 2332 assert(SizeSoFar == Layout->getSizeInBytes() && 2333 "Layout of constant struct may be incorrect!"); 2334 } 2335 2336 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2337 APInt API = APF.bitcastToAPInt(); 2338 2339 // First print a comment with what we think the original floating-point value 2340 // should have been. 2341 if (AP.isVerbose()) { 2342 SmallString<8> StrVal; 2343 APF.toString(StrVal); 2344 2345 if (ET) 2346 ET->print(AP.OutStreamer->GetCommentOS()); 2347 else 2348 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2349 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2350 } 2351 2352 // Now iterate through the APInt chunks, emitting them in endian-correct 2353 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2354 // floats). 2355 unsigned NumBytes = API.getBitWidth() / 8; 2356 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2357 const uint64_t *p = API.getRawData(); 2358 2359 // PPC's long double has odd notions of endianness compared to how LLVM 2360 // handles it: p[0] goes first for *big* endian on PPC. 2361 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2362 int Chunk = API.getNumWords() - 1; 2363 2364 if (TrailingBytes) 2365 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2366 2367 for (; Chunk >= 0; --Chunk) 2368 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2369 } else { 2370 unsigned Chunk; 2371 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2372 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2373 2374 if (TrailingBytes) 2375 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2376 } 2377 2378 // Emit the tail padding for the long double. 2379 const DataLayout &DL = AP.getDataLayout(); 2380 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2381 } 2382 2383 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2384 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2385 } 2386 2387 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2388 const DataLayout &DL = AP.getDataLayout(); 2389 unsigned BitWidth = CI->getBitWidth(); 2390 2391 // Copy the value as we may massage the layout for constants whose bit width 2392 // is not a multiple of 64-bits. 2393 APInt Realigned(CI->getValue()); 2394 uint64_t ExtraBits = 0; 2395 unsigned ExtraBitsSize = BitWidth & 63; 2396 2397 if (ExtraBitsSize) { 2398 // The bit width of the data is not a multiple of 64-bits. 2399 // The extra bits are expected to be at the end of the chunk of the memory. 2400 // Little endian: 2401 // * Nothing to be done, just record the extra bits to emit. 2402 // Big endian: 2403 // * Record the extra bits to emit. 2404 // * Realign the raw data to emit the chunks of 64-bits. 2405 if (DL.isBigEndian()) { 2406 // Basically the structure of the raw data is a chunk of 64-bits cells: 2407 // 0 1 BitWidth / 64 2408 // [chunk1][chunk2] ... [chunkN]. 2409 // The most significant chunk is chunkN and it should be emitted first. 2410 // However, due to the alignment issue chunkN contains useless bits. 2411 // Realign the chunks so that they contain only useless information: 2412 // ExtraBits 0 1 (BitWidth / 64) - 1 2413 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2414 ExtraBits = Realigned.getRawData()[0] & 2415 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2416 Realigned.lshrInPlace(ExtraBitsSize); 2417 } else 2418 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2419 } 2420 2421 // We don't expect assemblers to support integer data directives 2422 // for more than 64 bits, so we emit the data in at most 64-bit 2423 // quantities at a time. 2424 const uint64_t *RawData = Realigned.getRawData(); 2425 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2426 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2427 AP.OutStreamer->EmitIntValue(Val, 8); 2428 } 2429 2430 if (ExtraBitsSize) { 2431 // Emit the extra bits after the 64-bits chunks. 2432 2433 // Emit a directive that fills the expected size. 2434 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2435 Size -= (BitWidth / 64) * 8; 2436 assert(Size && Size * 8 >= ExtraBitsSize && 2437 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2438 == ExtraBits && "Directive too small for extra bits."); 2439 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2440 } 2441 } 2442 2443 /// Transform a not absolute MCExpr containing a reference to a GOT 2444 /// equivalent global, by a target specific GOT pc relative access to the 2445 /// final symbol. 2446 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2447 const Constant *BaseCst, 2448 uint64_t Offset) { 2449 // The global @foo below illustrates a global that uses a got equivalent. 