1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/AsmPrinterHandler.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Comdat.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GlobalAlias.h"
71 #include "llvm/IR/GlobalIFunc.h"
72 #include "llvm/IR/GlobalIndirectSymbol.h"
73 #include "llvm/IR/GlobalObject.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Mangler.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/RemarkStreamer.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/Value.h"
84 #include "llvm/MC/MCAsmInfo.h"
85 #include "llvm/MC/MCCodePadder.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCStreamer.h"
96 #include "llvm/MC/MCSubtargetInfo.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/MC/MCSymbolELF.h"
99 #include "llvm/MC/MCTargetOptions.h"
100 #include "llvm/MC/MCValue.h"
101 #include "llvm/MC/SectionKind.h"
102 #include "llvm/Pass.h"
103 #include "llvm/Remarks/Remark.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/CommandLine.h"
106 #include "llvm/Support/Compiler.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/Support/Format.h"
109 #include "llvm/Support/MathExtras.h"
110 #include "llvm/Support/Path.h"
111 #include "llvm/Support/TargetRegistry.h"
112 #include "llvm/Support/Timer.h"
113 #include "llvm/Support/raw_ostream.h"
114 #include "llvm/Target/TargetLoweringObjectFile.h"
115 #include "llvm/Target/TargetMachine.h"
116 #include "llvm/Target/TargetOptions.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cinttypes>
120 #include <cstdint>
121 #include <iterator>
122 #include <limits>
123 #include <memory>
124 #include <string>
125 #include <utility>
126 #include <vector>
127 
128 using namespace llvm;
129 
130 #define DEBUG_TYPE "asm-printer"
131 
132 static const char *const DWARFGroupName = "dwarf";
133 static const char *const DWARFGroupDescription = "DWARF Emission";
134 static const char *const DbgTimerName = "emit";
135 static const char *const DbgTimerDescription = "Debug Info Emission";
136 static const char *const EHTimerName = "write_exception";
137 static const char *const EHTimerDescription = "DWARF Exception Writer";
138 static const char *const CFGuardName = "Control Flow Guard";
139 static const char *const CFGuardDescription = "Control Flow Guard Tables";
140 static const char *const CodeViewLineTablesGroupName = "linetables";
141 static const char *const CodeViewLineTablesGroupDescription =
142   "CodeView Line Tables";
143 
144 STATISTIC(EmittedInsts, "Number of machine instrs printed");
145 
146 static cl::opt<bool> EnableRemarksSection(
147     "remarks-section",
148     cl::desc("Emit a section containing remark diagnostics metadata"),
149     cl::init(false));
150 
151 char AsmPrinter::ID = 0;
152 
153 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
154 
155 static gcp_map_type &getGCMap(void *&P) {
156   if (!P)
157     P = new gcp_map_type();
158   return *(gcp_map_type*)P;
159 }
160 
161 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
162 /// value in log2 form.  This rounds up to the preferred alignment if possible
163 /// and legal.
164 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
165                                    unsigned InBits = 0) {
166   unsigned NumBits = 0;
167   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
168     NumBits = DL.getPreferredAlignmentLog(GVar);
169 
170   // If InBits is specified, round it to it.
171   if (InBits > NumBits)
172     NumBits = InBits;
173 
174   // If the GV has a specified alignment, take it into account.
175   if (GV->getAlignment() == 0)
176     return NumBits;
177 
178   unsigned GVAlign = Log2_32(GV->getAlignment());
179 
180   // If the GVAlign is larger than NumBits, or if we are required to obey
181   // NumBits because the GV has an assigned section, obey it.
182   if (GVAlign > NumBits || GV->hasSection())
183     NumBits = GVAlign;
184   return NumBits;
185 }
186 
187 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
188     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
189       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
190   VerboseAsm = OutStreamer->isVerboseAsm();
191 }
192 
193 AsmPrinter::~AsmPrinter() {
194   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
195 
196   if (GCMetadataPrinters) {
197     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
198 
199     delete &GCMap;
200     GCMetadataPrinters = nullptr;
201   }
202 }
203 
204 bool AsmPrinter::isPositionIndependent() const {
205   return TM.isPositionIndependent();
206 }
207 
208 /// getFunctionNumber - Return a unique ID for the current function.
209 unsigned AsmPrinter::getFunctionNumber() const {
210   return MF->getFunctionNumber();
211 }
212 
213 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
214   return *TM.getObjFileLowering();
215 }
216 
217 const DataLayout &AsmPrinter::getDataLayout() const {
218   return MMI->getModule()->getDataLayout();
219 }
220 
221 // Do not use the cached DataLayout because some client use it without a Module
222 // (dsymutil, llvm-dwarfdump).
223 unsigned AsmPrinter::getPointerSize() const {
224   return TM.getPointerSize(0); // FIXME: Default address space
225 }
226 
227 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
228   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
229   return MF->getSubtarget<MCSubtargetInfo>();
230 }
231 
232 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
233   S.EmitInstruction(Inst, getSubtargetInfo());
234 }
235 
236 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
237   assert(DD && "Dwarf debug file is not defined.");
238   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
239   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
240 }
241 
242 /// getCurrentSection() - Return the current section we are emitting to.
243 const MCSection *AsmPrinter::getCurrentSection() const {
244   return OutStreamer->getCurrentSectionOnly();
245 }
246 
247 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
248   AU.setPreservesAll();
249   MachineFunctionPass::getAnalysisUsage(AU);
250   AU.addRequired<MachineModuleInfo>();
251   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
252   AU.addRequired<GCModuleInfo>();
253 }
254 
255 bool AsmPrinter::doInitialization(Module &M) {
256   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
257 
258   // Initialize TargetLoweringObjectFile.
259   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
260     .Initialize(OutContext, TM);
261 
262   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
263       .getModuleMetadata(M);
264 
265   OutStreamer->InitSections(false);
266 
267   // Emit the version-min deployment target directive if needed.
268   //
269   // FIXME: If we end up with a collection of these sorts of Darwin-specific
270   // or ELF-specific things, it may make sense to have a platform helper class
271   // that will work with the target helper class. For now keep it here, as the
272   // alternative is duplicated code in each of the target asm printers that
273   // use the directive, where it would need the same conditionalization
274   // anyway.
275   const Triple &Target = TM.getTargetTriple();
276   OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion());
277 
278   // Allow the target to emit any magic that it wants at the start of the file.
279   EmitStartOfAsmFile(M);
280 
281   // Very minimal debug info. It is ignored if we emit actual debug info. If we
282   // don't, this at least helps the user find where a global came from.
283   if (MAI->hasSingleParameterDotFile()) {
284     // .file "foo.c"
285     OutStreamer->EmitFileDirective(
286         llvm::sys::path::filename(M.getSourceFileName()));
287   }
288 
289   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
290   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
291   for (auto &I : *MI)
292     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
293       MP->beginAssembly(M, *MI, *this);
294 
295   // Emit module-level inline asm if it exists.
296   if (!M.getModuleInlineAsm().empty()) {
297     // We're at the module level. Construct MCSubtarget from the default CPU
298     // and target triple.
299     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
300         TM.getTargetTriple().str(), TM.getTargetCPU(),
301         TM.getTargetFeatureString()));
302     OutStreamer->AddComment("Start of file scope inline assembly");
303     OutStreamer->AddBlankLine();
304     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
305                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
306     OutStreamer->AddComment("End of file scope inline assembly");
307     OutStreamer->AddBlankLine();
308   }
309 
310   if (MAI->doesSupportDebugInformation()) {
311     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
312     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
313       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
314                                      DbgTimerName, DbgTimerDescription,
315                                      CodeViewLineTablesGroupName,
316                                      CodeViewLineTablesGroupDescription));
317     }
318     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
319       DD = new DwarfDebug(this, &M);
320       DD->beginModule();
321       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
322                                      DWARFGroupName, DWARFGroupDescription));
323     }
324   }
325 
326   switch (MAI->getExceptionHandlingType()) {
327   case ExceptionHandling::SjLj:
328   case ExceptionHandling::DwarfCFI:
329   case ExceptionHandling::ARM:
330     isCFIMoveForDebugging = true;
331     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
332       break;
333     for (auto &F: M.getFunctionList()) {
334       // If the module contains any function with unwind data,
335       // .eh_frame has to be emitted.
336       // Ignore functions that won't get emitted.
337       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
338         isCFIMoveForDebugging = false;
339         break;
340       }
341     }
342     break;
343   default:
344     isCFIMoveForDebugging = false;
345     break;
346   }
347 
348   EHStreamer *ES = nullptr;
349   switch (MAI->getExceptionHandlingType()) {
350   case ExceptionHandling::None:
351     break;
352   case ExceptionHandling::SjLj:
353   case ExceptionHandling::DwarfCFI:
354     ES = new DwarfCFIException(this);
355     break;
356   case ExceptionHandling::ARM:
357     ES = new ARMException(this);
358     break;
359   case ExceptionHandling::WinEH:
360     switch (MAI->getWinEHEncodingType()) {
361     default: llvm_unreachable("unsupported unwinding information encoding");
362     case WinEH::EncodingType::Invalid:
363       break;
364     case WinEH::EncodingType::X86:
365     case WinEH::EncodingType::Itanium:
366       ES = new WinException(this);
367       break;
368     }
369     break;
370   case ExceptionHandling::Wasm:
371     ES = new WasmException(this);
372     break;
373   }
374   if (ES)
375     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
376                                    DWARFGroupName, DWARFGroupDescription));
377 
378   if (mdconst::extract_or_null<ConstantInt>(
379           MMI->getModule()->getModuleFlag("cfguardtable")))
380     Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName,
381                                    CFGuardDescription, DWARFGroupName,
382                                    DWARFGroupDescription));
383 
384   return false;
385 }
386 
387 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
388   if (!MAI.hasWeakDefCanBeHiddenDirective())
389     return false;
390 
391   return GV->canBeOmittedFromSymbolTable();
392 }
393 
394 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
395   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
396   switch (Linkage) {
397   case GlobalValue::CommonLinkage:
398   case GlobalValue::LinkOnceAnyLinkage:
399   case GlobalValue::LinkOnceODRLinkage:
400   case GlobalValue::WeakAnyLinkage:
401   case GlobalValue::WeakODRLinkage:
402     if (MAI->hasWeakDefDirective()) {
403       // .globl _foo
404       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
405 
406       if (!canBeHidden(GV, *MAI))
407         // .weak_definition _foo
408         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
409       else
410         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
411     } else if (MAI->hasLinkOnceDirective()) {
412       // .globl _foo
413       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
414       //NOTE: linkonce is handled by the section the symbol was assigned to.
415     } else {
416       // .weak _foo
417       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
418     }
419     return;
420   case GlobalValue::ExternalLinkage:
421     // If external, declare as a global symbol: .globl _foo
422     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
423     return;
424   case GlobalValue::PrivateLinkage:
425   case GlobalValue::InternalLinkage:
426     return;
427   case GlobalValue::AppendingLinkage:
428   case GlobalValue::AvailableExternallyLinkage:
429   case GlobalValue::ExternalWeakLinkage:
430     llvm_unreachable("Should never emit this");
431   }
432   llvm_unreachable("Unknown linkage type!");
433 }
434 
435 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
436                                    const GlobalValue *GV) const {
437   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
438 }
439 
440 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
441   return TM.getSymbol(GV);
442 }
443 
444 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
445 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
446   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
447   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
448          "No emulated TLS variables in the common section");
449 
450   // Never emit TLS variable xyz in emulated TLS model.
451   // The initialization value is in __emutls_t.xyz instead of xyz.
452   if (IsEmuTLSVar)
453     return;
454 
455   if (GV->hasInitializer()) {
456     // Check to see if this is a special global used by LLVM, if so, emit it.
457     if (EmitSpecialLLVMGlobal(GV))
458       return;
459 
460     // Skip the emission of global equivalents. The symbol can be emitted later
461     // on by emitGlobalGOTEquivs in case it turns out to be needed.
462     if (GlobalGOTEquivs.count(getSymbol(GV)))
463       return;
464 
465     if (isVerbose()) {
466       // When printing the control variable __emutls_v.*,
467       // we don't need to print the original TLS variable name.
