1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/Config/config.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GCStrategy.h" 72 #include "llvm/IR/GlobalAlias.h" 73 #include "llvm/IR/GlobalIFunc.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/MC/TargetRegistry.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Remarks/Remark.h" 107 #include "llvm/Remarks/RemarkFormat.h" 108 #include "llvm/Remarks/RemarkStreamer.h" 109 #include "llvm/Remarks/RemarkStringTable.h" 110 #include "llvm/Support/Casting.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/FileSystem.h" 115 #include "llvm/Support/Format.h" 116 #include "llvm/Support/MathExtras.h" 117 #include "llvm/Support/Path.h" 118 #include "llvm/Support/Timer.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include "llvm/Target/TargetLoweringObjectFile.h" 121 #include "llvm/Target/TargetMachine.h" 122 #include "llvm/Target/TargetOptions.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <cinttypes> 126 #include <cstdint> 127 #include <iterator> 128 #include <limits> 129 #include <memory> 130 #include <string> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 136 #define DEBUG_TYPE "asm-printer" 137 138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 139 static cl::opt<bool> 140 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 141 cl::desc("Disable debug info printing")); 142 143 const char DWARFGroupName[] = "dwarf"; 144 const char DWARFGroupDescription[] = "DWARF Emission"; 145 const char DbgTimerName[] = "emit"; 146 const char DbgTimerDescription[] = "Debug Info Emission"; 147 const char EHTimerName[] = "write_exception"; 148 const char EHTimerDescription[] = "DWARF Exception Writer"; 149 const char CFGuardName[] = "Control Flow Guard"; 150 const char CFGuardDescription[] = "Control Flow Guard"; 151 const char CodeViewLineTablesGroupName[] = "linetables"; 152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 153 const char PPTimerName[] = "emit"; 154 const char PPTimerDescription[] = "Pseudo Probe Emission"; 155 const char PPGroupName[] = "pseudo probe"; 156 const char PPGroupDescription[] = "Pseudo Probe Emission"; 157 158 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 159 160 char AsmPrinter::ID = 0; 161 162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 163 164 static gcp_map_type &getGCMap(void *&P) { 165 if (!P) 166 P = new gcp_map_type(); 167 return *(gcp_map_type*)P; 168 } 169 170 /// getGVAlignment - Return the alignment to use for the specified global 171 /// value. This rounds up to the preferred alignment if possible and legal. 172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 173 Align InAlign) { 174 Align Alignment; 175 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 176 Alignment = DL.getPreferredAlign(GVar); 177 178 // If InAlign is specified, round it to it. 179 if (InAlign > Alignment) 180 Alignment = InAlign; 181 182 // If the GV has a specified alignment, take it into account. 183 const MaybeAlign GVAlign(GV->getAlignment()); 184 if (!GVAlign) 185 return Alignment; 186 187 assert(GVAlign && "GVAlign must be set"); 188 189 // If the GVAlign is larger than NumBits, or if we are required to obey 190 // NumBits because the GV has an assigned section, obey it. 191 if (*GVAlign > Alignment || GV->hasSection()) 192 Alignment = *GVAlign; 193 return Alignment; 194 } 195 196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 197 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 198 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 199 VerboseAsm = OutStreamer->isVerboseAsm(); 200 } 201 202 AsmPrinter::~AsmPrinter() { 203 assert(!DD && Handlers.size() == NumUserHandlers && 204 "Debug/EH info didn't get finalized"); 205 206 if (GCMetadataPrinters) { 207 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 208 209 delete &GCMap; 210 GCMetadataPrinters = nullptr; 211 } 212 } 213 214 bool AsmPrinter::isPositionIndependent() const { 215 return TM.isPositionIndependent(); 216 } 217 218 /// getFunctionNumber - Return a unique ID for the current function. 219 unsigned AsmPrinter::getFunctionNumber() const { 220 return MF->getFunctionNumber(); 221 } 222 223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 224 return *TM.getObjFileLowering(); 225 } 226 227 const DataLayout &AsmPrinter::getDataLayout() const { 228 return MMI->getModule()->getDataLayout(); 229 } 230 231 // Do not use the cached DataLayout because some client use it without a Module 232 // (dsymutil, llvm-dwarfdump). 233 unsigned AsmPrinter::getPointerSize() const { 234 return TM.getPointerSize(0); // FIXME: Default address space 235 } 236 237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 238 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 239 return MF->getSubtarget<MCSubtargetInfo>(); 240 } 241 242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 243 S.emitInstruction(Inst, getSubtargetInfo()); 244 } 245 246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 247 if (DD) { 248 assert(OutStreamer->hasRawTextSupport() && 249 "Expected assembly output mode."); 250 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 251 } 252 } 253 254 /// getCurrentSection() - Return the current section we are emitting to. 255 const MCSection *AsmPrinter::getCurrentSection() const { 256 return OutStreamer->getCurrentSectionOnly(); 257 } 258 259 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 260 AU.setPreservesAll(); 261 MachineFunctionPass::getAnalysisUsage(AU); 262 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 263 AU.addRequired<GCModuleInfo>(); 264 } 265 266 bool AsmPrinter::doInitialization(Module &M) { 267 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 268 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 269 270 // Initialize TargetLoweringObjectFile. 271 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 272 .Initialize(OutContext, TM); 273 274 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 275 .getModuleMetadata(M); 276 277 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 278 279 if (DisableDebugInfoPrinting) 280 MMI->setDebugInfoAvailability(false); 281 282 // Emit the version-min deployment target directive if needed. 283 // 284 // FIXME: If we end up with a collection of these sorts of Darwin-specific 285 // or ELF-specific things, it may make sense to have a platform helper class 286 // that will work with the target helper class. For now keep it here, as the 287 // alternative is duplicated code in each of the target asm printers that 288 // use the directive, where it would need the same conditionalization 289 // anyway. 290 const Triple &Target = TM.getTargetTriple(); 291 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 292 293 // Allow the target to emit any magic that it wants at the start of the file. 294 emitStartOfAsmFile(M); 295 296 // Very minimal debug info. It is ignored if we emit actual debug info. If we 297 // don't, this at least helps the user find where a global came from. 298 if (MAI->hasSingleParameterDotFile()) { 299 // .file "foo.c" 300 301 SmallString<128> FileName; 302 if (MAI->hasBasenameOnlyForFileDirective()) 303 FileName = llvm::sys::path::filename(M.getSourceFileName()); 304 else 305 FileName = M.getSourceFileName(); 306 if (MAI->hasFourStringsDotFile()) { 307 #ifdef PACKAGE_VENDOR 308 const char VerStr[] = 309 PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION; 310 #else 311 const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION; 312 #endif 313 // TODO: Add timestamp and description. 314 OutStreamer->emitFileDirective(FileName, VerStr, "", ""); 315 } else { 316 OutStreamer->emitFileDirective(FileName); 317 } 318 } 319 320 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 321 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 322 for (auto &I : *MI) 323 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 324 MP->beginAssembly(M, *MI, *this); 325 326 // Emit module-level inline asm if it exists. 327 if (!M.getModuleInlineAsm().empty()) { 328 OutStreamer->AddComment("Start of file scope inline assembly"); 329 OutStreamer->AddBlankLine(); 330 emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), 331 TM.Options.MCOptions); 332 OutStreamer->AddComment("End of file scope inline assembly"); 333 OutStreamer->AddBlankLine(); 334 } 335 336 if (MAI->doesSupportDebugInformation()) { 337 bool EmitCodeView = M.getCodeViewFlag(); 338 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 339 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 340 DbgTimerName, DbgTimerDescription, 341 CodeViewLineTablesGroupName, 342 CodeViewLineTablesGroupDescription); 343 } 344 if (!EmitCodeView || M.getDwarfVersion()) { 345 if (!DisableDebugInfoPrinting) { 346 DD = new DwarfDebug(this); 347 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 348 DbgTimerDescription, DWARFGroupName, 349 DWARFGroupDescription); 350 } 351 } 352 } 353 354 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 355 PP = new PseudoProbeHandler(this); 356 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 357 PPTimerDescription, PPGroupName, PPGroupDescription); 358 } 359 360 switch (MAI->getExceptionHandlingType()) { 361 case ExceptionHandling::None: 362 // We may want to emit CFI for debug. 363 LLVM_FALLTHROUGH; 364 case ExceptionHandling::SjLj: 365 case ExceptionHandling::DwarfCFI: 366 case ExceptionHandling::ARM: 367 for (auto &F : M.getFunctionList()) { 368 if (getFunctionCFISectionType(F) != CFISection::None) 369 ModuleCFISection = getFunctionCFISectionType(F); 370 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 371 // the module needs .eh_frame. If we have found that case, we are done. 372 if (ModuleCFISection == CFISection::EH) 373 break; 374 } 375 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 376 ModuleCFISection != CFISection::EH); 377 break; 378 default: 379 break; 380 } 381 382 EHStreamer *ES = nullptr; 383 switch (MAI->getExceptionHandlingType()) { 384 case ExceptionHandling::None: 385 if (!needsCFIForDebug()) 386 break; 387 LLVM_FALLTHROUGH; 388 case ExceptionHandling::SjLj: 389 case ExceptionHandling::DwarfCFI: 390 ES = new DwarfCFIException(this); 391 break; 392 case ExceptionHandling::ARM: 393 ES = new ARMException(this); 394 break; 395 case ExceptionHandling::WinEH: 396 switch (MAI->getWinEHEncodingType()) { 397 default: llvm_unreachable("unsupported unwinding information encoding"); 398 case WinEH::EncodingType::Invalid: 399 break; 400 case WinEH::EncodingType::X86: 401 case WinEH::EncodingType::Itanium: 402 ES = new WinException(this); 403 break; 404 } 405 break; 406 case ExceptionHandling::Wasm: 407 ES = new WasmException(this); 408 break; 409 case ExceptionHandling::AIX: 410 ES = new AIXException(this); 411 break; 412 } 413 if (ES) 414 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 415 EHTimerDescription, DWARFGroupName, 416 DWARFGroupDescription); 417 418 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 419 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 420 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 421 CFGuardDescription, DWARFGroupName, 422 DWARFGroupDescription); 423 424 for (const HandlerInfo &HI : Handlers) { 425 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 426 HI.TimerGroupDescription, TimePassesIsEnabled); 427 HI.Handler->beginModule(&M); 428 } 429 430 return false; 431 } 432 433 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 434 if (!MAI.hasWeakDefCanBeHiddenDirective()) 435 return false; 436 437 return GV->canBeOmittedFromSymbolTable(); 438 } 439 440 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 441 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 442 switch (Linkage) { 443 case GlobalValue::CommonLinkage: 444 case GlobalValue::LinkOnceAnyLinkage: 445 case GlobalValue::LinkOnceODRLinkage: 446 case GlobalValue::WeakAnyLinkage: 447 case GlobalValue::WeakODRLinkage: 448 if (MAI->hasWeakDefDirective()) { 449 // .globl _foo 450 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 451 452 if (!canBeHidden(GV, *MAI)) 453 // .weak_definition _foo 454 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 455 else 456 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 457 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 458 // .globl _foo 459 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 460 //NOTE: linkonce is handled by the section the symbol was assigned to. 461 } else { 462 // .weak _foo 463 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 464 } 465 return; 466 case GlobalValue::ExternalLinkage: 467 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 468 return; 469 case GlobalValue::PrivateLinkage: 470 case GlobalValue::InternalLinkage: 471 return; 472 case GlobalValue::ExternalWeakLinkage: 473 case GlobalValue::AvailableExternallyLinkage: 474 case GlobalValue::AppendingLinkage: 475 llvm_unreachable("Should never emit this"); 476 } 477 llvm_unreachable("Unknown linkage type!"); 478 } 479 480 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 481 const GlobalValue *GV) const { 482 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 483 } 484 485 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 486 return TM.getSymbol(GV); 487 } 488 489 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 490 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 491 // exact definion (intersection of GlobalValue::hasExactDefinition() and 492 // !isInterposable()). These linkages include: external, appending, internal, 493 // private. It may be profitable to use a local alias for external. The 494 // assembler would otherwise be conservative and assume a global default 495 // visibility symbol can be interposable, even if the code generator already 496 // assumed it. 497 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 498 const Module &M = *GV.getParent(); 499 if (TM.getRelocationModel() != Reloc::Static && 500 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 501 return getSymbolWithGlobalValueBase(&GV, "$local"); 502 } 503 return TM.getSymbol(&GV); 504 } 505 506 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 507 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 508 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 509 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 510 "No emulated TLS variables in the common section"); 511 512 // Never emit TLS variable xyz in emulated TLS model. 513 // The initialization value is in __emutls_t.xyz instead of xyz. 514 if (IsEmuTLSVar) 515 return; 516 517 if (GV->hasInitializer()) { 518 // Check to see if this is a special global used by LLVM, if so, emit it. 519 if (emitSpecialLLVMGlobal(GV)) 520 return; 521 522 // Skip the emission of global equivalents. The symbol can be emitted later 523 // on by emitGlobalGOTEquivs in case it turns out to be needed. 524 if (GlobalGOTEquivs.count(getSymbol(GV))) 525 return; 526 527 if (isVerbose()) { 528 // When printing the control variable __emutls_v.*, 529 // we don't need to print the original TLS variable name. 530 GV->printAsOperand(OutStreamer->GetCommentOS(), 531 /*PrintType=*/false, GV->getParent()); 532 OutStreamer->GetCommentOS() << '\n'; 533 } 534 } 535 536 MCSymbol *GVSym = getSymbol(GV); 537 MCSymbol *EmittedSym = GVSym; 538 539 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 540 // attributes. 541 // GV's or GVSym's attributes will be used for the EmittedSym. 542 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 543 544 if (!GV->hasInitializer()) // External globals require no extra code. 545 return; 546 547 GVSym->redefineIfPossible(); 548 if (GVSym->isDefined() || GVSym->isVariable()) 549 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 550 "' is already defined"); 551 552 if (MAI->hasDotTypeDotSizeDirective()) 553 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 554 555 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 556 557 const DataLayout &DL = GV->getParent()->getDataLayout(); 558 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 559 560 // If the alignment is specified, we *must* obey it. Overaligning a global 561 // with a specified alignment is a prompt way to break globals emitted to 562 // sections and expected to be contiguous (e.g. ObjC metadata). 