1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/GCStrategy.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineMemOperand.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalIFunc.h" 73 #include "llvm/IR/GlobalIndirectSymbol.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Remarks/Remark.h" 106 #include "llvm/Remarks/RemarkFormat.h" 107 #include "llvm/Remarks/RemarkStreamer.h" 108 #include "llvm/Remarks/RemarkStringTable.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Compiler.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/Support/Format.h" 114 #include "llvm/Support/MathExtras.h" 115 #include "llvm/Support/Path.h" 116 #include "llvm/Support/TargetRegistry.h" 117 #include "llvm/Support/Timer.h" 118 #include "llvm/Support/raw_ostream.h" 119 #include "llvm/Target/TargetLoweringObjectFile.h" 120 #include "llvm/Target/TargetMachine.h" 121 #include "llvm/Target/TargetOptions.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <cinttypes> 125 #include <cstdint> 126 #include <iterator> 127 #include <limits> 128 #include <memory> 129 #include <string> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 135 #define DEBUG_TYPE "asm-printer" 136 137 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 138 static cl::opt<bool> 139 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 140 cl::desc("Disable debug info printing")); 141 142 const char DWARFGroupName[] = "dwarf"; 143 const char DWARFGroupDescription[] = "DWARF Emission"; 144 const char DbgTimerName[] = "emit"; 145 const char DbgTimerDescription[] = "Debug Info Emission"; 146 const char EHTimerName[] = "write_exception"; 147 const char EHTimerDescription[] = "DWARF Exception Writer"; 148 const char CFGuardName[] = "Control Flow Guard"; 149 const char CFGuardDescription[] = "Control Flow Guard"; 150 const char CodeViewLineTablesGroupName[] = "linetables"; 151 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 152 const char PPTimerName[] = "emit"; 153 const char PPTimerDescription[] = "Pseudo Probe Emission"; 154 const char PPGroupName[] = "pseudo probe"; 155 const char PPGroupDescription[] = "Pseudo Probe Emission"; 156 157 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 158 159 char AsmPrinter::ID = 0; 160 161 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 162 163 static gcp_map_type &getGCMap(void *&P) { 164 if (!P) 165 P = new gcp_map_type(); 166 return *(gcp_map_type*)P; 167 } 168 169 /// getGVAlignment - Return the alignment to use for the specified global 170 /// value. This rounds up to the preferred alignment if possible and legal. 171 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 172 Align InAlign) { 173 Align Alignment; 174 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 175 Alignment = DL.getPreferredAlign(GVar); 176 177 // If InAlign is specified, round it to it. 178 if (InAlign > Alignment) 179 Alignment = InAlign; 180 181 // If the GV has a specified alignment, take it into account. 182 const MaybeAlign GVAlign(GV->getAlignment()); 183 if (!GVAlign) 184 return Alignment; 185 186 assert(GVAlign && "GVAlign must be set"); 187 188 // If the GVAlign is larger than NumBits, or if we are required to obey 189 // NumBits because the GV has an assigned section, obey it. 190 if (*GVAlign > Alignment || GV->hasSection()) 191 Alignment = *GVAlign; 192 return Alignment; 193 } 194 195 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 196 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 197 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 198 VerboseAsm = OutStreamer->isVerboseAsm(); 199 } 200 201 AsmPrinter::~AsmPrinter() { 202 assert(!DD && Handlers.size() == NumUserHandlers && 203 "Debug/EH info didn't get finalized"); 204 205 if (GCMetadataPrinters) { 206 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 207 208 delete &GCMap; 209 GCMetadataPrinters = nullptr; 210 } 211 } 212 213 bool AsmPrinter::isPositionIndependent() const { 214 return TM.isPositionIndependent(); 215 } 216 217 /// getFunctionNumber - Return a unique ID for the current function. 218 unsigned AsmPrinter::getFunctionNumber() const { 219 return MF->getFunctionNumber(); 220 } 221 222 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 223 return *TM.getObjFileLowering(); 224 } 225 226 const DataLayout &AsmPrinter::getDataLayout() const { 227 return MMI->getModule()->getDataLayout(); 228 } 229 230 // Do not use the cached DataLayout because some client use it without a Module 231 // (dsymutil, llvm-dwarfdump). 232 unsigned AsmPrinter::getPointerSize() const { 233 return TM.getPointerSize(0); // FIXME: Default address space 234 } 235 236 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 237 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 238 return MF->getSubtarget<MCSubtargetInfo>(); 239 } 240 241 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 242 S.emitInstruction(Inst, getSubtargetInfo()); 243 } 244 245 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 246 if (DD) { 247 assert(OutStreamer->hasRawTextSupport() && 248 "Expected assembly output mode."); 249 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 250 } 251 } 252 253 /// getCurrentSection() - Return the current section we are emitting to. 254 const MCSection *AsmPrinter::getCurrentSection() const { 255 return OutStreamer->getCurrentSectionOnly(); 256 } 257 258 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 259 AU.setPreservesAll(); 260 MachineFunctionPass::getAnalysisUsage(AU); 261 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 262 AU.addRequired<GCModuleInfo>(); 263 } 264 265 bool AsmPrinter::doInitialization(Module &M) { 266 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 267 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 268 269 // Initialize TargetLoweringObjectFile. 270 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 271 .Initialize(OutContext, TM); 272 273 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 274 .getModuleMetadata(M); 275 276 OutStreamer->InitSections(false); 277 278 if (DisableDebugInfoPrinting) 279 MMI->setDebugInfoAvailability(false); 280 281 // Emit the version-min deployment target directive if needed. 282 // 283 // FIXME: If we end up with a collection of these sorts of Darwin-specific 284 // or ELF-specific things, it may make sense to have a platform helper class 285 // that will work with the target helper class. For now keep it here, as the 286 // alternative is duplicated code in each of the target asm printers that 287 // use the directive, where it would need the same conditionalization 288 // anyway. 289 const Triple &Target = TM.getTargetTriple(); 290 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 291 292 // Allow the target to emit any magic that it wants at the start of the file. 293 emitStartOfAsmFile(M); 294 295 // Very minimal debug info. It is ignored if we emit actual debug info. If we 296 // don't, this at least helps the user find where a global came from. 297 if (MAI->hasSingleParameterDotFile()) { 298 // .file "foo.c" 299 OutStreamer->emitFileDirective( 300 llvm::sys::path::filename(M.getSourceFileName())); 301 } 302 303 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 304 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 305 for (auto &I : *MI) 306 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 307 MP->beginAssembly(M, *MI, *this); 308 309 // Emit module-level inline asm if it exists. 310 if (!M.getModuleInlineAsm().empty()) { 311 // We're at the module level. Construct MCSubtarget from the default CPU 312 // and target triple. 313 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 314 TM.getTargetTriple().str(), TM.getTargetCPU(), 315 TM.getTargetFeatureString())); 316 assert(STI && "Unable to create subtarget info"); 317 OutStreamer->AddComment("Start of file scope inline assembly"); 318 OutStreamer->AddBlankLine(); 319 emitInlineAsm(M.getModuleInlineAsm() + "\n", 320 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 321 OutStreamer->AddComment("End of file scope inline assembly"); 322 OutStreamer->AddBlankLine(); 323 } 324 325 if (MAI->doesSupportDebugInformation()) { 326 bool EmitCodeView = M.getCodeViewFlag(); 327 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 328 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 329 DbgTimerName, DbgTimerDescription, 330 CodeViewLineTablesGroupName, 331 CodeViewLineTablesGroupDescription); 332 } 333 if (!EmitCodeView || M.getDwarfVersion()) { 334 if (!DisableDebugInfoPrinting) { 335 DD = new DwarfDebug(this); 336 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 337 DbgTimerDescription, DWARFGroupName, 338 DWARFGroupDescription); 339 } 340 } 341 } 342 343 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 344 PP = new PseudoProbeHandler(this, &M); 345 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 346 PPTimerDescription, PPGroupName, PPGroupDescription); 347 } 348 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::SjLj: 351 case ExceptionHandling::DwarfCFI: 352 case ExceptionHandling::ARM: 353 isCFIMoveForDebugging = true; 354 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 355 break; 356 for (auto &F: M.getFunctionList()) { 357 // If the module contains any function with unwind data, 358 // .eh_frame has to be emitted. 359 // Ignore functions that won't get emitted. 360 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 361 isCFIMoveForDebugging = false; 362 break; 363 } 364 } 365 break; 366 default: 367 isCFIMoveForDebugging = false; 368 break; 369 } 370 371 EHStreamer *ES = nullptr; 372 switch (MAI->getExceptionHandlingType()) { 373 case ExceptionHandling::None: 374 break; 375 case ExceptionHandling::SjLj: 376 case ExceptionHandling::DwarfCFI: 377 ES = new DwarfCFIException(this); 378 break; 379 case ExceptionHandling::ARM: 380 ES = new ARMException(this); 381 break; 382 case ExceptionHandling::WinEH: 383 switch (MAI->getWinEHEncodingType()) { 384 default: llvm_unreachable("unsupported unwinding information encoding"); 385 case WinEH::EncodingType::Invalid: 386 break; 387 case WinEH::EncodingType::X86: 388 case WinEH::EncodingType::Itanium: 389 ES = new WinException(this); 390 break; 391 } 392 break; 393 case ExceptionHandling::Wasm: 394 ES = new WasmException(this); 395 break; 396 case ExceptionHandling::AIX: 397 ES = new AIXException(this); 398 break; 399 } 400 if (ES) 401 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 402 EHTimerDescription, DWARFGroupName, 403 DWARFGroupDescription); 404 405 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 406 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 407 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 408 CFGuardDescription, DWARFGroupName, 409 DWARFGroupDescription); 410 411 for (const HandlerInfo &HI : Handlers) { 412 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 413 HI.TimerGroupDescription, TimePassesIsEnabled); 414 HI.Handler->beginModule(&M); 415 } 416 417 return false; 418 } 419 420 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 421 if (!MAI.hasWeakDefCanBeHiddenDirective()) 422 return false; 423 424 return GV->canBeOmittedFromSymbolTable(); 425 } 426 427 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 428 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 429 switch (Linkage) { 430 case GlobalValue::CommonLinkage: 431 case GlobalValue::LinkOnceAnyLinkage: 432 case GlobalValue::LinkOnceODRLinkage: 433 case GlobalValue::WeakAnyLinkage: 434 case GlobalValue::WeakODRLinkage: 435 if (MAI->hasWeakDefDirective()) { 436 // .globl _foo 437 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 438 439 if (!canBeHidden(GV, *MAI)) 440 // .weak_definition _foo 441 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 442 else 443 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 444 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 445 // .globl _foo 446 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 447 //NOTE: linkonce is handled by the section the symbol was assigned to. 448 } else { 449 // .weak _foo 450 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 451 } 452 return; 453 case GlobalValue::ExternalLinkage: 454 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 455 return; 456 case GlobalValue::PrivateLinkage: 457 case GlobalValue::InternalLinkage: 458 return; 459 case GlobalValue::ExternalWeakLinkage: 460 case GlobalValue::AvailableExternallyLinkage: 461 case GlobalValue::AppendingLinkage: 462 llvm_unreachable("Should never emit this"); 463 } 464 llvm_unreachable("Unknown linkage type!"); 465 } 466 467 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 468 const GlobalValue *GV) const { 469 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 470 } 471 472 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 473 return TM.getSymbol(GV); 474 } 475 476 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 477 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 478 // exact definion (intersection of GlobalValue::hasExactDefinition() and 479 // !isInterposable()). These linkages include: external, appending, internal, 480 // private. It may be profitable to use a local alias for external. The 481 // assembler would otherwise be conservative and assume a global default 482 // visibility symbol can be interposable, even if the code generator already 483 // assumed it. 484 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 485 const Module &M = *GV.getParent(); 486 if (TM.getRelocationModel() != Reloc::Static && 487 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 488 return getSymbolWithGlobalValueBase(&GV, "$local"); 489 } 490 return TM.getSymbol(&GV); 491 } 492 493 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 494 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 495 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 496 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 497 "No emulated TLS variables in the common section"); 498 499 // Never emit TLS variable xyz in emulated TLS model. 500 // The initialization value is in __emutls_t.xyz instead of xyz. 501 if (IsEmuTLSVar) 502 return; 503 504 if (GV->hasInitializer()) { 505 // Check to see if this is a special global used by LLVM, if so, emit it. 506 if (emitSpecialLLVMGlobal(GV)) 507 return; 508 509 // Skip the emission of global equivalents. The symbol can be emitted later 510 // on by emitGlobalGOTEquivs in case it turns out to be needed. 511 if (GlobalGOTEquivs.count(getSymbol(GV))) 512 return; 513 514 if (isVerbose()) { 515 // When printing the control variable __emutls_v.*, 516 // we don't need to print the original TLS variable name. 517 GV->printAsOperand(OutStreamer->GetCommentOS(), 518 /*PrintType=*/false, GV->getParent()); 519 OutStreamer->GetCommentOS() << '\n'; 520 } 521 } 522 523 MCSymbol *GVSym = getSymbol(GV); 524 MCSymbol *EmittedSym = GVSym; 525 526 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 527 // attributes. 528 // GV's or GVSym's attributes will be used for the EmittedSym. 529 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 530 531 if (!GV->hasInitializer()) // External globals require no extra code. 532 return; 533 534 GVSym->redefineIfPossible(); 535 if (GVSym->isDefined() || GVSym->isVariable()) 536 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 537 "' is already defined"); 538 539 if (MAI->hasDotTypeDotSizeDirective()) 540 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 541 542 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 543 544 const DataLayout &DL = GV->getParent()->getDataLayout(); 545 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 546 547 // If the alignment is specified, we *must* obey it. Overaligning a global 548 // with a specified alignment is a prompt way to break globals emitted to 549 // sections and expected to be contiguous (e.g. ObjC metadata). 