1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinException.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GCMetadataPrinter.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBundle.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Mangler.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCExpr.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/MCValue.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Target/TargetFrameLowering.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetLoweringObjectFile.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 static const char *const DWARFGroupName = "DWARF Emission"; 60 static const char *const DbgTimerName = "Debug Info Emission"; 61 static const char *const EHTimerName = "DWARF Exception Writer"; 62 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 63 64 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 65 66 char AsmPrinter::ID = 0; 67 68 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 69 static gcp_map_type &getGCMap(void *&P) { 70 if (!P) 71 P = new gcp_map_type(); 72 return *(gcp_map_type*)P; 73 } 74 75 76 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 77 /// value in log2 form. This rounds up to the preferred alignment if possible 78 /// and legal. 79 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 80 unsigned InBits = 0) { 81 unsigned NumBits = 0; 82 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 83 NumBits = DL.getPreferredAlignmentLog(GVar); 84 85 // If InBits is specified, round it to it. 86 if (InBits > NumBits) 87 NumBits = InBits; 88 89 // If the GV has a specified alignment, take it into account. 90 if (GV->getAlignment() == 0) 91 return NumBits; 92 93 unsigned GVAlign = Log2_32(GV->getAlignment()); 94 95 // If the GVAlign is larger than NumBits, or if we are required to obey 96 // NumBits because the GV has an assigned section, obey it. 97 if (GVAlign > NumBits || GV->hasSection()) 98 NumBits = GVAlign; 99 return NumBits; 100 } 101 102 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 103 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 104 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 105 LastMI(nullptr), LastFn(0), Counter(~0U) { 106 DD = nullptr; 107 MMI = nullptr; 108 LI = nullptr; 109 MF = nullptr; 110 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 111 CurrentFnBegin = nullptr; 112 CurrentFnEnd = nullptr; 113 GCMetadataPrinters = nullptr; 114 VerboseAsm = OutStreamer->isVerboseAsm(); 115 } 116 117 AsmPrinter::~AsmPrinter() { 118 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 119 120 if (GCMetadataPrinters) { 121 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 122 123 delete &GCMap; 124 GCMetadataPrinters = nullptr; 125 } 126 } 127 128 /// getFunctionNumber - Return a unique ID for the current function. 129 /// 130 unsigned AsmPrinter::getFunctionNumber() const { 131 return MF->getFunctionNumber(); 132 } 133 134 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 135 return *TM.getObjFileLowering(); 136 } 137 138 const DataLayout &AsmPrinter::getDataLayout() const { 139 return MMI->getModule()->getDataLayout(); 140 } 141 142 // Do not use the cached DataLayout because some client use it without a Module 143 // (llmv-dsymutil, llvm-dwarfdump). 144 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 145 146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 148 return MF->getSubtarget<MCSubtargetInfo>(); 149 } 150 151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 152 S.EmitInstruction(Inst, getSubtargetInfo()); 153 } 154 155 StringRef AsmPrinter::getTargetTriple() const { 156 return TM.getTargetTriple().str(); 157 } 158 159 /// getCurrentSection() - Return the current section we are emitting to. 160 const MCSection *AsmPrinter::getCurrentSection() const { 161 return OutStreamer->getCurrentSection().first; 162 } 163 164 165 166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesAll(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 AU.addRequired<MachineModuleInfo>(); 170 AU.addRequired<GCModuleInfo>(); 171 if (isVerbose()) 172 AU.addRequired<MachineLoopInfo>(); 173 } 174 175 bool AsmPrinter::doInitialization(Module &M) { 176 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 177 178 // Initialize TargetLoweringObjectFile. 179 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 180 .Initialize(OutContext, TM); 181 182 OutStreamer->InitSections(false); 183 184 Mang = new Mangler(); 185 186 // Emit the version-min deplyment target directive if needed. 187 // 188 // FIXME: If we end up with a collection of these sorts of Darwin-specific 189 // or ELF-specific things, it may make sense to have a platform helper class 190 // that will work with the target helper class. For now keep it here, as the 191 // alternative is duplicated code in each of the target asm printers that 192 // use the directive, where it would need the same conditionalization 193 // anyway. 194 Triple TT(getTargetTriple()); 195 if (TT.isOSDarwin()) { 196 unsigned Major, Minor, Update; 197 TT.getOSVersion(Major, Minor, Update); 198 // If there is a version specified, Major will be non-zero. 199 if (Major) 200 OutStreamer->EmitVersionMin((TT.isMacOSX() ? 201 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 202 Major, Minor, Update); 203 } 204 205 // Allow the target to emit any magic that it wants at the start of the file. 206 EmitStartOfAsmFile(M); 207 208 // Very minimal debug info. It is ignored if we emit actual debug info. If we 209 // don't, this at least helps the user find where a global came from. 210 if (MAI->hasSingleParameterDotFile()) { 211 // .file "foo.c" 212 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 213 } 214 215 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 216 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 217 for (auto &I : *MI) 218 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 219 MP->beginAssembly(M, *MI, *this); 220 221 // Emit module-level inline asm if it exists. 222 if (!M.getModuleInlineAsm().empty()) { 223 // We're at the module level. Construct MCSubtarget from the default CPU 224 // and target triple. 225 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 226 TM.getTargetTriple().str(), TM.getTargetCPU(), 227 TM.getTargetFeatureString())); 228 OutStreamer->AddComment("Start of file scope inline assembly"); 229 OutStreamer->AddBlankLine(); 230 EmitInlineAsm(M.getModuleInlineAsm()+"\n", *STI, TM.Options.MCOptions); 231 OutStreamer->AddComment("End of file scope inline assembly"); 232 OutStreamer->AddBlankLine(); 233 } 234 235 if (MAI->doesSupportDebugInformation()) { 236 bool skip_dwarf = false; 237 if (TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 238 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 239 DbgTimerName, 240 CodeViewLineTablesGroupName)); 241 // FIXME: Don't emit DWARF debug info if there's at least one function 242 // with AddressSanitizer instrumentation. 243 // This is a band-aid fix for PR22032. 244 for (auto &F : M.functions()) { 245 if (F.hasFnAttribute(Attribute::SanitizeAddress)) { 246 skip_dwarf = true; 247 break; 248 } 249 } 250 } 251 if (!skip_dwarf) { 252 DD = new DwarfDebug(this, &M); 253 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 254 } 255 } 256 257 EHStreamer *ES = nullptr; 258 switch (MAI->getExceptionHandlingType()) { 259 case ExceptionHandling::None: 260 break; 261 case ExceptionHandling::SjLj: 262 case ExceptionHandling::DwarfCFI: 263 ES = new DwarfCFIException(this); 264 break; 265 case ExceptionHandling::ARM: 266 ES = new ARMException(this); 267 break; 268 case ExceptionHandling::WinEH: 269 switch (MAI->getWinEHEncodingType()) { 270 default: llvm_unreachable("unsupported unwinding information encoding"); 271 case WinEH::EncodingType::Invalid: 272 break; 273 case WinEH::EncodingType::X86: 274 case WinEH::EncodingType::Itanium: 275 ES = new WinException(this); 276 break; 277 } 278 break; 279 } 280 if (ES) 281 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 282 return false; 283 } 284 285 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 286 if (!MAI.hasWeakDefCanBeHiddenDirective()) 287 return false; 288 289 return canBeOmittedFromSymbolTable(GV); 290 } 291 292 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 293 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 294 switch (Linkage) { 295 case GlobalValue::CommonLinkage: 296 case GlobalValue::LinkOnceAnyLinkage: 297 case GlobalValue::LinkOnceODRLinkage: 298 case GlobalValue::WeakAnyLinkage: 299 case GlobalValue::WeakODRLinkage: 300 if (MAI->hasWeakDefDirective()) { 301 // .globl _foo 302 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 303 304 if (!canBeHidden(GV, *MAI)) 305 // .weak_definition _foo 306 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 307 else 308 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 309 } else if (MAI->hasLinkOnceDirective()) { 310 // .globl _foo 311 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 312 //NOTE: linkonce is handled by the section the symbol was assigned to. 313 } else { 314 // .weak _foo 315 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 316 } 317 return; 318 case GlobalValue::AppendingLinkage: 319 // FIXME: appending linkage variables should go into a section of 320 // their name or something. For now, just emit them as external. 321 case GlobalValue::ExternalLinkage: 322 // If external or appending, declare as a global symbol. 323 // .globl _foo 324 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 325 return; 326 case GlobalValue::PrivateLinkage: 327 case GlobalValue::InternalLinkage: 328 return; 329 case GlobalValue::AvailableExternallyLinkage: 330 llvm_unreachable("Should never emit this"); 331 case GlobalValue::ExternalWeakLinkage: 332 llvm_unreachable("Don't know how to emit these"); 333 } 334 llvm_unreachable("Unknown linkage type!"); 335 } 336 337 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 338 const GlobalValue *GV) const { 339 TM.getNameWithPrefix(Name, GV, *Mang); 340 } 341 342 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 343 return TM.getSymbol(GV, *Mang); 344 } 345 346 static MCSymbol *getOrCreateEmuTLSControlSym(MCSymbol *GVSym, MCContext &C) { 347 return C.getOrCreateSymbol(Twine("__emutls_v.") + GVSym->getName()); 348 } 349 350 static MCSymbol *getOrCreateEmuTLSInitSym(MCSymbol *GVSym, MCContext &C) { 351 return C.getOrCreateSymbol(Twine("__emutls_t.") + GVSym->getName()); 352 } 353 354 /// EmitEmulatedTLSControlVariable - Emit the control variable for an emulated TLS variable. 355 void AsmPrinter::EmitEmulatedTLSControlVariable(const GlobalVariable *GV, 356 MCSymbol *EmittedSym, 357 bool AllZeroInitValue) { 358 // If there is init value, use .data.rel.local section; 359 // otherwise use the .data section. 360 MCSection *TLSVarSection = const_cast<MCSection*>( 361 (GV->hasInitializer() && !AllZeroInitValue) 362 ? getObjFileLowering().getDataRelLocalSection() 363 : getObjFileLowering().getDataSection()); 364 OutStreamer->SwitchSection(TLSVarSection); 365 MCSymbol *GVSym = getSymbol(GV); 366 EmitLinkage(GV, EmittedSym); // same linkage as GV 367 const DataLayout &DL = GV->getParent()->getDataLayout(); 368 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 369 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 370 unsigned WordSize = DL.getPointerSize(); 371 unsigned Alignment = DL.getPointerABIAlignment(); 372 EmitAlignment(Log2_32(Alignment)); 373 OutStreamer->EmitLabel(EmittedSym); 374 OutStreamer->EmitIntValue(Size, WordSize); 375 OutStreamer->EmitIntValue((1 << AlignLog), WordSize); 376 OutStreamer->EmitIntValue(0, WordSize); 377 if (GV->hasInitializer() && !AllZeroInitValue) { 378 OutStreamer->EmitSymbolValue( 379 getOrCreateEmuTLSInitSym(GVSym, OutContext), WordSize); 380 } else 381 OutStreamer->EmitIntValue(0, WordSize); 382 if (MAI->hasDotTypeDotSizeDirective()) 383 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedSym), 384 MCConstantExpr::create(4 * WordSize, OutContext)); 385 OutStreamer->AddBlankLine(); // End of the __emutls_v.