563 const Align Alignment = getGVAlignment(GV, DL); 564 565 for (const HandlerInfo &HI : Handlers) { 566 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 567 HI.TimerGroupName, HI.TimerGroupDescription, 568 TimePassesIsEnabled); 569 HI.Handler->setSymbolSize(GVSym, Size); 570 } 571 572 // Handle common symbols 573 if (GVKind.isCommon()) { 574 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 575 // .comm _foo, 42, 4 576 const bool SupportsAlignment = 577 getObjFileLowering().getCommDirectiveSupportsAlignment(); 578 OutStreamer->emitCommonSymbol(GVSym, Size, 579 SupportsAlignment ? Alignment.value() : 0); 580 return; 581 } 582 583 // Determine to which section this global should be emitted. 584 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 585 586 // If we have a bss global going to a section that supports the 587 // zerofill directive, do so here. 588 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 589 TheSection->isVirtualSection()) { 590 if (Size == 0) 591 Size = 1; // zerofill of 0 bytes is undefined. 592 emitLinkage(GV, GVSym); 593 // .zerofill __DATA, __bss, _foo, 400, 5 594 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 595 return; 596 } 597 598 // If this is a BSS local symbol and we are emitting in the BSS 599 // section use .lcomm/.comm directive. 600 if (GVKind.isBSSLocal() && 601 getObjFileLowering().getBSSSection() == TheSection) { 602 if (Size == 0) 603 Size = 1; // .comm Foo, 0 is undefined, avoid it. 604 605 // Use .lcomm only if it supports user-specified alignment. 606 // Otherwise, while it would still be correct to use .lcomm in some 607 // cases (e.g. when Align == 1), the external assembler might enfore 608 // some -unknown- default alignment behavior, which could cause 609 // spurious differences between external and integrated assembler. 610 // Prefer to simply fall back to .local / .comm in this case. 611 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 612 // .lcomm _foo, 42 613 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 614 return; 615 } 616 617 // .local _foo 618 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 619 // .comm _foo, 42, 4 620 const bool SupportsAlignment = 621 getObjFileLowering().getCommDirectiveSupportsAlignment(); 622 OutStreamer->emitCommonSymbol(GVSym, Size, 623 SupportsAlignment ? Alignment.value() : 0); 624 return; 625 } 626 627 // Handle thread local data for mach-o which requires us to output an 628 // additional structure of data and mangle the original symbol so that we 629 // can reference it later. 630 // 631 // TODO: This should become an "emit thread local global" method on TLOF. 632 // All of this macho specific stuff should be sunk down into TLOFMachO and 633 // stuff like "TLSExtraDataSection" should no longer be part of the parent 634 // TLOF class. This will also make it more obvious that stuff like 635 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 636 // specific code. 637 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 638 // Emit the .tbss symbol 639 MCSymbol *MangSym = 640 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 641 642 if (GVKind.isThreadBSS()) { 643 TheSection = getObjFileLowering().getTLSBSSSection(); 644 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 645 } else if (GVKind.isThreadData()) { 646 OutStreamer->SwitchSection(TheSection); 647 648 emitAlignment(Alignment, GV); 649 OutStreamer->emitLabel(MangSym); 650 651 emitGlobalConstant(GV->getParent()->getDataLayout(), 652 GV->getInitializer()); 653 } 654 655 OutStreamer->AddBlankLine(); 656 657 // Emit the variable struct for the runtime. 658 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 659 660 OutStreamer->SwitchSection(TLVSect); 661 // Emit the linkage here. 662 emitLinkage(GV, GVSym); 663 OutStreamer->emitLabel(GVSym); 664 665 // Three pointers in size: 666 // - __tlv_bootstrap - used to make sure support exists 667 // - spare pointer, used when mapped by the runtime 668 // - pointer to mangled symbol above with initializer 669 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 670 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 671 PtrSize); 672 OutStreamer->emitIntValue(0, PtrSize); 673 OutStreamer->emitSymbolValue(MangSym, PtrSize); 674 675 OutStreamer->AddBlankLine(); 676 return; 677 } 678 679 MCSymbol *EmittedInitSym = GVSym; 680 681 OutStreamer->SwitchSection(TheSection); 682 683 emitLinkage(GV, EmittedInitSym); 684 emitAlignment(Alignment, GV); 685 686 OutStreamer->emitLabel(EmittedInitSym); 687 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 688 if (LocalAlias != EmittedInitSym) 689 OutStreamer->emitLabel(LocalAlias); 690 691 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 692 693 if (MAI->hasDotTypeDotSizeDirective()) 694 // .size foo, 42 695 OutStreamer->emitELFSize(EmittedInitSym, 696 MCConstantExpr::create(Size, OutContext)); 697 698 OutStreamer->AddBlankLine(); 699 } 700 701 /// Emit the directive and value for debug thread local expression 702 /// 703 /// \p Value - The value to emit. 704 /// \p Size - The size of the integer (in bytes) to emit. 705 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 706 OutStreamer->emitValue(Value, Size); 707 } 708 709 void AsmPrinter::emitFunctionHeaderComment() {} 710 711 /// EmitFunctionHeader - This method emits the header for the current 712 /// function. 713 void AsmPrinter::emitFunctionHeader() { 714 const Function &F = MF->getFunction(); 715 716 if (isVerbose()) 717 OutStreamer->GetCommentOS() 718 << "-- Begin function " 719 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 720 721 // Print out constants referenced by the function 722 emitConstantPool(); 723 724 // Print the 'header' of function. 725 // If basic block sections are desired, explicitly request a unique section 726 // for this function's entry block. 727 if (MF->front().isBeginSection()) 728 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 729 else 730 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 731 OutStreamer->SwitchSection(MF->getSection()); 732 733 if (!MAI->hasVisibilityOnlyWithLinkage()) 734 emitVisibility(CurrentFnSym, F.getVisibility()); 735 736 if (MAI->needsFunctionDescriptors()) 737 emitLinkage(&F, CurrentFnDescSym); 738 739 emitLinkage(&F, CurrentFnSym); 740 if (MAI->hasFunctionAlignment()) 741 emitAlignment(MF->getAlignment(), &F); 742 743 if (MAI->hasDotTypeDotSizeDirective()) 744 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 745 746 if (F.hasFnAttribute(Attribute::Cold)) 747 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 748 749 if (isVerbose()) { 750 F.printAsOperand(OutStreamer->GetCommentOS(), 751 /*PrintType=*/false, F.getParent()); 752 emitFunctionHeaderComment(); 753 OutStreamer->GetCommentOS() << '\n'; 754 } 755 756 // Emit the prefix data. 757 if (F.hasPrefixData()) { 758 if (MAI->hasSubsectionsViaSymbols()) { 759 // Preserving prefix data on platforms which use subsections-via-symbols 760 // is a bit tricky. Here we introduce a symbol for the prefix data 761 // and use the .alt_entry attribute to mark the function's real entry point 762 // as an alternative entry point to the prefix-data symbol. 763 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 764 OutStreamer->emitLabel(PrefixSym); 765 766 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 767 768 // Emit an .alt_entry directive for the actual function symbol. 769 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 770 } else { 771 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 772 } 773 } 774 775 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 776 // place prefix data before NOPs. 777 unsigned PatchableFunctionPrefix = 0; 778 unsigned PatchableFunctionEntry = 0; 779 (void)F.getFnAttribute("patchable-function-prefix") 780 .getValueAsString() 781 .getAsInteger(10, PatchableFunctionPrefix); 782 (void)F.getFnAttribute("patchable-function-entry") 783 .getValueAsString() 784 .getAsInteger(10, PatchableFunctionEntry); 785 if (PatchableFunctionPrefix) { 786 CurrentPatchableFunctionEntrySym = 787 OutContext.createLinkerPrivateTempSymbol(); 788 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 789 emitNops(PatchableFunctionPrefix); 790 } else if (PatchableFunctionEntry) { 791 // May be reassigned when emitting the body, to reference the label after 792 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 793 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 794 } 795 796 // Emit the function descriptor. This is a virtual function to allow targets 797 // to emit their specific function descriptor. Right now it is only used by 798 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 799 // descriptors and should be converted to use this hook as well. 800 if (MAI->needsFunctionDescriptors()) 801 emitFunctionDescriptor(); 802 803 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 804 // their wild and crazy things as required. 805 emitFunctionEntryLabel(); 806 807 // If the function had address-taken blocks that got deleted, then we have 808 // references to the dangling symbols. Emit them at the start of the function 809 // so that we don't get references to undefined symbols. 810 std::vector<MCSymbol*> DeadBlockSyms; 811 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 812 for (MCSymbol *DeadBlockSym : DeadBlockSyms) { 813 OutStreamer->AddComment("Address taken block that was later removed"); 814 OutStreamer->emitLabel(DeadBlockSym); 815 } 816 817 if (CurrentFnBegin) { 818 if (MAI->useAssignmentForEHBegin()) { 819 MCSymbol *CurPos = OutContext.createTempSymbol(); 820 OutStreamer->emitLabel(CurPos); 821 OutStreamer->emitAssignment(CurrentFnBegin, 822 MCSymbolRefExpr::create(CurPos, OutContext)); 823 } else { 824 OutStreamer->emitLabel(CurrentFnBegin); 825 } 826 } 827 828 // Emit pre-function debug and/or EH information. 829 for (const HandlerInfo &HI : Handlers) { 830 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 831 HI.TimerGroupDescription, TimePassesIsEnabled); 832 HI.Handler->beginFunction(MF); 833 } 834 835 // Emit the prologue data. 836 if (F.hasPrologueData()) 837 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 838 } 839 840 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 841 /// function. This can be overridden by targets as required to do custom stuff. 842 void AsmPrinter::emitFunctionEntryLabel() { 843 CurrentFnSym->redefineIfPossible(); 844 845 // The function label could have already been emitted if two symbols end up 846 // conflicting due to asm renaming. Detect this and emit an error. 847 if (CurrentFnSym->isVariable()) 848 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 849 "' is a protected alias"); 850 851 OutStreamer->emitLabel(CurrentFnSym); 852 853 if (TM.getTargetTriple().isOSBinFormatELF()) { 854 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 855 if (Sym != CurrentFnSym) 856 OutStreamer->emitLabel(Sym); 857 } 858 } 859 860 /// emitComments - Pretty-print comments for instructions. 861 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 862 const MachineFunction *MF = MI.getMF(); 863 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 864 865 // Check for spills and reloads 866 867 // We assume a single instruction only has a spill or reload, not 868 // both. 869 Optional<unsigned> Size; 870 if ((Size = MI.getRestoreSize(TII))) { 871 CommentOS << *Size << "-byte Reload\n"; 872 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 873 if (*Size) { 874 if (*Size == unsigned(MemoryLocation::UnknownSize)) 875 CommentOS << "Unknown-size Folded Reload\n"; 876 else 877 CommentOS << *Size << "-byte Folded Reload\n"; 878 } 879 } else if ((Size = MI.getSpillSize(TII))) { 880 CommentOS << *Size << "-byte Spill\n"; 881 } else if ((Size = MI.getFoldedSpillSize(TII))) { 882 if (*Size) { 883 if (*Size == unsigned(MemoryLocation::UnknownSize)) 884 CommentOS << "Unknown-size Folded Spill\n"; 885 else 886 CommentOS << *Size << "-byte Folded Spill\n"; 887 } 888 } 889 890 // Check for spill-induced copies 891 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 892 CommentOS << " Reload Reuse\n"; 893 } 894 895 /// emitImplicitDef - This method emits the specified machine instruction 896 /// that is an implicit def. 897 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 898 Register RegNo = MI->getOperand(0).getReg(); 899 900 SmallString<128> Str; 901 raw_svector_ostream OS(Str); 902 OS << "implicit-def: " 903 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 904 905 OutStreamer->AddComment(OS.str()); 906 OutStreamer->AddBlankLine(); 907 } 908 909 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 910 std::string Str; 911 raw_string_ostream OS(Str); 912 OS << "kill:"; 913 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 914 const MachineOperand &Op = MI->getOperand(i); 915 assert(Op.isReg() && "KILL instruction must have only register operands"); 916 OS << ' ' << (Op.isDef() ? "def " : "killed ") 917 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 918 } 919 AP.OutStreamer->AddComment(OS.str()); 920 AP.OutStreamer->AddBlankLine(); 921 } 922 923 /// emitDebugValueComment - This method handles the target-independent form 924 /// of DBG_VALUE, returning true if it was able to do so. A false return 925 /// means the target will need to handle MI in EmitInstruction. 926 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 927 // This code handles only the 4-operand target-independent form. 928 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 929 return false; 930 931 SmallString<128> Str; 932 raw_svector_ostream OS(Str); 933 OS << "DEBUG_VALUE: "; 934 935 const DILocalVariable *V = MI->getDebugVariable(); 936 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 937 StringRef Name = SP->getName(); 938 if (!Name.empty()) 939 OS << Name << ":"; 940 } 941 OS << V->getName(); 942 OS << " <- "; 943 944 const DIExpression *Expr = MI->getDebugExpression(); 945 if (Expr->getNumElements()) { 946 OS << '['; 947 ListSeparator LS; 948 for (auto Op : Expr->expr_ops()) { 949 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 950 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 951 OS << ' ' << Op.getArg(I); 952 } 953 OS << "] "; 954 } 955 956 // Register or immediate value. Register 0 means undef. 957 for (const MachineOperand &Op : MI->debug_operands()) { 958 if (&Op != MI->debug_operands().begin()) 959 OS << ", "; 960 switch (Op.getType()) { 961 case MachineOperand::MO_FPImmediate: { 962 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 963 Type *ImmTy = Op.getFPImm()->getType(); 964 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 965 ImmTy->isDoubleTy()) { 966 OS << APF.convertToDouble(); 967 } else { 968 // There is no good way to print long double. Convert a copy to 969 // double. Ah well, it's only a comment. 970 bool ignored; 971 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 972 &ignored); 973 OS << "(long double) " << APF.convertToDouble(); 974 } 975 break; 976 } 977 case MachineOperand::MO_Immediate: { 978 OS << Op.getImm(); 979 break; 980 } 981 case MachineOperand::MO_CImmediate: { 982 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 983 break; 984 } 985 case MachineOperand::MO_TargetIndex: { 986 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 987 // NOTE: Want this comment at start of line, don't emit with AddComment. 988 AP.OutStreamer->emitRawComment(OS.str()); 989 break; 990 } 991 case MachineOperand::MO_Register: 992 case MachineOperand::MO_FrameIndex: { 993 Register Reg; 994 Optional<StackOffset> Offset; 995 if (Op.isReg()) { 996 Reg = Op.getReg(); 997 } else { 998 const TargetFrameLowering *TFI = 999 AP.MF->getSubtarget().getFrameLowering(); 1000 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 1001 } 1002 if (!Reg) { 1003 // Suppress offset, it is not meaningful here. 1004 OS << "undef"; 1005 break; 1006 } 1007 // The second operand is only an offset if it's an immediate. 