1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "asm-printer" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/CodeGen/GCMetadataPrinter.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBundle.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/DebugInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCContext.h" 36 #include "llvm/MC/MCExpr.h" 37 #include "llvm/MC/MCInst.h" 38 #include "llvm/MC/MCSection.h" 39 #include "llvm/MC/MCStreamer.h" 40 #include "llvm/MC/MCSymbol.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/Format.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Target/TargetFrameLowering.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetLowering.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 #include "llvm/Transforms/Utils/GlobalStatus.h" 53 #include "WinCodeViewLineTables.h" 54 using namespace llvm; 55 56 static const char *const DWARFGroupName = "DWARF Emission"; 57 static const char *const DbgTimerName = "Debug Info Emission"; 58 static const char *const EHTimerName = "DWARF Exception Writer"; 59 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 60 61 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 62 63 char AsmPrinter::ID = 0; 64 65 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 66 static gcp_map_type &getGCMap(void *&P) { 67 if (P == 0) 68 P = new gcp_map_type(); 69 return *(gcp_map_type*)P; 70 } 71 72 73 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 74 /// value in log2 form. This rounds up to the preferred alignment if possible 75 /// and legal. 76 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 77 unsigned InBits = 0) { 78 unsigned NumBits = 0; 79 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 80 NumBits = TD.getPreferredAlignmentLog(GVar); 81 82 // If InBits is specified, round it to it. 83 if (InBits > NumBits) 84 NumBits = InBits; 85 86 // If the GV has a specified alignment, take it into account. 87 if (GV->getAlignment() == 0) 88 return NumBits; 89 90 unsigned GVAlign = Log2_32(GV->getAlignment()); 91 92 // If the GVAlign is larger than NumBits, or if we are required to obey 93 // NumBits because the GV has an assigned section, obey it. 94 if (GVAlign > NumBits || GV->hasSection()) 95 NumBits = GVAlign; 96 return NumBits; 97 } 98 99 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 100 : MachineFunctionPass(ID), 101 TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()), 102 OutContext(Streamer.getContext()), 103 OutStreamer(Streamer), 104 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 105 DD = 0; MMI = 0; LI = 0; MF = 0; 106 CurrentFnSym = CurrentFnSymForSize = 0; 107 GCMetadataPrinters = 0; 108 VerboseAsm = Streamer.isVerboseAsm(); 109 } 110 111 AsmPrinter::~AsmPrinter() { 112 assert(DD == 0 && Handlers.empty() && "Debug/EH info didn't get finalized"); 113 114 if (GCMetadataPrinters != 0) { 115 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 116 117 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 118 delete I->second; 119 delete &GCMap; 120 GCMetadataPrinters = 0; 121 } 122 123 delete &OutStreamer; 124 } 125 126 /// getFunctionNumber - Return a unique ID for the current function. 127 /// 128 unsigned AsmPrinter::getFunctionNumber() const { 129 return MF->getFunctionNumber(); 130 } 131 132 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 133 return TM.getTargetLowering()->getObjFileLowering(); 134 } 135 136 /// getDataLayout - Return information about data layout. 137 const DataLayout &AsmPrinter::getDataLayout() const { 138 return *TM.getDataLayout(); 139 } 140 141 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 142 return TM.getSubtarget<MCSubtargetInfo>(); 143 } 144 145 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 146 S.EmitInstruction(Inst, getSubtargetInfo()); 147 } 148 149 StringRef AsmPrinter::getTargetTriple() const { 150 return TM.getTargetTriple(); 151 } 152 153 /// getCurrentSection() - Return the current section we are emitting to. 154 const MCSection *AsmPrinter::getCurrentSection() const { 155 return OutStreamer.getCurrentSection().first; 156 } 157 158 159 160 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 161 AU.setPreservesAll(); 162 MachineFunctionPass::getAnalysisUsage(AU); 163 AU.addRequired<MachineModuleInfo>(); 164 AU.addRequired<GCModuleInfo>(); 165 if (isVerbose()) 166 AU.addRequired<MachineLoopInfo>(); 167 } 168 169 bool AsmPrinter::doInitialization(Module &M) { 170 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 171 MMI->AnalyzeModule(M); 172 173 // Initialize TargetLoweringObjectFile. 174 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 175 .Initialize(OutContext, TM); 176 177 OutStreamer.InitSections(false); 178 179 Mang = new Mangler(TM.getDataLayout()); 180 181 // Allow the target to emit any magic that it wants at the start of the file. 182 EmitStartOfAsmFile(M); 183 184 // Very minimal debug info. It is ignored if we emit actual debug info. If we 185 // don't, this at least helps the user find where a global came from. 186 if (MAI->hasSingleParameterDotFile()) { 187 // .file "foo.c" 188 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 189 } 190 191 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 192 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 193 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 194 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 195 MP->beginAssembly(*this); 196 197 // Emit module-level inline asm if it exists. 198 if (!M.getModuleInlineAsm().empty()) { 199 OutStreamer.AddComment("Start of file scope inline assembly"); 200 OutStreamer.AddBlankLine(); 201 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 202 OutStreamer.AddComment("End of file scope inline assembly"); 203 OutStreamer.AddBlankLine(); 204 } 205 206 if (MAI->doesSupportDebugInformation()) { 207 if (Triple(TM.getTargetTriple()).getOS() == Triple::Win32) { 208 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 209 DbgTimerName, 210 CodeViewLineTablesGroupName)); 211 } else { 212 DD = new DwarfDebug(this, &M); 213 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 214 } 215 } 216 217 DwarfException *DE = 0; 218 switch (MAI->getExceptionHandlingType()) { 219 case ExceptionHandling::None: 220 break; 221 case ExceptionHandling::SjLj: 222 case ExceptionHandling::DwarfCFI: 223 DE = new DwarfCFIException(this); 224 break; 225 case ExceptionHandling::ARM: 226 DE = new ARMException(this); 227 break; 228 case ExceptionHandling::Win64: 229 DE = new Win64Exception(this); 230 break; 231 } 232 if (DE) 233 Handlers.push_back(HandlerInfo(DE, EHTimerName, DWARFGroupName)); 234 return false; 235 } 236 237 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 238 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 239 switch (Linkage) { 240 case GlobalValue::CommonLinkage: 241 case GlobalValue::LinkOnceAnyLinkage: 242 case GlobalValue::LinkOnceODRLinkage: 243 case GlobalValue::WeakAnyLinkage: 244 case GlobalValue::WeakODRLinkage: 245 case GlobalValue::LinkerPrivateWeakLinkage: 246 if (MAI->hasWeakDefDirective()) { 247 // .globl _foo 248 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 249 250 bool CanBeHidden = false; 251 252 if (Linkage == GlobalValue::LinkOnceODRLinkage && 253 MAI->hasWeakDefCanBeHiddenDirective()) { 254 if (GV->hasUnnamedAddr()) { 255 CanBeHidden = true; 256 } else { 257 GlobalStatus GS; 258 if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared) 259 CanBeHidden = true; 260 } 261 } 262 263 if (!CanBeHidden) 264 // .weak_definition _foo 265 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 266 else 267 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 268 } else if (MAI->hasLinkOnceDirective()) { 269 // .globl _foo 270 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 271 //NOTE: linkonce is handled by the section the symbol was assigned to. 272 } else { 273 // .weak _foo 274 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 275 } 276 return; 277 case GlobalValue::AppendingLinkage: 278 // FIXME: appending linkage variables should go into a section of 279 // their name or something. For now, just emit them as external. 280 case GlobalValue::ExternalLinkage: 281 // If external or appending, declare as a global symbol. 282 // .globl _foo 283 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 284 return; 285 case GlobalValue::PrivateLinkage: 286 case GlobalValue::InternalLinkage: 287 case GlobalValue::LinkerPrivateLinkage: 288 return; 289 case GlobalValue::AvailableExternallyLinkage: 290 llvm_unreachable("Should never emit this"); 291 case GlobalValue::ExternalWeakLinkage: 292 llvm_unreachable("Don't know how to emit these"); 293 } 294 llvm_unreachable("Unknown linkage type!"); 295 } 296 297 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 298 return getObjFileLowering().getSymbol(*Mang, GV); 299 } 300 301 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 302 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 303 if (GV->hasInitializer()) { 304 // Check to see if this is a special global used by LLVM, if so, emit it. 305 if (EmitSpecialLLVMGlobal(GV)) 306 return; 307 308 if (isVerbose()) { 309 GV->printAsOperand(OutStreamer.GetCommentOS(), 310 /*PrintType=*/false, GV->getParent()); 311 OutStreamer.GetCommentOS() << '\n'; 312 } 313 } 314 315 MCSymbol *GVSym = getSymbol(GV); 316 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 317 318 if (!GV->hasInitializer()) // External globals require no extra code. 319 return; 320 321 if (MAI->hasDotTypeDotSizeDirective()) 322 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 323 324 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 325 326 const DataLayout *DL = TM.getDataLayout(); 327 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 328 329 // If the alignment is specified, we *must* obey it. Overaligning a global 330 // with a specified alignment is a prompt way to break globals emitted to 331 // sections and expected to be contiguous (e.g. ObjC metadata). 