* variable. 386 } 387 388 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 389 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 390 bool IsEmuTLSVar = 391 GV->getThreadLocalMode() != llvm::GlobalVariable::NotThreadLocal && 392 TM.Options.EmulatedTLS; 393 assert((!IsEmuTLSVar || getObjFileLowering().getDataRelLocalSection()) && 394 "Need relocatable local section for emulated TLS variables"); 395 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 396 "No emulated TLS variables in the common section"); 397 398 if (GV->hasInitializer()) { 399 // Check to see if this is a special global used by LLVM, if so, emit it. 400 if (EmitSpecialLLVMGlobal(GV)) 401 return; 402 403 // Skip the emission of global equivalents. The symbol can be emitted later 404 // on by emitGlobalGOTEquivs in case it turns out to be needed. 405 if (GlobalGOTEquivs.count(getSymbol(GV))) 406 return; 407 408 if (isVerbose() && !IsEmuTLSVar) { 409 // When printing the control variable __emutls_v.*, 410 // we don't need to print the original TLS variable name. 411 GV->printAsOperand(OutStreamer->GetCommentOS(), 412 /*PrintType=*/false, GV->getParent()); 413 OutStreamer->GetCommentOS() << '\n'; 414 } 415 } 416 417 MCSymbol *GVSym = getSymbol(GV); 418 MCSymbol *EmittedSym = IsEmuTLSVar ? 419 getOrCreateEmuTLSControlSym(GVSym, OutContext) : GVSym; 420 // getOrCreateEmuTLSControlSym only creates the symbol with name and default attributes. 421 // GV's or GVSym's attributes will be used for the EmittedSym. 422 423 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 424 425 if (!GV->hasInitializer()) // External globals require no extra code. 426 return; 427 428 GVSym->redefineIfPossible(); 429 if (GVSym->isDefined() || GVSym->isVariable()) 430 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 431 "' is already defined"); 432 433 if (MAI->hasDotTypeDotSizeDirective()) 434 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 435 436 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 437 438 const DataLayout &DL = GV->getParent()->getDataLayout(); 439 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 440 441 // If the alignment is specified, we *must* obey it. Overaligning a global 442 // with a specified alignment is a prompt way to break globals emitted to 443 // sections and expected to be contiguous (e.g. ObjC metadata). 444 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 445 446 bool AllZeroInitValue = false; 447 const Constant *InitValue = GV->getInitializer(); 448 if (isa<ConstantAggregateZero>(InitValue)) 449 AllZeroInitValue = true; 450 else { 451 const ConstantInt *InitIntValue = dyn_cast<ConstantInt>(InitValue); 452 if (InitIntValue && InitIntValue->isZero()) 453 AllZeroInitValue = true; 454 } 455 if (IsEmuTLSVar) 456 EmitEmulatedTLSControlVariable(GV, EmittedSym, AllZeroInitValue); 457 458 for (const HandlerInfo &HI : Handlers) { 459 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 460 HI.Handler->setSymbolSize(GVSym, Size); 461 } 462 463 // Handle common and BSS local symbols (.lcomm). 464 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 465 assert(!(IsEmuTLSVar && GVKind.isCommon()) && 466 "No emulated TLS variables in the common section"); 467 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 468 unsigned Align = 1 << AlignLog; 469 470 // Handle common symbols. 471 if (GVKind.isCommon()) { 472 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 473 Align = 0; 474 475 // .comm _foo, 42, 4 476 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 477 return; 478 } 479 480 // Handle local BSS symbols. 481 if (MAI->hasMachoZeroFillDirective()) { 482 MCSection *TheSection = 483 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 484 // .zerofill __DATA, __bss, _foo, 400, 5 485 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 486 return; 487 } 488 489 // Use .lcomm only if it supports user-specified alignment. 490 // Otherwise, while it would still be correct to use .lcomm in some 491 // cases (e.g. when Align == 1), the external assembler might enfore 492 // some -unknown- default alignment behavior, which could cause 493 // spurious differences between external and integrated assembler. 494 // Prefer to simply fall back to .local / .comm in this case. 495 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 496 // .lcomm _foo, 42 497 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 498 return; 499 } 500 501 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 502 Align = 0; 503 504 // .local _foo 505 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 506 // .comm _foo, 42, 4 507 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 508 return; 509 } 510 511 if (IsEmuTLSVar && AllZeroInitValue) 512 return; // No need of initialization values. 513 514 MCSymbol *EmittedInitSym = IsEmuTLSVar ? 515 getOrCreateEmuTLSInitSym(GVSym, OutContext) : GVSym; 516 // getOrCreateEmuTLSInitSym only creates the symbol with name and default attributes. 517 // GV's or GVSym's attributes will be used for the EmittedInitSym. 518 519 MCSection *TheSection = IsEmuTLSVar ? 520 getObjFileLowering().getReadOnlySection() : 521 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 522 523 // Handle the zerofill directive on darwin, which is a special form of BSS 524 // emission. 525 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective() && !IsEmuTLSVar) { 526 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 527 528 // .globl _foo 529 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 530 // .zerofill __DATA, __common, _foo, 400, 5 531 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 532 return; 533 } 534 535 // Handle thread local data for mach-o which requires us to output an 536 // additional structure of data and mangle the original symbol so that we 537 // can reference it later. 538 // 539 // TODO: This should become an "emit thread local global" method on TLOF. 540 // All of this macho specific stuff should be sunk down into TLOFMachO and 541 // stuff like "TLSExtraDataSection" should no longer be part of the parent 542 // TLOF class. This will also make it more obvious that stuff like 543 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 544 // specific code. 545 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective() && !IsEmuTLSVar) { 546 // Emit the .tbss symbol 547 MCSymbol *MangSym = 548 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 549 550 if (GVKind.isThreadBSS()) { 551 TheSection = getObjFileLowering().getTLSBSSSection(); 552 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 553 } else if (GVKind.isThreadData()) { 554 OutStreamer->SwitchSection(TheSection); 555 556 EmitAlignment(AlignLog, GV); 557 OutStreamer->EmitLabel(MangSym); 558 559 EmitGlobalConstant(GV->getParent()->getDataLayout(), 560 GV->getInitializer()); 561 } 562 563 OutStreamer->AddBlankLine(); 564 565 // Emit the variable struct for the runtime. 566 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 567 568 OutStreamer->SwitchSection(TLVSect); 569 // Emit the linkage here. 570 EmitLinkage(GV, GVSym); 571 OutStreamer->EmitLabel(GVSym); 572 573 // Three pointers in size: 574 // - __tlv_bootstrap - used to make sure support exists 575 // - spare pointer, used when mapped by the runtime 576 // - pointer to mangled symbol above with initializer 577 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 578 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 579 PtrSize); 580 OutStreamer->EmitIntValue(0, PtrSize); 581 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 582 583 OutStreamer->AddBlankLine(); 584 return; 585 } 586 587 OutStreamer->SwitchSection(TheSection); 588 589 // emutls_t.* symbols are only used in the current compilation unit. 590 if (!IsEmuTLSVar) 591 EmitLinkage(GV, EmittedInitSym); 592 EmitAlignment(AlignLog, GV); 593 594 OutStreamer->EmitLabel(EmittedInitSym); 595 596 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 597 598 if (MAI->hasDotTypeDotSizeDirective()) 599 // .size foo, 42 600 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym), 601 MCConstantExpr::create(Size, OutContext)); 602 603 OutStreamer->AddBlankLine(); 604 } 605 606 /// EmitFunctionHeader - This method emits the header for the current 607 /// function. 608 void AsmPrinter::EmitFunctionHeader() { 609 // Print out constants referenced by the function 610 EmitConstantPool(); 611 612 // Print the 'header' of function. 613 const Function *F = MF->getFunction(); 614 615 OutStreamer->SwitchSection( 616 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 617 EmitVisibility(CurrentFnSym, F->getVisibility()); 618 619 EmitLinkage(F, CurrentFnSym); 620 if (MAI->hasFunctionAlignment()) 621 EmitAlignment(MF->getAlignment(), F); 622 623 if (MAI->hasDotTypeDotSizeDirective()) 624 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 625 626 if (isVerbose()) { 627 F->printAsOperand(OutStreamer->GetCommentOS(), 628 /*PrintType=*/false, F->getParent()); 629 OutStreamer->GetCommentOS() << '\n'; 630 } 631 632 // Emit the prefix data. 633 if (F->hasPrefixData()) 634 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 635 636 // Emit the CurrentFnSym. This is a virtual function to allow targets to 637 // do their wild and crazy things as required. 638 EmitFunctionEntryLabel(); 639 640 // If the function had address-taken blocks that got deleted, then we have 641 // references to the dangling symbols. Emit them at the start of the function 642 // so that we don't get references to undefined symbols. 643 std::vector<MCSymbol*> DeadBlockSyms; 644 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 645 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 646 OutStreamer->AddComment("Address taken block that was later removed"); 647 OutStreamer->EmitLabel(DeadBlockSyms[i]); 648 } 649 650 if (CurrentFnBegin) { 651 if (MAI->useAssignmentForEHBegin()) { 652 MCSymbol *CurPos = OutContext.createTempSymbol(); 653 OutStreamer->EmitLabel(CurPos); 654 OutStreamer->EmitAssignment(CurrentFnBegin, 655 MCSymbolRefExpr::create(CurPos, OutContext)); 656 } else { 657 OutStreamer->EmitLabel(CurrentFnBegin); 658 } 659 } 660 661 // Emit pre-function debug and/or EH information. 662 for (const HandlerInfo &HI : Handlers) { 663 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 664 HI.Handler->beginFunction(MF); 665 } 666 667 // Emit the prologue data. 668 if (F->hasPrologueData()) 669 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 670 } 671 672 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 673 /// function. This can be overridden by targets as required to do custom stuff. 674 void AsmPrinter::EmitFunctionEntryLabel() { 675 CurrentFnSym->redefineIfPossible(); 676 677 // The function label could have already been emitted if two symbols end up 678 // conflicting due to asm renaming. Detect this and emit an error. 