1008 if (MI->isIndirectDebugValue()) 1009 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1010 if (Offset) 1011 OS << '['; 1012 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1013 if (Offset) 1014 OS << '+' << Offset->getFixed() << ']'; 1015 break; 1016 } 1017 default: 1018 llvm_unreachable("Unknown operand type"); 1019 } 1020 } 1021 1022 // NOTE: Want this comment at start of line, don't emit with AddComment. 1023 AP.OutStreamer->emitRawComment(OS.str()); 1024 return true; 1025 } 1026 1027 /// This method handles the target-independent form of DBG_LABEL, returning 1028 /// true if it was able to do so. A false return means the target will need 1029 /// to handle MI in EmitInstruction. 1030 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1031 if (MI->getNumOperands() != 1) 1032 return false; 1033 1034 SmallString<128> Str; 1035 raw_svector_ostream OS(Str); 1036 OS << "DEBUG_LABEL: "; 1037 1038 const DILabel *V = MI->getDebugLabel(); 1039 if (auto *SP = dyn_cast<DISubprogram>( 1040 V->getScope()->getNonLexicalBlockFileScope())) { 1041 StringRef Name = SP->getName(); 1042 if (!Name.empty()) 1043 OS << Name << ":"; 1044 } 1045 OS << V->getName(); 1046 1047 // NOTE: Want this comment at start of line, don't emit with AddComment. 1048 AP.OutStreamer->emitRawComment(OS.str()); 1049 return true; 1050 } 1051 1052 AsmPrinter::CFISection 1053 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1054 // Ignore functions that won't get emitted. 1055 if (F.isDeclarationForLinker()) 1056 return CFISection::None; 1057 1058 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1059 F.needsUnwindTableEntry()) 1060 return CFISection::EH; 1061 1062 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1063 return CFISection::Debug; 1064 1065 return CFISection::None; 1066 } 1067 1068 AsmPrinter::CFISection 1069 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1070 return getFunctionCFISectionType(MF.getFunction()); 1071 } 1072 1073 bool AsmPrinter::needsSEHMoves() { 1074 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1075 } 1076 1077 bool AsmPrinter::needsCFIForDebug() const { 1078 return MAI->getExceptionHandlingType() == ExceptionHandling::None && 1079 MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug; 1080 } 1081 1082 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1083 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1084 if (!needsCFIForDebug() && 1085 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1086 ExceptionHandlingType != ExceptionHandling::ARM) 1087 return; 1088 1089 if (getFunctionCFISectionType(*MF) == CFISection::None) 1090 return; 1091 1092 // If there is no "real" instruction following this CFI instruction, skip 1093 // emitting it; it would be beyond the end of the function's FDE range. 1094 auto *MBB = MI.getParent(); 1095 auto I = std::next(MI.getIterator()); 1096 while (I != MBB->end() && I->isTransient()) 1097 ++I; 1098 if (I == MBB->instr_end() && 1099 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1100 return; 1101 1102 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1103 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1104 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1105 emitCFIInstruction(CFI); 1106 } 1107 1108 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1109 // The operands are the MCSymbol and the frame offset of the allocation. 1110 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1111 int FrameOffset = MI.getOperand(1).getImm(); 1112 1113 // Emit a symbol assignment. 1114 OutStreamer->emitAssignment(FrameAllocSym, 1115 MCConstantExpr::create(FrameOffset, OutContext)); 1116 } 1117 1118 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1119 /// given basic block. This can be used to capture more precise profile 1120 /// information. We use the last 4 bits (LSBs) to encode the following 1121 /// information: 1122 /// * (1): set if return block (ret or tail call). 1123 /// * (2): set if ends with a tail call. 1124 /// * (3): set if exception handling (EH) landing pad. 1125 /// * (4): set if the block can fall through to its next. 1126 /// The remaining bits are zero. 1127 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1128 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1129 return ((unsigned)MBB.isReturnBlock()) | 1130 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1131 (MBB.isEHPad() << 2) | 1132 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); 1133 } 1134 1135 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1136 MCSection *BBAddrMapSection = 1137 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1138 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1139 1140 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1141 1142 OutStreamer->PushSection(); 1143 OutStreamer->SwitchSection(BBAddrMapSection); 1144 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1145 // Emit the total number of basic blocks in this function. 1146 OutStreamer->emitULEB128IntValue(MF.size()); 1147 // Emit BB Information for each basic block in the funciton. 1148 for (const MachineBasicBlock &MBB : MF) { 1149 const MCSymbol *MBBSymbol = 1150 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1151 // Emit the basic block offset. 1152 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1153 // Emit the basic block size. When BBs have alignments, their size cannot 1154 // always be computed from their offsets. 1155 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1156 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1157 } 1158 OutStreamer->PopSection(); 1159 } 1160 1161 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1162 auto GUID = MI.getOperand(0).getImm(); 1163 auto Index = MI.getOperand(1).getImm(); 1164 auto Type = MI.getOperand(2).getImm(); 1165 auto Attr = MI.getOperand(3).getImm(); 1166 DILocation *DebugLoc = MI.getDebugLoc(); 1167 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1168 } 1169 1170 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1171 if (!MF.getTarget().Options.EmitStackSizeSection) 1172 return; 1173 1174 MCSection *StackSizeSection = 1175 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1176 if (!StackSizeSection) 1177 return; 1178 1179 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1180 // Don't emit functions with dynamic stack allocations. 1181 if (FrameInfo.hasVarSizedObjects()) 1182 return; 1183 1184 OutStreamer->PushSection(); 1185 OutStreamer->SwitchSection(StackSizeSection); 1186 1187 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1188 uint64_t StackSize = FrameInfo.getStackSize(); 1189 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1190 OutStreamer->emitULEB128IntValue(StackSize); 1191 1192 OutStreamer->PopSection(); 1193 } 1194 1195 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1196 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1197 1198 // OutputFilename empty implies -fstack-usage is not passed. 1199 if (OutputFilename.empty()) 1200 return; 1201 1202 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1203 uint64_t StackSize = FrameInfo.getStackSize(); 1204 1205 if (StackUsageStream == nullptr) { 1206 std::error_code EC; 1207 StackUsageStream = 1208 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1209 if (EC) { 1210 errs() << "Could not open file: " << EC.message(); 1211 return; 1212 } 1213 } 1214 1215 *StackUsageStream << MF.getFunction().getParent()->getName(); 1216 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1217 *StackUsageStream << ':' << DSP->getLine(); 1218 1219 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1220 if (FrameInfo.hasVarSizedObjects()) 1221 *StackUsageStream << "dynamic\n"; 1222 else 1223 *StackUsageStream << "static\n"; 1224 } 1225 1226 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1227 MachineModuleInfo &MMI = MF.getMMI(); 1228 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1229 return true; 1230 1231 // We might emit an EH table that uses function begin and end labels even if 1232 // we don't have any landingpads. 1233 if (!MF.getFunction().hasPersonalityFn()) 1234 return false; 1235 return !isNoOpWithoutInvoke( 1236 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1237 } 1238 1239 /// EmitFunctionBody - This method emits the body and trailer for a 1240 /// function. 1241 void AsmPrinter::emitFunctionBody() { 1242 emitFunctionHeader(); 1243 1244 // Emit target-specific gunk before the function body. 1245 emitFunctionBodyStart(); 1246 1247 if (isVerbose()) { 1248 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1249 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1250 if (!MDT) { 1251 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1252 OwnedMDT->getBase().recalculate(*MF); 1253 MDT = OwnedMDT.get(); 1254 } 1255 1256 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1257 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1258 if (!MLI) { 1259 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1260 OwnedMLI->getBase().analyze(MDT->getBase()); 1261 MLI = OwnedMLI.get(); 1262 } 1263 } 1264 1265 // Print out code for the function. 1266 bool HasAnyRealCode = false; 1267 int NumInstsInFunction = 0; 1268 1269 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1270 for (auto &MBB : *MF) { 1271 // Print a label for the basic block. 1272 emitBasicBlockStart(MBB); 1273 DenseMap<StringRef, unsigned> MnemonicCounts; 1274 for (auto &MI : MBB) { 1275 // Print the assembly for the instruction. 1276 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1277 !MI.isDebugInstr()) { 1278 HasAnyRealCode = true; 1279 ++NumInstsInFunction; 1280 } 1281 1282 // If there is a pre-instruction symbol, emit a label for it here. 1283 if (MCSymbol *S = MI.getPreInstrSymbol()) 1284 OutStreamer->emitLabel(S); 1285 1286 for (const HandlerInfo &HI : Handlers) { 1287 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1288 HI.TimerGroupDescription, TimePassesIsEnabled); 1289 HI.Handler->beginInstruction(&MI); 1290 } 1291 1292 if (isVerbose()) 1293 emitComments(MI, OutStreamer->GetCommentOS()); 1294 1295 switch (MI.getOpcode()) { 1296 case TargetOpcode::CFI_INSTRUCTION: 1297 emitCFIInstruction(MI); 1298 break; 1299 case TargetOpcode::LOCAL_ESCAPE: 1300 emitFrameAlloc(MI); 1301 break; 1302 case TargetOpcode::ANNOTATION_LABEL: 1303 case TargetOpcode::EH_LABEL: 1304 case TargetOpcode::GC_LABEL: 1305 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1306 break; 1307 case TargetOpcode::INLINEASM: 1308 case TargetOpcode::INLINEASM_BR: 1309 emitInlineAsm(&MI); 1310 break; 1311 case TargetOpcode::DBG_VALUE: 1312 case TargetOpcode::DBG_VALUE_LIST: 1313 if (isVerbose()) { 1314 if (!emitDebugValueComment(&MI, *this)) 1315 emitInstruction(&MI); 1316 } 1317 break; 1318 case TargetOpcode::DBG_INSTR_REF: 1319 // This instruction reference will have been resolved to a machine 1320 // location, and a nearby DBG_VALUE created. We can safely ignore 1321 // the instruction reference. 1322 break; 1323 case TargetOpcode::DBG_PHI: 1324 // This instruction is only used to label a program point, it's purely 1325 // meta information. 1326 break; 1327 case TargetOpcode::DBG_LABEL: 1328 if (isVerbose()) { 1329 if (!emitDebugLabelComment(&MI, *this)) 1330 emitInstruction(&MI); 1331 } 1332 break; 1333 case TargetOpcode::IMPLICIT_DEF: 1334 if (isVerbose()) emitImplicitDef(&MI); 1335 break; 1336 case TargetOpcode::KILL: 1337 if (isVerbose()) emitKill(&MI, *this); 1338 break; 1339 case TargetOpcode::PSEUDO_PROBE: 1340 emitPseudoProbe(MI); 1341 break; 1342 case TargetOpcode::ARITH_FENCE: 1343 if (isVerbose()) 1344 OutStreamer->emitRawComment("ARITH_FENCE"); 1345 break; 1346 default: 1347 emitInstruction(&MI); 1348 if (CanDoExtraAnalysis) { 1349 MCInst MCI; 1350 MCI.setOpcode(MI.getOpcode()); 1351 auto Name = OutStreamer->getMnemonic(MCI); 1352 auto I = MnemonicCounts.insert({Name, 0u}); 1353 I.first->second++; 1354 } 1355 break; 1356 } 1357 1358 // If there is a post-instruction symbol, emit a label for it here. 1359 if (MCSymbol *S = MI.getPostInstrSymbol()) 1360 OutStreamer->emitLabel(S); 1361 1362 for (const HandlerInfo &HI : Handlers) { 1363 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1364 HI.TimerGroupDescription, TimePassesIsEnabled); 1365 HI.Handler->endInstruction(); 1366 } 1367 } 1368 1369 // We must emit temporary symbol for the end of this basic block, if either 1370 // we have BBLabels enabled or if this basic blocks marks the end of a 1371 // section. 1372 if (MF->hasBBLabels() || 1373 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1374 OutStreamer->emitLabel(MBB.getEndSymbol()); 1375 1376 if (MBB.isEndSection()) { 1377 // The size directive for the section containing the entry block is 1378 // handled separately by the function section. 1379 if (!MBB.sameSection(&MF->front())) { 1380 if (MAI->hasDotTypeDotSizeDirective()) { 1381 // Emit the size directive for the basic block section. 1382 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1383 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1384 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1385 OutContext); 1386 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1387 } 1388 MBBSectionRanges[MBB.getSectionIDNum()] = 1389 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1390 } 1391 } 1392 emitBasicBlockEnd(MBB); 1393 1394 if (CanDoExtraAnalysis) { 1395 // Skip empty blocks. 1396 if (MBB.empty()) 1397 continue; 1398 1399 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1400 MBB.begin()->getDebugLoc(), &MBB); 1401 1402 // Generate instruction mix remark. First, sort counts in descending order 1403 // by count and name. 1404 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1405 for (auto &KV : MnemonicCounts) 1406 MnemonicVec.emplace_back(KV.first, KV.second); 1407 1408 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1409 const std::pair<StringRef, unsigned> &B) { 1410 if (A.second > B.second) 1411 return true; 1412 if (A.second == B.second) 1413 return StringRef(A.first) < StringRef(B.first); 1414 return false; 1415 }); 1416 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1417 for (auto &KV : MnemonicVec) { 1418 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str(); 1419 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1420 } 1421 ORE->emit(R); 1422 } 1423 } 1424 1425 EmittedInsts += NumInstsInFunction; 1426 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1427 MF->getFunction().getSubprogram(), 1428 &MF->front()); 1429 R << ore::NV("NumInstructions", NumInstsInFunction) 1430 << " instructions in function"; 1431 ORE->emit(R); 1432 1433 // If the function is empty and the object file uses .subsections_via_symbols, 1434 // then we need to emit *something* to the function body to prevent the 1435 // labels from collapsing together. Just emit a noop. 1436 // Similarly, don't emit empty functions on Windows either. It can lead to 1437 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1438 // after linking, causing the kernel not to load the binary: 1439 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1440 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1441 const Triple &TT = TM.getTargetTriple(); 1442 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1443 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1444 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1445 1446 // Targets can opt-out of emitting the noop here by leaving the opcode 1447 // unspecified. 1448 if (Noop.getOpcode()) { 1449 OutStreamer->AddComment("avoids zero-length function"); 1450 emitNops(1); 1451 } 1452 } 1453 1454 // Switch to the original section in case basic block sections was used. 1455 OutStreamer->SwitchSection(MF->getSection()); 1456 1457 const Function &F = MF->getFunction(); 1458 for (const auto &BB : F) { 1459 if (!BB.hasAddressTaken()) 1460 continue; 1461 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1462 if (Sym->isDefined()) 1463 continue; 1464 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1465 OutStreamer->emitLabel(Sym); 1466 } 1467 1468 // Emit target-specific gunk after the function body. 1469 emitFunctionBodyEnd(); 1470 1471 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1472 MAI->hasDotTypeDotSizeDirective()) { 1473 // Create a symbol for the end of function. 