550 const Align Alignment = getGVAlignment(GV, DL); 551 552 for (const HandlerInfo &HI : Handlers) { 553 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 554 HI.TimerGroupName, HI.TimerGroupDescription, 555 TimePassesIsEnabled); 556 HI.Handler->setSymbolSize(GVSym, Size); 557 } 558 559 // Handle common symbols 560 if (GVKind.isCommon()) { 561 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 562 // .comm _foo, 42, 4 563 const bool SupportsAlignment = 564 getObjFileLowering().getCommDirectiveSupportsAlignment(); 565 OutStreamer->emitCommonSymbol(GVSym, Size, 566 SupportsAlignment ? Alignment.value() : 0); 567 return; 568 } 569 570 // Determine to which section this global should be emitted. 571 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 572 573 // If we have a bss global going to a section that supports the 574 // zerofill directive, do so here. 575 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 576 TheSection->isVirtualSection()) { 577 if (Size == 0) 578 Size = 1; // zerofill of 0 bytes is undefined. 579 emitLinkage(GV, GVSym); 580 // .zerofill __DATA, __bss, _foo, 400, 5 581 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 582 return; 583 } 584 585 // If this is a BSS local symbol and we are emitting in the BSS 586 // section use .lcomm/.comm directive. 587 if (GVKind.isBSSLocal() && 588 getObjFileLowering().getBSSSection() == TheSection) { 589 if (Size == 0) 590 Size = 1; // .comm Foo, 0 is undefined, avoid it. 591 592 // Use .lcomm only if it supports user-specified alignment. 593 // Otherwise, while it would still be correct to use .lcomm in some 594 // cases (e.g. when Align == 1), the external assembler might enfore 595 // some -unknown- default alignment behavior, which could cause 596 // spurious differences between external and integrated assembler. 597 // Prefer to simply fall back to .local / .comm in this case. 598 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 599 // .lcomm _foo, 42 600 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 601 return; 602 } 603 604 // .local _foo 605 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 606 // .comm _foo, 42, 4 607 const bool SupportsAlignment = 608 getObjFileLowering().getCommDirectiveSupportsAlignment(); 609 OutStreamer->emitCommonSymbol(GVSym, Size, 610 SupportsAlignment ? Alignment.value() : 0); 611 return; 612 } 613 614 // Handle thread local data for mach-o which requires us to output an 615 // additional structure of data and mangle the original symbol so that we 616 // can reference it later. 617 // 618 // TODO: This should become an "emit thread local global" method on TLOF. 619 // All of this macho specific stuff should be sunk down into TLOFMachO and 620 // stuff like "TLSExtraDataSection" should no longer be part of the parent 621 // TLOF class. This will also make it more obvious that stuff like 622 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 623 // specific code. 624 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 625 // Emit the .tbss symbol 626 MCSymbol *MangSym = 627 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 628 629 if (GVKind.isThreadBSS()) { 630 TheSection = getObjFileLowering().getTLSBSSSection(); 631 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 632 } else if (GVKind.isThreadData()) { 633 OutStreamer->SwitchSection(TheSection); 634 635 emitAlignment(Alignment, GV); 636 OutStreamer->emitLabel(MangSym); 637 638 emitGlobalConstant(GV->getParent()->getDataLayout(), 639 GV->getInitializer()); 640 } 641 642 OutStreamer->AddBlankLine(); 643 644 // Emit the variable struct for the runtime. 645 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 646 647 OutStreamer->SwitchSection(TLVSect); 648 // Emit the linkage here. 649 emitLinkage(GV, GVSym); 650 OutStreamer->emitLabel(GVSym); 651 652 // Three pointers in size: 653 // - __tlv_bootstrap - used to make sure support exists 654 // - spare pointer, used when mapped by the runtime 655 // - pointer to mangled symbol above with initializer 656 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 657 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 658 PtrSize); 659 OutStreamer->emitIntValue(0, PtrSize); 660 OutStreamer->emitSymbolValue(MangSym, PtrSize); 661 662 OutStreamer->AddBlankLine(); 663 return; 664 } 665 666 MCSymbol *EmittedInitSym = GVSym; 667 668 OutStreamer->SwitchSection(TheSection); 669 670 emitLinkage(GV, EmittedInitSym); 671 emitAlignment(Alignment, GV); 672 673 OutStreamer->emitLabel(EmittedInitSym); 674 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 675 if (LocalAlias != EmittedInitSym) 676 OutStreamer->emitLabel(LocalAlias); 677 678 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 679 680 if (MAI->hasDotTypeDotSizeDirective()) 681 // .size foo, 42 682 OutStreamer->emitELFSize(EmittedInitSym, 683 MCConstantExpr::create(Size, OutContext)); 684 685 OutStreamer->AddBlankLine(); 686 } 687 688 /// Emit the directive and value for debug thread local expression 689 /// 690 /// \p Value - The value to emit. 691 /// \p Size - The size of the integer (in bytes) to emit. 692 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 693 OutStreamer->emitValue(Value, Size); 694 } 695 696 void AsmPrinter::emitFunctionHeaderComment() {} 697 698 /// EmitFunctionHeader - This method emits the header for the current 699 /// function. 700 void AsmPrinter::emitFunctionHeader() { 701 const Function &F = MF->getFunction(); 702 703 if (isVerbose()) 704 OutStreamer->GetCommentOS() 705 << "-- Begin function " 706 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 707 708 // Print out constants referenced by the function 709 emitConstantPool(); 710 711 // Print the 'header' of function. 712 // If basic block sections is desired and function sections is off, 713 // explicitly request a unique section for this function. 714 if (MF->front().isBeginSection() && !TM.getFunctionSections()) 715 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 716 else 717 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 718 OutStreamer->SwitchSection(MF->getSection()); 719 720 if (!MAI->hasVisibilityOnlyWithLinkage()) 721 emitVisibility(CurrentFnSym, F.getVisibility()); 722 723 if (MAI->needsFunctionDescriptors()) 724 emitLinkage(&F, CurrentFnDescSym); 725 726 emitLinkage(&F, CurrentFnSym); 727 if (MAI->hasFunctionAlignment()) 728 emitAlignment(MF->getAlignment(), &F); 729 730 if (MAI->hasDotTypeDotSizeDirective()) 731 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 732 733 if (F.hasFnAttribute(Attribute::Cold)) 734 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 735 736 if (isVerbose()) { 737 F.printAsOperand(OutStreamer->GetCommentOS(), 738 /*PrintType=*/false, F.getParent()); 739 emitFunctionHeaderComment(); 740 OutStreamer->GetCommentOS() << '\n'; 741 } 742 743 // Emit the prefix data. 744 if (F.hasPrefixData()) { 745 if (MAI->hasSubsectionsViaSymbols()) { 746 // Preserving prefix data on platforms which use subsections-via-symbols 747 // is a bit tricky. Here we introduce a symbol for the prefix data 748 // and use the .alt_entry attribute to mark the function's real entry point 749 // as an alternative entry point to the prefix-data symbol. 750 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 751 OutStreamer->emitLabel(PrefixSym); 752 753 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 754 755 // Emit an .alt_entry directive for the actual function symbol. 756 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 757 } else { 758 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 759 } 760 } 761 762 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 763 // place prefix data before NOPs. 764 unsigned PatchableFunctionPrefix = 0; 765 unsigned PatchableFunctionEntry = 0; 766 (void)F.getFnAttribute("patchable-function-prefix") 767 .getValueAsString() 768 .getAsInteger(10, PatchableFunctionPrefix); 769 (void)F.getFnAttribute("patchable-function-entry") 770 .getValueAsString() 771 .getAsInteger(10, PatchableFunctionEntry); 772 if (PatchableFunctionPrefix) { 773 CurrentPatchableFunctionEntrySym = 774 OutContext.createLinkerPrivateTempSymbol(); 775 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 776 emitNops(PatchableFunctionPrefix); 777 } else if (PatchableFunctionEntry) { 778 // May be reassigned when emitting the body, to reference the label after 779 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 780 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 781 } 782 783 // Emit the function descriptor. This is a virtual function to allow targets 784 // to emit their specific function descriptor. Right now it is only used by 785 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 786 // descriptors and should be converted to use this hook as well. 787 if (MAI->needsFunctionDescriptors()) 788 emitFunctionDescriptor(); 789 790 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 791 // their wild and crazy things as required. 792 emitFunctionEntryLabel(); 793 794 if (CurrentFnBegin) { 795 if (MAI->useAssignmentForEHBegin()) { 796 MCSymbol *CurPos = OutContext.createTempSymbol(); 797 OutStreamer->emitLabel(CurPos); 798 OutStreamer->emitAssignment(CurrentFnBegin, 799 MCSymbolRefExpr::create(CurPos, OutContext)); 800 } else { 801 OutStreamer->emitLabel(CurrentFnBegin); 802 } 803 } 804 805 // Emit pre-function debug and/or EH information. 806 for (const HandlerInfo &HI : Handlers) { 807 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 808 HI.TimerGroupDescription, TimePassesIsEnabled); 809 HI.Handler->beginFunction(MF); 810 } 811 812 // Emit the prologue data. 813 if (F.hasPrologueData()) 814 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 815 } 816 817 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 818 /// function. This can be overridden by targets as required to do custom stuff. 819 void AsmPrinter::emitFunctionEntryLabel() { 820 CurrentFnSym->redefineIfPossible(); 821 822 // The function label could have already been emitted if two symbols end up 823 // conflicting due to asm renaming. Detect this and emit an error. 824 if (CurrentFnSym->isVariable()) 825 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 826 "' is a protected alias"); 827 828 OutStreamer->emitLabel(CurrentFnSym); 829 830 if (TM.getTargetTriple().isOSBinFormatELF()) { 831 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 832 if (Sym != CurrentFnSym) 833 OutStreamer->emitLabel(Sym); 834 } 835 } 836 837 /// emitComments - Pretty-print comments for instructions. 838 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 839 const MachineFunction *MF = MI.getMF(); 840 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 841 842 // Check for spills and reloads 843 844 // We assume a single instruction only has a spill or reload, not 845 // both. 846 Optional<unsigned> Size; 847 if ((Size = MI.getRestoreSize(TII))) { 848 CommentOS << *Size << "-byte Reload\n"; 849 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 850 if (*Size) { 851 if (*Size == unsigned(MemoryLocation::UnknownSize)) 852 CommentOS << "Unknown-size Folded Reload\n"; 853 else 854 CommentOS << *Size << "-byte Folded Reload\n"; 855 } 856 } else if ((Size = MI.getSpillSize(TII))) { 857 CommentOS << *Size << "-byte Spill\n"; 858 } else if ((Size = MI.getFoldedSpillSize(TII))) { 859 if (*Size) { 860 if (*Size == unsigned(MemoryLocation::UnknownSize)) 861 CommentOS << "Unknown-size Folded Spill\n"; 862 else 863 CommentOS << *Size << "-byte Folded Spill\n"; 864 } 865 } 866 867 // Check for spill-induced copies 868 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 869 CommentOS << " Reload Reuse\n"; 870 } 871 872 /// emitImplicitDef - This method emits the specified machine instruction 873 /// that is an implicit def. 874 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 875 Register RegNo = MI->getOperand(0).getReg(); 876 877 SmallString<128> Str; 878 raw_svector_ostream OS(Str); 879 OS << "implicit-def: " 880 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 881 882 OutStreamer->AddComment(OS.str()); 883 OutStreamer->AddBlankLine(); 884 } 885 886 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 887 std::string Str; 888 raw_string_ostream OS(Str); 889 OS << "kill:"; 890 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 891 const MachineOperand &Op = MI->getOperand(i); 892 assert(Op.isReg() && "KILL instruction must have only register operands"); 893 OS << ' ' << (Op.isDef() ? "def " : "killed ") 894 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 895 } 896 AP.OutStreamer->AddComment(OS.str()); 897 AP.OutStreamer->AddBlankLine(); 898 } 899 900 /// emitDebugValueComment - This method handles the target-independent form 901 /// of DBG_VALUE, returning true if it was able to do so. A false return 902 /// means the target will need to handle MI in EmitInstruction. 903 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 904 // This code handles only the 4-operand target-independent form. 905 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 906 return false; 907 908 SmallString<128> Str; 909 raw_svector_ostream OS(Str); 910 OS << "DEBUG_VALUE: "; 911 912 const DILocalVariable *V = MI->getDebugVariable(); 913 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 914 StringRef Name = SP->getName(); 915 if (!Name.empty()) 916 OS << Name << ":"; 917 } 918 OS << V->getName(); 919 OS << " <- "; 920 921 const DIExpression *Expr = MI->getDebugExpression(); 922 if (Expr->getNumElements()) { 923 OS << '['; 924 ListSeparator LS; 925 for (auto Op : Expr->expr_ops()) { 926 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 927 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 928 OS << ' ' << Op.getArg(I); 929 } 930 OS << "] "; 931 } 932 933 // Register or immediate value. Register 0 means undef. 934 for (const MachineOperand &Op : MI->debug_operands()) { 935 if (&Op != MI->debug_operands().begin()) 936 OS << ", "; 937 switch (Op.getType()) { 938 case MachineOperand::MO_FPImmediate: { 939 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 940 if (Op.getFPImm()->getType()->isFloatTy()) { 941 OS << (double)APF.convertToFloat(); 942 } else if (Op.getFPImm()->getType()->isDoubleTy()) { 943 OS << APF.convertToDouble(); 944 } else { 945 // There is no good way to print long double. Convert a copy to 946 // double. Ah well, it's only a comment. 947 bool ignored; 948 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 949 &ignored); 950 OS << "(long double) " << APF.convertToDouble(); 951 } 952 break; 953 } 954 case MachineOperand::MO_Immediate: { 955 OS << Op.getImm(); 956 break; 957 } 958 case MachineOperand::MO_CImmediate: { 959 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 960 break; 961 } 962 case MachineOperand::MO_TargetIndex: { 963 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 964 // NOTE: Want this comment at start of line, don't emit with AddComment. 965 AP.OutStreamer->emitRawComment(OS.str()); 966 break; 967 } 968 case MachineOperand::MO_Register: 969 case MachineOperand::MO_FrameIndex: { 970 Register Reg; 971 Optional<StackOffset> Offset; 972 if (Op.isReg()) { 973 Reg = Op.getReg(); 974 } else { 975 const TargetFrameLowering *TFI = 976 AP.MF->getSubtarget().getFrameLowering(); 977 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 978 } 979 if (!Reg) { 980 // Suppress offset, it is not meaningful here. 981 OS << "undef"; 982 break; 983 } 984 // The second operand is only an offset if it's an immediate. 