1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/AsmPrinterHandler.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Comdat.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GlobalAlias.h" 71 #include "llvm/IR/GlobalIFunc.h" 72 #include "llvm/IR/GlobalIndirectSymbol.h" 73 #include "llvm/IR/GlobalObject.h" 74 #include "llvm/IR/GlobalValue.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Mangler.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/RemarkStreamer.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/MC/MCAsmInfo.h" 85 #include "llvm/MC/MCCodePadder.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCStreamer.h" 96 #include "llvm/MC/MCSubtargetInfo.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/MC/MCSymbolELF.h" 99 #include "llvm/MC/MCTargetOptions.h" 100 #include "llvm/MC/MCValue.h" 101 #include "llvm/MC/SectionKind.h" 102 #include "llvm/Pass.h" 103 #include "llvm/Remarks/Remark.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/ErrorHandling.h" 108 #include "llvm/Support/Format.h" 109 #include "llvm/Support/MathExtras.h" 110 #include "llvm/Support/Path.h" 111 #include "llvm/Support/TargetRegistry.h" 112 #include "llvm/Support/Timer.h" 113 #include "llvm/Support/raw_ostream.h" 114 #include "llvm/Target/TargetLoweringObjectFile.h" 115 #include "llvm/Target/TargetMachine.h" 116 #include "llvm/Target/TargetOptions.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cinttypes> 120 #include <cstdint> 121 #include <iterator> 122 #include <limits> 123 #include <memory> 124 #include <string> 125 #include <utility> 126 #include <vector> 127 128 using namespace llvm; 129 130 #define DEBUG_TYPE "asm-printer" 131 132 static const char *const DWARFGroupName = "dwarf"; 133 static const char *const DWARFGroupDescription = "DWARF Emission"; 134 static const char *const DbgTimerName = "emit"; 135 static const char *const DbgTimerDescription = "Debug Info Emission"; 136 static const char *const EHTimerName = "write_exception"; 137 static const char *const EHTimerDescription = "DWARF Exception Writer"; 138 static const char *const CFGuardName = "Control Flow Guard"; 139 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 140 static const char *const CodeViewLineTablesGroupName = "linetables"; 141 static const char *const CodeViewLineTablesGroupDescription = 142 "CodeView Line Tables"; 143 144 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 145 146 static cl::opt<bool> EnableRemarksSection( 147 "remarks-section", 148 cl::desc("Emit a section containing remark diagnostics metadata"), 149 cl::init(false)); 150 151 char AsmPrinter::ID = 0; 152 153 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 154 155 static gcp_map_type &getGCMap(void *&P) { 156 if (!P) 157 P = new gcp_map_type(); 158 return *(gcp_map_type*)P; 159 } 160 161 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 162 /// value in log2 form. This rounds up to the preferred alignment if possible 163 /// and legal. 164 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 165 unsigned InBits = 0) { 166 unsigned NumBits = 0; 167 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 168 NumBits = DL.getPreferredAlignmentLog(GVar); 169 170 // If InBits is specified, round it to it. 171 if (InBits > NumBits) 172 NumBits = InBits; 173 174 // If the GV has a specified alignment, take it into account. 175 if (GV->getAlignment() == 0) 176 return NumBits; 177 178 unsigned GVAlign = Log2_32(GV->getAlignment()); 179 180 // If the GVAlign is larger than NumBits, or if we are required to obey 181 // NumBits because the GV has an assigned section, obey it. 182 if (GVAlign > NumBits || GV->hasSection()) 183 NumBits = GVAlign; 184 return NumBits; 185 } 186 187 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 188 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 189 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 190 VerboseAsm = OutStreamer->isVerboseAsm(); 191 } 192 193 AsmPrinter::~AsmPrinter() { 194 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 195 196 if (GCMetadataPrinters) { 197 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 198 199 delete &GCMap; 200 GCMetadataPrinters = nullptr; 201 } 202 } 203 204 bool AsmPrinter::isPositionIndependent() const { 205 return TM.isPositionIndependent(); 206 } 207 208 /// getFunctionNumber - Return a unique ID for the current function. 209 unsigned AsmPrinter::getFunctionNumber() const { 210 return MF->getFunctionNumber(); 211 } 212 213 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 214 return *TM.getObjFileLowering(); 215 } 216 217 const DataLayout &AsmPrinter::getDataLayout() const { 218 return MMI->getModule()->getDataLayout(); 219 } 220 221 // Do not use the cached DataLayout because some client use it without a Module 222 // (dsymutil, llvm-dwarfdump). 223 unsigned AsmPrinter::getPointerSize() const { 224 return TM.getPointerSize(0); // FIXME: Default address space 225 } 226 227 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 228 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 229 return MF->getSubtarget<MCSubtargetInfo>(); 230 } 231 232 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 233 S.EmitInstruction(Inst, getSubtargetInfo()); 234 } 235 236 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 237 assert(DD && "Dwarf debug file is not defined."); 238 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 239 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 240 } 241 242 /// getCurrentSection() - Return the current section we are emitting to. 243 const MCSection *AsmPrinter::getCurrentSection() const { 244 return OutStreamer->getCurrentSectionOnly(); 245 } 246 247 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 248 AU.setPreservesAll(); 249 MachineFunctionPass::getAnalysisUsage(AU); 250 AU.addRequired<MachineModuleInfo>(); 251 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 252 AU.addRequired<GCModuleInfo>(); 253 } 254 255 bool AsmPrinter::doInitialization(Module &M) { 256 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 257 258 // Initialize TargetLoweringObjectFile. 259 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 260 .Initialize(OutContext, TM); 261 262 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 263 .getModuleMetadata(M); 264 265 OutStreamer->InitSections(false); 266 267 // Emit the version-min deployment target directive if needed. 268 // 269 // FIXME: If we end up with a collection of these sorts of Darwin-specific 270 // or ELF-specific things, it may make sense to have a platform helper class 271 // that will work with the target helper class. For now keep it here, as the 272 // alternative is duplicated code in each of the target asm printers that 273 // use the directive, where it would need the same conditionalization 274 // anyway. 275 const Triple &Target = TM.getTargetTriple(); 276 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 277 278 // Allow the target to emit any magic that it wants at the start of the file. 279 EmitStartOfAsmFile(M); 280 281 // Very minimal debug info. It is ignored if we emit actual debug info. If we 282 // don't, this at least helps the user find where a global came from. 283 if (MAI->hasSingleParameterDotFile()) { 284 // .file "foo.c" 285 OutStreamer->EmitFileDirective( 286 llvm::sys::path::filename(M.getSourceFileName())); 287 } 288 289 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 290 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 291 for (auto &I : *MI) 292 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 293 MP->beginAssembly(M, *MI, *this); 294 295 // Emit module-level inline asm if it exists. 296 if (!M.getModuleInlineAsm().empty()) { 297 // We're at the module level. Construct MCSubtarget from the default CPU 298 // and target triple. 299 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 300 TM.getTargetTriple().str(), TM.getTargetCPU(), 301 TM.getTargetFeatureString())); 302 OutStreamer->AddComment("Start of file scope inline assembly"); 303 OutStreamer->AddBlankLine(); 304 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 305 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 306 OutStreamer->AddComment("End of file scope inline assembly"); 307 OutStreamer->AddBlankLine(); 308 } 309 310 if (MAI->doesSupportDebugInformation()) { 311 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 312 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 313 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 314 DbgTimerName, DbgTimerDescription, 315 CodeViewLineTablesGroupName, 316 CodeViewLineTablesGroupDescription)); 317 } 318 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 319 DD = new DwarfDebug(this, &M); 320 DD->beginModule(); 321 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 322 DWARFGroupName, DWARFGroupDescription)); 323 } 324 } 325 326 switch (MAI->getExceptionHandlingType()) { 327 case ExceptionHandling::SjLj: 328 case ExceptionHandling::DwarfCFI: 329 case ExceptionHandling::ARM: 330 isCFIMoveForDebugging = true; 331 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 332 break; 333 for (auto &F: M.getFunctionList()) { 334 // If the module contains any function with unwind data, 335 // .eh_frame has to be emitted. 336 // Ignore functions that won't get emitted. 337 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 338 isCFIMoveForDebugging = false; 339 break; 340 } 341 } 342 break; 343 default: 344 isCFIMoveForDebugging = false; 345 break; 346 } 347 348 EHStreamer *ES = nullptr; 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::None: 351 break; 352 case ExceptionHandling::SjLj: 353 case ExceptionHandling::DwarfCFI: 354 ES = new DwarfCFIException(this); 355 break; 356 case ExceptionHandling::ARM: 357 ES = new ARMException(this); 358 break; 359 case ExceptionHandling::WinEH: 360 switch (MAI->getWinEHEncodingType()) { 361 default: llvm_unreachable("unsupported unwinding information encoding"); 362 case WinEH::EncodingType::Invalid: 363 break; 364 case WinEH::EncodingType::X86: 365 case WinEH::EncodingType::Itanium: 366 ES = new WinException(this); 367 break; 368 } 369 break; 370 case ExceptionHandling::Wasm: 371 ES = new WasmException(this); 372 break; 373 } 374 if (ES) 375 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 376 DWARFGroupName, DWARFGroupDescription)); 377 378 if (mdconst::extract_or_null<ConstantInt>( 379 MMI->getModule()->getModuleFlag("cfguardtable"))) 380 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName, 381 CFGuardDescription, DWARFGroupName, 382 DWARFGroupDescription)); 383 384 return false; 385 } 386 387 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 388 if (!MAI.hasWeakDefCanBeHiddenDirective()) 389 return false; 390 391 return GV->canBeOmittedFromSymbolTable(); 392 } 393 394 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 395 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 396 switch (Linkage) { 397 case GlobalValue::CommonLinkage: 398 case GlobalValue::LinkOnceAnyLinkage: 399 case GlobalValue::LinkOnceODRLinkage: 400 case GlobalValue::WeakAnyLinkage: 401 case GlobalValue::WeakODRLinkage: 402 if (MAI->hasWeakDefDirective()) { 403 // .globl _foo 404 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 405 406 if (!canBeHidden(GV, *MAI)) 407 // .weak_definition _foo 408 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 409 else 410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 411 } else if (MAI->hasLinkOnceDirective()) { 412 // .globl _foo 413 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 414 //NOTE: linkonce is handled by the section the symbol was assigned to. 415 } else { 416 // .weak _foo 417 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 418 } 419 return; 420 case GlobalValue::ExternalLinkage: 421 // If external, declare as a global symbol: .globl _foo 422 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 423 return; 424 case GlobalValue::PrivateLinkage: 425 case GlobalValue::InternalLinkage: 426 return; 427 case GlobalValue::AppendingLinkage: 428 case GlobalValue::AvailableExternallyLinkage: 429 case GlobalValue::ExternalWeakLinkage: 430 llvm_unreachable("Should never emit this"); 431 } 432 llvm_unreachable("Unknown linkage type!"); 433 } 434 435 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 436 const GlobalValue *GV) const { 437 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 438 } 439 440 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 441 return TM.getSymbol(GV); 442 } 443 444 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 445 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 446 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 447 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 448 "No emulated TLS variables in the common section"); 449 450 // Never emit TLS variable xyz in emulated TLS model. 451 // The initialization value is in __emutls_t.xyz instead of xyz. 452 if (IsEmuTLSVar) 453 return; 454 455 if (GV->hasInitializer()) { 456 // Check to see if this is a special global used by LLVM, if so, emit it. 457 if (EmitSpecialLLVMGlobal(GV)) 458 return; 459 460 // Skip the emission of global equivalents. The symbol can be emitted later 461 // on by emitGlobalGOTEquivs in case it turns out to be needed. 462 if (GlobalGOTEquivs.count(getSymbol(GV))) 463 return; 464 465 if (isVerbose()) { 466 // When printing the control variable __emutls_v.*, 467 // we don't need to print the original TLS variable name. 468 GV->printAsOperand(OutStreamer->GetCommentOS(), 469 /*PrintType=*/false, GV->getParent()); 470 OutStreamer->GetCommentOS() << '\n'; 471 } 472 } 473 474 MCSymbol *GVSym = getSymbol(GV); 475 MCSymbol *EmittedSym = GVSym; 476 477 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 478 // attributes. 479 // GV's or GVSym's attributes will be used for the EmittedSym. 