1474 CurrentFnEnd = createTempSymbol("func_end"); 1475 OutStreamer->emitLabel(CurrentFnEnd); 1476 } 1477 1478 // If the target wants a .size directive for the size of the function, emit 1479 // it. 1480 if (MAI->hasDotTypeDotSizeDirective()) { 1481 // We can get the size as difference between the function label and the 1482 // temp label. 1483 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1484 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1485 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1486 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1487 } 1488 1489 for (const HandlerInfo &HI : Handlers) { 1490 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1491 HI.TimerGroupDescription, TimePassesIsEnabled); 1492 HI.Handler->markFunctionEnd(); 1493 } 1494 1495 MBBSectionRanges[MF->front().getSectionIDNum()] = 1496 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1497 1498 // Print out jump tables referenced by the function. 1499 emitJumpTableInfo(); 1500 1501 // Emit post-function debug and/or EH information. 1502 for (const HandlerInfo &HI : Handlers) { 1503 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1504 HI.TimerGroupDescription, TimePassesIsEnabled); 1505 HI.Handler->endFunction(MF); 1506 } 1507 1508 // Emit section containing BB address offsets and their metadata, when 1509 // BB labels are requested for this function. Skip empty functions. 1510 if (MF->hasBBLabels() && HasAnyRealCode) 1511 emitBBAddrMapSection(*MF); 1512 1513 // Emit section containing stack size metadata. 1514 emitStackSizeSection(*MF); 1515 1516 // Emit .su file containing function stack size information. 1517 emitStackUsage(*MF); 1518 1519 emitPatchableFunctionEntries(); 1520 1521 if (isVerbose()) 1522 OutStreamer->GetCommentOS() << "-- End function\n"; 1523 1524 OutStreamer->AddBlankLine(); 1525 } 1526 1527 /// Compute the number of Global Variables that uses a Constant. 1528 static unsigned getNumGlobalVariableUses(const Constant *C) { 1529 if (!C) 1530 return 0; 1531 1532 if (isa<GlobalVariable>(C)) 1533 return 1; 1534 1535 unsigned NumUses = 0; 1536 for (auto *CU : C->users()) 1537 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1538 1539 return NumUses; 1540 } 1541 1542 /// Only consider global GOT equivalents if at least one user is a 1543 /// cstexpr inside an initializer of another global variables. Also, don't 1544 /// handle cstexpr inside instructions. During global variable emission, 1545 /// candidates are skipped and are emitted later in case at least one cstexpr 1546 /// isn't replaced by a PC relative GOT entry access. 1547 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1548 unsigned &NumGOTEquivUsers) { 1549 // Global GOT equivalents are unnamed private globals with a constant 1550 // pointer initializer to another global symbol. They must point to a 1551 // GlobalVariable or Function, i.e., as GlobalValue. 1552 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1553 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1554 !isa<GlobalValue>(GV->getOperand(0))) 1555 return false; 1556 1557 // To be a got equivalent, at least one of its users need to be a constant 1558 // expression used by another global variable. 1559 for (auto *U : GV->users()) 1560 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1561 1562 return NumGOTEquivUsers > 0; 1563 } 1564 1565 /// Unnamed constant global variables solely contaning a pointer to 1566 /// another globals variable is equivalent to a GOT table entry; it contains the 1567 /// the address of another symbol. Optimize it and replace accesses to these 1568 /// "GOT equivalents" by using the GOT entry for the final global instead. 1569 /// Compute GOT equivalent candidates among all global variables to avoid 1570 /// emitting them if possible later on, after it use is replaced by a GOT entry 1571 /// access. 1572 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1573 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1574 return; 1575 1576 for (const auto &G : M.globals()) { 1577 unsigned NumGOTEquivUsers = 0; 1578 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1579 continue; 1580 1581 const MCSymbol *GOTEquivSym = getSymbol(&G); 1582 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1583 } 1584 } 1585 1586 /// Constant expressions using GOT equivalent globals may not be eligible 1587 /// for PC relative GOT entry conversion, in such cases we need to emit such 1588 /// globals we previously omitted in EmitGlobalVariable. 1589 void AsmPrinter::emitGlobalGOTEquivs() { 1590 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1591 return; 1592 1593 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1594 for (auto &I : GlobalGOTEquivs) { 1595 const GlobalVariable *GV = I.second.first; 1596 unsigned Cnt = I.second.second; 1597 if (Cnt) 1598 FailedCandidates.push_back(GV); 1599 } 1600 GlobalGOTEquivs.clear(); 1601 1602 for (auto *GV : FailedCandidates) 1603 emitGlobalVariable(GV); 1604 } 1605 1606 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) { 1607 MCSymbol *Name = getSymbol(&GA); 1608 bool IsFunction = GA.getValueType()->isFunctionTy(); 1609 // Treat bitcasts of functions as functions also. This is important at least 1610 // on WebAssembly where object and function addresses can't alias each other. 1611 if (!IsFunction) 1612 if (auto *CE = dyn_cast<ConstantExpr>(GA.getAliasee())) 1613 if (CE->getOpcode() == Instruction::BitCast) 1614 IsFunction = 1615 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1616 1617 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1618 // so AIX has to use the extra-label-at-definition strategy. At this 1619 // point, all the extra label is emitted, we just have to emit linkage for 1620 // those labels. 1621 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1622 assert(MAI->hasVisibilityOnlyWithLinkage() && 1623 "Visibility should be handled with emitLinkage() on AIX."); 1624 emitLinkage(&GA, Name); 1625 // If it's a function, also emit linkage for aliases of function entry 1626 // point. 1627 if (IsFunction) 1628 emitLinkage(&GA, 1629 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM)); 1630 return; 1631 } 1632 1633 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1634 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1635 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) 1636 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1637 else 1638 assert(GA.hasLocalLinkage() && "Invalid alias linkage"); 1639 1640 // Set the symbol type to function if the alias has a function type. 1641 // This affects codegen when the aliasee is not a function. 1642 if (IsFunction) 1643 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1644 1645 emitVisibility(Name, GA.getVisibility()); 1646 1647 const MCExpr *Expr = lowerConstant(GA.getAliasee()); 1648 1649 if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1650 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1651 1652 // Emit the directives as assignments aka .set: 1653 OutStreamer->emitAssignment(Name, Expr); 1654 MCSymbol *LocalAlias = getSymbolPreferLocal(GA); 1655 if (LocalAlias != Name) 1656 OutStreamer->emitAssignment(LocalAlias, Expr); 1657 1658 // If the aliasee does not correspond to a symbol in the output, i.e. the 1659 // alias is not of an object or the aliased object is private, then set the 1660 // size of the alias symbol from the type of the alias. We don't do this in 1661 // other situations as the alias and aliasee having differing types but same 1662 // size may be intentional. 1663 const GlobalObject *BaseObject = GA.getAliaseeObject(); 1664 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && 1665 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1666 const DataLayout &DL = M.getDataLayout(); 1667 uint64_t Size = DL.getTypeAllocSize(GA.getValueType()); 1668 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1669 } 1670 } 1671 1672 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { 1673 assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && 1674 "IFunc is not supported on AIX."); 1675 1676 MCSymbol *Name = getSymbol(&GI); 1677 1678 if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1679 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1680 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) 1681 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1682 else 1683 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage"); 1684 1685 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1686 emitVisibility(Name, GI.getVisibility()); 1687 1688 // Emit the directives as assignments aka .set: 1689 const MCExpr *Expr = lowerConstant(GI.getResolver()); 1690 OutStreamer->emitAssignment(Name, Expr); 1691 MCSymbol *LocalAlias = getSymbolPreferLocal(GI); 1692 if (LocalAlias != Name) 1693 OutStreamer->emitAssignment(LocalAlias, Expr); 1694 } 1695 1696 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1697 if (!RS.needsSection()) 1698 return; 1699 1700 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1701 1702 Optional<SmallString<128>> Filename; 1703 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1704 Filename = *FilenameRef; 1705 sys::fs::make_absolute(*Filename); 1706 assert(!Filename->empty() && "The filename can't be empty."); 1707 } 1708 1709 std::string Buf; 1710 raw_string_ostream OS(Buf); 1711 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1712 Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) 1713 : RemarkSerializer.metaSerializer(OS); 1714 MetaSerializer->emit(); 1715 1716 // Switch to the remarks section. 1717 MCSection *RemarksSection = 1718 OutContext.getObjectFileInfo()->getRemarksSection(); 1719 OutStreamer->SwitchSection(RemarksSection); 1720 1721 OutStreamer->emitBinaryData(OS.str()); 1722 } 1723 1724 bool AsmPrinter::doFinalization(Module &M) { 1725 // Set the MachineFunction to nullptr so that we can catch attempted 1726 // accesses to MF specific features at the module level and so that 1727 // we can conditionalize accesses based on whether or not it is nullptr. 1728 MF = nullptr; 1729 1730 // Gather all GOT equivalent globals in the module. We really need two 1731 // passes over the globals: one to compute and another to avoid its emission 1732 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1733 // where the got equivalent shows up before its use. 1734 computeGlobalGOTEquivs(M); 1735 1736 // Emit global variables. 1737 for (const auto &G : M.globals()) 1738 emitGlobalVariable(&G); 1739 1740 // Emit remaining GOT equivalent globals. 1741 emitGlobalGOTEquivs(); 1742 1743 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1744 1745 // Emit linkage(XCOFF) and visibility info for declarations 1746 for (const Function &F : M) { 1747 if (!F.isDeclarationForLinker()) 1748 continue; 1749 1750 MCSymbol *Name = getSymbol(&F); 1751 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1752 1753 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1754 GlobalValue::VisibilityTypes V = F.getVisibility(); 1755 if (V == GlobalValue::DefaultVisibility) 1756 continue; 1757 1758 emitVisibility(Name, V, false); 1759 continue; 1760 } 1761 1762 if (F.isIntrinsic()) 1763 continue; 1764 1765 // Handle the XCOFF case. 1766 // Variable `Name` is the function descriptor symbol (see above). Get the 1767 // function entry point symbol. 1768 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1769 // Emit linkage for the function entry point. 1770 emitLinkage(&F, FnEntryPointSym); 1771 1772 // Emit linkage for the function descriptor. 1773 emitLinkage(&F, Name); 1774 } 1775 1776 // Emit the remarks section contents. 1777 // FIXME: Figure out when is the safest time to emit this section. It should 1778 // not come after debug info. 1779 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1780 emitRemarksSection(*RS); 1781 1782 TLOF.emitModuleMetadata(*OutStreamer, M); 1783 1784 if (TM.getTargetTriple().isOSBinFormatELF()) { 1785 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1786 1787 // Output stubs for external and common global variables. 1788 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1789 if (!Stubs.empty()) { 1790 OutStreamer->SwitchSection(TLOF.getDataSection()); 1791 const DataLayout &DL = M.getDataLayout(); 1792 1793 emitAlignment(Align(DL.getPointerSize())); 1794 for (const auto &Stub : Stubs) { 1795 OutStreamer->emitLabel(Stub.first); 1796 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1797 DL.getPointerSize()); 1798 } 1799 } 1800 } 1801 1802 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1803 MachineModuleInfoCOFF &MMICOFF = 1804 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1805 1806 // Output stubs for external and common global variables. 1807 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1808 if (!Stubs.empty()) { 1809 const DataLayout &DL = M.getDataLayout(); 1810 1811 for (const auto &Stub : Stubs) { 1812 SmallString<256> SectionName = StringRef(".rdata$"); 1813 SectionName += Stub.first->getName(); 1814 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1815 SectionName, 1816 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1817 COFF::IMAGE_SCN_LNK_COMDAT, 1818 SectionKind::getReadOnly(), Stub.first->getName(), 1819 COFF::IMAGE_COMDAT_SELECT_ANY)); 1820 emitAlignment(Align(DL.getPointerSize())); 1821 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1822 OutStreamer->emitLabel(Stub.first); 1823 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1824 DL.getPointerSize()); 1825 } 1826 } 1827 } 1828 1829 // This needs to happen before emitting debug information since that can end 1830 // arbitrary sections. 1831 if (auto *TS = OutStreamer->getTargetStreamer()) 1832 TS->emitConstantPools(); 1833 1834 // Finalize debug and EH information. 1835 for (const HandlerInfo &HI : Handlers) { 1836 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1837 HI.TimerGroupDescription, TimePassesIsEnabled); 1838 HI.Handler->endModule(); 1839 } 1840 1841 // This deletes all the ephemeral handlers that AsmPrinter added, while 1842 // keeping all the user-added handlers alive until the AsmPrinter is 1843 // destroyed. 1844 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1845 DD = nullptr; 1846 1847 // If the target wants to know about weak references, print them all. 1848 if (MAI->getWeakRefDirective()) { 1849 // FIXME: This is not lazy, it would be nice to only print weak references 1850 // to stuff that is actually used. Note that doing so would require targets 1851 // to notice uses in operands (due to constant exprs etc). This should 1852 // happen with the MC stuff eventually. 1853 1854 // Print out module-level global objects here. 1855 for (const auto &GO : M.global_objects()) { 1856 if (!GO.hasExternalWeakLinkage()) 1857 continue; 1858 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1859 } 1860 } 1861 1862 // Print aliases in topological order, that is, for each alias a = b, 1863 // b must be printed before a. 1864 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1865 // such an order to generate correct TOC information. 1866 SmallVector<const GlobalAlias *, 16> AliasStack; 1867 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1868 for (const auto &Alias : M.aliases()) { 1869 for (const GlobalAlias *Cur = &Alias; Cur; 1870 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1871 if (!AliasVisited.insert(Cur).second) 1872 break; 1873 AliasStack.push_back(Cur); 1874 } 1875 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1876 emitGlobalAlias(M, *AncestorAlias); 1877 AliasStack.clear(); 1878 } 1879 for (const auto &IFunc : M.ifuncs()) 1880 emitGlobalIFunc(M, IFunc); 1881 1882 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1883 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1884 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1885 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1886 MP->finishAssembly(M, *MI, *this); 1887 1888 // Emit llvm.ident metadata in an '.ident' directive. 