1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCContext.h" 84 #include "llvm/MC/MCDirectives.h" 85 #include "llvm/MC/MCDwarf.h" 86 #include "llvm/MC/MCExpr.h" 87 #include "llvm/MC/MCInst.h" 88 #include "llvm/MC/MCSection.h" 89 #include "llvm/MC/MCSectionCOFF.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCSectionXCOFF.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCSymbolXCOFF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Remarks/RemarkFormat.h" 104 #include "llvm/Remarks/RemarkStreamer.h" 105 #include "llvm/Remarks/RemarkStringTable.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/Format.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/Path.h" 113 #include "llvm/Support/TargetRegistry.h" 114 #include "llvm/Support/Timer.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include "llvm/Target/TargetLoweringObjectFile.h" 117 #include "llvm/Target/TargetMachine.h" 118 #include "llvm/Target/TargetOptions.h" 119 #include <algorithm> 120 #include <cassert> 121 #include <cinttypes> 122 #include <cstdint> 123 #include <iterator> 124 #include <limits> 125 #include <memory> 126 #include <string> 127 #include <utility> 128 #include <vector> 129 130 using namespace llvm; 131 132 #define DEBUG_TYPE "asm-printer" 133 134 static const char *const DWARFGroupName = "dwarf"; 135 static const char *const DWARFGroupDescription = "DWARF Emission"; 136 static const char *const DbgTimerName = "emit"; 137 static const char *const DbgTimerDescription = "Debug Info Emission"; 138 static const char *const EHTimerName = "write_exception"; 139 static const char *const EHTimerDescription = "DWARF Exception Writer"; 140 static const char *const CFGuardName = "Control Flow Guard"; 141 static const char *const CFGuardDescription = "Control Flow Guard"; 142 static const char *const CodeViewLineTablesGroupName = "linetables"; 143 static const char *const CodeViewLineTablesGroupDescription = 144 "CodeView Line Tables"; 145 146 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 147 148 char AsmPrinter::ID = 0; 149 150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 151 152 static gcp_map_type &getGCMap(void *&P) { 153 if (!P) 154 P = new gcp_map_type(); 155 return *(gcp_map_type*)P; 156 } 157 158 /// getGVAlignment - Return the alignment to use for the specified global 159 /// value. This rounds up to the preferred alignment if possible and legal. 160 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 161 Align InAlign) { 162 Align Alignment; 163 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 164 Alignment = DL.getPreferredAlign(GVar); 165 166 // If InAlign is specified, round it to it. 167 if (InAlign > Alignment) 168 Alignment = InAlign; 169 170 // If the GV has a specified alignment, take it into account. 171 const MaybeAlign GVAlign(GV->getAlignment()); 172 if (!GVAlign) 173 return Alignment; 174 175 assert(GVAlign && "GVAlign must be set"); 176 177 // If the GVAlign is larger than NumBits, or if we are required to obey 178 // NumBits because the GV has an assigned section, obey it. 179 if (*GVAlign > Alignment || GV->hasSection()) 180 Alignment = *GVAlign; 181 return Alignment; 182 } 183 184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 185 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 186 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 187 VerboseAsm = OutStreamer->isVerboseAsm(); 188 } 189 190 AsmPrinter::~AsmPrinter() { 191 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 192 193 if (GCMetadataPrinters) { 194 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 195 196 delete &GCMap; 197 GCMetadataPrinters = nullptr; 198 } 199 } 200 201 bool AsmPrinter::isPositionIndependent() const { 202 return TM.isPositionIndependent(); 203 } 204 205 /// getFunctionNumber - Return a unique ID for the current function. 206 unsigned AsmPrinter::getFunctionNumber() const { 207 return MF->getFunctionNumber(); 208 } 209 210 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 211 return *TM.getObjFileLowering(); 212 } 213 214 const DataLayout &AsmPrinter::getDataLayout() const { 215 return MMI->getModule()->getDataLayout(); 216 } 217 218 // Do not use the cached DataLayout because some client use it without a Module 219 // (dsymutil, llvm-dwarfdump). 220 unsigned AsmPrinter::getPointerSize() const { 221 return TM.getPointerSize(0); // FIXME: Default address space 222 } 223 224 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 225 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 226 return MF->getSubtarget<MCSubtargetInfo>(); 227 } 228 229 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 230 S.emitInstruction(Inst, getSubtargetInfo()); 231 } 232 233 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 234 assert(DD && "Dwarf debug file is not defined."); 235 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 236 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 237 } 238 239 /// getCurrentSection() - Return the current section we are emitting to. 240 const MCSection *AsmPrinter::getCurrentSection() const { 241 return OutStreamer->getCurrentSectionOnly(); 242 } 243 244 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 245 AU.setPreservesAll(); 246 MachineFunctionPass::getAnalysisUsage(AU); 247 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 248 AU.addRequired<GCModuleInfo>(); 249 } 250 251 bool AsmPrinter::doInitialization(Module &M) { 252 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 253 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 254 255 // Initialize TargetLoweringObjectFile. 256 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 257 .Initialize(OutContext, TM); 258 259 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 260 .getModuleMetadata(M); 261 262 OutStreamer->InitSections(false); 263 264 // Emit the version-min deployment target directive if needed. 265 // 266 // FIXME: If we end up with a collection of these sorts of Darwin-specific 267 // or ELF-specific things, it may make sense to have a platform helper class 268 // that will work with the target helper class. For now keep it here, as the 269 // alternative is duplicated code in each of the target asm printers that 270 // use the directive, where it would need the same conditionalization 271 // anyway. 272 const Triple &Target = TM.getTargetTriple(); 273 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 274 275 // Allow the target to emit any magic that it wants at the start of the file. 276 emitStartOfAsmFile(M); 277 278 // Very minimal debug info. It is ignored if we emit actual debug info. If we 279 // don't, this at least helps the user find where a global came from. 280 if (MAI->hasSingleParameterDotFile()) { 281 // .file "foo.c" 282 OutStreamer->emitFileDirective( 283 llvm::sys::path::filename(M.getSourceFileName())); 284 } 285 286 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 287 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 288 for (auto &I : *MI) 289 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 290 MP->beginAssembly(M, *MI, *this); 291 292 // Emit module-level inline asm if it exists. 293 if (!M.getModuleInlineAsm().empty()) { 294 // We're at the module level. Construct MCSubtarget from the default CPU 295 // and target triple. 296 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 297 TM.getTargetTriple().str(), TM.getTargetCPU(), 298 TM.getTargetFeatureString())); 299 OutStreamer->AddComment("Start of file scope inline assembly"); 300 OutStreamer->AddBlankLine(); 301 emitInlineAsm(M.getModuleInlineAsm() + "\n", 302 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 303 OutStreamer->AddComment("End of file scope inline assembly"); 304 OutStreamer->AddBlankLine(); 305 } 306 307 if (MAI->doesSupportDebugInformation()) { 308 bool EmitCodeView = M.getCodeViewFlag(); 309 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 310 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 311 DbgTimerName, DbgTimerDescription, 312 CodeViewLineTablesGroupName, 313 CodeViewLineTablesGroupDescription); 314 } 315 if (!EmitCodeView || M.getDwarfVersion()) { 316 DD = new DwarfDebug(this, &M); 317 DD->beginModule(); 318 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 319 DbgTimerDescription, DWARFGroupName, 320 DWARFGroupDescription); 321 } 322 } 323 324 switch (MAI->getExceptionHandlingType()) { 325 case ExceptionHandling::SjLj: 326 case ExceptionHandling::DwarfCFI: 327 case ExceptionHandling::ARM: 328 isCFIMoveForDebugging = true; 329 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 330 break; 331 for (auto &F: M.getFunctionList()) { 332 // If the module contains any function with unwind data, 333 // .eh_frame has to be emitted. 334 // Ignore functions that won't get emitted. 335 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 336 isCFIMoveForDebugging = false; 337 break; 338 } 339 } 340 break; 341 default: 342 isCFIMoveForDebugging = false; 343 break; 344 } 345 346 EHStreamer *ES = nullptr; 347 switch (MAI->getExceptionHandlingType()) { 348 case ExceptionHandling::None: 349 break; 350 case ExceptionHandling::SjLj: 351 case ExceptionHandling::DwarfCFI: 352 ES = new DwarfCFIException(this); 353 break; 354 case ExceptionHandling::ARM: 355 ES = new ARMException(this); 356 break; 357 case ExceptionHandling::WinEH: 358 switch (MAI->getWinEHEncodingType()) { 359 default: llvm_unreachable("unsupported unwinding information encoding"); 360 case WinEH::EncodingType::Invalid: 361 break; 362 case WinEH::EncodingType::X86: 363 case WinEH::EncodingType::Itanium: 364 ES = new WinException(this); 365 break; 366 } 367 break; 368 case ExceptionHandling::Wasm: 369 ES = new WasmException(this); 370 break; 371 } 372 if (ES) 373 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 374 EHTimerDescription, DWARFGroupName, 375 DWARFGroupDescription); 376 377 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 378 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 379 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 380 CFGuardDescription, DWARFGroupName, 381 DWARFGroupDescription); 382 return false; 383 } 384 385 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 386 if (!MAI.hasWeakDefCanBeHiddenDirective()) 387 return false; 388 389 return GV->canBeOmittedFromSymbolTable(); 390 } 391 392 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 393 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 394 switch (Linkage) { 395 case