679 if (CurrentFnSym->isVariable()) 680 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 681 "' is a protected alias"); 682 if (CurrentFnSym->isDefined()) 683 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 684 "' label emitted multiple times to assembly file"); 685 686 return OutStreamer->EmitLabel(CurrentFnSym); 687 } 688 689 /// emitComments - Pretty-print comments for instructions. 690 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 691 const MachineFunction *MF = MI.getParent()->getParent(); 692 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 693 694 // Check for spills and reloads 695 int FI; 696 697 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 698 699 // We assume a single instruction only has a spill or reload, not 700 // both. 701 const MachineMemOperand *MMO; 702 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 703 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 704 MMO = *MI.memoperands_begin(); 705 CommentOS << MMO->getSize() << "-byte Reload\n"; 706 } 707 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 708 if (FrameInfo->isSpillSlotObjectIndex(FI)) 709 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 710 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 711 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 712 MMO = *MI.memoperands_begin(); 713 CommentOS << MMO->getSize() << "-byte Spill\n"; 714 } 715 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 716 if (FrameInfo->isSpillSlotObjectIndex(FI)) 717 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 718 } 719 720 // Check for spill-induced copies 721 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 722 CommentOS << " Reload Reuse\n"; 723 } 724 725 /// emitImplicitDef - This method emits the specified machine instruction 726 /// that is an implicit def. 727 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 728 unsigned RegNo = MI->getOperand(0).getReg(); 729 OutStreamer->AddComment(Twine("implicit-def: ") + 730 MMI->getContext().getRegisterInfo()->getName(RegNo)); 731 OutStreamer->AddBlankLine(); 732 } 733 734 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 735 std::string Str = "kill:"; 736 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 737 const MachineOperand &Op = MI->getOperand(i); 738 assert(Op.isReg() && "KILL instruction must have only register operands"); 739 Str += ' '; 740 Str += AP.MMI->getContext().getRegisterInfo()->getName(Op.getReg()); 741 Str += (Op.isDef() ? "<def>" : "<kill>"); 742 } 743 AP.OutStreamer->AddComment(Str); 744 AP.OutStreamer->AddBlankLine(); 745 } 746 747 /// emitDebugValueComment - This method handles the target-independent form 748 /// of DBG_VALUE, returning true if it was able to do so. A false return 749 /// means the target will need to handle MI in EmitInstruction. 750 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 751 // This code handles only the 4-operand target-independent form. 752 if (MI->getNumOperands() != 4) 753 return false; 754 755 SmallString<128> Str; 756 raw_svector_ostream OS(Str); 757 OS << "DEBUG_VALUE: "; 758 759 const DILocalVariable *V = MI->getDebugVariable(); 760 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 761 StringRef Name = SP->getDisplayName(); 762 if (!Name.empty()) 763 OS << Name << ":"; 764 } 765 OS << V->getName(); 766 767 const DIExpression *Expr = MI->getDebugExpression(); 768 if (Expr->isBitPiece()) 769 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 770 << " size=" << Expr->getBitPieceSize() << "]"; 771 OS << " <- "; 772 773 // The second operand is only an offset if it's an immediate. 774 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 775 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 776 777 // Register or immediate value. Register 0 means undef. 778 if (MI->getOperand(0).isFPImm()) { 779 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 780 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 781 OS << (double)APF.convertToFloat(); 782 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 783 OS << APF.convertToDouble(); 784 } else { 785 // There is no good way to print long double. Convert a copy to 786 // double. Ah well, it's only a comment. 787 bool ignored; 788 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 789 &ignored); 790 OS << "(long double) " << APF.convertToDouble(); 791 } 792 } else if (MI->getOperand(0).isImm()) { 793 OS << MI->getOperand(0).getImm(); 794 } else if (MI->getOperand(0).isCImm()) { 795 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 796 } else { 797 unsigned Reg; 798 if (MI->getOperand(0).isReg()) { 799 Reg = MI->getOperand(0).getReg(); 800 } else { 801 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 802 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 803 Offset += TFI->getFrameIndexReference(*AP.MF, 804 MI->getOperand(0).getIndex(), Reg); 805 Deref = true; 806 } 807 if (Reg == 0) { 808 // Suppress offset, it is not meaningful here. 809 OS << "undef"; 810 // NOTE: Want this comment at start of line, don't emit with AddComment. 811 AP.OutStreamer->emitRawComment(OS.str()); 812 return true; 813 } 814 if (Deref) 815 OS << '['; 816 OS << AP.MMI->getContext().getRegisterInfo()->getName(Reg); 817 } 818 819 if (Deref) 820 OS << '+' << Offset << ']'; 821 822 // NOTE: Want this comment at start of line, don't emit with AddComment. 823 AP.OutStreamer->emitRawComment(OS.str()); 824 return true; 825 } 826 827 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 828 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 829 MF->getFunction()->needsUnwindTableEntry()) 830 return CFI_M_EH; 831 832 if (MMI->hasDebugInfo()) 833 return CFI_M_Debug; 834 835 return CFI_M_None; 836 } 837 838 bool AsmPrinter::needsSEHMoves() { 839 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 840 } 841 842 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 843 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 844 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 845 ExceptionHandlingType != ExceptionHandling::ARM) 846 return; 847 848 if (needsCFIMoves() == CFI_M_None) 849 return; 850 851 const MachineModuleInfo &MMI = MF->getMMI(); 852 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 853 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 854 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 855 emitCFIInstruction(CFI); 856 } 857 858 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 859 // The operands are the MCSymbol and the frame offset of the allocation. 860 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 861 int FrameOffset = MI.getOperand(1).getImm(); 862 863 // Emit a symbol assignment. 864 OutStreamer->EmitAssignment(FrameAllocSym, 865 MCConstantExpr::create(FrameOffset, OutContext)); 866 } 867 868 /// EmitFunctionBody - This method emits the body and trailer for a 869 /// function. 870 void AsmPrinter::EmitFunctionBody() { 871 EmitFunctionHeader(); 872 873 // Emit target-specific gunk before the function body. 874 EmitFunctionBodyStart(); 875 876 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 877 878 // Print out code for the function. 879 bool HasAnyRealCode = false; 880 for (auto &MBB : *MF) { 881 // Print a label for the basic block. 882 EmitBasicBlockStart(MBB); 883 for (auto &MI : MBB) { 884 885 // Print the assembly for the instruction. 886 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 887 !MI.isDebugValue()) { 888 HasAnyRealCode = true; 889 ++EmittedInsts; 890 } 891 892 if (ShouldPrintDebugScopes) { 893 for (const HandlerInfo &HI : Handlers) { 894 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 895 TimePassesIsEnabled); 896 HI.Handler->beginInstruction(&MI); 897 } 898 } 899 900 if (isVerbose()) 901 emitComments(MI, OutStreamer->GetCommentOS()); 902 903 switch (MI.getOpcode()) { 904 case TargetOpcode::CFI_INSTRUCTION: 905 emitCFIInstruction(MI); 906 break; 907 908 case TargetOpcode::LOCAL_ESCAPE: 909 emitFrameAlloc(MI); 910 break; 911 912 case TargetOpcode::EH_LABEL: 913 case TargetOpcode::GC_LABEL: 914 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 915 break; 916 case TargetOpcode::INLINEASM: 917 EmitInlineAsm(&MI); 918 break; 919 case TargetOpcode::DBG_VALUE: 920 if (isVerbose()) { 921 if (!emitDebugValueComment(&MI, *this)) 922 EmitInstruction(&MI); 923 } 924 break; 925 case TargetOpcode::IMPLICIT_DEF: 926 if (isVerbose()) emitImplicitDef(&MI); 927 break; 928 case TargetOpcode::KILL: 929 if (isVerbose()) emitKill(&MI, *this); 930 break; 931 default: 932 EmitInstruction(&MI); 933 break; 934 } 935 936 if (ShouldPrintDebugScopes) { 937 for (const HandlerInfo &HI : Handlers) { 938 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 939 TimePassesIsEnabled); 940 HI.Handler->endInstruction(); 941 } 942 } 943 } 944 945 EmitBasicBlockEnd(MBB); 946 } 947 948 // If the function is empty and the object file uses .subsections_via_symbols, 949 // then we need to emit *something* to the function body to prevent the 950 // labels from collapsing together. Just emit a noop. 951 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 952 MCInst Noop; 953 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 954 OutStreamer->AddComment("avoids zero-length function"); 955 956 // Targets can opt-out of emitting the noop here by leaving the opcode 957 // unspecified. 958 if (Noop.getOpcode()) 959 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 960 } 961 962 const Function *F = MF->getFunction(); 963 for (const auto &BB : *F) { 964 if (!BB.hasAddressTaken()) 965 continue; 966 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 967 if (Sym->isDefined()) 968 continue; 969 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 970 OutStreamer->EmitLabel(Sym); 971 } 972 973 // Emit target-specific gunk after the function body. 974 EmitFunctionBodyEnd(); 975 976 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 977 MAI->hasDotTypeDotSizeDirective()) { 978 // Create a symbol for the end of function. 979 CurrentFnEnd = createTempSymbol("func_end"); 980 OutStreamer->EmitLabel(CurrentFnEnd); 981 } 982 983 // If the target wants a .size directive for the size of the function, emit 984 // it. 985 if (MAI->hasDotTypeDotSizeDirective()) { 986 // We can get the size as difference between the function label and the 987 // temp label. 988 const MCExpr *SizeExp = MCBinaryExpr::createSub( 989 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 990 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 991 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 992 OutStreamer->emitELFSize(Sym, SizeExp); 993 } 994 995 for (const HandlerInfo &HI : Handlers) { 996 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 997 HI.Handler->markFunctionEnd(); 998 } 999 1000 // Print out jump tables referenced by the function. 1001 EmitJumpTableInfo(); 1002 1003 // Emit post-function debug and/or EH information. 1004 for (const HandlerInfo &HI : Handlers) { 1005 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 1006 HI.Handler->endFunction(MF); 1007 } 1008 MMI->EndFunction(); 1009 1010 OutStreamer->AddBlankLine(); 1011 } 1012 1013 /// \brief Compute the number of Global Variables that uses a Constant. 