332 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 333 334 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) { 335 const HandlerInfo &OI = Handlers[I]; 336 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled); 337 OI.Handler->setSymbolSize(GVSym, Size); 338 } 339 340 // Handle common and BSS local symbols (.lcomm). 341 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 342 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 343 unsigned Align = 1 << AlignLog; 344 345 // Handle common symbols. 346 if (GVKind.isCommon()) { 347 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 348 Align = 0; 349 350 // .comm _foo, 42, 4 351 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 352 return; 353 } 354 355 // Handle local BSS symbols. 356 if (MAI->hasMachoZeroFillDirective()) { 357 const MCSection *TheSection = 358 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 359 // .zerofill __DATA, __bss, _foo, 400, 5 360 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 361 return; 362 } 363 364 // Use .lcomm only if it supports user-specified alignment. 365 // Otherwise, while it would still be correct to use .lcomm in some 366 // cases (e.g. when Align == 1), the external assembler might enfore 367 // some -unknown- default alignment behavior, which could cause 368 // spurious differences between external and integrated assembler. 369 // Prefer to simply fall back to .local / .comm in this case. 370 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 371 // .lcomm _foo, 42 372 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 373 return; 374 } 375 376 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 377 Align = 0; 378 379 // .local _foo 380 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 381 // .comm _foo, 42, 4 382 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 383 return; 384 } 385 386 const MCSection *TheSection = 387 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 388 389 // Handle the zerofill directive on darwin, which is a special form of BSS 390 // emission. 391 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 392 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 393 394 // .globl _foo 395 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 396 // .zerofill __DATA, __common, _foo, 400, 5 397 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 398 return; 399 } 400 401 // Handle thread local data for mach-o which requires us to output an 402 // additional structure of data and mangle the original symbol so that we 403 // can reference it later. 404 // 405 // TODO: This should become an "emit thread local global" method on TLOF. 406 // All of this macho specific stuff should be sunk down into TLOFMachO and 407 // stuff like "TLSExtraDataSection" should no longer be part of the parent 408 // TLOF class. This will also make it more obvious that stuff like 409 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 410 // specific code. 411 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 412 // Emit the .tbss symbol 413 MCSymbol *MangSym = 414 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 415 416 if (GVKind.isThreadBSS()) { 417 TheSection = getObjFileLowering().getTLSBSSSection(); 418 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 419 } else if (GVKind.isThreadData()) { 420 OutStreamer.SwitchSection(TheSection); 421 422 EmitAlignment(AlignLog, GV); 423 OutStreamer.EmitLabel(MangSym); 424 425 EmitGlobalConstant(GV->getInitializer()); 426 } 427 428 OutStreamer.AddBlankLine(); 429 430 // Emit the variable struct for the runtime. 431 const MCSection *TLVSect 432 = getObjFileLowering().getTLSExtraDataSection(); 433 434 OutStreamer.SwitchSection(TLVSect); 435 // Emit the linkage here. 436 EmitLinkage(GV, GVSym); 437 OutStreamer.EmitLabel(GVSym); 438 439 // Three pointers in size: 440 // - __tlv_bootstrap - used to make sure support exists 441 // - spare pointer, used when mapped by the runtime 442 // - pointer to mangled symbol above with initializer 443 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 444 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 445 PtrSize); 446 OutStreamer.EmitIntValue(0, PtrSize); 447 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 448 449 OutStreamer.AddBlankLine(); 450 return; 451 } 452 453 OutStreamer.SwitchSection(TheSection); 454 455 EmitLinkage(GV, GVSym); 456 EmitAlignment(AlignLog, GV); 457 458 OutStreamer.EmitLabel(GVSym); 459 460 EmitGlobalConstant(GV->getInitializer()); 461 462 if (MAI->hasDotTypeDotSizeDirective()) 463 // .size foo, 42 464 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 465 466 OutStreamer.AddBlankLine(); 467 } 468 469 /// EmitFunctionHeader - This method emits the header for the current 470 /// function. 471 void AsmPrinter::EmitFunctionHeader() { 472 // Print out constants referenced by the function 473 EmitConstantPool(); 474 475 // Print the 'header' of function. 476 const Function *F = MF->getFunction(); 477 478 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 479 EmitVisibility(CurrentFnSym, F->getVisibility()); 480 481 EmitLinkage(F, CurrentFnSym); 482 EmitAlignment(MF->getAlignment(), F); 483 484 if (MAI->hasDotTypeDotSizeDirective()) 485 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 486 487 if (isVerbose()) { 488 F->printAsOperand(OutStreamer.GetCommentOS(), 489 /*PrintType=*/false, F->getParent()); 490 OutStreamer.GetCommentOS() << '\n'; 491 } 492 493 // Emit the CurrentFnSym. This is a virtual function to allow targets to 494 // do their wild and crazy things as required. 495 EmitFunctionEntryLabel(); 496 497 // If the function had address-taken blocks that got deleted, then we have 498 // references to the dangling symbols. Emit them at the start of the function 499 // so that we don't get references to undefined symbols. 500 std::vector<MCSymbol*> DeadBlockSyms; 501 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 502 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 503 OutStreamer.AddComment("Address taken block that was later removed"); 504 OutStreamer.EmitLabel(DeadBlockSyms[i]); 505 } 506 507 // Emit pre-function debug and/or EH information. 508 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) { 509 const HandlerInfo &OI = Handlers[I]; 510 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled); 511 OI.Handler->beginFunction(MF); 512 } 513 514 // Emit the prefix data. 515 if (F->hasPrefixData()) 516 EmitGlobalConstant(F->getPrefixData()); 517 } 518 519 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 520 /// function. This can be overridden by targets as required to do custom stuff. 521 void AsmPrinter::EmitFunctionEntryLabel() { 522 // The function label could have already been emitted if two symbols end up 523 // conflicting due to asm renaming. Detect this and emit an error. 524 if (CurrentFnSym->isUndefined()) 525 return OutStreamer.EmitLabel(CurrentFnSym); 526 527 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 528 "' label emitted multiple times to assembly file"); 529 } 530 531 /// emitComments - Pretty-print comments for instructions. 532 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 533 const MachineFunction *MF = MI.getParent()->getParent(); 534 const TargetMachine &TM = MF->getTarget(); 535 536 // Check for spills and reloads 537 int FI; 538 539 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 540 541 // We assume a single instruction only has a spill or reload, not 542 // both. 543 const MachineMemOperand *MMO; 544 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 545 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 546 MMO = *MI.memoperands_begin(); 547 CommentOS << MMO->getSize() << "-byte Reload\n"; 548 } 549 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 550 if (FrameInfo->isSpillSlotObjectIndex(FI)) 551 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 552 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 553 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 554 MMO = *MI.memoperands_begin(); 555 CommentOS << MMO->getSize() << "-byte Spill\n"; 556 } 557 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 558 if (FrameInfo->isSpillSlotObjectIndex(FI)) 559 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 560 } 561 562 // Check for spill-induced copies 563 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 564 CommentOS << " Reload Reuse\n"; 565 } 566 567 /// emitImplicitDef - This method emits the specified machine instruction 568 /// that is an implicit def. 569 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 570 unsigned RegNo = MI->getOperand(0).getReg(); 571 OutStreamer.AddComment(Twine("implicit-def: ") + 572 TM.getRegisterInfo()->getName(RegNo)); 573 OutStreamer.AddBlankLine(); 574 } 575 576 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 577 std::string Str = "kill:"; 578 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 579 const MachineOperand &Op = MI->getOperand(i); 580 assert(Op.isReg() && "KILL instruction must have only register operands"); 581 Str += ' '; 582 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 583 Str += (Op.isDef() ? "<def>" : "<kill>"); 584 } 585 AP.OutStreamer.AddComment(Str); 586 AP.OutStreamer.AddBlankLine(); 587 } 588 589 /// emitDebugValueComment - This method handles the target-independent form 590 /// of DBG_VALUE, returning true if it was able to do so. A false return 591 /// means the target will need to handle MI in EmitInstruction. 592 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 593 // This code handles only the 3-operand target-independent form. 594 if (MI->getNumOperands() != 3) 595 return false; 596 597 SmallString<128> Str; 598 raw_svector_ostream OS(Str); 599 OS << "DEBUG_VALUE: "; 600 601 DIVariable V(MI->getOperand(2).getMetadata()); 602 if (V.getContext().isSubprogram()) { 603 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 604 if (!Name.empty()) 605 OS << Name << ":"; 606 } 607 OS << V.getName() << " <- "; 608 609 // The second operand is only an offset if it's an immediate. 