GlobalValue::CommonLinkage: 396 case GlobalValue::LinkOnceAnyLinkage: 397 case GlobalValue::LinkOnceODRLinkage: 398 case GlobalValue::WeakAnyLinkage: 399 case GlobalValue::WeakODRLinkage: 400 if (MAI->hasWeakDefDirective()) { 401 // .globl _foo 402 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 403 404 if (!canBeHidden(GV, *MAI)) 405 // .weak_definition _foo 406 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 407 else 408 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 409 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 410 // .globl _foo 411 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 412 //NOTE: linkonce is handled by the section the symbol was assigned to. 413 } else { 414 // .weak _foo 415 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 416 } 417 return; 418 case GlobalValue::ExternalLinkage: 419 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 420 return; 421 case GlobalValue::PrivateLinkage: 422 case GlobalValue::InternalLinkage: 423 return; 424 case GlobalValue::ExternalWeakLinkage: 425 case GlobalValue::AvailableExternallyLinkage: 426 case GlobalValue::AppendingLinkage: 427 llvm_unreachable("Should never emit this"); 428 } 429 llvm_unreachable("Unknown linkage type!"); 430 } 431 432 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 433 const GlobalValue *GV) const { 434 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 435 } 436 437 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 438 return TM.getSymbol(GV); 439 } 440 441 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 442 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 443 // exact definion (intersection of GlobalValue::hasExactDefinition() and 444 // !isInterposable()). These linkages include: external, appending, internal, 445 // private. It may be profitable to use a local alias for external. The 446 // assembler would otherwise be conservative and assume a global default 447 // visibility symbol can be interposable, even if the code generator already 448 // assumed it. 449 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 450 const Module &M = *GV.getParent(); 451 if (TM.getRelocationModel() != Reloc::Static && 452 M.getPIELevel() == PIELevel::Default) 453 if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() && 454 GV.getParent()->noSemanticInterposition())) 455 return getSymbolWithGlobalValueBase(&GV, "$local"); 456 } 457 return TM.getSymbol(&GV); 458 } 459 460 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 461 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 462 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 463 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 464 "No emulated TLS variables in the common section"); 465 466 // Never emit TLS variable xyz in emulated TLS model. 467 // The initialization value is in __emutls_t.xyz instead of xyz. 468 if (IsEmuTLSVar) 469 return; 470 471 if (GV->hasInitializer()) { 472 // Check to see if this is a special global used by LLVM, if so, emit it. 473 if (emitSpecialLLVMGlobal(GV)) 474 return; 475 476 // Skip the emission of global equivalents. The symbol can be emitted later 477 // on by emitGlobalGOTEquivs in case it turns out to be needed. 478 if (GlobalGOTEquivs.count(getSymbol(GV))) 479 return; 480 481 if (isVerbose()) { 482 // When printing the control variable __emutls_v.*, 483 // we don't need to print the original TLS variable name. 484 GV->printAsOperand(OutStreamer->GetCommentOS(), 485 /*PrintType=*/false, GV->getParent()); 486 OutStreamer->GetCommentOS() << '\n'; 487 } 488 } 489 490 MCSymbol *GVSym = getSymbol(GV); 491 MCSymbol *EmittedSym = GVSym; 492 493 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 494 // attributes. 495 // GV's or GVSym's attributes will be used for the EmittedSym. 496 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 497 498 if (!GV->hasInitializer()) // External globals require no extra code. 499 return; 500 501 GVSym->redefineIfPossible(); 502 if (GVSym->isDefined() || GVSym->isVariable()) 503 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 504 "' is already defined"); 505 506 if (MAI->hasDotTypeDotSizeDirective()) 507 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 508 509 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 510 511 const DataLayout &DL = GV->getParent()->getDataLayout(); 512 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 513 514 // If the alignment is specified, we *must* obey it. Overaligning a global 515 // with a specified alignment is a prompt way to break globals emitted to 516 // sections and expected to be contiguous (e.g. ObjC metadata). 517 const Align Alignment = getGVAlignment(GV, DL); 518 519 for (const HandlerInfo &HI : Handlers) { 520 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 521 HI.TimerGroupName, HI.TimerGroupDescription, 522 TimePassesIsEnabled); 523 HI.Handler->setSymbolSize(GVSym, Size); 524 } 525 526 // Handle common symbols 527 if (GVKind.isCommon()) { 528 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 529 // .comm _foo, 42, 4 530 const bool SupportsAlignment = 531 getObjFileLowering().getCommDirectiveSupportsAlignment(); 532 OutStreamer->emitCommonSymbol(GVSym, Size, 533 SupportsAlignment ? Alignment.value() : 0); 534 return; 535 } 536 537 // Determine to which section this global should be emitted. 538 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 539 540 // If we have a bss global going to a section that supports the 541 // zerofill directive, do so here. 542 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 543 TheSection->isVirtualSection()) { 544 if (Size == 0) 545 Size = 1; // zerofill of 0 bytes is undefined. 546 emitLinkage(GV, GVSym); 547 // .zerofill __DATA, __bss, _foo, 400, 5 548 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 549 return; 550 } 551 552 // If this is a BSS local symbol and we are emitting in the BSS 553 // section use .lcomm/.comm directive. 554 if (GVKind.isBSSLocal() && 555 getObjFileLowering().getBSSSection() == TheSection) { 556 if (Size == 0) 557 Size = 1; // .comm Foo, 0 is undefined, avoid it. 558 559 // Use .lcomm only if it supports user-specified alignment. 560 // Otherwise, while it would still be correct to use .lcomm in some 561 // cases (e.g. when Align == 1), the external assembler might enfore 562 // some -unknown- default alignment behavior, which could cause 563 // spurious differences between external and integrated assembler. 564 // Prefer to simply fall back to .local / .comm in this case. 565 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 566 // .lcomm _foo, 42 567 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 568 return; 569 } 570 571 // .local _foo 572 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 573 // .comm _foo, 42, 4 574 const bool SupportsAlignment = 575 getObjFileLowering().getCommDirectiveSupportsAlignment(); 576 OutStreamer->emitCommonSymbol(GVSym, Size, 577 SupportsAlignment ? Alignment.value() : 0); 578 return; 579 } 580 581 // Handle thread local data for mach-o which requires us to output an 582 // additional structure of data and mangle the original symbol so that we 583 // can reference it later. 584 // 585 // TODO: This should become an "emit thread local global" method on TLOF. 586 // All of this macho specific stuff should be sunk down into TLOFMachO and 587 // stuff like "TLSExtraDataSection" should no longer be part of the parent 588 // TLOF class. This will also make it more obvious that stuff like 589 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 590 // specific code. 591 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 592 // Emit the .tbss symbol 593 MCSymbol *MangSym = 594 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 595 596 if (GVKind.isThreadBSS()) { 597 TheSection = getObjFileLowering().getTLSBSSSection(); 598 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 599 } else if (GVKind.isThreadData()) { 600 OutStreamer->SwitchSection(TheSection); 601 602 emitAlignment(Alignment, GV); 603 OutStreamer->emitLabel(MangSym); 604 605 emitGlobalConstant(GV->getParent()->getDataLayout(), 606 GV->getInitializer()); 607 } 608 609 OutStreamer->AddBlankLine(); 610 611 // Emit the variable struct for the runtime. 612 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 613 614 OutStreamer->SwitchSection(TLVSect); 615 // Emit the linkage here. 616 emitLinkage(GV, GVSym); 617 OutStreamer->emitLabel(GVSym); 618 619 // Three pointers in size: 620 // - __tlv_bootstrap - used to make sure support exists 621 // - spare pointer, used when mapped by the runtime 622 // - pointer to mangled symbol above with initializer 623 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 624 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 625 PtrSize); 626 OutStreamer->emitIntValue(0, PtrSize); 627 OutStreamer->emitSymbolValue(MangSym, PtrSize); 628 629 OutStreamer->AddBlankLine(); 630 return; 631 } 632 633 MCSymbol *EmittedInitSym = GVSym; 634 635 OutStreamer->SwitchSection(TheSection); 636 637 emitLinkage(GV, EmittedInitSym); 638 emitAlignment(Alignment, GV); 639 640 OutStreamer->emitLabel(EmittedInitSym); 641 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 642 if (LocalAlias != EmittedInitSym) 643 OutStreamer->emitLabel(LocalAlias); 644 645 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 646 647 if (MAI->hasDotTypeDotSizeDirective()) 648 // .size foo, 42 649 OutStreamer->emitELFSize(EmittedInitSym, 650 MCConstantExpr::create(Size, OutContext)); 651 652 OutStreamer->AddBlankLine(); 653 } 654 655 /// Emit the directive and value for debug thread local expression 656 /// 657 /// \p Value - The value to emit. 658 /// \p Size - The size of the integer (in bytes) to emit. 659 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 660 OutStreamer->emitValue(Value, Size); 661 } 662 663 void AsmPrinter::emitFunctionHeaderComment() {} 664 665 /// EmitFunctionHeader - This method emits the header for the current 666 /// function. 667 void AsmPrinter::emitFunctionHeader() { 668 const Function &F = MF->getFunction(); 669 670 if (isVerbose()) 671 OutStreamer->GetCommentOS() 672 << "-- Begin function " 673 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 674 675 // Print out constants referenced by the function 676 emitConstantPool(); 677 678 // Print the 'header' of function. 