1014 static unsigned getNumGlobalVariableUses(const Constant *C) { 1015 if (!C) 1016 return 0; 1017 1018 if (isa<GlobalVariable>(C)) 1019 return 1; 1020 1021 unsigned NumUses = 0; 1022 for (auto *CU : C->users()) 1023 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1024 1025 return NumUses; 1026 } 1027 1028 /// \brief Only consider global GOT equivalents if at least one user is a 1029 /// cstexpr inside an initializer of another global variables. Also, don't 1030 /// handle cstexpr inside instructions. During global variable emission, 1031 /// candidates are skipped and are emitted later in case at least one cstexpr 1032 /// isn't replaced by a PC relative GOT entry access. 1033 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1034 unsigned &NumGOTEquivUsers) { 1035 // Global GOT equivalents are unnamed private globals with a constant 1036 // pointer initializer to another global symbol. They must point to a 1037 // GlobalVariable or Function, i.e., as GlobalValue. 1038 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 1039 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 1040 return false; 1041 1042 // To be a got equivalent, at least one of its users need to be a constant 1043 // expression used by another global variable. 1044 for (auto *U : GV->users()) 1045 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1046 1047 return NumGOTEquivUsers > 0; 1048 } 1049 1050 /// \brief Unnamed constant global variables solely contaning a pointer to 1051 /// another globals variable is equivalent to a GOT table entry; it contains the 1052 /// the address of another symbol. Optimize it and replace accesses to these 1053 /// "GOT equivalents" by using the GOT entry for the final global instead. 1054 /// Compute GOT equivalent candidates among all global variables to avoid 1055 /// emitting them if possible later on, after it use is replaced by a GOT entry 1056 /// access. 1057 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1058 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1059 return; 1060 1061 for (const auto &G : M.globals()) { 1062 unsigned NumGOTEquivUsers = 0; 1063 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1064 continue; 1065 1066 const MCSymbol *GOTEquivSym = getSymbol(&G); 1067 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1068 } 1069 } 1070 1071 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1072 /// for PC relative GOT entry conversion, in such cases we need to emit such 1073 /// globals we previously omitted in EmitGlobalVariable. 1074 void AsmPrinter::emitGlobalGOTEquivs() { 1075 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1076 return; 1077 1078 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1079 for (auto &I : GlobalGOTEquivs) { 1080 const GlobalVariable *GV = I.second.first; 1081 unsigned Cnt = I.second.second; 1082 if (Cnt) 1083 FailedCandidates.push_back(GV); 1084 } 1085 GlobalGOTEquivs.clear(); 1086 1087 for (auto *GV : FailedCandidates) 1088 EmitGlobalVariable(GV); 1089 } 1090 1091 bool AsmPrinter::doFinalization(Module &M) { 1092 // Set the MachineFunction to nullptr so that we can catch attempted 1093 // accesses to MF specific features at the module level and so that 1094 // we can conditionalize accesses based on whether or not it is nullptr. 1095 MF = nullptr; 1096 1097 // Gather all GOT equivalent globals in the module. We really need two 1098 // passes over the globals: one to compute and another to avoid its emission 1099 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1100 // where the got equivalent shows up before its use. 1101 computeGlobalGOTEquivs(M); 1102 1103 // Emit global variables. 1104 for (const auto &G : M.globals()) 1105 EmitGlobalVariable(&G); 1106 1107 // Emit remaining GOT equivalent globals. 1108 emitGlobalGOTEquivs(); 1109 1110 // Emit visibility info for declarations 1111 for (const Function &F : M) { 1112 if (!F.isDeclarationForLinker()) 1113 continue; 1114 GlobalValue::VisibilityTypes V = F.getVisibility(); 1115 if (V == GlobalValue::DefaultVisibility) 1116 continue; 1117 1118 MCSymbol *Name = getSymbol(&F); 1119 EmitVisibility(Name, V, false); 1120 } 1121 1122 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1123 1124 // Emit module flags. 1125 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1126 M.getModuleFlagsMetadata(ModuleFlags); 1127 if (!ModuleFlags.empty()) 1128 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1129 1130 if (TM.getTargetTriple().isOSBinFormatELF()) { 1131 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1132 1133 // Output stubs for external and common global variables. 1134 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1135 if (!Stubs.empty()) { 1136 OutStreamer->SwitchSection(TLOF.getDataRelSection()); 1137 const DataLayout &DL = M.getDataLayout(); 1138 1139 for (const auto &Stub : Stubs) { 1140 OutStreamer->EmitLabel(Stub.first); 1141 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1142 DL.getPointerSize()); 1143 } 1144 } 1145 } 1146 1147 // Make sure we wrote out everything we need. 1148 OutStreamer->Flush(); 1149 1150 // Finalize debug and EH information. 1151 for (const HandlerInfo &HI : Handlers) { 1152 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1153 TimePassesIsEnabled); 1154 HI.Handler->endModule(); 1155 delete HI.Handler; 1156 } 1157 Handlers.clear(); 1158 DD = nullptr; 1159 1160 // If the target wants to know about weak references, print them all. 1161 if (MAI->getWeakRefDirective()) { 1162 // FIXME: This is not lazy, it would be nice to only print weak references 1163 // to stuff that is actually used. Note that doing so would require targets 1164 // to notice uses in operands (due to constant exprs etc). This should 1165 // happen with the MC stuff eventually. 1166 1167 // Print out module-level global variables here. 1168 for (const auto &G : M.globals()) { 1169 if (!G.hasExternalWeakLinkage()) 1170 continue; 1171 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1172 } 1173 1174 for (const auto &F : M) { 1175 if (!F.hasExternalWeakLinkage()) 1176 continue; 1177 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1178 } 1179 } 1180 1181 OutStreamer->AddBlankLine(); 1182 for (const auto &Alias : M.aliases()) { 1183 MCSymbol *Name = getSymbol(&Alias); 1184 1185 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1186 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1187 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1188 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1189 else 1190 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1191 1192 EmitVisibility(Name, Alias.getVisibility()); 1193 1194 // Emit the directives as assignments aka .set: 1195 OutStreamer->EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1196 1197 // Set the size of the alias symbol if we can, as otherwise the alias gets 1198 // the size of the aliasee which may not be correct e.g. if the alias is of 1199 // a member of a struct. 1200 if (MAI->hasDotTypeDotSizeDirective() && Alias.getValueType()->isSized()) { 1201 const DataLayout &DL = M.getDataLayout(); 1202 uint64_t Size = DL.getTypeAllocSize(Alias.getValueType()); 1203 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name), 1204 MCConstantExpr::create(Size, OutContext)); 1205 } 1206 } 1207 1208 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1209 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1210 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1211 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1212 MP->finishAssembly(M, *MI, *this); 1213 1214 // Emit llvm.ident metadata in an '.ident' directive. 1215 EmitModuleIdents(M); 1216 1217 // Emit __morestack address if needed for indirect calls. 1218 if (MMI->usesMorestackAddr()) { 1219 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1220 getDataLayout(), SectionKind::getReadOnly(), 1221 /*C=*/nullptr); 1222 OutStreamer->SwitchSection(ReadOnlySection); 1223 1224 MCSymbol *AddrSymbol = 1225 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1226 OutStreamer->EmitLabel(AddrSymbol); 1227 1228 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1229 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1230 PtrSize); 1231 } 1232 1233 // If we don't have any trampolines, then we don't require stack memory 1234 // to be executable. Some targets have a directive to declare this. 1235 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1236 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1237 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1238 OutStreamer->SwitchSection(S); 1239 1240 // Allow the target to emit any magic that it wants at the end of the file, 1241 // after everything else has gone out. 1242 EmitEndOfAsmFile(M); 1243 1244 delete Mang; Mang = nullptr; 1245 MMI = nullptr; 1246 1247 OutStreamer->Finish(); 1248 OutStreamer->reset(); 1249 1250 return false; 1251 } 1252 1253 MCSymbol *AsmPrinter::getCurExceptionSym() { 1254 if (!CurExceptionSym) 1255 CurExceptionSym = createTempSymbol("exception"); 1256 return CurExceptionSym; 1257 } 1258 1259 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1260 this->MF = &MF; 1261 // Get the function symbol. 1262 CurrentFnSym = getSymbol(MF.getFunction()); 1263 CurrentFnSymForSize = CurrentFnSym; 1264 CurrentFnBegin = nullptr; 1265 CurExceptionSym = nullptr; 1266 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1267 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1268 NeedsLocalForSize) { 1269 CurrentFnBegin = createTempSymbol("func_begin"); 1270 if (NeedsLocalForSize) 1271 CurrentFnSymForSize = CurrentFnBegin; 1272 } 1273 1274 if (isVerbose()) 1275 LI = &getAnalysis<MachineLoopInfo>(); 1276 } 1277 1278 namespace { 1279 // Keep track the alignment, constpool entries per Section. 1280 struct SectionCPs { 1281 MCSection *S; 1282 unsigned Alignment; 1283 SmallVector<unsigned, 4> CPEs; 1284 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1285 }; 1286 } 1287 1288 /// EmitConstantPool - Print to the current output stream assembly 1289 /// representations of the constants in the constant pool MCP. This is 1290 /// used to print out constants which have been "spilled to memory" by 1291 /// the code generator. 1292 /// 1293 void AsmPrinter::EmitConstantPool() { 1294 const MachineConstantPool *MCP = MF->getConstantPool(); 1295 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1296 if (CP.empty()) return; 1297 1298 // Calculate sections for constant pool entries. We collect entries to go into 1299 // the same section together to reduce amount of section switch statements. 1300 SmallVector<SectionCPs, 4> CPSections; 1301 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1302 const MachineConstantPoolEntry &CPE = CP[i]; 1303 unsigned Align = CPE.getAlignment(); 1304 1305 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1306 1307 const Constant *C = nullptr; 1308 if (!CPE.isMachineConstantPoolEntry()) 1309 C = CPE.Val.ConstVal; 1310 1311 MCSection *S = 1312 getObjFileLowering().getSectionForConstant(getDataLayout(), Kind, C); 1313 1314 // The number of sections are small, just do a linear search from the 1315 // last section to the first. 1316 bool Found = false; 1317 unsigned SecIdx = CPSections.size(); 1318 while (SecIdx != 0) { 1319 if (CPSections[--SecIdx].S == S) { 1320 Found = true; 1321 break; 1322 } 1323 } 1324 if (!Found) { 1325 SecIdx = CPSections.size(); 1326 CPSections.push_back(SectionCPs(S, Align)); 1327 } 1328 1329 if (Align > CPSections[SecIdx].Alignment) 1330 CPSections[SecIdx].Alignment = Align; 1331 CPSections[SecIdx].CPEs.push_back(i); 1332 } 1333 1334 // Now print stuff into the calculated sections. 