480 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 481 482 if (!GV->hasInitializer()) // External globals require no extra code. 483 return; 484 485 GVSym->redefineIfPossible(); 486 if (GVSym->isDefined() || GVSym->isVariable()) 487 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 488 "' is already defined"); 489 490 if (MAI->hasDotTypeDotSizeDirective()) 491 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 492 493 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 494 495 const DataLayout &DL = GV->getParent()->getDataLayout(); 496 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 497 498 // If the alignment is specified, we *must* obey it. Overaligning a global 499 // with a specified alignment is a prompt way to break globals emitted to 500 // sections and expected to be contiguous (e.g. ObjC metadata). 501 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 502 503 for (const HandlerInfo &HI : Handlers) { 504 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 505 HI.TimerGroupName, HI.TimerGroupDescription, 506 TimePassesIsEnabled); 507 HI.Handler->setSymbolSize(GVSym, Size); 508 } 509 510 // Handle common symbols 511 if (GVKind.isCommon()) { 512 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 513 unsigned Align = 1 << AlignLog; 514 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 515 Align = 0; 516 517 // .comm _foo, 42, 4 518 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 519 return; 520 } 521 522 // Determine to which section this global should be emitted. 523 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 524 525 // If we have a bss global going to a section that supports the 526 // zerofill directive, do so here. 527 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 528 TheSection->isVirtualSection()) { 529 if (Size == 0) 530 Size = 1; // zerofill of 0 bytes is undefined. 531 unsigned Align = 1 << AlignLog; 532 EmitLinkage(GV, GVSym); 533 // .zerofill __DATA, __bss, _foo, 400, 5 534 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 535 return; 536 } 537 538 // If this is a BSS local symbol and we are emitting in the BSS 539 // section use .lcomm/.comm directive. 540 if (GVKind.isBSSLocal() && 541 getObjFileLowering().getBSSSection() == TheSection) { 542 if (Size == 0) 543 Size = 1; // .comm Foo, 0 is undefined, avoid it. 544 unsigned Align = 1 << AlignLog; 545 546 // Use .lcomm only if it supports user-specified alignment. 547 // Otherwise, while it would still be correct to use .lcomm in some 548 // cases (e.g. when Align == 1), the external assembler might enfore 549 // some -unknown- default alignment behavior, which could cause 550 // spurious differences between external and integrated assembler. 551 // Prefer to simply fall back to .local / .comm in this case. 552 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 553 // .lcomm _foo, 42 554 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 555 return; 556 } 557 558 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 559 Align = 0; 560 561 // .local _foo 562 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 563 // .comm _foo, 42, 4 564 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 565 return; 566 } 567 568 // Handle thread local data for mach-o which requires us to output an 569 // additional structure of data and mangle the original symbol so that we 570 // can reference it later. 571 // 572 // TODO: This should become an "emit thread local global" method on TLOF. 573 // All of this macho specific stuff should be sunk down into TLOFMachO and 574 // stuff like "TLSExtraDataSection" should no longer be part of the parent 575 // TLOF class. This will also make it more obvious that stuff like 576 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 577 // specific code. 578 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 579 // Emit the .tbss symbol 580 MCSymbol *MangSym = 581 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 582 583 if (GVKind.isThreadBSS()) { 584 TheSection = getObjFileLowering().getTLSBSSSection(); 585 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 586 } else if (GVKind.isThreadData()) { 587 OutStreamer->SwitchSection(TheSection); 588 589 EmitAlignment(AlignLog, GV); 590 OutStreamer->EmitLabel(MangSym); 591 592 EmitGlobalConstant(GV->getParent()->getDataLayout(), 593 GV->getInitializer()); 594 } 595 596 OutStreamer->AddBlankLine(); 597 598 // Emit the variable struct for the runtime. 599 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 600 601 OutStreamer->SwitchSection(TLVSect); 602 // Emit the linkage here. 603 EmitLinkage(GV, GVSym); 604 OutStreamer->EmitLabel(GVSym); 605 606 // Three pointers in size: 607 // - __tlv_bootstrap - used to make sure support exists 608 // - spare pointer, used when mapped by the runtime 609 // - pointer to mangled symbol above with initializer 610 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 611 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 612 PtrSize); 613 OutStreamer->EmitIntValue(0, PtrSize); 614 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 615 616 OutStreamer->AddBlankLine(); 617 return; 618 } 619 620 MCSymbol *EmittedInitSym = GVSym; 621 622 OutStreamer->SwitchSection(TheSection); 623 624 EmitLinkage(GV, EmittedInitSym); 625 EmitAlignment(AlignLog, GV); 626 627 OutStreamer->EmitLabel(EmittedInitSym); 628 629 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 630 631 if (MAI->hasDotTypeDotSizeDirective()) 632 // .size foo, 42 633 OutStreamer->emitELFSize(EmittedInitSym, 634 MCConstantExpr::create(Size, OutContext)); 635 636 OutStreamer->AddBlankLine(); 637 } 638 639 /// Emit the directive and value for debug thread local expression 640 /// 641 /// \p Value - The value to emit. 642 /// \p Size - The size of the integer (in bytes) to emit. 643 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 644 OutStreamer->EmitValue(Value, Size); 645 } 646 647 /// EmitFunctionHeader - This method emits the header for the current 648 /// function. 649 void AsmPrinter::EmitFunctionHeader() { 650 const Function &F = MF->getFunction(); 651 652 if (isVerbose()) 653 OutStreamer->GetCommentOS() 654 << "-- Begin function " 655 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 656 657 // Print out constants referenced by the function 658 EmitConstantPool(); 659 660 // Print the 'header' of function. 661 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 662 EmitVisibility(CurrentFnSym, F.getVisibility()); 663 664 EmitLinkage(&F, CurrentFnSym); 665 if (MAI->hasFunctionAlignment()) 666 EmitAlignment(MF->getAlignment(), &F); 667 668 if (MAI->hasDotTypeDotSizeDirective()) 669 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 670 671 if (F.hasFnAttribute(Attribute::Cold)) 672 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 673 674 if (isVerbose()) { 675 F.printAsOperand(OutStreamer->GetCommentOS(), 676 /*PrintType=*/false, F.getParent()); 677 OutStreamer->GetCommentOS() << '\n'; 678 } 679 680 // Emit the prefix data. 681 if (F.hasPrefixData()) { 682 if (MAI->hasSubsectionsViaSymbols()) { 683 // Preserving prefix data on platforms which use subsections-via-symbols 684 // is a bit tricky. Here we introduce a symbol for the prefix data 685 // and use the .alt_entry attribute to mark the function's real entry point 686 // as an alternative entry point to the prefix-data symbol. 687 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 688 OutStreamer->EmitLabel(PrefixSym); 689 690 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 691 692 // Emit an .alt_entry directive for the actual function symbol. 693 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 694 } else { 695 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 696 } 697 } 698 699 // Emit the CurrentFnSym. This is a virtual function to allow targets to 700 // do their wild and crazy things as required. 701 EmitFunctionEntryLabel(); 702 703 // If the function had address-taken blocks that got deleted, then we have 704 // references to the dangling symbols. Emit them at the start of the function 705 // so that we don't get references to undefined symbols. 706 std::vector<MCSymbol*> DeadBlockSyms; 707 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 708 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 709 OutStreamer->AddComment("Address taken block that was later removed"); 710 OutStreamer->EmitLabel(DeadBlockSyms[i]); 711 } 712 713 if (CurrentFnBegin) { 714 if (MAI->useAssignmentForEHBegin()) { 715 MCSymbol *CurPos = OutContext.createTempSymbol(); 716 OutStreamer->EmitLabel(CurPos); 717 OutStreamer->EmitAssignment(CurrentFnBegin, 718 MCSymbolRefExpr::create(CurPos, OutContext)); 719 } else { 720 OutStreamer->EmitLabel(CurrentFnBegin); 721 } 722 } 723 724 // Emit pre-function debug and/or EH information. 725 for (const HandlerInfo &HI : Handlers) { 726 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 727 HI.TimerGroupDescription, TimePassesIsEnabled); 728 HI.Handler->beginFunction(MF); 729 } 730 731 // Emit the prologue data. 732 if (F.hasPrologueData()) 733 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 734 } 735 736 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 737 /// function. This can be overridden by targets as required to do custom stuff. 738 void AsmPrinter::EmitFunctionEntryLabel() { 739 CurrentFnSym->redefineIfPossible(); 740 741 // The function label could have already been emitted if two symbols end up 742 // conflicting due to asm renaming. Detect this and emit an error. 743 if (CurrentFnSym->isVariable()) 744 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 745 "' is a protected alias"); 746 if (CurrentFnSym->isDefined()) 747 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 748 "' label emitted multiple times to assembly file"); 749 750 return OutStreamer->EmitLabel(CurrentFnSym); 751 } 752 753 /// emitComments - Pretty-print comments for instructions. 754 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 755 const MachineFunction *MF = MI.getMF(); 756 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 757 758 // Check for spills and reloads 759 760 // We assume a single instruction only has a spill or reload, not 761 // both. 762 Optional<unsigned> Size; 763 if ((Size = MI.getRestoreSize(TII))) { 764 CommentOS << *Size << "-byte Reload\n"; 765 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 766 if (*Size) 767 CommentOS << *Size << "-byte Folded Reload\n"; 768 } else if ((Size = MI.getSpillSize(TII))) { 769 CommentOS << *Size << "-byte Spill\n"; 770 } else if ((Size = MI.getFoldedSpillSize(TII))) { 771 if (*Size) 772 CommentOS << *Size << "-byte Folded Spill\n"; 773 } 774 775 // Check for spill-induced copies 776 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 777 CommentOS << " Reload Reuse\n"; 778 } 779 780 /// emitImplicitDef - This method emits the specified machine instruction 781 /// that is an implicit def. 782 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 783 unsigned RegNo = MI->getOperand(0).getReg(); 784 785 SmallString<128> Str; 786 raw_svector_ostream OS(Str); 787 OS << "implicit-def: " 788 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 789 790 OutStreamer->AddComment(OS.str()); 791 OutStreamer->AddBlankLine(); 792 } 793 794 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 795 std::string Str; 796 raw_string_ostream OS(Str); 797 OS << "kill:"; 798 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 799 const MachineOperand &Op = MI->getOperand(i); 800 assert(Op.isReg() && "KILL instruction must have only register operands"); 801 OS << ' ' << (Op.isDef() ? "def " : "killed ") 802 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 803 } 804 AP.OutStreamer->AddComment(OS.str()); 805 AP.OutStreamer->AddBlankLine(); 806 } 807 808 /// emitDebugValueComment - This method handles the target-independent form 809 /// of DBG_VALUE, returning true if it was able to do so. A false return 810 /// means the target will need to handle MI in EmitInstruction. 811 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 812 // This code handles only the 4-operand target-independent form. 813 if (MI->getNumOperands() != 4) 814 return false; 815 816 SmallString<128> Str; 817 raw_svector_ostream OS(Str); 818 OS << "DEBUG_VALUE: "; 819 820 const DILocalVariable *V = MI->getDebugVariable(); 821 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 822 StringRef Name = SP->getName(); 823 if (!Name.empty()) 824 OS << Name << ":"; 825 } 826 OS << V->getName(); 827 OS << " <- "; 828 829 // The second operand is only an offset if it's an immediate. 830 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 831 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 832 const DIExpression *Expr = MI->getDebugExpression(); 833 if (Expr->getNumElements()) { 834 OS << '['; 835 bool NeedSep = false; 836 for (auto Op : Expr->expr_ops()) { 837 if (NeedSep) 838 OS << ", "; 839 else 840 NeedSep = true; 841 OS << dwarf::OperationEncodingString(Op.getOp()); 842 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 843 OS << ' ' << Op.getArg(I); 844 } 845 OS << "] "; 846 } 847 848 // Register or immediate value. Register 0 means undef. 849 if (MI->getOperand(0).isFPImm()) { 850 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 851 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 852 OS << (double)APF.convertToFloat(); 853 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 854 OS << APF.convertToDouble(); 855 } else { 856 // There is no good way to print long double. Convert a copy to 857 // double. Ah well, it's only a comment. 