679 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 680 OutStreamer->SwitchSection(MF->getSection()); 681 682 if (!MAI->hasVisibilityOnlyWithLinkage()) 683 emitVisibility(CurrentFnSym, F.getVisibility()); 684 685 if (MAI->needsFunctionDescriptors()) 686 emitLinkage(&F, CurrentFnDescSym); 687 688 emitLinkage(&F, CurrentFnSym); 689 if (MAI->hasFunctionAlignment()) 690 emitAlignment(MF->getAlignment(), &F); 691 692 if (MAI->hasDotTypeDotSizeDirective()) 693 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 694 695 if (F.hasFnAttribute(Attribute::Cold)) 696 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 697 698 if (isVerbose()) { 699 F.printAsOperand(OutStreamer->GetCommentOS(), 700 /*PrintType=*/false, F.getParent()); 701 emitFunctionHeaderComment(); 702 OutStreamer->GetCommentOS() << '\n'; 703 } 704 705 // Emit the prefix data. 706 if (F.hasPrefixData()) { 707 if (MAI->hasSubsectionsViaSymbols()) { 708 // Preserving prefix data on platforms which use subsections-via-symbols 709 // is a bit tricky. Here we introduce a symbol for the prefix data 710 // and use the .alt_entry attribute to mark the function's real entry point 711 // as an alternative entry point to the prefix-data symbol. 712 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 713 OutStreamer->emitLabel(PrefixSym); 714 715 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 716 717 // Emit an .alt_entry directive for the actual function symbol. 718 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 719 } else { 720 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 721 } 722 } 723 724 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 725 // place prefix data before NOPs. 726 unsigned PatchableFunctionPrefix = 0; 727 unsigned PatchableFunctionEntry = 0; 728 (void)F.getFnAttribute("patchable-function-prefix") 729 .getValueAsString() 730 .getAsInteger(10, PatchableFunctionPrefix); 731 (void)F.getFnAttribute("patchable-function-entry") 732 .getValueAsString() 733 .getAsInteger(10, PatchableFunctionEntry); 734 if (PatchableFunctionPrefix) { 735 CurrentPatchableFunctionEntrySym = 736 OutContext.createLinkerPrivateTempSymbol(); 737 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 738 emitNops(PatchableFunctionPrefix); 739 } else if (PatchableFunctionEntry) { 740 // May be reassigned when emitting the body, to reference the label after 741 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 742 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 743 } 744 745 // Emit the function descriptor. This is a virtual function to allow targets 746 // to emit their specific function descriptor. Right now it is only used by 747 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 748 // descriptors and should be converted to use this hook as well. 749 if (MAI->needsFunctionDescriptors()) 750 emitFunctionDescriptor(); 751 752 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 753 // their wild and crazy things as required. 754 emitFunctionEntryLabel(); 755 756 if (CurrentFnBegin) { 757 if (MAI->useAssignmentForEHBegin()) { 758 MCSymbol *CurPos = OutContext.createTempSymbol(); 759 OutStreamer->emitLabel(CurPos); 760 OutStreamer->emitAssignment(CurrentFnBegin, 761 MCSymbolRefExpr::create(CurPos, OutContext)); 762 } else { 763 OutStreamer->emitLabel(CurrentFnBegin); 764 } 765 } 766 767 // Emit pre-function debug and/or EH information. 768 for (const HandlerInfo &HI : Handlers) { 769 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 770 HI.TimerGroupDescription, TimePassesIsEnabled); 771 HI.Handler->beginFunction(MF); 772 } 773 774 // Emit the prologue data. 775 if (F.hasPrologueData()) 776 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 777 } 778 779 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 780 /// function. This can be overridden by targets as required to do custom stuff. 781 void AsmPrinter::emitFunctionEntryLabel() { 782 CurrentFnSym->redefineIfPossible(); 783 784 // The function label could have already been emitted if two symbols end up 785 // conflicting due to asm renaming. Detect this and emit an error. 786 if (CurrentFnSym->isVariable()) 787 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 788 "' is a protected alias"); 789 if (CurrentFnSym->isDefined()) 790 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 791 "' label emitted multiple times to assembly file"); 792 793 OutStreamer->emitLabel(CurrentFnSym); 794 795 if (TM.getTargetTriple().isOSBinFormatELF()) { 796 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 797 if (Sym != CurrentFnSym) 798 OutStreamer->emitLabel(Sym); 799 } 800 } 801 802 /// emitComments - Pretty-print comments for instructions. 803 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 804 const MachineFunction *MF = MI.getMF(); 805 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 806 807 // Check for spills and reloads 808 809 // We assume a single instruction only has a spill or reload, not 810 // both. 811 Optional<unsigned> Size; 812 if ((Size = MI.getRestoreSize(TII))) { 813 CommentOS << *Size << "-byte Reload\n"; 814 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 815 if (*Size) 816 CommentOS << *Size << "-byte Folded Reload\n"; 817 } else if ((Size = MI.getSpillSize(TII))) { 818 CommentOS << *Size << "-byte Spill\n"; 819 } else if ((Size = MI.getFoldedSpillSize(TII))) { 820 if (*Size) 821 CommentOS << *Size << "-byte Folded Spill\n"; 822 } 823 824 // Check for spill-induced copies 825 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 826 CommentOS << " Reload Reuse\n"; 827 } 828 829 /// emitImplicitDef - This method emits the specified machine instruction 830 /// that is an implicit def. 831 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 832 Register RegNo = MI->getOperand(0).getReg(); 833 834 SmallString<128> Str; 835 raw_svector_ostream OS(Str); 836 OS << "implicit-def: " 837 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 838 839 OutStreamer->AddComment(OS.str()); 840 OutStreamer->AddBlankLine(); 841 } 842 843 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 844 std::string Str; 845 raw_string_ostream OS(Str); 846 OS << "kill:"; 847 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 848 const MachineOperand &Op = MI->getOperand(i); 849 assert(Op.isReg() && "KILL instruction must have only register operands"); 850 OS << ' ' << (Op.isDef() ? "def " : "killed ") 851 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 852 } 853 AP.OutStreamer->AddComment(OS.str()); 854 AP.OutStreamer->AddBlankLine(); 855 } 856 857 /// emitDebugValueComment - This method handles the target-independent form 858 /// of DBG_VALUE, returning true if it was able to do so. A false return 859 /// means the target will need to handle MI in EmitInstruction. 860 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 861 // This code handles only the 4-operand target-independent form. 862 if (MI->getNumOperands() != 4) 863 return false; 864 865 SmallString<128> Str; 866 raw_svector_ostream OS(Str); 867 OS << "DEBUG_VALUE: "; 868 869 const DILocalVariable *V = MI->getDebugVariable(); 870 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 871 StringRef Name = SP->getName(); 872 if (!Name.empty()) 873 OS << Name << ":"; 874 } 875 OS << V->getName(); 876 OS << " <- "; 877 878 // The second operand is only an offset if it's an immediate. 879 bool MemLoc = MI->isIndirectDebugValue(); 880 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 881 const DIExpression *Expr = MI->getDebugExpression(); 882 if (Expr->getNumElements()) { 883 OS << '['; 884 bool NeedSep = false; 885 for (auto Op : Expr->expr_ops()) { 886 if (NeedSep) 887 OS << ", "; 888 else 889 NeedSep = true; 890 OS << dwarf::OperationEncodingString(Op.getOp()); 891 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 892 OS << ' ' << Op.getArg(I); 893 } 894 OS << "] "; 895 } 896 897 // Register or immediate value. Register 0 means undef. 898 if (MI->getDebugOperand(0).isFPImm()) { 899 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF()); 900 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) { 901 OS << (double)APF.convertToFloat(); 902 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) { 903 OS << APF.convertToDouble(); 904 } else { 905 // There is no good way to print long double. Convert a copy to 906 // double. Ah well, it's only a comment. 907 bool ignored; 908 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 909 &ignored); 910 OS << "(long double) " << APF.convertToDouble(); 911 } 912 } else if (MI->getDebugOperand(0).isImm()) { 913 OS << MI->getDebugOperand(0).getImm(); 914 } else if (MI->getDebugOperand(0).isCImm()) { 915 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 916 } else if (MI->getDebugOperand(0).isTargetIndex()) { 917 auto Op = MI->getDebugOperand(0); 918 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 919 return true; 920 } else { 921 Register Reg; 922 if (MI->getDebugOperand(0).isReg()) { 923 Reg = MI->getDebugOperand(0).getReg(); 924 } else { 925 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type"); 926 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 927 Offset += TFI->getFrameIndexReference( 928 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg); 929 MemLoc = true; 930 } 931 if (Reg == 0) { 932 // Suppress offset, it is not meaningful here. 933 OS << "undef"; 934 // NOTE: Want this comment at start of line, don't emit with AddComment. 935 AP.OutStreamer->emitRawComment(OS.str()); 936 return true; 937 } 938 if (MemLoc) 939 OS << '['; 940 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 941 } 942 943 if (MemLoc) 944 OS << '+' << Offset << ']'; 945 946 // NOTE: Want this comment at start of line, don't emit with AddComment. 947 AP.OutStreamer->emitRawComment(OS.str()); 948 return true; 949 } 950 951 /// This method handles the target-independent form of DBG_LABEL, returning 952 /// true if it was able to do so. A false return means the target will need 953 /// to handle MI in EmitInstruction. 954 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 955 if (MI->getNumOperands() != 1) 956 return false; 957 958 SmallString<128> Str; 959 raw_svector_ostream OS(Str); 960 OS << "DEBUG_LABEL: "; 961 962 const DILabel *V = MI->getDebugLabel(); 963 if (auto *SP = dyn_cast<DISubprogram>( 964 V->getScope()->getNonLexicalBlockFileScope())) { 965 StringRef Name = SP->getName(); 966 if (!Name.empty()) 967 OS << Name << ":"; 968 } 969 OS << V->getName(); 970 971 // NOTE: Want this comment at start of line, don't emit with AddComment. 