1335 const MCSection *CurSection = nullptr; 1336 unsigned Offset = 0; 1337 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1338 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1339 unsigned CPI = CPSections[i].CPEs[j]; 1340 MCSymbol *Sym = GetCPISymbol(CPI); 1341 if (!Sym->isUndefined()) 1342 continue; 1343 1344 if (CurSection != CPSections[i].S) { 1345 OutStreamer->SwitchSection(CPSections[i].S); 1346 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1347 CurSection = CPSections[i].S; 1348 Offset = 0; 1349 } 1350 1351 MachineConstantPoolEntry CPE = CP[CPI]; 1352 1353 // Emit inter-object padding for alignment. 1354 unsigned AlignMask = CPE.getAlignment() - 1; 1355 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1356 OutStreamer->EmitZeros(NewOffset - Offset); 1357 1358 Type *Ty = CPE.getType(); 1359 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1360 1361 OutStreamer->EmitLabel(Sym); 1362 if (CPE.isMachineConstantPoolEntry()) 1363 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1364 else 1365 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1366 } 1367 } 1368 } 1369 1370 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1371 /// by the current function to the current output stream. 1372 /// 1373 void AsmPrinter::EmitJumpTableInfo() { 1374 const DataLayout &DL = MF->getDataLayout(); 1375 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1376 if (!MJTI) return; 1377 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1378 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1379 if (JT.empty()) return; 1380 1381 // Pick the directive to use to print the jump table entries, and switch to 1382 // the appropriate section. 1383 const Function *F = MF->getFunction(); 1384 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1385 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1386 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1387 *F); 1388 if (JTInDiffSection) { 1389 // Drop it in the readonly section. 1390 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1391 OutStreamer->SwitchSection(ReadOnlySection); 1392 } 1393 1394 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1395 1396 // Jump tables in code sections are marked with a data_region directive 1397 // where that's supported. 1398 if (!JTInDiffSection) 1399 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1400 1401 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1402 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1403 1404 // If this jump table was deleted, ignore it. 1405 if (JTBBs.empty()) continue; 1406 1407 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1408 /// emit a .set directive for each unique entry. 1409 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1410 MAI->doesSetDirectiveSuppressesReloc()) { 1411 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1412 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1413 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1414 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1415 const MachineBasicBlock *MBB = JTBBs[ii]; 1416 if (!EmittedSets.insert(MBB).second) 1417 continue; 1418 1419 // .set LJTSet, LBB32-base 1420 const MCExpr *LHS = 1421 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1422 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1423 MCBinaryExpr::createSub(LHS, Base, 1424 OutContext)); 1425 } 1426 } 1427 1428 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1429 // before each jump table. The first label is never referenced, but tells 1430 // the assembler and linker the extents of the jump table object. The 1431 // second label is actually referenced by the code. 1432 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1433 // FIXME: This doesn't have to have any specific name, just any randomly 1434 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1435 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1436 1437 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1438 1439 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1440 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1441 } 1442 if (!JTInDiffSection) 1443 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1444 } 1445 1446 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1447 /// current stream. 1448 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1449 const MachineBasicBlock *MBB, 1450 unsigned UID) const { 1451 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1452 const MCExpr *Value = nullptr; 1453 switch (MJTI->getEntryKind()) { 1454 case MachineJumpTableInfo::EK_Inline: 1455 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1456 case MachineJumpTableInfo::EK_Custom32: 1457 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1458 MJTI, MBB, UID, OutContext); 1459 break; 1460 case MachineJumpTableInfo::EK_BlockAddress: 1461 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1462 // .word LBB123 1463 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1464 break; 1465 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1466 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1467 // with a relocation as gp-relative, e.g.: 1468 // .gprel32 LBB123 1469 MCSymbol *MBBSym = MBB->getSymbol(); 1470 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1471 return; 1472 } 1473 1474 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1475 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1476 // with a relocation as gp-relative, e.g.: 1477 // .gpdword LBB123 1478 MCSymbol *MBBSym = MBB->getSymbol(); 1479 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1480 return; 1481 } 1482 1483 case MachineJumpTableInfo::EK_LabelDifference32: { 1484 // Each entry is the address of the block minus the address of the jump 1485 // table. This is used for PIC jump tables where gprel32 is not supported. 1486 // e.g.: 1487 // .word LBB123 - LJTI1_2 1488 // If the .set directive avoids relocations, this is emitted as: 1489 // .set L4_5_set_123, LBB123 - LJTI1_2 1490 // .word L4_5_set_123 1491 if (MAI->doesSetDirectiveSuppressesReloc()) { 1492 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1493 OutContext); 1494 break; 1495 } 1496 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1497 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1498 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1499 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1500 break; 1501 } 1502 } 1503 1504 assert(Value && "Unknown entry kind!"); 1505 1506 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1507 OutStreamer->EmitValue(Value, EntrySize); 1508 } 1509 1510 1511 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1512 /// special global used by LLVM. If so, emit it and return true, otherwise 1513 /// do nothing and return false. 1514 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1515 if (GV->getName() == "llvm.used") { 1516 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1517 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1518 return true; 1519 } 1520 1521 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1522 if (StringRef(GV->getSection()) == "llvm.metadata" || 1523 GV->hasAvailableExternallyLinkage()) 1524 return true; 1525 1526 if (!GV->hasAppendingLinkage()) return false; 1527 1528 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1529 1530 if (GV->getName() == "llvm.global_ctors") { 1531 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1532 /* isCtor */ true); 1533 1534 if (TM.getRelocationModel() == Reloc::Static && 1535 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1536 StringRef Sym(".constructors_used"); 1537 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1538 MCSA_Reference); 1539 } 1540 return true; 1541 } 1542 1543 if (GV->getName() == "llvm.global_dtors") { 1544 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1545 /* isCtor */ false); 1546 1547 if (TM.getRelocationModel() == Reloc::Static && 1548 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1549 StringRef Sym(".destructors_used"); 1550 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1551 MCSA_Reference); 1552 } 1553 return true; 1554 } 1555 1556 return false; 1557 } 1558 1559 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1560 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1561 /// is true, as being used with this directive. 1562 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1563 // Should be an array of 'i8*'. 1564 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1565 const GlobalValue *GV = 1566 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1567 if (GV) 1568 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1569 } 1570 } 1571 1572 namespace { 1573 struct Structor { 1574 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1575 int Priority; 1576 llvm::Constant *Func; 1577 llvm::GlobalValue *ComdatKey; 1578 }; 1579 } // end namespace 1580 1581 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1582 /// priority. 1583 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1584 bool isCtor) { 1585 // Should be an array of '{ int, void ()* }' structs. The first value is the 1586 // init priority. 1587 if (!isa<ConstantArray>(List)) return; 1588 1589 // Sanity check the structors list. 1590 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1591 if (!InitList) return; // Not an array! 1592 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1593 // FIXME: Only allow the 3-field form in LLVM 4.0. 1594 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1595 return; // Not an array of two or three elements! 1596 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1597 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1598 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1599 return; // Not (int, ptr, ptr). 1600 1601 // Gather the structors in a form that's convenient for sorting by priority. 1602 SmallVector<Structor, 8> Structors; 1603 for (Value *O : InitList->operands()) { 1604 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1605 if (!CS) continue; // Malformed. 1606 if (CS->getOperand(1)->isNullValue()) 1607 break; // Found a null terminator, skip the rest. 1608 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1609 if (!Priority) continue; // Malformed. 1610 Structors.push_back(Structor()); 1611 Structor &S = Structors.back(); 1612 S.Priority = Priority->getLimitedValue(65535); 1613 S.Func = CS->getOperand(1); 1614 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1615 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1616 } 1617 1618 // Emit the function pointers in the target-specific order 1619 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1620 std::stable_sort(Structors.begin(), Structors.end(), 1621 [](const Structor &L, 1622 const Structor &R) { return L.Priority < R.Priority; }); 1623 for (Structor &S : Structors) { 1624 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1625 const MCSymbol *KeySym = nullptr; 1626 if (GlobalValue *GV = S.ComdatKey) { 1627 if (GV->hasAvailableExternallyLinkage()) 1628 // If the associated variable is available_externally, some other TU 1629 // will provide its dynamic initializer. 