858 bool ignored; 859 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 860 &ignored); 861 OS << "(long double) " << APF.convertToDouble(); 862 } 863 } else if (MI->getOperand(0).isImm()) { 864 OS << MI->getOperand(0).getImm(); 865 } else if (MI->getOperand(0).isCImm()) { 866 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 867 } else { 868 unsigned Reg; 869 if (MI->getOperand(0).isReg()) { 870 Reg = MI->getOperand(0).getReg(); 871 } else { 872 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 873 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 874 Offset += TFI->getFrameIndexReference(*AP.MF, 875 MI->getOperand(0).getIndex(), Reg); 876 MemLoc = true; 877 } 878 if (Reg == 0) { 879 // Suppress offset, it is not meaningful here. 880 OS << "undef"; 881 // NOTE: Want this comment at start of line, don't emit with AddComment. 882 AP.OutStreamer->emitRawComment(OS.str()); 883 return true; 884 } 885 if (MemLoc) 886 OS << '['; 887 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 888 } 889 890 if (MemLoc) 891 OS << '+' << Offset << ']'; 892 893 // NOTE: Want this comment at start of line, don't emit with AddComment. 894 AP.OutStreamer->emitRawComment(OS.str()); 895 return true; 896 } 897 898 /// This method handles the target-independent form of DBG_LABEL, returning 899 /// true if it was able to do so. A false return means the target will need 900 /// to handle MI in EmitInstruction. 901 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 902 if (MI->getNumOperands() != 1) 903 return false; 904 905 SmallString<128> Str; 906 raw_svector_ostream OS(Str); 907 OS << "DEBUG_LABEL: "; 908 909 const DILabel *V = MI->getDebugLabel(); 910 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 911 StringRef Name = SP->getName(); 912 if (!Name.empty()) 913 OS << Name << ":"; 914 } 915 OS << V->getName(); 916 917 // NOTE: Want this comment at start of line, don't emit with AddComment. 918 AP.OutStreamer->emitRawComment(OS.str()); 919 return true; 920 } 921 922 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 923 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 924 MF->getFunction().needsUnwindTableEntry()) 925 return CFI_M_EH; 926 927 if (MMI->hasDebugInfo()) 928 return CFI_M_Debug; 929 930 return CFI_M_None; 931 } 932 933 bool AsmPrinter::needsSEHMoves() { 934 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 935 } 936 937 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 938 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 939 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 940 ExceptionHandlingType != ExceptionHandling::ARM) 941 return; 942 943 if (needsCFIMoves() == CFI_M_None) 944 return; 945 946 // If there is no "real" instruction following this CFI instruction, skip 947 // emitting it; it would be beyond the end of the function's FDE range. 948 auto *MBB = MI.getParent(); 949 auto I = std::next(MI.getIterator()); 950 while (I != MBB->end() && I->isTransient()) 951 ++I; 952 if (I == MBB->instr_end() && 953 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 954 return; 955 956 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 957 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 958 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 959 emitCFIInstruction(CFI); 960 } 961 962 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 963 // The operands are the MCSymbol and the frame offset of the allocation. 964 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 965 int FrameOffset = MI.getOperand(1).getImm(); 966 967 // Emit a symbol assignment. 968 OutStreamer->EmitAssignment(FrameAllocSym, 969 MCConstantExpr::create(FrameOffset, OutContext)); 970 } 971 972 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 973 if (!MF.getTarget().Options.EmitStackSizeSection) 974 return; 975 976 MCSection *StackSizeSection = 977 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 978 if (!StackSizeSection) 979 return; 980 981 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 982 // Don't emit functions with dynamic stack allocations. 983 if (FrameInfo.hasVarSizedObjects()) 984 return; 985 986 OutStreamer->PushSection(); 987 OutStreamer->SwitchSection(StackSizeSection); 988 989 const MCSymbol *FunctionSymbol = getFunctionBegin(); 990 uint64_t StackSize = FrameInfo.getStackSize(); 991 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 992 OutStreamer->EmitULEB128IntValue(StackSize); 993 994 OutStreamer->PopSection(); 995 } 996 997 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 998 MachineModuleInfo *MMI) { 999 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1000 return true; 1001 1002 // We might emit an EH table that uses function begin and end labels even if 1003 // we don't have any landingpads. 1004 if (!MF.getFunction().hasPersonalityFn()) 1005 return false; 1006 return !isNoOpWithoutInvoke( 1007 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1008 } 1009 1010 /// EmitFunctionBody - This method emits the body and trailer for a 1011 /// function. 1012 void AsmPrinter::EmitFunctionBody() { 1013 EmitFunctionHeader(); 1014 1015 // Emit target-specific gunk before the function body. 1016 EmitFunctionBodyStart(); 1017 1018 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1019 1020 if (isVerbose()) { 1021 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1022 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1023 if (!MDT) { 1024 OwnedMDT = make_unique<MachineDominatorTree>(); 1025 OwnedMDT->getBase().recalculate(*MF); 1026 MDT = OwnedMDT.get(); 1027 } 1028 1029 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1030 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1031 if (!MLI) { 1032 OwnedMLI = make_unique<MachineLoopInfo>(); 1033 OwnedMLI->getBase().analyze(MDT->getBase()); 1034 MLI = OwnedMLI.get(); 1035 } 1036 } 1037 1038 // Print out code for the function. 1039 bool HasAnyRealCode = false; 1040 int NumInstsInFunction = 0; 1041 for (auto &MBB : *MF) { 1042 // Print a label for the basic block. 1043 EmitBasicBlockStart(MBB); 1044 for (auto &MI : MBB) { 1045 // Print the assembly for the instruction. 1046 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1047 !MI.isDebugInstr()) { 1048 HasAnyRealCode = true; 1049 ++NumInstsInFunction; 1050 } 1051 1052 // If there is a pre-instruction symbol, emit a label for it here. 1053 if (MCSymbol *S = MI.getPreInstrSymbol()) 1054 OutStreamer->EmitLabel(S); 1055 1056 if (ShouldPrintDebugScopes) { 1057 for (const HandlerInfo &HI : Handlers) { 1058 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1059 HI.TimerGroupName, HI.TimerGroupDescription, 1060 TimePassesIsEnabled); 1061 HI.Handler->beginInstruction(&MI); 1062 } 1063 } 1064 1065 if (isVerbose()) 1066 emitComments(MI, OutStreamer->GetCommentOS()); 1067 1068 switch (MI.getOpcode()) { 1069 case TargetOpcode::CFI_INSTRUCTION: 1070 emitCFIInstruction(MI); 1071 break; 1072 case TargetOpcode::LOCAL_ESCAPE: 1073 emitFrameAlloc(MI); 1074 break; 1075 case TargetOpcode::EH_LABEL: 1076 case TargetOpcode::GC_LABEL: 1077 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1078 break; 1079 case TargetOpcode::INLINEASM: 1080 case TargetOpcode::INLINEASM_BR: 1081 EmitInlineAsm(&MI); 1082 break; 1083 case TargetOpcode::DBG_VALUE: 1084 if (isVerbose()) { 1085 if (!emitDebugValueComment(&MI, *this)) 1086 EmitInstruction(&MI); 1087 } 1088 break; 1089 case TargetOpcode::DBG_LABEL: 1090 if (isVerbose()) { 1091 if (!emitDebugLabelComment(&MI, *this)) 1092 EmitInstruction(&MI); 1093 } 1094 break; 1095 case TargetOpcode::IMPLICIT_DEF: 1096 if (isVerbose()) emitImplicitDef(&MI); 1097 break; 1098 case TargetOpcode::KILL: 1099 if (isVerbose()) emitKill(&MI, *this); 1100 break; 1101 default: 1102 EmitInstruction(&MI); 1103 break; 1104 } 1105 1106 // If there is a post-instruction symbol, emit a label for it here. 1107 if (MCSymbol *S = MI.getPostInstrSymbol()) 1108 OutStreamer->EmitLabel(S); 1109 1110 if (ShouldPrintDebugScopes) { 1111 for (const HandlerInfo &HI : Handlers) { 1112 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1113 HI.TimerGroupName, HI.TimerGroupDescription, 1114 TimePassesIsEnabled); 1115 HI.Handler->endInstruction(); 1116 } 1117 } 1118 } 1119 1120 EmitBasicBlockEnd(MBB); 1121 } 1122 1123 EmittedInsts += NumInstsInFunction; 1124 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1125 MF->getFunction().getSubprogram(), 1126 &MF->front()); 1127 R << ore::NV("NumInstructions", NumInstsInFunction) 1128 << " instructions in function"; 1129 ORE->emit(R); 1130 1131 // If the function is empty and the object file uses .subsections_via_symbols, 1132 // then we need to emit *something* to the function body to prevent the 1133 // labels from collapsing together. Just emit a noop. 1134 // Similarly, don't emit empty functions on Windows either. It can lead to 1135 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1136 // after linking, causing the kernel not to load the binary: 1137 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1138 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1139 const Triple &TT = TM.getTargetTriple(); 1140 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1141 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1142 MCInst Noop; 1143 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1144 1145 // Targets can opt-out of emitting the noop here by leaving the opcode 1146 // unspecified. 1147 if (Noop.getOpcode()) { 1148 OutStreamer->AddComment("avoids zero-length function"); 1149 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1150 } 1151 } 1152 1153 const Function &F = MF->getFunction(); 1154 for (const auto &BB : F) { 1155 if (!BB.hasAddressTaken()) 1156 continue; 1157 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1158 if (Sym->isDefined()) 1159 continue; 1160 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1161 OutStreamer->EmitLabel(Sym); 1162 } 1163 1164 // Emit target-specific gunk after the function body. 1165 EmitFunctionBodyEnd(); 1166 1167 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1168 MAI->hasDotTypeDotSizeDirective()) { 1169 // Create a symbol for the end of function. 1170 CurrentFnEnd = createTempSymbol("func_end"); 1171 OutStreamer->EmitLabel(CurrentFnEnd); 1172 } 1173 1174 // If the target wants a .size directive for the size of the function, emit 1175 // it. 1176 if (MAI->hasDotTypeDotSizeDirective()) { 1177 // We can get the size as difference between the function label and the 1178 // temp label. 1179 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1180 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1181 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1182 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1183 } 1184 1185 for (const HandlerInfo &HI : Handlers) { 1186 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1187 HI.TimerGroupDescription, TimePassesIsEnabled); 1188 HI.Handler->markFunctionEnd(); 1189 } 1190 1191 // Print out jump tables referenced by the function. 1192 EmitJumpTableInfo(); 1193 1194 // Emit post-function debug and/or EH information. 1195 for (const HandlerInfo &HI : Handlers) { 1196 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1197 HI.TimerGroupDescription, TimePassesIsEnabled); 1198 HI.Handler->endFunction(MF); 1199 } 1200 1201 // Emit section containing stack size metadata. 1202 emitStackSizeSection(*MF); 1203 1204 if (isVerbose()) 1205 OutStreamer->GetCommentOS() << "-- End function\n"; 1206 1207 OutStreamer->AddBlankLine(); 1208 } 1209 1210 /// Compute the number of Global Variables that uses a Constant. 1211 static unsigned getNumGlobalVariableUses(const Constant *C) { 1212 if (!C) 1213 return 0; 1214 1215 if (isa<GlobalVariable>(C)) 1216 return 1; 1217 1218 unsigned NumUses = 0; 1219 for (auto *CU : C->users()) 1220 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1221 1222 return NumUses; 1223 } 1224 1225 /// Only consider global GOT equivalents if at least one user is a 1226 /// cstexpr inside an initializer of another global variables. Also, don't 1227 /// handle cstexpr inside instructions. During global variable emission, 1228 /// candidates are skipped and are emitted later in case at least one cstexpr 1229 /// isn't replaced by a PC relative GOT entry access. 1230 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1231 unsigned &NumGOTEquivUsers) { 1232 // Global GOT equivalents are unnamed private globals with a constant 1233 // pointer initializer to another global symbol. They must point to a 1234 // GlobalVariable or Function, i.e., as GlobalValue. 1235 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1236 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1237 !isa<GlobalValue>(GV->getOperand(0))) 1238 return false; 1239 1240 // To be a got equivalent, at least one of its users need to be a constant 1241 // expression used by another global variable. 1242 for (auto *U : GV->users()) 1243 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1244 1245 return NumGOTEquivUsers > 0; 1246 } 1247 1248 /// Unnamed constant global variables solely contaning a pointer to 1249 /// another globals variable is equivalent to a GOT table entry; it contains the 1250 /// the address of another symbol. Optimize it and replace accesses to these 1251 /// "GOT equivalents" by using the GOT entry for the final global instead. 1252 /// Compute GOT equivalent candidates among all global variables to avoid 1253 /// emitting them if possible later on, after it use is replaced by a GOT entry 1254 /// access. 1255 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1256 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1257 return; 1258 1259 for (const auto &G : M.globals()) { 1260 unsigned NumGOTEquivUsers = 0; 1261 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1262 continue; 1263 1264 const MCSymbol *GOTEquivSym = getSymbol(&G); 1265 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1266 } 1267 } 1268 1269 /// Constant expressions using GOT equivalent globals may not be eligible 1270 /// for PC relative GOT entry conversion, in such cases we need to emit such 1271 /// globals we previously omitted in EmitGlobalVariable. 