972 AP.OutStreamer->emitRawComment(OS.str()); 973 return true; 974 } 975 976 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 977 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 978 MF->getFunction().needsUnwindTableEntry()) 979 return CFI_M_EH; 980 981 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 982 return CFI_M_Debug; 983 984 return CFI_M_None; 985 } 986 987 bool AsmPrinter::needsSEHMoves() { 988 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 989 } 990 991 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 992 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 993 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 994 ExceptionHandlingType != ExceptionHandling::ARM) 995 return; 996 997 if (needsCFIMoves() == CFI_M_None) 998 return; 999 1000 // If there is no "real" instruction following this CFI instruction, skip 1001 // emitting it; it would be beyond the end of the function's FDE range. 1002 auto *MBB = MI.getParent(); 1003 auto I = std::next(MI.getIterator()); 1004 while (I != MBB->end() && I->isTransient()) 1005 ++I; 1006 if (I == MBB->instr_end() && 1007 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1008 return; 1009 1010 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1011 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1012 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1013 emitCFIInstruction(CFI); 1014 } 1015 1016 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1017 // The operands are the MCSymbol and the frame offset of the allocation. 1018 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1019 int FrameOffset = MI.getOperand(1).getImm(); 1020 1021 // Emit a symbol assignment. 1022 OutStreamer->emitAssignment(FrameAllocSym, 1023 MCConstantExpr::create(FrameOffset, OutContext)); 1024 } 1025 1026 /// Returns the BB metadata to be emitted in the bb_addr_map section for a given 1027 /// basic block. This can be used to capture more precise profile information. 1028 /// We use the last 3 bits (LSBs) to ecnode the following information: 1029 /// * (1): set if return block (ret or tail call). 1030 /// * (2): set if ends with a tail call. 1031 /// * (3): set if exception handling (EH) landing pad. 1032 /// The remaining bits are zero. 1033 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1034 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1035 return ((unsigned)MBB.isReturnBlock()) | 1036 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1037 (MBB.isEHPad() << 2); 1038 } 1039 1040 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1041 MCSection *BBAddrMapSection = 1042 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1043 assert(BBAddrMapSection && ".bb_addr_map section is not initialized."); 1044 1045 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1046 1047 OutStreamer->PushSection(); 1048 OutStreamer->SwitchSection(BBAddrMapSection); 1049 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1050 // Emit the total number of basic blocks in this function. 1051 OutStreamer->emitULEB128IntValue(MF.size()); 1052 // Emit BB Information for each basic block in the funciton. 1053 for (const MachineBasicBlock &MBB : MF) { 1054 const MCSymbol *MBBSymbol = 1055 MBB.pred_empty() ? FunctionSymbol : MBB.getSymbol(); 1056 // Emit the basic block offset. 1057 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1058 // Emit the basic block size. When BBs have alignments, their size cannot 1059 // always be computed from their offsets. 1060 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1061 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1062 } 1063 OutStreamer->PopSection(); 1064 } 1065 1066 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1067 if (!MF.getTarget().Options.EmitStackSizeSection) 1068 return; 1069 1070 MCSection *StackSizeSection = 1071 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1072 if (!StackSizeSection) 1073 return; 1074 1075 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1076 // Don't emit functions with dynamic stack allocations. 1077 if (FrameInfo.hasVarSizedObjects()) 1078 return; 1079 1080 OutStreamer->PushSection(); 1081 OutStreamer->SwitchSection(StackSizeSection); 1082 1083 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1084 uint64_t StackSize = FrameInfo.getStackSize(); 1085 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1086 OutStreamer->emitULEB128IntValue(StackSize); 1087 1088 OutStreamer->PopSection(); 1089 } 1090 1091 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1092 MachineModuleInfo &MMI = MF.getMMI(); 1093 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1094 return true; 1095 1096 // We might emit an EH table that uses function begin and end labels even if 1097 // we don't have any landingpads. 1098 if (!MF.getFunction().hasPersonalityFn()) 1099 return false; 1100 return !isNoOpWithoutInvoke( 1101 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1102 } 1103 1104 /// EmitFunctionBody - This method emits the body and trailer for a 1105 /// function. 1106 void AsmPrinter::emitFunctionBody() { 1107 emitFunctionHeader(); 1108 1109 // Emit target-specific gunk before the function body. 1110 emitFunctionBodyStart(); 1111 1112 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1113 1114 if (isVerbose()) { 1115 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1116 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1117 if (!MDT) { 1118 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1119 OwnedMDT->getBase().recalculate(*MF); 1120 MDT = OwnedMDT.get(); 1121 } 1122 1123 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1124 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1125 if (!MLI) { 1126 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1127 OwnedMLI->getBase().analyze(MDT->getBase()); 1128 MLI = OwnedMLI.get(); 1129 } 1130 } 1131 1132 // Print out code for the function. 1133 bool HasAnyRealCode = false; 1134 int NumInstsInFunction = 0; 1135 1136 for (auto &MBB : *MF) { 1137 // Print a label for the basic block. 1138 emitBasicBlockStart(MBB); 1139 for (auto &MI : MBB) { 1140 // Print the assembly for the instruction. 1141 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1142 !MI.isDebugInstr()) { 1143 HasAnyRealCode = true; 1144 ++NumInstsInFunction; 1145 } 1146 1147 // If there is a pre-instruction symbol, emit a label for it here. 1148 if (MCSymbol *S = MI.getPreInstrSymbol()) 1149 OutStreamer->emitLabel(S); 1150 1151 if (ShouldPrintDebugScopes) { 1152 for (const HandlerInfo &HI : Handlers) { 1153 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1154 HI.TimerGroupName, HI.TimerGroupDescription, 1155 TimePassesIsEnabled); 1156 HI.Handler->beginInstruction(&MI); 1157 } 1158 } 1159 1160 if (isVerbose()) 1161 emitComments(MI, OutStreamer->GetCommentOS()); 1162 1163 switch (MI.getOpcode()) { 1164 case TargetOpcode::CFI_INSTRUCTION: 1165 emitCFIInstruction(MI); 1166 break; 1167 case TargetOpcode::LOCAL_ESCAPE: 1168 emitFrameAlloc(MI); 1169 break; 1170 case TargetOpcode::ANNOTATION_LABEL: 1171 case TargetOpcode::EH_LABEL: 1172 case TargetOpcode::GC_LABEL: 1173 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1174 break; 1175 case TargetOpcode::INLINEASM: 1176 case TargetOpcode::INLINEASM_BR: 1177 emitInlineAsm(&MI); 1178 break; 1179 case TargetOpcode::DBG_VALUE: 1180 if (isVerbose()) { 1181 if (!emitDebugValueComment(&MI, *this)) 1182 emitInstruction(&MI); 1183 } 1184 break; 1185 case TargetOpcode::DBG_INSTR_REF: 1186 // This instruction reference will have been resolved to a machine 1187 // location, and a nearby DBG_VALUE created. We can safely ignore 1188 // the instruction reference. 1189 break; 1190 case TargetOpcode::DBG_LABEL: 1191 if (isVerbose()) { 1192 if (!emitDebugLabelComment(&MI, *this)) 1193 emitInstruction(&MI); 1194 } 1195 break; 1196 case TargetOpcode::IMPLICIT_DEF: 1197 if (isVerbose()) emitImplicitDef(&MI); 1198 break; 1199 case TargetOpcode::KILL: 1200 if (isVerbose()) emitKill(&MI, *this); 1201 break; 1202 default: 1203 emitInstruction(&MI); 1204 break; 1205 } 1206 1207 // If there is a post-instruction symbol, emit a label for it here. 1208 if (MCSymbol *S = MI.getPostInstrSymbol()) 1209 OutStreamer->emitLabel(S); 1210 1211 if (ShouldPrintDebugScopes) { 1212 for (const HandlerInfo &HI : Handlers) { 1213 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1214 HI.TimerGroupName, HI.TimerGroupDescription, 1215 TimePassesIsEnabled); 1216 HI.Handler->endInstruction(); 1217 } 1218 } 1219 } 1220 1221 // We must emit temporary symbol for the end of this basic block, if either 1222 // we have BBLabels enabled or if this basic blocks marks the end of a 1223 // section (except the section containing the entry basic block as the end 1224 // symbol for that section is CurrentFnEnd). 1225 if (MF->hasBBLabels() || 1226 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1227 !MBB.sameSection(&MF->front()))) 1228 OutStreamer->emitLabel(MBB.getEndSymbol()); 1229 1230 if (MBB.isEndSection()) { 1231 // The size directive for the section containing the entry block is 1232 // handled separately by the function section. 1233 if (!MBB.sameSection(&MF->front())) { 1234 if (MAI->hasDotTypeDotSizeDirective()) { 1235 // Emit the size directive for the basic block section. 1236 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1237 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1238 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1239 OutContext); 1240 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1241 } 1242 MBBSectionRanges[MBB.getSectionIDNum()] = 1243 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1244 } 1245 } 1246 emitBasicBlockEnd(MBB); 1247 } 1248 1249 EmittedInsts += NumInstsInFunction; 1250 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1251 MF->getFunction().getSubprogram(), 1252 &MF->front()); 1253 R << ore::NV("NumInstructions", NumInstsInFunction) 1254 << " instructions in function"; 1255 ORE->emit(R); 1256 1257 // If the function is empty and the object file uses .subsections_via_symbols, 1258 // then we need to emit *something* to the function body to prevent the 1259 // labels from collapsing together. Just emit a noop. 1260 // Similarly, don't emit empty functions on Windows either. It can lead to 1261 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1262 // after linking, causing the kernel not to load the binary: 1263 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1264 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1265 const Triple &TT = TM.getTargetTriple(); 1266 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1267 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1268 MCInst Noop; 1269 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1270 1271 // Targets can opt-out of emitting the noop here by leaving the opcode 1272 // unspecified. 