1630 continue; 1631 1632 KeySym = getSymbol(GV); 1633 } 1634 MCSection *OutputSection = 1635 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1636 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1637 OutStreamer->SwitchSection(OutputSection); 1638 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1639 EmitAlignment(Align); 1640 EmitXXStructor(DL, S.Func); 1641 } 1642 } 1643 1644 void AsmPrinter::EmitModuleIdents(Module &M) { 1645 if (!MAI->hasIdentDirective()) 1646 return; 1647 1648 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1649 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1650 const MDNode *N = NMD->getOperand(i); 1651 assert(N->getNumOperands() == 1 && 1652 "llvm.ident metadata entry can have only one operand"); 1653 const MDString *S = cast<MDString>(N->getOperand(0)); 1654 OutStreamer->EmitIdent(S->getString()); 1655 } 1656 } 1657 } 1658 1659 //===--------------------------------------------------------------------===// 1660 // Emission and print routines 1661 // 1662 1663 /// EmitInt8 - Emit a byte directive and value. 1664 /// 1665 void AsmPrinter::EmitInt8(int Value) const { 1666 OutStreamer->EmitIntValue(Value, 1); 1667 } 1668 1669 /// EmitInt16 - Emit a short directive and value. 1670 /// 1671 void AsmPrinter::EmitInt16(int Value) const { 1672 OutStreamer->EmitIntValue(Value, 2); 1673 } 1674 1675 /// EmitInt32 - Emit a long directive and value. 1676 /// 1677 void AsmPrinter::EmitInt32(int Value) const { 1678 OutStreamer->EmitIntValue(Value, 4); 1679 } 1680 1681 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1682 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1683 /// .set if it avoids relocations. 1684 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1685 unsigned Size) const { 1686 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1687 } 1688 1689 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1690 /// where the size in bytes of the directive is specified by Size and Label 1691 /// specifies the label. This implicitly uses .set if it is available. 1692 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1693 unsigned Size, 1694 bool IsSectionRelative) const { 1695 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1696 OutStreamer->EmitCOFFSecRel32(Label); 1697 return; 1698 } 1699 1700 // Emit Label+Offset (or just Label if Offset is zero) 1701 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1702 if (Offset) 1703 Expr = MCBinaryExpr::createAdd( 1704 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1705 1706 OutStreamer->EmitValue(Expr, Size); 1707 } 1708 1709 //===----------------------------------------------------------------------===// 1710 1711 // EmitAlignment - Emit an alignment directive to the specified power of 1712 // two boundary. For example, if you pass in 3 here, you will get an 8 1713 // byte alignment. If a global value is specified, and if that global has 1714 // an explicit alignment requested, it will override the alignment request 1715 // if required for correctness. 1716 // 1717 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1718 if (GV) 1719 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1720 1721 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1722 1723 assert(NumBits < 1724 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1725 "undefined behavior"); 1726 if (getCurrentSection()->getKind().isText()) 1727 OutStreamer->EmitCodeAlignment(1u << NumBits); 1728 else 1729 OutStreamer->EmitValueToAlignment(1u << NumBits); 1730 } 1731 1732 //===----------------------------------------------------------------------===// 1733 // Constant emission. 1734 //===----------------------------------------------------------------------===// 1735 1736 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1737 MCContext &Ctx = OutContext; 1738 1739 if (CV->isNullValue() || isa<UndefValue>(CV)) 1740 return MCConstantExpr::create(0, Ctx); 1741 1742 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1743 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1744 1745 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1746 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1747 1748 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1749 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1750 1751 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1752 if (!CE) { 1753 llvm_unreachable("Unknown constant value to lower!"); 1754 } 1755 1756 if (const MCExpr *RelocExpr 1757 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1758 return RelocExpr; 1759 1760 switch (CE->getOpcode()) { 1761 default: 1762 // If the code isn't optimized, there may be outstanding folding 1763 // opportunities. Attempt to fold the expression using DataLayout as a 1764 // last resort before giving up. 1765 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout())) 1766 if (C != CE) 1767 return lowerConstant(C); 1768 1769 // Otherwise report the problem to the user. 1770 { 1771 std::string S; 1772 raw_string_ostream OS(S); 1773 OS << "Unsupported expression in static initializer: "; 1774 CE->printAsOperand(OS, /*PrintType=*/false, 1775 !MF ? nullptr : MF->getFunction()->getParent()); 1776 report_fatal_error(OS.str()); 1777 } 1778 case Instruction::GetElementPtr: { 1779 // Generate a symbolic expression for the byte address 1780 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1781 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1782 1783 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1784 if (!OffsetAI) 1785 return Base; 1786 1787 int64_t Offset = OffsetAI.getSExtValue(); 1788 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1789 Ctx); 1790 } 1791 1792 case Instruction::Trunc: 1793 // We emit the value and depend on the assembler to truncate the generated 1794 // expression properly. This is important for differences between 1795 // blockaddress labels. Since the two labels are in the same function, it 1796 // is reasonable to treat their delta as a 32-bit value. 1797 // FALL THROUGH. 1798 case Instruction::BitCast: 1799 return lowerConstant(CE->getOperand(0)); 1800 1801 case Instruction::IntToPtr: { 1802 const DataLayout &DL = getDataLayout(); 1803 1804 // Handle casts to pointers by changing them into casts to the appropriate 1805 // integer type. This promotes constant folding and simplifies this code. 1806 Constant *Op = CE->getOperand(0); 1807 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1808 false/*ZExt*/); 1809 return lowerConstant(Op); 1810 } 1811 1812 case Instruction::PtrToInt: { 1813 const DataLayout &DL = getDataLayout(); 1814 1815 // Support only foldable casts to/from pointers that can be eliminated by 1816 // changing the pointer to the appropriately sized integer type. 1817 Constant *Op = CE->getOperand(0); 1818 Type *Ty = CE->getType(); 1819 1820 const MCExpr *OpExpr = lowerConstant(Op); 1821 1822 // We can emit the pointer value into this slot if the slot is an 1823 // integer slot equal to the size of the pointer. 1824 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1825 return OpExpr; 1826 1827 // Otherwise the pointer is smaller than the resultant integer, mask off 1828 // the high bits so we are sure to get a proper truncation if the input is 1829 // a constant expr. 1830 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1831 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1832 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1833 } 1834 1835 // The MC library also has a right-shift operator, but it isn't consistently 1836 // signed or unsigned between different targets. 1837 case Instruction::Add: 1838 case Instruction::Sub: 1839 case Instruction::Mul: 1840 case Instruction::SDiv: 1841 case Instruction::SRem: 1842 case Instruction::Shl: 1843 case Instruction::And: 1844 case Instruction::Or: 1845 case Instruction::Xor: { 1846 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1847 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1848 switch (CE->getOpcode()) { 1849 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1850 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1851 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1852 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1853 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1854 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1855 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1856 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1857 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1858 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1859 } 1860 } 1861 } 1862 } 1863 1864 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1865 AsmPrinter &AP, 1866 const Constant *BaseCV = nullptr, 1867 uint64_t Offset = 0); 1868 1869 /// isRepeatedByteSequence - Determine whether the given value is 1870 /// composed of a repeated sequence of identical bytes and return the 1871 /// byte value. If it is not a repeated sequence, return -1. 1872 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1873 StringRef Data = V->getRawDataValues(); 1874 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1875 char C = Data[0]; 1876 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1877 if (Data[i] != C) return -1; 1878 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1879 } 1880 1881 1882 /// isRepeatedByteSequence - Determine whether the given value is 1883 /// composed of a repeated sequence of identical bytes and return the 1884 /// byte value. If it is not a repeated sequence, return -1. 1885 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1886 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1887 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1888 assert(Size % 8 == 0); 1889 1890 // Extend the element to take zero padding into account. 1891 APInt Value = CI->getValue().zextOrSelf(Size); 1892 if (!Value.isSplat(8)) 1893 return -1; 1894 1895 return Value.zextOrTrunc(8).getZExtValue(); 1896 } 1897 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1898 // Make sure all array elements are sequences of the same repeated 1899 // byte. 1900 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1901 Constant *Op0 = CA->getOperand(0); 1902 int Byte = isRepeatedByteSequence(Op0, DL); 1903 if (Byte == -1) 1904 return -1; 1905 1906 // All array elements must be equal. 1907 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1908 if (CA->getOperand(i) != Op0) 1909 return -1; 1910 return Byte; 1911 } 1912 1913 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1914 return isRepeatedByteSequence(CDS); 1915 1916 return -1; 1917 } 1918 1919 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1920 const ConstantDataSequential *CDS, 1921 AsmPrinter &AP) { 1922 1923 // See if we can aggregate this into a .fill, if so, emit it as such. 1924 int Value = isRepeatedByteSequence(CDS, DL); 1925 if (Value != -1) { 1926 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1927 // Don't emit a 1-byte object as a .fill. 1928 if (Bytes > 1) 1929 return AP.OutStreamer->EmitFill(Bytes, Value); 1930 } 1931 1932 // If this can be emitted with .ascii/.asciz, emit it as such. 1933 if (CDS->isString()) 1934 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1935 1936 // Otherwise, emit the values in successive locations. 1937 unsigned ElementByteSize = CDS->getElementByteSize(); 1938 if (isa<IntegerType>(CDS->getElementType())) { 1939 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1940 if (AP.isVerbose()) 1941 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1942 CDS->getElementAsInteger(i)); 1943 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1944 ElementByteSize); 1945 } 1946 } else if (ElementByteSize == 4) { 1947 // FP Constants are printed as integer constants to avoid losing 1948 // precision. 