1272 void AsmPrinter::emitGlobalGOTEquivs() { 1273 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1274 return; 1275 1276 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1277 for (auto &I : GlobalGOTEquivs) { 1278 const GlobalVariable *GV = I.second.first; 1279 unsigned Cnt = I.second.second; 1280 if (Cnt) 1281 FailedCandidates.push_back(GV); 1282 } 1283 GlobalGOTEquivs.clear(); 1284 1285 for (auto *GV : FailedCandidates) 1286 EmitGlobalVariable(GV); 1287 } 1288 1289 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1290 const GlobalIndirectSymbol& GIS) { 1291 MCSymbol *Name = getSymbol(&GIS); 1292 1293 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1294 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1295 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1296 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1297 else 1298 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1299 1300 bool IsFunction = GIS.getType()->getPointerElementType()->isFunctionTy(); 1301 1302 // Treat bitcasts of functions as functions also. This is important at least 1303 // on WebAssembly where object and function addresses can't alias each other. 1304 if (!IsFunction) 1305 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1306 if (CE->getOpcode() == Instruction::BitCast) 1307 IsFunction = 1308 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1309 1310 // Set the symbol type to function if the alias has a function type. 1311 // This affects codegen when the aliasee is not a function. 1312 if (IsFunction) { 1313 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1314 if (isa<GlobalIFunc>(GIS)) 1315 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1316 } 1317 1318 EmitVisibility(Name, GIS.getVisibility()); 1319 1320 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1321 1322 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1323 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1324 1325 // Emit the directives as assignments aka .set: 1326 OutStreamer->EmitAssignment(Name, Expr); 1327 1328 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1329 // If the aliasee does not correspond to a symbol in the output, i.e. the 1330 // alias is not of an object or the aliased object is private, then set the 1331 // size of the alias symbol from the type of the alias. We don't do this in 1332 // other situations as the alias and aliasee having differing types but same 1333 // size may be intentional. 1334 const GlobalObject *BaseObject = GA->getBaseObject(); 1335 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1336 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1337 const DataLayout &DL = M.getDataLayout(); 1338 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1339 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1340 } 1341 } 1342 } 1343 1344 void AsmPrinter::emitRemarksSection(Module &M) { 1345 RemarkStreamer *RS = M.getContext().getRemarkStreamer(); 1346 if (!RS) 1347 return; 1348 1349 // Switch to the right section: .remarks/__remarks. 1350 MCSection *RemarksSection = 1351 OutContext.getObjectFileInfo()->getRemarksSection(); 1352 OutStreamer->SwitchSection(RemarksSection); 1353 1354 // Emit the magic number. 1355 OutStreamer->EmitBytes(remarks::Magic); 1356 // Explicitly emit a '\0'. 1357 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1358 1359 // Emit the version number: little-endian uint64_t. 1360 // The version number is located at the offset 0x0 in the section. 1361 std::array<char, 8> Version; 1362 support::endian::write64le(Version.data(), remarks::Version); 1363 OutStreamer->EmitBinaryData(StringRef(Version.data(), Version.size())); 1364 1365 // Emit the null-terminated absolute path to the remark file. 1366 // The path is located at the offset 0x4 in the section. 1367 StringRef FilenameRef = RS->getFilename(); 1368 SmallString<128> Filename = FilenameRef; 1369 sys::fs::make_absolute(Filename); 1370 assert(!Filename.empty() && "The filename can't be empty."); 1371 OutStreamer->EmitBytes(Filename); 1372 // Explicitly emit a '\0'. 1373 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1374 } 1375 1376 bool AsmPrinter::doFinalization(Module &M) { 1377 // Set the MachineFunction to nullptr so that we can catch attempted 1378 // accesses to MF specific features at the module level and so that 1379 // we can conditionalize accesses based on whether or not it is nullptr. 1380 MF = nullptr; 1381 1382 // Gather all GOT equivalent globals in the module. We really need two 1383 // passes over the globals: one to compute and another to avoid its emission 1384 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1385 // where the got equivalent shows up before its use. 1386 computeGlobalGOTEquivs(M); 1387 1388 // Emit global variables. 1389 for (const auto &G : M.globals()) 1390 EmitGlobalVariable(&G); 1391 1392 // Emit remaining GOT equivalent globals. 1393 emitGlobalGOTEquivs(); 1394 1395 // Emit visibility info for declarations 1396 for (const Function &F : M) { 1397 if (!F.isDeclarationForLinker()) 1398 continue; 1399 GlobalValue::VisibilityTypes V = F.getVisibility(); 1400 if (V == GlobalValue::DefaultVisibility) 1401 continue; 1402 1403 MCSymbol *Name = getSymbol(&F); 1404 EmitVisibility(Name, V, false); 1405 } 1406 1407 // Emit the remarks section contents. 1408 // FIXME: Figure out when is the safest time to emit this section. It should 1409 // not come after debug info. 1410 if (EnableRemarksSection) 1411 emitRemarksSection(M); 1412 1413 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1414 1415 TLOF.emitModuleMetadata(*OutStreamer, M); 1416 1417 if (TM.getTargetTriple().isOSBinFormatELF()) { 1418 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1419 1420 // Output stubs for external and common global variables. 1421 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1422 if (!Stubs.empty()) { 1423 OutStreamer->SwitchSection(TLOF.getDataSection()); 1424 const DataLayout &DL = M.getDataLayout(); 1425 1426 EmitAlignment(Log2_32(DL.getPointerSize())); 1427 for (const auto &Stub : Stubs) { 1428 OutStreamer->EmitLabel(Stub.first); 1429 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1430 DL.getPointerSize()); 1431 } 1432 } 1433 } 1434 1435 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1436 MachineModuleInfoCOFF &MMICOFF = 1437 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1438 1439 // Output stubs for external and common global variables. 1440 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1441 if (!Stubs.empty()) { 1442 const DataLayout &DL = M.getDataLayout(); 1443 1444 for (const auto &Stub : Stubs) { 1445 SmallString<256> SectionName = StringRef(".rdata$"); 1446 SectionName += Stub.first->getName(); 1447 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1448 SectionName, 1449 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1450 COFF::IMAGE_SCN_LNK_COMDAT, 1451 SectionKind::getReadOnly(), Stub.first->getName(), 1452 COFF::IMAGE_COMDAT_SELECT_ANY)); 1453 EmitAlignment(Log2_32(DL.getPointerSize())); 1454 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1455 OutStreamer->EmitLabel(Stub.first); 1456 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1457 DL.getPointerSize()); 1458 } 1459 } 1460 } 1461 1462 // Finalize debug and EH information. 1463 for (const HandlerInfo &HI : Handlers) { 1464 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1465 HI.TimerGroupDescription, TimePassesIsEnabled); 1466 HI.Handler->endModule(); 1467 delete HI.Handler; 1468 } 1469 Handlers.clear(); 1470 DD = nullptr; 1471 1472 // If the target wants to know about weak references, print them all. 1473 if (MAI->getWeakRefDirective()) { 1474 // FIXME: This is not lazy, it would be nice to only print weak references 1475 // to stuff that is actually used. Note that doing so would require targets 1476 // to notice uses in operands (due to constant exprs etc). This should 1477 // happen with the MC stuff eventually. 1478 1479 // Print out module-level global objects here. 1480 for (const auto &GO : M.global_objects()) { 1481 if (!GO.hasExternalWeakLinkage()) 1482 continue; 1483 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1484 } 1485 } 1486 1487 OutStreamer->AddBlankLine(); 1488 1489 // Print aliases in topological order, that is, for each alias a = b, 1490 // b must be printed before a. 1491 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1492 // such an order to generate correct TOC information. 1493 SmallVector<const GlobalAlias *, 16> AliasStack; 1494 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1495 for (const auto &Alias : M.aliases()) { 1496 for (const GlobalAlias *Cur = &Alias; Cur; 1497 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1498 if (!AliasVisited.insert(Cur).second) 1499 break; 1500 AliasStack.push_back(Cur); 1501 } 1502 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1503 emitGlobalIndirectSymbol(M, *AncestorAlias); 1504 AliasStack.clear(); 1505 } 1506 for (const auto &IFunc : M.ifuncs()) 1507 emitGlobalIndirectSymbol(M, IFunc); 1508 1509 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1510 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1511 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1512 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1513 MP->finishAssembly(M, *MI, *this); 1514 1515 // Emit llvm.ident metadata in an '.ident' directive. 1516 EmitModuleIdents(M); 1517 1518 // Emit bytes for llvm.commandline metadata. 1519 EmitModuleCommandLines(M); 1520 1521 // Emit __morestack address if needed for indirect calls. 1522 if (MMI->usesMorestackAddr()) { 1523 unsigned Align = 1; 1524 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1525 getDataLayout(), SectionKind::getReadOnly(), 1526 /*C=*/nullptr, Align); 1527 OutStreamer->SwitchSection(ReadOnlySection); 1528 1529 MCSymbol *AddrSymbol = 1530 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1531 OutStreamer->EmitLabel(AddrSymbol); 1532 1533 unsigned PtrSize = MAI->getCodePointerSize(); 1534 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1535 PtrSize); 1536 } 1537 1538 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1539 // split-stack is used. 1540 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1541 OutStreamer->SwitchSection( 1542 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1543 if (MMI->hasNosplitStack()) 1544 OutStreamer->SwitchSection( 1545 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1546 } 1547 1548 // If we don't have any trampolines, then we don't require stack memory 1549 // to be executable. Some targets have a directive to declare this. 1550 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1551 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1552 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1553 OutStreamer->SwitchSection(S); 1554 1555 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1556 // Emit /EXPORT: flags for each exported global as necessary. 1557 const auto &TLOF = getObjFileLowering(); 1558 std::string Flags; 1559 1560 for (const GlobalValue &GV : M.global_values()) { 1561 raw_string_ostream OS(Flags); 1562 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1563 OS.flush(); 1564 if (!Flags.empty()) { 1565 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1566 OutStreamer->EmitBytes(Flags); 1567 } 1568 Flags.clear(); 1569 } 1570 1571 // Emit /INCLUDE: flags for each used global as necessary. 1572 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1573 assert(LU->hasInitializer() && 1574 "expected llvm.used to have an initializer"); 1575 assert(isa<ArrayType>(LU->getValueType()) && 1576 "expected llvm.used to be an array type"); 1577 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1578 for (const Value *Op : A->operands()) { 1579 const auto *GV = 1580 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1581 // Global symbols with internal or private linkage are not visible to 1582 // the linker, and thus would cause an error when the linker tried to 1583 // preserve the symbol due to the `/include:` directive. 1584 if (GV->hasLocalLinkage()) 1585 continue; 1586 1587 raw_string_ostream OS(Flags); 1588 TLOF.emitLinkerFlagsForUsed(OS, GV); 1589 OS.flush(); 1590 1591 if (!Flags.empty()) { 1592 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1593 OutStreamer->EmitBytes(Flags); 1594 } 1595 Flags.clear(); 1596 } 1597 } 1598 } 1599 } 1600 1601 if (TM.Options.EmitAddrsig) { 1602 // Emit address-significance attributes for all globals. 1603 OutStreamer->EmitAddrsig(); 1604 for (const GlobalValue &GV : M.global_values()) 1605 if (!GV.use_empty() && !GV.isThreadLocal() && 1606 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1607 !GV.hasAtLeastLocalUnnamedAddr()) 1608 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1609 } 1610 1611 // Allow the target to emit any magic that it wants at the end of the file, 1612 // after everything else has gone out. 1613 EmitEndOfAsmFile(M); 1614 1615 MMI = nullptr; 1616 1617 OutStreamer->Finish(); 1618 OutStreamer->reset(); 1619 OwnedMLI.reset(); 1620 OwnedMDT.reset(); 1621 1622 return false; 1623 } 1624 1625 MCSymbol *AsmPrinter::getCurExceptionSym() { 1626 if (!CurExceptionSym) 1627 CurExceptionSym = createTempSymbol("exception"); 1628 return CurExceptionSym; 1629 } 1630 1631 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1632 this->MF = &MF; 1633 // Get the function symbol. 1634 CurrentFnSym = getSymbol(&MF.getFunction()); 1635 CurrentFnSymForSize = CurrentFnSym; 1636 CurrentFnBegin = nullptr; 1637 CurExceptionSym = nullptr; 1638 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1639 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1640 MF.getTarget().Options.EmitStackSizeSection) { 1641 CurrentFnBegin = createTempSymbol("func_begin"); 1642 if (NeedsLocalForSize) 1643 CurrentFnSymForSize = CurrentFnBegin; 1644 } 1645 1646 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1647 } 1648 1649 namespace { 1650 1651 // Keep track the alignment, constpool entries per Section. 