1273 if (Noop.getOpcode()) { 1274 OutStreamer->AddComment("avoids zero-length function"); 1275 emitNops(1); 1276 } 1277 } 1278 1279 // Switch to the original section in case basic block sections was used. 1280 OutStreamer->SwitchSection(MF->getSection()); 1281 1282 const Function &F = MF->getFunction(); 1283 for (const auto &BB : F) { 1284 if (!BB.hasAddressTaken()) 1285 continue; 1286 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1287 if (Sym->isDefined()) 1288 continue; 1289 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1290 OutStreamer->emitLabel(Sym); 1291 } 1292 1293 // Emit target-specific gunk after the function body. 1294 emitFunctionBodyEnd(); 1295 1296 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1297 MAI->hasDotTypeDotSizeDirective()) { 1298 // Create a symbol for the end of function. 1299 CurrentFnEnd = createTempSymbol("func_end"); 1300 OutStreamer->emitLabel(CurrentFnEnd); 1301 } 1302 1303 // If the target wants a .size directive for the size of the function, emit 1304 // it. 1305 if (MAI->hasDotTypeDotSizeDirective()) { 1306 // We can get the size as difference between the function label and the 1307 // temp label. 1308 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1309 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1310 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1311 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1312 } 1313 1314 for (const HandlerInfo &HI : Handlers) { 1315 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1316 HI.TimerGroupDescription, TimePassesIsEnabled); 1317 HI.Handler->markFunctionEnd(); 1318 } 1319 1320 MBBSectionRanges[MF->front().getSectionIDNum()] = 1321 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1322 1323 // Print out jump tables referenced by the function. 1324 emitJumpTableInfo(); 1325 1326 // Emit post-function debug and/or EH information. 1327 for (const HandlerInfo &HI : Handlers) { 1328 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1329 HI.TimerGroupDescription, TimePassesIsEnabled); 1330 HI.Handler->endFunction(MF); 1331 } 1332 1333 // Emit section containing BB address offsets and their metadata, when 1334 // BB labels are requested for this function. 1335 if (MF->hasBBLabels()) 1336 emitBBAddrMapSection(*MF); 1337 1338 // Emit section containing stack size metadata. 1339 emitStackSizeSection(*MF); 1340 1341 emitPatchableFunctionEntries(); 1342 1343 if (isVerbose()) 1344 OutStreamer->GetCommentOS() << "-- End function\n"; 1345 1346 OutStreamer->AddBlankLine(); 1347 } 1348 1349 /// Compute the number of Global Variables that uses a Constant. 1350 static unsigned getNumGlobalVariableUses(const Constant *C) { 1351 if (!C) 1352 return 0; 1353 1354 if (isa<GlobalVariable>(C)) 1355 return 1; 1356 1357 unsigned NumUses = 0; 1358 for (auto *CU : C->users()) 1359 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1360 1361 return NumUses; 1362 } 1363 1364 /// Only consider global GOT equivalents if at least one user is a 1365 /// cstexpr inside an initializer of another global variables. Also, don't 1366 /// handle cstexpr inside instructions. During global variable emission, 1367 /// candidates are skipped and are emitted later in case at least one cstexpr 1368 /// isn't replaced by a PC relative GOT entry access. 1369 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1370 unsigned &NumGOTEquivUsers) { 1371 // Global GOT equivalents are unnamed private globals with a constant 1372 // pointer initializer to another global symbol. They must point to a 1373 // GlobalVariable or Function, i.e., as GlobalValue. 1374 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1375 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1376 !isa<GlobalValue>(GV->getOperand(0))) 1377 return false; 1378 1379 // To be a got equivalent, at least one of its users need to be a constant 1380 // expression used by another global variable. 1381 for (auto *U : GV->users()) 1382 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1383 1384 return NumGOTEquivUsers > 0; 1385 } 1386 1387 /// Unnamed constant global variables solely contaning a pointer to 1388 /// another globals variable is equivalent to a GOT table entry; it contains the 1389 /// the address of another symbol. Optimize it and replace accesses to these 1390 /// "GOT equivalents" by using the GOT entry for the final global instead. 1391 /// Compute GOT equivalent candidates among all global variables to avoid 1392 /// emitting them if possible later on, after it use is replaced by a GOT entry 1393 /// access. 1394 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1395 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1396 return; 1397 1398 for (const auto &G : M.globals()) { 1399 unsigned NumGOTEquivUsers = 0; 1400 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1401 continue; 1402 1403 const MCSymbol *GOTEquivSym = getSymbol(&G); 1404 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1405 } 1406 } 1407 1408 /// Constant expressions using GOT equivalent globals may not be eligible 1409 /// for PC relative GOT entry conversion, in such cases we need to emit such 1410 /// globals we previously omitted in EmitGlobalVariable. 1411 void AsmPrinter::emitGlobalGOTEquivs() { 1412 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1413 return; 1414 1415 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1416 for (auto &I : GlobalGOTEquivs) { 1417 const GlobalVariable *GV = I.second.first; 1418 unsigned Cnt = I.second.second; 1419 if (Cnt) 1420 FailedCandidates.push_back(GV); 1421 } 1422 GlobalGOTEquivs.clear(); 1423 1424 for (auto *GV : FailedCandidates) 1425 emitGlobalVariable(GV); 1426 } 1427 1428 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1429 const GlobalIndirectSymbol& GIS) { 1430 MCSymbol *Name = getSymbol(&GIS); 1431 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1432 // Treat bitcasts of functions as functions also. This is important at least 1433 // on WebAssembly where object and function addresses can't alias each other. 1434 if (!IsFunction) 1435 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1436 if (CE->getOpcode() == Instruction::BitCast) 1437 IsFunction = 1438 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1439 1440 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1441 // so AIX has to use the extra-label-at-definition strategy. At this 1442 // point, all the extra label is emitted, we just have to emit linkage for 1443 // those labels. 1444 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1445 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1446 assert(MAI->hasVisibilityOnlyWithLinkage() && 1447 "Visibility should be handled with emitLinkage() on AIX."); 1448 emitLinkage(&GIS, Name); 1449 // If it's a function, also emit linkage for aliases of function entry 1450 // point. 1451 if (IsFunction) 1452 emitLinkage(&GIS, 1453 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1454 return; 1455 } 1456 1457 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1458 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1459 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1460 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1461 else 1462 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1463 1464 // Set the symbol type to function if the alias has a function type. 1465 // This affects codegen when the aliasee is not a function. 1466 if (IsFunction) 1467 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1468 ? MCSA_ELF_TypeIndFunction 1469 : MCSA_ELF_TypeFunction); 1470 1471 emitVisibility(Name, GIS.getVisibility()); 1472 1473 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1474 1475 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1476 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1477 1478 // Emit the directives as assignments aka .set: 1479 OutStreamer->emitAssignment(Name, Expr); 1480 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1481 if (LocalAlias != Name) 1482 OutStreamer->emitAssignment(LocalAlias, Expr); 1483 1484 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1485 // If the aliasee does not correspond to a symbol in the output, i.e. the 1486 // alias is not of an object or the aliased object is private, then set the 1487 // size of the alias symbol from the type of the alias. We don't do this in 1488 // other situations as the alias and aliasee having differing types but same 1489 // size may be intentional. 1490 const GlobalObject *BaseObject = GA->getBaseObject(); 1491 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1492 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1493 const DataLayout &DL = M.getDataLayout(); 1494 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1495 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1496 } 1497 } 1498 } 1499 1500 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1501 if (!RS.needsSection()) 1502 return; 1503 1504 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1505 1506 Optional<SmallString<128>> Filename; 1507 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1508 Filename = *FilenameRef; 1509 sys::fs::make_absolute(*Filename); 1510 assert(!Filename->empty() && "The filename can't be empty."); 1511 } 1512 1513 std::string Buf; 1514 raw_string_ostream OS(Buf); 1515 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1516 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1517 : RemarkSerializer.metaSerializer(OS); 1518 MetaSerializer->emit(); 1519 1520 // Switch to the remarks section. 1521 MCSection *RemarksSection = 1522 OutContext.getObjectFileInfo()->getRemarksSection(); 1523 OutStreamer->SwitchSection(RemarksSection); 1524 1525 OutStreamer->emitBinaryData(OS.str()); 1526 } 1527 1528 bool AsmPrinter::doFinalization(Module &M) { 1529 // Set the MachineFunction to nullptr so that we can catch attempted 1530 // accesses to MF specific features at the module level and so that 1531 // we can conditionalize accesses based on whether or not it is nullptr. 