985 if (MI->isIndirectDebugValue()) 986 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 987 if (Offset) 988 OS << '['; 989 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 990 if (Offset) 991 OS << '+' << Offset->getFixed() << ']'; 992 break; 993 } 994 default: 995 llvm_unreachable("Unknown operand type"); 996 } 997 } 998 999 // NOTE: Want this comment at start of line, don't emit with AddComment. 1000 AP.OutStreamer->emitRawComment(OS.str()); 1001 return true; 1002 } 1003 1004 /// This method handles the target-independent form of DBG_LABEL, returning 1005 /// true if it was able to do so. A false return means the target will need 1006 /// to handle MI in EmitInstruction. 1007 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1008 if (MI->getNumOperands() != 1) 1009 return false; 1010 1011 SmallString<128> Str; 1012 raw_svector_ostream OS(Str); 1013 OS << "DEBUG_LABEL: "; 1014 1015 const DILabel *V = MI->getDebugLabel(); 1016 if (auto *SP = dyn_cast<DISubprogram>( 1017 V->getScope()->getNonLexicalBlockFileScope())) { 1018 StringRef Name = SP->getName(); 1019 if (!Name.empty()) 1020 OS << Name << ":"; 1021 } 1022 OS << V->getName(); 1023 1024 // NOTE: Want this comment at start of line, don't emit with AddComment. 1025 AP.OutStreamer->emitRawComment(OS.str()); 1026 return true; 1027 } 1028 1029 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 1030 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1031 MF->getFunction().needsUnwindTableEntry()) 1032 return CFI_M_EH; 1033 1034 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1035 return CFI_M_Debug; 1036 1037 return CFI_M_None; 1038 } 1039 1040 bool AsmPrinter::needsSEHMoves() { 1041 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1042 } 1043 1044 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1045 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1046 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1047 ExceptionHandlingType != ExceptionHandling::ARM) 1048 return; 1049 1050 if (needsCFIMoves() == CFI_M_None) 1051 return; 1052 1053 // If there is no "real" instruction following this CFI instruction, skip 1054 // emitting it; it would be beyond the end of the function's FDE range. 1055 auto *MBB = MI.getParent(); 1056 auto I = std::next(MI.getIterator()); 1057 while (I != MBB->end() && I->isTransient()) 1058 ++I; 1059 if (I == MBB->instr_end() && 1060 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1061 return; 1062 1063 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1064 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1065 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1066 emitCFIInstruction(CFI); 1067 } 1068 1069 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1070 // The operands are the MCSymbol and the frame offset of the allocation. 1071 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1072 int FrameOffset = MI.getOperand(1).getImm(); 1073 1074 // Emit a symbol assignment. 1075 OutStreamer->emitAssignment(FrameAllocSym, 1076 MCConstantExpr::create(FrameOffset, OutContext)); 1077 } 1078 1079 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1080 /// given basic block. This can be used to capture more precise profile 1081 /// information. We use the last 4 bits (LSBs) to encode the following 1082 /// information: 1083 /// * (1): set if return block (ret or tail call). 1084 /// * (2): set if ends with a tail call. 1085 /// * (3): set if exception handling (EH) landing pad. 1086 /// * (4): set if the block can fall through to its next. 1087 /// The remaining bits are zero. 1088 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1089 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1090 return ((unsigned)MBB.isReturnBlock()) | 1091 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1092 (MBB.isEHPad() << 2) | 1093 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); 1094 } 1095 1096 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1097 MCSection *BBAddrMapSection = 1098 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1099 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1100 1101 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1102 1103 OutStreamer->PushSection(); 1104 OutStreamer->SwitchSection(BBAddrMapSection); 1105 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1106 // Emit the total number of basic blocks in this function. 1107 OutStreamer->emitULEB128IntValue(MF.size()); 1108 // Emit BB Information for each basic block in the funciton. 1109 for (const MachineBasicBlock &MBB : MF) { 1110 const MCSymbol *MBBSymbol = 1111 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1112 // Emit the basic block offset. 1113 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1114 // Emit the basic block size. When BBs have alignments, their size cannot 1115 // always be computed from their offsets. 1116 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1117 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1118 } 1119 OutStreamer->PopSection(); 1120 } 1121 1122 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1123 auto GUID = MI.getOperand(0).getImm(); 1124 auto Index = MI.getOperand(1).getImm(); 1125 auto Type = MI.getOperand(2).getImm(); 1126 auto Attr = MI.getOperand(3).getImm(); 1127 DILocation *DebugLoc = MI.getDebugLoc(); 1128 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1129 } 1130 1131 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1132 if (!MF.getTarget().Options.EmitStackSizeSection) 1133 return; 1134 1135 MCSection *StackSizeSection = 1136 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1137 if (!StackSizeSection) 1138 return; 1139 1140 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1141 // Don't emit functions with dynamic stack allocations. 1142 if (FrameInfo.hasVarSizedObjects()) 1143 return; 1144 1145 OutStreamer->PushSection(); 1146 OutStreamer->SwitchSection(StackSizeSection); 1147 1148 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1149 uint64_t StackSize = FrameInfo.getStackSize(); 1150 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1151 OutStreamer->emitULEB128IntValue(StackSize); 1152 1153 OutStreamer->PopSection(); 1154 } 1155 1156 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1157 MachineModuleInfo &MMI = MF.getMMI(); 1158 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1159 return true; 1160 1161 // We might emit an EH table that uses function begin and end labels even if 1162 // we don't have any landingpads. 1163 if (!MF.getFunction().hasPersonalityFn()) 1164 return false; 1165 return !isNoOpWithoutInvoke( 1166 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1167 } 1168 1169 /// EmitFunctionBody - This method emits the body and trailer for a 1170 /// function. 1171 void AsmPrinter::emitFunctionBody() { 1172 emitFunctionHeader(); 1173 1174 // Emit target-specific gunk before the function body. 1175 emitFunctionBodyStart(); 1176 1177 if (isVerbose()) { 1178 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1179 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1180 if (!MDT) { 1181 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1182 OwnedMDT->getBase().recalculate(*MF); 1183 MDT = OwnedMDT.get(); 1184 } 1185 1186 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1187 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1188 if (!MLI) { 1189 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1190 OwnedMLI->getBase().analyze(MDT->getBase()); 1191 MLI = OwnedMLI.get(); 1192 } 1193 } 1194 1195 // Print out code for the function. 1196 bool HasAnyRealCode = false; 1197 int NumInstsInFunction = 0; 1198 1199 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1200 for (auto &MBB : *MF) { 1201 // Print a label for the basic block. 1202 emitBasicBlockStart(MBB); 1203 DenseMap<StringRef, unsigned> MnemonicCounts; 1204 for (auto &MI : MBB) { 1205 // Print the assembly for the instruction. 1206 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1207 !MI.isDebugInstr()) { 1208 HasAnyRealCode = true; 1209 ++NumInstsInFunction; 1210 } 1211 1212 // If there is a pre-instruction symbol, emit a label for it here. 1213 if (MCSymbol *S = MI.getPreInstrSymbol()) 1214 OutStreamer->emitLabel(S); 1215 1216 for (const HandlerInfo &HI : Handlers) { 1217 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1218 HI.TimerGroupDescription, TimePassesIsEnabled); 1219 HI.Handler->beginInstruction(&MI); 1220 } 1221 1222 if (isVerbose()) 1223 emitComments(MI, OutStreamer->GetCommentOS()); 1224 1225 switch (MI.getOpcode()) { 1226 case TargetOpcode::CFI_INSTRUCTION: 1227 emitCFIInstruction(MI); 1228 break; 1229 case TargetOpcode::LOCAL_ESCAPE: 1230 emitFrameAlloc(MI); 1231 break; 1232 case TargetOpcode::ANNOTATION_LABEL: 1233 case TargetOpcode::EH_LABEL: 1234 case TargetOpcode::GC_LABEL: 1235 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1236 break; 1237 case TargetOpcode::INLINEASM: 1238 case TargetOpcode::INLINEASM_BR: 1239 emitInlineAsm(&MI); 1240 break; 1241 case TargetOpcode::DBG_VALUE: 1242 case TargetOpcode::DBG_VALUE_LIST: 1243 if (isVerbose()) { 1244 if (!emitDebugValueComment(&MI, *this)) 1245 emitInstruction(&MI); 1246 } 1247 break; 1248 case TargetOpcode::DBG_INSTR_REF: 1249 // This instruction reference will have been resolved to a machine 1250 // location, and a nearby DBG_VALUE created. We can safely ignore 1251 // the instruction reference. 1252 break; 1253 case TargetOpcode::DBG_LABEL: 1254 if (isVerbose()) { 1255 if (!emitDebugLabelComment(&MI, *this)) 1256 emitInstruction(&MI); 1257 } 1258 break; 1259 case TargetOpcode::IMPLICIT_DEF: 1260 if (isVerbose()) emitImplicitDef(&MI); 1261 break; 1262 case TargetOpcode::KILL: 1263 if (isVerbose()) emitKill(&MI, *this); 1264 break; 1265 case TargetOpcode::PSEUDO_PROBE: 1266 emitPseudoProbe(MI); 1267 break; 1268 default: 1269 emitInstruction(&MI); 1270 if (CanDoExtraAnalysis) { 1271 MCInst MCI; 1272 MCI.setOpcode(MI.getOpcode()); 1273 auto Name = OutStreamer->getMnemonic(MCI); 1274 auto I = MnemonicCounts.insert({Name, 0u}); 1275 I.first->second++; 1276 } 1277 break; 1278 } 1279 1280 // If there is a post-instruction symbol, emit a label for it here. 1281 if (MCSymbol *S = MI.getPostInstrSymbol()) 1282 OutStreamer->emitLabel(S); 1283 1284 for (const HandlerInfo &HI : Handlers) { 1285 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1286 HI.TimerGroupDescription, TimePassesIsEnabled); 1287 HI.Handler->endInstruction(); 1288 } 1289 } 1290 1291 // We must emit temporary symbol for the end of this basic block, if either 1292 // we have BBLabels enabled or if this basic blocks marks the end of a 1293 // section (except the section containing the entry basic block as the end 1294 // symbol for that section is CurrentFnEnd). 1295 if (MF->hasBBLabels() || 1296 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1297 !MBB.sameSection(&MF->front()))) 1298 OutStreamer->emitLabel(MBB.getEndSymbol()); 1299 1300 if (MBB.isEndSection()) { 1301 // The size directive for the section containing the entry block is 1302 // handled separately by the function section. 1303 if (!MBB.sameSection(&MF->front())) { 1304 if (MAI->hasDotTypeDotSizeDirective()) { 1305 // Emit the size directive for the basic block section. 1306 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1307 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1308 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1309 OutContext); 1310 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1311 } 1312 MBBSectionRanges[MBB.getSectionIDNum()] = 1313 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1314 } 1315 } 1316 emitBasicBlockEnd(MBB); 1317 1318 if (CanDoExtraAnalysis) { 1319 // Skip empty blocks. 1320 if (MBB.empty()) 1321 continue; 1322 1323 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1324 MBB.begin()->getDebugLoc(), &MBB); 1325 1326 // Generate instruction mix remark. First, sort counts in descending order 1327 // by count and name. 1328 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1329 for (auto &KV : MnemonicCounts) 1330 MnemonicVec.emplace_back(KV.first, KV.second); 1331 1332 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1333 const std::pair<StringRef, unsigned> &B) { 1334 if (A.second > B.second) 1335 return true; 1336 if (A.second == B.second) 1337 return StringRef(A.first) < StringRef(B.first); 1338 return false; 1339 }); 1340 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1341 for (auto &KV : MnemonicVec) { 1342 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1343 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1344 } 1345 ORE->emit(R); 1346 } 1347 } 1348 1349 EmittedInsts += NumInstsInFunction; 1350 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1351 MF->getFunction().getSubprogram(), 1352 &MF->front()); 1353 R << ore::NV("NumInstructions", NumInstsInFunction) 1354 << " instructions in function"; 1355 ORE->emit(R); 1356 1357 // If the function is empty and the object file uses .subsections_via_symbols, 1358 // then we need to emit *something* to the function body to prevent the 1359 // labels from collapsing together. Just emit a noop. 1360 // Similarly, don't emit empty functions on Windows either. It can lead to 1361 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1362 // after linking, causing the kernel not to load the binary: 1363 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1364 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1365 const Triple &TT = TM.getTargetTriple(); 1366 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1367 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1368 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1369 1370 // Targets can opt-out of emitting the noop here by leaving the opcode 1371 // unspecified. 1372 if (Noop.getOpcode()) { 1373 OutStreamer->AddComment("avoids zero-length function"); 1374 emitNops(1); 1375 } 1376 } 1377 1378 // Switch to the original section in case basic block sections was used. 1379 OutStreamer->SwitchSection(MF->getSection()); 1380 1381 const Function &F = MF->getFunction(); 1382 for (const auto &BB : F) { 1383 if (!BB.hasAddressTaken()) 1384 continue; 1385 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1386 if (Sym->isDefined()) 1387 continue; 1388 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1389 OutStreamer->emitLabel(Sym); 1390 } 1391 1392 // Emit target-specific gunk after the function body. 1393 emitFunctionBodyEnd(); 1394 1395 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1396 MAI->hasDotTypeDotSizeDirective()) { 1397 // Create a symbol for the end of function. 1398 CurrentFnEnd = createTempSymbol("func_end"); 1399 OutStreamer->emitLabel(CurrentFnEnd); 1400 } 1401 1402 // If the target wants a .size directive for the size of the function, emit 1403 // it. 1404 if (MAI->hasDotTypeDotSizeDirective()) { 1405 // We can get the size as difference between the function label and the 1406 // temp label. 1407 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1408 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1409 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1410 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1411 } 1412 1413 for (const HandlerInfo &HI : Handlers) { 1414 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1415 HI.TimerGroupDescription, TimePassesIsEnabled); 1416 HI.Handler->markFunctionEnd(); 1417 } 1418 1419 MBBSectionRanges[MF->front().getSectionIDNum()] = 1420 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1421 1422 // Print out jump tables referenced by the function. 