1652 struct SectionCPs { 1653 MCSection *S; 1654 unsigned Alignment; 1655 SmallVector<unsigned, 4> CPEs; 1656 1657 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1658 }; 1659 1660 } // end anonymous namespace 1661 1662 /// EmitConstantPool - Print to the current output stream assembly 1663 /// representations of the constants in the constant pool MCP. This is 1664 /// used to print out constants which have been "spilled to memory" by 1665 /// the code generator. 1666 void AsmPrinter::EmitConstantPool() { 1667 const MachineConstantPool *MCP = MF->getConstantPool(); 1668 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1669 if (CP.empty()) return; 1670 1671 // Calculate sections for constant pool entries. We collect entries to go into 1672 // the same section together to reduce amount of section switch statements. 1673 SmallVector<SectionCPs, 4> CPSections; 1674 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1675 const MachineConstantPoolEntry &CPE = CP[i]; 1676 unsigned Align = CPE.getAlignment(); 1677 1678 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1679 1680 const Constant *C = nullptr; 1681 if (!CPE.isMachineConstantPoolEntry()) 1682 C = CPE.Val.ConstVal; 1683 1684 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1685 Kind, C, Align); 1686 1687 // The number of sections are small, just do a linear search from the 1688 // last section to the first. 1689 bool Found = false; 1690 unsigned SecIdx = CPSections.size(); 1691 while (SecIdx != 0) { 1692 if (CPSections[--SecIdx].S == S) { 1693 Found = true; 1694 break; 1695 } 1696 } 1697 if (!Found) { 1698 SecIdx = CPSections.size(); 1699 CPSections.push_back(SectionCPs(S, Align)); 1700 } 1701 1702 if (Align > CPSections[SecIdx].Alignment) 1703 CPSections[SecIdx].Alignment = Align; 1704 CPSections[SecIdx].CPEs.push_back(i); 1705 } 1706 1707 // Now print stuff into the calculated sections. 1708 const MCSection *CurSection = nullptr; 1709 unsigned Offset = 0; 1710 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1711 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1712 unsigned CPI = CPSections[i].CPEs[j]; 1713 MCSymbol *Sym = GetCPISymbol(CPI); 1714 if (!Sym->isUndefined()) 1715 continue; 1716 1717 if (CurSection != CPSections[i].S) { 1718 OutStreamer->SwitchSection(CPSections[i].S); 1719 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1720 CurSection = CPSections[i].S; 1721 Offset = 0; 1722 } 1723 1724 MachineConstantPoolEntry CPE = CP[CPI]; 1725 1726 // Emit inter-object padding for alignment. 1727 unsigned AlignMask = CPE.getAlignment() - 1; 1728 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1729 OutStreamer->EmitZeros(NewOffset - Offset); 1730 1731 Type *Ty = CPE.getType(); 1732 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1733 1734 OutStreamer->EmitLabel(Sym); 1735 if (CPE.isMachineConstantPoolEntry()) 1736 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1737 else 1738 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1739 } 1740 } 1741 } 1742 1743 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1744 /// by the current function to the current output stream. 1745 void AsmPrinter::EmitJumpTableInfo() { 1746 const DataLayout &DL = MF->getDataLayout(); 1747 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1748 if (!MJTI) return; 1749 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1750 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1751 if (JT.empty()) return; 1752 1753 // Pick the directive to use to print the jump table entries, and switch to 1754 // the appropriate section. 1755 const Function &F = MF->getFunction(); 1756 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1757 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1758 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1759 F); 1760 if (JTInDiffSection) { 1761 // Drop it in the readonly section. 1762 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1763 OutStreamer->SwitchSection(ReadOnlySection); 1764 } 1765 1766 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1767 1768 // Jump tables in code sections are marked with a data_region directive 1769 // where that's supported. 1770 if (!JTInDiffSection) 1771 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1772 1773 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1774 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1775 1776 // If this jump table was deleted, ignore it. 1777 if (JTBBs.empty()) continue; 1778 1779 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1780 /// emit a .set directive for each unique entry. 1781 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1782 MAI->doesSetDirectiveSuppressReloc()) { 1783 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1784 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1785 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1786 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1787 const MachineBasicBlock *MBB = JTBBs[ii]; 1788 if (!EmittedSets.insert(MBB).second) 1789 continue; 1790 1791 // .set LJTSet, LBB32-base 1792 const MCExpr *LHS = 1793 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1794 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1795 MCBinaryExpr::createSub(LHS, Base, 1796 OutContext)); 1797 } 1798 } 1799 1800 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1801 // before each jump table. The first label is never referenced, but tells 1802 // the assembler and linker the extents of the jump table object. The 1803 // second label is actually referenced by the code. 1804 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1805 // FIXME: This doesn't have to have any specific name, just any randomly 1806 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1807 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1808 1809 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1810 1811 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1812 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1813 } 1814 if (!JTInDiffSection) 1815 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1816 } 1817 1818 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1819 /// current stream. 1820 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1821 const MachineBasicBlock *MBB, 1822 unsigned UID) const { 1823 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1824 const MCExpr *Value = nullptr; 1825 switch (MJTI->getEntryKind()) { 1826 case MachineJumpTableInfo::EK_Inline: 1827 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1828 case MachineJumpTableInfo::EK_Custom32: 1829 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1830 MJTI, MBB, UID, OutContext); 1831 break; 1832 case MachineJumpTableInfo::EK_BlockAddress: 1833 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1834 // .word LBB123 1835 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1836 break; 1837 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1838 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1839 // with a relocation as gp-relative, e.g.: 1840 // .gprel32 LBB123 1841 MCSymbol *MBBSym = MBB->getSymbol(); 1842 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1843 return; 1844 } 1845 1846 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1847 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1848 // with a relocation as gp-relative, e.g.: 1849 // .gpdword LBB123 1850 MCSymbol *MBBSym = MBB->getSymbol(); 1851 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1852 return; 1853 } 1854 1855 case MachineJumpTableInfo::EK_LabelDifference32: { 1856 // Each entry is the address of the block minus the address of the jump 1857 // table. This is used for PIC jump tables where gprel32 is not supported. 1858 // e.g.: 1859 // .word LBB123 - LJTI1_2 1860 // If the .set directive avoids relocations, this is emitted as: 1861 // .set L4_5_set_123, LBB123 - LJTI1_2 1862 // .word L4_5_set_123 1863 if (MAI->doesSetDirectiveSuppressReloc()) { 1864 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1865 OutContext); 1866 break; 1867 } 1868 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1869 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1870 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1871 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1872 break; 1873 } 1874 } 1875 1876 assert(Value && "Unknown entry kind!"); 1877 1878 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1879 OutStreamer->EmitValue(Value, EntrySize); 1880 } 1881 1882 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1883 /// special global used by LLVM. If so, emit it and return true, otherwise 1884 /// do nothing and return false. 1885 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1886 if (GV->getName() == "llvm.used") { 1887 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1888 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1889 return true; 1890 } 1891 1892 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1893 if (GV->getSection() == "llvm.metadata" || 1894 GV->hasAvailableExternallyLinkage()) 1895 return true; 1896 1897 if (!GV->hasAppendingLinkage()) return false; 1898 1899 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1900 1901 if (GV->getName() == "llvm.global_ctors") { 1902 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1903 /* isCtor */ true); 1904 1905 return true; 1906 } 1907 1908 if (GV->getName() == "llvm.global_dtors") { 1909 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1910 /* isCtor */ false); 1911 1912 return true; 1913 } 1914 1915 report_fatal_error("unknown special variable"); 1916 } 1917 1918 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1919 /// global in the specified llvm.used list. 1920 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1921 // Should be an array of 'i8*'. 1922 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1923 const GlobalValue *GV = 1924 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1925 if (GV) 1926 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1927 } 1928 } 1929 1930 namespace { 1931 1932 struct Structor { 1933 int Priority = 0; 1934 Constant *Func = nullptr; 1935 GlobalValue *ComdatKey = nullptr; 1936 1937 Structor() = default; 1938 }; 1939 1940 } // end anonymous namespace 1941 1942 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1943 /// priority. 1944 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1945 bool isCtor) { 1946 // Should be an array of '{ int, void ()* }' structs. The first value is the 1947 // init priority. 1948 if (!isa<ConstantArray>(List)) return; 1949 1950 // Sanity check the structors list. 1951 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1952 if (!InitList) return; // Not an array! 1953 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1954 // FIXME: Only allow the 3-field form in LLVM 4.0. 1955 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1956 return; // Not an array of two or three elements! 1957 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1958 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1959 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1960 return; // Not (int, ptr, ptr). 1961 1962 // Gather the structors in a form that's convenient for sorting by priority. 1963 SmallVector<Structor, 8> Structors; 1964 for (Value *O : InitList->operands()) { 1965 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1966 if (!CS) continue; // Malformed. 1967 if (CS->getOperand(1)->isNullValue()) 1968 break; // Found a null terminator, skip the rest. 1969 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1970 if (!Priority) continue; // Malformed. 1971 Structors.push_back(Structor()); 1972 Structor &S = Structors.back(); 1973 S.Priority = Priority->getLimitedValue(65535); 1974 S.Func = CS->getOperand(1); 1975 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1976 S.ComdatKey = 1977 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1978 } 1979 1980 // Emit the function pointers in the target-specific order 1981 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1982 std::stable_sort(Structors.begin(), Structors.end(), 1983 [](const Structor &L, 1984 const Structor &R) { return L.Priority < R.Priority; }); 1985 for (Structor &S : Structors) { 1986 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1987 const MCSymbol *KeySym = nullptr; 1988 if (GlobalValue *GV = S.ComdatKey) { 1989 if (GV->isDeclarationForLinker()) 1990 // If the associated variable is not defined in this module 1991 // (it might be available_externally, or have been an 1992 // available_externally definition that was dropped by the 1993 // EliminateAvailableExternally pass), some other TU 1994 // will provide its dynamic initializer. 1995 continue; 1996 1997 KeySym = getSymbol(GV); 1998 } 1999 MCSection *OutputSection = 2000 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2001 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2002 OutStreamer->SwitchSection(OutputSection); 2003 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2004 EmitAlignment(Align); 2005 EmitXXStructor(DL, S.Func); 2006 } 2007 } 2008 2009 void AsmPrinter::EmitModuleIdents(Module &M) { 2010 if (!MAI->hasIdentDirective()) 2011 return; 2012 2013 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2014 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2015 const MDNode *N = NMD->getOperand(i); 2016 assert(N->getNumOperands() == 1 && 2017 "llvm.ident metadata entry can have only one operand"); 2018 const MDString *S = cast<MDString>(N->getOperand(0)); 2019 OutStreamer->EmitIdent(S->getString()); 2020 } 2021 } 2022 } 2023 2024 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2025 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2026 if (!CommandLine) 2027 return; 2028 2029 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2030 if (!NMD || !NMD->getNumOperands()) 2031 return; 2032 2033 OutStreamer->PushSection(); 2034 OutStreamer->SwitchSection(CommandLine); 2035 OutStreamer->EmitZeros(1); 2036 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2037 const MDNode *N = NMD->getOperand(i); 2038 assert(N->getNumOperands() == 1 && 2039 "llvm.commandline metadata entry can have only one operand"); 2040 const MDString *S = cast<MDString>(N->getOperand(0)); 2041 OutStreamer->EmitBytes(S->getString()); 2042 OutStreamer->EmitZeros(1); 2043 } 2044 OutStreamer->PopSection(); 2045 } 2046 2047 //===--------------------------------------------------------------------===// 2048 // Emission and print routines 2049 // 2050 2051 /// Emit a byte directive and value. 