1532 MF = nullptr; 1533 1534 // Gather all GOT equivalent globals in the module. We really need two 1535 // passes over the globals: one to compute and another to avoid its emission 1536 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1537 // where the got equivalent shows up before its use. 1538 computeGlobalGOTEquivs(M); 1539 1540 // Emit global variables. 1541 for (const auto &G : M.globals()) 1542 emitGlobalVariable(&G); 1543 1544 // Emit remaining GOT equivalent globals. 1545 emitGlobalGOTEquivs(); 1546 1547 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1548 1549 // Emit linkage(XCOFF) and visibility info for declarations 1550 for (const Function &F : M) { 1551 if (!F.isDeclarationForLinker()) 1552 continue; 1553 1554 MCSymbol *Name = getSymbol(&F); 1555 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1556 1557 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1558 GlobalValue::VisibilityTypes V = F.getVisibility(); 1559 if (V == GlobalValue::DefaultVisibility) 1560 continue; 1561 1562 emitVisibility(Name, V, false); 1563 continue; 1564 } 1565 1566 if (F.isIntrinsic()) 1567 continue; 1568 1569 // Handle the XCOFF case. 1570 // Variable `Name` is the function descriptor symbol (see above). Get the 1571 // function entry point symbol. 1572 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1573 // Emit linkage for the function entry point. 1574 emitLinkage(&F, FnEntryPointSym); 1575 1576 // Emit linkage for the function descriptor. 1577 emitLinkage(&F, Name); 1578 } 1579 1580 // Emit the remarks section contents. 1581 // FIXME: Figure out when is the safest time to emit this section. It should 1582 // not come after debug info. 1583 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1584 emitRemarksSection(*RS); 1585 1586 TLOF.emitModuleMetadata(*OutStreamer, M); 1587 1588 if (TM.getTargetTriple().isOSBinFormatELF()) { 1589 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1590 1591 // Output stubs for external and common global variables. 1592 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1593 if (!Stubs.empty()) { 1594 OutStreamer->SwitchSection(TLOF.getDataSection()); 1595 const DataLayout &DL = M.getDataLayout(); 1596 1597 emitAlignment(Align(DL.getPointerSize())); 1598 for (const auto &Stub : Stubs) { 1599 OutStreamer->emitLabel(Stub.first); 1600 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1601 DL.getPointerSize()); 1602 } 1603 } 1604 } 1605 1606 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1607 MachineModuleInfoCOFF &MMICOFF = 1608 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1609 1610 // Output stubs for external and common global variables. 1611 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1612 if (!Stubs.empty()) { 1613 const DataLayout &DL = M.getDataLayout(); 1614 1615 for (const auto &Stub : Stubs) { 1616 SmallString<256> SectionName = StringRef(".rdata$"); 1617 SectionName += Stub.first->getName(); 1618 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1619 SectionName, 1620 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1621 COFF::IMAGE_SCN_LNK_COMDAT, 1622 SectionKind::getReadOnly(), Stub.first->getName(), 1623 COFF::IMAGE_COMDAT_SELECT_ANY)); 1624 emitAlignment(Align(DL.getPointerSize())); 1625 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1626 OutStreamer->emitLabel(Stub.first); 1627 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1628 DL.getPointerSize()); 1629 } 1630 } 1631 } 1632 1633 // Finalize debug and EH information. 1634 for (const HandlerInfo &HI : Handlers) { 1635 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1636 HI.TimerGroupDescription, TimePassesIsEnabled); 1637 HI.Handler->endModule(); 1638 } 1639 Handlers.clear(); 1640 DD = nullptr; 1641 1642 // If the target wants to know about weak references, print them all. 1643 if (MAI->getWeakRefDirective()) { 1644 // FIXME: This is not lazy, it would be nice to only print weak references 1645 // to stuff that is actually used. Note that doing so would require targets 1646 // to notice uses in operands (due to constant exprs etc). This should 1647 // happen with the MC stuff eventually. 1648 1649 // Print out module-level global objects here. 1650 for (const auto &GO : M.global_objects()) { 1651 if (!GO.hasExternalWeakLinkage()) 1652 continue; 1653 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1654 } 1655 } 1656 1657 // Print aliases in topological order, that is, for each alias a = b, 1658 // b must be printed before a. 1659 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1660 // such an order to generate correct TOC information. 1661 SmallVector<const GlobalAlias *, 16> AliasStack; 1662 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1663 for (const auto &Alias : M.aliases()) { 1664 for (const GlobalAlias *Cur = &Alias; Cur; 1665 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1666 if (!AliasVisited.insert(Cur).second) 1667 break; 1668 AliasStack.push_back(Cur); 1669 } 1670 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1671 emitGlobalIndirectSymbol(M, *AncestorAlias); 1672 AliasStack.clear(); 1673 } 1674 for (const auto &IFunc : M.ifuncs()) 1675 emitGlobalIndirectSymbol(M, IFunc); 1676 1677 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1678 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1679 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1680 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1681 MP->finishAssembly(M, *MI, *this); 1682 1683 // Emit llvm.ident metadata in an '.ident' directive. 1684 emitModuleIdents(M); 1685 1686 // Emit bytes for llvm.commandline metadata. 1687 emitModuleCommandLines(M); 1688 1689 // Emit __morestack address if needed for indirect calls. 1690 if (MMI->usesMorestackAddr()) { 1691 Align Alignment(1); 1692 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1693 getDataLayout(), SectionKind::getReadOnly(), 1694 /*C=*/nullptr, Alignment); 1695 OutStreamer->SwitchSection(ReadOnlySection); 1696 1697 MCSymbol *AddrSymbol = 1698 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1699 OutStreamer->emitLabel(AddrSymbol); 1700 1701 unsigned PtrSize = MAI->getCodePointerSize(); 1702 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1703 PtrSize); 1704 } 1705 1706 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1707 // split-stack is used. 1708 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1709 OutStreamer->SwitchSection( 1710 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1711 if (MMI->hasNosplitStack()) 1712 OutStreamer->SwitchSection( 1713 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1714 } 1715 1716 // If we don't have any trampolines, then we don't require stack memory 1717 // to be executable. Some targets have a directive to declare this. 1718 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1719 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1720 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1721 OutStreamer->SwitchSection(S); 1722 1723 if (TM.Options.EmitAddrsig) { 1724 // Emit address-significance attributes for all globals. 1725 OutStreamer->emitAddrsig(); 1726 for (const GlobalValue &GV : M.global_values()) 1727 if (!GV.use_empty() && !GV.isThreadLocal() && 1728 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1729 !GV.hasAtLeastLocalUnnamedAddr()) 1730 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1731 } 1732 1733 // Emit symbol partition specifications (ELF only). 1734 if (TM.getTargetTriple().isOSBinFormatELF()) { 1735 unsigned UniqueID = 0; 1736 for (const GlobalValue &GV : M.global_values()) { 1737 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1738 GV.getVisibility() != GlobalValue::DefaultVisibility) 1739 continue; 1740 1741 OutStreamer->SwitchSection( 1742 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1743 "", ++UniqueID, nullptr)); 1744 OutStreamer->emitBytes(GV.getPartition()); 1745 OutStreamer->emitZeros(1); 1746 OutStreamer->emitValue( 1747 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1748 MAI->getCodePointerSize()); 1749 } 1750 } 1751 1752 // Allow the target to emit any magic that it wants at the end of the file, 1753 // after everything else has gone out. 1754 emitEndOfAsmFile(M); 1755 1756 MMI = nullptr; 1757 1758 OutStreamer->Finish(); 1759 OutStreamer->reset(); 1760 OwnedMLI.reset(); 1761 OwnedMDT.reset(); 1762 1763 return false; 1764 } 1765 1766 MCSymbol *AsmPrinter::getCurExceptionSym() { 1767 if (!CurExceptionSym) 1768 CurExceptionSym = createTempSymbol("exception"); 1769 return CurExceptionSym; 1770 } 1771 1772 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1773 this->MF = &MF; 1774 const Function &F = MF.getFunction(); 1775 1776 // Get the function symbol. 1777 if (!MAI->needsFunctionDescriptors()) { 1778 CurrentFnSym = getSymbol(&MF.getFunction()); 1779 } else { 1780 assert(TM.getTargetTriple().isOSAIX() && 1781 "Only AIX uses the function descriptor hooks."); 1782 // AIX is unique here in that the name of the symbol emitted for the 1783 // function body does not have the same name as the source function's 1784 // C-linkage name. 1785 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1786 " initalized first."); 1787 1788 // Get the function entry point symbol. 1789 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1790 } 1791 1792 CurrentFnSymForSize = CurrentFnSym; 1793 CurrentFnBegin = nullptr; 1794 CurrentSectionBeginSym = nullptr; 1795 MBBSectionRanges.clear(); 1796 CurExceptionSym = nullptr; 1797 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1798 if (F.hasFnAttribute("patchable-function-entry") || 1799 F.hasFnAttribute("function-instrument") || 1800 F.hasFnAttribute("xray-instruction-threshold") || 1801 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1802 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1803 CurrentFnBegin = createTempSymbol("func_begin"); 1804 if (NeedsLocalForSize) 1805 CurrentFnSymForSize = CurrentFnBegin; 1806 } 1807 1808 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1809 } 1810 1811 namespace { 1812 1813 // Keep track the alignment, constpool entries per Section. 1814 struct SectionCPs { 1815 MCSection *S; 1816 Align Alignment; 1817 SmallVector<unsigned, 4> CPEs; 1818 1819 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1820 }; 1821 1822 } // end anonymous namespace 1823 1824 /// EmitConstantPool - Print to the current output stream assembly 1825 /// representations of the constants in the constant pool MCP. This is 1826 /// used to print out constants which have been "spilled to memory" by 1827 /// the code generator. 