610 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 611 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 612 613 // Register or immediate value. Register 0 means undef. 614 if (MI->getOperand(0).isFPImm()) { 615 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 616 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 617 OS << (double)APF.convertToFloat(); 618 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 619 OS << APF.convertToDouble(); 620 } else { 621 // There is no good way to print long double. Convert a copy to 622 // double. Ah well, it's only a comment. 623 bool ignored; 624 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 625 &ignored); 626 OS << "(long double) " << APF.convertToDouble(); 627 } 628 } else if (MI->getOperand(0).isImm()) { 629 OS << MI->getOperand(0).getImm(); 630 } else if (MI->getOperand(0).isCImm()) { 631 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 632 } else { 633 unsigned Reg; 634 if (MI->getOperand(0).isReg()) { 635 Reg = MI->getOperand(0).getReg(); 636 } else { 637 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 638 const TargetFrameLowering *TFI = AP.TM.getFrameLowering(); 639 Offset += TFI->getFrameIndexReference(*AP.MF, 640 MI->getOperand(0).getIndex(), Reg); 641 Deref = true; 642 } 643 if (Reg == 0) { 644 // Suppress offset, it is not meaningful here. 645 OS << "undef"; 646 // NOTE: Want this comment at start of line, don't emit with AddComment. 647 AP.OutStreamer.emitRawComment(OS.str()); 648 return true; 649 } 650 if (Deref) 651 OS << '['; 652 OS << AP.TM.getRegisterInfo()->getName(Reg); 653 } 654 655 if (Deref) 656 OS << '+' << Offset << ']'; 657 658 // NOTE: Want this comment at start of line, don't emit with AddComment. 659 AP.OutStreamer.emitRawComment(OS.str()); 660 return true; 661 } 662 663 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 664 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 665 MF->getFunction()->needsUnwindTableEntry()) 666 return CFI_M_EH; 667 668 if (MMI->hasDebugInfo()) 669 return CFI_M_Debug; 670 671 return CFI_M_None; 672 } 673 674 bool AsmPrinter::needsSEHMoves() { 675 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 676 MF->getFunction()->needsUnwindTableEntry(); 677 } 678 679 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 680 const MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 681 682 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 683 return; 684 685 if (needsCFIMoves() == CFI_M_None) 686 return; 687 688 if (MMI->getCompactUnwindEncoding() != 0) 689 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 690 691 const MachineModuleInfo &MMI = MF->getMMI(); 692 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 693 bool FoundOne = false; 694 (void)FoundOne; 695 for (std::vector<MCCFIInstruction>::const_iterator I = Instrs.begin(), 696 E = Instrs.end(); I != E; ++I) { 697 if (I->getLabel() == Label) { 698 emitCFIInstruction(*I); 699 FoundOne = true; 700 } 701 } 702 assert(FoundOne); 703 } 704 705 /// EmitFunctionBody - This method emits the body and trailer for a 706 /// function. 707 void AsmPrinter::EmitFunctionBody() { 708 // Emit target-specific gunk before the function body. 709 EmitFunctionBodyStart(); 710 711 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 712 713 // Print out code for the function. 714 bool HasAnyRealCode = false; 715 const MachineInstr *LastMI = 0; 716 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 717 I != E; ++I) { 718 // Print a label for the basic block. 719 EmitBasicBlockStart(I); 720 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 721 II != IE; ++II) { 722 LastMI = II; 723 724 // Print the assembly for the instruction. 725 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 726 !II->isDebugValue()) { 727 HasAnyRealCode = true; 728 ++EmittedInsts; 729 } 730 731 if (ShouldPrintDebugScopes) { 732 for (unsigned III = 0, EEE = Handlers.size(); III != EEE; ++III) { 733 const HandlerInfo &OI = Handlers[III]; 734 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, 735 TimePassesIsEnabled); 736 OI.Handler->beginInstruction(II); 737 } 738 } 739 740 if (isVerbose()) 741 emitComments(*II, OutStreamer.GetCommentOS()); 742 743 switch (II->getOpcode()) { 744 case TargetOpcode::PROLOG_LABEL: 745 emitPrologLabel(*II); 746 break; 747 748 case TargetOpcode::EH_LABEL: 749 case TargetOpcode::GC_LABEL: 750 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 751 break; 752 case TargetOpcode::INLINEASM: 753 EmitInlineAsm(II); 754 break; 755 case TargetOpcode::DBG_VALUE: 756 if (isVerbose()) { 757 if (!emitDebugValueComment(II, *this)) 758 EmitInstruction(II); 759 } 760 break; 761 case TargetOpcode::IMPLICIT_DEF: 762 if (isVerbose()) emitImplicitDef(II); 763 break; 764 case TargetOpcode::KILL: 765 if (isVerbose()) emitKill(II, *this); 766 break; 767 default: 768 if (!TM.hasMCUseLoc()) 769 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 770 771 EmitInstruction(II); 772 break; 773 } 774 775 if (ShouldPrintDebugScopes) { 776 for (unsigned III = 0, EEE = Handlers.size(); III != EEE; ++III) { 777 const HandlerInfo &OI = Handlers[III]; 778 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, 779 TimePassesIsEnabled); 780 OI.Handler->endInstruction(); 781 } 782 } 783 } 784 } 785 786 // If the last instruction was a prolog label, then we have a situation where 787 // we emitted a prolog but no function body. This results in the ending prolog 788 // label equaling the end of function label and an invalid "row" in the 789 // FDE. We need to emit a noop in this situation so that the FDE's rows are 790 // valid. 791 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 792 793 // If the function is empty and the object file uses .subsections_via_symbols, 794 // then we need to emit *something* to the function body to prevent the 795 // labels from collapsing together. Just emit a noop. 796 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 797 MCInst Noop; 798 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 799 if (Noop.getOpcode()) { 800 OutStreamer.AddComment("avoids zero-length function"); 801 OutStreamer.EmitInstruction(Noop, getSubtargetInfo()); 802 } else // Target not mc-ized yet. 803 OutStreamer.EmitRawText(StringRef("\tnop\n")); 804 } 805 806 const Function *F = MF->getFunction(); 807 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { 808 const BasicBlock *BB = i; 809 if (!BB->hasAddressTaken()) 810 continue; 811 MCSymbol *Sym = GetBlockAddressSymbol(BB); 812 if (Sym->isDefined()) 813 continue; 814 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 815 OutStreamer.EmitLabel(Sym); 816 } 817 818 // Emit target-specific gunk after the function body. 819 EmitFunctionBodyEnd(); 820 821 // If the target wants a .size directive for the size of the function, emit 822 // it. 823 if (MAI->hasDotTypeDotSizeDirective()) { 824 // Create a symbol for the end of function, so we can get the size as 825 // difference between the function label and the temp label. 826 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 827 OutStreamer.EmitLabel(FnEndLabel); 828 829 const MCExpr *SizeExp = 830 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 831 MCSymbolRefExpr::Create(CurrentFnSymForSize, 832 OutContext), 833 OutContext); 834 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 835 } 836 837 // Emit post-function debug and/or EH information. 838 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) { 839 const HandlerInfo &OI = Handlers[I]; 840 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, TimePassesIsEnabled); 841 OI.Handler->endFunction(MF); 842 } 843 MMI->EndFunction(); 844 845 // Print out jump tables referenced by the function. 846 EmitJumpTableInfo(); 847 848 OutStreamer.AddBlankLine(); 849 } 850 851 /// EmitDwarfRegOp - Emit dwarf register operation. 852 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc, 853 bool Indirect) const { 854 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 855 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 856 857 for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0; 858 ++SR) { 859 Reg = TRI->getDwarfRegNum(*SR, false); 860 // FIXME: Get the bit range this register uses of the superregister 861 // so that we can produce a DW_OP_bit_piece 862 } 863 864 // FIXME: Handle cases like a super register being encoded as 865 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 866 867 // FIXME: We have no reasonable way of handling errors in here. The 868 // caller might be in the middle of an dwarf expression. We should 869 // probably assert that Reg >= 0 once debug info generation is more mature. 870 871 if (MLoc.isIndirect() || Indirect) { 872 if (Reg < 32) { 873 OutStreamer.AddComment( 874 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 875 EmitInt8(dwarf::DW_OP_breg0 + Reg); 876 } else { 877 OutStreamer.AddComment("DW_OP_bregx"); 878 EmitInt8(dwarf::DW_OP_bregx); 879 OutStreamer.AddComment(Twine(Reg)); 880 EmitULEB128(Reg); 881 } 882 EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset()); 883 if (MLoc.isIndirect() && Indirect) 884 EmitInt8(dwarf::DW_OP_deref); 885 } else { 886 if (Reg < 32) { 887 OutStreamer.AddComment( 888 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 889 EmitInt8(dwarf::DW_OP_reg0 + Reg); 890 } else { 891 OutStreamer.AddComment("DW_OP_regx"); 892 EmitInt8(dwarf::DW_OP_regx); 893 OutStreamer.AddComment(Twine(Reg)); 894 EmitULEB128(Reg); 895 } 896 } 897 898 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 899 } 900 901 bool AsmPrinter::doFinalization(Module &M) { 902 // Emit global variables. 903 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 904 I != E; ++I) 905 EmitGlobalVariable(I); 906 907 // Emit visibility info for declarations 908 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 909 const Function &F = *I; 910 if (!F.isDeclaration()) 911 continue; 912 GlobalValue::VisibilityTypes V = F.getVisibility(); 913 if (V == GlobalValue::DefaultVisibility) 914 continue; 915 916 MCSymbol *Name = getSymbol(&F); 917 EmitVisibility(Name, V, false); 918 } 919 920 // Emit module flags. 