1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/BinaryFormat/COFF.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineConstantPool.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineInstrBundle.h" 51 #include "llvm/CodeGen/MachineJumpTableInfo.h" 52 #include "llvm/CodeGen/MachineLoopInfo.h" 53 #include "llvm/CodeGen/MachineMemOperand.h" 54 #include "llvm/CodeGen/MachineModuleInfo.h" 55 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 58 #include "llvm/CodeGen/MachineSizeOpts.h" 59 #include "llvm/CodeGen/StackMaps.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Comdat.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GlobalAlias.h" 74 #include "llvm/IR/GlobalIFunc.h" 75 #include "llvm/IR/GlobalIndirectSymbol.h" 76 #include "llvm/IR/GlobalObject.h" 77 #include "llvm/IR/GlobalValue.h" 78 #include "llvm/IR/GlobalVariable.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Mangler.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/MC/MCAsmInfo.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/MC/MCDirectives.h" 89 #include "llvm/MC/MCDwarf.h" 90 #include "llvm/MC/MCExpr.h" 91 #include "llvm/MC/MCInst.h" 92 #include "llvm/MC/MCSection.h" 93 #include "llvm/MC/MCSectionCOFF.h" 94 #include "llvm/MC/MCSectionELF.h" 95 #include "llvm/MC/MCSectionMachO.h" 96 #include "llvm/MC/MCSectionXCOFF.h" 97 #include "llvm/MC/MCStreamer.h" 98 #include "llvm/MC/MCSubtargetInfo.h" 99 #include "llvm/MC/MCSymbol.h" 100 #include "llvm/MC/MCSymbolELF.h" 101 #include "llvm/MC/MCSymbolXCOFF.h" 102 #include "llvm/MC/MCTargetOptions.h" 103 #include "llvm/MC/MCValue.h" 104 #include "llvm/MC/SectionKind.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Remarks/Remark.h" 107 #include "llvm/Remarks/RemarkFormat.h" 108 #include "llvm/Remarks/RemarkStreamer.h" 109 #include "llvm/Remarks/RemarkStringTable.h" 110 #include "llvm/Support/Casting.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/Format.h" 115 #include "llvm/Support/MathExtras.h" 116 #include "llvm/Support/Path.h" 117 #include "llvm/Support/TargetRegistry.h" 118 #include "llvm/Support/Timer.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include "llvm/Target/TargetLoweringObjectFile.h" 121 #include "llvm/Target/TargetMachine.h" 122 #include "llvm/Target/TargetOptions.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <cinttypes> 126 #include <cstdint> 127 #include <iterator> 128 #include <limits> 129 #include <memory> 130 #include <string> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 136 #define DEBUG_TYPE "asm-printer" 137 138 static const char *const DWARFGroupName = "dwarf"; 139 static const char *const DWARFGroupDescription = "DWARF Emission"; 140 static const char *const DbgTimerName = "emit"; 141 static const char *const DbgTimerDescription = "Debug Info Emission"; 142 static const char *const EHTimerName = "write_exception"; 143 static const char *const EHTimerDescription = "DWARF Exception Writer"; 144 static const char *const CFGuardName = "Control Flow Guard"; 145 static const char *const CFGuardDescription = "Control Flow Guard"; 146 static const char *const CodeViewLineTablesGroupName = "linetables"; 147 static const char *const CodeViewLineTablesGroupDescription = 148 "CodeView Line Tables"; 149 150 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 151 152 char AsmPrinter::ID = 0; 153 154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 155 156 static gcp_map_type &getGCMap(void *&P) { 157 if (!P) 158 P = new gcp_map_type(); 159 return *(gcp_map_type*)P; 160 } 161 162 /// getGVAlignment - Return the alignment to use for the specified global 163 /// value. This rounds up to the preferred alignment if possible and legal. 164 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL, 165 Align InAlign) { 166 Align Alignment; 167 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 168 Alignment = Align(DL.getPreferredAlignment(GVar)); 169 170 // If InAlign is specified, round it to it. 171 if (InAlign > Alignment) 172 Alignment = InAlign; 173 174 // If the GV has a specified alignment, take it into account. 175 const MaybeAlign GVAlign(GV->getAlignment()); 176 if (!GVAlign) 177 return Alignment; 178 179 assert(GVAlign && "GVAlign must be set"); 180 181 // If the GVAlign is larger than NumBits, or if we are required to obey 182 // NumBits because the GV has an assigned section, obey it. 183 if (*GVAlign > Alignment || GV->hasSection()) 184 Alignment = *GVAlign; 185 return Alignment; 186 } 187 188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 189 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 190 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 191 VerboseAsm = OutStreamer->isVerboseAsm(); 192 } 193 194 AsmPrinter::~AsmPrinter() { 195 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 196 197 if (GCMetadataPrinters) { 198 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 199 200 delete &GCMap; 201 GCMetadataPrinters = nullptr; 202 } 203 } 204 205 bool AsmPrinter::isPositionIndependent() const { 206 return TM.isPositionIndependent(); 207 } 208 209 /// getFunctionNumber - Return a unique ID for the current function. 210 unsigned AsmPrinter::getFunctionNumber() const { 211 return MF->getFunctionNumber(); 212 } 213 214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 215 return *TM.getObjFileLowering(); 216 } 217 218 const DataLayout &AsmPrinter::getDataLayout() const { 219 return MMI->getModule()->getDataLayout(); 220 } 221 222 // Do not use the cached DataLayout because some client use it without a Module 223 // (dsymutil, llvm-dwarfdump). 224 unsigned AsmPrinter::getPointerSize() const { 225 return TM.getPointerSize(0); // FIXME: Default address space 226 } 227 228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 229 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 230 return MF->getSubtarget<MCSubtargetInfo>(); 231 } 232 233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 234 S.emitInstruction(Inst, getSubtargetInfo()); 235 } 236 237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 238 assert(DD && "Dwarf debug file is not defined."); 239 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 240 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 241 } 242 243 /// getCurrentSection() - Return the current section we are emitting to. 244 const MCSection *AsmPrinter::getCurrentSection() const { 245 return OutStreamer->getCurrentSectionOnly(); 246 } 247 248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 249 AU.setPreservesAll(); 250 MachineFunctionPass::getAnalysisUsage(AU); 251 AU.addRequired<MachineModuleInfoWrapperPass>(); 252 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 253 AU.addRequired<GCModuleInfo>(); 254 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 255 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 256 } 257 258 bool AsmPrinter::doInitialization(Module &M) { 259 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 260 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 261 262 // Initialize TargetLoweringObjectFile. 263 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 264 .Initialize(OutContext, TM); 265 266 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 267 .getModuleMetadata(M); 268 269 OutStreamer->InitSections(false); 270 271 // Emit the version-min deployment target directive if needed. 272 // 273 // FIXME: If we end up with a collection of these sorts of Darwin-specific 274 // or ELF-specific things, it may make sense to have a platform helper class 275 // that will work with the target helper class. For now keep it here, as the 276 // alternative is duplicated code in each of the target asm printers that 277 // use the directive, where it would need the same conditionalization 278 // anyway. 279 const Triple &Target = TM.getTargetTriple(); 280 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 281 282 // Allow the target to emit any magic that it wants at the start of the file. 283 emitStartOfAsmFile(M); 284 285 // Very minimal debug info. It is ignored if we emit actual debug info. If we 286 // don't, this at least helps the user find where a global came from. 287 if (MAI->hasSingleParameterDotFile()) { 288 // .file "foo.c" 289 OutStreamer->emitFileDirective( 290 llvm::sys::path::filename(M.getSourceFileName())); 291 } 292 293 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 294 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 295 for (auto &I : *MI) 296 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 297 MP->beginAssembly(M, *MI, *this); 298 299 // Emit module-level inline asm if it exists. 300 if (!M.getModuleInlineAsm().empty()) { 301 // We're at the module level. Construct MCSubtarget from the default CPU 302 // and target triple. 303 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 304 TM.getTargetTriple().str(), TM.getTargetCPU(), 305 TM.getTargetFeatureString())); 306 OutStreamer->AddComment("Start of file scope inline assembly"); 307 OutStreamer->AddBlankLine(); 308 emitInlineAsm(M.getModuleInlineAsm() + "\n", 309 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 310 OutStreamer->AddComment("End of file scope inline assembly"); 311 OutStreamer->AddBlankLine(); 312 } 313 314 if (MAI->doesSupportDebugInformation()) { 315 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 316 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 317 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 318 DbgTimerName, DbgTimerDescription, 319 CodeViewLineTablesGroupName, 320 CodeViewLineTablesGroupDescription); 321 } 322 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 323 DD = new DwarfDebug(this, &M); 324 DD->beginModule(); 325 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 326 DbgTimerDescription, DWARFGroupName, 327 DWARFGroupDescription); 328 } 329 } 330 331 switch (MAI->getExceptionHandlingType()) { 332 case ExceptionHandling::SjLj: 333 case ExceptionHandling::DwarfCFI: 334 case ExceptionHandling::ARM: 335 isCFIMoveForDebugging = true; 336 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 337 break; 338 for (auto &F: M.getFunctionList()) { 339 // If the module contains any function with unwind data, 340 // .eh_frame has to be emitted. 341 // Ignore functions that won't get emitted. 342 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 343 isCFIMoveForDebugging = false; 344 break; 345 } 346 } 347 break; 348 default: 349 isCFIMoveForDebugging = false; 350 break; 351 } 352 353 EHStreamer *ES = nullptr; 354 switch (MAI->getExceptionHandlingType()) { 355 case ExceptionHandling::None: 356 break; 357 case ExceptionHandling::SjLj: 358 case ExceptionHandling::DwarfCFI: 359 ES = new DwarfCFIException(this); 360 break; 361 case ExceptionHandling::ARM: 362 ES = new ARMException(this); 363 break; 364 case ExceptionHandling::WinEH: 365 switch (MAI->getWinEHEncodingType()) { 366 default: llvm_unreachable("unsupported unwinding information encoding"); 367 case WinEH::EncodingType::Invalid: 368 break; 369 case WinEH::EncodingType::X86: 370 case WinEH::EncodingType::Itanium: 371 ES = new WinException(this); 372 break; 373 } 374 break; 375 case ExceptionHandling::Wasm: 376 ES = new WasmException(this); 377 break; 378 } 379 if (ES) 380 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 381 EHTimerDescription, DWARFGroupName, 382 DWARFGroupDescription); 383 384 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 385 if (mdconst::extract_or_null<ConstantInt>( 386 MMI->getModule()->getModuleFlag("cfguard"))) 387 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 388 CFGuardDescription, DWARFGroupName, 389 DWARFGroupDescription); 390 return false; 391 } 392 393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 394 if (!MAI.hasWeakDefCanBeHiddenDirective()) 395 return false; 396 397 return GV->canBeOmittedFromSymbolTable(); 398 } 399 400 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 401 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 402 switch (Linkage) { 403 case GlobalValue::CommonLinkage: 404 case GlobalValue::LinkOnceAnyLinkage: 405 case GlobalValue::LinkOnceODRLinkage: 406 case GlobalValue::WeakAnyLinkage: 407 case GlobalValue::WeakODRLinkage: 408 if (MAI->hasWeakDefDirective()) { 409 // .globl _foo 410 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 411 412 if (!canBeHidden(GV, *MAI)) 413 // .weak_definition _foo 414 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 415 else 416 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 417 } else if (MAI->hasLinkOnceDirective()) { 418 // .globl _foo 419 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 420 //NOTE: linkonce is handled by the section the symbol was assigned to. 421 } else { 422 // .weak _foo 423 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 424 } 425 return; 426 case GlobalValue::ExternalLinkage: 427 // If external, declare as a global symbol: .globl _foo 428 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 429 return; 430 case GlobalValue::PrivateLinkage: 431 return; 432 case GlobalValue::InternalLinkage: 433 if (MAI->hasDotLGloblDirective()) 434 OutStreamer->emitSymbolAttribute(GVSym, MCSA_LGlobal); 435 return; 436 case GlobalValue::AppendingLinkage: 437 case GlobalValue::AvailableExternallyLinkage: 438 case GlobalValue::ExternalWeakLinkage: 439 llvm_unreachable("Should never emit this"); 440 } 441 llvm_unreachable("Unknown linkage type!"); 442 } 443 444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 445 const GlobalValue *GV) const { 446 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 447 } 448 449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 450 return TM.getSymbol(GV); 451 } 452 453 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 454 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 455 // exact definion (intersection of GlobalValue::hasExactDefinition() and 456 // !isInterposable()). These linkages include: external, appending, internal, 457 // private. It may be profitable to use a local alias for external. The 458 // assembler would otherwise be conservative and assume a global default 459 // visibility symbol can be interposable, even if the code generator already 460 // assumed it. 461 if (TM.getTargetTriple().isOSBinFormatELF() && 462 GlobalObject::isExternalLinkage(GV.getLinkage()) && GV.isDSOLocal() && 463 !GV.isDeclaration() && !isa<GlobalIFunc>(GV)) 464 return getSymbolWithGlobalValueBase(&GV, "$local"); 465 return TM.getSymbol(&GV); 466 } 467 468 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 469 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 470 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 471 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 472 "No emulated TLS variables in the common section"); 473 474 // Never emit TLS variable xyz in emulated TLS model. 