1889 emitModuleIdents(M); 1890 1891 // Emit bytes for llvm.commandline metadata. 1892 emitModuleCommandLines(M); 1893 1894 // Emit __morestack address if needed for indirect calls. 1895 if (MMI->usesMorestackAddr()) { 1896 Align Alignment(1); 1897 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1898 getDataLayout(), SectionKind::getReadOnly(), 1899 /*C=*/nullptr, Alignment); 1900 OutStreamer->SwitchSection(ReadOnlySection); 1901 1902 MCSymbol *AddrSymbol = 1903 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1904 OutStreamer->emitLabel(AddrSymbol); 1905 1906 unsigned PtrSize = MAI->getCodePointerSize(); 1907 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1908 PtrSize); 1909 } 1910 1911 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1912 // split-stack is used. 1913 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1914 OutStreamer->SwitchSection( 1915 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1916 if (MMI->hasNosplitStack()) 1917 OutStreamer->SwitchSection( 1918 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1919 } 1920 1921 // If we don't have any trampolines, then we don't require stack memory 1922 // to be executable. Some targets have a directive to declare this. 1923 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1924 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1925 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1926 OutStreamer->SwitchSection(S); 1927 1928 if (TM.Options.EmitAddrsig) { 1929 // Emit address-significance attributes for all globals. 1930 OutStreamer->emitAddrsig(); 1931 for (const GlobalValue &GV : M.global_values()) { 1932 if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() && 1933 !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() && 1934 !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr()) 1935 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1936 } 1937 } 1938 1939 // Emit symbol partition specifications (ELF only). 1940 if (TM.getTargetTriple().isOSBinFormatELF()) { 1941 unsigned UniqueID = 0; 1942 for (const GlobalValue &GV : M.global_values()) { 1943 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1944 GV.getVisibility() != GlobalValue::DefaultVisibility) 1945 continue; 1946 1947 OutStreamer->SwitchSection( 1948 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1949 "", false, ++UniqueID, nullptr)); 1950 OutStreamer->emitBytes(GV.getPartition()); 1951 OutStreamer->emitZeros(1); 1952 OutStreamer->emitValue( 1953 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1954 MAI->getCodePointerSize()); 1955 } 1956 } 1957 1958 // Allow the target to emit any magic that it wants at the end of the file, 1959 // after everything else has gone out. 1960 emitEndOfAsmFile(M); 1961 1962 MMI = nullptr; 1963 1964 OutStreamer->Finish(); 1965 OutStreamer->reset(); 1966 OwnedMLI.reset(); 1967 OwnedMDT.reset(); 1968 1969 return false; 1970 } 1971 1972 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1973 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1974 if (Res.second) 1975 Res.first->second = createTempSymbol("exception"); 1976 return Res.first->second; 1977 } 1978 1979 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1980 this->MF = &MF; 1981 const Function &F = MF.getFunction(); 1982 1983 // Get the function symbol. 1984 if (!MAI->needsFunctionDescriptors()) { 1985 CurrentFnSym = getSymbol(&MF.getFunction()); 1986 } else { 1987 assert(TM.getTargetTriple().isOSAIX() && 1988 "Only AIX uses the function descriptor hooks."); 1989 // AIX is unique here in that the name of the symbol emitted for the 1990 // function body does not have the same name as the source function's 1991 // C-linkage name. 1992 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1993 " initalized first."); 1994 1995 // Get the function entry point symbol. 1996 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1997 } 1998 1999 CurrentFnSymForSize = CurrentFnSym; 2000 CurrentFnBegin = nullptr; 2001 CurrentSectionBeginSym = nullptr; 2002 MBBSectionRanges.clear(); 2003 MBBSectionExceptionSyms.clear(); 2004 bool NeedsLocalForSize = MAI->needsLocalForSize(); 2005 if (F.hasFnAttribute("patchable-function-entry") || 2006 F.hasFnAttribute("function-instrument") || 2007 F.hasFnAttribute("xray-instruction-threshold") || 2008 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 2009 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 2010 CurrentFnBegin = createTempSymbol("func_begin"); 2011 if (NeedsLocalForSize) 2012 CurrentFnSymForSize = CurrentFnBegin; 2013 } 2014 2015 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2016 } 2017 2018 namespace { 2019 2020 // Keep track the alignment, constpool entries per Section. 2021 struct SectionCPs { 2022 MCSection *S; 2023 Align Alignment; 2024 SmallVector<unsigned, 4> CPEs; 2025 2026 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 2027 }; 2028 2029 } // end anonymous namespace 2030 2031 /// EmitConstantPool - Print to the current output stream assembly 2032 /// representations of the constants in the constant pool MCP. This is 2033 /// used to print out constants which have been "spilled to memory" by 2034 /// the code generator. 2035 void AsmPrinter::emitConstantPool() { 2036 const MachineConstantPool *MCP = MF->getConstantPool(); 2037 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2038 if (CP.empty()) return; 2039 2040 // Calculate sections for constant pool entries. We collect entries to go into 2041 // the same section together to reduce amount of section switch statements. 2042 SmallVector<SectionCPs, 4> CPSections; 2043 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2044 const MachineConstantPoolEntry &CPE = CP[i]; 2045 Align Alignment = CPE.getAlign(); 2046 2047 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2048 2049 const Constant *C = nullptr; 2050 if (!CPE.isMachineConstantPoolEntry()) 2051 C = CPE.Val.ConstVal; 2052 2053 MCSection *S = getObjFileLowering().getSectionForConstant( 2054 getDataLayout(), Kind, C, Alignment); 2055 2056 // The number of sections are small, just do a linear search from the 2057 // last section to the first. 2058 bool Found = false; 2059 unsigned SecIdx = CPSections.size(); 2060 while (SecIdx != 0) { 2061 if (CPSections[--SecIdx].S == S) { 2062 Found = true; 2063 break; 2064 } 2065 } 2066 if (!Found) { 2067 SecIdx = CPSections.size(); 2068 CPSections.push_back(SectionCPs(S, Alignment)); 2069 } 2070 2071 if (Alignment > CPSections[SecIdx].Alignment) 2072 CPSections[SecIdx].Alignment = Alignment; 2073 CPSections[SecIdx].CPEs.push_back(i); 2074 } 2075 2076 // Now print stuff into the calculated sections. 2077 const MCSection *CurSection = nullptr; 2078 unsigned Offset = 0; 2079 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2080 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2081 unsigned CPI = CPSections[i].CPEs[j]; 2082 MCSymbol *Sym = GetCPISymbol(CPI); 2083 if (!Sym->isUndefined()) 2084 continue; 2085 2086 if (CurSection != CPSections[i].S) { 2087 OutStreamer->SwitchSection(CPSections[i].S); 2088 emitAlignment(Align(CPSections[i].Alignment)); 2089 CurSection = CPSections[i].S; 2090 Offset = 0; 2091 } 2092 2093 MachineConstantPoolEntry CPE = CP[CPI]; 2094 2095 // Emit inter-object padding for alignment. 2096 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2097 OutStreamer->emitZeros(NewOffset - Offset); 2098 2099 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2100 2101 OutStreamer->emitLabel(Sym); 2102 if (CPE.isMachineConstantPoolEntry()) 2103 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2104 else 2105 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2106 } 2107 } 2108 } 2109 2110 // Print assembly representations of the jump tables used by the current 2111 // function. 2112 void AsmPrinter::emitJumpTableInfo() { 2113 const DataLayout &DL = MF->getDataLayout(); 2114 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2115 if (!MJTI) return; 2116 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2117 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2118 if (JT.empty()) return; 2119 2120 // Pick the directive to use to print the jump table entries, and switch to 2121 // the appropriate section. 2122 const Function &F = MF->getFunction(); 2123 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2124 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2125 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2126 F); 2127 if (JTInDiffSection) { 2128 // Drop it in the readonly section. 2129 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2130 OutStreamer->SwitchSection(ReadOnlySection); 2131 } 2132 2133 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2134 2135 // Jump tables in code sections are marked with a data_region directive 2136 // where that's supported. 2137 if (!JTInDiffSection) 2138 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2139 2140 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2141 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2142 2143 // If this jump table was deleted, ignore it. 2144 if (JTBBs.empty()) continue; 2145 2146 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2147 /// emit a .set directive for each unique entry. 2148 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2149 MAI->doesSetDirectiveSuppressReloc()) { 2150 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2151 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2152 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2153 for (const MachineBasicBlock *MBB : JTBBs) { 2154 if (!EmittedSets.insert(MBB).second) 2155 continue; 2156 2157 // .set LJTSet, LBB32-base 2158 const MCExpr *LHS = 2159 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2160 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2161 MCBinaryExpr::createSub(LHS, Base, 2162 OutContext)); 2163 } 2164 } 2165 2166 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2167 // before each jump table. The first label is never referenced, but tells 2168 // the assembler and linker the extents of the jump table object. The 2169 // second label is actually referenced by the code. 2170 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2171 // FIXME: This doesn't have to have any specific name, just any randomly 2172 // named and numbered local label started with 'l' would work. Simplify 2173 // GetJTISymbol. 2174 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2175 2176 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2177 OutStreamer->emitLabel(JTISymbol); 2178 2179 for (const MachineBasicBlock *MBB : JTBBs) 2180 emitJumpTableEntry(MJTI, MBB, JTI); 2181 } 2182 if (!JTInDiffSection) 2183 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2184 } 2185 2186 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2187 /// current stream. 2188 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2189 const MachineBasicBlock *MBB, 2190 unsigned UID) const { 2191 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2192 const MCExpr *Value = nullptr; 2193 switch (MJTI->getEntryKind()) { 2194 case MachineJumpTableInfo::EK_Inline: 2195 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2196 case MachineJumpTableInfo::EK_Custom32: 2197 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2198 MJTI, MBB, UID, OutContext); 2199 break; 2200 case MachineJumpTableInfo::EK_BlockAddress: 2201 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2202 // .word LBB123 2203 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2204 break; 2205 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2206 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2207 // with a relocation as gp-relative, e.g.: 2208 // .gprel32 LBB123 2209 MCSymbol *MBBSym = MBB->getSymbol(); 2210 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2211 return; 2212 } 2213 2214 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2215 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2216 // with a relocation as gp-relative, e.g.: 2217 // .gpdword LBB123 2218 MCSymbol *MBBSym = MBB->getSymbol(); 2219 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2220 return; 2221 } 2222 2223 case MachineJumpTableInfo::EK_LabelDifference32: { 2224 // Each entry is the address of the block minus the address of the jump 2225 // table. This is used for PIC jump tables where gprel32 is not supported. 2226 // e.g.: 2227 // .word LBB123 - LJTI1_2 2228 // If the .set directive avoids relocations, this is emitted as: 2229 // .set L4_5_set_123, LBB123 - LJTI1_2 2230 // .word L4_5_set_123 2231 if (MAI->doesSetDirectiveSuppressReloc()) { 2232 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2233 OutContext); 2234 break; 2235 } 2236 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2237 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2238 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2239 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2240 break; 2241 } 2242 } 2243 2244 assert(Value && "Unknown entry kind!"); 2245 2246 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2247 OutStreamer->emitValue(Value, EntrySize); 2248 } 2249 2250 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2251 /// special global used by LLVM. If so, emit it and return true, otherwise 2252 /// do nothing and return false. 2253 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2254 if (GV->getName() == "llvm.used") { 2255 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2256 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2257 return true; 2258 } 2259 2260 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2261 if (GV->getSection() == "llvm.metadata" || 2262 GV->hasAvailableExternallyLinkage()) 2263 return true; 2264 2265 if (!GV->hasAppendingLinkage()) return false; 2266 2267 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2268 2269 if (GV->getName() == "llvm.global_ctors") { 2270 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2271 /* isCtor */ true); 2272 2273 return true; 2274 } 2275 2276 if (GV->getName() == "llvm.global_dtors") { 2277 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2278 /* isCtor */ false); 2279 2280 return true; 2281 } 2282 2283 report_fatal_error("unknown special variable"); 2284 } 2285 2286 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2287 /// global in the specified llvm.used list. 2288 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2289 // Should be an array of 'i8*'. 2290 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2291 const GlobalValue *GV = 2292 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2293 if (GV) 2294 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2295 } 2296 } 2297 2298 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2299 const Constant *List, 2300 SmallVector<Structor, 8> &Structors) { 2301 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2302 // the init priority. 2303 if (!isa<ConstantArray>(List)) 2304 return; 2305 2306 // Gather the structors in a form that's convenient for sorting by priority. 2307 for (Value *O : cast<ConstantArray>(List)->operands()) { 2308 auto *CS = cast<ConstantStruct>(O); 2309 if (CS->getOperand(1)->isNullValue()) 2310 break; // Found a null terminator, skip the rest. 2311 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2312 if (!Priority) 2313 continue; // Malformed. 2314 Structors.push_back(Structor()); 2315 Structor &S = Structors.back(); 2316 S.Priority = Priority->getLimitedValue(65535); 2317 S.Func = CS->getOperand(1); 2318 if (!CS->getOperand(2)->isNullValue()) { 2319 if (TM.getTargetTriple().isOSAIX()) 2320 llvm::report_fatal_error( 2321 "associated data of XXStructor list is not yet supported on AIX"); 2322 S.ComdatKey = 2323 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2324 } 2325 } 2326 2327 // Emit the function pointers in the target-specific order 2328 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2329 return L.Priority < R.Priority; 2330 }); 2331 } 2332 2333 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2334 /// priority. 