1828 void AsmPrinter::emitConstantPool() { 1829 const MachineConstantPool *MCP = MF->getConstantPool(); 1830 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1831 if (CP.empty()) return; 1832 1833 // Calculate sections for constant pool entries. We collect entries to go into 1834 // the same section together to reduce amount of section switch statements. 1835 SmallVector<SectionCPs, 4> CPSections; 1836 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1837 const MachineConstantPoolEntry &CPE = CP[i]; 1838 Align Alignment = CPE.getAlign(); 1839 1840 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1841 1842 const Constant *C = nullptr; 1843 if (!CPE.isMachineConstantPoolEntry()) 1844 C = CPE.Val.ConstVal; 1845 1846 MCSection *S = getObjFileLowering().getSectionForConstant( 1847 getDataLayout(), Kind, C, Alignment); 1848 1849 // The number of sections are small, just do a linear search from the 1850 // last section to the first. 1851 bool Found = false; 1852 unsigned SecIdx = CPSections.size(); 1853 while (SecIdx != 0) { 1854 if (CPSections[--SecIdx].S == S) { 1855 Found = true; 1856 break; 1857 } 1858 } 1859 if (!Found) { 1860 SecIdx = CPSections.size(); 1861 CPSections.push_back(SectionCPs(S, Alignment)); 1862 } 1863 1864 if (Alignment > CPSections[SecIdx].Alignment) 1865 CPSections[SecIdx].Alignment = Alignment; 1866 CPSections[SecIdx].CPEs.push_back(i); 1867 } 1868 1869 // Now print stuff into the calculated sections. 1870 const MCSection *CurSection = nullptr; 1871 unsigned Offset = 0; 1872 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1873 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1874 unsigned CPI = CPSections[i].CPEs[j]; 1875 MCSymbol *Sym = GetCPISymbol(CPI); 1876 if (!Sym->isUndefined()) 1877 continue; 1878 1879 if (CurSection != CPSections[i].S) { 1880 OutStreamer->SwitchSection(CPSections[i].S); 1881 emitAlignment(Align(CPSections[i].Alignment)); 1882 CurSection = CPSections[i].S; 1883 Offset = 0; 1884 } 1885 1886 MachineConstantPoolEntry CPE = CP[CPI]; 1887 1888 // Emit inter-object padding for alignment. 1889 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1890 OutStreamer->emitZeros(NewOffset - Offset); 1891 1892 Type *Ty = CPE.getType(); 1893 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1894 1895 OutStreamer->emitLabel(Sym); 1896 if (CPE.isMachineConstantPoolEntry()) 1897 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1898 else 1899 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1900 } 1901 } 1902 } 1903 1904 // Print assembly representations of the jump tables used by the current 1905 // function. 1906 void AsmPrinter::emitJumpTableInfo() { 1907 const DataLayout &DL = MF->getDataLayout(); 1908 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1909 if (!MJTI) return; 1910 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1911 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1912 if (JT.empty()) return; 1913 1914 // Pick the directive to use to print the jump table entries, and switch to 1915 // the appropriate section. 1916 const Function &F = MF->getFunction(); 1917 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1918 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1919 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1920 F); 1921 if (JTInDiffSection) { 1922 // Drop it in the readonly section. 1923 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1924 OutStreamer->SwitchSection(ReadOnlySection); 1925 } 1926 1927 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 1928 1929 // Jump tables in code sections are marked with a data_region directive 1930 // where that's supported. 1931 if (!JTInDiffSection) 1932 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 1933 1934 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1935 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1936 1937 // If this jump table was deleted, ignore it. 1938 if (JTBBs.empty()) continue; 1939 1940 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1941 /// emit a .set directive for each unique entry. 1942 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1943 MAI->doesSetDirectiveSuppressReloc()) { 1944 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1945 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1946 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1947 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1948 const MachineBasicBlock *MBB = JTBBs[ii]; 1949 if (!EmittedSets.insert(MBB).second) 1950 continue; 1951 1952 // .set LJTSet, LBB32-base 1953 const MCExpr *LHS = 1954 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1955 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1956 MCBinaryExpr::createSub(LHS, Base, 1957 OutContext)); 1958 } 1959 } 1960 1961 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1962 // before each jump table. The first label is never referenced, but tells 1963 // the assembler and linker the extents of the jump table object. The 1964 // second label is actually referenced by the code. 1965 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1966 // FIXME: This doesn't have to have any specific name, just any randomly 1967 // named and numbered local label started with 'l' would work. Simplify 1968 // GetJTISymbol. 1969 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 1970 1971 MCSymbol* JTISymbol = GetJTISymbol(JTI); 1972 OutStreamer->emitLabel(JTISymbol); 1973 1974 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1975 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1976 } 1977 if (!JTInDiffSection) 1978 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1979 } 1980 1981 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1982 /// current stream. 1983 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1984 const MachineBasicBlock *MBB, 1985 unsigned UID) const { 1986 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1987 const MCExpr *Value = nullptr; 1988 switch (MJTI->getEntryKind()) { 1989 case MachineJumpTableInfo::EK_Inline: 1990 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1991 case MachineJumpTableInfo::EK_Custom32: 1992 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1993 MJTI, MBB, UID, OutContext); 1994 break; 1995 case MachineJumpTableInfo::EK_BlockAddress: 1996 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1997 // .word LBB123 1998 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1999 break; 2000 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2001 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2002 // with a relocation as gp-relative, e.g.: 2003 // .gprel32 LBB123 2004 MCSymbol *MBBSym = MBB->getSymbol(); 2005 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2006 return; 2007 } 2008 2009 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2010 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2011 // with a relocation as gp-relative, e.g.: 2012 // .gpdword LBB123 2013 MCSymbol *MBBSym = MBB->getSymbol(); 2014 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2015 return; 2016 } 2017 2018 case MachineJumpTableInfo::EK_LabelDifference32: { 2019 // Each entry is the address of the block minus the address of the jump 2020 // table. This is used for PIC jump tables where gprel32 is not supported. 2021 // e.g.: 2022 // .word LBB123 - LJTI1_2 2023 // If the .set directive avoids relocations, this is emitted as: 2024 // .set L4_5_set_123, LBB123 - LJTI1_2 2025 // .word L4_5_set_123 2026 if (MAI->doesSetDirectiveSuppressReloc()) { 2027 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2028 OutContext); 2029 break; 2030 } 2031 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2032 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2033 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2034 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2035 break; 2036 } 2037 } 2038 2039 assert(Value && "Unknown entry kind!"); 2040 2041 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2042 OutStreamer->emitValue(Value, EntrySize); 2043 } 2044 2045 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2046 /// special global used by LLVM. If so, emit it and return true, otherwise 2047 /// do nothing and return false. 2048 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2049 if (GV->getName() == "llvm.used") { 2050 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2051 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2052 return true; 2053 } 2054 2055 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2056 if (GV->getSection() == "llvm.metadata" || 2057 GV->hasAvailableExternallyLinkage()) 2058 return true; 2059 2060 if (!GV->hasAppendingLinkage()) return false; 2061 2062 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2063 2064 if (GV->getName() == "llvm.global_ctors") { 2065 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2066 /* isCtor */ true); 2067 2068 return true; 2069 } 2070 2071 if (GV->getName() == "llvm.global_dtors") { 2072 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2073 /* isCtor */ false); 2074 2075 return true; 2076 } 2077 2078 report_fatal_error("unknown special variable"); 2079 } 2080 2081 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2082 /// global in the specified llvm.used list. 2083 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2084 // Should be an array of 'i8*'. 2085 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2086 const GlobalValue *GV = 2087 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2088 if (GV) 2089 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2090 } 2091 } 2092 2093 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2094 const Constant *List, 2095 SmallVector<Structor, 8> &Structors) { 2096 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2097 // the init priority. 2098 if (!isa<ConstantArray>(List)) 2099 return; 2100 2101 // Gather the structors in a form that's convenient for sorting by priority. 2102 for (Value *O : cast<ConstantArray>(List)->operands()) { 2103 auto *CS = cast<ConstantStruct>(O); 2104 if (CS->getOperand(1)->isNullValue()) 2105 break; // Found a null terminator, skip the rest. 2106 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2107 if (!Priority) 2108 continue; // Malformed. 