921 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 922 M.getModuleFlagsMetadata(ModuleFlags); 923 if (!ModuleFlags.empty()) 924 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM); 925 926 // Make sure we wrote out everything we need. 927 OutStreamer.Flush(); 928 929 // Finalize debug and EH information. 930 for (unsigned I = 0, E = Handlers.size(); I != E; ++I) { 931 const HandlerInfo &OI = Handlers[I]; 932 NamedRegionTimer T(OI.TimerName, OI.TimerGroupName, 933 TimePassesIsEnabled); 934 OI.Handler->endModule(); 935 delete OI.Handler; 936 } 937 Handlers.clear(); 938 DD = 0; 939 940 // If the target wants to know about weak references, print them all. 941 if (MAI->getWeakRefDirective()) { 942 // FIXME: This is not lazy, it would be nice to only print weak references 943 // to stuff that is actually used. Note that doing so would require targets 944 // to notice uses in operands (due to constant exprs etc). This should 945 // happen with the MC stuff eventually. 946 947 // Print out module-level global variables here. 948 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 949 I != E; ++I) { 950 if (!I->hasExternalWeakLinkage()) continue; 951 OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference); 952 } 953 954 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 955 if (!I->hasExternalWeakLinkage()) continue; 956 OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference); 957 } 958 } 959 960 if (MAI->hasSetDirective()) { 961 OutStreamer.AddBlankLine(); 962 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 963 I != E; ++I) { 964 MCSymbol *Name = getSymbol(I); 965 966 const GlobalValue *GV = I->getAliasedGlobal(); 967 if (GV->isDeclaration()) { 968 report_fatal_error(Name->getName() + 969 ": Target doesn't support aliases to declarations"); 970 } 971 972 MCSymbol *Target = getSymbol(GV); 973 974 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 975 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 976 else if (I->hasWeakLinkage() || I->hasLinkOnceLinkage()) 977 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 978 else 979 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 980 981 EmitVisibility(Name, I->getVisibility()); 982 983 // Emit the directives as assignments aka .set: 984 OutStreamer.EmitAssignment(Name, 985 MCSymbolRefExpr::Create(Target, OutContext)); 986 } 987 } 988 989 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 990 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 991 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 992 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 993 MP->finishAssembly(*this); 994 995 // Emit llvm.ident metadata in an '.ident' directive. 996 EmitModuleIdents(M); 997 998 // If we don't have any trampolines, then we don't require stack memory 999 // to be executable. Some targets have a directive to declare this. 1000 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1001 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1002 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1003 OutStreamer.SwitchSection(S); 1004 1005 // Allow the target to emit any magic that it wants at the end of the file, 1006 // after everything else has gone out. 1007 EmitEndOfAsmFile(M); 1008 1009 delete Mang; Mang = 0; 1010 MMI = 0; 1011 1012 OutStreamer.Finish(); 1013 OutStreamer.reset(); 1014 1015 return false; 1016 } 1017 1018 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1019 this->MF = &MF; 1020 // Get the function symbol. 1021 CurrentFnSym = getSymbol(MF.getFunction()); 1022 CurrentFnSymForSize = CurrentFnSym; 1023 1024 if (isVerbose()) 1025 LI = &getAnalysis<MachineLoopInfo>(); 1026 } 1027 1028 namespace { 1029 // SectionCPs - Keep track the alignment, constpool entries per Section. 1030 struct SectionCPs { 1031 const MCSection *S; 1032 unsigned Alignment; 1033 SmallVector<unsigned, 4> CPEs; 1034 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1035 }; 1036 } 1037 1038 /// EmitConstantPool - Print to the current output stream assembly 1039 /// representations of the constants in the constant pool MCP. This is 1040 /// used to print out constants which have been "spilled to memory" by 1041 /// the code generator. 1042 /// 1043 void AsmPrinter::EmitConstantPool() { 1044 const MachineConstantPool *MCP = MF->getConstantPool(); 1045 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1046 if (CP.empty()) return; 1047 1048 // Calculate sections for constant pool entries. We collect entries to go into 1049 // the same section together to reduce amount of section switch statements. 1050 SmallVector<SectionCPs, 4> CPSections; 1051 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1052 const MachineConstantPoolEntry &CPE = CP[i]; 1053 unsigned Align = CPE.getAlignment(); 1054 1055 SectionKind Kind; 1056 switch (CPE.getRelocationInfo()) { 1057 default: llvm_unreachable("Unknown section kind"); 1058 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 1059 case 1: 1060 Kind = SectionKind::getReadOnlyWithRelLocal(); 1061 break; 1062 case 0: 1063 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) { 1064 case 4: Kind = SectionKind::getMergeableConst4(); break; 1065 case 8: Kind = SectionKind::getMergeableConst8(); break; 1066 case 16: Kind = SectionKind::getMergeableConst16();break; 1067 default: Kind = SectionKind::getMergeableConst(); break; 1068 } 1069 } 1070 1071 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1072 1073 // The number of sections are small, just do a linear search from the 1074 // last section to the first. 1075 bool Found = false; 1076 unsigned SecIdx = CPSections.size(); 1077 while (SecIdx != 0) { 1078 if (CPSections[--SecIdx].S == S) { 1079 Found = true; 1080 break; 1081 } 1082 } 1083 if (!Found) { 1084 SecIdx = CPSections.size(); 1085 CPSections.push_back(SectionCPs(S, Align)); 1086 } 1087 1088 if (Align > CPSections[SecIdx].Alignment) 1089 CPSections[SecIdx].Alignment = Align; 1090 CPSections[SecIdx].CPEs.push_back(i); 1091 } 1092 1093 // Now print stuff into the calculated sections. 1094 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1095 OutStreamer.SwitchSection(CPSections[i].S); 1096 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1097 1098 unsigned Offset = 0; 1099 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1100 unsigned CPI = CPSections[i].CPEs[j]; 1101 MachineConstantPoolEntry CPE = CP[CPI]; 1102 1103 // Emit inter-object padding for alignment. 1104 unsigned AlignMask = CPE.getAlignment() - 1; 1105 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1106 OutStreamer.EmitZeros(NewOffset - Offset); 1107 1108 Type *Ty = CPE.getType(); 1109 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty); 1110 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1111 1112 if (CPE.isMachineConstantPoolEntry()) 1113 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1114 else 1115 EmitGlobalConstant(CPE.Val.ConstVal); 1116 } 1117 } 1118 } 1119 1120 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1121 /// by the current function to the current output stream. 1122 /// 1123 void AsmPrinter::EmitJumpTableInfo() { 1124 const DataLayout *DL = MF->getTarget().getDataLayout(); 1125 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1126 if (MJTI == 0) return; 1127 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1128 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1129 if (JT.empty()) return; 1130 1131 // Pick the directive to use to print the jump table entries, and switch to 1132 // the appropriate section. 1133 const Function *F = MF->getFunction(); 1134 bool JTInDiffSection = false; 1135 if (// In PIC mode, we need to emit the jump table to the same section as the 1136 // function body itself, otherwise the label differences won't make sense. 1137 // FIXME: Need a better predicate for this: what about custom entries? 1138 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1139 // We should also do if the section name is NULL or function is declared 1140 // in discardable section 1141 // FIXME: this isn't the right predicate, should be based on the MCSection 1142 // for the function. 1143 F->isWeakForLinker()) { 1144 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1145 } else { 1146 // Otherwise, drop it in the readonly section. 1147 const MCSection *ReadOnlySection = 1148 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1149 OutStreamer.SwitchSection(ReadOnlySection); 1150 JTInDiffSection = true; 1151 } 1152 1153 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout()))); 1154 1155 // Jump tables in code sections are marked with a data_region directive 1156 // where that's supported. 1157 if (!JTInDiffSection) 1158 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1159 1160 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1161 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1162 1163 // If this jump table was deleted, ignore it. 1164 if (JTBBs.empty()) continue; 1165 1166 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1167 // .set directive for each unique entry. This reduces the number of 1168 // relocations the assembler will generate for the jump table. 1169 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1170 MAI->hasSetDirective()) { 1171 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1172 const TargetLowering *TLI = TM.getTargetLowering(); 1173 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1174 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1175 const MachineBasicBlock *MBB = JTBBs[ii]; 1176 if (!EmittedSets.insert(MBB)) continue; 1177 1178 // .set LJTSet, LBB32-base 1179 const MCExpr *LHS = 1180 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1181 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1182 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1183 } 1184 } 1185 1186 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1187 // before each jump table. The first label is never referenced, but tells 1188 // the assembler and linker the extents of the jump table object. The 1189 // second label is actually referenced by the code. 1190 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1191 // FIXME: This doesn't have to have any specific name, just any randomly 1192 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1193 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1194 1195 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1196 1197 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1198 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1199 } 1200 if (!JTInDiffSection) 1201 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1202 } 1203 1204 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1205 /// current stream. 