2450 // 2451 // @bar = global i32 42 2452 // @gotequiv = private unnamed_addr constant i32* @bar 2453 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2454 // i64 ptrtoint (i32* @foo to i64)) 2455 // to i32) 2456 // 2457 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2458 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2459 // form: 2460 // 2461 // foo = cstexpr, where 2462 // cstexpr := <gotequiv> - "." + <cst> 2463 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2464 // 2465 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2466 // 2467 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2468 // gotpcrelcst := <offset from @foo base> + <cst> 2469 MCValue MV; 2470 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2471 return; 2472 const MCSymbolRefExpr *SymA = MV.getSymA(); 2473 if (!SymA) 2474 return; 2475 2476 // Check that GOT equivalent symbol is cached. 2477 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2478 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2479 return; 2480 2481 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2482 if (!BaseGV) 2483 return; 2484 2485 // Check for a valid base symbol 2486 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2487 const MCSymbolRefExpr *SymB = MV.getSymB(); 2488 2489 if (!SymB || BaseSym != &SymB->getSymbol()) 2490 return; 2491 2492 // Make sure to match: 2493 // 2494 // gotpcrelcst := <offset from @foo base> + <cst> 2495 // 2496 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2497 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2498 // if the target knows how to encode it. 2499 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2500 if (GOTPCRelCst < 0) 2501 return; 2502 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2503 return; 2504 2505 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2506 // 2507 // bar: 2508 // .long 42 2509 // gotequiv: 2510 // .quad bar 2511 // foo: 2512 // .long gotequiv - "." + <cst> 2513 // 2514 // is replaced by the target specific equivalent to: 2515 // 2516 // bar: 2517 // .long 42 2518 // foo: 2519 // .long bar@GOTPCREL+<gotpcrelcst> 2520 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2521 const GlobalVariable *GV = Result.first; 2522 int NumUses = (int)Result.second; 2523 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2524 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2525 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2526 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2527 2528 // Update GOT equivalent usage information 2529 --NumUses; 2530 if (NumUses >= 0) 2531 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2532 } 2533 2534 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2535 AsmPrinter &AP, const Constant *BaseCV, 2536 uint64_t Offset) { 2537 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2538 2539 // Globals with sub-elements such as combinations of arrays and structs 2540 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2541 // constant symbol base and the current position with BaseCV and Offset. 2542 if (!BaseCV && CV->hasOneUse()) 2543 BaseCV = dyn_cast<Constant>(CV->user_back()); 2544 2545 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2546 return AP.OutStreamer->EmitZeros(Size); 2547 2548 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2549 switch (Size) { 2550 case 1: 2551 case 2: 2552 case 4: 2553 case 8: 2554 if (AP.isVerbose()) 2555 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2556 CI->getZExtValue()); 2557 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2558 return; 2559 default: 2560 emitGlobalConstantLargeInt(CI, AP); 2561 return; 2562 } 2563 } 2564 2565 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2566 return emitGlobalConstantFP(CFP, AP); 2567 2568 if (isa<ConstantPointerNull>(CV)) { 2569 AP.OutStreamer->EmitIntValue(0, Size); 2570 return; 2571 } 2572 2573 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2574 return emitGlobalConstantDataSequential(DL, CDS, AP); 2575 2576 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2577 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2578 2579 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2580 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2581 2582 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2583 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2584 // vectors). 2585 if (CE->getOpcode() == Instruction::BitCast) 2586 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2587 2588 if (Size > 8) { 2589 // If the constant expression's size is greater than 64-bits, then we have 2590 // to emit the value in chunks. Try to constant fold the value and emit it 2591 // that way. 2592 Constant *New = ConstantFoldConstant(CE, DL); 2593 if (New && New != CE) 2594 return emitGlobalConstantImpl(DL, New, AP); 2595 } 2596 } 2597 2598 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2599 return emitGlobalConstantVector(DL, V, AP); 2600 2601 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2602 // thread the streamer with EmitValue. 2603 const MCExpr *ME = AP.lowerConstant(CV); 2604 2605 // Since lowerConstant already folded and got rid of all IR pointer and 2606 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2607 // directly. 