468       GV->printAsOperand(OutStreamer->GetCommentOS(),
469                      /*PrintType=*/false, GV->getParent());
470       OutStreamer->GetCommentOS() << '\n';
471     }
472   }
473 
474   MCSymbol *GVSym = getSymbol(GV);
475   MCSymbol *EmittedSym = GVSym;
476 
477   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
478   // attributes.
479   // GV's or GVSym's attributes will be used for the EmittedSym.
480   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
481 
482   if (!GV->hasInitializer())   // External globals require no extra code.
483     return;
484 
485   GVSym->redefineIfPossible();
486   if (GVSym->isDefined() || GVSym->isVariable())
487     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
488                        "' is already defined");
489 
490   if (MAI->hasDotTypeDotSizeDirective())
491     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
492 
493   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
494 
495   const DataLayout &DL = GV->getParent()->getDataLayout();
496   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
497 
498   // If the alignment is specified, we *must* obey it.  Overaligning a global
499   // with a specified alignment is a prompt way to break globals emitted to
500   // sections and expected to be contiguous (e.g. ObjC metadata).
501   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
502 
503   for (const HandlerInfo &HI : Handlers) {
504     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
505                        HI.TimerGroupName, HI.TimerGroupDescription,
506                        TimePassesIsEnabled);
507     HI.Handler->setSymbolSize(GVSym, Size);
508   }
509 
510   // Handle common symbols
511   if (GVKind.isCommon()) {
512     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
513     unsigned Align = 1 << AlignLog;
514     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
515       Align = 0;
516 
517     // .comm _foo, 42, 4
518     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
519     return;
520   }
521 
522   // Determine to which section this global should be emitted.
523   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
524 
525   // If we have a bss global going to a section that supports the
526   // zerofill directive, do so here.
527   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
528       TheSection->isVirtualSection()) {
529     if (Size == 0)
530       Size = 1; // zerofill of 0 bytes is undefined.
531     unsigned Align = 1 << AlignLog;
532     EmitLinkage(GV, GVSym);
533     // .zerofill __DATA, __bss, _foo, 400, 5
534     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
535     return;
536   }
537 
538   // If this is a BSS local symbol and we are emitting in the BSS
539   // section use .lcomm/.comm directive.
540   if (GVKind.isBSSLocal() &&
541       getObjFileLowering().getBSSSection() == TheSection) {
542     if (Size == 0)
543       Size = 1; // .comm Foo, 0 is undefined, avoid it.
544     unsigned Align = 1 << AlignLog;
545 
546     // Use .lcomm only if it supports user-specified alignment.
547     // Otherwise, while it would still be correct to use .lcomm in some
548     // cases (e.g. when Align == 1), the external assembler might enfore
549     // some -unknown- default alignment behavior, which could cause
550     // spurious differences between external and integrated assembler.
551     // Prefer to simply fall back to .local / .comm in this case.
552     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
553       // .lcomm _foo, 42
554       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
555       return;
556     }
557 
558     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
559       Align = 0;
560 
561     // .local _foo
562     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
563     // .comm _foo, 42, 4
564     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
565     return;
566   }
567 
568   // Handle thread local data for mach-o which requires us to output an
569   // additional structure of data and mangle the original symbol so that we
570   // can reference it later.
571   //
572   // TODO: This should become an "emit thread local global" method on TLOF.
573   // All of this macho specific stuff should be sunk down into TLOFMachO and
574   // stuff like "TLSExtraDataSection" should no longer be part of the parent
575   // TLOF class.  This will also make it more obvious that stuff like
576   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
577   // specific code.
578   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
579     // Emit the .tbss symbol
580     MCSymbol *MangSym =
581         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
582 
583     if (GVKind.isThreadBSS()) {
584       TheSection = getObjFileLowering().getTLSBSSSection();
585       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
586     } else if (GVKind.isThreadData()) {
587       OutStreamer->SwitchSection(TheSection);
588 
589       EmitAlignment(AlignLog, GV);
590       OutStreamer->EmitLabel(MangSym);
591 
592       EmitGlobalConstant(GV->getParent()->getDataLayout(),
593                          GV->getInitializer());
594     }
595 
596     OutStreamer->AddBlankLine();
597 
598     // Emit the variable struct for the runtime.
599     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
600 
601     OutStreamer->SwitchSection(TLVSect);
602     // Emit the linkage here.
603     EmitLinkage(GV, GVSym);
604     OutStreamer->EmitLabel(GVSym);
605 
606     // Three pointers in size:
607     //   - __tlv_bootstrap - used to make sure support exists
608     //   - spare pointer, used when mapped by the runtime
609     //   - pointer to mangled symbol above with initializer
610     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
611     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
612                                 PtrSize);
613     OutStreamer->EmitIntValue(0, PtrSize);
614     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
615 
616     OutStreamer->AddBlankLine();
617     return;
618   }
619 
620   MCSymbol *EmittedInitSym = GVSym;
621 
622   OutStreamer->SwitchSection(TheSection);
623 
624   EmitLinkage(GV, EmittedInitSym);
625   EmitAlignment(AlignLog, GV);
626 
627   OutStreamer->EmitLabel(EmittedInitSym);
628 
629   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
630 
631   if (MAI->hasDotTypeDotSizeDirective())
632     // .size foo, 42
633     OutStreamer->emitELFSize(EmittedInitSym,
634                              MCConstantExpr::create(Size, OutContext));
635 
636   OutStreamer->AddBlankLine();
637 }
638 
639 /// Emit the directive and value for debug thread local expression
640 ///
641 /// \p Value - The value to emit.
642 /// \p Size - The size of the integer (in bytes) to emit.
643 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const {
644   OutStreamer->EmitValue(Value, Size);
645 }
646 
647 /// EmitFunctionHeader - This method emits the header for the current
648 /// function.
649 void AsmPrinter::EmitFunctionHeader() {
650   const Function &F = MF->getFunction();
651 
652   if (isVerbose())
653     OutStreamer->GetCommentOS()
654         << "-- Begin function "
655         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
656 
657   // Print out constants referenced by the function
658   EmitConstantPool();
659 
660   // Print the 'header' of function.
661   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
662   EmitVisibility(CurrentFnSym, F.getVisibility());
663 
664   EmitLinkage(&F, CurrentFnSym);
665   if (MAI->hasFunctionAlignment())
666     EmitAlignment(MF->getAlignment(), &F);
667 
668   if (MAI->hasDotTypeDotSizeDirective())
669     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
670 
671   if (F.hasFnAttribute(Attribute::Cold))
672     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold);
673 
674   if (isVerbose()) {
675     F.printAsOperand(OutStreamer->GetCommentOS(),
676                    /*PrintType=*/false, F.getParent());
677     OutStreamer->GetCommentOS() << '\n';
678   }
679 
680   // Emit the prefix data.
681   if (F.hasPrefixData()) {
682     if (MAI->hasSubsectionsViaSymbols()) {
683       // Preserving prefix data on platforms which use subsections-via-symbols
684       // is a bit tricky. Here we introduce a symbol for the prefix data
685       // and use the .alt_entry attribute to mark the function's real entry point
686       // as an alternative entry point to the prefix-data symbol.
687       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
688       OutStreamer->EmitLabel(PrefixSym);
689 
690       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
691 
692       // Emit an .alt_entry directive for the actual function symbol.
693       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
694     } else {
695       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
696     }
697   }
698 
699   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
700   // do their wild and crazy things as required.
701   EmitFunctionEntryLabel();
702 
703   // If the function had address-taken blocks that got deleted, then we have
704   // references to the dangling symbols.  Emit them at the start of the function
705   // so that we don't get references to undefined symbols.
706   std::vector<MCSymbol*> DeadBlockSyms;
707   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
708   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
709     OutStreamer->AddComment("Address taken block that was later removed");
710     OutStreamer->EmitLabel(DeadBlockSyms[i]);
711   }
712 
713   if (CurrentFnBegin) {
714     if (MAI->useAssignmentForEHBegin()) {
715       MCSymbol *CurPos = OutContext.createTempSymbol();
716       OutStreamer->EmitLabel(CurPos);
717       OutStreamer->EmitAssignment(CurrentFnBegin,
718                                  MCSymbolRefExpr::create(CurPos, OutContext));
719     } else {
720       OutStreamer->EmitLabel(CurrentFnBegin);
721     }
722   }
723 
724   // Emit pre-function debug and/or EH information.
725   for (const HandlerInfo &HI : Handlers) {
726     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
727                        HI.TimerGroupDescription, TimePassesIsEnabled);
728     HI.Handler->beginFunction(MF);
729   }
730 
731   // Emit the prologue data.
732   if (F.hasPrologueData())
733     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
734 }
735 
736 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
737 /// function.  This can be overridden by targets as required to do custom stuff.
738 void AsmPrinter::EmitFunctionEntryLabel() {
739   CurrentFnSym->redefineIfPossible();
740 
741   // The function label could have already been emitted if two symbols end up
742   // conflicting due to asm renaming.  Detect this and emit an error.
743   if (CurrentFnSym->isVariable())
744     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
745                        "' is a protected alias");
746   if (CurrentFnSym->isDefined())
747     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
748                        "' label emitted multiple times to assembly file");
749 
750   return OutStreamer->EmitLabel(CurrentFnSym);
751 }
752 
753 /// emitComments - Pretty-print comments for instructions.
754 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
755   const MachineFunction *MF = MI.getMF();
756   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
757 
758   // Check for spills and reloads
759 
760   // We assume a single instruction only has a spill or reload, not
761   // both.
762   Optional<unsigned> Size;
763   if ((Size = MI.getRestoreSize(TII))) {
764     CommentOS << *Size << "-byte Reload\n";
765   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
766     if (*Size)
767       CommentOS << *Size << "-byte Folded Reload\n";
768   } else if ((Size = MI.getSpillSize(TII))) {
769     CommentOS << *Size << "-byte Spill\n";
770   } else if ((Size = MI.getFoldedSpillSize(TII))) {
771     if (*Size)
772       CommentOS << *Size << "-byte Folded Spill\n";
773   }
774 
775   // Check for spill-induced copies
776   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
777     CommentOS << " Reload Reuse\n";
778 }
779 
780 /// emitImplicitDef - This method emits the specified machine instruction
781 /// that is an implicit def.
782 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
783   unsigned RegNo = MI->getOperand(0).getReg();
784 
785   SmallString<128> Str;
786   raw_svector_ostream OS(Str);
787   OS << "implicit-def: "
788      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
789 
790   OutStreamer->AddComment(OS.str());
791   OutStreamer->AddBlankLine();
792 }
793 
794 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
795   std::string Str;
796   raw_string_ostream OS(Str);
797   OS << "kill:";
798   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
799     const MachineOperand &Op = MI->getOperand(i);
800     assert(Op.isReg() && "KILL instruction must have only register operands");
801     OS << ' ' << (Op.isDef() ? "def " : "killed ")
802        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
803   }
804   AP.OutStreamer->AddComment(OS.str());
805   AP.OutStreamer->AddBlankLine();
806 }
807 
808 /// emitDebugValueComment - This method handles the target-independent form
809 /// of DBG_VALUE, returning true if it was able to do so.  A false return
810 /// means the target will need to handle MI in EmitInstruction.
811 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
812   // This code handles only the 4-operand target-independent form.
813   if (MI->getNumOperands() != 4)
814     return false;
815 
816   SmallString<128> Str;
817   raw_svector_ostream OS(Str);
818   OS << "DEBUG_VALUE: ";
819 
820   const DILocalVariable *V = MI->getDebugVariable();
821   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
822     StringRef Name = SP->getName();
823     if (!Name.empty())
824       OS << Name << ":";
825   }
826   OS << V->getName();
827   OS << " <- ";
828 
829   // The second operand is only an offset if it's an immediate.
830   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
831   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
832   const DIExpression *Expr = MI->getDebugExpression();
833   if (Expr->getNumElements()) {
834     OS << '[';
835     bool NeedSep = false;
836     for (auto Op : Expr->expr_ops()) {
837       if (NeedSep)
838         OS << ", ";
839       else
840         NeedSep = true;
841       OS << dwarf::OperationEncodingString(Op.getOp());
842       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
843         OS << ' ' << Op.getArg(I);
844     }
845     OS << "] ";
846   }
847 
848   // Register or immediate value. Register 0 means undef.