1949 assert(CDS->getElementType()->isFloatTy()); 1950 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1951 union { 1952 float F; 1953 uint32_t I; 1954 }; 1955 1956 F = CDS->getElementAsFloat(i); 1957 if (AP.isVerbose()) 1958 AP.OutStreamer->GetCommentOS() << "float " << F << '\n'; 1959 AP.OutStreamer->EmitIntValue(I, 4); 1960 } 1961 } else { 1962 assert(CDS->getElementType()->isDoubleTy()); 1963 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1964 union { 1965 double F; 1966 uint64_t I; 1967 }; 1968 1969 F = CDS->getElementAsDouble(i); 1970 if (AP.isVerbose()) 1971 AP.OutStreamer->GetCommentOS() << "double " << F << '\n'; 1972 AP.OutStreamer->EmitIntValue(I, 8); 1973 } 1974 } 1975 1976 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1977 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1978 CDS->getNumElements(); 1979 if (unsigned Padding = Size - EmittedSize) 1980 AP.OutStreamer->EmitZeros(Padding); 1981 1982 } 1983 1984 static void emitGlobalConstantArray(const DataLayout &DL, 1985 const ConstantArray *CA, AsmPrinter &AP, 1986 const Constant *BaseCV, uint64_t Offset) { 1987 // See if we can aggregate some values. Make sure it can be 1988 // represented as a series of bytes of the constant value. 1989 int Value = isRepeatedByteSequence(CA, DL); 1990 1991 if (Value != -1) { 1992 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1993 AP.OutStreamer->EmitFill(Bytes, Value); 1994 } 1995 else { 1996 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1997 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 1998 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1999 } 2000 } 2001 } 2002 2003 static void emitGlobalConstantVector(const DataLayout &DL, 2004 const ConstantVector *CV, AsmPrinter &AP) { 2005 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2006 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2007 2008 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2009 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2010 CV->getType()->getNumElements(); 2011 if (unsigned Padding = Size - EmittedSize) 2012 AP.OutStreamer->EmitZeros(Padding); 2013 } 2014 2015 static void emitGlobalConstantStruct(const DataLayout &DL, 2016 const ConstantStruct *CS, AsmPrinter &AP, 2017 const Constant *BaseCV, uint64_t Offset) { 2018 // Print the fields in successive locations. Pad to align if needed! 2019 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2020 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2021 uint64_t SizeSoFar = 0; 2022 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2023 const Constant *Field = CS->getOperand(i); 2024 2025 // Print the actual field value. 2026 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2027 2028 // Check if padding is needed and insert one or more 0s. 2029 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2030 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2031 - Layout->getElementOffset(i)) - FieldSize; 2032 SizeSoFar += FieldSize + PadSize; 2033 2034 // Insert padding - this may include padding to increase the size of the 2035 // current field up to the ABI size (if the struct is not packed) as well 2036 // as padding to ensure that the next field starts at the right offset. 2037 AP.OutStreamer->EmitZeros(PadSize); 2038 } 2039 assert(SizeSoFar == Layout->getSizeInBytes() && 2040 "Layout of constant struct may be incorrect!"); 2041 } 2042 2043 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2044 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2045 2046 // First print a comment with what we think the original floating-point value 2047 // should have been. 2048 if (AP.isVerbose()) { 2049 SmallString<8> StrVal; 2050 CFP->getValueAPF().toString(StrVal); 2051 2052 if (CFP->getType()) 2053 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2054 else 2055 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2056 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2057 } 2058 2059 // Now iterate through the APInt chunks, emitting them in endian-correct 2060 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2061 // floats). 2062 unsigned NumBytes = API.getBitWidth() / 8; 2063 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2064 const uint64_t *p = API.getRawData(); 2065 2066 // PPC's long double has odd notions of endianness compared to how LLVM 2067 // handles it: p[0] goes first for *big* endian on PPC. 2068 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2069 int Chunk = API.getNumWords() - 1; 2070 2071 if (TrailingBytes) 2072 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2073 2074 for (; Chunk >= 0; --Chunk) 2075 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2076 } else { 2077 unsigned Chunk; 2078 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2079 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2080 2081 if (TrailingBytes) 2082 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2083 } 2084 2085 // Emit the tail padding for the long double. 2086 const DataLayout &DL = AP.getDataLayout(); 2087 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2088 DL.getTypeStoreSize(CFP->getType())); 2089 } 2090 2091 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2092 const DataLayout &DL = AP.getDataLayout(); 2093 unsigned BitWidth = CI->getBitWidth(); 2094 2095 // Copy the value as we may massage the layout for constants whose bit width 2096 // is not a multiple of 64-bits. 2097 APInt Realigned(CI->getValue()); 2098 uint64_t ExtraBits = 0; 2099 unsigned ExtraBitsSize = BitWidth & 63; 2100 2101 if (ExtraBitsSize) { 2102 // The bit width of the data is not a multiple of 64-bits. 2103 // The extra bits are expected to be at the end of the chunk of the memory. 2104 // Little endian: 2105 // * Nothing to be done, just record the extra bits to emit. 2106 // Big endian: 2107 // * Record the extra bits to emit. 2108 // * Realign the raw data to emit the chunks of 64-bits. 2109 if (DL.isBigEndian()) { 2110 // Basically the structure of the raw data is a chunk of 64-bits cells: 2111 // 0 1 BitWidth / 64 2112 // [chunk1][chunk2] ... [chunkN]. 2113 // The most significant chunk is chunkN and it should be emitted first. 2114 // However, due to the alignment issue chunkN contains useless bits. 2115 // Realign the chunks so that they contain only useless information: 2116 // ExtraBits 0 1 (BitWidth / 64) - 1 2117 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2118 ExtraBits = Realigned.getRawData()[0] & 2119 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2120 Realigned = Realigned.lshr(ExtraBitsSize); 2121 } else 2122 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2123 } 2124 2125 // We don't expect assemblers to support integer data directives 2126 // for more than 64 bits, so we emit the data in at most 64-bit 2127 // quantities at a time. 2128 const uint64_t *RawData = Realigned.getRawData(); 2129 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2130 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2131 AP.OutStreamer->EmitIntValue(Val, 8); 2132 } 2133 2134 if (ExtraBitsSize) { 2135 // Emit the extra bits after the 64-bits chunks. 2136 2137 // Emit a directive that fills the expected size. 2138 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2139 Size -= (BitWidth / 64) * 8; 2140 assert(Size && Size * 8 >= ExtraBitsSize && 2141 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2142 == ExtraBits && "Directive too small for extra bits."); 2143 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2144 } 2145 } 2146 2147 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2148 /// equivalent global, by a target specific GOT pc relative access to the 2149 /// final symbol. 2150 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2151 const Constant *BaseCst, 2152 uint64_t Offset) { 2153 // The global @foo below illustrates a global that uses a got equivalent. 2154 // 2155 // @bar = global i32 42 2156 // @gotequiv = private unnamed_addr constant i32* @bar 2157 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2158 // i64 ptrtoint (i32* @foo to i64)) 2159 // to i32) 2160 // 2161 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2162 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2163 // form: 2164 // 2165 // foo = cstexpr, where 2166 // cstexpr := <gotequiv> - "." + <cst> 2167 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2168 // 2169 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2170 // 2171 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2172 // gotpcrelcst := <offset from @foo base> + <cst> 2173 // 2174 MCValue MV; 2175 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2176 return; 2177 const MCSymbolRefExpr *SymA = MV.getSymA(); 2178 if (!SymA) 2179 return; 2180 2181 // Check that GOT equivalent symbol is cached. 2182 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2183 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2184 return; 2185 2186 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2187 if (!BaseGV) 2188 return; 2189 2190 // Check for a valid base symbol 2191 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2192 const MCSymbolRefExpr *SymB = MV.getSymB(); 2193 2194 if (!SymB || BaseSym != &SymB->getSymbol()) 2195 return; 2196 2197 // Make sure to match: 2198 // 2199 // gotpcrelcst := <offset from @foo base> + <cst> 2200 // 2201 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2202 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2203 // if the target knows how to encode it. 2204 // 2205 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2206 if (GOTPCRelCst < 0) 2207 return; 2208 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2209 return; 2210 2211 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2212 // 2213 // bar: 2214 // .long 42 2215 // gotequiv: 2216 // .quad bar 2217 // foo: 2218 // .long gotequiv - "." + <cst> 2219 // 2220 // is replaced by the target specific equivalent to: 2221 // 2222 // bar: 2223 // .long 42 2224 // foo: 2225 // .long bar@GOTPCREL+<gotpcrelcst> 2226 // 2227 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2228 const GlobalVariable *GV = Result.first; 2229 int NumUses = (int)Result.second; 2230 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2231 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2232 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2233 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2234 2235 // Update GOT equivalent usage information 2236 --NumUses; 2237 if (NumUses >= 0) 2238 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2239 } 2240 2241 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2242 AsmPrinter &AP, const Constant *BaseCV, 2243 uint64_t Offset) { 2244 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2245 2246 // Globals with sub-elements such as combinations of arrays and structs 2247 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2248 // constant symbol base and the current position with BaseCV and Offset. 