1423 emitJumpTableInfo(); 1424 1425 // Emit post-function debug and/or EH information. 1426 for (const HandlerInfo &HI : Handlers) { 1427 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1428 HI.TimerGroupDescription, TimePassesIsEnabled); 1429 HI.Handler->endFunction(MF); 1430 } 1431 1432 // Emit section containing BB address offsets and their metadata, when 1433 // BB labels are requested for this function. Skip empty functions. 1434 if (MF->hasBBLabels() && HasAnyRealCode) 1435 emitBBAddrMapSection(*MF); 1436 1437 // Emit section containing stack size metadata. 1438 emitStackSizeSection(*MF); 1439 1440 emitPatchableFunctionEntries(); 1441 1442 if (isVerbose()) 1443 OutStreamer->GetCommentOS() << "-- End function\n"; 1444 1445 OutStreamer->AddBlankLine(); 1446 } 1447 1448 /// Compute the number of Global Variables that uses a Constant. 1449 static unsigned getNumGlobalVariableUses(const Constant *C) { 1450 if (!C) 1451 return 0; 1452 1453 if (isa<GlobalVariable>(C)) 1454 return 1; 1455 1456 unsigned NumUses = 0; 1457 for (auto *CU : C->users()) 1458 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1459 1460 return NumUses; 1461 } 1462 1463 /// Only consider global GOT equivalents if at least one user is a 1464 /// cstexpr inside an initializer of another global variables. Also, don't 1465 /// handle cstexpr inside instructions. During global variable emission, 1466 /// candidates are skipped and are emitted later in case at least one cstexpr 1467 /// isn't replaced by a PC relative GOT entry access. 1468 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1469 unsigned &NumGOTEquivUsers) { 1470 // Global GOT equivalents are unnamed private globals with a constant 1471 // pointer initializer to another global symbol. They must point to a 1472 // GlobalVariable or Function, i.e., as GlobalValue. 1473 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1474 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1475 !isa<GlobalValue>(GV->getOperand(0))) 1476 return false; 1477 1478 // To be a got equivalent, at least one of its users need to be a constant 1479 // expression used by another global variable. 1480 for (auto *U : GV->users()) 1481 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1482 1483 return NumGOTEquivUsers > 0; 1484 } 1485 1486 /// Unnamed constant global variables solely contaning a pointer to 1487 /// another globals variable is equivalent to a GOT table entry; it contains the 1488 /// the address of another symbol. Optimize it and replace accesses to these 1489 /// "GOT equivalents" by using the GOT entry for the final global instead. 1490 /// Compute GOT equivalent candidates among all global variables to avoid 1491 /// emitting them if possible later on, after it use is replaced by a GOT entry 1492 /// access. 1493 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1494 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1495 return; 1496 1497 for (const auto &G : M.globals()) { 1498 unsigned NumGOTEquivUsers = 0; 1499 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1500 continue; 1501 1502 const MCSymbol *GOTEquivSym = getSymbol(&G); 1503 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1504 } 1505 } 1506 1507 /// Constant expressions using GOT equivalent globals may not be eligible 1508 /// for PC relative GOT entry conversion, in such cases we need to emit such 1509 /// globals we previously omitted in EmitGlobalVariable. 1510 void AsmPrinter::emitGlobalGOTEquivs() { 1511 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1512 return; 1513 1514 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1515 for (auto &I : GlobalGOTEquivs) { 1516 const GlobalVariable *GV = I.second.first; 1517 unsigned Cnt = I.second.second; 1518 if (Cnt) 1519 FailedCandidates.push_back(GV); 1520 } 1521 GlobalGOTEquivs.clear(); 1522 1523 for (auto *GV : FailedCandidates) 1524 emitGlobalVariable(GV); 1525 } 1526 1527 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1528 const GlobalIndirectSymbol& GIS) { 1529 MCSymbol *Name = getSymbol(&GIS); 1530 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1531 // Treat bitcasts of functions as functions also. This is important at least 1532 // on WebAssembly where object and function addresses can't alias each other. 1533 if (!IsFunction) 1534 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1535 if (CE->getOpcode() == Instruction::BitCast) 1536 IsFunction = 1537 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1538 1539 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1540 // so AIX has to use the extra-label-at-definition strategy. At this 1541 // point, all the extra label is emitted, we just have to emit linkage for 1542 // those labels. 1543 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1544 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1545 assert(MAI->hasVisibilityOnlyWithLinkage() && 1546 "Visibility should be handled with emitLinkage() on AIX."); 1547 emitLinkage(&GIS, Name); 1548 // If it's a function, also emit linkage for aliases of function entry 1549 // point. 1550 if (IsFunction) 1551 emitLinkage(&GIS, 1552 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1553 return; 1554 } 1555 1556 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1557 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1558 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1559 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1560 else 1561 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1562 1563 // Set the symbol type to function if the alias has a function type. 1564 // This affects codegen when the aliasee is not a function. 1565 if (IsFunction) 1566 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1567 ? MCSA_ELF_TypeIndFunction 1568 : MCSA_ELF_TypeFunction); 1569 1570 emitVisibility(Name, GIS.getVisibility()); 1571 1572 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1573 1574 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1575 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1576 1577 // Emit the directives as assignments aka .set: 1578 OutStreamer->emitAssignment(Name, Expr); 1579 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1580 if (LocalAlias != Name) 1581 OutStreamer->emitAssignment(LocalAlias, Expr); 1582 1583 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1584 // If the aliasee does not correspond to a symbol in the output, i.e. the 1585 // alias is not of an object or the aliased object is private, then set the 1586 // size of the alias symbol from the type of the alias. We don't do this in 1587 // other situations as the alias and aliasee having differing types but same 1588 // size may be intentional. 1589 const GlobalObject *BaseObject = GA->getBaseObject(); 1590 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1591 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1592 const DataLayout &DL = M.getDataLayout(); 1593 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1594 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1595 } 1596 } 1597 } 1598 1599 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1600 if (!RS.needsSection()) 1601 return; 1602 1603 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1604 1605 Optional<SmallString<128>> Filename; 1606 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1607 Filename = *FilenameRef; 1608 sys::fs::make_absolute(*Filename); 1609 assert(!Filename->empty() && "The filename can't be empty."); 1610 } 1611 1612 std::string Buf; 1613 raw_string_ostream OS(Buf); 1614 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1615 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1616 : RemarkSerializer.metaSerializer(OS); 1617 MetaSerializer->emit(); 1618 1619 // Switch to the remarks section. 1620 MCSection *RemarksSection = 1621 OutContext.getObjectFileInfo()->getRemarksSection(); 1622 OutStreamer->SwitchSection(RemarksSection); 1623 1624 OutStreamer->emitBinaryData(OS.str()); 1625 } 1626 1627 bool AsmPrinter::doFinalization(Module &M) { 1628 // Set the MachineFunction to nullptr so that we can catch attempted 1629 // accesses to MF specific features at the module level and so that 1630 // we can conditionalize accesses based on whether or not it is nullptr. 1631 MF = nullptr; 1632 1633 // Gather all GOT equivalent globals in the module. We really need two 1634 // passes over the globals: one to compute and another to avoid its emission 1635 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1636 // where the got equivalent shows up before its use. 1637 computeGlobalGOTEquivs(M); 1638 1639 // Emit global variables. 1640 for (const auto &G : M.globals()) 1641 emitGlobalVariable(&G); 1642 1643 // Emit remaining GOT equivalent globals. 1644 emitGlobalGOTEquivs(); 1645 1646 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1647 1648 // Emit linkage(XCOFF) and visibility info for declarations 1649 for (const Function &F : M) { 1650 if (!F.isDeclarationForLinker()) 1651 continue; 1652 1653 MCSymbol *Name = getSymbol(&F); 1654 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1655 1656 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1657 GlobalValue::VisibilityTypes V = F.getVisibility(); 1658 if (V == GlobalValue::DefaultVisibility) 1659 continue; 1660 1661 emitVisibility(Name, V, false); 1662 continue; 1663 } 1664 1665 if (F.isIntrinsic()) 1666 continue; 1667 1668 // Handle the XCOFF case. 1669 // Variable `Name` is the function descriptor symbol (see above). Get the 1670 // function entry point symbol. 1671 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1672 // Emit linkage for the function entry point. 1673 emitLinkage(&F, FnEntryPointSym); 1674 1675 // Emit linkage for the function descriptor. 1676 emitLinkage(&F, Name); 1677 } 1678 1679 // Emit the remarks section contents. 1680 // FIXME: Figure out when is the safest time to emit this section. It should 1681 // not come after debug info. 1682 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1683 emitRemarksSection(*RS); 1684 1685 TLOF.emitModuleMetadata(*OutStreamer, M); 1686 1687 if (TM.getTargetTriple().isOSBinFormatELF()) { 1688 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1689 1690 // Output stubs for external and common global variables. 1691 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1692 if (!Stubs.empty()) { 1693 OutStreamer->SwitchSection(TLOF.getDataSection()); 1694 const DataLayout &DL = M.getDataLayout(); 1695 1696 emitAlignment(Align(DL.getPointerSize())); 1697 for (const auto &Stub : Stubs) { 1698 OutStreamer->emitLabel(Stub.first); 1699 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1700 DL.getPointerSize()); 1701 } 1702 } 1703 } 1704 1705 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1706 MachineModuleInfoCOFF &MMICOFF = 1707 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1708 1709 // Output stubs for external and common global variables. 1710 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1711 if (!Stubs.empty()) { 1712 const DataLayout &DL = M.getDataLayout(); 1713 1714 for (const auto &Stub : Stubs) { 1715 SmallString<256> SectionName = StringRef(".rdata$"); 1716 SectionName += Stub.first->getName(); 1717 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1718 SectionName, 1719 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1720 COFF::IMAGE_SCN_LNK_COMDAT, 1721 SectionKind::getReadOnly(), Stub.first->getName(), 1722 COFF::IMAGE_COMDAT_SELECT_ANY)); 1723 emitAlignment(Align(DL.getPointerSize())); 1724 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1725 OutStreamer->emitLabel(Stub.first); 1726 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1727 DL.getPointerSize()); 1728 } 1729 } 1730 } 1731 1732 // Finalize debug and EH information. 1733 for (const HandlerInfo &HI : Handlers) { 1734 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1735 HI.TimerGroupDescription, TimePassesIsEnabled); 1736 HI.Handler->endModule(); 1737 } 1738 1739 // This deletes all the ephemeral handlers that AsmPrinter added, while 1740 // keeping all the user-added handlers alive until the AsmPrinter is 1741 // destroyed. 1742 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1743 DD = nullptr; 1744 1745 // If the target wants to know about weak references, print them all. 1746 if (MAI->getWeakRefDirective()) { 1747 // FIXME: This is not lazy, it would be nice to only print weak references 1748 // to stuff that is actually used. Note that doing so would require targets 1749 // to notice uses in operands (due to constant exprs etc). This should 1750 // happen with the MC stuff eventually. 1751 1752 // Print out module-level global objects here. 1753 for (const auto &GO : M.global_objects()) { 1754 if (!GO.hasExternalWeakLinkage()) 1755 continue; 1756 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1757 } 1758 } 1759 1760 // Print aliases in topological order, that is, for each alias a = b, 1761 // b must be printed before a. 1762 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1763 // such an order to generate correct TOC information. 1764 SmallVector<const GlobalAlias *, 16> AliasStack; 1765 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1766 for (const auto &Alias : M.aliases()) { 1767 for (const GlobalAlias *Cur = &Alias; Cur; 1768 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1769 if (!AliasVisited.insert(Cur).second) 1770 break; 1771 AliasStack.push_back(Cur); 1772 } 1773 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1774 emitGlobalIndirectSymbol(M, *AncestorAlias); 1775 AliasStack.clear(); 1776 } 1777 for (const auto &IFunc : M.ifuncs()) 1778 emitGlobalIndirectSymbol(M, IFunc); 1779 1780 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1781 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1782 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1783 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1784 MP->finishAssembly(M, *MI, *this); 1785 1786 // Emit llvm.ident metadata in an '.ident' directive. 1787 emitModuleIdents(M); 1788 1789 // Emit bytes for llvm.commandline metadata. 1790 emitModuleCommandLines(M); 1791 1792 // Emit __morestack address if needed for indirect calls. 1793 if (MMI->usesMorestackAddr()) { 1794 Align Alignment(1); 1795 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1796 getDataLayout(), SectionKind::getReadOnly(), 1797 /*C=*/nullptr, Alignment); 1798 OutStreamer->SwitchSection(ReadOnlySection); 1799 1800 MCSymbol *AddrSymbol = 1801 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1802 OutStreamer->emitLabel(AddrSymbol); 1803 1804 unsigned PtrSize = MAI->getCodePointerSize(); 1805 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1806 PtrSize); 1807 } 1808 1809 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1810 // split-stack is used. 1811 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1812 OutStreamer->SwitchSection( 1813 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1814 if (MMI->hasNosplitStack()) 1815 OutStreamer->SwitchSection( 1816 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1817 } 1818 1819 // If we don't have any trampolines, then we don't require stack memory 1820 // to be executable. Some targets have a directive to declare this. 1821 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1822 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1823 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1824 OutStreamer->SwitchSection(S); 1825 1826 if (TM.Options.EmitAddrsig) { 1827 // Emit address-significance attributes for all globals. 