849   if (MI->getOperand(0).isFPImm()) {
850     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
851     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
852       OS << (double)APF.convertToFloat();
853     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
854       OS << APF.convertToDouble();
855     } else {
856       // There is no good way to print long double.  Convert a copy to
857       // double.  Ah well, it's only a comment.
858       bool ignored;
859       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
860                   &ignored);
861       OS << "(long double) " << APF.convertToDouble();
862     }
863   } else if (MI->getOperand(0).isImm()) {
864     OS << MI->getOperand(0).getImm();
865   } else if (MI->getOperand(0).isCImm()) {
866     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
867   } else {
868     unsigned Reg;
869     if (MI->getOperand(0).isReg()) {
870       Reg = MI->getOperand(0).getReg();
871     } else {
872       assert(MI->getOperand(0).isFI() && "Unknown operand type");
873       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
874       Offset += TFI->getFrameIndexReference(*AP.MF,
875                                             MI->getOperand(0).getIndex(), Reg);
876       MemLoc = true;
877     }
878     if (Reg == 0) {
879       // Suppress offset, it is not meaningful here.
880       OS << "undef";
881       // NOTE: Want this comment at start of line, don't emit with AddComment.
882       AP.OutStreamer->emitRawComment(OS.str());
883       return true;
884     }
885     if (MemLoc)
886       OS << '[';
887     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
888   }
889 
890   if (MemLoc)
891     OS << '+' << Offset << ']';
892 
893   // NOTE: Want this comment at start of line, don't emit with AddComment.
894   AP.OutStreamer->emitRawComment(OS.str());
895   return true;
896 }
897 
898 /// This method handles the target-independent form of DBG_LABEL, returning
899 /// true if it was able to do so.  A false return means the target will need
900 /// to handle MI in EmitInstruction.
901 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
902   if (MI->getNumOperands() != 1)
903     return false;
904 
905   SmallString<128> Str;
906   raw_svector_ostream OS(Str);
907   OS << "DEBUG_LABEL: ";
908 
909   const DILabel *V = MI->getDebugLabel();
910   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
911     StringRef Name = SP->getName();
912     if (!Name.empty())
913       OS << Name << ":";
914   }
915   OS << V->getName();
916 
917   // NOTE: Want this comment at start of line, don't emit with AddComment.
918   AP.OutStreamer->emitRawComment(OS.str());
919   return true;
920 }
921 
922 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
923   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
924       MF->getFunction().needsUnwindTableEntry())
925     return CFI_M_EH;
926 
927   if (MMI->hasDebugInfo())
928     return CFI_M_Debug;
929 
930   return CFI_M_None;
931 }
932 
933 bool AsmPrinter::needsSEHMoves() {
934   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
935 }
936 
937 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
938   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
939   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
940       ExceptionHandlingType != ExceptionHandling::ARM)
941     return;
942 
943   if (needsCFIMoves() == CFI_M_None)
944     return;
945 
946   // If there is no "real" instruction following this CFI instruction, skip
947   // emitting it; it would be beyond the end of the function's FDE range.
948   auto *MBB = MI.getParent();
949   auto I = std::next(MI.getIterator());
950   while (I != MBB->end() && I->isTransient())
951     ++I;
952   if (I == MBB->instr_end() &&
953       MBB->getReverseIterator() == MBB->getParent()->rbegin())
954     return;
955 
956   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
957   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
958   const MCCFIInstruction &CFI = Instrs[CFIIndex];
959   emitCFIInstruction(CFI);
960 }
961 
962 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
963   // The operands are the MCSymbol and the frame offset of the allocation.
964   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
965   int FrameOffset = MI.getOperand(1).getImm();
966 
967   // Emit a symbol assignment.
968   OutStreamer->EmitAssignment(FrameAllocSym,
969                              MCConstantExpr::create(FrameOffset, OutContext));
970 }
971 
972 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
973   if (!MF.getTarget().Options.EmitStackSizeSection)
974     return;
975 
976   MCSection *StackSizeSection =
977       getObjFileLowering().getStackSizesSection(*getCurrentSection());
978   if (!StackSizeSection)
979     return;
980 
981   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
982   // Don't emit functions with dynamic stack allocations.
983   if (FrameInfo.hasVarSizedObjects())
984     return;
985 
986   OutStreamer->PushSection();
987   OutStreamer->SwitchSection(StackSizeSection);
988 
989   const MCSymbol *FunctionSymbol = getFunctionBegin();
990   uint64_t StackSize = FrameInfo.getStackSize();
991   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
992   OutStreamer->EmitULEB128IntValue(StackSize);
993 
994   OutStreamer->PopSection();
995 }
996 
997 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
998                                            MachineModuleInfo *MMI) {
999   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1000     return true;
1001 
1002   // We might emit an EH table that uses function begin and end labels even if
1003   // we don't have any landingpads.
1004   if (!MF.getFunction().hasPersonalityFn())
1005     return false;
1006   return !isNoOpWithoutInvoke(
1007       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1008 }
1009 
1010 /// EmitFunctionBody - This method emits the body and trailer for a
1011 /// function.
1012 void AsmPrinter::EmitFunctionBody() {
1013   EmitFunctionHeader();
1014 
1015   // Emit target-specific gunk before the function body.
1016   EmitFunctionBodyStart();
1017 
1018   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1019 
1020   if (isVerbose()) {
1021     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1022     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1023     if (!MDT) {
1024       OwnedMDT = make_unique<MachineDominatorTree>();
1025       OwnedMDT->getBase().recalculate(*MF);
1026       MDT = OwnedMDT.get();
1027     }
1028 
1029     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1030     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1031     if (!MLI) {
1032       OwnedMLI = make_unique<MachineLoopInfo>();
1033       OwnedMLI->getBase().analyze(MDT->getBase());
1034       MLI = OwnedMLI.get();
1035     }
1036   }
1037 
1038   // Print out code for the function.
1039   bool HasAnyRealCode = false;
1040   int NumInstsInFunction = 0;
1041   for (auto &MBB : *MF) {
1042     // Print a label for the basic block.
1043     EmitBasicBlockStart(MBB);
1044     for (auto &MI : MBB) {
1045       // Print the assembly for the instruction.
1046       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1047           !MI.isDebugInstr()) {
1048         HasAnyRealCode = true;
1049         ++NumInstsInFunction;
1050       }
1051 
1052       // If there is a pre-instruction symbol, emit a label for it here.
1053       if (MCSymbol *S = MI.getPreInstrSymbol())
1054         OutStreamer->EmitLabel(S);
1055 
1056       if (ShouldPrintDebugScopes) {
1057         for (const HandlerInfo &HI : Handlers) {
1058           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1059                              HI.TimerGroupName, HI.TimerGroupDescription,
1060                              TimePassesIsEnabled);
1061           HI.Handler->beginInstruction(&MI);
1062         }
1063       }
1064 
1065       if (isVerbose())
1066         emitComments(MI, OutStreamer->GetCommentOS());
1067 
1068       switch (MI.getOpcode()) {
1069       case TargetOpcode::CFI_INSTRUCTION:
1070         emitCFIInstruction(MI);
1071         break;
1072       case TargetOpcode::LOCAL_ESCAPE:
1073         emitFrameAlloc(MI);
1074         break;
1075       case TargetOpcode::EH_LABEL:
1076       case TargetOpcode::GC_LABEL:
1077         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1078         break;
1079       case TargetOpcode::INLINEASM:
1080       case TargetOpcode::INLINEASM_BR:
1081         EmitInlineAsm(&MI);
1082         break;
1083       case TargetOpcode::DBG_VALUE:
1084         if (isVerbose()) {
1085           if (!emitDebugValueComment(&MI, *this))
1086             EmitInstruction(&MI);
1087         }
1088         break;
1089       case TargetOpcode::DBG_LABEL:
1090         if (isVerbose()) {
1091           if (!emitDebugLabelComment(&MI, *this))
1092             EmitInstruction(&MI);
1093         }
1094         break;
1095       case TargetOpcode::IMPLICIT_DEF:
1096         if (isVerbose()) emitImplicitDef(&MI);
1097         break;
1098       case TargetOpcode::KILL:
1099         if (isVerbose()) emitKill(&MI, *this);
1100         break;
1101       default:
1102         EmitInstruction(&MI);
1103         break;
1104       }
1105 
1106       // If there is a post-instruction symbol, emit a label for it here.
1107       if (MCSymbol *S = MI.getPostInstrSymbol())
1108         OutStreamer->EmitLabel(S);
1109 
1110       if (ShouldPrintDebugScopes) {
1111         for (const HandlerInfo &HI : Handlers) {
1112           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1113                              HI.TimerGroupName, HI.TimerGroupDescription,
1114                              TimePassesIsEnabled);
1115           HI.Handler->endInstruction();
1116         }
1117       }
1118     }
1119 
1120     EmitBasicBlockEnd(MBB);
1121   }
1122 
1123   EmittedInsts += NumInstsInFunction;
1124   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1125                                       MF->getFunction().getSubprogram(),
1126                                       &MF->front());
1127   R << ore::NV("NumInstructions", NumInstsInFunction)
1128     << " instructions in function";
1129   ORE->emit(R);
1130 
1131   // If the function is empty and the object file uses .subsections_via_symbols,
1132   // then we need to emit *something* to the function body to prevent the
1133   // labels from collapsing together.  Just emit a noop.
1134   // Similarly, don't emit empty functions on Windows either. It can lead to
1135   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1136   // after linking, causing the kernel not to load the binary:
1137   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1138   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1139   const Triple &TT = TM.getTargetTriple();
1140   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1141                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1142     MCInst Noop;
1143     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1144 
1145     // Targets can opt-out of emitting the noop here by leaving the opcode
1146     // unspecified.
1147     if (Noop.getOpcode()) {
1148       OutStreamer->AddComment("avoids zero-length function");
1149       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1150     }
1151   }
1152 
1153   const Function &F = MF->getFunction();
1154   for (const auto &BB : F) {
1155     if (!BB.hasAddressTaken())
1156       continue;
1157     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1158     if (Sym->isDefined())
1159       continue;
1160     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1161     OutStreamer->EmitLabel(Sym);
1162   }
1163 
1164   // Emit target-specific gunk after the function body.
1165   EmitFunctionBodyEnd();
1166 
1167   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1168       MAI->hasDotTypeDotSizeDirective()) {
1169     // Create a symbol for the end of function.
1170     CurrentFnEnd = createTempSymbol("func_end");
1171     OutStreamer->EmitLabel(CurrentFnEnd);
1172   }
1173 
1174   // If the target wants a .size directive for the size of the function, emit
1175   // it.
1176   if (MAI->hasDotTypeDotSizeDirective()) {
1177     // We can get the size as difference between the function label and the
1178     // temp label.
1179     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1180         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1181         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1182     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1183   }
1184 
1185   for (const HandlerInfo &HI : Handlers) {
1186     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1187                        HI.TimerGroupDescription, TimePassesIsEnabled);
1188     HI.Handler->markFunctionEnd();
1189   }
1190 
1191   // Print out jump tables referenced by the function.
1192   EmitJumpTableInfo();
1193 
1194   // Emit post-function debug and/or EH information.
1195   for (const HandlerInfo &HI : Handlers) {
1196     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1197                        HI.TimerGroupDescription, TimePassesIsEnabled);
1198     HI.Handler->endFunction(MF);
1199   }
1200 
1201   // Emit section containing stack size metadata.
1202   emitStackSizeSection(*MF);
1203 
1204   if (isVerbose())
1205     OutStreamer->GetCommentOS() << "-- End function\n";
1206 
1207   OutStreamer->AddBlankLine();
1208 }
1209 
1210 /// Compute the number of Global Variables that uses a Constant.