1206 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1207 const MachineBasicBlock *MBB, 1208 unsigned UID) const { 1209 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1210 const MCExpr *Value = 0; 1211 switch (MJTI->getEntryKind()) { 1212 case MachineJumpTableInfo::EK_Inline: 1213 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1214 case MachineJumpTableInfo::EK_Custom32: 1215 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1216 OutContext); 1217 break; 1218 case MachineJumpTableInfo::EK_BlockAddress: 1219 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1220 // .word LBB123 1221 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1222 break; 1223 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1224 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1225 // with a relocation as gp-relative, e.g.: 1226 // .gprel32 LBB123 1227 MCSymbol *MBBSym = MBB->getSymbol(); 1228 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1229 return; 1230 } 1231 1232 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1233 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1234 // with a relocation as gp-relative, e.g.: 1235 // .gpdword LBB123 1236 MCSymbol *MBBSym = MBB->getSymbol(); 1237 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1238 return; 1239 } 1240 1241 case MachineJumpTableInfo::EK_LabelDifference32: { 1242 // EK_LabelDifference32 - Each entry is the address of the block minus 1243 // the address of the jump table. This is used for PIC jump tables where 1244 // gprel32 is not supported. e.g.: 1245 // .word LBB123 - LJTI1_2 1246 // If the .set directive is supported, this is emitted as: 1247 // .set L4_5_set_123, LBB123 - LJTI1_2 1248 // .word L4_5_set_123 1249 1250 // If we have emitted set directives for the jump table entries, print 1251 // them rather than the entries themselves. If we're emitting PIC, then 1252 // emit the table entries as differences between two text section labels. 1253 if (MAI->hasSetDirective()) { 1254 // If we used .set, reference the .set's symbol. 1255 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1256 OutContext); 1257 break; 1258 } 1259 // Otherwise, use the difference as the jump table entry. 1260 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1261 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1262 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1263 break; 1264 } 1265 } 1266 1267 assert(Value && "Unknown entry kind!"); 1268 1269 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout()); 1270 OutStreamer.EmitValue(Value, EntrySize); 1271 } 1272 1273 1274 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1275 /// special global used by LLVM. If so, emit it and return true, otherwise 1276 /// do nothing and return false. 1277 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1278 if (GV->getName() == "llvm.used") { 1279 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1280 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1281 return true; 1282 } 1283 1284 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1285 if (GV->getSection() == "llvm.metadata" || 1286 GV->hasAvailableExternallyLinkage()) 1287 return true; 1288 1289 if (!GV->hasAppendingLinkage()) return false; 1290 1291 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1292 1293 if (GV->getName() == "llvm.global_ctors") { 1294 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1295 1296 if (TM.getRelocationModel() == Reloc::Static && 1297 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1298 StringRef Sym(".constructors_used"); 1299 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1300 MCSA_Reference); 1301 } 1302 return true; 1303 } 1304 1305 if (GV->getName() == "llvm.global_dtors") { 1306 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1307 1308 if (TM.getRelocationModel() == Reloc::Static && 1309 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1310 StringRef Sym(".destructors_used"); 1311 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1312 MCSA_Reference); 1313 } 1314 return true; 1315 } 1316 1317 return false; 1318 } 1319 1320 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1321 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1322 /// is true, as being used with this directive. 1323 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1324 // Should be an array of 'i8*'. 1325 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1326 const GlobalValue *GV = 1327 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1328 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1329 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1330 } 1331 } 1332 1333 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1334 /// priority. 1335 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1336 // Should be an array of '{ int, void ()* }' structs. The first value is the 1337 // init priority. 1338 if (!isa<ConstantArray>(List)) return; 1339 1340 // Sanity check the structors list. 1341 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1342 if (!InitList) return; // Not an array! 1343 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1344 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1345 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1346 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1347 1348 // Gather the structors in a form that's convenient for sorting by priority. 1349 typedef std::pair<unsigned, Constant *> Structor; 1350 SmallVector<Structor, 8> Structors; 1351 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1352 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1353 if (!CS) continue; // Malformed. 1354 if (CS->getOperand(1)->isNullValue()) 1355 break; // Found a null terminator, skip the rest. 1356 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1357 if (!Priority) continue; // Malformed. 1358 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1359 CS->getOperand(1))); 1360 } 1361 1362 // Emit the function pointers in the target-specific order 1363 const DataLayout *DL = TM.getDataLayout(); 1364 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1365 std::stable_sort(Structors.begin(), Structors.end(), less_first()); 1366 for (unsigned i = 0, e = Structors.size(); i != e; ++i) { 1367 const MCSection *OutputSection = 1368 (isCtor ? 1369 getObjFileLowering().getStaticCtorSection(Structors[i].first) : 1370 getObjFileLowering().getStaticDtorSection(Structors[i].first)); 1371 OutStreamer.SwitchSection(OutputSection); 1372 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1373 EmitAlignment(Align); 1374 EmitXXStructor(Structors[i].second); 1375 } 1376 } 1377 1378 void AsmPrinter::EmitModuleIdents(Module &M) { 1379 if (!MAI->hasIdentDirective()) 1380 return; 1381 1382 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1383 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1384 const MDNode *N = NMD->getOperand(i); 1385 assert(N->getNumOperands() == 1 && 1386 "llvm.ident metadata entry can have only one operand"); 1387 const MDString *S = cast<MDString>(N->getOperand(0)); 1388 OutStreamer.EmitIdent(S->getString()); 1389 } 1390 } 1391 } 1392 1393 //===--------------------------------------------------------------------===// 1394 // Emission and print routines 1395 // 1396 1397 /// EmitInt8 - Emit a byte directive and value. 1398 /// 1399 void AsmPrinter::EmitInt8(int Value) const { 1400 OutStreamer.EmitIntValue(Value, 1); 1401 } 1402 1403 /// EmitInt16 - Emit a short directive and value. 1404 /// 1405 void AsmPrinter::EmitInt16(int Value) const { 1406 OutStreamer.EmitIntValue(Value, 2); 1407 } 1408 1409 /// EmitInt32 - Emit a long directive and value. 1410 /// 1411 void AsmPrinter::EmitInt32(int Value) const { 1412 OutStreamer.EmitIntValue(Value, 4); 1413 } 1414 1415 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1416 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1417 /// labels. This implicitly uses .set if it is available. 1418 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1419 unsigned Size) const { 1420 // Get the Hi-Lo expression. 1421 const MCExpr *Diff = 1422 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1423 MCSymbolRefExpr::Create(Lo, OutContext), 1424 OutContext); 1425 1426 if (!MAI->hasSetDirective()) { 1427 OutStreamer.EmitValue(Diff, Size); 1428 return; 1429 } 1430 1431 // Otherwise, emit with .set (aka assignment). 1432 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1433 OutStreamer.EmitAssignment(SetLabel, Diff); 1434 OutStreamer.EmitSymbolValue(SetLabel, Size); 1435 } 1436 1437 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1438 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1439 /// specify the labels. This implicitly uses .set if it is available. 1440 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1441 const MCSymbol *Lo, 1442 unsigned Size) const { 1443 1444 // Emit Hi+Offset - Lo 1445 // Get the Hi+Offset expression. 1446 const MCExpr *Plus = 1447 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1448 MCConstantExpr::Create(Offset, OutContext), 1449 OutContext); 1450 1451 // Get the Hi+Offset-Lo expression. 1452 const MCExpr *Diff = 1453 MCBinaryExpr::CreateSub(Plus, 1454 MCSymbolRefExpr::Create(Lo, OutContext), 1455 OutContext); 1456 1457 if (!MAI->hasSetDirective()) 1458 OutStreamer.EmitValue(Diff, Size); 1459 else { 1460 // Otherwise, emit with .set (aka assignment). 