2052 /// 2053 void AsmPrinter::emitInt8(int Value) const { 2054 OutStreamer->EmitIntValue(Value, 1); 2055 } 2056 2057 /// Emit a short directive and value. 2058 void AsmPrinter::emitInt16(int Value) const { 2059 OutStreamer->EmitIntValue(Value, 2); 2060 } 2061 2062 /// Emit a long directive and value. 2063 void AsmPrinter::emitInt32(int Value) const { 2064 OutStreamer->EmitIntValue(Value, 4); 2065 } 2066 2067 /// Emit a long long directive and value. 2068 void AsmPrinter::emitInt64(uint64_t Value) const { 2069 OutStreamer->EmitIntValue(Value, 8); 2070 } 2071 2072 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2073 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2074 /// .set if it avoids relocations. 2075 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2076 unsigned Size) const { 2077 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2078 } 2079 2080 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2081 /// where the size in bytes of the directive is specified by Size and Label 2082 /// specifies the label. This implicitly uses .set if it is available. 2083 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2084 unsigned Size, 2085 bool IsSectionRelative) const { 2086 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2087 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2088 if (Size > 4) 2089 OutStreamer->EmitZeros(Size - 4); 2090 return; 2091 } 2092 2093 // Emit Label+Offset (or just Label if Offset is zero) 2094 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2095 if (Offset) 2096 Expr = MCBinaryExpr::createAdd( 2097 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2098 2099 OutStreamer->EmitValue(Expr, Size); 2100 } 2101 2102 //===----------------------------------------------------------------------===// 2103 2104 // EmitAlignment - Emit an alignment directive to the specified power of 2105 // two boundary. For example, if you pass in 3 here, you will get an 8 2106 // byte alignment. If a global value is specified, and if that global has 2107 // an explicit alignment requested, it will override the alignment request 2108 // if required for correctness. 2109 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2110 if (GV) 2111 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2112 2113 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2114 2115 assert(NumBits < 2116 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2117 "undefined behavior"); 2118 if (getCurrentSection()->getKind().isText()) 2119 OutStreamer->EmitCodeAlignment(1u << NumBits); 2120 else 2121 OutStreamer->EmitValueToAlignment(1u << NumBits); 2122 } 2123 2124 //===----------------------------------------------------------------------===// 2125 // Constant emission. 2126 //===----------------------------------------------------------------------===// 2127 2128 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2129 MCContext &Ctx = OutContext; 2130 2131 if (CV->isNullValue() || isa<UndefValue>(CV)) 2132 return MCConstantExpr::create(0, Ctx); 2133 2134 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2135 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2136 2137 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2138 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2139 2140 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2141 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2142 2143 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2144 if (!CE) { 2145 llvm_unreachable("Unknown constant value to lower!"); 2146 } 2147 2148 switch (CE->getOpcode()) { 2149 default: 2150 // If the code isn't optimized, there may be outstanding folding 2151 // opportunities. Attempt to fold the expression using DataLayout as a 2152 // last resort before giving up. 2153 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2154 if (C != CE) 2155 return lowerConstant(C); 2156 2157 // Otherwise report the problem to the user. 2158 { 2159 std::string S; 2160 raw_string_ostream OS(S); 2161 OS << "Unsupported expression in static initializer: "; 2162 CE->printAsOperand(OS, /*PrintType=*/false, 2163 !MF ? nullptr : MF->getFunction().getParent()); 2164 report_fatal_error(OS.str()); 2165 } 2166 case Instruction::GetElementPtr: { 2167 // Generate a symbolic expression for the byte address 2168 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2169 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2170 2171 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2172 if (!OffsetAI) 2173 return Base; 2174 2175 int64_t Offset = OffsetAI.getSExtValue(); 2176 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2177 Ctx); 2178 } 2179 2180 case Instruction::Trunc: 2181 // We emit the value and depend on the assembler to truncate the generated 2182 // expression properly. This is important for differences between 2183 // blockaddress labels. Since the two labels are in the same function, it 2184 // is reasonable to treat their delta as a 32-bit value. 2185 LLVM_FALLTHROUGH; 2186 case Instruction::BitCast: 2187 return lowerConstant(CE->getOperand(0)); 2188 2189 case Instruction::IntToPtr: { 2190 const DataLayout &DL = getDataLayout(); 2191 2192 // Handle casts to pointers by changing them into casts to the appropriate 2193 // integer type. This promotes constant folding and simplifies this code. 2194 Constant *Op = CE->getOperand(0); 2195 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2196 false/*ZExt*/); 2197 return lowerConstant(Op); 2198 } 2199 2200 case Instruction::PtrToInt: { 2201 const DataLayout &DL = getDataLayout(); 2202 2203 // Support only foldable casts to/from pointers that can be eliminated by 2204 // changing the pointer to the appropriately sized integer type. 2205 Constant *Op = CE->getOperand(0); 2206 Type *Ty = CE->getType(); 2207 2208 const MCExpr *OpExpr = lowerConstant(Op); 2209 2210 // We can emit the pointer value into this slot if the slot is an 2211 // integer slot equal to the size of the pointer. 2212 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2213 return OpExpr; 2214 2215 // Otherwise the pointer is smaller than the resultant integer, mask off 2216 // the high bits so we are sure to get a proper truncation if the input is 2217 // a constant expr. 2218 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2219 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2220 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2221 } 2222 2223 case Instruction::Sub: { 2224 GlobalValue *LHSGV; 2225 APInt LHSOffset; 2226 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2227 getDataLayout())) { 2228 GlobalValue *RHSGV; 2229 APInt RHSOffset; 2230 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2231 getDataLayout())) { 2232 const MCExpr *RelocExpr = 2233 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2234 if (!RelocExpr) 2235 RelocExpr = MCBinaryExpr::createSub( 2236 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2237 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2238 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2239 if (Addend != 0) 2240 RelocExpr = MCBinaryExpr::createAdd( 2241 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2242 return RelocExpr; 2243 } 2244 } 2245 } 2246 // else fallthrough 2247 LLVM_FALLTHROUGH; 2248 2249 // The MC library also has a right-shift operator, but it isn't consistently 2250 // signed or unsigned between different targets. 2251 case Instruction::Add: 2252 case Instruction::Mul: 2253 case Instruction::SDiv: 2254 case Instruction::SRem: 2255 case Instruction::Shl: 2256 case Instruction::And: 2257 case Instruction::Or: 2258 case Instruction::Xor: { 2259 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2260 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2261 switch (CE->getOpcode()) { 2262 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2263 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2264 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2265 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2266 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2267 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2268 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2269 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2270 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2271 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2272 } 2273 } 2274 } 2275 } 2276 2277 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2278 AsmPrinter &AP, 2279 const Constant *BaseCV = nullptr, 2280 uint64_t Offset = 0); 2281 2282 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2283 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2284 2285 /// isRepeatedByteSequence - Determine whether the given value is 2286 /// composed of a repeated sequence of identical bytes and return the 2287 /// byte value. If it is not a repeated sequence, return -1. 2288 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2289 StringRef Data = V->getRawDataValues(); 2290 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2291 char C = Data[0]; 2292 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2293 if (Data[i] != C) return -1; 2294 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2295 } 2296 2297 /// isRepeatedByteSequence - Determine whether the given value is 2298 /// composed of a repeated sequence of identical bytes and return the 2299 /// byte value. If it is not a repeated sequence, return -1. 2300 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2301 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2302 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2303 assert(Size % 8 == 0); 2304 2305 // Extend the element to take zero padding into account. 2306 APInt Value = CI->getValue().zextOrSelf(Size); 2307 if (!Value.isSplat(8)) 2308 return -1; 2309 2310 return Value.zextOrTrunc(8).getZExtValue(); 2311 } 2312 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2313 // Make sure all array elements are sequences of the same repeated 2314 // byte. 2315 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2316 Constant *Op0 = CA->getOperand(0); 2317 int Byte = isRepeatedByteSequence(Op0, DL); 2318 if (Byte == -1) 2319 return -1; 2320 2321 // All array elements must be equal. 2322 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2323 if (CA->getOperand(i) != Op0) 2324 return -1; 2325 return Byte; 2326 } 2327 2328 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2329 return isRepeatedByteSequence(CDS); 2330 2331 return -1; 2332 } 2333 2334 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2335 const ConstantDataSequential *CDS, 2336 AsmPrinter &AP) { 2337 // See if we can aggregate this into a .fill, if so, emit it as such. 2338 int Value = isRepeatedByteSequence(CDS, DL); 2339 if (Value != -1) { 2340 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2341 // Don't emit a 1-byte object as a .fill. 2342 if (Bytes > 1) 2343 return AP.OutStreamer->emitFill(Bytes, Value); 2344 } 2345 2346 // If this can be emitted with .ascii/.asciz, emit it as such. 2347 if (CDS->isString()) 2348 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2349 2350 // Otherwise, emit the values in successive locations. 2351 unsigned ElementByteSize = CDS->getElementByteSize(); 2352 if (isa<IntegerType>(CDS->getElementType())) { 2353 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2354 if (AP.isVerbose()) 2355 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2356 CDS->getElementAsInteger(i)); 2357 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2358 ElementByteSize); 2359 } 2360 } else { 2361 Type *ET = CDS->getElementType(); 2362 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2363 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2364 } 2365 2366 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2367 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2368 CDS->getNumElements(); 2369 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2370 if (unsigned Padding = Size - EmittedSize) 2371 AP.OutStreamer->EmitZeros(Padding); 2372 } 2373 2374 static void emitGlobalConstantArray(const DataLayout &DL, 2375 const ConstantArray *CA, AsmPrinter &AP, 2376 const Constant *BaseCV, uint64_t Offset) { 2377 // See if we can aggregate some values. Make sure it can be 2378 // represented as a series of bytes of the constant value. 2379 int Value = isRepeatedByteSequence(CA, DL); 2380 2381 if (Value != -1) { 2382 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2383 AP.OutStreamer->emitFill(Bytes, Value); 2384 } 2385 else { 2386 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2387 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2388 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2389 } 2390 } 2391 } 2392 2393 static void emitGlobalConstantVector(const DataLayout &DL, 2394 const ConstantVector *CV, AsmPrinter &AP) { 2395 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2396 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2397 2398 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2399 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2400 CV->getType()->getNumElements(); 2401 if (unsigned Padding = Size - EmittedSize) 2402 AP.OutStreamer->EmitZeros(Padding); 2403 } 2404 2405 static void emitGlobalConstantStruct(const DataLayout &DL, 2406 const ConstantStruct *CS, AsmPrinter &AP, 2407 const Constant *BaseCV, uint64_t Offset) { 2408 // Print the fields in successive locations. Pad to align if needed! 