1211 static unsigned getNumGlobalVariableUses(const Constant *C) {
1212   if (!C)
1213     return 0;
1214 
1215   if (isa<GlobalVariable>(C))
1216     return 1;
1217 
1218   unsigned NumUses = 0;
1219   for (auto *CU : C->users())
1220     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1221 
1222   return NumUses;
1223 }
1224 
1225 /// Only consider global GOT equivalents if at least one user is a
1226 /// cstexpr inside an initializer of another global variables. Also, don't
1227 /// handle cstexpr inside instructions. During global variable emission,
1228 /// candidates are skipped and are emitted later in case at least one cstexpr
1229 /// isn't replaced by a PC relative GOT entry access.
1230 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1231                                      unsigned &NumGOTEquivUsers) {
1232   // Global GOT equivalents are unnamed private globals with a constant
1233   // pointer initializer to another global symbol. They must point to a
1234   // GlobalVariable or Function, i.e., as GlobalValue.
1235   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1236       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1237       !isa<GlobalValue>(GV->getOperand(0)))
1238     return false;
1239 
1240   // To be a got equivalent, at least one of its users need to be a constant
1241   // expression used by another global variable.
1242   for (auto *U : GV->users())
1243     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1244 
1245   return NumGOTEquivUsers > 0;
1246 }
1247 
1248 /// Unnamed constant global variables solely contaning a pointer to
1249 /// another globals variable is equivalent to a GOT table entry; it contains the
1250 /// the address of another symbol. Optimize it and replace accesses to these
1251 /// "GOT equivalents" by using the GOT entry for the final global instead.
1252 /// Compute GOT equivalent candidates among all global variables to avoid
1253 /// emitting them if possible later on, after it use is replaced by a GOT entry
1254 /// access.
1255 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1256   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1257     return;
1258 
1259   for (const auto &G : M.globals()) {
1260     unsigned NumGOTEquivUsers = 0;
1261     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1262       continue;
1263 
1264     const MCSymbol *GOTEquivSym = getSymbol(&G);
1265     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1266   }
1267 }
1268 
1269 /// Constant expressions using GOT equivalent globals may not be eligible
1270 /// for PC relative GOT entry conversion, in such cases we need to emit such
1271 /// globals we previously omitted in EmitGlobalVariable.
1272 void AsmPrinter::emitGlobalGOTEquivs() {
1273   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1274     return;
1275 
1276   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1277   for (auto &I : GlobalGOTEquivs) {
1278     const GlobalVariable *GV = I.second.first;
1279     unsigned Cnt = I.second.second;
1280     if (Cnt)
1281       FailedCandidates.push_back(GV);
1282   }
1283   GlobalGOTEquivs.clear();
1284 
1285   for (auto *GV : FailedCandidates)
1286     EmitGlobalVariable(GV);
1287 }
1288 
1289 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1290                                           const GlobalIndirectSymbol& GIS) {
1291   MCSymbol *Name = getSymbol(&GIS);
1292 
1293   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1294     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1295   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1296     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1297   else
1298     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1299 
1300   bool IsFunction = GIS.getType()->getPointerElementType()->isFunctionTy();
1301 
1302   // Treat bitcasts of functions as functions also. This is important at least
1303   // on WebAssembly where object and function addresses can't alias each other.
1304   if (!IsFunction)
1305     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1306       if (CE->getOpcode() == Instruction::BitCast)
1307         IsFunction =
1308           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1309 
1310   // Set the symbol type to function if the alias has a function type.
1311   // This affects codegen when the aliasee is not a function.
1312   if (IsFunction) {
1313     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1314     if (isa<GlobalIFunc>(GIS))
1315       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1316   }
1317 
1318   EmitVisibility(Name, GIS.getVisibility());
1319 
1320   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1321 
1322   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1323     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1324 
1325   // Emit the directives as assignments aka .set:
1326   OutStreamer->EmitAssignment(Name, Expr);
1327 
1328   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1329     // If the aliasee does not correspond to a symbol in the output, i.e. the
1330     // alias is not of an object or the aliased object is private, then set the
1331     // size of the alias symbol from the type of the alias. We don't do this in
1332     // other situations as the alias and aliasee having differing types but same
1333     // size may be intentional.
1334     const GlobalObject *BaseObject = GA->getBaseObject();
1335     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1336         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1337       const DataLayout &DL = M.getDataLayout();
1338       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1339       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1340     }
1341   }
1342 }
1343 
1344 void AsmPrinter::emitRemarksSection(Module &M) {
1345   RemarkStreamer *RS = M.getContext().getRemarkStreamer();
1346   if (!RS)
1347     return;
1348 
1349   // Switch to the right section: .remarks/__remarks.
1350   MCSection *RemarksSection =
1351       OutContext.getObjectFileInfo()->getRemarksSection();
1352   OutStreamer->SwitchSection(RemarksSection);
1353 
1354   // Emit the magic number.
1355   OutStreamer->EmitBytes(remarks::Magic);
1356   // Explicitly emit a '\0'.
1357   OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1);
1358 
1359   // Emit the version number: little-endian uint64_t.
1360   // The version number is located at the offset 0x0 in the section.
1361   std::array<char, 8> Version;
1362   support::endian::write64le(Version.data(), remarks::Version);
1363   OutStreamer->EmitBinaryData(StringRef(Version.data(), Version.size()));
1364 
1365   // Emit the null-terminated absolute path to the remark file.
1366   // The path is located at the offset 0x4 in the section.
1367   StringRef FilenameRef = RS->getFilename();
1368   SmallString<128> Filename = FilenameRef;
1369   sys::fs::make_absolute(Filename);
1370   assert(!Filename.empty() && "The filename can't be empty.");
1371   OutStreamer->EmitBytes(Filename);
1372   // Explicitly emit a '\0'.
1373   OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1);
1374 }
1375 
1376 bool AsmPrinter::doFinalization(Module &M) {
1377   // Set the MachineFunction to nullptr so that we can catch attempted
1378   // accesses to MF specific features at the module level and so that
1379   // we can conditionalize accesses based on whether or not it is nullptr.
1380   MF = nullptr;
1381 
1382   // Gather all GOT equivalent globals in the module. We really need two
1383   // passes over the globals: one to compute and another to avoid its emission
1384   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1385   // where the got equivalent shows up before its use.
1386   computeGlobalGOTEquivs(M);
1387 
1388   // Emit global variables.
1389   for (const auto &G : M.globals())
1390     EmitGlobalVariable(&G);
1391 
1392   // Emit remaining GOT equivalent globals.
1393   emitGlobalGOTEquivs();
1394 
1395   // Emit visibility info for declarations
1396   for (const Function &F : M) {
1397     if (!F.isDeclarationForLinker())
1398       continue;
1399     GlobalValue::VisibilityTypes V = F.getVisibility();
1400     if (V == GlobalValue::DefaultVisibility)
1401       continue;
1402 
1403     MCSymbol *Name = getSymbol(&F);
1404     EmitVisibility(Name, V, false);
1405   }
1406 
1407   // Emit the remarks section contents.
1408   // FIXME: Figure out when is the safest time to emit this section. It should
1409   // not come after debug info.
1410   if (EnableRemarksSection)
1411     emitRemarksSection(M);
1412 
1413   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1414 
1415   TLOF.emitModuleMetadata(*OutStreamer, M);
1416 
1417   if (TM.getTargetTriple().isOSBinFormatELF()) {
1418     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1419 
1420     // Output stubs for external and common global variables.
1421     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1422     if (!Stubs.empty()) {
1423       OutStreamer->SwitchSection(TLOF.getDataSection());
1424       const DataLayout &DL = M.getDataLayout();
1425 
1426       EmitAlignment(Log2_32(DL.getPointerSize()));
1427       for (const auto &Stub : Stubs) {
1428         OutStreamer->EmitLabel(Stub.first);
1429         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1430                                      DL.getPointerSize());
1431       }
1432     }
1433   }
1434 
1435   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1436     MachineModuleInfoCOFF &MMICOFF =
1437         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1438 
1439     // Output stubs for external and common global variables.
1440     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1441     if (!Stubs.empty()) {
1442       const DataLayout &DL = M.getDataLayout();
1443 
1444       for (const auto &Stub : Stubs) {
1445         SmallString<256> SectionName = StringRef(".rdata$");
1446         SectionName += Stub.first->getName();
1447         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1448             SectionName,
1449             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1450                 COFF::IMAGE_SCN_LNK_COMDAT,
1451             SectionKind::getReadOnly(), Stub.first->getName(),
1452             COFF::IMAGE_COMDAT_SELECT_ANY));
1453         EmitAlignment(Log2_32(DL.getPointerSize()));
1454         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1455         OutStreamer->EmitLabel(Stub.first);
1456         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1457                                      DL.getPointerSize());
1458       }
1459     }
1460   }
1461 
1462   // Finalize debug and EH information.
1463   for (const HandlerInfo &HI : Handlers) {
1464     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1465                        HI.TimerGroupDescription, TimePassesIsEnabled);
1466     HI.Handler->endModule();
1467     delete HI.Handler;
1468   }
1469   Handlers.clear();
1470   DD = nullptr;
1471 
1472   // If the target wants to know about weak references, print them all.
1473   if (MAI->getWeakRefDirective()) {
1474     // FIXME: This is not lazy, it would be nice to only print weak references
1475     // to stuff that is actually used.  Note that doing so would require targets
1476     // to notice uses in operands (due to constant exprs etc).  This should
1477     // happen with the MC stuff eventually.
1478 
1479     // Print out module-level global objects here.
1480     for (const auto &GO : M.global_objects()) {
1481       if (!GO.hasExternalWeakLinkage())
1482         continue;
1483       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1484     }
1485   }
1486 
1487   OutStreamer->AddBlankLine();
1488 
1489   // Print aliases in topological order, that is, for each alias a = b,
1490   // b must be printed before a.
1491   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1492   // such an order to generate correct TOC information.
1493   SmallVector<const GlobalAlias *, 16> AliasStack;
1494   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1495   for (const auto &Alias : M.aliases()) {
1496     for (const GlobalAlias *Cur = &Alias; Cur;
1497          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1498       if (!AliasVisited.insert(Cur).second)
1499         break;
1500       AliasStack.push_back(Cur);
1501     }
1502     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1503       emitGlobalIndirectSymbol(M, *AncestorAlias);
1504     AliasStack.clear();
1505   }
1506   for (const auto &IFunc : M.ifuncs())
1507     emitGlobalIndirectSymbol(M, IFunc);
1508 
1509   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1510   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1511   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1512     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1513       MP->finishAssembly(M, *MI, *this);
1514 
1515   // Emit llvm.ident metadata in an '.ident' directive.
1516   EmitModuleIdents(M);
1517 
1518   // Emit bytes for llvm.commandline metadata.
1519   EmitModuleCommandLines(M);
1520 
1521   // Emit __morestack address if needed for indirect calls.
1522   if (MMI->usesMorestackAddr()) {
1523     unsigned Align = 1;
1524     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1525         getDataLayout(), SectionKind::getReadOnly(),
1526         /*C=*/nullptr, Align);
1527     OutStreamer->SwitchSection(ReadOnlySection);
1528 
1529     MCSymbol *AddrSymbol =
1530         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1531     OutStreamer->EmitLabel(AddrSymbol);
1532 
1533     unsigned PtrSize = MAI->getCodePointerSize();
1534     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1535                                  PtrSize);
1536   }
1537 
1538   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1539   // split-stack is used.
1540   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1541     OutStreamer->SwitchSection(
1542         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1543     if (MMI->hasNosplitStack())
1544       OutStreamer->SwitchSection(
1545           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1546   }
1547 
1548   // If we don't have any trampolines, then we don't require stack memory
1549   // to be executable. Some targets have a directive to declare this.
1550   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1551   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1552     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1553       OutStreamer->SwitchSection(S);
1554 
1555   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1556     // Emit /EXPORT: flags for each exported global as necessary.
1557     const auto &TLOF = getObjFileLowering();
1558     std::string Flags;
1559 
1560     for (const GlobalValue &GV : M.global_values()) {
1561       raw_string_ostream OS(Flags);
1562       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1563       OS.flush();
1564       if (!Flags.empty()) {
1565         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1566         OutStreamer->EmitBytes(Flags);
1567       }
1568       Flags.clear();
1569     }
1570 
1571     // Emit /INCLUDE: flags for each used global as necessary.