1828 OutStreamer->emitAddrsig(); 1829 for (const GlobalValue &GV : M.global_values()) 1830 if (!GV.use_empty() && !GV.isThreadLocal() && 1831 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1832 !GV.hasAtLeastLocalUnnamedAddr()) 1833 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1834 } 1835 1836 // Emit symbol partition specifications (ELF only). 1837 if (TM.getTargetTriple().isOSBinFormatELF()) { 1838 unsigned UniqueID = 0; 1839 for (const GlobalValue &GV : M.global_values()) { 1840 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1841 GV.getVisibility() != GlobalValue::DefaultVisibility) 1842 continue; 1843 1844 OutStreamer->SwitchSection( 1845 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1846 "", false, ++UniqueID, nullptr)); 1847 OutStreamer->emitBytes(GV.getPartition()); 1848 OutStreamer->emitZeros(1); 1849 OutStreamer->emitValue( 1850 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1851 MAI->getCodePointerSize()); 1852 } 1853 } 1854 1855 // Allow the target to emit any magic that it wants at the end of the file, 1856 // after everything else has gone out. 1857 emitEndOfAsmFile(M); 1858 1859 MMI = nullptr; 1860 1861 OutStreamer->Finish(); 1862 OutStreamer->reset(); 1863 OwnedMLI.reset(); 1864 OwnedMDT.reset(); 1865 1866 return false; 1867 } 1868 1869 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1870 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1871 if (Res.second) 1872 Res.first->second = createTempSymbol("exception"); 1873 return Res.first->second; 1874 } 1875 1876 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1877 this->MF = &MF; 1878 const Function &F = MF.getFunction(); 1879 1880 // Get the function symbol. 1881 if (!MAI->needsFunctionDescriptors()) { 1882 CurrentFnSym = getSymbol(&MF.getFunction()); 1883 } else { 1884 assert(TM.getTargetTriple().isOSAIX() && 1885 "Only AIX uses the function descriptor hooks."); 1886 // AIX is unique here in that the name of the symbol emitted for the 1887 // function body does not have the same name as the source function's 1888 // C-linkage name. 1889 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1890 " initalized first."); 1891 1892 // Get the function entry point symbol. 1893 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1894 } 1895 1896 CurrentFnSymForSize = CurrentFnSym; 1897 CurrentFnBegin = nullptr; 1898 CurrentSectionBeginSym = nullptr; 1899 MBBSectionRanges.clear(); 1900 MBBSectionExceptionSyms.clear(); 1901 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1902 if (F.hasFnAttribute("patchable-function-entry") || 1903 F.hasFnAttribute("function-instrument") || 1904 F.hasFnAttribute("xray-instruction-threshold") || 1905 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1906 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1907 CurrentFnBegin = createTempSymbol("func_begin"); 1908 if (NeedsLocalForSize) 1909 CurrentFnSymForSize = CurrentFnBegin; 1910 } 1911 1912 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1913 } 1914 1915 namespace { 1916 1917 // Keep track the alignment, constpool entries per Section. 1918 struct SectionCPs { 1919 MCSection *S; 1920 Align Alignment; 1921 SmallVector<unsigned, 4> CPEs; 1922 1923 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1924 }; 1925 1926 } // end anonymous namespace 1927 1928 /// EmitConstantPool - Print to the current output stream assembly 1929 /// representations of the constants in the constant pool MCP. This is 1930 /// used to print out constants which have been "spilled to memory" by 1931 /// the code generator. 1932 void AsmPrinter::emitConstantPool() { 1933 const MachineConstantPool *MCP = MF->getConstantPool(); 1934 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1935 if (CP.empty()) return; 1936 1937 // Calculate sections for constant pool entries. We collect entries to go into 1938 // the same section together to reduce amount of section switch statements. 1939 SmallVector<SectionCPs, 4> CPSections; 1940 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1941 const MachineConstantPoolEntry &CPE = CP[i]; 1942 Align Alignment = CPE.getAlign(); 1943 1944 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1945 1946 const Constant *C = nullptr; 1947 if (!CPE.isMachineConstantPoolEntry()) 1948 C = CPE.Val.ConstVal; 1949 1950 MCSection *S = getObjFileLowering().getSectionForConstant( 1951 getDataLayout(), Kind, C, Alignment); 1952 1953 // The number of sections are small, just do a linear search from the 1954 // last section to the first. 1955 bool Found = false; 1956 unsigned SecIdx = CPSections.size(); 1957 while (SecIdx != 0) { 1958 if (CPSections[--SecIdx].S == S) { 1959 Found = true; 1960 break; 1961 } 1962 } 1963 if (!Found) { 1964 SecIdx = CPSections.size(); 1965 CPSections.push_back(SectionCPs(S, Alignment)); 1966 } 1967 1968 if (Alignment > CPSections[SecIdx].Alignment) 1969 CPSections[SecIdx].Alignment = Alignment; 1970 CPSections[SecIdx].CPEs.push_back(i); 1971 } 1972 1973 // Now print stuff into the calculated sections. 1974 const MCSection *CurSection = nullptr; 1975 unsigned Offset = 0; 1976 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1977 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1978 unsigned CPI = CPSections[i].CPEs[j]; 1979 MCSymbol *Sym = GetCPISymbol(CPI); 1980 if (!Sym->isUndefined()) 1981 continue; 1982 1983 if (CurSection != CPSections[i].S) { 1984 OutStreamer->SwitchSection(CPSections[i].S); 1985 emitAlignment(Align(CPSections[i].Alignment)); 1986 CurSection = CPSections[i].S; 1987 Offset = 0; 1988 } 1989 1990 MachineConstantPoolEntry CPE = CP[CPI]; 1991 1992 // Emit inter-object padding for alignment. 1993 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1994 OutStreamer->emitZeros(NewOffset - Offset); 1995 1996 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 1997 1998 OutStreamer->emitLabel(Sym); 1999 if (CPE.isMachineConstantPoolEntry()) 2000 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2001 else 2002 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2003 } 2004 } 2005 } 2006 2007 // Print assembly representations of the jump tables used by the current 2008 // function. 2009 void AsmPrinter::emitJumpTableInfo() { 2010 const DataLayout &DL = MF->getDataLayout(); 2011 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2012 if (!MJTI) return; 2013 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2014 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2015 if (JT.empty()) return; 2016 2017 // Pick the directive to use to print the jump table entries, and switch to 2018 // the appropriate section. 2019 const Function &F = MF->getFunction(); 2020 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2021 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2022 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2023 F); 2024 if (JTInDiffSection) { 2025 // Drop it in the readonly section. 2026 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2027 OutStreamer->SwitchSection(ReadOnlySection); 2028 } 2029 2030 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2031 2032 // Jump tables in code sections are marked with a data_region directive 2033 // where that's supported. 2034 if (!JTInDiffSection) 2035 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2036 2037 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2038 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2039 2040 // If this jump table was deleted, ignore it. 2041 if (JTBBs.empty()) continue; 2042 2043 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2044 /// emit a .set directive for each unique entry. 2045 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2046 MAI->doesSetDirectiveSuppressReloc()) { 2047 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2048 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2049 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2050 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2051 const MachineBasicBlock *MBB = JTBBs[ii]; 2052 if (!EmittedSets.insert(MBB).second) 2053 continue; 2054 2055 // .set LJTSet, LBB32-base 2056 const MCExpr *LHS = 2057 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2058 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2059 MCBinaryExpr::createSub(LHS, Base, 2060 OutContext)); 2061 } 2062 } 2063 2064 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2065 // before each jump table. The first label is never referenced, but tells 2066 // the assembler and linker the extents of the jump table object. The 2067 // second label is actually referenced by the code. 2068 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2069 // FIXME: This doesn't have to have any specific name, just any randomly 2070 // named and numbered local label started with 'l' would work. Simplify 2071 // GetJTISymbol. 2072 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2073 2074 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2075 OutStreamer->emitLabel(JTISymbol); 2076 2077 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2078 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2079 } 2080 if (!JTInDiffSection) 2081 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2082 } 2083 2084 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2085 /// current stream. 2086 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2087 const MachineBasicBlock *MBB, 2088 unsigned UID) const { 2089 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2090 const MCExpr *Value = nullptr; 2091 switch (MJTI->getEntryKind()) { 2092 case MachineJumpTableInfo::EK_Inline: 2093 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2094 case MachineJumpTableInfo::EK_Custom32: 2095 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2096 MJTI, MBB, UID, OutContext); 2097 break; 2098 case MachineJumpTableInfo::EK_BlockAddress: 2099 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2100 // .word LBB123 2101 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2102 break; 2103 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2104 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2105 // with a relocation as gp-relative, e.g.: 2106 // .gprel32 LBB123 2107 MCSymbol *MBBSym = MBB->getSymbol(); 2108 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2109 return; 2110 } 2111 2112 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2113 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2114 // with a relocation as gp-relative, e.g.: 2115 // .gpdword LBB123 2116 MCSymbol *MBBSym = MBB->getSymbol(); 2117 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2118 return; 2119 } 2120 2121 case MachineJumpTableInfo::EK_LabelDifference32: { 2122 // Each entry is the address of the block minus the address of the jump 2123 // table. This is used for PIC jump tables where gprel32 is not supported. 2124 // e.g.: 2125 // .word LBB123 - LJTI1_2 2126 // If the .set directive avoids relocations, this is emitted as: 2127 // .set L4_5_set_123, LBB123 - LJTI1_2 2128 // .word L4_5_set_123 2129 if (MAI->doesSetDirectiveSuppressReloc()) { 2130 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2131 OutContext); 2132 break; 2133 } 2134 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2135 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2136 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2137 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2138 break; 2139 } 2140 } 2141 2142 assert(Value && "Unknown entry kind!"); 2143 2144 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2145 OutStreamer->emitValue(Value, EntrySize); 2146 } 2147 2148 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2149 /// special global used by LLVM. If so, emit it and return true, otherwise 2150 /// do nothing and return false. 2151 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2152 if (GV->getName() == "llvm.used") { 2153 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2154 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2155 return true; 2156 } 2157 2158 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2159 if (GV->getSection() == "llvm.metadata" || 2160 GV->hasAvailableExternallyLinkage()) 2161 return true; 2162 2163 if (!GV->hasAppendingLinkage()) return false; 2164 2165 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2166 2167 if (GV->getName() == "llvm.global_ctors") { 2168 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2169 /* isCtor */ true); 2170 2171 return true; 2172 } 2173 2174 if (GV->getName() == "llvm.global_dtors") { 2175 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2176 /* isCtor */ false); 2177 2178 return true; 2179 } 2180 2181 report_fatal_error("unknown special variable"); 2182 } 2183 2184 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2185 /// global in the specified llvm.used list. 2186 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2187 // Should be an array of 'i8*'. 2188 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2189 const GlobalValue *GV = 2190 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2191 if (GV) 2192 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2193 } 2194 } 2195 2196 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2197 const Constant *List, 2198 SmallVector<Structor, 8> &Structors) { 2199 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2200 // the init priority. 2201 if (!isa<ConstantArray>(List)) 2202 return; 2203 2204 // Gather the structors in a form that's convenient for sorting by priority. 2205 for (Value *O : cast<ConstantArray>(List)->operands()) { 2206 auto *CS = cast<ConstantStruct>(O); 2207 if (CS->getOperand(1)->isNullValue()) 2208 break; // Found a null terminator, skip the rest. 2209 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2210 if (!Priority) 2211 continue; // Malformed. 2212 Structors.push_back(Structor()); 2213 Structor &S = Structors.back(); 2214 S.Priority = Priority->getLimitedValue(65535); 2215 S.Func = CS->getOperand(1); 2216 if (!CS->getOperand(2)->isNullValue()) { 2217 if (TM.getTargetTriple().isOSAIX()) 2218 llvm::report_fatal_error( 2219 "associated data of XXStructor list is not yet supported on AIX"); 2220 S.ComdatKey = 2221 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2222 } 2223 } 2224 2225 // Emit the function pointers in the target-specific order 2226 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2227 return L.Priority < R.Priority; 2228 }); 2229 } 2230 2231 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2232 /// priority. 2233 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2234 bool IsCtor) { 2235 SmallVector<Structor, 8> Structors; 2236 preprocessXXStructorList(DL, List, Structors); 2237 if (Structors.empty()) 2238 return; 2239 2240 const Align Align = DL.getPointerPrefAlignment(); 2241 for (Structor &S : Structors) { 2242 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2243 const MCSymbol *KeySym = nullptr; 2244 if (GlobalValue *GV = S.ComdatKey) { 2245 if (GV->isDeclarationForLinker()) 2246 // If the associated variable is not defined in this module 2247 // (it might be available_externally, or have been an 2248 // available_externally definition that was dropped by the 2249 // EliminateAvailableExternally pass), some other TU 2250 // will provide its dynamic initializer. 