2608 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2609 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2610 2611 AP.OutStreamer->EmitValue(ME, Size); 2612 } 2613 2614 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2615 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2616 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2617 if (Size) 2618 emitGlobalConstantImpl(DL, CV, *this); 2619 else if (MAI->hasSubsectionsViaSymbols()) { 2620 // If the global has zero size, emit a single byte so that two labels don't 2621 // look like they are at the same location. 2622 OutStreamer->EmitIntValue(0, 1); 2623 } 2624 } 2625 2626 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2627 // Target doesn't support this yet! 2628 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2629 } 2630 2631 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2632 if (Offset > 0) 2633 OS << '+' << Offset; 2634 else if (Offset < 0) 2635 OS << Offset; 2636 } 2637 2638 //===----------------------------------------------------------------------===// 2639 // Symbol Lowering Routines. 2640 //===----------------------------------------------------------------------===// 2641 2642 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2643 return OutContext.createTempSymbol(Name, true); 2644 } 2645 2646 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2647 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2648 } 2649 2650 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2651 return MMI->getAddrLabelSymbol(BB); 2652 } 2653 2654 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2655 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2656 const DataLayout &DL = getDataLayout(); 2657 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2658 "CPI" + Twine(getFunctionNumber()) + "_" + 2659 Twine(CPID)); 2660 } 2661 2662 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2663 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2664 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2665 } 2666 2667 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2668 /// FIXME: privatize to AsmPrinter. 2669 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2670 const DataLayout &DL = getDataLayout(); 2671 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2672 Twine(getFunctionNumber()) + "_" + 2673 Twine(UID) + "_set_" + Twine(MBBID)); 2674 } 2675 2676 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2677 StringRef Suffix) const { 2678 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2679 } 2680 2681 /// Return the MCSymbol for the specified ExternalSymbol. 2682 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2683 SmallString<60> NameStr; 2684 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2685 return OutContext.getOrCreateSymbol(NameStr); 2686 } 2687 2688 /// PrintParentLoopComment - Print comments about parent loops of this one. 2689 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2690 unsigned FunctionNumber) { 2691 if (!Loop) return; 2692 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2693 OS.indent(Loop->getLoopDepth()*2) 2694 << "Parent Loop BB" << FunctionNumber << "_" 2695 << Loop->getHeader()->getNumber() 2696 << " Depth=" << Loop->getLoopDepth() << '\n'; 2697 } 2698 2699 /// PrintChildLoopComment - Print comments about child loops within 2700 /// the loop for this basic block, with nesting. 2701 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2702 unsigned FunctionNumber) { 2703 // Add child loop information 2704 for (const MachineLoop *CL : *Loop) { 2705 OS.indent(CL->getLoopDepth()*2) 2706 << "Child Loop BB" << FunctionNumber << "_" 2707 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2708 << '\n'; 2709 PrintChildLoopComment(OS, CL, FunctionNumber); 2710 } 2711 } 2712 2713 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2714 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2715 const MachineLoopInfo *LI, 2716 const AsmPrinter &AP) { 2717 // Add loop depth information 2718 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2719 if (!Loop) return; 2720 2721 MachineBasicBlock *Header = Loop->getHeader(); 2722 assert(Header && "No header for loop"); 2723 2724 // If this block is not a loop header, just print out what is the loop header 2725 // and return. 2726 if (Header != &MBB) { 2727 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2728 Twine(AP.getFunctionNumber())+"_" + 2729 Twine(Loop->getHeader()->getNumber())+ 2730 " Depth="+Twine(Loop->getLoopDepth())); 2731 return; 2732 } 2733 2734 // Otherwise, it is a loop header. Print out information about child and 2735 // parent loops. 2736 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2737 2738 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2739 2740 OS << "=>"; 2741 OS.indent(Loop->getLoopDepth()*2-2); 2742 2743 OS << "This "; 2744 if (Loop->empty()) 2745 OS << "Inner "; 2746 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2747 2748 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2749 } 2750 2751 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2752 MCCodePaddingContext &Context) const { 2753 assert(MF != nullptr && "Machine function must be valid"); 2754 Context.IsPaddingActive = !MF->hasInlineAsm() && 2755 !MF->getFunction().optForSize() && 2756 TM.getOptLevel() != CodeGenOpt::None; 2757 Context.IsBasicBlockReachableViaFallthrough = 2758 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2759 MBB.pred_end(); 2760 Context.IsBasicBlockReachableViaBranch = 2761 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2762 } 2763 2764 /// EmitBasicBlockStart - This method prints the label for the specified 2765 /// MachineBasicBlock, an alignment (if present) and a comment describing 2766 /// it if appropriate. 