2335 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2336 bool IsCtor) { 2337 SmallVector<Structor, 8> Structors; 2338 preprocessXXStructorList(DL, List, Structors); 2339 if (Structors.empty()) 2340 return; 2341 2342 // Emit the structors in reverse order if we are using the .ctor/.dtor 2343 // initialization scheme. 2344 if (!TM.Options.UseInitArray) 2345 std::reverse(Structors.begin(), Structors.end()); 2346 2347 const Align Align = DL.getPointerPrefAlignment(); 2348 for (Structor &S : Structors) { 2349 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2350 const MCSymbol *KeySym = nullptr; 2351 if (GlobalValue *GV = S.ComdatKey) { 2352 if (GV->isDeclarationForLinker()) 2353 // If the associated variable is not defined in this module 2354 // (it might be available_externally, or have been an 2355 // available_externally definition that was dropped by the 2356 // EliminateAvailableExternally pass), some other TU 2357 // will provide its dynamic initializer. 2358 continue; 2359 2360 KeySym = getSymbol(GV); 2361 } 2362 2363 MCSection *OutputSection = 2364 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2365 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2366 OutStreamer->SwitchSection(OutputSection); 2367 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2368 emitAlignment(Align); 2369 emitXXStructor(DL, S.Func); 2370 } 2371 } 2372 2373 void AsmPrinter::emitModuleIdents(Module &M) { 2374 if (!MAI->hasIdentDirective()) 2375 return; 2376 2377 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2378 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2379 const MDNode *N = NMD->getOperand(i); 2380 assert(N->getNumOperands() == 1 && 2381 "llvm.ident metadata entry can have only one operand"); 2382 const MDString *S = cast<MDString>(N->getOperand(0)); 2383 OutStreamer->emitIdent(S->getString()); 2384 } 2385 } 2386 } 2387 2388 void AsmPrinter::emitModuleCommandLines(Module &M) { 2389 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2390 if (!CommandLine) 2391 return; 2392 2393 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2394 if (!NMD || !NMD->getNumOperands()) 2395 return; 2396 2397 OutStreamer->PushSection(); 2398 OutStreamer->SwitchSection(CommandLine); 2399 OutStreamer->emitZeros(1); 2400 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2401 const MDNode *N = NMD->getOperand(i); 2402 assert(N->getNumOperands() == 1 && 2403 "llvm.commandline metadata entry can have only one operand"); 2404 const MDString *S = cast<MDString>(N->getOperand(0)); 2405 OutStreamer->emitBytes(S->getString()); 2406 OutStreamer->emitZeros(1); 2407 } 2408 OutStreamer->PopSection(); 2409 } 2410 2411 //===--------------------------------------------------------------------===// 2412 // Emission and print routines 2413 // 2414 2415 /// Emit a byte directive and value. 2416 /// 2417 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2418 2419 /// Emit a short directive and value. 2420 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2421 2422 /// Emit a long directive and value. 2423 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2424 2425 /// Emit a long long directive and value. 2426 void AsmPrinter::emitInt64(uint64_t Value) const { 2427 OutStreamer->emitInt64(Value); 2428 } 2429 2430 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2431 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2432 /// .set if it avoids relocations. 2433 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2434 unsigned Size) const { 2435 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2436 } 2437 2438 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2439 /// where the size in bytes of the directive is specified by Size and Label 2440 /// specifies the label. This implicitly uses .set if it is available. 2441 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2442 unsigned Size, 2443 bool IsSectionRelative) const { 2444 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2445 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2446 if (Size > 4) 2447 OutStreamer->emitZeros(Size - 4); 2448 return; 2449 } 2450 2451 // Emit Label+Offset (or just Label if Offset is zero) 2452 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2453 if (Offset) 2454 Expr = MCBinaryExpr::createAdd( 2455 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2456 2457 OutStreamer->emitValue(Expr, Size); 2458 } 2459 2460 //===----------------------------------------------------------------------===// 2461 2462 // EmitAlignment - Emit an alignment directive to the specified power of 2463 // two boundary. If a global value is specified, and if that global has 2464 // an explicit alignment requested, it will override the alignment request 2465 // if required for correctness. 2466 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2467 if (GV) 2468 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2469 2470 if (Alignment == Align(1)) 2471 return; // 1-byte aligned: no need to emit alignment. 2472 2473 if (getCurrentSection()->getKind().isText()) { 2474 const MCSubtargetInfo *STI = nullptr; 2475 if (this->MF) 2476 STI = &getSubtargetInfo(); 2477 else 2478 STI = TM.getMCSubtargetInfo(); 2479 OutStreamer->emitCodeAlignment(Alignment.value(), STI); 2480 } else 2481 OutStreamer->emitValueToAlignment(Alignment.value()); 2482 } 2483 2484 //===----------------------------------------------------------------------===// 2485 // Constant emission. 2486 //===----------------------------------------------------------------------===// 2487 2488 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2489 MCContext &Ctx = OutContext; 2490 2491 if (CV->isNullValue() || isa<UndefValue>(CV)) 2492 return MCConstantExpr::create(0, Ctx); 2493 2494 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2495 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2496 2497 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2498 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2499 2500 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2501 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2502 2503 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2504 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2505 2506 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2507 if (!CE) { 2508 llvm_unreachable("Unknown constant value to lower!"); 2509 } 2510 2511 switch (CE->getOpcode()) { 2512 case Instruction::AddrSpaceCast: { 2513 const Constant *Op = CE->getOperand(0); 2514 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2515 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2516 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2517 return lowerConstant(Op); 2518 2519 // Fallthrough to error. 2520 LLVM_FALLTHROUGH; 2521 } 2522 default: { 2523 // If the code isn't optimized, there may be outstanding folding 2524 // opportunities. Attempt to fold the expression using DataLayout as a 2525 // last resort before giving up. 2526 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2527 if (C != CE) 2528 return lowerConstant(C); 2529 2530 // Otherwise report the problem to the user. 2531 std::string S; 2532 raw_string_ostream OS(S); 2533 OS << "Unsupported expression in static initializer: "; 2534 CE->printAsOperand(OS, /*PrintType=*/false, 2535 !MF ? nullptr : MF->getFunction().getParent()); 2536 report_fatal_error(Twine(OS.str())); 2537 } 2538 case Instruction::GetElementPtr: { 2539 // Generate a symbolic expression for the byte address 2540 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2541 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2542 2543 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2544 if (!OffsetAI) 2545 return Base; 2546 2547 int64_t Offset = OffsetAI.getSExtValue(); 2548 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2549 Ctx); 2550 } 2551 2552 case Instruction::Trunc: 2553 // We emit the value and depend on the assembler to truncate the generated 2554 // expression properly. This is important for differences between 2555 // blockaddress labels. Since the two labels are in the same function, it 2556 // is reasonable to treat their delta as a 32-bit value. 2557 LLVM_FALLTHROUGH; 2558 case Instruction::BitCast: 2559 return lowerConstant(CE->getOperand(0)); 2560 2561 case Instruction::IntToPtr: { 2562 const DataLayout &DL = getDataLayout(); 2563 2564 // Handle casts to pointers by changing them into casts to the appropriate 2565 // integer type. This promotes constant folding and simplifies this code. 2566 Constant *Op = CE->getOperand(0); 2567 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2568 false/*ZExt*/); 2569 return lowerConstant(Op); 2570 } 2571 2572 case Instruction::PtrToInt: { 2573 const DataLayout &DL = getDataLayout(); 2574 2575 // Support only foldable casts to/from pointers that can be eliminated by 2576 // changing the pointer to the appropriately sized integer type. 2577 Constant *Op = CE->getOperand(0); 2578 Type *Ty = CE->getType(); 2579 2580 const MCExpr *OpExpr = lowerConstant(Op); 2581 2582 // We can emit the pointer value into this slot if the slot is an 2583 // integer slot equal to the size of the pointer. 2584 // 2585 // If the pointer is larger than the resultant integer, then 2586 // as with Trunc just depend on the assembler to truncate it. 2587 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2588 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2589 return OpExpr; 2590 2591 // Otherwise the pointer is smaller than the resultant integer, mask off 2592 // the high bits so we are sure to get a proper truncation if the input is 2593 // a constant expr. 2594 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2595 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2596 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2597 } 2598 2599 case Instruction::Sub: { 2600 GlobalValue *LHSGV; 2601 APInt LHSOffset; 2602 DSOLocalEquivalent *DSOEquiv; 2603 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2604 getDataLayout(), &DSOEquiv)) { 2605 GlobalValue *RHSGV; 2606 APInt RHSOffset; 2607 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2608 getDataLayout())) { 2609 const MCExpr *RelocExpr = 2610 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2611 if (!RelocExpr) { 2612 const MCExpr *LHSExpr = 2613 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2614 if (DSOEquiv && 2615 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2616 LHSExpr = 2617 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2618 RelocExpr = MCBinaryExpr::createSub( 2619 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2620 } 2621 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2622 if (Addend != 0) 2623 RelocExpr = MCBinaryExpr::createAdd( 2624 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2625 return RelocExpr; 2626 } 2627 } 2628 } 2629 // else fallthrough 2630 LLVM_FALLTHROUGH; 2631 2632 // The MC library also has a right-shift operator, but it isn't consistently 2633 // signed or unsigned between different targets. 2634 case Instruction::Add: 2635 case Instruction::Mul: 2636 case Instruction::SDiv: 2637 case Instruction::SRem: 2638 case Instruction::Shl: 2639 case Instruction::And: 2640 case Instruction::Or: 2641 case Instruction::Xor: { 2642 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2643 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2644 switch (CE->getOpcode()) { 2645 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2646 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2647 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2648 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2649 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2650 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2651 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2652 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2653 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2654 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2655 } 2656 } 2657 } 2658 } 2659 2660 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2661 AsmPrinter &AP, 2662 const Constant *BaseCV = nullptr, 2663 uint64_t Offset = 0); 2664 2665 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2666 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2667 2668 /// isRepeatedByteSequence - Determine whether the given value is 2669 /// composed of a repeated sequence of identical bytes and return the 2670 /// byte value. If it is not a repeated sequence, return -1. 2671 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2672 StringRef Data = V->getRawDataValues(); 2673 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2674 char C = Data[0]; 2675 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2676 if (Data[i] != C) return -1; 2677 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2678 } 2679 2680 /// isRepeatedByteSequence - Determine whether the given value is 2681 /// composed of a repeated sequence of identical bytes and return the 2682 /// byte value. If it is not a repeated sequence, return -1. 2683 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2684 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2685 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2686 assert(Size % 8 == 0); 2687 2688 // Extend the element to take zero padding into account. 2689 APInt Value = CI->getValue().zextOrSelf(Size); 2690 if (!Value.isSplat(8)) 2691 return -1; 2692 2693 return Value.zextOrTrunc(8).getZExtValue(); 2694 } 2695 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2696 // Make sure all array elements are sequences of the same repeated 2697 // byte. 2698 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2699 Constant *Op0 = CA->getOperand(0); 2700 int Byte = isRepeatedByteSequence(Op0, DL); 2701 if (Byte == -1) 2702 return -1; 2703 2704 // All array elements must be equal. 2705 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2706 if (CA->getOperand(i) != Op0) 2707 return -1; 2708 return Byte; 2709 } 2710 2711 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2712 return isRepeatedByteSequence(CDS); 2713 2714 return -1; 2715 } 2716 2717 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2718 const ConstantDataSequential *CDS, 2719 AsmPrinter &AP) { 2720 // See if we can aggregate this into a .fill, if so, emit it as such. 2721 int Value = isRepeatedByteSequence(CDS, DL); 2722 if (Value != -1) { 2723 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2724 // Don't emit a 1-byte object as a .fill. 2725 if (Bytes > 1) 2726 return AP.OutStreamer->emitFill(Bytes, Value); 2727 } 2728 2729 // If this can be emitted with .ascii/.asciz, emit it as such. 2730 if (CDS->isString()) 2731 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2732 2733 // Otherwise, emit the values in successive locations. 2734 unsigned ElementByteSize = CDS->getElementByteSize(); 2735 if (isa<IntegerType>(CDS->getElementType())) { 2736 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2737 if (AP.isVerbose()) 2738 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2739 CDS->getElementAsInteger(i)); 2740 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2741 ElementByteSize); 2742 } 2743 } else { 2744 Type *ET = CDS->getElementType(); 2745 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2746 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2747 } 2748 2749 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2750 unsigned EmittedSize = 2751 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2752 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2753 if (unsigned Padding = Size - EmittedSize) 2754 AP.OutStreamer->emitZeros(Padding); 2755 } 2756 2757 static void emitGlobalConstantArray(const DataLayout &DL, 2758 const ConstantArray *CA, AsmPrinter &AP, 2759 const Constant *BaseCV, uint64_t Offset) { 2760 // See if we can aggregate some values. Make sure it can be 2761 // represented as a series of bytes of the constant value. 