1572     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1573       assert(LU->hasInitializer() &&
1574              "expected llvm.used to have an initializer");
1575       assert(isa<ArrayType>(LU->getValueType()) &&
1576              "expected llvm.used to be an array type");
1577       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1578         for (const Value *Op : A->operands()) {
1579           const auto *GV =
1580               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1581           // Global symbols with internal or private linkage are not visible to
1582           // the linker, and thus would cause an error when the linker tried to
1583           // preserve the symbol due to the `/include:` directive.
1584           if (GV->hasLocalLinkage())
1585             continue;
1586 
1587           raw_string_ostream OS(Flags);
1588           TLOF.emitLinkerFlagsForUsed(OS, GV);
1589           OS.flush();
1590 
1591           if (!Flags.empty()) {
1592             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1593             OutStreamer->EmitBytes(Flags);
1594           }
1595           Flags.clear();
1596         }
1597       }
1598     }
1599   }
1600 
1601   if (TM.Options.EmitAddrsig) {
1602     // Emit address-significance attributes for all globals.
1603     OutStreamer->EmitAddrsig();
1604     for (const GlobalValue &GV : M.global_values())
1605       if (!GV.use_empty() && !GV.isThreadLocal() &&
1606           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1607           !GV.hasAtLeastLocalUnnamedAddr())
1608         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1609   }
1610 
1611   // Allow the target to emit any magic that it wants at the end of the file,
1612   // after everything else has gone out.
1613   EmitEndOfAsmFile(M);
1614 
1615   MMI = nullptr;
1616 
1617   OutStreamer->Finish();
1618   OutStreamer->reset();
1619   OwnedMLI.reset();
1620   OwnedMDT.reset();
1621 
1622   return false;
1623 }
1624 
1625 MCSymbol *AsmPrinter::getCurExceptionSym() {
1626   if (!CurExceptionSym)
1627     CurExceptionSym = createTempSymbol("exception");
1628   return CurExceptionSym;
1629 }
1630 
1631 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1632   this->MF = &MF;
1633   // Get the function symbol.
1634   CurrentFnSym = getSymbol(&MF.getFunction());
1635   CurrentFnSymForSize = CurrentFnSym;
1636   CurrentFnBegin = nullptr;
1637   CurExceptionSym = nullptr;
1638   bool NeedsLocalForSize = MAI->needsLocalForSize();
1639   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1640       MF.getTarget().Options.EmitStackSizeSection) {
1641     CurrentFnBegin = createTempSymbol("func_begin");
1642     if (NeedsLocalForSize)
1643       CurrentFnSymForSize = CurrentFnBegin;
1644   }
1645 
1646   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1647 }
1648 
1649 namespace {
1650 
1651 // Keep track the alignment, constpool entries per Section.
1652   struct SectionCPs {
1653     MCSection *S;
1654     unsigned Alignment;
1655     SmallVector<unsigned, 4> CPEs;
1656 
1657     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1658   };
1659 
1660 } // end anonymous namespace
1661 
1662 /// EmitConstantPool - Print to the current output stream assembly
1663 /// representations of the constants in the constant pool MCP. This is
1664 /// used to print out constants which have been "spilled to memory" by
1665 /// the code generator.
1666 void AsmPrinter::EmitConstantPool() {
1667   const MachineConstantPool *MCP = MF->getConstantPool();
1668   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1669   if (CP.empty()) return;
1670 
1671   // Calculate sections for constant pool entries. We collect entries to go into
1672   // the same section together to reduce amount of section switch statements.
1673   SmallVector<SectionCPs, 4> CPSections;
1674   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1675     const MachineConstantPoolEntry &CPE = CP[i];
1676     unsigned Align = CPE.getAlignment();
1677 
1678     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1679 
1680     const Constant *C = nullptr;
1681     if (!CPE.isMachineConstantPoolEntry())
1682       C = CPE.Val.ConstVal;
1683 
1684     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1685                                                               Kind, C, Align);
1686 
1687     // The number of sections are small, just do a linear search from the
1688     // last section to the first.
1689     bool Found = false;
1690     unsigned SecIdx = CPSections.size();
1691     while (SecIdx != 0) {
1692       if (CPSections[--SecIdx].S == S) {
1693         Found = true;
1694         break;
1695       }
1696     }
1697     if (!Found) {
1698       SecIdx = CPSections.size();
1699       CPSections.push_back(SectionCPs(S, Align));
1700     }
1701 
1702     if (Align > CPSections[SecIdx].Alignment)
1703       CPSections[SecIdx].Alignment = Align;
1704     CPSections[SecIdx].CPEs.push_back(i);
1705   }
1706 
1707   // Now print stuff into the calculated sections.
1708   const MCSection *CurSection = nullptr;
1709   unsigned Offset = 0;
1710   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1711     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1712       unsigned CPI = CPSections[i].CPEs[j];
1713       MCSymbol *Sym = GetCPISymbol(CPI);
1714       if (!Sym->isUndefined())
1715         continue;
1716 
1717       if (CurSection != CPSections[i].S) {
1718         OutStreamer->SwitchSection(CPSections[i].S);
1719         EmitAlignment(Log2_32(CPSections[i].Alignment));
1720         CurSection = CPSections[i].S;
1721         Offset = 0;
1722       }
1723 
1724       MachineConstantPoolEntry CPE = CP[CPI];
1725 
1726       // Emit inter-object padding for alignment.
1727       unsigned AlignMask = CPE.getAlignment() - 1;
1728       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1729       OutStreamer->EmitZeros(NewOffset - Offset);
1730 
1731       Type *Ty = CPE.getType();
1732       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1733 
1734       OutStreamer->EmitLabel(Sym);
1735       if (CPE.isMachineConstantPoolEntry())
1736         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1737       else
1738         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1739     }
1740   }
1741 }
1742 
1743 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1744 /// by the current function to the current output stream.
1745 void AsmPrinter::EmitJumpTableInfo() {
1746   const DataLayout &DL = MF->getDataLayout();
1747   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1748   if (!MJTI) return;
1749   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1750   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1751   if (JT.empty()) return;
1752 
1753   // Pick the directive to use to print the jump table entries, and switch to
1754   // the appropriate section.
1755   const Function &F = MF->getFunction();
1756   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1757   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1758       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1759       F);
1760   if (JTInDiffSection) {
1761     // Drop it in the readonly section.
1762     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1763     OutStreamer->SwitchSection(ReadOnlySection);
1764   }
1765 
1766   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1767 
1768   // Jump tables in code sections are marked with a data_region directive
1769   // where that's supported.
1770   if (!JTInDiffSection)
1771     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1772 
1773   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1774     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1775 
1776     // If this jump table was deleted, ignore it.
1777     if (JTBBs.empty()) continue;
1778 
1779     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1780     /// emit a .set directive for each unique entry.
1781     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1782         MAI->doesSetDirectiveSuppressReloc()) {
1783       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1784       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1785       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1786       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1787         const MachineBasicBlock *MBB = JTBBs[ii];
1788         if (!EmittedSets.insert(MBB).second)
1789           continue;
1790 
1791         // .set LJTSet, LBB32-base
1792         const MCExpr *LHS =
1793           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1794         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1795                                     MCBinaryExpr::createSub(LHS, Base,
1796                                                             OutContext));
1797       }
1798     }
1799 
1800     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1801     // before each jump table.  The first label is never referenced, but tells
1802     // the assembler and linker the extents of the jump table object.  The
1803     // second label is actually referenced by the code.
1804     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1805       // FIXME: This doesn't have to have any specific name, just any randomly
1806       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1807       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1808 
1809     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1810 
1811     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1812       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1813   }
1814   if (!JTInDiffSection)
1815     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1816 }
1817 
1818 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1819 /// current stream.
1820 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1821                                     const MachineBasicBlock *MBB,
1822                                     unsigned UID) const {
1823   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1824   const MCExpr *Value = nullptr;
1825   switch (MJTI->getEntryKind()) {
1826   case MachineJumpTableInfo::EK_Inline:
1827     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1828   case MachineJumpTableInfo::EK_Custom32:
1829     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1830         MJTI, MBB, UID, OutContext);
1831     break;
1832   case MachineJumpTableInfo::EK_BlockAddress:
1833     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1834     //     .word LBB123
1835     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1836     break;
1837   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1838     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1839     // with a relocation as gp-relative, e.g.:
1840     //     .gprel32 LBB123
1841     MCSymbol *MBBSym = MBB->getSymbol();
1842     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1843     return;
1844   }
1845 
1846   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1847     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1848     // with a relocation as gp-relative, e.g.:
1849     //     .gpdword LBB123
1850     MCSymbol *MBBSym = MBB->getSymbol();
1851     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1852     return;
1853   }
1854 
1855   case MachineJumpTableInfo::EK_LabelDifference32: {
1856     // Each entry is the address of the block minus the address of the jump
1857     // table. This is used for PIC jump tables where gprel32 is not supported.
1858     // e.g.:
1859     //      .word LBB123 - LJTI1_2
1860     // If the .set directive avoids relocations, this is emitted as:
1861     //      .set L4_5_set_123, LBB123 - LJTI1_2
1862     //      .word L4_5_set_123
1863     if (MAI->doesSetDirectiveSuppressReloc()) {
1864       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1865                                       OutContext);
1866       break;
1867     }
1868     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1869     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1870     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1871     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1872     break;
1873   }
1874   }
1875 
1876   assert(Value && "Unknown entry kind!");
1877 
1878   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1879   OutStreamer->EmitValue(Value, EntrySize);
1880 }
1881 
1882 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1883 /// special global used by LLVM.  If so, emit it and return true, otherwise
1884 /// do nothing and return false.
1885 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1886   if (GV->getName() == "llvm.used") {
1887     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1888       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1889     return true;
1890   }
1891 
1892   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1893   if (GV->getSection() == "llvm.metadata" ||
1894       GV->hasAvailableExternallyLinkage())
1895     return true;
1896 
1897   if (!GV->hasAppendingLinkage()) return false;
1898 
1899   assert(GV->hasInitializer() && "Not a special LLVM global!");
1900 
1901   if (GV->getName() == "llvm.global_ctors") {
1902     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1903                        /* isCtor */ true);
1904 
1905     return true;
1906   }
1907 
1908   if (GV->getName() == "llvm.global_dtors") {
1909     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1910                        /* isCtor */ false);
1911 
1912     return true;
1913   }
1914 
1915   report_fatal_error("unknown special variable");
1916 }
1917 
1918 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1919 /// global in the specified llvm.used list.
1920 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1921   // Should be an array of 'i8*'.
1922   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1923     const GlobalValue *GV =
1924       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1925     if (GV)
1926       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1927   }
1928 }
1929 
1930 namespace {
1931 
1932 struct Structor {
1933   int Priority = 0;
1934   Constant *Func = nullptr;
1935   GlobalValue *ComdatKey = nullptr;
1936 
1937   Structor() = default;
1938 };
1939 
1940 } // end anonymous namespace
1941 
1942 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1943 /// priority.
1944 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1945                                     bool isCtor) {
1946   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1947   // init priority.
1948   if (!isa<ConstantArray>(List)) return;
1949 
1950   // Sanity check the structors list.
1951   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1952   if (!InitList) return; // Not an array!
1953   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1954   // FIXME: Only allow the 3-field form in LLVM 4.0.
1955   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1956     return; // Not an array of two or three elements!
1957   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1958       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1959   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1960     return; // Not (int, ptr, ptr).
1961 
1962   // Gather the structors in a form that's convenient for sorting by priority.
1963   SmallVector<Structor, 8> Structors;
1964   for (Value *O : InitList->operands()) {
1965     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1966     if (!CS) continue; // Malformed.
1967     if (CS->getOperand(1)->isNullValue())
1968       break;  // Found a null terminator, skip the rest.
1969     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1970     if (!Priority) continue; // Malformed.