475 // The initialization value is in __emutls_t.xyz instead of xyz. 476 if (IsEmuTLSVar) 477 return; 478 479 if (GV->hasInitializer()) { 480 // Check to see if this is a special global used by LLVM, if so, emit it. 481 if (emitSpecialLLVMGlobal(GV)) 482 return; 483 484 // Skip the emission of global equivalents. The symbol can be emitted later 485 // on by emitGlobalGOTEquivs in case it turns out to be needed. 486 if (GlobalGOTEquivs.count(getSymbol(GV))) 487 return; 488 489 if (isVerbose()) { 490 // When printing the control variable __emutls_v.*, 491 // we don't need to print the original TLS variable name. 492 GV->printAsOperand(OutStreamer->GetCommentOS(), 493 /*PrintType=*/false, GV->getParent()); 494 OutStreamer->GetCommentOS() << '\n'; 495 } 496 } 497 498 MCSymbol *GVSym = getSymbol(GV); 499 MCSymbol *EmittedSym = GVSym; 500 501 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 502 // attributes. 503 // GV's or GVSym's attributes will be used for the EmittedSym. 504 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 505 506 if (!GV->hasInitializer()) // External globals require no extra code. 507 return; 508 509 GVSym->redefineIfPossible(); 510 if (GVSym->isDefined() || GVSym->isVariable()) 511 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 512 "' is already defined"); 513 514 if (MAI->hasDotTypeDotSizeDirective()) 515 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 516 517 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 518 519 const DataLayout &DL = GV->getParent()->getDataLayout(); 520 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 521 522 // If the alignment is specified, we *must* obey it. Overaligning a global 523 // with a specified alignment is a prompt way to break globals emitted to 524 // sections and expected to be contiguous (e.g. ObjC metadata). 525 const Align Alignment = getGVAlignment(GV, DL); 526 527 for (const HandlerInfo &HI : Handlers) { 528 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 529 HI.TimerGroupName, HI.TimerGroupDescription, 530 TimePassesIsEnabled); 531 HI.Handler->setSymbolSize(GVSym, Size); 532 } 533 534 // Handle common symbols 535 if (GVKind.isCommon()) { 536 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 537 // .comm _foo, 42, 4 538 const bool SupportsAlignment = 539 getObjFileLowering().getCommDirectiveSupportsAlignment(); 540 OutStreamer->emitCommonSymbol(GVSym, Size, 541 SupportsAlignment ? Alignment.value() : 0); 542 return; 543 } 544 545 // Determine to which section this global should be emitted. 546 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 547 548 // If we have a bss global going to a section that supports the 549 // zerofill directive, do so here. 550 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 551 TheSection->isVirtualSection()) { 552 if (Size == 0) 553 Size = 1; // zerofill of 0 bytes is undefined. 554 emitLinkage(GV, GVSym); 555 // .zerofill __DATA, __bss, _foo, 400, 5 556 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 557 return; 558 } 559 560 // If this is a BSS local symbol and we are emitting in the BSS 561 // section use .lcomm/.comm directive. 562 if (GVKind.isBSSLocal() && 563 getObjFileLowering().getBSSSection() == TheSection) { 564 if (Size == 0) 565 Size = 1; // .comm Foo, 0 is undefined, avoid it. 566 567 // Use .lcomm only if it supports user-specified alignment. 568 // Otherwise, while it would still be correct to use .lcomm in some 569 // cases (e.g. when Align == 1), the external assembler might enfore 570 // some -unknown- default alignment behavior, which could cause 571 // spurious differences between external and integrated assembler. 572 // Prefer to simply fall back to .local / .comm in this case. 573 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 574 // .lcomm _foo, 42 575 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 576 return; 577 } 578 579 // .local _foo 580 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 581 // .comm _foo, 42, 4 582 const bool SupportsAlignment = 583 getObjFileLowering().getCommDirectiveSupportsAlignment(); 584 OutStreamer->emitCommonSymbol(GVSym, Size, 585 SupportsAlignment ? Alignment.value() : 0); 586 return; 587 } 588 589 // Handle thread local data for mach-o which requires us to output an 590 // additional structure of data and mangle the original symbol so that we 591 // can reference it later. 592 // 593 // TODO: This should become an "emit thread local global" method on TLOF. 594 // All of this macho specific stuff should be sunk down into TLOFMachO and 595 // stuff like "TLSExtraDataSection" should no longer be part of the parent 596 // TLOF class. This will also make it more obvious that stuff like 597 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 598 // specific code. 599 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 600 // Emit the .tbss symbol 601 MCSymbol *MangSym = 602 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 603 604 if (GVKind.isThreadBSS()) { 605 TheSection = getObjFileLowering().getTLSBSSSection(); 606 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 607 } else if (GVKind.isThreadData()) { 608 OutStreamer->SwitchSection(TheSection); 609 610 emitAlignment(Alignment, GV); 611 OutStreamer->emitLabel(MangSym); 612 613 emitGlobalConstant(GV->getParent()->getDataLayout(), 614 GV->getInitializer()); 615 } 616 617 OutStreamer->AddBlankLine(); 618 619 // Emit the variable struct for the runtime. 620 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 621 622 OutStreamer->SwitchSection(TLVSect); 623 // Emit the linkage here. 624 emitLinkage(GV, GVSym); 625 OutStreamer->emitLabel(GVSym); 626 627 // Three pointers in size: 628 // - __tlv_bootstrap - used to make sure support exists 629 // - spare pointer, used when mapped by the runtime 630 // - pointer to mangled symbol above with initializer 631 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 632 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 633 PtrSize); 634 OutStreamer->emitIntValue(0, PtrSize); 635 OutStreamer->emitSymbolValue(MangSym, PtrSize); 636 637 OutStreamer->AddBlankLine(); 638 return; 639 } 640 641 MCSymbol *EmittedInitSym = GVSym; 642 643 OutStreamer->SwitchSection(TheSection); 644 645 emitLinkage(GV, EmittedInitSym); 646 emitAlignment(Alignment, GV); 647 648 OutStreamer->emitLabel(EmittedInitSym); 649 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 650 if (LocalAlias != EmittedInitSym) 651 OutStreamer->emitLabel(LocalAlias); 652 653 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 654 655 if (MAI->hasDotTypeDotSizeDirective()) 656 // .size foo, 42 657 OutStreamer->emitELFSize(EmittedInitSym, 658 MCConstantExpr::create(Size, OutContext)); 659 660 OutStreamer->AddBlankLine(); 661 } 662 663 /// Emit the directive and value for debug thread local expression 664 /// 665 /// \p Value - The value to emit. 666 /// \p Size - The size of the integer (in bytes) to emit. 667 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 668 OutStreamer->emitValue(Value, Size); 669 } 670 671 /// EmitFunctionHeader - This method emits the header for the current 672 /// function. 673 void AsmPrinter::emitFunctionHeader() { 674 const Function &F = MF->getFunction(); 675 676 if (isVerbose()) 677 OutStreamer->GetCommentOS() 678 << "-- Begin function " 679 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 680 681 // Print out constants referenced by the function 682 emitConstantPool(); 683 684 // Print the 'header' of function. 685 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 686 emitVisibility(CurrentFnSym, F.getVisibility()); 687 688 if (MAI->needsFunctionDescriptors() && 689 F.getLinkage() != GlobalValue::InternalLinkage) 690 emitLinkage(&F, CurrentFnDescSym); 691 692 emitLinkage(&F, CurrentFnSym); 693 if (MAI->hasFunctionAlignment()) 694 emitAlignment(MF->getAlignment(), &F); 695 696 if (MAI->hasDotTypeDotSizeDirective()) 697 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 698 699 if (F.hasFnAttribute(Attribute::Cold)) 700 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 701 702 if (isVerbose()) { 703 F.printAsOperand(OutStreamer->GetCommentOS(), 704 /*PrintType=*/false, F.getParent()); 705 OutStreamer->GetCommentOS() << '\n'; 706 } 707 708 // Emit the prefix data. 709 if (F.hasPrefixData()) { 710 if (MAI->hasSubsectionsViaSymbols()) { 711 // Preserving prefix data on platforms which use subsections-via-symbols 712 // is a bit tricky. Here we introduce a symbol for the prefix data 713 // and use the .alt_entry attribute to mark the function's real entry point 714 // as an alternative entry point to the prefix-data symbol. 715 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 716 OutStreamer->emitLabel(PrefixSym); 717 718 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 719 720 // Emit an .alt_entry directive for the actual function symbol. 721 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 722 } else { 723 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 724 } 725 } 726 727 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 728 // place prefix data before NOPs. 729 unsigned PatchableFunctionPrefix = 0; 730 unsigned PatchableFunctionEntry = 0; 731 (void)F.getFnAttribute("patchable-function-prefix") 732 .getValueAsString() 733 .getAsInteger(10, PatchableFunctionPrefix); 734 (void)F.getFnAttribute("patchable-function-entry") 735 .getValueAsString() 736 .getAsInteger(10, PatchableFunctionEntry); 737 if (PatchableFunctionPrefix) { 738 CurrentPatchableFunctionEntrySym = 739 OutContext.createLinkerPrivateTempSymbol(); 740 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 741 emitNops(PatchableFunctionPrefix); 742 } else if (PatchableFunctionEntry) { 743 // May be reassigned when emitting the body, to reference the label after 744 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 745 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 746 } 747 748 // Emit the function descriptor. This is a virtual function to allow targets 749 // to emit their specific function descriptor. Right now it is only used by 750 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 751 // descriptors and should be converted to use this hook as well. 752 if (MAI->needsFunctionDescriptors()) 753 emitFunctionDescriptor(); 754 755 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 756 // their wild and crazy things as required. 757 emitFunctionEntryLabel(); 758 759 if (CurrentFnBegin) { 760 if (MAI->useAssignmentForEHBegin()) { 761 MCSymbol *CurPos = OutContext.createTempSymbol(); 762 OutStreamer->emitLabel(CurPos); 763 OutStreamer->emitAssignment(CurrentFnBegin, 764 MCSymbolRefExpr::create(CurPos, OutContext)); 765 } else { 766 OutStreamer->emitLabel(CurrentFnBegin); 767 } 768 } 769 770 // Emit pre-function debug and/or EH information. 771 for (const HandlerInfo &HI : Handlers) { 772 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 773 HI.TimerGroupDescription, TimePassesIsEnabled); 774 HI.Handler->beginFunction(MF); 775 } 776 777 // Emit the prologue data. 778 if (F.hasPrologueData()) 779 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 780 } 781 782 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 783 /// function. This can be overridden by targets as required to do custom stuff. 784 void AsmPrinter::emitFunctionEntryLabel() { 785 CurrentFnSym->redefineIfPossible(); 786 787 // The function label could have already been emitted if two symbols end up 788 // conflicting due to asm renaming. Detect this and emit an error. 789 if (CurrentFnSym->isVariable()) 790 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 791 "' is a protected alias"); 792 if (CurrentFnSym->isDefined()) 793 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 794 "' label emitted multiple times to assembly file"); 795 796 OutStreamer->emitLabel(CurrentFnSym); 797 798 if (TM.getTargetTriple().isOSBinFormatELF()) { 799 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 800 if (Sym != CurrentFnSym) 801 OutStreamer->emitLabel(Sym); 802 } 803 } 804 805 /// emitComments - Pretty-print comments for instructions. 806 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 807 const MachineFunction *MF = MI.getMF(); 808 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 809 810 // Check for spills and reloads 811 812 // We assume a single instruction only has a spill or reload, not 813 // both. 814 Optional<unsigned> Size; 815 if ((Size = MI.getRestoreSize(TII))) { 816 CommentOS << *Size << "-byte Reload\n"; 817 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 818 if (*Size) 819 CommentOS << *Size << "-byte Folded Reload\n"; 820 } else if ((Size = MI.getSpillSize(TII))) { 821 CommentOS << *Size << "-byte Spill\n"; 822 } else if ((Size = MI.getFoldedSpillSize(TII))) { 823 if (*Size) 824 CommentOS << *Size << "-byte Folded Spill\n"; 825 } 826 827 // Check for spill-induced copies 828 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 829 CommentOS << " Reload Reuse\n"; 830 } 831 832 /// emitImplicitDef - This method emits the specified machine instruction 833 /// that is an implicit def. 834 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 835 Register RegNo = MI->getOperand(0).getReg(); 836 837 SmallString<128> Str; 838 raw_svector_ostream OS(Str); 839 OS << "implicit-def: " 840 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 841 842 OutStreamer->AddComment(OS.str()); 843 OutStreamer->AddBlankLine(); 844 } 845 846 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 847 std::string Str; 848 raw_string_ostream OS(Str); 849 OS << "kill:"; 850 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 851 const MachineOperand &Op = MI->getOperand(i); 852 assert(Op.isReg() && "KILL instruction must have only register operands"); 853 OS << ' ' << (Op.isDef() ? "def " : "killed ") 854 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 855 } 856 AP.OutStreamer->AddComment(OS.str()); 857 AP.OutStreamer->AddBlankLine(); 858 } 859 860 /// emitDebugValueComment - This method handles the target-independent form 861 /// of DBG_VALUE, returning true if it was able to do so. A false return 862 /// means the target will need to handle MI in EmitInstruction. 