1461 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1462 OutStreamer.EmitAssignment(SetLabel, Diff); 1463 OutStreamer.EmitSymbolValue(SetLabel, Size); 1464 } 1465 } 1466 1467 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1468 /// where the size in bytes of the directive is specified by Size and Label 1469 /// specifies the label. This implicitly uses .set if it is available. 1470 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1471 unsigned Size, 1472 bool IsSectionRelative) const { 1473 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1474 OutStreamer.EmitCOFFSecRel32(Label); 1475 return; 1476 } 1477 1478 // Emit Label+Offset (or just Label if Offset is zero) 1479 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1480 if (Offset) 1481 Expr = MCBinaryExpr::CreateAdd( 1482 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1483 1484 OutStreamer.EmitValue(Expr, Size); 1485 } 1486 1487 //===----------------------------------------------------------------------===// 1488 1489 // EmitAlignment - Emit an alignment directive to the specified power of 1490 // two boundary. For example, if you pass in 3 here, you will get an 8 1491 // byte alignment. If a global value is specified, and if that global has 1492 // an explicit alignment requested, it will override the alignment request 1493 // if required for correctness. 1494 // 1495 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1496 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits); 1497 1498 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1499 1500 if (getCurrentSection()->getKind().isText()) 1501 OutStreamer.EmitCodeAlignment(1 << NumBits); 1502 else 1503 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1504 } 1505 1506 //===----------------------------------------------------------------------===// 1507 // Constant emission. 1508 //===----------------------------------------------------------------------===// 1509 1510 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1511 /// 1512 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1513 MCContext &Ctx = AP.OutContext; 1514 1515 if (CV->isNullValue() || isa<UndefValue>(CV)) 1516 return MCConstantExpr::Create(0, Ctx); 1517 1518 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1519 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1520 1521 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1522 return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx); 1523 1524 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1525 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1526 1527 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1528 if (CE == 0) { 1529 llvm_unreachable("Unknown constant value to lower!"); 1530 } 1531 1532 if (const MCExpr *RelocExpr = 1533 AP.getObjFileLowering().getExecutableRelativeSymbol(CE, AP.Mang)) 1534 return RelocExpr; 1535 1536 switch (CE->getOpcode()) { 1537 default: 1538 // If the code isn't optimized, there may be outstanding folding 1539 // opportunities. Attempt to fold the expression using DataLayout as a 1540 // last resort before giving up. 1541 if (Constant *C = 1542 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) 1543 if (C != CE) 1544 return lowerConstant(C, AP); 1545 1546 // Otherwise report the problem to the user. 1547 { 1548 std::string S; 1549 raw_string_ostream OS(S); 1550 OS << "Unsupported expression in static initializer: "; 1551 CE->printAsOperand(OS, /*PrintType=*/false, 1552 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1553 report_fatal_error(OS.str()); 1554 } 1555 case Instruction::GetElementPtr: { 1556 const DataLayout &DL = *AP.TM.getDataLayout(); 1557 // Generate a symbolic expression for the byte address 1558 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1559 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1560 1561 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1562 if (!OffsetAI) 1563 return Base; 1564 1565 int64_t Offset = OffsetAI.getSExtValue(); 1566 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1567 Ctx); 1568 } 1569 1570 case Instruction::Trunc: 1571 // We emit the value and depend on the assembler to truncate the generated 1572 // expression properly. This is important for differences between 1573 // blockaddress labels. Since the two labels are in the same function, it 1574 // is reasonable to treat their delta as a 32-bit value. 1575 // FALL THROUGH. 1576 case Instruction::BitCast: 1577 return lowerConstant(CE->getOperand(0), AP); 1578 1579 case Instruction::IntToPtr: { 1580 const DataLayout &DL = *AP.TM.getDataLayout(); 1581 // Handle casts to pointers by changing them into casts to the appropriate 1582 // integer type. This promotes constant folding and simplifies this code. 1583 Constant *Op = CE->getOperand(0); 1584 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1585 false/*ZExt*/); 1586 return lowerConstant(Op, AP); 1587 } 1588 1589 case Instruction::PtrToInt: { 1590 const DataLayout &DL = *AP.TM.getDataLayout(); 1591 // Support only foldable casts to/from pointers that can be eliminated by 1592 // changing the pointer to the appropriately sized integer type. 1593 Constant *Op = CE->getOperand(0); 1594 Type *Ty = CE->getType(); 1595 1596 const MCExpr *OpExpr = lowerConstant(Op, AP); 1597 1598 // We can emit the pointer value into this slot if the slot is an 1599 // integer slot equal to the size of the pointer. 1600 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1601 return OpExpr; 1602 1603 // Otherwise the pointer is smaller than the resultant integer, mask off 1604 // the high bits so we are sure to get a proper truncation if the input is 1605 // a constant expr. 1606 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1607 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1608 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1609 } 1610 1611 // The MC library also has a right-shift operator, but it isn't consistently 1612 // signed or unsigned between different targets. 1613 case Instruction::Add: 1614 case Instruction::Sub: 1615 case Instruction::Mul: 1616 case Instruction::SDiv: 1617 case Instruction::SRem: 1618 case Instruction::Shl: 1619 case Instruction::And: 1620 case Instruction::Or: 1621 case Instruction::Xor: { 1622 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1623 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1624 switch (CE->getOpcode()) { 1625 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1626 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1627 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1628 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1629 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1630 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1631 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1632 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1633 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1634 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1635 } 1636 } 1637 } 1638 } 1639 1640 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP); 1641 1642 /// isRepeatedByteSequence - Determine whether the given value is 1643 /// composed of a repeated sequence of identical bytes and return the 1644 /// byte value. If it is not a repeated sequence, return -1. 1645 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1646 StringRef Data = V->getRawDataValues(); 1647 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1648 char C = Data[0]; 1649 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1650 if (Data[i] != C) return -1; 1651 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1652 } 1653 1654 1655 /// isRepeatedByteSequence - Determine whether the given value is 1656 /// composed of a repeated sequence of identical bytes and return the 1657 /// byte value. If it is not a repeated sequence, return -1. 1658 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1659 1660 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1661 if (CI->getBitWidth() > 64) return -1; 1662 1663 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType()); 1664 uint64_t Value = CI->getZExtValue(); 1665 1666 // Make sure the constant is at least 8 bits long and has a power 1667 // of 2 bit width. This guarantees the constant bit width is 1668 // always a multiple of 8 bits, avoiding issues with padding out 1669 // to Size and other such corner cases. 1670 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1671 1672 uint8_t Byte = static_cast<uint8_t>(Value); 1673 1674 for (unsigned i = 1; i < Size; ++i) { 1675 Value >>= 8; 1676 if (static_cast<uint8_t>(Value) != Byte) return -1; 1677 } 1678 return Byte; 1679 } 1680 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1681 // Make sure all array elements are sequences of the same repeated 1682 // byte. 1683 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1684 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1685 if (Byte == -1) return -1; 1686 1687 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1688 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1689 if (ThisByte == -1) return -1; 1690 if (Byte != ThisByte) return -1; 1691 } 1692 return Byte; 1693 } 1694 1695 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1696 return isRepeatedByteSequence(CDS); 1697 1698 return -1; 1699 } 1700 1701 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1702 AsmPrinter &AP){ 1703 1704 // See if we can aggregate this into a .fill, if so, emit it as such. 1705 int Value = isRepeatedByteSequence(CDS, AP.TM); 1706 if (Value != -1) { 1707 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType()); 1708 // Don't emit a 1-byte object as a .fill. 1709 if (Bytes > 1) 1710 return AP.OutStreamer.EmitFill(Bytes, Value); 1711 } 1712 1713 // If this can be emitted with .ascii/.asciz, emit it as such. 1714 if (CDS->isString()) 1715 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1716 1717 // Otherwise, emit the values in successive locations. 