1971     Structors.push_back(Structor());
1972     Structor &S = Structors.back();
1973     S.Priority = Priority->getLimitedValue(65535);
1974     S.Func = CS->getOperand(1);
1975     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1976       S.ComdatKey =
1977           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1978   }
1979 
1980   // Emit the function pointers in the target-specific order
1981   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1982   std::stable_sort(Structors.begin(), Structors.end(),
1983                    [](const Structor &L,
1984                       const Structor &R) { return L.Priority < R.Priority; });
1985   for (Structor &S : Structors) {
1986     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1987     const MCSymbol *KeySym = nullptr;
1988     if (GlobalValue *GV = S.ComdatKey) {
1989       if (GV->isDeclarationForLinker())
1990         // If the associated variable is not defined in this module
1991         // (it might be available_externally, or have been an
1992         // available_externally definition that was dropped by the
1993         // EliminateAvailableExternally pass), some other TU
1994         // will provide its dynamic initializer.
1995         continue;
1996 
1997       KeySym = getSymbol(GV);
1998     }
1999     MCSection *OutputSection =
2000         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2001                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2002     OutStreamer->SwitchSection(OutputSection);
2003     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2004       EmitAlignment(Align);
2005     EmitXXStructor(DL, S.Func);
2006   }
2007 }
2008 
2009 void AsmPrinter::EmitModuleIdents(Module &M) {
2010   if (!MAI->hasIdentDirective())
2011     return;
2012 
2013   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2014     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2015       const MDNode *N = NMD->getOperand(i);
2016       assert(N->getNumOperands() == 1 &&
2017              "llvm.ident metadata entry can have only one operand");
2018       const MDString *S = cast<MDString>(N->getOperand(0));
2019       OutStreamer->EmitIdent(S->getString());
2020     }
2021   }
2022 }
2023 
2024 void AsmPrinter::EmitModuleCommandLines(Module &M) {
2025   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2026   if (!CommandLine)
2027     return;
2028 
2029   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2030   if (!NMD || !NMD->getNumOperands())
2031     return;
2032 
2033   OutStreamer->PushSection();
2034   OutStreamer->SwitchSection(CommandLine);
2035   OutStreamer->EmitZeros(1);
2036   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2037     const MDNode *N = NMD->getOperand(i);
2038     assert(N->getNumOperands() == 1 &&
2039            "llvm.commandline metadata entry can have only one operand");
2040     const MDString *S = cast<MDString>(N->getOperand(0));
2041     OutStreamer->EmitBytes(S->getString());
2042     OutStreamer->EmitZeros(1);
2043   }
2044   OutStreamer->PopSection();
2045 }
2046 
2047 //===--------------------------------------------------------------------===//
2048 // Emission and print routines
2049 //
2050 
2051 /// Emit a byte directive and value.
2052 ///
2053 void AsmPrinter::emitInt8(int Value) const {
2054   OutStreamer->EmitIntValue(Value, 1);
2055 }
2056 
2057 /// Emit a short directive and value.
2058 void AsmPrinter::emitInt16(int Value) const {
2059   OutStreamer->EmitIntValue(Value, 2);
2060 }
2061 
2062 /// Emit a long directive and value.
2063 void AsmPrinter::emitInt32(int Value) const {
2064   OutStreamer->EmitIntValue(Value, 4);
2065 }
2066 
2067 /// Emit a long long directive and value.
2068 void AsmPrinter::emitInt64(uint64_t Value) const {
2069   OutStreamer->EmitIntValue(Value, 8);
2070 }
2071 
2072 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2073 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2074 /// .set if it avoids relocations.
2075 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2076                                      unsigned Size) const {
2077   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2078 }
2079 
2080 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2081 /// where the size in bytes of the directive is specified by Size and Label
2082 /// specifies the label.  This implicitly uses .set if it is available.
2083 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2084                                      unsigned Size,
2085                                      bool IsSectionRelative) const {
2086   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2087     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2088     if (Size > 4)
2089       OutStreamer->EmitZeros(Size - 4);
2090     return;
2091   }
2092 
2093   // Emit Label+Offset (or just Label if Offset is zero)
2094   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2095   if (Offset)
2096     Expr = MCBinaryExpr::createAdd(
2097         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2098 
2099   OutStreamer->EmitValue(Expr, Size);
2100 }
2101 
2102 //===----------------------------------------------------------------------===//
2103 
2104 // EmitAlignment - Emit an alignment directive to the specified power of
2105 // two boundary.  For example, if you pass in 3 here, you will get an 8
2106 // byte alignment.  If a global value is specified, and if that global has
2107 // an explicit alignment requested, it will override the alignment request
2108 // if required for correctness.
2109 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2110   if (GV)
2111     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2112 
2113   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
2114 
2115   assert(NumBits <
2116              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2117          "undefined behavior");
2118   if (getCurrentSection()->getKind().isText())
2119     OutStreamer->EmitCodeAlignment(1u << NumBits);
2120   else
2121     OutStreamer->EmitValueToAlignment(1u << NumBits);
2122 }
2123 
2124 //===----------------------------------------------------------------------===//
2125 // Constant emission.
2126 //===----------------------------------------------------------------------===//
2127 
2128 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2129   MCContext &Ctx = OutContext;
2130 
2131   if (CV->isNullValue() || isa<UndefValue>(CV))
2132     return MCConstantExpr::create(0, Ctx);
2133 
2134   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2135     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2136 
2137   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2138     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2139 
2140   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2141     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2142 
2143   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2144   if (!CE) {
2145     llvm_unreachable("Unknown constant value to lower!");
2146   }
2147 
2148   switch (CE->getOpcode()) {
2149   default:
2150     // If the code isn't optimized, there may be outstanding folding
2151     // opportunities. Attempt to fold the expression using DataLayout as a
2152     // last resort before giving up.
2153     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2154       if (C != CE)
2155         return lowerConstant(C);
2156 
2157     // Otherwise report the problem to the user.
2158     {
2159       std::string S;
2160       raw_string_ostream OS(S);
2161       OS << "Unsupported expression in static initializer: ";
2162       CE->printAsOperand(OS, /*PrintType=*/false,
2163                      !MF ? nullptr : MF->getFunction().getParent());
2164       report_fatal_error(OS.str());
2165     }
2166   case Instruction::GetElementPtr: {
2167     // Generate a symbolic expression for the byte address
2168     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2169     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2170 
2171     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2172     if (!OffsetAI)
2173       return Base;
2174 
2175     int64_t Offset = OffsetAI.getSExtValue();
2176     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2177                                    Ctx);
2178   }
2179 
2180   case Instruction::Trunc:
2181     // We emit the value and depend on the assembler to truncate the generated
2182     // expression properly.  This is important for differences between
2183     // blockaddress labels.  Since the two labels are in the same function, it
2184     // is reasonable to treat their delta as a 32-bit value.
2185     LLVM_FALLTHROUGH;
2186   case Instruction::BitCast:
2187     return lowerConstant(CE->getOperand(0));
2188 
2189   case Instruction::IntToPtr: {
2190     const DataLayout &DL = getDataLayout();
2191 
2192     // Handle casts to pointers by changing them into casts to the appropriate
2193     // integer type.  This promotes constant folding and simplifies this code.
2194     Constant *Op = CE->getOperand(0);
2195     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2196                                       false/*ZExt*/);
2197     return lowerConstant(Op);
2198   }
2199 
2200   case Instruction::PtrToInt: {
2201     const DataLayout &DL = getDataLayout();
2202 
2203     // Support only foldable casts to/from pointers that can be eliminated by
2204     // changing the pointer to the appropriately sized integer type.
2205     Constant *Op = CE->getOperand(0);
2206     Type *Ty = CE->getType();
2207 
2208     const MCExpr *OpExpr = lowerConstant(Op);
2209 
2210     // We can emit the pointer value into this slot if the slot is an
2211     // integer slot equal to the size of the pointer.
2212     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2213       return OpExpr;
2214 
2215     // Otherwise the pointer is smaller than the resultant integer, mask off
2216     // the high bits so we are sure to get a proper truncation if the input is
2217     // a constant expr.
2218     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2219     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2220     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2221   }
2222 
2223   case Instruction::Sub: {
2224     GlobalValue *LHSGV;
2225     APInt LHSOffset;
2226     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2227                                    getDataLayout())) {
2228       GlobalValue *RHSGV;
2229       APInt RHSOffset;
2230       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2231                                      getDataLayout())) {
2232         const MCExpr *RelocExpr =
2233             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2234         if (!RelocExpr)
2235           RelocExpr = MCBinaryExpr::createSub(
2236               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2237               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2238         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2239         if (Addend != 0)
2240           RelocExpr = MCBinaryExpr::createAdd(
2241               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2242         return RelocExpr;
2243       }
2244     }
2245   }
2246   // else fallthrough
2247   LLVM_FALLTHROUGH;
2248 
2249   // The MC library also has a right-shift operator, but it isn't consistently
2250   // signed or unsigned between different targets.
2251   case Instruction::Add:
2252   case Instruction::Mul:
2253   case Instruction::SDiv:
2254   case Instruction::SRem:
2255   case Instruction::Shl:
2256   case Instruction::And:
2257   case Instruction::Or:
2258   case Instruction::Xor: {
2259     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2260     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2261     switch (CE->getOpcode()) {
2262     default: llvm_unreachable("Unknown binary operator constant cast expr");
2263     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2264     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2265     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2266     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2267     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2268     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2269     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2270     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2271     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2272     }
2273   }
2274   }
2275 }
2276 
2277 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2278                                    AsmPrinter &AP,
2279                                    const Constant *BaseCV = nullptr,
2280                                    uint64_t Offset = 0);
2281 
2282 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2283 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2284 
2285 /// isRepeatedByteSequence - Determine whether the given value is
2286 /// composed of a repeated sequence of identical bytes and return the
2287 /// byte value.  If it is not a repeated sequence, return -1.
2288 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2289   StringRef Data = V->getRawDataValues();
2290   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2291   char C = Data[0];
2292   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2293     if (Data[i] != C) return -1;
2294   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2295 }
2296 
2297 /// isRepeatedByteSequence - Determine whether the given value is
2298 /// composed of a repeated sequence of identical bytes and return the
2299 /// byte value.  If it is not a repeated sequence, return -1.
2300 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2301   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2302     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2303     assert(Size % 8 == 0);
2304 
2305     // Extend the element to take zero padding into account.
2306     APInt Value = CI->getValue().zextOrSelf(Size);
2307     if (!Value.isSplat(8))
2308       return -1;
2309 
2310     return Value.zextOrTrunc(8).getZExtValue();
2311   }
2312   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2313     // Make sure all array elements are sequences of the same repeated
2314     // byte.
2315     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2316     Constant *Op0 = CA->getOperand(0);
2317     int Byte = isRepeatedByteSequence(Op0, DL);
2318     if (Byte == -1)
2319       return -1;
2320 
2321     // All array elements must be equal.
2322     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2323       if (CA->getOperand(i) != Op0)
2324         return -1;
2325     return Byte;
2326   }
2327 
2328   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2329     return isRepeatedByteSequence(CDS);
2330 
2331   return -1;
2332 }
2333 
2334 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2335                                              const ConstantDataSequential *CDS,
2336                                              AsmPrinter &AP) {
2337   // See if we can aggregate this into a .fill, if so, emit it as such.
2338   int Value = isRepeatedByteSequence(CDS, DL);
2339   if (Value != -1) {
2340     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2341     // Don't emit a 1-byte object as a .fill.
2342     if (Bytes > 1)
2343       return AP.OutStreamer->emitFill(Bytes, Value);
2344   }
2345 
2346   // If this can be emitted with .ascii/.asciz, emit it as such.
2347   if (CDS->isString())
2348     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2349 
2350   // Otherwise, emit the values in successive locations.
2351   unsigned ElementByteSize = CDS->getElementByteSize();
2352   if (isa<IntegerType>(CDS->getElementType())) {
2353     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2354       if (AP.isVerbose())
2355         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2356                                                  CDS->getElementAsInteger(i));
2357       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2358                                    ElementByteSize);
2359     }
2360   } else {
2361     Type *ET = CDS->getElementType();
2362     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2363       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2364   }
2365 
2366   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2367   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2368                         CDS->getNumElements();
2369   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2370   if (unsigned Padding = Size - EmittedSize)
2371     AP.OutStreamer->EmitZeros(Padding);
2372 }
2373 
2374 static void emitGlobalConstantArray(const DataLayout &DL,
2375                                     const ConstantArray *CA, AsmPrinter &AP,
2376                                     const Constant *BaseCV, uint64_t Offset) {
2377   // See if we can aggregate some values.  Make sure it can be
2378   // represented as a series of bytes of the constant value.