2409 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2410 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2411 uint64_t SizeSoFar = 0; 2412 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2413 const Constant *Field = CS->getOperand(i); 2414 2415 // Print the actual field value. 2416 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2417 2418 // Check if padding is needed and insert one or more 0s. 2419 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2420 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2421 - Layout->getElementOffset(i)) - FieldSize; 2422 SizeSoFar += FieldSize + PadSize; 2423 2424 // Insert padding - this may include padding to increase the size of the 2425 // current field up to the ABI size (if the struct is not packed) as well 2426 // as padding to ensure that the next field starts at the right offset. 2427 AP.OutStreamer->EmitZeros(PadSize); 2428 } 2429 assert(SizeSoFar == Layout->getSizeInBytes() && 2430 "Layout of constant struct may be incorrect!"); 2431 } 2432 2433 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2434 APInt API = APF.bitcastToAPInt(); 2435 2436 // First print a comment with what we think the original floating-point value 2437 // should have been. 2438 if (AP.isVerbose()) { 2439 SmallString<8> StrVal; 2440 APF.toString(StrVal); 2441 2442 if (ET) 2443 ET->print(AP.OutStreamer->GetCommentOS()); 2444 else 2445 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2446 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2447 } 2448 2449 // Now iterate through the APInt chunks, emitting them in endian-correct 2450 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2451 // floats). 2452 unsigned NumBytes = API.getBitWidth() / 8; 2453 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2454 const uint64_t *p = API.getRawData(); 2455 2456 // PPC's long double has odd notions of endianness compared to how LLVM 2457 // handles it: p[0] goes first for *big* endian on PPC. 2458 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2459 int Chunk = API.getNumWords() - 1; 2460 2461 if (TrailingBytes) 2462 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2463 2464 for (; Chunk >= 0; --Chunk) 2465 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2466 } else { 2467 unsigned Chunk; 2468 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2469 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2470 2471 if (TrailingBytes) 2472 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2473 } 2474 2475 // Emit the tail padding for the long double. 2476 const DataLayout &DL = AP.getDataLayout(); 2477 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2478 } 2479 2480 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2481 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2482 } 2483 2484 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2485 const DataLayout &DL = AP.getDataLayout(); 2486 unsigned BitWidth = CI->getBitWidth(); 2487 2488 // Copy the value as we may massage the layout for constants whose bit width 2489 // is not a multiple of 64-bits. 2490 APInt Realigned(CI->getValue()); 2491 uint64_t ExtraBits = 0; 2492 unsigned ExtraBitsSize = BitWidth & 63; 2493 2494 if (ExtraBitsSize) { 2495 // The bit width of the data is not a multiple of 64-bits. 2496 // The extra bits are expected to be at the end of the chunk of the memory. 2497 // Little endian: 2498 // * Nothing to be done, just record the extra bits to emit. 2499 // Big endian: 2500 // * Record the extra bits to emit. 2501 // * Realign the raw data to emit the chunks of 64-bits. 2502 if (DL.isBigEndian()) { 2503 // Basically the structure of the raw data is a chunk of 64-bits cells: 2504 // 0 1 BitWidth / 64 2505 // [chunk1][chunk2] ... [chunkN]. 2506 // The most significant chunk is chunkN and it should be emitted first. 2507 // However, due to the alignment issue chunkN contains useless bits. 2508 // Realign the chunks so that they contain only useless information: 2509 // ExtraBits 0 1 (BitWidth / 64) - 1 2510 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2511 ExtraBits = Realigned.getRawData()[0] & 2512 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2513 Realigned.lshrInPlace(ExtraBitsSize); 2514 } else 2515 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2516 } 2517 2518 // We don't expect assemblers to support integer data directives 2519 // for more than 64 bits, so we emit the data in at most 64-bit 2520 // quantities at a time. 2521 const uint64_t *RawData = Realigned.getRawData(); 2522 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2523 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2524 AP.OutStreamer->EmitIntValue(Val, 8); 2525 } 2526 2527 if (ExtraBitsSize) { 2528 // Emit the extra bits after the 64-bits chunks. 2529 2530 // Emit a directive that fills the expected size. 2531 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2532 Size -= (BitWidth / 64) * 8; 2533 assert(Size && Size * 8 >= ExtraBitsSize && 2534 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2535 == ExtraBits && "Directive too small for extra bits."); 2536 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2537 } 2538 } 2539 2540 /// Transform a not absolute MCExpr containing a reference to a GOT 2541 /// equivalent global, by a target specific GOT pc relative access to the 2542 /// final symbol. 2543 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2544 const Constant *BaseCst, 2545 uint64_t Offset) { 2546 // The global @foo below illustrates a global that uses a got equivalent. 2547 // 2548 // @bar = global i32 42 2549 // @gotequiv = private unnamed_addr constant i32* @bar 2550 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2551 // i64 ptrtoint (i32* @foo to i64)) 2552 // to i32) 2553 // 2554 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2555 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2556 // form: 2557 // 2558 // foo = cstexpr, where 2559 // cstexpr := <gotequiv> - "." + <cst> 2560 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2561 // 2562 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2563 // 2564 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2565 // gotpcrelcst := <offset from @foo base> + <cst> 2566 MCValue MV; 2567 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2568 return; 2569 const MCSymbolRefExpr *SymA = MV.getSymA(); 2570 if (!SymA) 2571 return; 2572 2573 // Check that GOT equivalent symbol is cached. 2574 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2575 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2576 return; 2577 2578 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2579 if (!BaseGV) 2580 return; 2581 2582 // Check for a valid base symbol 2583 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2584 const MCSymbolRefExpr *SymB = MV.getSymB(); 2585 2586 if (!SymB || BaseSym != &SymB->getSymbol()) 2587 return; 2588 2589 // Make sure to match: 2590 // 2591 // gotpcrelcst := <offset from @foo base> + <cst> 2592 // 2593 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2594 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2595 // if the target knows how to encode it. 2596 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2597 if (GOTPCRelCst < 0) 2598 return; 2599 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2600 return; 2601 2602 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2603 // 2604 // bar: 2605 // .long 42 2606 // gotequiv: 2607 // .quad bar 2608 // foo: 2609 // .long gotequiv - "." + <cst> 2610 // 2611 // is replaced by the target specific equivalent to: 2612 // 2613 // bar: 2614 // .long 42 2615 // foo: 2616 // .long bar@GOTPCREL+<gotpcrelcst> 2617 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2618 const GlobalVariable *GV = Result.first; 2619 int NumUses = (int)Result.second; 2620 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2621 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2622 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2623 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2624 2625 // Update GOT equivalent usage information 2626 --NumUses; 2627 if (NumUses >= 0) 2628 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2629 } 2630 2631 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2632 AsmPrinter &AP, const Constant *BaseCV, 2633 uint64_t Offset) { 2634 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2635 2636 // Globals with sub-elements such as combinations of arrays and structs 2637 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2638 // constant symbol base and the current position with BaseCV and Offset. 2639 if (!BaseCV && CV->hasOneUse()) 2640 BaseCV = dyn_cast<Constant>(CV->user_back()); 2641 2642 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2643 return AP.OutStreamer->EmitZeros(Size); 2644 2645 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2646 switch (Size) { 2647 case 1: 2648 case 2: 2649 case 4: 2650 case 8: 2651 if (AP.isVerbose()) 2652 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2653 CI->getZExtValue()); 2654 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2655 return; 2656 default: 2657 emitGlobalConstantLargeInt(CI, AP); 2658 return; 2659 } 2660 } 2661 2662 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2663 return emitGlobalConstantFP(CFP, AP); 2664 2665 if (isa<ConstantPointerNull>(CV)) { 2666 AP.OutStreamer->EmitIntValue(0, Size); 2667 return; 2668 } 2669 2670 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2671 return emitGlobalConstantDataSequential(DL, CDS, AP); 2672 2673 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2674 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2675 2676 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2677 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2678 2679 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2680 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2681 // vectors). 2682 if (CE->getOpcode() == Instruction::BitCast) 2683 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2684 2685 if (Size > 8) { 2686 // If the constant expression's size is greater than 64-bits, then we have 2687 // to emit the value in chunks. Try to constant fold the value and emit it 2688 // that way. 2689 Constant *New = ConstantFoldConstant(CE, DL); 2690 if (New && New != CE) 2691 return emitGlobalConstantImpl(DL, New, AP); 2692 } 2693 } 2694 2695 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2696 return emitGlobalConstantVector(DL, V, AP); 2697 2698 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2699 // thread the streamer with EmitValue. 2700 const MCExpr *ME = AP.lowerConstant(CV); 2701 2702 // Since lowerConstant already folded and got rid of all IR pointer and 2703 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2704 // directly. 2705 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2706 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2707 2708 AP.OutStreamer->EmitValue(ME, Size); 2709 } 2710 2711 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2712 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2713 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2714 if (Size) 2715 emitGlobalConstantImpl(DL, CV, *this); 2716 else if (MAI->hasSubsectionsViaSymbols()) { 2717 // If the global has zero size, emit a single byte so that two labels don't 2718 // look like they are at the same location. 2719 OutStreamer->EmitIntValue(0, 1); 2720 } 2721 } 2722 2723 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2724 // Target doesn't support this yet! 2725 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2726 } 2727 2728 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2729 if (Offset > 0) 2730 OS << '+' << Offset; 2731 else if (Offset < 0) 2732 OS << Offset; 2733 } 2734 2735 //===----------------------------------------------------------------------===// 2736 // Symbol Lowering Routines. 2737 //===----------------------------------------------------------------------===// 2738 2739 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2740 return OutContext.createTempSymbol(Name, true); 2741 } 2742 2743 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2744 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2745 } 2746 2747 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2748 return MMI->getAddrLabelSymbol(BB); 2749 } 2750 2751 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2752 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2753 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) { 2754 const MachineConstantPoolEntry &CPE = 2755 MF->getConstantPool()->getConstants()[CPID]; 2756 if (!CPE.isMachineConstantPoolEntry()) { 2757 const DataLayout &DL = MF->getDataLayout(); 2758 SectionKind Kind = CPE.getSectionKind(&DL); 2759 const Constant *C = CPE.Val.ConstVal; 2760 unsigned Align = CPE.Alignment; 2761 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2762 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2763 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2764 if (Sym->isUndefined()) 2765 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2766 return Sym; 2767 } 2768 } 2769 } 2770 } 2771 2772 const DataLayout &DL = getDataLayout(); 2773 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2774 "CPI" + Twine(getFunctionNumber()) + "_" + 2775 Twine(CPID)); 2776 } 2777 2778 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2779 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2780 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2781 } 2782 2783 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2784 /// FIXME: privatize to AsmPrinter. 