1718 unsigned ElementByteSize = CDS->getElementByteSize(); 1719 if (isa<IntegerType>(CDS->getElementType())) { 1720 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1721 if (AP.isVerbose()) 1722 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1723 CDS->getElementAsInteger(i)); 1724 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1725 ElementByteSize); 1726 } 1727 } else if (ElementByteSize == 4) { 1728 // FP Constants are printed as integer constants to avoid losing 1729 // precision. 1730 assert(CDS->getElementType()->isFloatTy()); 1731 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1732 union { 1733 float F; 1734 uint32_t I; 1735 }; 1736 1737 F = CDS->getElementAsFloat(i); 1738 if (AP.isVerbose()) 1739 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1740 AP.OutStreamer.EmitIntValue(I, 4); 1741 } 1742 } else { 1743 assert(CDS->getElementType()->isDoubleTy()); 1744 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1745 union { 1746 double F; 1747 uint64_t I; 1748 }; 1749 1750 F = CDS->getElementAsDouble(i); 1751 if (AP.isVerbose()) 1752 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1753 AP.OutStreamer.EmitIntValue(I, 8); 1754 } 1755 } 1756 1757 const DataLayout &DL = *AP.TM.getDataLayout(); 1758 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1759 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1760 CDS->getNumElements(); 1761 if (unsigned Padding = Size - EmittedSize) 1762 AP.OutStreamer.EmitZeros(Padding); 1763 1764 } 1765 1766 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) { 1767 // See if we can aggregate some values. Make sure it can be 1768 // represented as a series of bytes of the constant value. 1769 int Value = isRepeatedByteSequence(CA, AP.TM); 1770 1771 if (Value != -1) { 1772 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType()); 1773 AP.OutStreamer.EmitFill(Bytes, Value); 1774 } 1775 else { 1776 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1777 emitGlobalConstantImpl(CA->getOperand(i), AP); 1778 } 1779 } 1780 1781 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1782 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1783 emitGlobalConstantImpl(CV->getOperand(i), AP); 1784 1785 const DataLayout &DL = *AP.TM.getDataLayout(); 1786 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1787 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1788 CV->getType()->getNumElements(); 1789 if (unsigned Padding = Size - EmittedSize) 1790 AP.OutStreamer.EmitZeros(Padding); 1791 } 1792 1793 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) { 1794 // Print the fields in successive locations. Pad to align if needed! 1795 const DataLayout *DL = AP.TM.getDataLayout(); 1796 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1797 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1798 uint64_t SizeSoFar = 0; 1799 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1800 const Constant *Field = CS->getOperand(i); 1801 1802 // Check if padding is needed and insert one or more 0s. 1803 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1804 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1805 - Layout->getElementOffset(i)) - FieldSize; 1806 SizeSoFar += FieldSize + PadSize; 1807 1808 // Now print the actual field value. 1809 emitGlobalConstantImpl(Field, AP); 1810 1811 // Insert padding - this may include padding to increase the size of the 1812 // current field up to the ABI size (if the struct is not packed) as well 1813 // as padding to ensure that the next field starts at the right offset. 1814 AP.OutStreamer.EmitZeros(PadSize); 1815 } 1816 assert(SizeSoFar == Layout->getSizeInBytes() && 1817 "Layout of constant struct may be incorrect!"); 1818 } 1819 1820 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1821 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1822 1823 // First print a comment with what we think the original floating-point value 1824 // should have been. 1825 if (AP.isVerbose()) { 1826 SmallString<8> StrVal; 1827 CFP->getValueAPF().toString(StrVal); 1828 1829 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1830 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1831 } 1832 1833 // Now iterate through the APInt chunks, emitting them in endian-correct 1834 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1835 // floats). 1836 unsigned NumBytes = API.getBitWidth() / 8; 1837 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1838 const uint64_t *p = API.getRawData(); 1839 1840 // PPC's long double has odd notions of endianness compared to how LLVM 1841 // handles it: p[0] goes first for *big* endian on PPC. 1842 if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) { 1843 int Chunk = API.getNumWords() - 1; 1844 1845 if (TrailingBytes) 1846 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1847 1848 for (; Chunk >= 0; --Chunk) 1849 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1850 } else { 1851 unsigned Chunk; 1852 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1853 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1854 1855 if (TrailingBytes) 1856 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1857 } 1858 1859 // Emit the tail padding for the long double. 1860 const DataLayout &DL = *AP.TM.getDataLayout(); 1861 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1862 DL.getTypeStoreSize(CFP->getType())); 1863 } 1864 1865 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1866 const DataLayout *DL = AP.TM.getDataLayout(); 1867 unsigned BitWidth = CI->getBitWidth(); 1868 1869 // Copy the value as we may massage the layout for constants whose bit width 1870 // is not a multiple of 64-bits. 1871 APInt Realigned(CI->getValue()); 1872 uint64_t ExtraBits = 0; 1873 unsigned ExtraBitsSize = BitWidth & 63; 1874 1875 if (ExtraBitsSize) { 1876 // The bit width of the data is not a multiple of 64-bits. 1877 // The extra bits are expected to be at the end of the chunk of the memory. 1878 // Little endian: 1879 // * Nothing to be done, just record the extra bits to emit. 1880 // Big endian: 1881 // * Record the extra bits to emit. 1882 // * Realign the raw data to emit the chunks of 64-bits. 1883 if (DL->isBigEndian()) { 1884 // Basically the structure of the raw data is a chunk of 64-bits cells: 1885 // 0 1 BitWidth / 64 1886 // [chunk1][chunk2] ... [chunkN]. 1887 // The most significant chunk is chunkN and it should be emitted first. 1888 // However, due to the alignment issue chunkN contains useless bits. 1889 // Realign the chunks so that they contain only useless information: 1890 // ExtraBits 0 1 (BitWidth / 64) - 1 1891 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 1892 ExtraBits = Realigned.getRawData()[0] & 1893 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 1894 Realigned = Realigned.lshr(ExtraBitsSize); 1895 } else 1896 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 1897 } 1898 1899 // We don't expect assemblers to support integer data directives 1900 // for more than 64 bits, so we emit the data in at most 64-bit 1901 // quantities at a time. 1902 const uint64_t *RawData = Realigned.getRawData(); 1903 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1904 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1905 AP.OutStreamer.EmitIntValue(Val, 8); 1906 } 1907 1908 if (ExtraBitsSize) { 1909 // Emit the extra bits after the 64-bits chunks. 1910 1911 // Emit a directive that fills the expected size. 1912 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType()); 1913 Size -= (BitWidth / 64) * 8; 1914 assert(Size && Size * 8 >= ExtraBitsSize && 1915 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 1916 == ExtraBits && "Directive too small for extra bits."); 1917 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 1918 } 1919 } 1920 1921 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) { 1922 const DataLayout *DL = AP.TM.getDataLayout(); 1923 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 1924 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1925 return AP.OutStreamer.EmitZeros(Size); 1926 1927 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1928 switch (Size) { 1929 case 1: 1930 case 2: 1931 case 4: 1932 case 8: 1933 if (AP.isVerbose()) 1934 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1935 CI->getZExtValue()); 1936 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 1937 return; 1938 default: 1939 emitGlobalConstantLargeInt(CI, AP); 1940 return; 1941 } 1942 } 1943 1944 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1945 return emitGlobalConstantFP(CFP, AP); 1946 1947 if (isa<ConstantPointerNull>(CV)) { 1948 AP.OutStreamer.EmitIntValue(0, Size); 1949 return; 1950 } 1951 1952 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1953 return emitGlobalConstantDataSequential(CDS, AP); 1954 1955 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1956 return emitGlobalConstantArray(CVA, AP); 1957 1958 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1959 return emitGlobalConstantStruct(CVS, AP); 1960 1961 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1962 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 1963 // vectors). 1964 if (CE->getOpcode() == Instruction::BitCast) 1965 return emitGlobalConstantImpl(CE->getOperand(0), AP); 1966 1967 if (Size > 8) { 1968 // If the constant expression's size is greater than 64-bits, then we have 1969 // to emit the value in chunks. Try to constant fold the value and emit it 1970 // that way. 1971 Constant *New = ConstantFoldConstantExpression(CE, DL); 1972 if (New && New != CE) 1973 return emitGlobalConstantImpl(New, AP); 1974 } 1975 } 1976 1977 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1978 return emitGlobalConstantVector(V, AP); 1979 1980 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1981 // thread the streamer with EmitValue. 