863 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 864 // This code handles only the 4-operand target-independent form. 865 if (MI->getNumOperands() != 4) 866 return false; 867 868 SmallString<128> Str; 869 raw_svector_ostream OS(Str); 870 OS << "DEBUG_VALUE: "; 871 872 const DILocalVariable *V = MI->getDebugVariable(); 873 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 874 StringRef Name = SP->getName(); 875 if (!Name.empty()) 876 OS << Name << ":"; 877 } 878 OS << V->getName(); 879 OS << " <- "; 880 881 // The second operand is only an offset if it's an immediate. 882 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 883 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 884 const DIExpression *Expr = MI->getDebugExpression(); 885 if (Expr->getNumElements()) { 886 OS << '['; 887 bool NeedSep = false; 888 for (auto Op : Expr->expr_ops()) { 889 if (NeedSep) 890 OS << ", "; 891 else 892 NeedSep = true; 893 OS << dwarf::OperationEncodingString(Op.getOp()); 894 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 895 OS << ' ' << Op.getArg(I); 896 } 897 OS << "] "; 898 } 899 900 // Register or immediate value. Register 0 means undef. 901 if (MI->getOperand(0).isFPImm()) { 902 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 903 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 904 OS << (double)APF.convertToFloat(); 905 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 906 OS << APF.convertToDouble(); 907 } else { 908 // There is no good way to print long double. Convert a copy to 909 // double. Ah well, it's only a comment. 910 bool ignored; 911 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 912 &ignored); 913 OS << "(long double) " << APF.convertToDouble(); 914 } 915 } else if (MI->getOperand(0).isImm()) { 916 OS << MI->getOperand(0).getImm(); 917 } else if (MI->getOperand(0).isCImm()) { 918 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 919 } else if (MI->getOperand(0).isTargetIndex()) { 920 auto Op = MI->getOperand(0); 921 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 922 return true; 923 } else { 924 unsigned Reg; 925 if (MI->getOperand(0).isReg()) { 926 Reg = MI->getOperand(0).getReg(); 927 } else { 928 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 929 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 930 Offset += TFI->getFrameIndexReference(*AP.MF, 931 MI->getOperand(0).getIndex(), Reg); 932 MemLoc = true; 933 } 934 if (Reg == 0) { 935 // Suppress offset, it is not meaningful here. 936 OS << "undef"; 937 // NOTE: Want this comment at start of line, don't emit with AddComment. 938 AP.OutStreamer->emitRawComment(OS.str()); 939 return true; 940 } 941 if (MemLoc) 942 OS << '['; 943 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 944 } 945 946 if (MemLoc) 947 OS << '+' << Offset << ']'; 948 949 // NOTE: Want this comment at start of line, don't emit with AddComment. 950 AP.OutStreamer->emitRawComment(OS.str()); 951 return true; 952 } 953 954 /// This method handles the target-independent form of DBG_LABEL, returning 955 /// true if it was able to do so. A false return means the target will need 956 /// to handle MI in EmitInstruction. 957 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 958 if (MI->getNumOperands() != 1) 959 return false; 960 961 SmallString<128> Str; 962 raw_svector_ostream OS(Str); 963 OS << "DEBUG_LABEL: "; 964 965 const DILabel *V = MI->getDebugLabel(); 966 if (auto *SP = dyn_cast<DISubprogram>( 967 V->getScope()->getNonLexicalBlockFileScope())) { 968 StringRef Name = SP->getName(); 969 if (!Name.empty()) 970 OS << Name << ":"; 971 } 972 OS << V->getName(); 973 974 // NOTE: Want this comment at start of line, don't emit with AddComment. 975 AP.OutStreamer->emitRawComment(OS.str()); 976 return true; 977 } 978 979 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 980 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 981 MF->getFunction().needsUnwindTableEntry()) 982 return CFI_M_EH; 983 984 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 985 return CFI_M_Debug; 986 987 return CFI_M_None; 988 } 989 990 bool AsmPrinter::needsSEHMoves() { 991 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 992 } 993 994 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 995 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 996 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 997 ExceptionHandlingType != ExceptionHandling::ARM) 998 return; 999 1000 if (needsCFIMoves() == CFI_M_None) 1001 return; 1002 1003 // If there is no "real" instruction following this CFI instruction, skip 1004 // emitting it; it would be beyond the end of the function's FDE range. 1005 auto *MBB = MI.getParent(); 1006 auto I = std::next(MI.getIterator()); 1007 while (I != MBB->end() && I->isTransient()) 1008 ++I; 1009 if (I == MBB->instr_end() && 1010 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1011 return; 1012 1013 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1014 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1015 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1016 emitCFIInstruction(CFI); 1017 } 1018 1019 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1020 // The operands are the MCSymbol and the frame offset of the allocation. 1021 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1022 int FrameOffset = MI.getOperand(1).getImm(); 1023 1024 // Emit a symbol assignment. 1025 OutStreamer->emitAssignment(FrameAllocSym, 1026 MCConstantExpr::create(FrameOffset, OutContext)); 1027 } 1028 1029 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1030 if (!MF.getTarget().Options.EmitStackSizeSection) 1031 return; 1032 1033 MCSection *StackSizeSection = 1034 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1035 if (!StackSizeSection) 1036 return; 1037 1038 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1039 // Don't emit functions with dynamic stack allocations. 1040 if (FrameInfo.hasVarSizedObjects()) 1041 return; 1042 1043 OutStreamer->PushSection(); 1044 OutStreamer->SwitchSection(StackSizeSection); 1045 1046 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1047 uint64_t StackSize = FrameInfo.getStackSize(); 1048 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1049 OutStreamer->emitULEB128IntValue(StackSize); 1050 1051 OutStreamer->PopSection(); 1052 } 1053 1054 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1055 MachineModuleInfo *MMI) { 1056 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1057 return true; 1058 1059 // We might emit an EH table that uses function begin and end labels even if 1060 // we don't have any landingpads. 1061 if (!MF.getFunction().hasPersonalityFn()) 1062 return false; 1063 return !isNoOpWithoutInvoke( 1064 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1065 } 1066 1067 /// EmitFunctionBody - This method emits the body and trailer for a 1068 /// function. 1069 void AsmPrinter::emitFunctionBody() { 1070 emitFunctionHeader(); 1071 1072 // Emit target-specific gunk before the function body. 1073 emitFunctionBodyStart(); 1074 1075 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1076 1077 if (isVerbose()) { 1078 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1079 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1080 if (!MDT) { 1081 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1082 OwnedMDT->getBase().recalculate(*MF); 1083 MDT = OwnedMDT.get(); 1084 } 1085 1086 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1087 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1088 if (!MLI) { 1089 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1090 OwnedMLI->getBase().analyze(MDT->getBase()); 1091 MLI = OwnedMLI.get(); 1092 } 1093 } 1094 1095 // Print out code for the function. 1096 bool HasAnyRealCode = false; 1097 int NumInstsInFunction = 0; 1098 for (auto &MBB : *MF) { 1099 // Print a label for the basic block. 1100 emitBasicBlockStart(MBB); 1101 for (auto &MI : MBB) { 1102 // Print the assembly for the instruction. 1103 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1104 !MI.isDebugInstr()) { 1105 HasAnyRealCode = true; 1106 ++NumInstsInFunction; 1107 } 1108 1109 // If there is a pre-instruction symbol, emit a label for it here. 1110 if (MCSymbol *S = MI.getPreInstrSymbol()) 1111 OutStreamer->emitLabel(S); 1112 1113 if (ShouldPrintDebugScopes) { 1114 for (const HandlerInfo &HI : Handlers) { 1115 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1116 HI.TimerGroupName, HI.TimerGroupDescription, 1117 TimePassesIsEnabled); 1118 HI.Handler->beginInstruction(&MI); 1119 } 1120 } 1121 1122 if (isVerbose()) 1123 emitComments(MI, OutStreamer->GetCommentOS()); 1124 1125 switch (MI.getOpcode()) { 1126 case TargetOpcode::CFI_INSTRUCTION: 1127 emitCFIInstruction(MI); 1128 break; 1129 case TargetOpcode::LOCAL_ESCAPE: 1130 emitFrameAlloc(MI); 1131 break; 1132 case TargetOpcode::ANNOTATION_LABEL: 1133 case TargetOpcode::EH_LABEL: 1134 case TargetOpcode::GC_LABEL: 1135 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1136 break; 1137 case TargetOpcode::INLINEASM: 1138 case TargetOpcode::INLINEASM_BR: 1139 emitInlineAsm(&MI); 1140 break; 1141 case TargetOpcode::DBG_VALUE: 1142 if (isVerbose()) { 1143 if (!emitDebugValueComment(&MI, *this)) 1144 emitInstruction(&MI); 1145 } 1146 break; 1147 case TargetOpcode::DBG_LABEL: 1148 if (isVerbose()) { 1149 if (!emitDebugLabelComment(&MI, *this)) 1150 emitInstruction(&MI); 1151 } 1152 break; 1153 case TargetOpcode::IMPLICIT_DEF: 1154 if (isVerbose()) emitImplicitDef(&MI); 1155 break; 1156 case TargetOpcode::KILL: 1157 if (isVerbose()) emitKill(&MI, *this); 1158 break; 1159 default: 1160 emitInstruction(&MI); 1161 break; 1162 } 1163 1164 // If there is a post-instruction symbol, emit a label for it here. 1165 if (MCSymbol *S = MI.getPostInstrSymbol()) 1166 OutStreamer->emitLabel(S); 1167 1168 if (ShouldPrintDebugScopes) { 1169 for (const HandlerInfo &HI : Handlers) { 1170 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1171 HI.TimerGroupName, HI.TimerGroupDescription, 1172 TimePassesIsEnabled); 1173 HI.Handler->endInstruction(); 1174 } 1175 } 1176 } 1177 1178 emitBasicBlockEnd(MBB); 1179 } 1180 1181 EmittedInsts += NumInstsInFunction; 1182 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1183 MF->getFunction().getSubprogram(), 1184 &MF->front()); 1185 R << ore::NV("NumInstructions", NumInstsInFunction) 1186 << " instructions in function"; 1187 ORE->emit(R); 1188 1189 // If the function is empty and the object file uses .subsections_via_symbols, 1190 // then we need to emit *something* to the function body to prevent the 1191 // labels from collapsing together. Just emit a noop. 1192 // Similarly, don't emit empty functions on Windows either. It can lead to 1193 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1194 // after linking, causing the kernel not to load the binary: 1195 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1196 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1197 const Triple &TT = TM.getTargetTriple(); 1198 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1199 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1200 MCInst Noop; 1201 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1202 1203 // Targets can opt-out of emitting the noop here by leaving the opcode 1204 // unspecified. 1205 if (Noop.getOpcode()) { 1206 OutStreamer->AddComment("avoids zero-length function"); 1207 emitNops(1); 1208 } 1209 } 1210 1211 const Function &F = MF->getFunction(); 1212 for (const auto &BB : F) { 1213 if (!BB.hasAddressTaken()) 1214 continue; 1215 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1216 if (Sym->isDefined()) 1217 continue; 1218 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1219 OutStreamer->emitLabel(Sym); 1220 } 1221 1222 // Emit target-specific gunk after the function body. 1223 emitFunctionBodyEnd(); 1224 1225 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1226 MAI->hasDotTypeDotSizeDirective()) { 1227 // Create a symbol for the end of function. 1228 CurrentFnEnd = createTempSymbol("func_end"); 1229 OutStreamer->emitLabel(CurrentFnEnd); 1230 } 1231 1232 // If the target wants a .size directive for the size of the function, emit 1233 // it. 1234 if (MAI->hasDotTypeDotSizeDirective()) { 1235 // We can get the size as difference between the function label and the 1236 // temp label. 1237 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1238 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1239 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1240 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1241 } 1242 1243 for (const HandlerInfo &HI : Handlers) { 1244 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1245 HI.TimerGroupDescription, TimePassesIsEnabled); 1246 HI.Handler->markFunctionEnd(); 1247 } 1248 1249 // Print out jump tables referenced by the function. 1250 emitJumpTableInfo(); 1251 1252 // Emit post-function debug and/or EH information. 1253 for (const HandlerInfo &HI : Handlers) { 1254 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1255 HI.TimerGroupDescription, TimePassesIsEnabled); 1256 HI.Handler->endFunction(MF); 1257 } 1258 1259 // Emit section containing stack size metadata. 1260 emitStackSizeSection(*MF); 1261 1262 emitPatchableFunctionEntries(); 1263 1264 if (isVerbose()) 1265 OutStreamer->GetCommentOS() << "-- End function\n"; 1266 1267 OutStreamer->AddBlankLine(); 1268 } 1269 1270 /// Compute the number of Global Variables that uses a Constant. 1271 static unsigned getNumGlobalVariableUses(const Constant *C) { 1272 if (!C) 1273 return 0; 1274 1275 if (isa<GlobalVariable>(C)) 1276 return 1; 1277 1278 unsigned NumUses = 0; 1279 for (auto *CU : C->users()) 1280 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1281 1282 return NumUses; 1283 } 1284 1285 /// Only consider global GOT equivalents if at least one user is a 1286 /// cstexpr inside an initializer of another global variables. Also, don't 1287 /// handle cstexpr inside instructions. During global variable emission, 1288 /// candidates are skipped and are emitted later in case at least one cstexpr 1289 /// isn't replaced by a PC relative GOT entry access. 1290 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1291 unsigned &NumGOTEquivUsers) { 1292 // Global GOT equivalents are unnamed private globals with a constant 1293 // pointer initializer to another global symbol. They must point to a 1294 // GlobalVariable or Function, i.e., as GlobalValue. 1295 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1296 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1297 !isa<GlobalValue>(GV->getOperand(0))) 1298 return false; 1299 1300 // To be a got equivalent, at least one of its users need to be a constant 1301 // expression used by another global variable. 