2249 if (!BaseCV && CV->hasOneUse()) 2250 BaseCV = dyn_cast<Constant>(CV->user_back()); 2251 2252 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2253 return AP.OutStreamer->EmitZeros(Size); 2254 2255 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2256 switch (Size) { 2257 case 1: 2258 case 2: 2259 case 4: 2260 case 8: 2261 if (AP.isVerbose()) 2262 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2263 CI->getZExtValue()); 2264 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2265 return; 2266 default: 2267 emitGlobalConstantLargeInt(CI, AP); 2268 return; 2269 } 2270 } 2271 2272 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2273 return emitGlobalConstantFP(CFP, AP); 2274 2275 if (isa<ConstantPointerNull>(CV)) { 2276 AP.OutStreamer->EmitIntValue(0, Size); 2277 return; 2278 } 2279 2280 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2281 return emitGlobalConstantDataSequential(DL, CDS, AP); 2282 2283 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2284 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2285 2286 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2287 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2288 2289 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2290 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2291 // vectors). 2292 if (CE->getOpcode() == Instruction::BitCast) 2293 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2294 2295 if (Size > 8) { 2296 // If the constant expression's size is greater than 64-bits, then we have 2297 // to emit the value in chunks. Try to constant fold the value and emit it 2298 // that way. 2299 Constant *New = ConstantFoldConstantExpression(CE, DL); 2300 if (New && New != CE) 2301 return emitGlobalConstantImpl(DL, New, AP); 2302 } 2303 } 2304 2305 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2306 return emitGlobalConstantVector(DL, V, AP); 2307 2308 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2309 // thread the streamer with EmitValue. 2310 const MCExpr *ME = AP.lowerConstant(CV); 2311 2312 // Since lowerConstant already folded and got rid of all IR pointer and 2313 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2314 // directly. 2315 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2316 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2317 2318 AP.OutStreamer->EmitValue(ME, Size); 2319 } 2320 2321 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2322 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2323 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2324 if (Size) 2325 emitGlobalConstantImpl(DL, CV, *this); 2326 else if (MAI->hasSubsectionsViaSymbols()) { 2327 // If the global has zero size, emit a single byte so that two labels don't 2328 // look like they are at the same location. 2329 OutStreamer->EmitIntValue(0, 1); 2330 } 2331 } 2332 2333 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2334 // Target doesn't support this yet! 2335 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2336 } 2337 2338 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2339 if (Offset > 0) 2340 OS << '+' << Offset; 2341 else if (Offset < 0) 2342 OS << Offset; 2343 } 2344 2345 //===----------------------------------------------------------------------===// 2346 // Symbol Lowering Routines. 2347 //===----------------------------------------------------------------------===// 2348 2349 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2350 return OutContext.createTempSymbol(Name, true); 2351 } 2352 2353 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2354 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2355 } 2356 2357 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2358 return MMI->getAddrLabelSymbol(BB); 2359 } 2360 2361 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2362 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2363 const DataLayout &DL = getDataLayout(); 2364 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2365 "CPI" + Twine(getFunctionNumber()) + "_" + 2366 Twine(CPID)); 2367 } 2368 2369 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2370 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2371 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2372 } 2373 2374 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2375 /// FIXME: privatize to AsmPrinter. 2376 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2377 const DataLayout &DL = getDataLayout(); 2378 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2379 Twine(getFunctionNumber()) + "_" + 2380 Twine(UID) + "_set_" + Twine(MBBID)); 2381 } 2382 2383 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2384 StringRef Suffix) const { 2385 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2386 TM); 2387 } 2388 2389 /// Return the MCSymbol for the specified ExternalSymbol. 2390 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2391 SmallString<60> NameStr; 2392 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2393 return OutContext.getOrCreateSymbol(NameStr); 2394 } 2395 2396 2397 2398 /// PrintParentLoopComment - Print comments about parent loops of this one. 2399 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2400 unsigned FunctionNumber) { 2401 if (!Loop) return; 2402 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2403 OS.indent(Loop->getLoopDepth()*2) 2404 << "Parent Loop BB" << FunctionNumber << "_" 2405 << Loop->getHeader()->getNumber() 2406 << " Depth=" << Loop->getLoopDepth() << '\n'; 2407 } 2408 2409 2410 /// PrintChildLoopComment - Print comments about child loops within 2411 /// the loop for this basic block, with nesting. 2412 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2413 unsigned FunctionNumber) { 2414 // Add child loop information 2415 for (const MachineLoop *CL : *Loop) { 2416 OS.indent(CL->getLoopDepth()*2) 2417 << "Child Loop BB" << FunctionNumber << "_" 2418 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2419 << '\n'; 2420 PrintChildLoopComment(OS, CL, FunctionNumber); 2421 } 2422 } 2423 2424 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2425 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2426 const MachineLoopInfo *LI, 2427 const AsmPrinter &AP) { 2428 // Add loop depth information 2429 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2430 if (!Loop) return; 2431 2432 MachineBasicBlock *Header = Loop->getHeader(); 2433 assert(Header && "No header for loop"); 2434 2435 // If this block is not a loop header, just print out what is the loop header 2436 // and return. 2437 if (Header != &MBB) { 2438 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2439 Twine(AP.getFunctionNumber())+"_" + 2440 Twine(Loop->getHeader()->getNumber())+ 2441 " Depth="+Twine(Loop->getLoopDepth())); 2442 return; 2443 } 2444 2445 // Otherwise, it is a loop header. Print out information about child and 2446 // parent loops. 2447 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2448 2449 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2450 2451 OS << "=>"; 2452 OS.indent(Loop->getLoopDepth()*2-2); 2453 2454 OS << "This "; 2455 if (Loop->empty()) 2456 OS << "Inner "; 2457 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2458 2459 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2460 } 2461 2462 2463 /// EmitBasicBlockStart - This method prints the label for the specified 2464 /// MachineBasicBlock, an alignment (if present) and a comment describing 2465 /// it if appropriate. 2466 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2467 // Emit an alignment directive for this block, if needed. 2468 if (unsigned Align = MBB.getAlignment()) 2469 EmitAlignment(Align); 2470 2471 // If the block has its address taken, emit any labels that were used to 2472 // reference the block. It is possible that there is more than one label 2473 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2474 // the references were generated. 2475 if (MBB.hasAddressTaken()) { 2476 const BasicBlock *BB = MBB.getBasicBlock(); 2477 if (isVerbose()) 2478 OutStreamer->AddComment("Block address taken"); 2479 2480 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2481 OutStreamer->EmitLabel(Sym); 2482 } 2483 2484 // Print some verbose block comments. 2485 if (isVerbose()) { 2486 if (const BasicBlock *BB = MBB.getBasicBlock()) 2487 if (BB->hasName()) 2488 OutStreamer->AddComment("%" + BB->getName()); 2489 emitBasicBlockLoopComments(MBB, LI, *this); 2490 } 2491 2492 // Print the main label for the block. 2493 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2494 if (isVerbose()) { 2495 // NOTE: Want this comment at start of line, don't emit with AddComment. 2496 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2497 } 2498 } else { 2499 OutStreamer->EmitLabel(MBB.getSymbol()); 2500 } 2501 } 2502 2503 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2504 bool IsDefinition) const { 2505 MCSymbolAttr Attr = MCSA_Invalid; 2506 2507 switch (Visibility) { 2508 default: break; 2509 case GlobalValue::HiddenVisibility: 2510 if (IsDefinition) 2511 Attr = MAI->getHiddenVisibilityAttr(); 2512 else 2513 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2514 break; 2515 case GlobalValue::ProtectedVisibility: 2516 Attr = MAI->getProtectedVisibilityAttr(); 2517 break; 2518 } 2519 2520 if (Attr != MCSA_Invalid) 2521 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2522 } 2523 2524 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2525 /// exactly one predecessor and the control transfer mechanism between 2526 /// the predecessor and this block is a fall-through. 2527 bool AsmPrinter:: 2528 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2529 // If this is a landing pad, it isn't a fall through. If it has no preds, 2530 // then nothing falls through to it. 2531 if (MBB->isLandingPad() || MBB->pred_empty()) 2532 return false; 2533 2534 // If there isn't exactly one predecessor, it can't be a fall through. 2535 if (MBB->pred_size() > 1) 2536 return false; 2537 2538 // The predecessor has to be immediately before this block. 2539 MachineBasicBlock *Pred = *MBB->pred_begin(); 2540 if (!Pred->isLayoutSuccessor(MBB)) 2541 return false; 2542 2543 // If the block is completely empty, then it definitely does fall through. 2544 if (Pred->empty()) 2545 return true; 2546 2547 // Check the terminators in the previous blocks 2548 for (const auto &MI : Pred->terminators()) { 2549 // If it is not a simple branch, we are in a table somewhere. 2550 if (!MI.isBranch() || MI.isIndirectBranch()) 2551 return false; 2552 2553 // If we are the operands of one of the branches, this is not a fall 2554 // through. Note that targets with delay slots will usually bundle 2555 // terminators with the delay slot instruction. 2556 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2557 if (OP->isJTI()) 2558 return false; 2559 if (OP->isMBB() && OP->getMBB() == MBB) 2560 return false; 2561 } 2562 } 2563 2564 return true; 2565 } 2566 2567 2568 2569 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2570 if (!S.usesMetadata()) 2571 return nullptr; 2572 2573 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2574 " stackmap formats, please see the documentation for a description of" 2575 " the default format. If you really need a custom serialized format," 2576 " please file a bug"); 2577 2578 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2579 gcp_map_type::iterator GCPI = GCMap.find(&S); 2580 if (GCPI != GCMap.end()) 2581 return GCPI->second.get(); 2582 2583 const char *Name = S.getName().c_str(); 2584 2585 for (GCMetadataPrinterRegistry::iterator 2586 I = GCMetadataPrinterRegistry::begin(), 2587 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2588 if (strcmp(Name, I->getName()) == 0) { 2589 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2590 GMP->S = &S; 2591 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2592 return IterBool.first->second.get(); 2593 } 2594 2595 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2596 } 2597 2598 /// Pin vtable to this file. 2599 AsmPrinterHandler::~AsmPrinterHandler() {} 2600 2601 void AsmPrinterHandler::markFunctionEnd() {} 2602