2251 continue; 2252 2253 KeySym = getSymbol(GV); 2254 } 2255 2256 MCSection *OutputSection = 2257 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2258 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2259 OutStreamer->SwitchSection(OutputSection); 2260 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2261 emitAlignment(Align); 2262 emitXXStructor(DL, S.Func); 2263 } 2264 } 2265 2266 void AsmPrinter::emitModuleIdents(Module &M) { 2267 if (!MAI->hasIdentDirective()) 2268 return; 2269 2270 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2271 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2272 const MDNode *N = NMD->getOperand(i); 2273 assert(N->getNumOperands() == 1 && 2274 "llvm.ident metadata entry can have only one operand"); 2275 const MDString *S = cast<MDString>(N->getOperand(0)); 2276 OutStreamer->emitIdent(S->getString()); 2277 } 2278 } 2279 } 2280 2281 void AsmPrinter::emitModuleCommandLines(Module &M) { 2282 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2283 if (!CommandLine) 2284 return; 2285 2286 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2287 if (!NMD || !NMD->getNumOperands()) 2288 return; 2289 2290 OutStreamer->PushSection(); 2291 OutStreamer->SwitchSection(CommandLine); 2292 OutStreamer->emitZeros(1); 2293 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2294 const MDNode *N = NMD->getOperand(i); 2295 assert(N->getNumOperands() == 1 && 2296 "llvm.commandline metadata entry can have only one operand"); 2297 const MDString *S = cast<MDString>(N->getOperand(0)); 2298 OutStreamer->emitBytes(S->getString()); 2299 OutStreamer->emitZeros(1); 2300 } 2301 OutStreamer->PopSection(); 2302 } 2303 2304 //===--------------------------------------------------------------------===// 2305 // Emission and print routines 2306 // 2307 2308 /// Emit a byte directive and value. 2309 /// 2310 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2311 2312 /// Emit a short directive and value. 2313 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2314 2315 /// Emit a long directive and value. 2316 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2317 2318 /// Emit a long long directive and value. 2319 void AsmPrinter::emitInt64(uint64_t Value) const { 2320 OutStreamer->emitInt64(Value); 2321 } 2322 2323 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2324 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2325 /// .set if it avoids relocations. 2326 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2327 unsigned Size) const { 2328 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2329 } 2330 2331 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2332 /// where the size in bytes of the directive is specified by Size and Label 2333 /// specifies the label. This implicitly uses .set if it is available. 2334 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2335 unsigned Size, 2336 bool IsSectionRelative) const { 2337 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2338 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2339 if (Size > 4) 2340 OutStreamer->emitZeros(Size - 4); 2341 return; 2342 } 2343 2344 // Emit Label+Offset (or just Label if Offset is zero) 2345 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2346 if (Offset) 2347 Expr = MCBinaryExpr::createAdd( 2348 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2349 2350 OutStreamer->emitValue(Expr, Size); 2351 } 2352 2353 //===----------------------------------------------------------------------===// 2354 2355 // EmitAlignment - Emit an alignment directive to the specified power of 2356 // two boundary. If a global value is specified, and if that global has 2357 // an explicit alignment requested, it will override the alignment request 2358 // if required for correctness. 2359 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2360 if (GV) 2361 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2362 2363 if (Alignment == Align(1)) 2364 return; // 1-byte aligned: no need to emit alignment. 2365 2366 if (getCurrentSection()->getKind().isText()) 2367 OutStreamer->emitCodeAlignment(Alignment.value()); 2368 else 2369 OutStreamer->emitValueToAlignment(Alignment.value()); 2370 } 2371 2372 //===----------------------------------------------------------------------===// 2373 // Constant emission. 2374 //===----------------------------------------------------------------------===// 2375 2376 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2377 MCContext &Ctx = OutContext; 2378 2379 if (CV->isNullValue() || isa<UndefValue>(CV)) 2380 return MCConstantExpr::create(0, Ctx); 2381 2382 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2383 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2384 2385 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2386 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2387 2388 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2389 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2390 2391 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2392 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2393 2394 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2395 if (!CE) { 2396 llvm_unreachable("Unknown constant value to lower!"); 2397 } 2398 2399 switch (CE->getOpcode()) { 2400 case Instruction::AddrSpaceCast: { 2401 const Constant *Op = CE->getOperand(0); 2402 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2403 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2404 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2405 return lowerConstant(Op); 2406 2407 // Fallthrough to error. 2408 LLVM_FALLTHROUGH; 2409 } 2410 default: { 2411 // If the code isn't optimized, there may be outstanding folding 2412 // opportunities. Attempt to fold the expression using DataLayout as a 2413 // last resort before giving up. 2414 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2415 if (C != CE) 2416 return lowerConstant(C); 2417 2418 // Otherwise report the problem to the user. 2419 std::string S; 2420 raw_string_ostream OS(S); 2421 OS << "Unsupported expression in static initializer: "; 2422 CE->printAsOperand(OS, /*PrintType=*/false, 2423 !MF ? nullptr : MF->getFunction().getParent()); 2424 report_fatal_error(OS.str()); 2425 } 2426 case Instruction::GetElementPtr: { 2427 // Generate a symbolic expression for the byte address 2428 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2429 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2430 2431 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2432 if (!OffsetAI) 2433 return Base; 2434 2435 int64_t Offset = OffsetAI.getSExtValue(); 2436 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2437 Ctx); 2438 } 2439 2440 case Instruction::Trunc: 2441 // We emit the value and depend on the assembler to truncate the generated 2442 // expression properly. This is important for differences between 2443 // blockaddress labels. Since the two labels are in the same function, it 2444 // is reasonable to treat their delta as a 32-bit value. 2445 LLVM_FALLTHROUGH; 2446 case Instruction::BitCast: 2447 return lowerConstant(CE->getOperand(0)); 2448 2449 case Instruction::IntToPtr: { 2450 const DataLayout &DL = getDataLayout(); 2451 2452 // Handle casts to pointers by changing them into casts to the appropriate 2453 // integer type. This promotes constant folding and simplifies this code. 2454 Constant *Op = CE->getOperand(0); 2455 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2456 false/*ZExt*/); 2457 return lowerConstant(Op); 2458 } 2459 2460 case Instruction::PtrToInt: { 2461 const DataLayout &DL = getDataLayout(); 2462 2463 // Support only foldable casts to/from pointers that can be eliminated by 2464 // changing the pointer to the appropriately sized integer type. 2465 Constant *Op = CE->getOperand(0); 2466 Type *Ty = CE->getType(); 2467 2468 const MCExpr *OpExpr = lowerConstant(Op); 2469 2470 // We can emit the pointer value into this slot if the slot is an 2471 // integer slot equal to the size of the pointer. 2472 // 2473 // If the pointer is larger than the resultant integer, then 2474 // as with Trunc just depend on the assembler to truncate it. 2475 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2476 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2477 return OpExpr; 2478 2479 // Otherwise the pointer is smaller than the resultant integer, mask off 2480 // the high bits so we are sure to get a proper truncation if the input is 2481 // a constant expr. 2482 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2483 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2484 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2485 } 2486 2487 case Instruction::Sub: { 2488 GlobalValue *LHSGV; 2489 APInt LHSOffset; 2490 DSOLocalEquivalent *DSOEquiv; 2491 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2492 getDataLayout(), &DSOEquiv)) { 2493 GlobalValue *RHSGV; 2494 APInt RHSOffset; 2495 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2496 getDataLayout())) { 2497 const MCExpr *RelocExpr = 2498 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2499 if (!RelocExpr) { 2500 const MCExpr *LHSExpr = 2501 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2502 if (DSOEquiv && 2503 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2504 LHSExpr = 2505 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2506 RelocExpr = MCBinaryExpr::createSub( 2507 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2508 } 2509 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2510 if (Addend != 0) 2511 RelocExpr = MCBinaryExpr::createAdd( 2512 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2513 return RelocExpr; 2514 } 2515 } 2516 } 2517 // else fallthrough 2518 LLVM_FALLTHROUGH; 2519 2520 // The MC library also has a right-shift operator, but it isn't consistently 2521 // signed or unsigned between different targets. 2522 case Instruction::Add: 2523 case Instruction::Mul: 2524 case Instruction::SDiv: 2525 case Instruction::SRem: 2526 case Instruction::Shl: 2527 case Instruction::And: 2528 case Instruction::Or: 2529 case Instruction::Xor: { 2530 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2531 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2532 switch (CE->getOpcode()) { 2533 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2534 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2535 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2536 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2537 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2538 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2539 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2540 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2541 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2542 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2543 } 2544 } 2545 } 2546 } 2547 2548 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2549 AsmPrinter &AP, 2550 const Constant *BaseCV = nullptr, 2551 uint64_t Offset = 0); 2552 2553 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2554 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2555 2556 /// isRepeatedByteSequence - Determine whether the given value is 2557 /// composed of a repeated sequence of identical bytes and return the 2558 /// byte value. If it is not a repeated sequence, return -1. 2559 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2560 StringRef Data = V->getRawDataValues(); 2561 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2562 char C = Data[0]; 2563 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2564 if (Data[i] != C) return -1; 2565 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2566 } 2567 2568 /// isRepeatedByteSequence - Determine whether the given value is 2569 /// composed of a repeated sequence of identical bytes and return the 2570 /// byte value. If it is not a repeated sequence, return -1. 2571 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2572 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2573 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2574 assert(Size % 8 == 0); 2575 2576 // Extend the element to take zero padding into account. 2577 APInt Value = CI->getValue().zextOrSelf(Size); 2578 if (!Value.isSplat(8)) 2579 return -1; 2580 2581 return Value.zextOrTrunc(8).getZExtValue(); 2582 } 2583 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2584 // Make sure all array elements are sequences of the same repeated 2585 // byte. 2586 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2587 Constant *Op0 = CA->getOperand(0); 2588 int Byte = isRepeatedByteSequence(Op0, DL); 2589 if (Byte == -1) 2590 return -1; 2591 2592 // All array elements must be equal. 2593 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2594 if (CA->getOperand(i) != Op0) 2595 return -1; 2596 return Byte; 2597 } 2598 2599 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2600 return isRepeatedByteSequence(CDS); 2601 2602 return -1; 2603 } 2604 2605 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2606 const ConstantDataSequential *CDS, 2607 AsmPrinter &AP) { 2608 // See if we can aggregate this into a .fill, if so, emit it as such. 2609 int Value = isRepeatedByteSequence(CDS, DL); 2610 if (Value != -1) { 2611 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2612 // Don't emit a 1-byte object as a .fill. 2613 if (Bytes > 1) 2614 return AP.OutStreamer->emitFill(Bytes, Value); 2615 } 2616 2617 // If this can be emitted with .ascii/.asciz, emit it as such. 2618 if (CDS->isString()) 2619 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2620 2621 // Otherwise, emit the values in successive locations. 2622 unsigned ElementByteSize = CDS->getElementByteSize(); 2623 if (isa<IntegerType>(CDS->getElementType())) { 2624 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2625 if (AP.isVerbose()) 2626 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2627 CDS->getElementAsInteger(i)); 2628 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2629 ElementByteSize); 2630 } 2631 } else { 2632 Type *ET = CDS->getElementType(); 2633 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2634 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2635 } 2636 2637 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2638 unsigned EmittedSize = 2639 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2640 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2641 if (unsigned Padding = Size - EmittedSize) 2642 AP.OutStreamer->emitZeros(Padding); 2643 } 2644 2645 static void emitGlobalConstantArray(const DataLayout &DL, 2646 const ConstantArray *CA, AsmPrinter &AP, 2647 const Constant *BaseCV, uint64_t Offset) { 2648 // See if we can aggregate some values. Make sure it can be 2649 // represented as a series of bytes of the constant value. 2650 int Value = isRepeatedByteSequence(CA, DL); 2651 2652 if (Value != -1) { 2653 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2654 AP.OutStreamer->emitFill(Bytes, Value); 2655 } 2656 else { 2657 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2658 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2659 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2660 } 2661 } 2662 } 2663 2664 static void emitGlobalConstantVector(const DataLayout &DL, 2665 const ConstantVector *CV, AsmPrinter &AP) { 2666 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2667 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2668 2669 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2670 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2671 CV->getType()->getNumElements(); 2672 if (unsigned Padding = Size - EmittedSize) 2673 AP.OutStreamer->emitZeros(Padding); 2674 } 2675 2676 static void emitGlobalConstantStruct(const DataLayout &DL, 2677 const ConstantStruct *CS, AsmPrinter &AP, 2678 const Constant *BaseCV, uint64_t Offset) { 2679 // Print the fields in successive locations. Pad to align if needed! 