1302 for (auto *U : GV->users()) 1303 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1304 1305 return NumGOTEquivUsers > 0; 1306 } 1307 1308 /// Unnamed constant global variables solely contaning a pointer to 1309 /// another globals variable is equivalent to a GOT table entry; it contains the 1310 /// the address of another symbol. Optimize it and replace accesses to these 1311 /// "GOT equivalents" by using the GOT entry for the final global instead. 1312 /// Compute GOT equivalent candidates among all global variables to avoid 1313 /// emitting them if possible later on, after it use is replaced by a GOT entry 1314 /// access. 1315 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1316 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1317 return; 1318 1319 for (const auto &G : M.globals()) { 1320 unsigned NumGOTEquivUsers = 0; 1321 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1322 continue; 1323 1324 const MCSymbol *GOTEquivSym = getSymbol(&G); 1325 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1326 } 1327 } 1328 1329 /// Constant expressions using GOT equivalent globals may not be eligible 1330 /// for PC relative GOT entry conversion, in such cases we need to emit such 1331 /// globals we previously omitted in EmitGlobalVariable. 1332 void AsmPrinter::emitGlobalGOTEquivs() { 1333 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1334 return; 1335 1336 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1337 for (auto &I : GlobalGOTEquivs) { 1338 const GlobalVariable *GV = I.second.first; 1339 unsigned Cnt = I.second.second; 1340 if (Cnt) 1341 FailedCandidates.push_back(GV); 1342 } 1343 GlobalGOTEquivs.clear(); 1344 1345 for (auto *GV : FailedCandidates) 1346 emitGlobalVariable(GV); 1347 } 1348 1349 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1350 const GlobalIndirectSymbol& GIS) { 1351 MCSymbol *Name = getSymbol(&GIS); 1352 1353 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1354 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1355 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1356 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1357 else 1358 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1359 1360 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1361 1362 // Treat bitcasts of functions as functions also. This is important at least 1363 // on WebAssembly where object and function addresses can't alias each other. 1364 if (!IsFunction) 1365 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1366 if (CE->getOpcode() == Instruction::BitCast) 1367 IsFunction = 1368 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1369 1370 // Set the symbol type to function if the alias has a function type. 1371 // This affects codegen when the aliasee is not a function. 1372 if (IsFunction) 1373 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1374 ? MCSA_ELF_TypeIndFunction 1375 : MCSA_ELF_TypeFunction); 1376 1377 emitVisibility(Name, GIS.getVisibility()); 1378 1379 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1380 1381 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1382 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1383 1384 // Emit the directives as assignments aka .set: 1385 OutStreamer->emitAssignment(Name, Expr); 1386 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1387 if (LocalAlias != Name) 1388 OutStreamer->emitAssignment(LocalAlias, Expr); 1389 1390 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1391 // If the aliasee does not correspond to a symbol in the output, i.e. the 1392 // alias is not of an object or the aliased object is private, then set the 1393 // size of the alias symbol from the type of the alias. We don't do this in 1394 // other situations as the alias and aliasee having differing types but same 1395 // size may be intentional. 1396 const GlobalObject *BaseObject = GA->getBaseObject(); 1397 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1398 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1399 const DataLayout &DL = M.getDataLayout(); 1400 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1401 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1402 } 1403 } 1404 } 1405 1406 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1407 if (!RS.needsSection()) 1408 return; 1409 1410 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1411 1412 Optional<SmallString<128>> Filename; 1413 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1414 Filename = *FilenameRef; 1415 sys::fs::make_absolute(*Filename); 1416 assert(!Filename->empty() && "The filename can't be empty."); 1417 } 1418 1419 std::string Buf; 1420 raw_string_ostream OS(Buf); 1421 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1422 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1423 : RemarkSerializer.metaSerializer(OS); 1424 MetaSerializer->emit(); 1425 1426 // Switch to the remarks section. 1427 MCSection *RemarksSection = 1428 OutContext.getObjectFileInfo()->getRemarksSection(); 1429 OutStreamer->SwitchSection(RemarksSection); 1430 1431 OutStreamer->emitBinaryData(OS.str()); 1432 } 1433 1434 bool AsmPrinter::doFinalization(Module &M) { 1435 // Set the MachineFunction to nullptr so that we can catch attempted 1436 // accesses to MF specific features at the module level and so that 1437 // we can conditionalize accesses based on whether or not it is nullptr. 1438 MF = nullptr; 1439 1440 // Gather all GOT equivalent globals in the module. We really need two 1441 // passes over the globals: one to compute and another to avoid its emission 1442 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1443 // where the got equivalent shows up before its use. 1444 computeGlobalGOTEquivs(M); 1445 1446 // Emit global variables. 1447 for (const auto &G : M.globals()) 1448 emitGlobalVariable(&G); 1449 1450 // Emit remaining GOT equivalent globals. 1451 emitGlobalGOTEquivs(); 1452 1453 // Emit visibility info for declarations 1454 for (const Function &F : M) { 1455 if (!F.isDeclarationForLinker()) 1456 continue; 1457 GlobalValue::VisibilityTypes V = F.getVisibility(); 1458 if (V == GlobalValue::DefaultVisibility) 1459 continue; 1460 1461 MCSymbol *Name = getSymbol(&F); 1462 emitVisibility(Name, V, false); 1463 } 1464 1465 // Emit the remarks section contents. 1466 // FIXME: Figure out when is the safest time to emit this section. It should 1467 // not come after debug info. 1468 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1469 emitRemarksSection(*RS); 1470 1471 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1472 1473 TLOF.emitModuleMetadata(*OutStreamer, M); 1474 1475 if (TM.getTargetTriple().isOSBinFormatELF()) { 1476 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1477 1478 // Output stubs for external and common global variables. 1479 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1480 if (!Stubs.empty()) { 1481 OutStreamer->SwitchSection(TLOF.getDataSection()); 1482 const DataLayout &DL = M.getDataLayout(); 1483 1484 emitAlignment(Align(DL.getPointerSize())); 1485 for (const auto &Stub : Stubs) { 1486 OutStreamer->emitLabel(Stub.first); 1487 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1488 DL.getPointerSize()); 1489 } 1490 } 1491 } 1492 1493 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1494 MachineModuleInfoCOFF &MMICOFF = 1495 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1496 1497 // Output stubs for external and common global variables. 1498 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1499 if (!Stubs.empty()) { 1500 const DataLayout &DL = M.getDataLayout(); 1501 1502 for (const auto &Stub : Stubs) { 1503 SmallString<256> SectionName = StringRef(".rdata$"); 1504 SectionName += Stub.first->getName(); 1505 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1506 SectionName, 1507 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1508 COFF::IMAGE_SCN_LNK_COMDAT, 1509 SectionKind::getReadOnly(), Stub.first->getName(), 1510 COFF::IMAGE_COMDAT_SELECT_ANY)); 1511 emitAlignment(Align(DL.getPointerSize())); 1512 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1513 OutStreamer->emitLabel(Stub.first); 1514 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1515 DL.getPointerSize()); 1516 } 1517 } 1518 } 1519 1520 // Finalize debug and EH information. 1521 for (const HandlerInfo &HI : Handlers) { 1522 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1523 HI.TimerGroupDescription, TimePassesIsEnabled); 1524 HI.Handler->endModule(); 1525 } 1526 Handlers.clear(); 1527 DD = nullptr; 1528 1529 // If the target wants to know about weak references, print them all. 1530 if (MAI->getWeakRefDirective()) { 1531 // FIXME: This is not lazy, it would be nice to only print weak references 1532 // to stuff that is actually used. Note that doing so would require targets 1533 // to notice uses in operands (due to constant exprs etc). This should 1534 // happen with the MC stuff eventually. 1535 1536 // Print out module-level global objects here. 1537 for (const auto &GO : M.global_objects()) { 1538 if (!GO.hasExternalWeakLinkage()) 1539 continue; 1540 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1541 } 1542 } 1543 1544 // Print aliases in topological order, that is, for each alias a = b, 1545 // b must be printed before a. 1546 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1547 // such an order to generate correct TOC information. 1548 SmallVector<const GlobalAlias *, 16> AliasStack; 1549 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1550 for (const auto &Alias : M.aliases()) { 1551 for (const GlobalAlias *Cur = &Alias; Cur; 1552 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1553 if (!AliasVisited.insert(Cur).second) 1554 break; 1555 AliasStack.push_back(Cur); 1556 } 1557 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1558 emitGlobalIndirectSymbol(M, *AncestorAlias); 1559 AliasStack.clear(); 1560 } 1561 for (const auto &IFunc : M.ifuncs()) 1562 emitGlobalIndirectSymbol(M, IFunc); 1563 1564 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1565 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1566 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1567 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1568 MP->finishAssembly(M, *MI, *this); 1569 1570 // Emit llvm.ident metadata in an '.ident' directive. 1571 emitModuleIdents(M); 1572 1573 // Emit bytes for llvm.commandline metadata. 1574 emitModuleCommandLines(M); 1575 1576 // Emit __morestack address if needed for indirect calls. 1577 if (MMI->usesMorestackAddr()) { 1578 unsigned Align = 1; 1579 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1580 getDataLayout(), SectionKind::getReadOnly(), 1581 /*C=*/nullptr, Align); 1582 OutStreamer->SwitchSection(ReadOnlySection); 1583 1584 MCSymbol *AddrSymbol = 1585 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1586 OutStreamer->emitLabel(AddrSymbol); 1587 1588 unsigned PtrSize = MAI->getCodePointerSize(); 1589 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1590 PtrSize); 1591 } 1592 1593 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1594 // split-stack is used. 1595 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1596 OutStreamer->SwitchSection( 1597 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1598 if (MMI->hasNosplitStack()) 1599 OutStreamer->SwitchSection( 1600 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1601 } 1602 1603 // If we don't have any trampolines, then we don't require stack memory 1604 // to be executable. Some targets have a directive to declare this. 1605 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1606 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1607 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1608 OutStreamer->SwitchSection(S); 1609 1610 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1611 // Emit /EXPORT: flags for each exported global as necessary. 1612 const auto &TLOF = getObjFileLowering(); 1613 std::string Flags; 1614 1615 for (const GlobalValue &GV : M.global_values()) { 1616 raw_string_ostream OS(Flags); 1617 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1618 OS.flush(); 1619 if (!Flags.empty()) { 1620 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1621 OutStreamer->emitBytes(Flags); 1622 } 1623 Flags.clear(); 1624 } 1625 1626 // Emit /INCLUDE: flags for each used global as necessary. 1627 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1628 assert(LU->hasInitializer() && 1629 "expected llvm.used to have an initializer"); 1630 assert(isa<ArrayType>(LU->getValueType()) && 1631 "expected llvm.used to be an array type"); 1632 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1633 for (const Value *Op : A->operands()) { 1634 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1635 // Global symbols with internal or private linkage are not visible to 1636 // the linker, and thus would cause an error when the linker tried to 1637 // preserve the symbol due to the `/include:` directive. 1638 if (GV->hasLocalLinkage()) 1639 continue; 1640 1641 raw_string_ostream OS(Flags); 1642 TLOF.emitLinkerFlagsForUsed(OS, GV); 1643 OS.flush(); 1644 1645 if (!Flags.empty()) { 1646 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1647 OutStreamer->emitBytes(Flags); 1648 } 1649 Flags.clear(); 1650 } 1651 } 1652 } 1653 } 1654 1655 if (TM.Options.EmitAddrsig) { 1656 // Emit address-significance attributes for all globals. 1657 OutStreamer->emitAddrsig(); 1658 for (const GlobalValue &GV : M.global_values()) 1659 if (!GV.use_empty() && !GV.isThreadLocal() && 1660 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1661 !GV.hasAtLeastLocalUnnamedAddr()) 1662 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1663 } 1664 1665 // Emit symbol partition specifications (ELF only). 1666 if (TM.getTargetTriple().isOSBinFormatELF()) { 1667 unsigned UniqueID = 0; 1668 for (const GlobalValue &GV : M.global_values()) { 1669 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1670 GV.getVisibility() != GlobalValue::DefaultVisibility) 1671 continue; 1672 1673 OutStreamer->SwitchSection( 1674 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1675 "", ++UniqueID, nullptr)); 1676 OutStreamer->emitBytes(GV.getPartition()); 1677 OutStreamer->emitZeros(1); 1678 OutStreamer->emitValue( 1679 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1680 MAI->getCodePointerSize()); 1681 } 1682 } 1683 1684 // Allow the target to emit any magic that it wants at the end of the file, 1685 // after everything else has gone out. 1686 emitEndOfAsmFile(M); 1687 1688 MMI = nullptr; 1689 1690 OutStreamer->Finish(); 1691 OutStreamer->reset(); 1692 OwnedMLI.reset(); 1693 OwnedMDT.reset(); 1694 1695 return false; 1696 } 1697 1698 MCSymbol *AsmPrinter::getCurExceptionSym() { 1699 if (!CurExceptionSym) 1700 CurExceptionSym = createTempSymbol("exception"); 1701 return CurExceptionSym; 1702 } 1703 1704 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1705 this->MF = &MF; 1706 const Function &F = MF.getFunction(); 1707 1708 // Get the function symbol. 