1982 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size); 1983 } 1984 1985 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1986 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 1987 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 1988 if (Size) 1989 emitGlobalConstantImpl(CV, *this); 1990 else if (MAI->hasSubsectionsViaSymbols()) { 1991 // If the global has zero size, emit a single byte so that two labels don't 1992 // look like they are at the same location. 1993 OutStreamer.EmitIntValue(0, 1); 1994 } 1995 } 1996 1997 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1998 // Target doesn't support this yet! 1999 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2000 } 2001 2002 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2003 if (Offset > 0) 2004 OS << '+' << Offset; 2005 else if (Offset < 0) 2006 OS << Offset; 2007 } 2008 2009 //===----------------------------------------------------------------------===// 2010 // Symbol Lowering Routines. 2011 //===----------------------------------------------------------------------===// 2012 2013 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 2014 /// temporary label with the specified stem and unique ID. 2015 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 2016 const DataLayout *DL = TM.getDataLayout(); 2017 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2018 Name + Twine(ID)); 2019 } 2020 2021 /// GetTempSymbol - Return an assembler temporary label with the specified 2022 /// stem. 2023 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 2024 const DataLayout *DL = TM.getDataLayout(); 2025 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2026 Name); 2027 } 2028 2029 2030 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2031 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2032 } 2033 2034 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2035 return MMI->getAddrLabelSymbol(BB); 2036 } 2037 2038 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2039 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2040 const DataLayout *DL = TM.getDataLayout(); 2041 return OutContext.GetOrCreateSymbol 2042 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2043 + "_" + Twine(CPID)); 2044 } 2045 2046 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2047 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2048 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2049 } 2050 2051 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2052 /// FIXME: privatize to AsmPrinter. 2053 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2054 const DataLayout *DL = TM.getDataLayout(); 2055 return OutContext.GetOrCreateSymbol 2056 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2057 Twine(UID) + "_set_" + Twine(MBBID)); 2058 } 2059 2060 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2061 StringRef Suffix) const { 2062 return getObjFileLowering().getSymbolWithGlobalValueBase(*Mang, GV, Suffix); 2063 } 2064 2065 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2066 /// ExternalSymbol. 2067 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2068 SmallString<60> NameStr; 2069 Mang->getNameWithPrefix(NameStr, Sym); 2070 return OutContext.GetOrCreateSymbol(NameStr.str()); 2071 } 2072 2073 2074 2075 /// PrintParentLoopComment - Print comments about parent loops of this one. 2076 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2077 unsigned FunctionNumber) { 2078 if (Loop == 0) return; 2079 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2080 OS.indent(Loop->getLoopDepth()*2) 2081 << "Parent Loop BB" << FunctionNumber << "_" 2082 << Loop->getHeader()->getNumber() 2083 << " Depth=" << Loop->getLoopDepth() << '\n'; 2084 } 2085 2086 2087 /// PrintChildLoopComment - Print comments about child loops within 2088 /// the loop for this basic block, with nesting. 2089 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2090 unsigned FunctionNumber) { 2091 // Add child loop information 2092 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 2093 OS.indent((*CL)->getLoopDepth()*2) 2094 << "Child Loop BB" << FunctionNumber << "_" 2095 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 2096 << '\n'; 2097 PrintChildLoopComment(OS, *CL, FunctionNumber); 2098 } 2099 } 2100 2101 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2102 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2103 const MachineLoopInfo *LI, 2104 const AsmPrinter &AP) { 2105 // Add loop depth information 2106 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2107 if (Loop == 0) return; 2108 2109 MachineBasicBlock *Header = Loop->getHeader(); 2110 assert(Header && "No header for loop"); 2111 2112 // If this block is not a loop header, just print out what is the loop header 2113 // and return. 2114 if (Header != &MBB) { 2115 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2116 Twine(AP.getFunctionNumber())+"_" + 2117 Twine(Loop->getHeader()->getNumber())+ 2118 " Depth="+Twine(Loop->getLoopDepth())); 2119 return; 2120 } 2121 2122 // Otherwise, it is a loop header. Print out information about child and 2123 // parent loops. 2124 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2125 2126 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2127 2128 OS << "=>"; 2129 OS.indent(Loop->getLoopDepth()*2-2); 2130 2131 OS << "This "; 2132 if (Loop->empty()) 2133 OS << "Inner "; 2134 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2135 2136 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2137 } 2138 2139 2140 /// EmitBasicBlockStart - This method prints the label for the specified 2141 /// MachineBasicBlock, an alignment (if present) and a comment describing 2142 /// it if appropriate. 2143 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 2144 // Emit an alignment directive for this block, if needed. 2145 if (unsigned Align = MBB->getAlignment()) 2146 EmitAlignment(Align); 2147 2148 // If the block has its address taken, emit any labels that were used to 2149 // reference the block. It is possible that there is more than one label 2150 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2151 // the references were generated. 2152 if (MBB->hasAddressTaken()) { 2153 const BasicBlock *BB = MBB->getBasicBlock(); 2154 if (isVerbose()) 2155 OutStreamer.AddComment("Block address taken"); 2156 2157 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 2158 2159 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 2160 OutStreamer.EmitLabel(Syms[i]); 2161 } 2162 2163 // Print some verbose block comments. 2164 if (isVerbose()) { 2165 if (const BasicBlock *BB = MBB->getBasicBlock()) 2166 if (BB->hasName()) 2167 OutStreamer.AddComment("%" + BB->getName()); 2168 emitBasicBlockLoopComments(*MBB, LI, *this); 2169 } 2170 2171 // Print the main label for the block. 2172 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 2173 if (isVerbose()) { 2174 // NOTE: Want this comment at start of line, don't emit with AddComment. 2175 OutStreamer.emitRawComment(" BB#" + Twine(MBB->getNumber()) + ":", false); 2176 } 2177 } else { 2178 OutStreamer.EmitLabel(MBB->getSymbol()); 2179 } 2180 } 2181 2182 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2183 bool IsDefinition) const { 2184 MCSymbolAttr Attr = MCSA_Invalid; 2185 2186 switch (Visibility) { 2187 default: break; 2188 case GlobalValue::HiddenVisibility: 2189 if (IsDefinition) 2190 Attr = MAI->getHiddenVisibilityAttr(); 2191 else 2192 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2193 break; 2194 case GlobalValue::ProtectedVisibility: 2195 Attr = MAI->getProtectedVisibilityAttr(); 2196 break; 2197 } 2198 2199 if (Attr != MCSA_Invalid) 2200 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2201 } 2202 2203 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2204 /// exactly one predecessor and the control transfer mechanism between 2205 /// the predecessor and this block is a fall-through. 2206 bool AsmPrinter:: 2207 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2208 // If this is a landing pad, it isn't a fall through. If it has no preds, 2209 // then nothing falls through to it. 2210 if (MBB->isLandingPad() || MBB->pred_empty()) 2211 return false; 2212 2213 // If there isn't exactly one predecessor, it can't be a fall through. 2214 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2215 ++PI2; 2216 if (PI2 != MBB->pred_end()) 2217 return false; 2218 2219 // The predecessor has to be immediately before this block. 2220 MachineBasicBlock *Pred = *PI; 2221 2222 if (!Pred->isLayoutSuccessor(MBB)) 2223 return false; 2224 2225 // If the block is completely empty, then it definitely does fall through. 2226 if (Pred->empty()) 2227 return true; 2228 2229 // Check the terminators in the previous blocks 2230 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2231 IE = Pred->end(); II != IE; ++II) { 2232 MachineInstr &MI = *II; 2233 2234 // If it is not a simple branch, we are in a table somewhere. 2235 if (!MI.isBranch() || MI.isIndirectBranch()) 2236 return false; 2237 2238 // If we are the operands of one of the branches, this is not a fall 2239 // through. Note that targets with delay slots will usually bundle 2240 // terminators with the delay slot instruction. 2241 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2242 if (OP->isJTI()) 2243 return false; 2244 if (OP->isMBB() && OP->getMBB() == MBB) 2245 return false; 2246 } 2247 } 2248 2249 return true; 2250 } 2251 2252 2253 2254 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2255 if (!S->usesMetadata()) 2256 return 0; 2257 2258 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2259 gcp_map_type::iterator GCPI = GCMap.find(S); 2260 if (GCPI != GCMap.end()) 2261 return GCPI->second; 2262 2263 const char *Name = S->getName().c_str(); 2264 2265 for (GCMetadataPrinterRegistry::iterator 2266 I = GCMetadataPrinterRegistry::begin(), 2267 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2268 if (strcmp(Name, I->getName()) == 0) { 2269 GCMetadataPrinter *GMP = I->instantiate(); 2270 GMP->S = S; 2271 GCMap.insert(std::make_pair(S, GMP)); 2272 return GMP; 2273 } 2274 2275 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2276 } 2277 2278 /// Pin vtable to this file. 2279 AsmPrinterHandler::~AsmPrinterHandler() {} 2280