2680 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2681 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2682 uint64_t SizeSoFar = 0; 2683 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2684 const Constant *Field = CS->getOperand(i); 2685 2686 // Print the actual field value. 2687 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2688 2689 // Check if padding is needed and insert one or more 0s. 2690 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2691 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2692 - Layout->getElementOffset(i)) - FieldSize; 2693 SizeSoFar += FieldSize + PadSize; 2694 2695 // Insert padding - this may include padding to increase the size of the 2696 // current field up to the ABI size (if the struct is not packed) as well 2697 // as padding to ensure that the next field starts at the right offset. 2698 AP.OutStreamer->emitZeros(PadSize); 2699 } 2700 assert(SizeSoFar == Layout->getSizeInBytes() && 2701 "Layout of constant struct may be incorrect!"); 2702 } 2703 2704 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2705 assert(ET && "Unknown float type"); 2706 APInt API = APF.bitcastToAPInt(); 2707 2708 // First print a comment with what we think the original floating-point value 2709 // should have been. 2710 if (AP.isVerbose()) { 2711 SmallString<8> StrVal; 2712 APF.toString(StrVal); 2713 ET->print(AP.OutStreamer->GetCommentOS()); 2714 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2715 } 2716 2717 // Now iterate through the APInt chunks, emitting them in endian-correct 2718 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2719 // floats). 2720 unsigned NumBytes = API.getBitWidth() / 8; 2721 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2722 const uint64_t *p = API.getRawData(); 2723 2724 // PPC's long double has odd notions of endianness compared to how LLVM 2725 // handles it: p[0] goes first for *big* endian on PPC. 2726 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2727 int Chunk = API.getNumWords() - 1; 2728 2729 if (TrailingBytes) 2730 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2731 2732 for (; Chunk >= 0; --Chunk) 2733 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2734 } else { 2735 unsigned Chunk; 2736 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2737 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2738 2739 if (TrailingBytes) 2740 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2741 } 2742 2743 // Emit the tail padding for the long double. 2744 const DataLayout &DL = AP.getDataLayout(); 2745 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2746 } 2747 2748 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2749 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2750 } 2751 2752 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2753 const DataLayout &DL = AP.getDataLayout(); 2754 unsigned BitWidth = CI->getBitWidth(); 2755 2756 // Copy the value as we may massage the layout for constants whose bit width 2757 // is not a multiple of 64-bits. 2758 APInt Realigned(CI->getValue()); 2759 uint64_t ExtraBits = 0; 2760 unsigned ExtraBitsSize = BitWidth & 63; 2761 2762 if (ExtraBitsSize) { 2763 // The bit width of the data is not a multiple of 64-bits. 2764 // The extra bits are expected to be at the end of the chunk of the memory. 2765 // Little endian: 2766 // * Nothing to be done, just record the extra bits to emit. 2767 // Big endian: 2768 // * Record the extra bits to emit. 2769 // * Realign the raw data to emit the chunks of 64-bits. 2770 if (DL.isBigEndian()) { 2771 // Basically the structure of the raw data is a chunk of 64-bits cells: 2772 // 0 1 BitWidth / 64 2773 // [chunk1][chunk2] ... [chunkN]. 2774 // The most significant chunk is chunkN and it should be emitted first. 2775 // However, due to the alignment issue chunkN contains useless bits. 2776 // Realign the chunks so that they contain only useful information: 2777 // ExtraBits 0 1 (BitWidth / 64) - 1 2778 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2779 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2780 ExtraBits = Realigned.getRawData()[0] & 2781 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2782 Realigned.lshrInPlace(ExtraBitsSize); 2783 } else 2784 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2785 } 2786 2787 // We don't expect assemblers to support integer data directives 2788 // for more than 64 bits, so we emit the data in at most 64-bit 2789 // quantities at a time. 2790 const uint64_t *RawData = Realigned.getRawData(); 2791 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2792 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2793 AP.OutStreamer->emitIntValue(Val, 8); 2794 } 2795 2796 if (ExtraBitsSize) { 2797 // Emit the extra bits after the 64-bits chunks. 2798 2799 // Emit a directive that fills the expected size. 2800 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2801 Size -= (BitWidth / 64) * 8; 2802 assert(Size && Size * 8 >= ExtraBitsSize && 2803 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2804 == ExtraBits && "Directive too small for extra bits."); 2805 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2806 } 2807 } 2808 2809 /// Transform a not absolute MCExpr containing a reference to a GOT 2810 /// equivalent global, by a target specific GOT pc relative access to the 2811 /// final symbol. 2812 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2813 const Constant *BaseCst, 2814 uint64_t Offset) { 2815 // The global @foo below illustrates a global that uses a got equivalent. 2816 // 2817 // @bar = global i32 42 2818 // @gotequiv = private unnamed_addr constant i32* @bar 2819 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2820 // i64 ptrtoint (i32* @foo to i64)) 2821 // to i32) 2822 // 2823 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2824 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2825 // form: 2826 // 2827 // foo = cstexpr, where 2828 // cstexpr := <gotequiv> - "." + <cst> 2829 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2830 // 2831 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2832 // 2833 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2834 // gotpcrelcst := <offset from @foo base> + <cst> 2835 MCValue MV; 2836 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2837 return; 2838 const MCSymbolRefExpr *SymA = MV.getSymA(); 2839 if (!SymA) 2840 return; 2841 2842 // Check that GOT equivalent symbol is cached. 2843 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2844 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2845 return; 2846 2847 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2848 if (!BaseGV) 2849 return; 2850 2851 // Check for a valid base symbol 2852 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2853 const MCSymbolRefExpr *SymB = MV.getSymB(); 2854 2855 if (!SymB || BaseSym != &SymB->getSymbol()) 2856 return; 2857 2858 // Make sure to match: 2859 // 2860 // gotpcrelcst := <offset from @foo base> + <cst> 2861 // 2862 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2863 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2864 // if the target knows how to encode it. 2865 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2866 if (GOTPCRelCst < 0) 2867 return; 2868 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2869 return; 2870 2871 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2872 // 2873 // bar: 2874 // .long 42 2875 // gotequiv: 2876 // .quad bar 2877 // foo: 2878 // .long gotequiv - "." + <cst> 2879 // 2880 // is replaced by the target specific equivalent to: 2881 // 2882 // bar: 2883 // .long 42 2884 // foo: 2885 // .long bar@GOTPCREL+<gotpcrelcst> 2886 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2887 const GlobalVariable *GV = Result.first; 2888 int NumUses = (int)Result.second; 2889 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2890 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2891 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2892 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2893 2894 // Update GOT equivalent usage information 2895 --NumUses; 2896 if (NumUses >= 0) 2897 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2898 } 2899 2900 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2901 AsmPrinter &AP, const Constant *BaseCV, 2902 uint64_t Offset) { 2903 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2904 2905 // Globals with sub-elements such as combinations of arrays and structs 2906 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2907 // constant symbol base and the current position with BaseCV and Offset. 2908 if (!BaseCV && CV->hasOneUse()) 2909 BaseCV = dyn_cast<Constant>(CV->user_back()); 2910 2911 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2912 return AP.OutStreamer->emitZeros(Size); 2913 2914 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2915 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2916 2917 if (StoreSize <= 8) { 2918 if (AP.isVerbose()) 2919 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2920 CI->getZExtValue()); 2921 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2922 } else { 2923 emitGlobalConstantLargeInt(CI, AP); 2924 } 2925 2926 // Emit tail padding if needed 2927 if (Size != StoreSize) 2928 AP.OutStreamer->emitZeros(Size - StoreSize); 2929 2930 return; 2931 } 2932 2933 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2934 return emitGlobalConstantFP(CFP, AP); 2935 2936 if (isa<ConstantPointerNull>(CV)) { 2937 AP.OutStreamer->emitIntValue(0, Size); 2938 return; 2939 } 2940 2941 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2942 return emitGlobalConstantDataSequential(DL, CDS, AP); 2943 2944 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2945 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2946 2947 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2948 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2949 2950 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2951 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2952 // vectors). 2953 if (CE->getOpcode() == Instruction::BitCast) 2954 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2955 2956 if (Size > 8) { 2957 // If the constant expression's size is greater than 64-bits, then we have 2958 // to emit the value in chunks. Try to constant fold the value and emit it 2959 // that way. 2960 Constant *New = ConstantFoldConstant(CE, DL); 2961 if (New != CE) 2962 return emitGlobalConstantImpl(DL, New, AP); 2963 } 2964 } 2965 2966 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2967 return emitGlobalConstantVector(DL, V, AP); 2968 2969 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2970 // thread the streamer with EmitValue. 2971 const MCExpr *ME = AP.lowerConstant(CV); 2972 2973 // Since lowerConstant already folded and got rid of all IR pointer and 2974 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2975 // directly. 2976 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2977 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2978 2979 AP.OutStreamer->emitValue(ME, Size); 2980 } 2981 2982 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2983 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2984 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2985 if (Size) 2986 emitGlobalConstantImpl(DL, CV, *this); 2987 else if (MAI->hasSubsectionsViaSymbols()) { 2988 // If the global has zero size, emit a single byte so that two labels don't 2989 // look like they are at the same location. 2990 OutStreamer->emitIntValue(0, 1); 2991 } 2992 } 2993 2994 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2995 // Target doesn't support this yet! 2996 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2997 } 2998 2999 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3000 if (Offset > 0) 3001 OS << '+' << Offset; 3002 else if (Offset < 0) 3003 OS << Offset; 3004 } 3005 3006 void AsmPrinter::emitNops(unsigned N) { 3007 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3008 for (; N; --N) 3009 EmitToStreamer(*OutStreamer, Nop); 3010 } 3011 3012 //===----------------------------------------------------------------------===// 3013 // Symbol Lowering Routines. 3014 //===----------------------------------------------------------------------===// 3015 3016 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3017 return OutContext.createTempSymbol(Name, true); 3018 } 3019 3020 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3021 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3022 } 3023 3024 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3025 return MMI->getAddrLabelSymbol(BB); 3026 } 3027 3028 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3029 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3030 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3031 const MachineConstantPoolEntry &CPE = 3032 MF->getConstantPool()->getConstants()[CPID]; 3033 if (!CPE.isMachineConstantPoolEntry()) { 3034 const DataLayout &DL = MF->getDataLayout(); 3035 SectionKind Kind = CPE.getSectionKind(&DL); 3036 const Constant *C = CPE.Val.ConstVal; 3037 Align Alignment = CPE.Alignment; 3038 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3039 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3040 Alignment))) { 3041 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3042 if (Sym->isUndefined()) 3043 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3044 return Sym; 3045 } 3046 } 3047 } 3048 } 3049 3050 const DataLayout &DL = getDataLayout(); 3051 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3052 "CPI" + Twine(getFunctionNumber()) + "_" + 3053 Twine(CPID)); 3054 } 3055 3056 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3057 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3058 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3059 } 3060 3061 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3062 /// FIXME: privatize to AsmPrinter. 3063 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3064 const DataLayout &DL = getDataLayout(); 3065 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3066 Twine(getFunctionNumber()) + "_" + 3067 Twine(UID) + "_set_" + Twine(MBBID)); 3068 } 3069 3070 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3071 StringRef Suffix) const { 3072 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3073 } 3074 3075 /// Return the MCSymbol for the specified ExternalSymbol. 3076 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3077 SmallString<60> NameStr; 3078 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3079 return OutContext.getOrCreateSymbol(NameStr); 3080 } 3081 3082 /// PrintParentLoopComment - Print comments about parent loops of this one. 3083 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3084 unsigned FunctionNumber) { 3085 if (!Loop) return; 3086 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3087 OS.indent(Loop->getLoopDepth()*2) 3088 << "Parent Loop BB" << FunctionNumber << "_" 3089 << Loop->getHeader()->getNumber() 3090 << " Depth=" << Loop->getLoopDepth() << '\n'; 3091 } 3092 3093 /// PrintChildLoopComment - Print comments about child loops within 3094 /// the loop for this basic block, with nesting. 