1709 if (!MAI->needsFunctionDescriptors()) { 1710 CurrentFnSym = getSymbol(&MF.getFunction()); 1711 } else { 1712 assert(TM.getTargetTriple().isOSAIX() && 1713 "Only AIX uses the function descriptor hooks."); 1714 // AIX is unique here in that the name of the symbol emitted for the 1715 // function body does not have the same name as the source function's 1716 // C-linkage name. 1717 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1718 " initalized first."); 1719 1720 // Get the function entry point symbol. 1721 CurrentFnSym = 1722 OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName()); 1723 1724 // Set the containing csect. 1725 MCSectionXCOFF *FnEntryPointSec = 1726 cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM)); 1727 cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec); 1728 } 1729 1730 CurrentFnSymForSize = CurrentFnSym; 1731 CurrentFnBegin = nullptr; 1732 CurExceptionSym = nullptr; 1733 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1734 if (F.hasFnAttribute("patchable-function-entry") || 1735 needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1736 MF.getTarget().Options.EmitStackSizeSection) { 1737 CurrentFnBegin = createTempSymbol("func_begin"); 1738 if (NeedsLocalForSize) 1739 CurrentFnSymForSize = CurrentFnBegin; 1740 } 1741 1742 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1743 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1744 MBFI = (PSI && PSI->hasProfileSummary()) ? 1745 // ORE conditionally computes MBFI. If available, use it, otherwise 1746 // request it. 1747 (ORE->getBFI() ? ORE->getBFI() : 1748 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()) : 1749 nullptr; 1750 } 1751 1752 namespace { 1753 1754 // Keep track the alignment, constpool entries per Section. 1755 struct SectionCPs { 1756 MCSection *S; 1757 unsigned Alignment; 1758 SmallVector<unsigned, 4> CPEs; 1759 1760 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1761 }; 1762 1763 } // end anonymous namespace 1764 1765 /// EmitConstantPool - Print to the current output stream assembly 1766 /// representations of the constants in the constant pool MCP. This is 1767 /// used to print out constants which have been "spilled to memory" by 1768 /// the code generator. 1769 void AsmPrinter::emitConstantPool() { 1770 const MachineConstantPool *MCP = MF->getConstantPool(); 1771 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1772 if (CP.empty()) return; 1773 1774 // Calculate sections for constant pool entries. We collect entries to go into 1775 // the same section together to reduce amount of section switch statements. 1776 SmallVector<SectionCPs, 4> CPSections; 1777 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1778 const MachineConstantPoolEntry &CPE = CP[i]; 1779 unsigned Align = CPE.getAlignment(); 1780 1781 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1782 1783 const Constant *C = nullptr; 1784 if (!CPE.isMachineConstantPoolEntry()) 1785 C = CPE.Val.ConstVal; 1786 1787 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1788 Kind, C, Align); 1789 1790 // The number of sections are small, just do a linear search from the 1791 // last section to the first. 1792 bool Found = false; 1793 unsigned SecIdx = CPSections.size(); 1794 while (SecIdx != 0) { 1795 if (CPSections[--SecIdx].S == S) { 1796 Found = true; 1797 break; 1798 } 1799 } 1800 if (!Found) { 1801 SecIdx = CPSections.size(); 1802 CPSections.push_back(SectionCPs(S, Align)); 1803 } 1804 1805 if (Align > CPSections[SecIdx].Alignment) 1806 CPSections[SecIdx].Alignment = Align; 1807 CPSections[SecIdx].CPEs.push_back(i); 1808 } 1809 1810 // Now print stuff into the calculated sections. 1811 const MCSection *CurSection = nullptr; 1812 unsigned Offset = 0; 1813 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1814 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1815 unsigned CPI = CPSections[i].CPEs[j]; 1816 MCSymbol *Sym = GetCPISymbol(CPI); 1817 if (!Sym->isUndefined()) 1818 continue; 1819 1820 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1821 cast<MCSymbolXCOFF>(Sym)->setContainingCsect( 1822 cast<MCSectionXCOFF>(CPSections[i].S)); 1823 } 1824 1825 if (CurSection != CPSections[i].S) { 1826 OutStreamer->SwitchSection(CPSections[i].S); 1827 emitAlignment(Align(CPSections[i].Alignment)); 1828 CurSection = CPSections[i].S; 1829 Offset = 0; 1830 } 1831 1832 MachineConstantPoolEntry CPE = CP[CPI]; 1833 1834 // Emit inter-object padding for alignment. 1835 unsigned AlignMask = CPE.getAlignment() - 1; 1836 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1837 OutStreamer->emitZeros(NewOffset - Offset); 1838 1839 Type *Ty = CPE.getType(); 1840 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1841 1842 OutStreamer->emitLabel(Sym); 1843 if (CPE.isMachineConstantPoolEntry()) 1844 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1845 else 1846 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1847 } 1848 } 1849 } 1850 1851 // Print assembly representations of the jump tables used by the current 1852 // function. 1853 void AsmPrinter::emitJumpTableInfo() { 1854 const DataLayout &DL = MF->getDataLayout(); 1855 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1856 if (!MJTI) return; 1857 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1858 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1859 if (JT.empty()) return; 1860 1861 // Pick the directive to use to print the jump table entries, and switch to 1862 // the appropriate section. 1863 const Function &F = MF->getFunction(); 1864 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1865 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1866 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1867 F); 1868 if (JTInDiffSection) { 1869 // Drop it in the readonly section. 1870 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1871 OutStreamer->SwitchSection(ReadOnlySection); 1872 } 1873 1874 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 1875 1876 // Jump tables in code sections are marked with a data_region directive 1877 // where that's supported. 1878 if (!JTInDiffSection) 1879 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 1880 1881 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1882 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1883 1884 // If this jump table was deleted, ignore it. 1885 if (JTBBs.empty()) continue; 1886 1887 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1888 /// emit a .set directive for each unique entry. 1889 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1890 MAI->doesSetDirectiveSuppressReloc()) { 1891 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1892 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1893 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1894 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1895 const MachineBasicBlock *MBB = JTBBs[ii]; 1896 if (!EmittedSets.insert(MBB).second) 1897 continue; 1898 1899 // .set LJTSet, LBB32-base 1900 const MCExpr *LHS = 1901 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1902 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1903 MCBinaryExpr::createSub(LHS, Base, 1904 OutContext)); 1905 } 1906 } 1907 1908 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1909 // before each jump table. The first label is never referenced, but tells 1910 // the assembler and linker the extents of the jump table object. The 1911 // second label is actually referenced by the code. 1912 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1913 // FIXME: This doesn't have to have any specific name, just any randomly 1914 // named and numbered local label started with 'l' would work. Simplify 1915 // GetJTISymbol. 1916 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 1917 1918 MCSymbol* JTISymbol = GetJTISymbol(JTI); 1919 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1920 cast<MCSymbolXCOFF>(JTISymbol)->setContainingCsect( 1921 cast<MCSectionXCOFF>(TLOF.getSectionForJumpTable(F, TM))); 1922 } 1923 OutStreamer->emitLabel(JTISymbol); 1924 1925 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1926 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1927 } 1928 if (!JTInDiffSection) 1929 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1930 } 1931 1932 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1933 /// current stream. 1934 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1935 const MachineBasicBlock *MBB, 1936 unsigned UID) const { 1937 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1938 const MCExpr *Value = nullptr; 1939 switch (MJTI->getEntryKind()) { 1940 case MachineJumpTableInfo::EK_Inline: 1941 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1942 case MachineJumpTableInfo::EK_Custom32: 1943 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1944 MJTI, MBB, UID, OutContext); 1945 break; 1946 case MachineJumpTableInfo::EK_BlockAddress: 1947 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1948 // .word LBB123 1949 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1950 break; 1951 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1952 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1953 // with a relocation as gp-relative, e.g.: 1954 // .gprel32 LBB123 1955 MCSymbol *MBBSym = MBB->getSymbol(); 1956 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1957 return; 1958 } 1959 1960 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1961 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1962 // with a relocation as gp-relative, e.g.: 1963 // .gpdword LBB123 1964 MCSymbol *MBBSym = MBB->getSymbol(); 1965 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1966 return; 1967 } 1968 1969 case MachineJumpTableInfo::EK_LabelDifference32: { 1970 // Each entry is the address of the block minus the address of the jump 1971 // table. This is used for PIC jump tables where gprel32 is not supported. 1972 // e.g.: 1973 // .word LBB123 - LJTI1_2 1974 // If the .set directive avoids relocations, this is emitted as: 1975 // .set L4_5_set_123, LBB123 - LJTI1_2 1976 // .word L4_5_set_123 1977 if (MAI->doesSetDirectiveSuppressReloc()) { 1978 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1979 OutContext); 1980 break; 1981 } 1982 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1983 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1984 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1985 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1986 break; 1987 } 1988 } 1989 1990 assert(Value && "Unknown entry kind!"); 1991 1992 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1993 OutStreamer->emitValue(Value, EntrySize); 1994 } 1995 1996 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1997 /// special global used by LLVM. If so, emit it and return true, otherwise 1998 /// do nothing and return false. 1999 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2000 if (GV->getName() == "llvm.used") { 2001 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2002 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2003 return true; 2004 } 2005 2006 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2007 if (GV->getSection() == "llvm.metadata" || 2008 GV->hasAvailableExternallyLinkage()) 2009 return true; 2010 2011 if (!GV->hasAppendingLinkage()) return false; 2012 2013 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2014 2015 if (GV->getName() == "llvm.global_ctors") { 2016 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2017 /* isCtor */ true); 2018 2019 return true; 2020 } 2021 2022 if (GV->getName() == "llvm.global_dtors") { 2023 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2024 /* isCtor */ false); 2025 2026 return true; 2027 } 2028 2029 report_fatal_error("unknown special variable"); 2030 } 2031 2032 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2033 /// global in the specified llvm.used list. 2034 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2035 // Should be an array of 'i8*'. 2036 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2037 const GlobalValue *GV = 2038 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2039 if (GV) 2040 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2041 } 2042 } 2043 2044 namespace { 2045 2046 struct Structor { 2047 int Priority = 0; 2048 Constant *Func = nullptr; 2049 GlobalValue *ComdatKey = nullptr; 2050 2051 Structor() = default; 2052 }; 2053 2054 } // end anonymous namespace 2055 2056 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2057 /// priority. 2058 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2059 bool isCtor) { 2060 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 2061 // init priority. 2062 if (!isa<ConstantArray>(List)) return; 2063 2064 // Sanity check the structors list. 2065 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 2066 if (!InitList) return; // Not an array! 2067 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 2068 if (!ETy || ETy->getNumElements() != 3 || 2069 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 2070 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 2071 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 2072 return; // Not (int, ptr, ptr). 2073 2074 // Gather the structors in a form that's convenient for sorting by priority. 2075 SmallVector<Structor, 8> Structors; 2076 for (Value *O : InitList->operands()) { 2077 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 2078 if (!CS) continue; // Malformed. 2079 if (CS->getOperand(1)->isNullValue()) 2080 break; // Found a null terminator, skip the rest. 2081 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2082 if (!Priority) continue; // Malformed. 2083 Structors.push_back(Structor()); 2084 Structor &S = Structors.back(); 2085 S.Priority = Priority->getLimitedValue(65535); 2086 S.Func = CS->getOperand(1); 2087 if (!CS->getOperand(2)->isNullValue()) 2088 S.ComdatKey = 2089 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2090 } 2091 2092 // Emit the function pointers in the target-specific order 2093 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2094 return L.Priority < R.Priority; 2095 }); 2096 const Align Align = DL.getPointerPrefAlignment(); 2097 for (Structor &S : Structors) { 2098 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2099 const MCSymbol *KeySym = nullptr; 2100 if (GlobalValue *GV = S.ComdatKey) { 2101 if (GV->isDeclarationForLinker()) 2102 // If the associated variable is not defined in this module 2103 // (it might be available_externally, or have been an 2104 // available_externally definition that was dropped by the 2105 // EliminateAvailableExternally pass), some other TU 2106 // will provide its dynamic initializer. 