2379   int Value = isRepeatedByteSequence(CA, DL);
2380 
2381   if (Value != -1) {
2382     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2383     AP.OutStreamer->emitFill(Bytes, Value);
2384   }
2385   else {
2386     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2387       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2388       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2389     }
2390   }
2391 }
2392 
2393 static void emitGlobalConstantVector(const DataLayout &DL,
2394                                      const ConstantVector *CV, AsmPrinter &AP) {
2395   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2396     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2397 
2398   unsigned Size = DL.getTypeAllocSize(CV->getType());
2399   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2400                          CV->getType()->getNumElements();
2401   if (unsigned Padding = Size - EmittedSize)
2402     AP.OutStreamer->EmitZeros(Padding);
2403 }
2404 
2405 static void emitGlobalConstantStruct(const DataLayout &DL,
2406                                      const ConstantStruct *CS, AsmPrinter &AP,
2407                                      const Constant *BaseCV, uint64_t Offset) {
2408   // Print the fields in successive locations. Pad to align if needed!
2409   unsigned Size = DL.getTypeAllocSize(CS->getType());
2410   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2411   uint64_t SizeSoFar = 0;
2412   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2413     const Constant *Field = CS->getOperand(i);
2414 
2415     // Print the actual field value.
2416     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2417 
2418     // Check if padding is needed and insert one or more 0s.
2419     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2420     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2421                         - Layout->getElementOffset(i)) - FieldSize;
2422     SizeSoFar += FieldSize + PadSize;
2423 
2424     // Insert padding - this may include padding to increase the size of the
2425     // current field up to the ABI size (if the struct is not packed) as well
2426     // as padding to ensure that the next field starts at the right offset.
2427     AP.OutStreamer->EmitZeros(PadSize);
2428   }
2429   assert(SizeSoFar == Layout->getSizeInBytes() &&
2430          "Layout of constant struct may be incorrect!");
2431 }
2432 
2433 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2434   APInt API = APF.bitcastToAPInt();
2435 
2436   // First print a comment with what we think the original floating-point value
2437   // should have been.
2438   if (AP.isVerbose()) {
2439     SmallString<8> StrVal;
2440     APF.toString(StrVal);
2441 
2442     if (ET)
2443       ET->print(AP.OutStreamer->GetCommentOS());
2444     else
2445       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2446     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2447   }
2448 
2449   // Now iterate through the APInt chunks, emitting them in endian-correct
2450   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2451   // floats).
2452   unsigned NumBytes = API.getBitWidth() / 8;
2453   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2454   const uint64_t *p = API.getRawData();
2455 
2456   // PPC's long double has odd notions of endianness compared to how LLVM
2457   // handles it: p[0] goes first for *big* endian on PPC.
2458   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2459     int Chunk = API.getNumWords() - 1;
2460 
2461     if (TrailingBytes)
2462       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2463 
2464     for (; Chunk >= 0; --Chunk)
2465       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2466   } else {
2467     unsigned Chunk;
2468     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2469       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2470 
2471     if (TrailingBytes)
2472       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2473   }
2474 
2475   // Emit the tail padding for the long double.
2476   const DataLayout &DL = AP.getDataLayout();
2477   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2478 }
2479 
2480 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2481   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2482 }
2483 
2484 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2485   const DataLayout &DL = AP.getDataLayout();
2486   unsigned BitWidth = CI->getBitWidth();
2487 
2488   // Copy the value as we may massage the layout for constants whose bit width
2489   // is not a multiple of 64-bits.
2490   APInt Realigned(CI->getValue());
2491   uint64_t ExtraBits = 0;
2492   unsigned ExtraBitsSize = BitWidth & 63;
2493 
2494   if (ExtraBitsSize) {
2495     // The bit width of the data is not a multiple of 64-bits.
2496     // The extra bits are expected to be at the end of the chunk of the memory.
2497     // Little endian:
2498     // * Nothing to be done, just record the extra bits to emit.
2499     // Big endian:
2500     // * Record the extra bits to emit.
2501     // * Realign the raw data to emit the chunks of 64-bits.
2502     if (DL.isBigEndian()) {
2503       // Basically the structure of the raw data is a chunk of 64-bits cells:
2504       //    0        1         BitWidth / 64
2505       // [chunk1][chunk2] ... [chunkN].
2506       // The most significant chunk is chunkN and it should be emitted first.
2507       // However, due to the alignment issue chunkN contains useless bits.
2508       // Realign the chunks so that they contain only useless information:
2509       // ExtraBits     0       1       (BitWidth / 64) - 1
2510       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2511       ExtraBits = Realigned.getRawData()[0] &
2512         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2513       Realigned.lshrInPlace(ExtraBitsSize);
2514     } else
2515       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2516   }
2517 
2518   // We don't expect assemblers to support integer data directives
2519   // for more than 64 bits, so we emit the data in at most 64-bit
2520   // quantities at a time.
2521   const uint64_t *RawData = Realigned.getRawData();
2522   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2523     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2524     AP.OutStreamer->EmitIntValue(Val, 8);
2525   }
2526 
2527   if (ExtraBitsSize) {
2528     // Emit the extra bits after the 64-bits chunks.
2529 
2530     // Emit a directive that fills the expected size.
2531     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2532     Size -= (BitWidth / 64) * 8;
2533     assert(Size && Size * 8 >= ExtraBitsSize &&
2534            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2535            == ExtraBits && "Directive too small for extra bits.");
2536     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2537   }
2538 }
2539 
2540 /// Transform a not absolute MCExpr containing a reference to a GOT
2541 /// equivalent global, by a target specific GOT pc relative access to the
2542 /// final symbol.
2543 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2544                                          const Constant *BaseCst,
2545                                          uint64_t Offset) {
2546   // The global @foo below illustrates a global that uses a got equivalent.
2547   //
2548   //  @bar = global i32 42
2549   //  @gotequiv = private unnamed_addr constant i32* @bar
2550   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2551   //                             i64 ptrtoint (i32* @foo to i64))
2552   //                        to i32)
2553   //
2554   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2555   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2556   // form:
2557   //
2558   //  foo = cstexpr, where
2559   //    cstexpr := <gotequiv> - "." + <cst>
2560   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2561   //
2562   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2563   //
2564   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2565   //    gotpcrelcst := <offset from @foo base> + <cst>
2566   MCValue MV;
2567   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2568     return;
2569   const MCSymbolRefExpr *SymA = MV.getSymA();
2570   if (!SymA)
2571     return;
2572 
2573   // Check that GOT equivalent symbol is cached.
2574   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2575   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2576     return;
2577 
2578   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2579   if (!BaseGV)
2580     return;
2581 
2582   // Check for a valid base symbol
2583   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2584   const MCSymbolRefExpr *SymB = MV.getSymB();
2585 
2586   if (!SymB || BaseSym != &SymB->getSymbol())
2587     return;
2588 
2589   // Make sure to match:
2590   //
2591   //    gotpcrelcst := <offset from @foo base> + <cst>
2592   //
2593   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2594   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2595   // if the target knows how to encode it.
2596   int64_t GOTPCRelCst = Offset + MV.getConstant();
2597   if (GOTPCRelCst < 0)
2598     return;
2599   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2600     return;
2601 
2602   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2603   //
2604   //  bar:
2605   //    .long 42
2606   //  gotequiv:
2607   //    .quad bar
2608   //  foo:
2609   //    .long gotequiv - "." + <cst>
2610   //
2611   // is replaced by the target specific equivalent to:
2612   //
2613   //  bar:
2614   //    .long 42
2615   //  foo:
2616   //    .long bar@GOTPCREL+<gotpcrelcst>
2617   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2618   const GlobalVariable *GV = Result.first;
2619   int NumUses = (int)Result.second;
2620   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2621   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2622   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2623       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2624 
2625   // Update GOT equivalent usage information
2626   --NumUses;
2627   if (NumUses >= 0)
2628     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2629 }
2630 
2631 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2632                                    AsmPrinter &AP, const Constant *BaseCV,
2633                                    uint64_t Offset) {
2634   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2635 
2636   // Globals with sub-elements such as combinations of arrays and structs
2637   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2638   // constant symbol base and the current position with BaseCV and Offset.
2639   if (!BaseCV && CV->hasOneUse())
2640     BaseCV = dyn_cast<Constant>(CV->user_back());
2641 
2642   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2643     return AP.OutStreamer->EmitZeros(Size);
2644 
2645   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2646     switch (Size) {
2647     case 1:
2648     case 2:
2649     case 4:
2650     case 8:
2651       if (AP.isVerbose())
2652         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2653                                                  CI->getZExtValue());
2654       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2655       return;
2656     default:
2657       emitGlobalConstantLargeInt(CI, AP);
2658       return;
2659     }
2660   }
2661 
2662   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2663     return emitGlobalConstantFP(CFP, AP);
2664 
2665   if (isa<ConstantPointerNull>(CV)) {
2666     AP.OutStreamer->EmitIntValue(0, Size);
2667     return;
2668   }
2669 
2670   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2671     return emitGlobalConstantDataSequential(DL, CDS, AP);
2672 
2673   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2674     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2675 
2676   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2677     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2678 
2679   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2680     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2681     // vectors).
2682     if (CE->getOpcode() == Instruction::BitCast)
2683       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2684 
2685     if (Size > 8) {
2686       // If the constant expression's size is greater than 64-bits, then we have
2687       // to emit the value in chunks. Try to constant fold the value and emit it
2688       // that way.
2689       Constant *New = ConstantFoldConstant(CE, DL);
2690       if (New && New != CE)
2691         return emitGlobalConstantImpl(DL, New, AP);
2692     }
2693   }
2694 
2695   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2696     return emitGlobalConstantVector(DL, V, AP);
2697 
2698   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2699   // thread the streamer with EmitValue.
2700   const MCExpr *ME = AP.lowerConstant(CV);
2701 
2702   // Since lowerConstant already folded and got rid of all IR pointer and
2703   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2704   // directly.
2705   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2706     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2707 
2708   AP.OutStreamer->EmitValue(ME, Size);
2709 }
2710 
2711 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2712 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2713   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2714   if (Size)
2715     emitGlobalConstantImpl(DL, CV, *this);
2716   else if (MAI->hasSubsectionsViaSymbols()) {
2717     // If the global has zero size, emit a single byte so that two labels don't
2718     // look like they are at the same location.
2719     OutStreamer->EmitIntValue(0, 1);
2720   }
2721 }
2722 
2723 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2724   // Target doesn't support this yet!
2725   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2726 }
2727 
2728 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2729   if (Offset > 0)
2730     OS << '+' << Offset;
2731   else if (Offset < 0)
2732     OS << Offset;
2733 }
2734 
2735 //===----------------------------------------------------------------------===//
2736 // Symbol Lowering Routines.
2737 //===----------------------------------------------------------------------===//
2738 
2739 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2740   return OutContext.createTempSymbol(Name, true);
2741 }
2742 
2743 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2744   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2745 }
2746 
2747 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2748   return MMI->getAddrLabelSymbol(BB);
2749 }
2750 
2751 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2752 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2753   if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) {
2754     const MachineConstantPoolEntry &CPE =
2755         MF->getConstantPool()->getConstants()[CPID];
2756     if (!CPE.isMachineConstantPoolEntry()) {
2757       const DataLayout &DL = MF->getDataLayout();
2758       SectionKind Kind = CPE.getSectionKind(&DL);
2759       const Constant *C = CPE.Val.ConstVal;
2760       unsigned Align = CPE.Alignment;
2761       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2762               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2763         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2764           if (Sym->isUndefined())
2765             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2766           return Sym;
2767         }
2768       }
2769     }
2770   }
2771 
2772   const DataLayout &DL = getDataLayout();
2773   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2774                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2775                                       Twine(CPID));
2776 }
2777 
2778 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2779 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2780   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2781 }
2782 
2783 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2784 /// FIXME: privatize to AsmPrinter.