2762 int Value = isRepeatedByteSequence(CA, DL); 2763 2764 if (Value != -1) { 2765 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2766 AP.OutStreamer->emitFill(Bytes, Value); 2767 } 2768 else { 2769 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2770 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2771 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2772 } 2773 } 2774 } 2775 2776 static void emitGlobalConstantVector(const DataLayout &DL, 2777 const ConstantVector *CV, AsmPrinter &AP) { 2778 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2779 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2780 2781 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2782 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2783 CV->getType()->getNumElements(); 2784 if (unsigned Padding = Size - EmittedSize) 2785 AP.OutStreamer->emitZeros(Padding); 2786 } 2787 2788 static void emitGlobalConstantStruct(const DataLayout &DL, 2789 const ConstantStruct *CS, AsmPrinter &AP, 2790 const Constant *BaseCV, uint64_t Offset) { 2791 // Print the fields in successive locations. Pad to align if needed! 2792 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2793 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2794 uint64_t SizeSoFar = 0; 2795 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2796 const Constant *Field = CS->getOperand(i); 2797 2798 // Print the actual field value. 2799 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2800 2801 // Check if padding is needed and insert one or more 0s. 2802 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2803 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2804 - Layout->getElementOffset(i)) - FieldSize; 2805 SizeSoFar += FieldSize + PadSize; 2806 2807 // Insert padding - this may include padding to increase the size of the 2808 // current field up to the ABI size (if the struct is not packed) as well 2809 // as padding to ensure that the next field starts at the right offset. 2810 AP.OutStreamer->emitZeros(PadSize); 2811 } 2812 assert(SizeSoFar == Layout->getSizeInBytes() && 2813 "Layout of constant struct may be incorrect!"); 2814 } 2815 2816 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2817 assert(ET && "Unknown float type"); 2818 APInt API = APF.bitcastToAPInt(); 2819 2820 // First print a comment with what we think the original floating-point value 2821 // should have been. 2822 if (AP.isVerbose()) { 2823 SmallString<8> StrVal; 2824 APF.toString(StrVal); 2825 ET->print(AP.OutStreamer->GetCommentOS()); 2826 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2827 } 2828 2829 // Now iterate through the APInt chunks, emitting them in endian-correct 2830 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2831 // floats). 2832 unsigned NumBytes = API.getBitWidth() / 8; 2833 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2834 const uint64_t *p = API.getRawData(); 2835 2836 // PPC's long double has odd notions of endianness compared to how LLVM 2837 // handles it: p[0] goes first for *big* endian on PPC. 2838 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2839 int Chunk = API.getNumWords() - 1; 2840 2841 if (TrailingBytes) 2842 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2843 2844 for (; Chunk >= 0; --Chunk) 2845 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2846 } else { 2847 unsigned Chunk; 2848 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2849 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2850 2851 if (TrailingBytes) 2852 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2853 } 2854 2855 // Emit the tail padding for the long double. 2856 const DataLayout &DL = AP.getDataLayout(); 2857 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2858 } 2859 2860 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2861 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2862 } 2863 2864 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2865 const DataLayout &DL = AP.getDataLayout(); 2866 unsigned BitWidth = CI->getBitWidth(); 2867 2868 // Copy the value as we may massage the layout for constants whose bit width 2869 // is not a multiple of 64-bits. 2870 APInt Realigned(CI->getValue()); 2871 uint64_t ExtraBits = 0; 2872 unsigned ExtraBitsSize = BitWidth & 63; 2873 2874 if (ExtraBitsSize) { 2875 // The bit width of the data is not a multiple of 64-bits. 2876 // The extra bits are expected to be at the end of the chunk of the memory. 2877 // Little endian: 2878 // * Nothing to be done, just record the extra bits to emit. 2879 // Big endian: 2880 // * Record the extra bits to emit. 2881 // * Realign the raw data to emit the chunks of 64-bits. 2882 if (DL.isBigEndian()) { 2883 // Basically the structure of the raw data is a chunk of 64-bits cells: 2884 // 0 1 BitWidth / 64 2885 // [chunk1][chunk2] ... [chunkN]. 2886 // The most significant chunk is chunkN and it should be emitted first. 2887 // However, due to the alignment issue chunkN contains useless bits. 2888 // Realign the chunks so that they contain only useful information: 2889 // ExtraBits 0 1 (BitWidth / 64) - 1 2890 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2891 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2892 ExtraBits = Realigned.getRawData()[0] & 2893 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2894 Realigned.lshrInPlace(ExtraBitsSize); 2895 } else 2896 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2897 } 2898 2899 // We don't expect assemblers to support integer data directives 2900 // for more than 64 bits, so we emit the data in at most 64-bit 2901 // quantities at a time. 2902 const uint64_t *RawData = Realigned.getRawData(); 2903 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2904 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2905 AP.OutStreamer->emitIntValue(Val, 8); 2906 } 2907 2908 if (ExtraBitsSize) { 2909 // Emit the extra bits after the 64-bits chunks. 2910 2911 // Emit a directive that fills the expected size. 2912 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2913 Size -= (BitWidth / 64) * 8; 2914 assert(Size && Size * 8 >= ExtraBitsSize && 2915 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2916 == ExtraBits && "Directive too small for extra bits."); 2917 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2918 } 2919 } 2920 2921 /// Transform a not absolute MCExpr containing a reference to a GOT 2922 /// equivalent global, by a target specific GOT pc relative access to the 2923 /// final symbol. 2924 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2925 const Constant *BaseCst, 2926 uint64_t Offset) { 2927 // The global @foo below illustrates a global that uses a got equivalent. 2928 // 2929 // @bar = global i32 42 2930 // @gotequiv = private unnamed_addr constant i32* @bar 2931 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2932 // i64 ptrtoint (i32* @foo to i64)) 2933 // to i32) 2934 // 2935 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2936 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2937 // form: 2938 // 2939 // foo = cstexpr, where 2940 // cstexpr := <gotequiv> - "." + <cst> 2941 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2942 // 2943 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2944 // 2945 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2946 // gotpcrelcst := <offset from @foo base> + <cst> 2947 MCValue MV; 2948 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2949 return; 2950 const MCSymbolRefExpr *SymA = MV.getSymA(); 2951 if (!SymA) 2952 return; 2953 2954 // Check that GOT equivalent symbol is cached. 2955 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2956 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2957 return; 2958 2959 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2960 if (!BaseGV) 2961 return; 2962 2963 // Check for a valid base symbol 2964 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2965 const MCSymbolRefExpr *SymB = MV.getSymB(); 2966 2967 if (!SymB || BaseSym != &SymB->getSymbol()) 2968 return; 2969 2970 // Make sure to match: 2971 // 2972 // gotpcrelcst := <offset from @foo base> + <cst> 2973 // 2974 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2975 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2976 // if the target knows how to encode it. 2977 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2978 if (GOTPCRelCst < 0) 2979 return; 2980 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2981 return; 2982 2983 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2984 // 2985 // bar: 2986 // .long 42 2987 // gotequiv: 2988 // .quad bar 2989 // foo: 2990 // .long gotequiv - "." + <cst> 2991 // 2992 // is replaced by the target specific equivalent to: 2993 // 2994 // bar: 2995 // .long 42 2996 // foo: 2997 // .long bar@GOTPCREL+<gotpcrelcst> 2998 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2999 const GlobalVariable *GV = Result.first; 3000 int NumUses = (int)Result.second; 3001 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 3002 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 3003 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 3004 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 3005 3006 // Update GOT equivalent usage information 3007 --NumUses; 3008 if (NumUses >= 0) 3009 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 3010 } 3011 3012 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 3013 AsmPrinter &AP, const Constant *BaseCV, 3014 uint64_t Offset) { 3015 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3016 3017 // Globals with sub-elements such as combinations of arrays and structs 3018 // are handled recursively by emitGlobalConstantImpl. Keep track of the 3019 // constant symbol base and the current position with BaseCV and Offset. 3020 if (!BaseCV && CV->hasOneUse()) 3021 BaseCV = dyn_cast<Constant>(CV->user_back()); 3022 3023 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 3024 return AP.OutStreamer->emitZeros(Size); 3025 3026 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 3027 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 3028 3029 if (StoreSize <= 8) { 3030 if (AP.isVerbose()) 3031 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 3032 CI->getZExtValue()); 3033 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 3034 } else { 3035 emitGlobalConstantLargeInt(CI, AP); 3036 } 3037 3038 // Emit tail padding if needed 3039 if (Size != StoreSize) 3040 AP.OutStreamer->emitZeros(Size - StoreSize); 3041 3042 return; 3043 } 3044 3045 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 3046 return emitGlobalConstantFP(CFP, AP); 3047 3048 if (isa<ConstantPointerNull>(CV)) { 3049 AP.OutStreamer->emitIntValue(0, Size); 3050 return; 3051 } 3052 3053 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 3054 return emitGlobalConstantDataSequential(DL, CDS, AP); 3055 3056 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 3057 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 3058 3059 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 3060 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 3061 3062 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 3063 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 3064 // vectors). 3065 if (CE->getOpcode() == Instruction::BitCast) 3066 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 3067 3068 if (Size > 8) { 3069 // If the constant expression's size is greater than 64-bits, then we have 3070 // to emit the value in chunks. Try to constant fold the value and emit it 3071 // that way. 3072 Constant *New = ConstantFoldConstant(CE, DL); 3073 if (New != CE) 3074 return emitGlobalConstantImpl(DL, New, AP); 3075 } 3076 } 3077 3078 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 3079 return emitGlobalConstantVector(DL, V, AP); 3080 3081 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 3082 // thread the streamer with EmitValue. 3083 const MCExpr *ME = AP.lowerConstant(CV); 3084 3085 // Since lowerConstant already folded and got rid of all IR pointer and 3086 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 3087 // directly. 3088 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 3089 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 3090 3091 AP.OutStreamer->emitValue(ME, Size); 3092 } 3093 3094 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 3095 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 3096 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3097 if (Size) 3098 emitGlobalConstantImpl(DL, CV, *this); 3099 else if (MAI->hasSubsectionsViaSymbols()) { 3100 // If the global has zero size, emit a single byte so that two labels don't 3101 // look like they are at the same location. 3102 OutStreamer->emitIntValue(0, 1); 3103 } 3104 } 3105 3106 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3107 // Target doesn't support this yet! 3108 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3109 } 3110 3111 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3112 if (Offset > 0) 3113 OS << '+' << Offset; 3114 else if (Offset < 0) 3115 OS << Offset; 3116 } 3117 3118 void AsmPrinter::emitNops(unsigned N) { 3119 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3120 for (; N; --N) 3121 EmitToStreamer(*OutStreamer, Nop); 3122 } 3123 3124 //===----------------------------------------------------------------------===// 3125 // Symbol Lowering Routines. 3126 //===----------------------------------------------------------------------===// 3127 3128 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3129 return OutContext.createTempSymbol(Name, true); 3130 } 3131 3132 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3133 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3134 } 3135 3136 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3137 return MMI->getAddrLabelSymbol(BB); 3138 } 3139 3140 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3141 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3142 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3143 const MachineConstantPoolEntry &CPE = 3144 MF->getConstantPool()->getConstants()[CPID]; 3145 if (!CPE.isMachineConstantPoolEntry()) { 3146 const DataLayout &DL = MF->getDataLayout(); 3147 SectionKind Kind = CPE.getSectionKind(&DL); 3148 const Constant *C = CPE.Val.ConstVal; 3149 Align Alignment = CPE.Alignment; 3150 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3151 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3152 Alignment))) { 3153 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3154 if (Sym->isUndefined()) 3155 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3156 return Sym; 3157 } 3158 } 3159 } 3160 } 3161 3162 const DataLayout &DL = getDataLayout(); 3163 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3164 "CPI" + Twine(getFunctionNumber()) + "_" + 3165 Twine(CPID)); 3166 } 3167 3168 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3169 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3170 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3171 } 3172 3173 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3174 /// FIXME: privatize to AsmPrinter. 3175 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3176 const DataLayout &DL = getDataLayout(); 3177 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3178 Twine(getFunctionNumber()) + "_" + 3179 Twine(UID) + "_set_" + Twine(MBBID)); 3180 } 3181 3182 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3183 StringRef Suffix) const { 3184 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3185 } 3186 3187 /// Return the MCSymbol for the specified ExternalSymbol. 3188 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3189 SmallString<60> NameStr; 3190 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3191 return OutContext.getOrCreateSymbol(NameStr); 3192 } 3193 3194 /// PrintParentLoopComment - Print comments about parent loops of this one. 3195 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3196 unsigned FunctionNumber) { 3197 if (!Loop) return; 3198 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3199 OS.indent(Loop->getLoopDepth()*2) 3200 << "Parent Loop BB" << FunctionNumber << "_" 3201 << Loop->getHeader()->getNumber() 3202 << " Depth=" << Loop->getLoopDepth() << '\n'; 3203 } 3204 3205 /// PrintChildLoopComment - Print comments about child loops within 3206 /// the loop for this basic block, with nesting. 