2107 continue; 2108 2109 KeySym = getSymbol(GV); 2110 } 2111 MCSection *OutputSection = 2112 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2113 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2114 OutStreamer->SwitchSection(OutputSection); 2115 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2116 emitAlignment(Align); 2117 emitXXStructor(DL, S.Func); 2118 } 2119 } 2120 2121 void AsmPrinter::emitModuleIdents(Module &M) { 2122 if (!MAI->hasIdentDirective()) 2123 return; 2124 2125 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2126 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2127 const MDNode *N = NMD->getOperand(i); 2128 assert(N->getNumOperands() == 1 && 2129 "llvm.ident metadata entry can have only one operand"); 2130 const MDString *S = cast<MDString>(N->getOperand(0)); 2131 OutStreamer->emitIdent(S->getString()); 2132 } 2133 } 2134 } 2135 2136 void AsmPrinter::emitModuleCommandLines(Module &M) { 2137 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2138 if (!CommandLine) 2139 return; 2140 2141 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2142 if (!NMD || !NMD->getNumOperands()) 2143 return; 2144 2145 OutStreamer->PushSection(); 2146 OutStreamer->SwitchSection(CommandLine); 2147 OutStreamer->emitZeros(1); 2148 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2149 const MDNode *N = NMD->getOperand(i); 2150 assert(N->getNumOperands() == 1 && 2151 "llvm.commandline metadata entry can have only one operand"); 2152 const MDString *S = cast<MDString>(N->getOperand(0)); 2153 OutStreamer->emitBytes(S->getString()); 2154 OutStreamer->emitZeros(1); 2155 } 2156 OutStreamer->PopSection(); 2157 } 2158 2159 //===--------------------------------------------------------------------===// 2160 // Emission and print routines 2161 // 2162 2163 /// Emit a byte directive and value. 2164 /// 2165 void AsmPrinter::emitInt8(int Value) const { 2166 OutStreamer->emitIntValue(Value, 1); 2167 } 2168 2169 /// Emit a short directive and value. 2170 void AsmPrinter::emitInt16(int Value) const { 2171 OutStreamer->emitIntValue(Value, 2); 2172 } 2173 2174 /// Emit a long directive and value. 2175 void AsmPrinter::emitInt32(int Value) const { 2176 OutStreamer->emitIntValue(Value, 4); 2177 } 2178 2179 /// Emit a long long directive and value. 2180 void AsmPrinter::emitInt64(uint64_t Value) const { 2181 OutStreamer->emitIntValue(Value, 8); 2182 } 2183 2184 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2185 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2186 /// .set if it avoids relocations. 2187 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2188 unsigned Size) const { 2189 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2190 } 2191 2192 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2193 /// where the size in bytes of the directive is specified by Size and Label 2194 /// specifies the label. This implicitly uses .set if it is available. 2195 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2196 unsigned Size, 2197 bool IsSectionRelative) const { 2198 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2199 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2200 if (Size > 4) 2201 OutStreamer->emitZeros(Size - 4); 2202 return; 2203 } 2204 2205 // Emit Label+Offset (or just Label if Offset is zero) 2206 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2207 if (Offset) 2208 Expr = MCBinaryExpr::createAdd( 2209 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2210 2211 OutStreamer->emitValue(Expr, Size); 2212 } 2213 2214 //===----------------------------------------------------------------------===// 2215 2216 // EmitAlignment - Emit an alignment directive to the specified power of 2217 // two boundary. If a global value is specified, and if that global has 2218 // an explicit alignment requested, it will override the alignment request 2219 // if required for correctness. 2220 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2221 if (GV) 2222 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2223 2224 if (Alignment == Align(1)) 2225 return; // 1-byte aligned: no need to emit alignment. 2226 2227 if (getCurrentSection()->getKind().isText()) 2228 OutStreamer->emitCodeAlignment(Alignment.value()); 2229 else 2230 OutStreamer->emitValueToAlignment(Alignment.value()); 2231 } 2232 2233 //===----------------------------------------------------------------------===// 2234 // Constant emission. 2235 //===----------------------------------------------------------------------===// 2236 2237 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2238 MCContext &Ctx = OutContext; 2239 2240 if (CV->isNullValue() || isa<UndefValue>(CV)) 2241 return MCConstantExpr::create(0, Ctx); 2242 2243 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2244 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2245 2246 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2247 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2248 2249 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2250 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2251 2252 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2253 if (!CE) { 2254 llvm_unreachable("Unknown constant value to lower!"); 2255 } 2256 2257 switch (CE->getOpcode()) { 2258 default: 2259 // If the code isn't optimized, there may be outstanding folding 2260 // opportunities. Attempt to fold the expression using DataLayout as a 2261 // last resort before giving up. 2262 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2263 if (C != CE) 2264 return lowerConstant(C); 2265 2266 // Otherwise report the problem to the user. 2267 { 2268 std::string S; 2269 raw_string_ostream OS(S); 2270 OS << "Unsupported expression in static initializer: "; 2271 CE->printAsOperand(OS, /*PrintType=*/false, 2272 !MF ? nullptr : MF->getFunction().getParent()); 2273 report_fatal_error(OS.str()); 2274 } 2275 case Instruction::GetElementPtr: { 2276 // Generate a symbolic expression for the byte address 2277 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2278 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2279 2280 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2281 if (!OffsetAI) 2282 return Base; 2283 2284 int64_t Offset = OffsetAI.getSExtValue(); 2285 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2286 Ctx); 2287 } 2288 2289 case Instruction::Trunc: 2290 // We emit the value and depend on the assembler to truncate the generated 2291 // expression properly. This is important for differences between 2292 // blockaddress labels. Since the two labels are in the same function, it 2293 // is reasonable to treat their delta as a 32-bit value. 2294 LLVM_FALLTHROUGH; 2295 case Instruction::BitCast: 2296 return lowerConstant(CE->getOperand(0)); 2297 2298 case Instruction::IntToPtr: { 2299 const DataLayout &DL = getDataLayout(); 2300 2301 // Handle casts to pointers by changing them into casts to the appropriate 2302 // integer type. This promotes constant folding and simplifies this code. 2303 Constant *Op = CE->getOperand(0); 2304 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2305 false/*ZExt*/); 2306 return lowerConstant(Op); 2307 } 2308 2309 case Instruction::PtrToInt: { 2310 const DataLayout &DL = getDataLayout(); 2311 2312 // Support only foldable casts to/from pointers that can be eliminated by 2313 // changing the pointer to the appropriately sized integer type. 2314 Constant *Op = CE->getOperand(0); 2315 Type *Ty = CE->getType(); 2316 2317 const MCExpr *OpExpr = lowerConstant(Op); 2318 2319 // We can emit the pointer value into this slot if the slot is an 2320 // integer slot equal to the size of the pointer. 2321 // 2322 // If the pointer is larger than the resultant integer, then 2323 // as with Trunc just depend on the assembler to truncate it. 2324 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2325 return OpExpr; 2326 2327 // Otherwise the pointer is smaller than the resultant integer, mask off 2328 // the high bits so we are sure to get a proper truncation if the input is 2329 // a constant expr. 2330 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2331 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2332 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2333 } 2334 2335 case Instruction::Sub: { 2336 GlobalValue *LHSGV; 2337 APInt LHSOffset; 2338 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2339 getDataLayout())) { 2340 GlobalValue *RHSGV; 2341 APInt RHSOffset; 2342 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2343 getDataLayout())) { 2344 const MCExpr *RelocExpr = 2345 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2346 if (!RelocExpr) 2347 RelocExpr = MCBinaryExpr::createSub( 2348 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2349 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2350 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2351 if (Addend != 0) 2352 RelocExpr = MCBinaryExpr::createAdd( 2353 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2354 return RelocExpr; 2355 } 2356 } 2357 } 2358 // else fallthrough 2359 LLVM_FALLTHROUGH; 2360 2361 // The MC library also has a right-shift operator, but it isn't consistently 2362 // signed or unsigned between different targets. 2363 case Instruction::Add: 2364 case Instruction::Mul: 2365 case Instruction::SDiv: 2366 case Instruction::SRem: 2367 case Instruction::Shl: 2368 case Instruction::And: 2369 case Instruction::Or: 2370 case Instruction::Xor: { 2371 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2372 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2373 switch (CE->getOpcode()) { 2374 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2375 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2376 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2377 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2378 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2379 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2380 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2381 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2382 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2383 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2384 } 2385 } 2386 } 2387 } 2388 2389 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2390 AsmPrinter &AP, 2391 const Constant *BaseCV = nullptr, 2392 uint64_t Offset = 0); 2393 2394 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2395 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2396 2397 /// isRepeatedByteSequence - Determine whether the given value is 2398 /// composed of a repeated sequence of identical bytes and return the 2399 /// byte value. If it is not a repeated sequence, return -1. 2400 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2401 StringRef Data = V->getRawDataValues(); 2402 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2403 char C = Data[0]; 2404 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2405 if (Data[i] != C) return -1; 2406 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2407 } 2408 2409 /// isRepeatedByteSequence - Determine whether the given value is 2410 /// composed of a repeated sequence of identical bytes and return the 2411 /// byte value. If it is not a repeated sequence, return -1. 2412 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2413 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2414 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2415 assert(Size % 8 == 0); 2416 2417 // Extend the element to take zero padding into account. 2418 APInt Value = CI->getValue().zextOrSelf(Size); 2419 if (!Value.isSplat(8)) 2420 return -1; 2421 2422 return Value.zextOrTrunc(8).getZExtValue(); 2423 } 2424 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2425 // Make sure all array elements are sequences of the same repeated 2426 // byte. 2427 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2428 Constant *Op0 = CA->getOperand(0); 2429 int Byte = isRepeatedByteSequence(Op0, DL); 2430 if (Byte == -1) 2431 return -1; 2432 2433 // All array elements must be equal. 2434 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2435 if (CA->getOperand(i) != Op0) 2436 return -1; 2437 return Byte; 2438 } 2439 2440 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2441 return isRepeatedByteSequence(CDS); 2442 2443 return -1; 2444 } 2445 2446 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2447 const ConstantDataSequential *CDS, 2448 AsmPrinter &AP) { 2449 // See if we can aggregate this into a .fill, if so, emit it as such. 2450 int Value = isRepeatedByteSequence(CDS, DL); 2451 if (Value != -1) { 2452 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2453 // Don't emit a 1-byte object as a .fill. 2454 if (Bytes > 1) 2455 return AP.OutStreamer->emitFill(Bytes, Value); 2456 } 2457 2458 // If this can be emitted with .ascii/.asciz, emit it as such. 2459 if (CDS->isString()) 2460 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2461 2462 // Otherwise, emit the values in successive locations. 2463 unsigned ElementByteSize = CDS->getElementByteSize(); 2464 if (isa<IntegerType>(CDS->getElementType())) { 2465 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2466 if (AP.isVerbose()) 2467 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2468 CDS->getElementAsInteger(i)); 2469 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2470 ElementByteSize); 2471 } 2472 } else { 2473 Type *ET = CDS->getElementType(); 2474 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2475 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2476 } 2477 2478 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2479 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2480 CDS->getNumElements(); 2481 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2482 if (unsigned Padding = Size - EmittedSize) 2483 AP.OutStreamer->emitZeros(Padding); 2484 } 2485 2486 static void emitGlobalConstantArray(const DataLayout &DL, 2487 const ConstantArray *CA, AsmPrinter &AP, 2488 const Constant *BaseCV, uint64_t Offset) { 2489 // See if we can aggregate some values. Make sure it can be 2490 // represented as a series of bytes of the constant value. 