2767 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2768 // End the previous funclet and start a new one. 2769 if (MBB.isEHFuncletEntry()) { 2770 for (const HandlerInfo &HI : Handlers) { 2771 HI.Handler->endFunclet(); 2772 HI.Handler->beginFunclet(MBB); 2773 } 2774 } 2775 2776 // Emit an alignment directive for this block, if needed. 2777 if (unsigned Align = MBB.getAlignment()) 2778 EmitAlignment(Align); 2779 MCCodePaddingContext Context; 2780 setupCodePaddingContext(MBB, Context); 2781 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2782 2783 // If the block has its address taken, emit any labels that were used to 2784 // reference the block. It is possible that there is more than one label 2785 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2786 // the references were generated. 2787 if (MBB.hasAddressTaken()) { 2788 const BasicBlock *BB = MBB.getBasicBlock(); 2789 if (isVerbose()) 2790 OutStreamer->AddComment("Block address taken"); 2791 2792 // MBBs can have their address taken as part of CodeGen without having 2793 // their corresponding BB's address taken in IR 2794 if (BB->hasAddressTaken()) 2795 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2796 OutStreamer->EmitLabel(Sym); 2797 } 2798 2799 // Print some verbose block comments. 2800 if (isVerbose()) { 2801 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2802 if (BB->hasName()) { 2803 BB->printAsOperand(OutStreamer->GetCommentOS(), 2804 /*PrintType=*/false, BB->getModule()); 2805 OutStreamer->GetCommentOS() << '\n'; 2806 } 2807 } 2808 2809 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2810 emitBasicBlockLoopComments(MBB, MLI, *this); 2811 } 2812 2813 // Print the main label for the block. 2814 if (MBB.pred_empty() || 2815 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2816 if (isVerbose()) { 2817 // NOTE: Want this comment at start of line, don't emit with AddComment. 2818 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2819 false); 2820 } 2821 } else { 2822 OutStreamer->EmitLabel(MBB.getSymbol()); 2823 } 2824 } 2825 2826 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2827 MCCodePaddingContext Context; 2828 setupCodePaddingContext(MBB, Context); 2829 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2830 } 2831 2832 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2833 bool IsDefinition) const { 2834 MCSymbolAttr Attr = MCSA_Invalid; 2835 2836 switch (Visibility) { 2837 default: break; 2838 case GlobalValue::HiddenVisibility: 2839 if (IsDefinition) 2840 Attr = MAI->getHiddenVisibilityAttr(); 2841 else 2842 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2843 break; 2844 case GlobalValue::ProtectedVisibility: 2845 Attr = MAI->getProtectedVisibilityAttr(); 2846 break; 2847 } 2848 2849 if (Attr != MCSA_Invalid) 2850 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2851 } 2852 2853 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2854 /// exactly one predecessor and the control transfer mechanism between 2855 /// the predecessor and this block is a fall-through. 2856 bool AsmPrinter:: 2857 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2858 // If this is a landing pad, it isn't a fall through. If it has no preds, 2859 // then nothing falls through to it. 2860 if (MBB->isEHPad() || MBB->pred_empty()) 2861 return false; 2862 2863 // If there isn't exactly one predecessor, it can't be a fall through. 2864 if (MBB->pred_size() > 1) 2865 return false; 2866 2867 // The predecessor has to be immediately before this block. 2868 MachineBasicBlock *Pred = *MBB->pred_begin(); 2869 if (!Pred->isLayoutSuccessor(MBB)) 2870 return false; 2871 2872 // If the block is completely empty, then it definitely does fall through. 2873 if (Pred->empty()) 2874 return true; 2875 2876 // Check the terminators in the previous blocks 2877 for (const auto &MI : Pred->terminators()) { 2878 // If it is not a simple branch, we are in a table somewhere. 2879 if (!MI.isBranch() || MI.isIndirectBranch()) 2880 return false; 2881 2882 // If we are the operands of one of the branches, this is not a fall 2883 // through. Note that targets with delay slots will usually bundle 2884 // terminators with the delay slot instruction. 