2785 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2786 const DataLayout &DL = getDataLayout(); 2787 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2788 Twine(getFunctionNumber()) + "_" + 2789 Twine(UID) + "_set_" + Twine(MBBID)); 2790 } 2791 2792 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2793 StringRef Suffix) const { 2794 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2795 } 2796 2797 /// Return the MCSymbol for the specified ExternalSymbol. 2798 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2799 SmallString<60> NameStr; 2800 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2801 return OutContext.getOrCreateSymbol(NameStr); 2802 } 2803 2804 /// PrintParentLoopComment - Print comments about parent loops of this one. 2805 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2806 unsigned FunctionNumber) { 2807 if (!Loop) return; 2808 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2809 OS.indent(Loop->getLoopDepth()*2) 2810 << "Parent Loop BB" << FunctionNumber << "_" 2811 << Loop->getHeader()->getNumber() 2812 << " Depth=" << Loop->getLoopDepth() << '\n'; 2813 } 2814 2815 /// PrintChildLoopComment - Print comments about child loops within 2816 /// the loop for this basic block, with nesting. 2817 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2818 unsigned FunctionNumber) { 2819 // Add child loop information 2820 for (const MachineLoop *CL : *Loop) { 2821 OS.indent(CL->getLoopDepth()*2) 2822 << "Child Loop BB" << FunctionNumber << "_" 2823 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2824 << '\n'; 2825 PrintChildLoopComment(OS, CL, FunctionNumber); 2826 } 2827 } 2828 2829 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2830 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2831 const MachineLoopInfo *LI, 2832 const AsmPrinter &AP) { 2833 // Add loop depth information 2834 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2835 if (!Loop) return; 2836 2837 MachineBasicBlock *Header = Loop->getHeader(); 2838 assert(Header && "No header for loop"); 2839 2840 // If this block is not a loop header, just print out what is the loop header 2841 // and return. 2842 if (Header != &MBB) { 2843 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2844 Twine(AP.getFunctionNumber())+"_" + 2845 Twine(Loop->getHeader()->getNumber())+ 2846 " Depth="+Twine(Loop->getLoopDepth())); 2847 return; 2848 } 2849 2850 // Otherwise, it is a loop header. Print out information about child and 2851 // parent loops. 2852 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2853 2854 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2855 2856 OS << "=>"; 2857 OS.indent(Loop->getLoopDepth()*2-2); 2858 2859 OS << "This "; 2860 if (Loop->empty()) 2861 OS << "Inner "; 2862 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2863 2864 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2865 } 2866 2867 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2868 MCCodePaddingContext &Context) const { 2869 assert(MF != nullptr && "Machine function must be valid"); 2870 Context.IsPaddingActive = !MF->hasInlineAsm() && 2871 !MF->getFunction().hasOptSize() && 2872 TM.getOptLevel() != CodeGenOpt::None; 2873 Context.IsBasicBlockReachableViaFallthrough = 2874 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2875 MBB.pred_end(); 2876 Context.IsBasicBlockReachableViaBranch = 2877 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2878 } 2879 2880 /// EmitBasicBlockStart - This method prints the label for the specified 2881 /// MachineBasicBlock, an alignment (if present) and a comment describing 2882 /// it if appropriate. 2883 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2884 // End the previous funclet and start a new one. 2885 if (MBB.isEHFuncletEntry()) { 2886 for (const HandlerInfo &HI : Handlers) { 2887 HI.Handler->endFunclet(); 2888 HI.Handler->beginFunclet(MBB); 2889 } 2890 } 2891 2892 // Emit an alignment directive for this block, if needed. 2893 if (unsigned Align = MBB.getAlignment()) 2894 EmitAlignment(Align); 2895 MCCodePaddingContext Context; 2896 setupCodePaddingContext(MBB, Context); 2897 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2898 2899 // If the block has its address taken, emit any labels that were used to 2900 // reference the block. It is possible that there is more than one label 2901 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2902 // the references were generated. 2903 if (MBB.hasAddressTaken()) { 2904 const BasicBlock *BB = MBB.getBasicBlock(); 2905 if (isVerbose()) 2906 OutStreamer->AddComment("Block address taken"); 2907 2908 // MBBs can have their address taken as part of CodeGen without having 2909 // their corresponding BB's address taken in IR 2910 if (BB->hasAddressTaken()) 2911 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2912 OutStreamer->EmitLabel(Sym); 2913 } 2914 2915 // Print some verbose block comments. 2916 if (isVerbose()) { 2917 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2918 if (BB->hasName()) { 2919 BB->printAsOperand(OutStreamer->GetCommentOS(), 2920 /*PrintType=*/false, BB->getModule()); 2921 OutStreamer->GetCommentOS() << '\n'; 2922 } 2923 } 2924 2925 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2926 emitBasicBlockLoopComments(MBB, MLI, *this); 2927 } 2928 2929 // Print the main label for the block. 2930 if (MBB.pred_empty() || 2931 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2932 !MBB.hasLabelMustBeEmitted())) { 2933 if (isVerbose()) { 2934 // NOTE: Want this comment at start of line, don't emit with AddComment. 2935 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2936 false); 2937 } 2938 } else { 2939 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 2940 OutStreamer->AddComment("Label of block must be emitted"); 2941 OutStreamer->EmitLabel(MBB.getSymbol()); 2942 } 2943 } 2944 2945 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2946 MCCodePaddingContext Context; 2947 setupCodePaddingContext(MBB, Context); 2948 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2949 } 2950 2951 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2952 bool IsDefinition) const { 2953 MCSymbolAttr Attr = MCSA_Invalid; 2954 2955 switch (Visibility) { 2956 default: break; 2957 case GlobalValue::HiddenVisibility: 2958 if (IsDefinition) 2959 Attr = MAI->getHiddenVisibilityAttr(); 2960 else 2961 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2962 break; 2963 case GlobalValue::ProtectedVisibility: 2964 Attr = MAI->getProtectedVisibilityAttr(); 2965 break; 2966 } 2967 2968 if (Attr != MCSA_Invalid) 2969 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2970 } 2971 2972 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2973 /// exactly one predecessor and the control transfer mechanism between 2974 /// the predecessor and this block is a fall-through. 2975 bool AsmPrinter:: 2976 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2977 // If this is a landing pad, it isn't a fall through. If it has no preds, 2978 // then nothing falls through to it. 2979 if (MBB->isEHPad() || MBB->pred_empty()) 2980 return false; 2981 2982 // If there isn't exactly one predecessor, it can't be a fall through. 2983 if (MBB->pred_size() > 1) 2984 return false; 2985 2986 // The predecessor has to be immediately before this block. 2987 MachineBasicBlock *Pred = *MBB->pred_begin(); 2988 if (!Pred->isLayoutSuccessor(MBB)) 2989 return false; 2990 2991 // If the block is completely empty, then it definitely does fall through. 2992 if (Pred->empty()) 2993 return true; 2994 2995 // Check the terminators in the previous blocks 2996 for (const auto &MI : Pred->terminators()) { 2997 // If it is not a simple branch, we are in a table somewhere. 2998 if (!MI.isBranch() || MI.isIndirectBranch()) 2999 return false; 3000 3001 // If we are the operands of one of the branches, this is not a fall 3002 // through. Note that targets with delay slots will usually bundle 3003 // terminators with the delay slot instruction. 3004 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3005 if (OP->isJTI()) 3006 return false; 3007 if (OP->isMBB() && OP->getMBB() == MBB) 3008 return false; 3009 } 3010 } 3011 3012 return true; 3013 } 3014 3015 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3016 if (!S.usesMetadata()) 3017 return nullptr; 3018 3019 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3020 gcp_map_type::iterator GCPI = GCMap.find(&S); 3021 if (GCPI != GCMap.end()) 3022 return GCPI->second.get(); 3023 3024 auto Name = S.getName(); 3025 3026 for (GCMetadataPrinterRegistry::iterator 3027 I = GCMetadataPrinterRegistry::begin(), 3028 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3029 if (Name == I->getName()) { 3030 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3031 GMP->S = &S; 3032 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3033 return IterBool.first->second.get(); 3034 } 3035 3036 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3037 } 3038 3039 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3040 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3041 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3042 bool NeedsDefault = false; 3043 if (MI->begin() == MI->end()) 3044 // No GC strategy, use the default format. 3045 NeedsDefault = true; 3046 else 3047 for (auto &I : *MI) { 3048 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3049 if (MP->emitStackMaps(SM, *this)) 3050 continue; 3051 // The strategy doesn't have printer or doesn't emit custom stack maps. 3052 // Use the default format. 3053 NeedsDefault = true; 3054 } 3055 3056 if (NeedsDefault) 3057 SM.serializeToStackMapSection(); 3058 } 3059 3060 /// Pin vtable to this file. 3061 AsmPrinterHandler::~AsmPrinterHandler() = default; 3062 3063 void AsmPrinterHandler::markFunctionEnd() {} 3064 3065 // In the binary's "xray_instr_map" section, an array of these function entries 3066 // describes each instrumentation point. When XRay patches your code, the index 3067 // into this table will be given to your handler as a patch point identifier. 3068 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3069 const MCSymbol *CurrentFnSym) const { 3070 Out->EmitSymbolValue(Sled, Bytes); 3071 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3072 auto Kind8 = static_cast<uint8_t>(Kind); 3073 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3074 Out->EmitBinaryData( 3075 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3076 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3077 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3078 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3079 Out->EmitZeros(Padding); 3080 } 3081 3082 void AsmPrinter::emitXRayTable() { 3083 if (Sleds.empty()) 3084 return; 3085 3086 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3087 const Function &F = MF->getFunction(); 3088 MCSection *InstMap = nullptr; 3089 MCSection *FnSledIndex = nullptr; 3090 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3091 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3092 assert(Associated != nullptr); 3093 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3094 std::string GroupName; 3095 if (F.hasComdat()) { 3096 Flags |= ELF::SHF_GROUP; 3097 GroupName = F.getComdat()->getName(); 3098 } 3099 3100 auto UniqueID = ++XRayFnUniqueID; 3101 InstMap = 3102 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3103 GroupName, UniqueID, Associated); 3104 FnSledIndex = 3105 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3106 GroupName, UniqueID, Associated); 3107 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3108 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3109 SectionKind::getReadOnlyWithRel()); 3110 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3111 SectionKind::getReadOnlyWithRel()); 3112 } else { 3113 llvm_unreachable("Unsupported target"); 3114 } 3115 3116 auto WordSizeBytes = MAI->getCodePointerSize(); 3117 3118 // Now we switch to the instrumentation map section. Because this is done 3119 // per-function, we are able to create an index entry that will represent the 3120 // range of sleds associated with a function. 3121 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3122 OutStreamer->SwitchSection(InstMap); 3123 OutStreamer->EmitLabel(SledsStart); 3124 for (const auto &Sled : Sleds) 3125 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3126 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3127 OutStreamer->EmitLabel(SledsEnd); 3128 3129 // We then emit a single entry in the index per function. We use the symbols 3130 // that bound the instrumentation map as the range for a specific function. 3131 // Each entry here will be 2 * word size aligned, as we're writing down two 3132 // pointers. This should work for both 32-bit and 64-bit platforms. 3133 OutStreamer->SwitchSection(FnSledIndex); 3134 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3135 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3136 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3137 OutStreamer->SwitchSection(PrevSection); 3138 Sleds.clear(); 3139 } 3140 3141 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3142 SledKind Kind, uint8_t Version) { 3143 const Function &F = MI.getMF()->getFunction(); 3144 auto Attr = F.getFnAttribute("function-instrument"); 3145 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3146 bool AlwaysInstrument = 3147 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3148 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3149 Kind = SledKind::LOG_ARGS_ENTER; 3150 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3151 AlwaysInstrument, &F, Version}); 3152 } 3153 3154 uint16_t AsmPrinter::getDwarfVersion() const { 3155 return OutStreamer->getContext().getDwarfVersion(); 3156 } 3157 3158 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3159 OutStreamer->getContext().setDwarfVersion(Version); 3160 } 3161