2491 int Value = isRepeatedByteSequence(CA, DL); 2492 2493 if (Value != -1) { 2494 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2495 AP.OutStreamer->emitFill(Bytes, Value); 2496 } 2497 else { 2498 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2499 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2500 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2501 } 2502 } 2503 } 2504 2505 static void emitGlobalConstantVector(const DataLayout &DL, 2506 const ConstantVector *CV, AsmPrinter &AP) { 2507 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2508 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2509 2510 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2511 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2512 CV->getType()->getNumElements(); 2513 if (unsigned Padding = Size - EmittedSize) 2514 AP.OutStreamer->emitZeros(Padding); 2515 } 2516 2517 static void emitGlobalConstantStruct(const DataLayout &DL, 2518 const ConstantStruct *CS, AsmPrinter &AP, 2519 const Constant *BaseCV, uint64_t Offset) { 2520 // Print the fields in successive locations. Pad to align if needed! 2521 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2522 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2523 uint64_t SizeSoFar = 0; 2524 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2525 const Constant *Field = CS->getOperand(i); 2526 2527 // Print the actual field value. 2528 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2529 2530 // Check if padding is needed and insert one or more 0s. 2531 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2532 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2533 - Layout->getElementOffset(i)) - FieldSize; 2534 SizeSoFar += FieldSize + PadSize; 2535 2536 // Insert padding - this may include padding to increase the size of the 2537 // current field up to the ABI size (if the struct is not packed) as well 2538 // as padding to ensure that the next field starts at the right offset. 2539 AP.OutStreamer->emitZeros(PadSize); 2540 } 2541 assert(SizeSoFar == Layout->getSizeInBytes() && 2542 "Layout of constant struct may be incorrect!"); 2543 } 2544 2545 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2546 assert(ET && "Unknown float type"); 2547 APInt API = APF.bitcastToAPInt(); 2548 2549 // First print a comment with what we think the original floating-point value 2550 // should have been. 2551 if (AP.isVerbose()) { 2552 SmallString<8> StrVal; 2553 APF.toString(StrVal); 2554 ET->print(AP.OutStreamer->GetCommentOS()); 2555 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2556 } 2557 2558 // Now iterate through the APInt chunks, emitting them in endian-correct 2559 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2560 // floats). 2561 unsigned NumBytes = API.getBitWidth() / 8; 2562 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2563 const uint64_t *p = API.getRawData(); 2564 2565 // PPC's long double has odd notions of endianness compared to how LLVM 2566 // handles it: p[0] goes first for *big* endian on PPC. 2567 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2568 int Chunk = API.getNumWords() - 1; 2569 2570 if (TrailingBytes) 2571 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2572 2573 for (; Chunk >= 0; --Chunk) 2574 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2575 } else { 2576 unsigned Chunk; 2577 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2578 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2579 2580 if (TrailingBytes) 2581 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2582 } 2583 2584 // Emit the tail padding for the long double. 2585 const DataLayout &DL = AP.getDataLayout(); 2586 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2587 } 2588 2589 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2590 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2591 } 2592 2593 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2594 const DataLayout &DL = AP.getDataLayout(); 2595 unsigned BitWidth = CI->getBitWidth(); 2596 2597 // Copy the value as we may massage the layout for constants whose bit width 2598 // is not a multiple of 64-bits. 2599 APInt Realigned(CI->getValue()); 2600 uint64_t ExtraBits = 0; 2601 unsigned ExtraBitsSize = BitWidth & 63; 2602 2603 if (ExtraBitsSize) { 2604 // The bit width of the data is not a multiple of 64-bits. 2605 // The extra bits are expected to be at the end of the chunk of the memory. 2606 // Little endian: 2607 // * Nothing to be done, just record the extra bits to emit. 2608 // Big endian: 2609 // * Record the extra bits to emit. 2610 // * Realign the raw data to emit the chunks of 64-bits. 2611 if (DL.isBigEndian()) { 2612 // Basically the structure of the raw data is a chunk of 64-bits cells: 2613 // 0 1 BitWidth / 64 2614 // [chunk1][chunk2] ... [chunkN]. 2615 // The most significant chunk is chunkN and it should be emitted first. 2616 // However, due to the alignment issue chunkN contains useless bits. 2617 // Realign the chunks so that they contain only useless information: 2618 // ExtraBits 0 1 (BitWidth / 64) - 1 2619 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2620 ExtraBits = Realigned.getRawData()[0] & 2621 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2622 Realigned.lshrInPlace(ExtraBitsSize); 2623 } else 2624 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2625 } 2626 2627 // We don't expect assemblers to support integer data directives 2628 // for more than 64 bits, so we emit the data in at most 64-bit 2629 // quantities at a time. 2630 const uint64_t *RawData = Realigned.getRawData(); 2631 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2632 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2633 AP.OutStreamer->emitIntValue(Val, 8); 2634 } 2635 2636 if (ExtraBitsSize) { 2637 // Emit the extra bits after the 64-bits chunks. 2638 2639 // Emit a directive that fills the expected size. 2640 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2641 Size -= (BitWidth / 64) * 8; 2642 assert(Size && Size * 8 >= ExtraBitsSize && 2643 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2644 == ExtraBits && "Directive too small for extra bits."); 2645 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2646 } 2647 } 2648 2649 /// Transform a not absolute MCExpr containing a reference to a GOT 2650 /// equivalent global, by a target specific GOT pc relative access to the 2651 /// final symbol. 2652 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2653 const Constant *BaseCst, 2654 uint64_t Offset) { 2655 // The global @foo below illustrates a global that uses a got equivalent. 2656 // 2657 // @bar = global i32 42 2658 // @gotequiv = private unnamed_addr constant i32* @bar 2659 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2660 // i64 ptrtoint (i32* @foo to i64)) 2661 // to i32) 2662 // 2663 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2664 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2665 // form: 2666 // 2667 // foo = cstexpr, where 2668 // cstexpr := <gotequiv> - "." + <cst> 2669 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2670 // 2671 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2672 // 2673 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2674 // gotpcrelcst := <offset from @foo base> + <cst> 2675 MCValue MV; 2676 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2677 return; 2678 const MCSymbolRefExpr *SymA = MV.getSymA(); 2679 if (!SymA) 2680 return; 2681 2682 // Check that GOT equivalent symbol is cached. 2683 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2684 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2685 return; 2686 2687 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2688 if (!BaseGV) 2689 return; 2690 2691 // Check for a valid base symbol 2692 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2693 const MCSymbolRefExpr *SymB = MV.getSymB(); 2694 2695 if (!SymB || BaseSym != &SymB->getSymbol()) 2696 return; 2697 2698 // Make sure to match: 2699 // 2700 // gotpcrelcst := <offset from @foo base> + <cst> 2701 // 2702 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2703 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2704 // if the target knows how to encode it. 2705 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2706 if (GOTPCRelCst < 0) 2707 return; 2708 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2709 return; 2710 2711 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2712 // 2713 // bar: 2714 // .long 42 2715 // gotequiv: 2716 // .quad bar 2717 // foo: 2718 // .long gotequiv - "." + <cst> 2719 // 2720 // is replaced by the target specific equivalent to: 2721 // 2722 // bar: 2723 // .long 42 2724 // foo: 2725 // .long bar@GOTPCREL+<gotpcrelcst> 2726 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2727 const GlobalVariable *GV = Result.first; 2728 int NumUses = (int)Result.second; 2729 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2730 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2731 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2732 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2733 2734 // Update GOT equivalent usage information 2735 --NumUses; 2736 if (NumUses >= 0) 2737 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2738 } 2739 2740 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2741 AsmPrinter &AP, const Constant *BaseCV, 2742 uint64_t Offset) { 2743 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2744 2745 // Globals with sub-elements such as combinations of arrays and structs 2746 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2747 // constant symbol base and the current position with BaseCV and Offset. 2748 if (!BaseCV && CV->hasOneUse()) 2749 BaseCV = dyn_cast<Constant>(CV->user_back()); 2750 2751 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2752 return AP.OutStreamer->emitZeros(Size); 2753 2754 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2755 switch (Size) { 2756 case 1: 2757 case 2: 2758 case 4: 2759 case 8: 2760 if (AP.isVerbose()) 2761 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2762 CI->getZExtValue()); 2763 AP.OutStreamer->emitIntValue(CI->getZExtValue(), Size); 2764 return; 2765 default: 2766 emitGlobalConstantLargeInt(CI, AP); 2767 return; 2768 } 2769 } 2770 2771 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2772 return emitGlobalConstantFP(CFP, AP); 2773 2774 if (isa<ConstantPointerNull>(CV)) { 2775 AP.OutStreamer->emitIntValue(0, Size); 2776 return; 2777 } 2778 2779 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2780 return emitGlobalConstantDataSequential(DL, CDS, AP); 2781 2782 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2783 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2784 2785 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2786 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2787 2788 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2789 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2790 // vectors). 2791 if (CE->getOpcode() == Instruction::BitCast) 2792 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2793 2794 if (Size > 8) { 2795 // If the constant expression's size is greater than 64-bits, then we have 2796 // to emit the value in chunks. Try to constant fold the value and emit it 2797 // that way. 2798 Constant *New = ConstantFoldConstant(CE, DL); 2799 if (New && New != CE) 2800 return emitGlobalConstantImpl(DL, New, AP); 2801 } 2802 } 2803 2804 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2805 return emitGlobalConstantVector(DL, V, AP); 2806 2807 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2808 // thread the streamer with EmitValue. 2809 const MCExpr *ME = AP.lowerConstant(CV); 2810 2811 // Since lowerConstant already folded and got rid of all IR pointer and 2812 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2813 // directly. 2814 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2815 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2816 2817 AP.OutStreamer->emitValue(ME, Size); 2818 } 2819 2820 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2821 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2822 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2823 if (Size) 2824 emitGlobalConstantImpl(DL, CV, *this); 2825 else if (MAI->hasSubsectionsViaSymbols()) { 2826 // If the global has zero size, emit a single byte so that two labels don't 2827 // look like they are at the same location. 2828 OutStreamer->emitIntValue(0, 1); 2829 } 2830 } 2831 2832 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2833 // Target doesn't support this yet! 2834 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2835 } 2836 2837 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2838 if (Offset > 0) 2839 OS << '+' << Offset; 2840 else if (Offset < 0) 2841 OS << Offset; 2842 } 2843 2844 void AsmPrinter::emitNops(unsigned N) { 2845 MCInst Nop; 2846 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2847 for (; N; --N) 2848 EmitToStreamer(*OutStreamer, Nop); 2849 } 2850 2851 //===----------------------------------------------------------------------===// 2852 // Symbol Lowering Routines. 2853 //===----------------------------------------------------------------------===// 2854 2855 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2856 return OutContext.createTempSymbol(Name, true); 2857 } 2858 2859 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2860 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2861 } 2862 2863 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2864 return MMI->getAddrLabelSymbol(BB); 2865 } 2866 2867 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2868 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2869 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2870 const MachineConstantPoolEntry &CPE = 2871 MF->getConstantPool()->getConstants()[CPID]; 2872 if (!CPE.isMachineConstantPoolEntry()) { 2873 const DataLayout &DL = MF->getDataLayout(); 2874 SectionKind Kind = CPE.getSectionKind(&DL); 2875 const Constant *C = CPE.Val.ConstVal; 2876 unsigned Align = CPE.Alignment; 2877 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2878 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2879 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2880 if (Sym->isUndefined()) 2881 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2882 return Sym; 2883 } 2884 } 2885 } 2886 } 2887 2888 const DataLayout &DL = getDataLayout(); 2889 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2890 "CPI" + Twine(getFunctionNumber()) + "_" + 2891 Twine(CPID)); 2892 } 2893 2894 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2895 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2896 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2897 } 2898 2899 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2900 /// FIXME: privatize to AsmPrinter. 