2885 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2886 if (OP->isJTI()) 2887 return false; 2888 if (OP->isMBB() && OP->getMBB() == MBB) 2889 return false; 2890 } 2891 } 2892 2893 return true; 2894 } 2895 2896 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2897 if (!S.usesMetadata()) 2898 return nullptr; 2899 2900 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2901 " stackmap formats, please see the documentation for a description of" 2902 " the default format. If you really need a custom serialized format," 2903 " please file a bug"); 2904 2905 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2906 gcp_map_type::iterator GCPI = GCMap.find(&S); 2907 if (GCPI != GCMap.end()) 2908 return GCPI->second.get(); 2909 2910 auto Name = S.getName(); 2911 2912 for (GCMetadataPrinterRegistry::iterator 2913 I = GCMetadataPrinterRegistry::begin(), 2914 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2915 if (Name == I->getName()) { 2916 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2917 GMP->S = &S; 2918 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2919 return IterBool.first->second.get(); 2920 } 2921 2922 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2923 } 2924 2925 /// Pin vtable to this file. 2926 AsmPrinterHandler::~AsmPrinterHandler() = default; 2927 2928 void AsmPrinterHandler::markFunctionEnd() {} 2929 2930 // In the binary's "xray_instr_map" section, an array of these function entries 2931 // describes each instrumentation point. When XRay patches your code, the index 2932 // into this table will be given to your handler as a patch point identifier. 2933 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2934 const MCSymbol *CurrentFnSym) const { 2935 Out->EmitSymbolValue(Sled, Bytes); 2936 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2937 auto Kind8 = static_cast<uint8_t>(Kind); 2938 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2939 Out->EmitBinaryData( 2940 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2941 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 2942 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 2943 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 2944 Out->EmitZeros(Padding); 2945 } 2946 2947 void AsmPrinter::emitXRayTable() { 2948 if (Sleds.empty()) 2949 return; 2950 2951 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2952 const Function &F = MF->getFunction(); 2953 MCSection *InstMap = nullptr; 2954 MCSection *FnSledIndex = nullptr; 2955 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2956 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 2957 assert(Associated != nullptr); 2958 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 2959 std::string GroupName; 2960 if (F.hasComdat()) { 2961 Flags |= ELF::SHF_GROUP; 2962 GroupName = F.getComdat()->getName(); 2963 } 2964 2965 auto UniqueID = ++XRayFnUniqueID; 2966 InstMap = 2967 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 2968 GroupName, UniqueID, Associated); 2969 FnSledIndex = 2970 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 2971 GroupName, UniqueID, Associated); 2972 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2973 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2974 SectionKind::getReadOnlyWithRel()); 2975 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2976 SectionKind::getReadOnlyWithRel()); 2977 } else { 2978 llvm_unreachable("Unsupported target"); 2979 } 2980 2981 auto WordSizeBytes = MAI->getCodePointerSize(); 2982 2983 // Now we switch to the instrumentation map section. Because this is done 2984 // per-function, we are able to create an index entry that will represent the 2985 // range of sleds associated with a function. 2986 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 2987 OutStreamer->SwitchSection(InstMap); 2988 OutStreamer->EmitLabel(SledsStart); 2989 for (const auto &Sled : Sleds) 2990 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2991 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 2992 OutStreamer->EmitLabel(SledsEnd); 2993 2994 // We then emit a single entry in the index per function. We use the symbols 2995 // that bound the instrumentation map as the range for a specific function. 2996 // Each entry here will be 2 * word size aligned, as we're writing down two 2997 // pointers. This should work for both 32-bit and 64-bit platforms. 2998 OutStreamer->SwitchSection(FnSledIndex); 2999 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3000 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3001 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3002 OutStreamer->SwitchSection(PrevSection); 3003 Sleds.clear(); 3004 } 3005 3006 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3007 SledKind Kind, uint8_t Version) { 3008 const Function &F = MI.getMF()->getFunction(); 3009 auto Attr = F.getFnAttribute("function-instrument"); 3010 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3011 bool AlwaysInstrument = 3012 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3013 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3014 Kind = SledKind::LOG_ARGS_ENTER; 3015 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3016 AlwaysInstrument, &F, Version}); 3017 } 3018 3019 uint16_t AsmPrinter::getDwarfVersion() const { 3020 return OutStreamer->getContext().getDwarfVersion(); 3021 } 3022 3023 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3024 OutStreamer->getContext().setDwarfVersion(Version); 3025 } 3026