3207 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3208 unsigned FunctionNumber) { 3209 // Add child loop information 3210 for (const MachineLoop *CL : *Loop) { 3211 OS.indent(CL->getLoopDepth()*2) 3212 << "Child Loop BB" << FunctionNumber << "_" 3213 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3214 << '\n'; 3215 PrintChildLoopComment(OS, CL, FunctionNumber); 3216 } 3217 } 3218 3219 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3220 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3221 const MachineLoopInfo *LI, 3222 const AsmPrinter &AP) { 3223 // Add loop depth information 3224 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3225 if (!Loop) return; 3226 3227 MachineBasicBlock *Header = Loop->getHeader(); 3228 assert(Header && "No header for loop"); 3229 3230 // If this block is not a loop header, just print out what is the loop header 3231 // and return. 3232 if (Header != &MBB) { 3233 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3234 Twine(AP.getFunctionNumber())+"_" + 3235 Twine(Loop->getHeader()->getNumber())+ 3236 " Depth="+Twine(Loop->getLoopDepth())); 3237 return; 3238 } 3239 3240 // Otherwise, it is a loop header. Print out information about child and 3241 // parent loops. 3242 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3243 3244 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3245 3246 OS << "=>"; 3247 OS.indent(Loop->getLoopDepth()*2-2); 3248 3249 OS << "This "; 3250 if (Loop->isInnermost()) 3251 OS << "Inner "; 3252 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3253 3254 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3255 } 3256 3257 /// emitBasicBlockStart - This method prints the label for the specified 3258 /// MachineBasicBlock, an alignment (if present) and a comment describing 3259 /// it if appropriate. 3260 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3261 // End the previous funclet and start a new one. 3262 if (MBB.isEHFuncletEntry()) { 3263 for (const HandlerInfo &HI : Handlers) { 3264 HI.Handler->endFunclet(); 3265 HI.Handler->beginFunclet(MBB); 3266 } 3267 } 3268 3269 // Emit an alignment directive for this block, if needed. 3270 const Align Alignment = MBB.getAlignment(); 3271 if (Alignment != Align(1)) 3272 emitAlignment(Alignment); 3273 3274 // Switch to a new section if this basic block must begin a section. The 3275 // entry block is always placed in the function section and is handled 3276 // separately. 3277 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3278 OutStreamer->SwitchSection( 3279 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3280 MBB, TM)); 3281 CurrentSectionBeginSym = MBB.getSymbol(); 3282 } 3283 3284 // If the block has its address taken, emit any labels that were used to 3285 // reference the block. It is possible that there is more than one label 3286 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3287 // the references were generated. 3288 const BasicBlock *BB = MBB.getBasicBlock(); 3289 if (MBB.hasAddressTaken()) { 3290 if (isVerbose()) 3291 OutStreamer->AddComment("Block address taken"); 3292 3293 // MBBs can have their address taken as part of CodeGen without having 3294 // their corresponding BB's address taken in IR 3295 if (BB && BB->hasAddressTaken()) 3296 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3297 OutStreamer->emitLabel(Sym); 3298 } 3299 3300 // Print some verbose block comments. 3301 if (isVerbose()) { 3302 if (BB) { 3303 if (BB->hasName()) { 3304 BB->printAsOperand(OutStreamer->GetCommentOS(), 3305 /*PrintType=*/false, BB->getModule()); 3306 OutStreamer->GetCommentOS() << '\n'; 3307 } 3308 } 3309 3310 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3311 emitBasicBlockLoopComments(MBB, MLI, *this); 3312 } 3313 3314 // Print the main label for the block. 3315 if (shouldEmitLabelForBasicBlock(MBB)) { 3316 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3317 OutStreamer->AddComment("Label of block must be emitted"); 3318 OutStreamer->emitLabel(MBB.getSymbol()); 3319 } else { 3320 if (isVerbose()) { 3321 // NOTE: Want this comment at start of line, don't emit with AddComment. 3322 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3323 false); 3324 } 3325 } 3326 3327 if (MBB.isEHCatchretTarget() && 3328 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3329 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3330 } 3331 3332 // With BB sections, each basic block must handle CFI information on its own 3333 // if it begins a section (Entry block is handled separately by 3334 // AsmPrinterHandler::beginFunction). 3335 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3336 for (const HandlerInfo &HI : Handlers) 3337 HI.Handler->beginBasicBlock(MBB); 3338 } 3339 3340 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3341 // Check if CFI information needs to be updated for this MBB with basic block 3342 // sections. 3343 if (MBB.isEndSection()) 3344 for (const HandlerInfo &HI : Handlers) 3345 HI.Handler->endBasicBlock(MBB); 3346 } 3347 3348 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3349 bool IsDefinition) const { 3350 MCSymbolAttr Attr = MCSA_Invalid; 3351 3352 switch (Visibility) { 3353 default: break; 3354 case GlobalValue::HiddenVisibility: 3355 if (IsDefinition) 3356 Attr = MAI->getHiddenVisibilityAttr(); 3357 else 3358 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3359 break; 3360 case GlobalValue::ProtectedVisibility: 3361 Attr = MAI->getProtectedVisibilityAttr(); 3362 break; 3363 } 3364 3365 if (Attr != MCSA_Invalid) 3366 OutStreamer->emitSymbolAttribute(Sym, Attr); 3367 } 3368 3369 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3370 const MachineBasicBlock &MBB) const { 3371 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3372 // in the labels mode (option `=labels`) and every section beginning in the 3373 // sections mode (`=all` and `=list=`). 3374 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3375 return true; 3376 // A label is needed for any block with at least one predecessor (when that 3377 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3378 // entry, or if a label is forced). 3379 return !MBB.pred_empty() && 3380 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3381 MBB.hasLabelMustBeEmitted()); 3382 } 3383 3384 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3385 /// exactly one predecessor and the control transfer mechanism between 3386 /// the predecessor and this block is a fall-through. 3387 bool AsmPrinter:: 3388 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3389 // If this is a landing pad, it isn't a fall through. If it has no preds, 3390 // then nothing falls through to it. 3391 if (MBB->isEHPad() || MBB->pred_empty()) 3392 return false; 3393 3394 // If there isn't exactly one predecessor, it can't be a fall through. 3395 if (MBB->pred_size() > 1) 3396 return false; 3397 3398 // The predecessor has to be immediately before this block. 3399 MachineBasicBlock *Pred = *MBB->pred_begin(); 3400 if (!Pred->isLayoutSuccessor(MBB)) 3401 return false; 3402 3403 // If the block is completely empty, then it definitely does fall through. 3404 if (Pred->empty()) 3405 return true; 3406 3407 // Check the terminators in the previous blocks 3408 for (const auto &MI : Pred->terminators()) { 3409 // If it is not a simple branch, we are in a table somewhere. 3410 if (!MI.isBranch() || MI.isIndirectBranch()) 3411 return false; 3412 3413 // If we are the operands of one of the branches, this is not a fall 3414 // through. Note that targets with delay slots will usually bundle 3415 // terminators with the delay slot instruction. 3416 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3417 if (OP->isJTI()) 3418 return false; 3419 if (OP->isMBB() && OP->getMBB() == MBB) 3420 return false; 3421 } 3422 } 3423 3424 return true; 3425 } 3426 3427 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3428 if (!S.usesMetadata()) 3429 return nullptr; 3430 3431 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3432 gcp_map_type::iterator GCPI = GCMap.find(&S); 3433 if (GCPI != GCMap.end()) 3434 return GCPI->second.get(); 3435 3436 auto Name = S.getName(); 3437 3438 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3439 GCMetadataPrinterRegistry::entries()) 3440 if (Name == GCMetaPrinter.getName()) { 3441 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3442 GMP->S = &S; 3443 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3444 return IterBool.first->second.get(); 3445 } 3446 3447 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3448 } 3449 3450 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3451 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3452 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3453 bool NeedsDefault = false; 3454 if (MI->begin() == MI->end()) 3455 // No GC strategy, use the default format. 3456 NeedsDefault = true; 3457 else 3458 for (auto &I : *MI) { 3459 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3460 if (MP->emitStackMaps(SM, *this)) 3461 continue; 3462 // The strategy doesn't have printer or doesn't emit custom stack maps. 3463 // Use the default format. 3464 NeedsDefault = true; 3465 } 3466 3467 if (NeedsDefault) 3468 SM.serializeToStackMapSection(); 3469 } 3470 3471 /// Pin vtable to this file. 3472 AsmPrinterHandler::~AsmPrinterHandler() = default; 3473 3474 void AsmPrinterHandler::markFunctionEnd() {} 3475 3476 // In the binary's "xray_instr_map" section, an array of these function entries 3477 // describes each instrumentation point. When XRay patches your code, the index 3478 // into this table will be given to your handler as a patch point identifier. 3479 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3480 auto Kind8 = static_cast<uint8_t>(Kind); 3481 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3482 Out->emitBinaryData( 3483 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3484 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3485 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3486 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3487 Out->emitZeros(Padding); 3488 } 3489 3490 void AsmPrinter::emitXRayTable() { 3491 if (Sleds.empty()) 3492 return; 3493 3494 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3495 const Function &F = MF->getFunction(); 3496 MCSection *InstMap = nullptr; 3497 MCSection *FnSledIndex = nullptr; 3498 const Triple &TT = TM.getTargetTriple(); 3499 // Use PC-relative addresses on all targets. 3500 if (TT.isOSBinFormatELF()) { 3501 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3502 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3503 StringRef GroupName; 3504 if (F.hasComdat()) { 3505 Flags |= ELF::SHF_GROUP; 3506 GroupName = F.getComdat()->getName(); 3507 } 3508 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3509 Flags, 0, GroupName, F.hasComdat(), 3510 MCSection::NonUniqueID, LinkedToSym); 3511 3512 if (!TM.Options.XRayOmitFunctionIndex) 3513 FnSledIndex = OutContext.getELFSection( 3514 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3515 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3516 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3517 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3518 SectionKind::getReadOnlyWithRel()); 3519 if (!TM.Options.XRayOmitFunctionIndex) 3520 FnSledIndex = OutContext.getMachOSection( 3521 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3522 } else { 3523 llvm_unreachable("Unsupported target"); 3524 } 3525 3526 auto WordSizeBytes = MAI->getCodePointerSize(); 3527 3528 // Now we switch to the instrumentation map section. Because this is done 3529 // per-function, we are able to create an index entry that will represent the 3530 // range of sleds associated with a function. 3531 auto &Ctx = OutContext; 3532 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3533 OutStreamer->SwitchSection(InstMap); 3534 OutStreamer->emitLabel(SledsStart); 3535 for (const auto &Sled : Sleds) { 3536 MCSymbol *Dot = Ctx.createTempSymbol(); 3537 OutStreamer->emitLabel(Dot); 3538 OutStreamer->emitValueImpl( 3539 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3540 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3541 WordSizeBytes); 3542 OutStreamer->emitValueImpl( 3543 MCBinaryExpr::createSub( 3544 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3545 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3546 MCConstantExpr::create(WordSizeBytes, Ctx), 3547 Ctx), 3548 Ctx), 3549 WordSizeBytes); 3550 Sled.emit(WordSizeBytes, OutStreamer.get()); 3551 } 3552 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3553 OutStreamer->emitLabel(SledsEnd); 3554 3555 // We then emit a single entry in the index per function. We use the symbols 3556 // that bound the instrumentation map as the range for a specific function. 3557 // Each entry here will be 2 * word size aligned, as we're writing down two 3558 // pointers. This should work for both 32-bit and 64-bit platforms. 3559 if (FnSledIndex) { 3560 OutStreamer->SwitchSection(FnSledIndex); 3561 OutStreamer->emitCodeAlignment(2 * WordSizeBytes, &getSubtargetInfo()); 3562 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3563 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3564 OutStreamer->SwitchSection(PrevSection); 3565 } 3566 Sleds.clear(); 3567 } 3568 3569 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3570 SledKind Kind, uint8_t Version) { 3571 const Function &F = MI.getMF()->getFunction(); 3572 auto Attr = F.getFnAttribute("function-instrument"); 3573 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3574 bool AlwaysInstrument = 3575 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3576 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3577 Kind = SledKind::LOG_ARGS_ENTER; 3578 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3579 AlwaysInstrument, &F, Version}); 3580 } 3581 3582 void AsmPrinter::emitPatchableFunctionEntries() { 3583 const Function &F = MF->getFunction(); 3584 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3585 (void)F.getFnAttribute("patchable-function-prefix") 3586 .getValueAsString() 3587 .getAsInteger(10, PatchableFunctionPrefix); 3588 (void)F.getFnAttribute("patchable-function-entry") 3589 .getValueAsString() 3590 .getAsInteger(10, PatchableFunctionEntry); 3591 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3592 return; 3593 const unsigned PointerSize = getPointerSize(); 3594 if (TM.getTargetTriple().isOSBinFormatELF()) { 3595 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3596 const MCSymbolELF *LinkedToSym = nullptr; 3597 StringRef GroupName; 3598 3599 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3600 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3601 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3602 Flags |= ELF::SHF_LINK_ORDER; 3603 if (F.hasComdat()) { 3604 Flags |= ELF::SHF_GROUP; 3605 GroupName = F.getComdat()->getName(); 3606 } 3607 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3608 } 3609 OutStreamer->SwitchSection(OutContext.getELFSection( 3610 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3611 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3612 emitAlignment(Align(PointerSize)); 3613 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3614 } 3615 } 3616 3617 uint16_t AsmPrinter::getDwarfVersion() const { 3618 return OutStreamer->getContext().getDwarfVersion(); 3619 } 3620 3621 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3622 OutStreamer->getContext().setDwarfVersion(Version); 3623 } 3624 3625 bool AsmPrinter::isDwarf64() const { 3626 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3627 } 3628 3629 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3630 return dwarf::getDwarfOffsetByteSize( 3631 OutStreamer->getContext().getDwarfFormat()); 3632 } 3633 3634 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3635 return dwarf::getUnitLengthFieldByteSize( 3636 OutStreamer->getContext().getDwarfFormat()); 3637 } 3638