2901 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2902 const DataLayout &DL = getDataLayout(); 2903 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2904 Twine(getFunctionNumber()) + "_" + 2905 Twine(UID) + "_set_" + Twine(MBBID)); 2906 } 2907 2908 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2909 StringRef Suffix) const { 2910 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2911 } 2912 2913 /// Return the MCSymbol for the specified ExternalSymbol. 2914 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2915 SmallString<60> NameStr; 2916 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2917 return OutContext.getOrCreateSymbol(NameStr); 2918 } 2919 2920 /// PrintParentLoopComment - Print comments about parent loops of this one. 2921 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2922 unsigned FunctionNumber) { 2923 if (!Loop) return; 2924 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2925 OS.indent(Loop->getLoopDepth()*2) 2926 << "Parent Loop BB" << FunctionNumber << "_" 2927 << Loop->getHeader()->getNumber() 2928 << " Depth=" << Loop->getLoopDepth() << '\n'; 2929 } 2930 2931 /// PrintChildLoopComment - Print comments about child loops within 2932 /// the loop for this basic block, with nesting. 2933 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2934 unsigned FunctionNumber) { 2935 // Add child loop information 2936 for (const MachineLoop *CL : *Loop) { 2937 OS.indent(CL->getLoopDepth()*2) 2938 << "Child Loop BB" << FunctionNumber << "_" 2939 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2940 << '\n'; 2941 PrintChildLoopComment(OS, CL, FunctionNumber); 2942 } 2943 } 2944 2945 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2946 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2947 const MachineLoopInfo *LI, 2948 const AsmPrinter &AP) { 2949 // Add loop depth information 2950 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2951 if (!Loop) return; 2952 2953 MachineBasicBlock *Header = Loop->getHeader(); 2954 assert(Header && "No header for loop"); 2955 2956 // If this block is not a loop header, just print out what is the loop header 2957 // and return. 2958 if (Header != &MBB) { 2959 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2960 Twine(AP.getFunctionNumber())+"_" + 2961 Twine(Loop->getHeader()->getNumber())+ 2962 " Depth="+Twine(Loop->getLoopDepth())); 2963 return; 2964 } 2965 2966 // Otherwise, it is a loop header. Print out information about child and 2967 // parent loops. 2968 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2969 2970 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2971 2972 OS << "=>"; 2973 OS.indent(Loop->getLoopDepth()*2-2); 2974 2975 OS << "This "; 2976 if (Loop->empty()) 2977 OS << "Inner "; 2978 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2979 2980 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2981 } 2982 2983 /// EmitBasicBlockStart - This method prints the label for the specified 2984 /// MachineBasicBlock, an alignment (if present) and a comment describing 2985 /// it if appropriate. 2986 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 2987 // End the previous funclet and start a new one. 2988 if (MBB.isEHFuncletEntry()) { 2989 for (const HandlerInfo &HI : Handlers) { 2990 HI.Handler->endFunclet(); 2991 HI.Handler->beginFunclet(MBB); 2992 } 2993 } 2994 2995 // Emit an alignment directive for this block, if needed. 2996 const Align Alignment = MBB.getAlignment(); 2997 if (Alignment != Align(1)) 2998 emitAlignment(Alignment); 2999 3000 // If the block has its address taken, emit any labels that were used to 3001 // reference the block. It is possible that there is more than one label 3002 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3003 // the references were generated. 3004 if (MBB.hasAddressTaken()) { 3005 const BasicBlock *BB = MBB.getBasicBlock(); 3006 if (isVerbose()) 3007 OutStreamer->AddComment("Block address taken"); 3008 3009 // MBBs can have their address taken as part of CodeGen without having 3010 // their corresponding BB's address taken in IR 3011 if (BB->hasAddressTaken()) 3012 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3013 OutStreamer->emitLabel(Sym); 3014 } 3015 3016 // Print some verbose block comments. 3017 if (isVerbose()) { 3018 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3019 if (BB->hasName()) { 3020 BB->printAsOperand(OutStreamer->GetCommentOS(), 3021 /*PrintType=*/false, BB->getModule()); 3022 OutStreamer->GetCommentOS() << '\n'; 3023 } 3024 } 3025 3026 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3027 emitBasicBlockLoopComments(MBB, MLI, *this); 3028 } 3029 3030 // Print the main label for the block. 3031 if (MBB.pred_empty() || 3032 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 3033 !MBB.hasLabelMustBeEmitted())) { 3034 if (isVerbose()) { 3035 // NOTE: Want this comment at start of line, don't emit with AddComment. 3036 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3037 false); 3038 } 3039 } else { 3040 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3041 OutStreamer->AddComment("Label of block must be emitted"); 3042 OutStreamer->emitLabel(MBB.getSymbol()); 3043 } 3044 } 3045 3046 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {} 3047 3048 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3049 bool IsDefinition) const { 3050 MCSymbolAttr Attr = MCSA_Invalid; 3051 3052 switch (Visibility) { 3053 default: break; 3054 case GlobalValue::HiddenVisibility: 3055 if (IsDefinition) 3056 Attr = MAI->getHiddenVisibilityAttr(); 3057 else 3058 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3059 break; 3060 case GlobalValue::ProtectedVisibility: 3061 Attr = MAI->getProtectedVisibilityAttr(); 3062 break; 3063 } 3064 3065 if (Attr != MCSA_Invalid) 3066 OutStreamer->emitSymbolAttribute(Sym, Attr); 3067 } 3068 3069 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3070 /// exactly one predecessor and the control transfer mechanism between 3071 /// the predecessor and this block is a fall-through. 3072 bool AsmPrinter:: 3073 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3074 // If this is a landing pad, it isn't a fall through. If it has no preds, 3075 // then nothing falls through to it. 3076 if (MBB->isEHPad() || MBB->pred_empty()) 3077 return false; 3078 3079 // If there isn't exactly one predecessor, it can't be a fall through. 3080 if (MBB->pred_size() > 1) 3081 return false; 3082 3083 // The predecessor has to be immediately before this block. 3084 MachineBasicBlock *Pred = *MBB->pred_begin(); 3085 if (!Pred->isLayoutSuccessor(MBB)) 3086 return false; 3087 3088 // If the block is completely empty, then it definitely does fall through. 3089 if (Pred->empty()) 3090 return true; 3091 3092 // Check the terminators in the previous blocks 3093 for (const auto &MI : Pred->terminators()) { 3094 // If it is not a simple branch, we are in a table somewhere. 3095 if (!MI.isBranch() || MI.isIndirectBranch()) 3096 return false; 3097 3098 // If we are the operands of one of the branches, this is not a fall 3099 // through. Note that targets with delay slots will usually bundle 3100 // terminators with the delay slot instruction. 3101 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3102 if (OP->isJTI()) 3103 return false; 3104 if (OP->isMBB() && OP->getMBB() == MBB) 3105 return false; 3106 } 3107 } 3108 3109 return true; 3110 } 3111 3112 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3113 if (!S.usesMetadata()) 3114 return nullptr; 3115 3116 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3117 gcp_map_type::iterator GCPI = GCMap.find(&S); 3118 if (GCPI != GCMap.end()) 3119 return GCPI->second.get(); 3120 3121 auto Name = S.getName(); 3122 3123 for (GCMetadataPrinterRegistry::iterator 3124 I = GCMetadataPrinterRegistry::begin(), 3125 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3126 if (Name == I->getName()) { 3127 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3128 GMP->S = &S; 3129 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3130 return IterBool.first->second.get(); 3131 } 3132 3133 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3134 } 3135 3136 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3137 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3138 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3139 bool NeedsDefault = false; 3140 if (MI->begin() == MI->end()) 3141 // No GC strategy, use the default format. 3142 NeedsDefault = true; 3143 else 3144 for (auto &I : *MI) { 3145 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3146 if (MP->emitStackMaps(SM, *this)) 3147 continue; 3148 // The strategy doesn't have printer or doesn't emit custom stack maps. 3149 // Use the default format. 3150 NeedsDefault = true; 3151 } 3152 3153 if (NeedsDefault) 3154 SM.serializeToStackMapSection(); 3155 } 3156 3157 /// Pin vtable to this file. 3158 AsmPrinterHandler::~AsmPrinterHandler() = default; 3159 3160 void AsmPrinterHandler::markFunctionEnd() {} 3161 3162 // In the binary's "xray_instr_map" section, an array of these function entries 3163 // describes each instrumentation point. When XRay patches your code, the index 3164 // into this table will be given to your handler as a patch point identifier. 3165 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3166 const MCSymbol *CurrentFnSym) const { 3167 Out->emitSymbolValue(Sled, Bytes); 3168 Out->emitSymbolValue(CurrentFnSym, Bytes); 3169 auto Kind8 = static_cast<uint8_t>(Kind); 3170 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3171 Out->emitBinaryData( 3172 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3173 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3174 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3175 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3176 Out->emitZeros(Padding); 3177 } 3178 3179 void AsmPrinter::emitXRayTable() { 3180 if (Sleds.empty()) 3181 return; 3182 3183 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3184 const Function &F = MF->getFunction(); 3185 MCSection *InstMap = nullptr; 3186 MCSection *FnSledIndex = nullptr; 3187 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3188 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3189 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3190 StringRef GroupName; 3191 if (F.hasComdat()) { 3192 Flags |= ELF::SHF_GROUP; 3193 GroupName = F.getComdat()->getName(); 3194 } 3195 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3196 Flags, 0, GroupName, 3197 MCSection::NonUniqueID, LinkedToSym); 3198 FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, 3199 Flags, 0, GroupName, 3200 MCSection::NonUniqueID, LinkedToSym); 3201 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3202 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3203 SectionKind::getReadOnlyWithRel()); 3204 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3205 SectionKind::getReadOnlyWithRel()); 3206 } else { 3207 llvm_unreachable("Unsupported target"); 3208 } 3209 3210 auto WordSizeBytes = MAI->getCodePointerSize(); 3211 3212 // Now we switch to the instrumentation map section. Because this is done 3213 // per-function, we are able to create an index entry that will represent the 3214 // range of sleds associated with a function. 3215 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3216 OutStreamer->SwitchSection(InstMap); 3217 OutStreamer->emitLabel(SledsStart); 3218 for (const auto &Sled : Sleds) 3219 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3220 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3221 OutStreamer->emitLabel(SledsEnd); 3222 3223 // We then emit a single entry in the index per function. We use the symbols 3224 // that bound the instrumentation map as the range for a specific function. 3225 // Each entry here will be 2 * word size aligned, as we're writing down two 3226 // pointers. This should work for both 32-bit and 64-bit platforms. 3227 OutStreamer->SwitchSection(FnSledIndex); 3228 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3229 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3230 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3231 OutStreamer->SwitchSection(PrevSection); 3232 Sleds.clear(); 3233 } 3234 3235 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3236 SledKind Kind, uint8_t Version) { 3237 const Function &F = MI.getMF()->getFunction(); 3238 auto Attr = F.getFnAttribute("function-instrument"); 3239 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3240 bool AlwaysInstrument = 3241 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3242 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3243 Kind = SledKind::LOG_ARGS_ENTER; 3244 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3245 AlwaysInstrument, &F, Version}); 3246 } 3247 3248 void AsmPrinter::emitPatchableFunctionEntries() { 3249 const Function &F = MF->getFunction(); 3250 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3251 (void)F.getFnAttribute("patchable-function-prefix") 3252 .getValueAsString() 3253 .getAsInteger(10, PatchableFunctionPrefix); 3254 (void)F.getFnAttribute("patchable-function-entry") 3255 .getValueAsString() 3256 .getAsInteger(10, PatchableFunctionEntry); 3257 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3258 return; 3259 const unsigned PointerSize = getPointerSize(); 3260 if (TM.getTargetTriple().isOSBinFormatELF()) { 3261 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3262 const MCSymbolELF *LinkedToSym = nullptr; 3263 StringRef GroupName; 3264 3265 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3266 // if we are using the integrated assembler. 3267 if (MAI->useIntegratedAssembler()) { 3268 Flags |= ELF::SHF_LINK_ORDER; 3269 if (F.hasComdat()) { 3270 Flags |= ELF::SHF_GROUP; 3271 GroupName = F.getComdat()->getName(); 3272 } 3273 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3274 } 3275 OutStreamer->SwitchSection(OutContext.getELFSection( 3276 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3277 MCSection::NonUniqueID, LinkedToSym)); 3278 emitAlignment(Align(PointerSize)); 3279 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3280 } 3281 } 3282 3283 uint16_t AsmPrinter::getDwarfVersion() const { 3284 return OutStreamer->getContext().getDwarfVersion(); 3285 } 3286 3287 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3288 OutStreamer->getContext().setDwarfVersion(Version); 3289 } 3290