2785 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2786   const DataLayout &DL = getDataLayout();
2787   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2788                                       Twine(getFunctionNumber()) + "_" +
2789                                       Twine(UID) + "_set_" + Twine(MBBID));
2790 }
2791 
2792 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2793                                                    StringRef Suffix) const {
2794   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2795 }
2796 
2797 /// Return the MCSymbol for the specified ExternalSymbol.
2798 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2799   SmallString<60> NameStr;
2800   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2801   return OutContext.getOrCreateSymbol(NameStr);
2802 }
2803 
2804 /// PrintParentLoopComment - Print comments about parent loops of this one.
2805 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2806                                    unsigned FunctionNumber) {
2807   if (!Loop) return;
2808   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2809   OS.indent(Loop->getLoopDepth()*2)
2810     << "Parent Loop BB" << FunctionNumber << "_"
2811     << Loop->getHeader()->getNumber()
2812     << " Depth=" << Loop->getLoopDepth() << '\n';
2813 }
2814 
2815 /// PrintChildLoopComment - Print comments about child loops within
2816 /// the loop for this basic block, with nesting.
2817 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2818                                   unsigned FunctionNumber) {
2819   // Add child loop information
2820   for (const MachineLoop *CL : *Loop) {
2821     OS.indent(CL->getLoopDepth()*2)
2822       << "Child Loop BB" << FunctionNumber << "_"
2823       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2824       << '\n';
2825     PrintChildLoopComment(OS, CL, FunctionNumber);
2826   }
2827 }
2828 
2829 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2830 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2831                                        const MachineLoopInfo *LI,
2832                                        const AsmPrinter &AP) {
2833   // Add loop depth information
2834   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2835   if (!Loop) return;
2836 
2837   MachineBasicBlock *Header = Loop->getHeader();
2838   assert(Header && "No header for loop");
2839 
2840   // If this block is not a loop header, just print out what is the loop header
2841   // and return.
2842   if (Header != &MBB) {
2843     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2844                                Twine(AP.getFunctionNumber())+"_" +
2845                                Twine(Loop->getHeader()->getNumber())+
2846                                " Depth="+Twine(Loop->getLoopDepth()));
2847     return;
2848   }
2849 
2850   // Otherwise, it is a loop header.  Print out information about child and
2851   // parent loops.
2852   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2853 
2854   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2855 
2856   OS << "=>";
2857   OS.indent(Loop->getLoopDepth()*2-2);
2858 
2859   OS << "This ";
2860   if (Loop->empty())
2861     OS << "Inner ";
2862   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2863 
2864   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2865 }
2866 
2867 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2868                                          MCCodePaddingContext &Context) const {
2869   assert(MF != nullptr && "Machine function must be valid");
2870   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2871                             !MF->getFunction().hasOptSize() &&
2872                             TM.getOptLevel() != CodeGenOpt::None;
2873   Context.IsBasicBlockReachableViaFallthrough =
2874       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2875       MBB.pred_end();
2876   Context.IsBasicBlockReachableViaBranch =
2877       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2878 }
2879 
2880 /// EmitBasicBlockStart - This method prints the label for the specified
2881 /// MachineBasicBlock, an alignment (if present) and a comment describing
2882 /// it if appropriate.
2883 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2884   // End the previous funclet and start a new one.
2885   if (MBB.isEHFuncletEntry()) {
2886     for (const HandlerInfo &HI : Handlers) {
2887       HI.Handler->endFunclet();
2888       HI.Handler->beginFunclet(MBB);
2889     }
2890   }
2891 
2892   // Emit an alignment directive for this block, if needed.
2893   if (unsigned Align = MBB.getAlignment())
2894     EmitAlignment(Align);
2895   MCCodePaddingContext Context;
2896   setupCodePaddingContext(MBB, Context);
2897   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2898 
2899   // If the block has its address taken, emit any labels that were used to
2900   // reference the block.  It is possible that there is more than one label
2901   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2902   // the references were generated.
2903   if (MBB.hasAddressTaken()) {
2904     const BasicBlock *BB = MBB.getBasicBlock();
2905     if (isVerbose())
2906       OutStreamer->AddComment("Block address taken");
2907 
2908     // MBBs can have their address taken as part of CodeGen without having
2909     // their corresponding BB's address taken in IR
2910     if (BB->hasAddressTaken())
2911       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2912         OutStreamer->EmitLabel(Sym);
2913   }
2914 
2915   // Print some verbose block comments.
2916   if (isVerbose()) {
2917     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2918       if (BB->hasName()) {
2919         BB->printAsOperand(OutStreamer->GetCommentOS(),
2920                            /*PrintType=*/false, BB->getModule());
2921         OutStreamer->GetCommentOS() << '\n';
2922       }
2923     }
2924 
2925     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2926     emitBasicBlockLoopComments(MBB, MLI, *this);
2927   }
2928 
2929   // Print the main label for the block.
2930   if (MBB.pred_empty() ||
2931       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() &&
2932        !MBB.hasLabelMustBeEmitted())) {
2933     if (isVerbose()) {
2934       // NOTE: Want this comment at start of line, don't emit with AddComment.
2935       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2936                                   false);
2937     }
2938   } else {
2939     if (isVerbose() && MBB.hasLabelMustBeEmitted())
2940       OutStreamer->AddComment("Label of block must be emitted");
2941     OutStreamer->EmitLabel(MBB.getSymbol());
2942   }
2943 }
2944 
2945 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2946   MCCodePaddingContext Context;
2947   setupCodePaddingContext(MBB, Context);
2948   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2949 }
2950 
2951 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2952                                 bool IsDefinition) const {
2953   MCSymbolAttr Attr = MCSA_Invalid;
2954 
2955   switch (Visibility) {
2956   default: break;
2957   case GlobalValue::HiddenVisibility:
2958     if (IsDefinition)
2959       Attr = MAI->getHiddenVisibilityAttr();
2960     else
2961       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2962     break;
2963   case GlobalValue::ProtectedVisibility:
2964     Attr = MAI->getProtectedVisibilityAttr();
2965     break;
2966   }
2967 
2968   if (Attr != MCSA_Invalid)
2969     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2970 }
2971 
2972 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2973 /// exactly one predecessor and the control transfer mechanism between
2974 /// the predecessor and this block is a fall-through.
2975 bool AsmPrinter::
2976 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2977   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2978   // then nothing falls through to it.
2979   if (MBB->isEHPad() || MBB->pred_empty())
2980     return false;
2981 
2982   // If there isn't exactly one predecessor, it can't be a fall through.
2983   if (MBB->pred_size() > 1)
2984     return false;
2985 
2986   // The predecessor has to be immediately before this block.
2987   MachineBasicBlock *Pred = *MBB->pred_begin();
2988   if (!Pred->isLayoutSuccessor(MBB))
2989     return false;
2990 
2991   // If the block is completely empty, then it definitely does fall through.
2992   if (Pred->empty())
2993     return true;
2994 
2995   // Check the terminators in the previous blocks
2996   for (const auto &MI : Pred->terminators()) {
2997     // If it is not a simple branch, we are in a table somewhere.
2998     if (!MI.isBranch() || MI.isIndirectBranch())
2999       return false;
3000 
3001     // If we are the operands of one of the branches, this is not a fall
3002     // through. Note that targets with delay slots will usually bundle
3003     // terminators with the delay slot instruction.
3004     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3005       if (OP->isJTI())
3006         return false;
3007       if (OP->isMBB() && OP->getMBB() == MBB)
3008         return false;
3009     }
3010   }
3011 
3012   return true;
3013 }
3014 
3015 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3016   if (!S.usesMetadata())
3017     return nullptr;
3018 
3019   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3020   gcp_map_type::iterator GCPI = GCMap.find(&S);
3021   if (GCPI != GCMap.end())
3022     return GCPI->second.get();
3023 
3024   auto Name = S.getName();
3025 
3026   for (GCMetadataPrinterRegistry::iterator
3027          I = GCMetadataPrinterRegistry::begin(),
3028          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3029     if (Name == I->getName()) {
3030       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3031       GMP->S = &S;
3032       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3033       return IterBool.first->second.get();
3034     }
3035 
3036   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3037 }
3038 
3039 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3040   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3041   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3042   bool NeedsDefault = false;
3043   if (MI->begin() == MI->end())
3044     // No GC strategy, use the default format.
3045     NeedsDefault = true;
3046   else
3047     for (auto &I : *MI) {
3048       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3049         if (MP->emitStackMaps(SM, *this))
3050           continue;
3051       // The strategy doesn't have printer or doesn't emit custom stack maps.
3052       // Use the default format.
3053       NeedsDefault = true;
3054     }
3055 
3056   if (NeedsDefault)
3057     SM.serializeToStackMapSection();
3058 }
3059 
3060 /// Pin vtable to this file.
3061 AsmPrinterHandler::~AsmPrinterHandler() = default;
3062 
3063 void AsmPrinterHandler::markFunctionEnd() {}
3064 
3065 // In the binary's "xray_instr_map" section, an array of these function entries
3066 // describes each instrumentation point.  When XRay patches your code, the index
3067 // into this table will be given to your handler as a patch point identifier.
3068 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3069                                          const MCSymbol *CurrentFnSym) const {
3070   Out->EmitSymbolValue(Sled, Bytes);
3071   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3072   auto Kind8 = static_cast<uint8_t>(Kind);
3073   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3074   Out->EmitBinaryData(
3075       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3076   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3077   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3078   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3079   Out->EmitZeros(Padding);
3080 }
3081 
3082 void AsmPrinter::emitXRayTable() {
3083   if (Sleds.empty())
3084     return;
3085 
3086   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3087   const Function &F = MF->getFunction();
3088   MCSection *InstMap = nullptr;
3089   MCSection *FnSledIndex = nullptr;
3090   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3091     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3092     assert(Associated != nullptr);
3093     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3094     std::string GroupName;
3095     if (F.hasComdat()) {
3096       Flags |= ELF::SHF_GROUP;
3097       GroupName = F.getComdat()->getName();
3098     }
3099 
3100     auto UniqueID = ++XRayFnUniqueID;
3101     InstMap =
3102         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3103                                  GroupName, UniqueID, Associated);
3104     FnSledIndex =
3105         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3106                                  GroupName, UniqueID, Associated);
3107   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3108     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3109                                          SectionKind::getReadOnlyWithRel());
3110     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3111                                              SectionKind::getReadOnlyWithRel());
3112   } else {
3113     llvm_unreachable("Unsupported target");
3114   }
3115 
3116   auto WordSizeBytes = MAI->getCodePointerSize();
3117 
3118   // Now we switch to the instrumentation map section. Because this is done
3119   // per-function, we are able to create an index entry that will represent the
3120   // range of sleds associated with a function.
3121   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3122   OutStreamer->SwitchSection(InstMap);
3123   OutStreamer->EmitLabel(SledsStart);
3124   for (const auto &Sled : Sleds)
3125     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3126   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3127   OutStreamer->EmitLabel(SledsEnd);
3128 
3129   // We then emit a single entry in the index per function. We use the symbols
3130   // that bound the instrumentation map as the range for a specific function.
3131   // Each entry here will be 2 * word size aligned, as we're writing down two
3132   // pointers. This should work for both 32-bit and 64-bit platforms.
3133   OutStreamer->SwitchSection(FnSledIndex);
3134   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3135   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3136   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3137   OutStreamer->SwitchSection(PrevSection);
3138   Sleds.clear();
3139 }
3140 
3141 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3142                             SledKind Kind, uint8_t Version) {
3143   const Function &F = MI.getMF()->getFunction();
3144   auto Attr = F.getFnAttribute("function-instrument");
3145   bool LogArgs = F.hasFnAttribute("xray-log-args");
3146   bool AlwaysInstrument =
3147     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3148   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3149     Kind = SledKind::LOG_ARGS_ENTER;
3150   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3151                                        AlwaysInstrument, &F, Version});
3152 }
3153 
3154 uint16_t AsmPrinter::getDwarfVersion() const {
3155   return OutStreamer->getContext().getDwarfVersion();
3156 }
3157 
3158 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3159   OutStreamer->getContext().setDwarfVersion(Version);
3160 }
3161