3095 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3096 unsigned FunctionNumber) { 3097 // Add child loop information 3098 for (const MachineLoop *CL : *Loop) { 3099 OS.indent(CL->getLoopDepth()*2) 3100 << "Child Loop BB" << FunctionNumber << "_" 3101 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3102 << '\n'; 3103 PrintChildLoopComment(OS, CL, FunctionNumber); 3104 } 3105 } 3106 3107 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3108 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3109 const MachineLoopInfo *LI, 3110 const AsmPrinter &AP) { 3111 // Add loop depth information 3112 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3113 if (!Loop) return; 3114 3115 MachineBasicBlock *Header = Loop->getHeader(); 3116 assert(Header && "No header for loop"); 3117 3118 // If this block is not a loop header, just print out what is the loop header 3119 // and return. 3120 if (Header != &MBB) { 3121 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3122 Twine(AP.getFunctionNumber())+"_" + 3123 Twine(Loop->getHeader()->getNumber())+ 3124 " Depth="+Twine(Loop->getLoopDepth())); 3125 return; 3126 } 3127 3128 // Otherwise, it is a loop header. Print out information about child and 3129 // parent loops. 3130 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3131 3132 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3133 3134 OS << "=>"; 3135 OS.indent(Loop->getLoopDepth()*2-2); 3136 3137 OS << "This "; 3138 if (Loop->isInnermost()) 3139 OS << "Inner "; 3140 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3141 3142 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3143 } 3144 3145 /// emitBasicBlockStart - This method prints the label for the specified 3146 /// MachineBasicBlock, an alignment (if present) and a comment describing 3147 /// it if appropriate. 3148 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3149 // End the previous funclet and start a new one. 3150 if (MBB.isEHFuncletEntry()) { 3151 for (const HandlerInfo &HI : Handlers) { 3152 HI.Handler->endFunclet(); 3153 HI.Handler->beginFunclet(MBB); 3154 } 3155 } 3156 3157 // Emit an alignment directive for this block, if needed. 3158 const Align Alignment = MBB.getAlignment(); 3159 if (Alignment != Align(1)) 3160 emitAlignment(Alignment); 3161 3162 // Switch to a new section if this basic block must begin a section. The 3163 // entry block is always placed in the function section and is handled 3164 // separately. 3165 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3166 OutStreamer->SwitchSection( 3167 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3168 MBB, TM)); 3169 CurrentSectionBeginSym = MBB.getSymbol(); 3170 } 3171 3172 // If the block has its address taken, emit any labels that were used to 3173 // reference the block. It is possible that there is more than one label 3174 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3175 // the references were generated. 3176 if (MBB.hasAddressTaken()) { 3177 const BasicBlock *BB = MBB.getBasicBlock(); 3178 if (isVerbose()) 3179 OutStreamer->AddComment("Block address taken"); 3180 3181 // MBBs can have their address taken as part of CodeGen without having 3182 // their corresponding BB's address taken in IR 3183 if (BB->hasAddressTaken()) 3184 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3185 OutStreamer->emitLabel(Sym); 3186 } 3187 3188 // Print some verbose block comments. 3189 if (isVerbose()) { 3190 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3191 if (BB->hasName()) { 3192 BB->printAsOperand(OutStreamer->GetCommentOS(), 3193 /*PrintType=*/false, BB->getModule()); 3194 OutStreamer->GetCommentOS() << '\n'; 3195 } 3196 } 3197 3198 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3199 emitBasicBlockLoopComments(MBB, MLI, *this); 3200 } 3201 3202 // Print the main label for the block. 3203 if (shouldEmitLabelForBasicBlock(MBB)) { 3204 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3205 OutStreamer->AddComment("Label of block must be emitted"); 3206 OutStreamer->emitLabel(MBB.getSymbol()); 3207 } else { 3208 if (isVerbose()) { 3209 // NOTE: Want this comment at start of line, don't emit with AddComment. 3210 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3211 false); 3212 } 3213 } 3214 3215 if (MBB.isEHCatchretTarget() && 3216 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3217 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3218 } 3219 3220 // With BB sections, each basic block must handle CFI information on its own 3221 // if it begins a section (Entry block is handled separately by 3222 // AsmPrinterHandler::beginFunction). 3223 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3224 for (const HandlerInfo &HI : Handlers) 3225 HI.Handler->beginBasicBlock(MBB); 3226 } 3227 3228 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3229 // Check if CFI information needs to be updated for this MBB with basic block 3230 // sections. 3231 if (MBB.isEndSection()) 3232 for (const HandlerInfo &HI : Handlers) 3233 HI.Handler->endBasicBlock(MBB); 3234 } 3235 3236 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3237 bool IsDefinition) const { 3238 MCSymbolAttr Attr = MCSA_Invalid; 3239 3240 switch (Visibility) { 3241 default: break; 3242 case GlobalValue::HiddenVisibility: 3243 if (IsDefinition) 3244 Attr = MAI->getHiddenVisibilityAttr(); 3245 else 3246 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3247 break; 3248 case GlobalValue::ProtectedVisibility: 3249 Attr = MAI->getProtectedVisibilityAttr(); 3250 break; 3251 } 3252 3253 if (Attr != MCSA_Invalid) 3254 OutStreamer->emitSymbolAttribute(Sym, Attr); 3255 } 3256 3257 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3258 const MachineBasicBlock &MBB) const { 3259 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3260 // in the labels mode (option `=labels`) and every section beginning in the 3261 // sections mode (`=all` and `=list=`). 3262 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3263 return true; 3264 // A label is needed for any block with at least one predecessor (when that 3265 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3266 // entry, or if a label is forced). 3267 return !MBB.pred_empty() && 3268 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3269 MBB.hasLabelMustBeEmitted()); 3270 } 3271 3272 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3273 /// exactly one predecessor and the control transfer mechanism between 3274 /// the predecessor and this block is a fall-through. 3275 bool AsmPrinter:: 3276 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3277 // If this is a landing pad, it isn't a fall through. If it has no preds, 3278 // then nothing falls through to it. 3279 if (MBB->isEHPad() || MBB->pred_empty()) 3280 return false; 3281 3282 // If there isn't exactly one predecessor, it can't be a fall through. 3283 if (MBB->pred_size() > 1) 3284 return false; 3285 3286 // The predecessor has to be immediately before this block. 3287 MachineBasicBlock *Pred = *MBB->pred_begin(); 3288 if (!Pred->isLayoutSuccessor(MBB)) 3289 return false; 3290 3291 // If the block is completely empty, then it definitely does fall through. 3292 if (Pred->empty()) 3293 return true; 3294 3295 // Check the terminators in the previous blocks 3296 for (const auto &MI : Pred->terminators()) { 3297 // If it is not a simple branch, we are in a table somewhere. 3298 if (!MI.isBranch() || MI.isIndirectBranch()) 3299 return false; 3300 3301 // If we are the operands of one of the branches, this is not a fall 3302 // through. Note that targets with delay slots will usually bundle 3303 // terminators with the delay slot instruction. 3304 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3305 if (OP->isJTI()) 3306 return false; 3307 if (OP->isMBB() && OP->getMBB() == MBB) 3308 return false; 3309 } 3310 } 3311 3312 return true; 3313 } 3314 3315 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3316 if (!S.usesMetadata()) 3317 return nullptr; 3318 3319 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3320 gcp_map_type::iterator GCPI = GCMap.find(&S); 3321 if (GCPI != GCMap.end()) 3322 return GCPI->second.get(); 3323 3324 auto Name = S.getName(); 3325 3326 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3327 GCMetadataPrinterRegistry::entries()) 3328 if (Name == GCMetaPrinter.getName()) { 3329 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3330 GMP->S = &S; 3331 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3332 return IterBool.first->second.get(); 3333 } 3334 3335 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3336 } 3337 3338 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3339 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3340 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3341 bool NeedsDefault = false; 3342 if (MI->begin() == MI->end()) 3343 // No GC strategy, use the default format. 3344 NeedsDefault = true; 3345 else 3346 for (auto &I : *MI) { 3347 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3348 if (MP->emitStackMaps(SM, *this)) 3349 continue; 3350 // The strategy doesn't have printer or doesn't emit custom stack maps. 3351 // Use the default format. 3352 NeedsDefault = true; 3353 } 3354 3355 if (NeedsDefault) 3356 SM.serializeToStackMapSection(); 3357 } 3358 3359 /// Pin vtable to this file. 3360 AsmPrinterHandler::~AsmPrinterHandler() = default; 3361 3362 void AsmPrinterHandler::markFunctionEnd() {} 3363 3364 // In the binary's "xray_instr_map" section, an array of these function entries 3365 // describes each instrumentation point. When XRay patches your code, the index 3366 // into this table will be given to your handler as a patch point identifier. 3367 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3368 auto Kind8 = static_cast<uint8_t>(Kind); 3369 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3370 Out->emitBinaryData( 3371 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3372 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3373 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3374 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3375 Out->emitZeros(Padding); 3376 } 3377 3378 void AsmPrinter::emitXRayTable() { 3379 if (Sleds.empty()) 3380 return; 3381 3382 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3383 const Function &F = MF->getFunction(); 3384 MCSection *InstMap = nullptr; 3385 MCSection *FnSledIndex = nullptr; 3386 const Triple &TT = TM.getTargetTriple(); 3387 // Use PC-relative addresses on all targets. 3388 if (TT.isOSBinFormatELF()) { 3389 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3390 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3391 StringRef GroupName; 3392 if (F.hasComdat()) { 3393 Flags |= ELF::SHF_GROUP; 3394 GroupName = F.getComdat()->getName(); 3395 } 3396 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3397 Flags, 0, GroupName, F.hasComdat(), 3398 MCSection::NonUniqueID, LinkedToSym); 3399 3400 if (!TM.Options.XRayOmitFunctionIndex) 3401 FnSledIndex = OutContext.getELFSection( 3402 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3403 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3404 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3405 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3406 SectionKind::getReadOnlyWithRel()); 3407 if (!TM.Options.XRayOmitFunctionIndex) 3408 FnSledIndex = OutContext.getMachOSection( 3409 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3410 } else { 3411 llvm_unreachable("Unsupported target"); 3412 } 3413 3414 auto WordSizeBytes = MAI->getCodePointerSize(); 3415 3416 // Now we switch to the instrumentation map section. Because this is done 3417 // per-function, we are able to create an index entry that will represent the 3418 // range of sleds associated with a function. 3419 auto &Ctx = OutContext; 3420 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3421 OutStreamer->SwitchSection(InstMap); 3422 OutStreamer->emitLabel(SledsStart); 3423 for (const auto &Sled : Sleds) { 3424 MCSymbol *Dot = Ctx.createTempSymbol(); 3425 OutStreamer->emitLabel(Dot); 3426 OutStreamer->emitValueImpl( 3427 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3428 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3429 WordSizeBytes); 3430 OutStreamer->emitValueImpl( 3431 MCBinaryExpr::createSub( 3432 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3433 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3434 MCConstantExpr::create(WordSizeBytes, Ctx), 3435 Ctx), 3436 Ctx), 3437 WordSizeBytes); 3438 Sled.emit(WordSizeBytes, OutStreamer.get()); 3439 } 3440 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3441 OutStreamer->emitLabel(SledsEnd); 3442 3443 // We then emit a single entry in the index per function. We use the symbols 3444 // that bound the instrumentation map as the range for a specific function. 3445 // Each entry here will be 2 * word size aligned, as we're writing down two 3446 // pointers. This should work for both 32-bit and 64-bit platforms. 3447 if (FnSledIndex) { 3448 OutStreamer->SwitchSection(FnSledIndex); 3449 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3450 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3451 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3452 OutStreamer->SwitchSection(PrevSection); 3453 } 3454 Sleds.clear(); 3455 } 3456 3457 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3458 SledKind Kind, uint8_t Version) { 3459 const Function &F = MI.getMF()->getFunction(); 3460 auto Attr = F.getFnAttribute("function-instrument"); 3461 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3462 bool AlwaysInstrument = 3463 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3464 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3465 Kind = SledKind::LOG_ARGS_ENTER; 3466 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3467 AlwaysInstrument, &F, Version}); 3468 } 3469 3470 void AsmPrinter::emitPatchableFunctionEntries() { 3471 const Function &F = MF->getFunction(); 3472 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3473 (void)F.getFnAttribute("patchable-function-prefix") 3474 .getValueAsString() 3475 .getAsInteger(10, PatchableFunctionPrefix); 3476 (void)F.getFnAttribute("patchable-function-entry") 3477 .getValueAsString() 3478 .getAsInteger(10, PatchableFunctionEntry); 3479 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3480 return; 3481 const unsigned PointerSize = getPointerSize(); 3482 if (TM.getTargetTriple().isOSBinFormatELF()) { 3483 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3484 const MCSymbolELF *LinkedToSym = nullptr; 3485 StringRef GroupName; 3486 3487 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3488 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3489 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3490 Flags |= ELF::SHF_LINK_ORDER; 3491 if (F.hasComdat()) { 3492 Flags |= ELF::SHF_GROUP; 3493 GroupName = F.getComdat()->getName(); 3494 } 3495 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3496 } 3497 OutStreamer->SwitchSection(OutContext.getELFSection( 3498 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3499 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3500 emitAlignment(Align(PointerSize)); 3501 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3502 } 3503 } 3504 3505 uint16_t AsmPrinter::getDwarfVersion() const { 3506 return OutStreamer->getContext().getDwarfVersion(); 3507 } 3508 3509 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3510 OutStreamer->getContext().setDwarfVersion(Version); 3511 } 3512 3513 bool AsmPrinter::isDwarf64() const { 3514 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3515 } 3516 3517 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3518 return dwarf::getDwarfOffsetByteSize( 3519 OutStreamer->getContext().getDwarfFormat()); 3520 } 3521 3522 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3523 return dwarf::getUnitLengthFieldByteSize( 3524 OutStreamer->getContext().getDwarfFormat()); 3525 } 3526