2109 Structors.push_back(Structor()); 2110 Structor &S = Structors.back(); 2111 S.Priority = Priority->getLimitedValue(65535); 2112 S.Func = CS->getOperand(1); 2113 if (!CS->getOperand(2)->isNullValue()) { 2114 if (TM.getTargetTriple().isOSAIX()) 2115 llvm::report_fatal_error( 2116 "associated data of XXStructor list is not yet supported on AIX"); 2117 S.ComdatKey = 2118 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2119 } 2120 } 2121 2122 // Emit the function pointers in the target-specific order 2123 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2124 return L.Priority < R.Priority; 2125 }); 2126 } 2127 2128 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2129 /// priority. 2130 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2131 bool IsCtor) { 2132 SmallVector<Structor, 8> Structors; 2133 preprocessXXStructorList(DL, List, Structors); 2134 if (Structors.empty()) 2135 return; 2136 2137 const Align Align = DL.getPointerPrefAlignment(); 2138 for (Structor &S : Structors) { 2139 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2140 const MCSymbol *KeySym = nullptr; 2141 if (GlobalValue *GV = S.ComdatKey) { 2142 if (GV->isDeclarationForLinker()) 2143 // If the associated variable is not defined in this module 2144 // (it might be available_externally, or have been an 2145 // available_externally definition that was dropped by the 2146 // EliminateAvailableExternally pass), some other TU 2147 // will provide its dynamic initializer. 2148 continue; 2149 2150 KeySym = getSymbol(GV); 2151 } 2152 2153 MCSection *OutputSection = 2154 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2155 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2156 OutStreamer->SwitchSection(OutputSection); 2157 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2158 emitAlignment(Align); 2159 emitXXStructor(DL, S.Func); 2160 } 2161 } 2162 2163 void AsmPrinter::emitModuleIdents(Module &M) { 2164 if (!MAI->hasIdentDirective()) 2165 return; 2166 2167 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2168 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2169 const MDNode *N = NMD->getOperand(i); 2170 assert(N->getNumOperands() == 1 && 2171 "llvm.ident metadata entry can have only one operand"); 2172 const MDString *S = cast<MDString>(N->getOperand(0)); 2173 OutStreamer->emitIdent(S->getString()); 2174 } 2175 } 2176 } 2177 2178 void AsmPrinter::emitModuleCommandLines(Module &M) { 2179 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2180 if (!CommandLine) 2181 return; 2182 2183 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2184 if (!NMD || !NMD->getNumOperands()) 2185 return; 2186 2187 OutStreamer->PushSection(); 2188 OutStreamer->SwitchSection(CommandLine); 2189 OutStreamer->emitZeros(1); 2190 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2191 const MDNode *N = NMD->getOperand(i); 2192 assert(N->getNumOperands() == 1 && 2193 "llvm.commandline metadata entry can have only one operand"); 2194 const MDString *S = cast<MDString>(N->getOperand(0)); 2195 OutStreamer->emitBytes(S->getString()); 2196 OutStreamer->emitZeros(1); 2197 } 2198 OutStreamer->PopSection(); 2199 } 2200 2201 //===--------------------------------------------------------------------===// 2202 // Emission and print routines 2203 // 2204 2205 /// Emit a byte directive and value. 2206 /// 2207 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2208 2209 /// Emit a short directive and value. 2210 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2211 2212 /// Emit a long directive and value. 2213 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2214 2215 /// Emit a long long directive and value. 2216 void AsmPrinter::emitInt64(uint64_t Value) const { 2217 OutStreamer->emitInt64(Value); 2218 } 2219 2220 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2221 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2222 /// .set if it avoids relocations. 2223 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2224 unsigned Size) const { 2225 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2226 } 2227 2228 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2229 /// where the size in bytes of the directive is specified by Size and Label 2230 /// specifies the label. This implicitly uses .set if it is available. 2231 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2232 unsigned Size, 2233 bool IsSectionRelative) const { 2234 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2235 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2236 if (Size > 4) 2237 OutStreamer->emitZeros(Size - 4); 2238 return; 2239 } 2240 2241 // Emit Label+Offset (or just Label if Offset is zero) 2242 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2243 if (Offset) 2244 Expr = MCBinaryExpr::createAdd( 2245 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2246 2247 OutStreamer->emitValue(Expr, Size); 2248 } 2249 2250 //===----------------------------------------------------------------------===// 2251 2252 // EmitAlignment - Emit an alignment directive to the specified power of 2253 // two boundary. If a global value is specified, and if that global has 2254 // an explicit alignment requested, it will override the alignment request 2255 // if required for correctness. 2256 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2257 if (GV) 2258 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2259 2260 if (Alignment == Align(1)) 2261 return; // 1-byte aligned: no need to emit alignment. 2262 2263 if (getCurrentSection()->getKind().isText()) 2264 OutStreamer->emitCodeAlignment(Alignment.value()); 2265 else 2266 OutStreamer->emitValueToAlignment(Alignment.value()); 2267 } 2268 2269 //===----------------------------------------------------------------------===// 2270 // Constant emission. 2271 //===----------------------------------------------------------------------===// 2272 2273 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2274 MCContext &Ctx = OutContext; 2275 2276 if (CV->isNullValue() || isa<UndefValue>(CV)) 2277 return MCConstantExpr::create(0, Ctx); 2278 2279 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2280 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2281 2282 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2283 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2284 2285 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2286 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2287 2288 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2289 if (!CE) { 2290 llvm_unreachable("Unknown constant value to lower!"); 2291 } 2292 2293 switch (CE->getOpcode()) { 2294 case Instruction::AddrSpaceCast: { 2295 const Constant *Op = CE->getOperand(0); 2296 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2297 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2298 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2299 return lowerConstant(Op); 2300 2301 // Fallthrough to error. 2302 LLVM_FALLTHROUGH; 2303 } 2304 default: { 2305 // If the code isn't optimized, there may be outstanding folding 2306 // opportunities. Attempt to fold the expression using DataLayout as a 2307 // last resort before giving up. 2308 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2309 if (C != CE) 2310 return lowerConstant(C); 2311 2312 // Otherwise report the problem to the user. 2313 std::string S; 2314 raw_string_ostream OS(S); 2315 OS << "Unsupported expression in static initializer: "; 2316 CE->printAsOperand(OS, /*PrintType=*/false, 2317 !MF ? nullptr : MF->getFunction().getParent()); 2318 report_fatal_error(OS.str()); 2319 } 2320 case Instruction::GetElementPtr: { 2321 // Generate a symbolic expression for the byte address 2322 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2323 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2324 2325 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2326 if (!OffsetAI) 2327 return Base; 2328 2329 int64_t Offset = OffsetAI.getSExtValue(); 2330 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2331 Ctx); 2332 } 2333 2334 case Instruction::Trunc: 2335 // We emit the value and depend on the assembler to truncate the generated 2336 // expression properly. This is important for differences between 2337 // blockaddress labels. Since the two labels are in the same function, it 2338 // is reasonable to treat their delta as a 32-bit value. 2339 LLVM_FALLTHROUGH; 2340 case Instruction::BitCast: 2341 return lowerConstant(CE->getOperand(0)); 2342 2343 case Instruction::IntToPtr: { 2344 const DataLayout &DL = getDataLayout(); 2345 2346 // Handle casts to pointers by changing them into casts to the appropriate 2347 // integer type. This promotes constant folding and simplifies this code. 2348 Constant *Op = CE->getOperand(0); 2349 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2350 false/*ZExt*/); 2351 return lowerConstant(Op); 2352 } 2353 2354 case Instruction::PtrToInt: { 2355 const DataLayout &DL = getDataLayout(); 2356 2357 // Support only foldable casts to/from pointers that can be eliminated by 2358 // changing the pointer to the appropriately sized integer type. 2359 Constant *Op = CE->getOperand(0); 2360 Type *Ty = CE->getType(); 2361 2362 const MCExpr *OpExpr = lowerConstant(Op); 2363 2364 // We can emit the pointer value into this slot if the slot is an 2365 // integer slot equal to the size of the pointer. 2366 // 2367 // If the pointer is larger than the resultant integer, then 2368 // as with Trunc just depend on the assembler to truncate it. 2369 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2370 return OpExpr; 2371 2372 // Otherwise the pointer is smaller than the resultant integer, mask off 2373 // the high bits so we are sure to get a proper truncation if the input is 2374 // a constant expr. 2375 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2376 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2377 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2378 } 2379 2380 case Instruction::Sub: { 2381 GlobalValue *LHSGV; 2382 APInt LHSOffset; 2383 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2384 getDataLayout())) { 2385 GlobalValue *RHSGV; 2386 APInt RHSOffset; 2387 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2388 getDataLayout())) { 2389 const MCExpr *RelocExpr = 2390 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2391 if (!RelocExpr) 2392 RelocExpr = MCBinaryExpr::createSub( 2393 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2394 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2395 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2396 if (Addend != 0) 2397 RelocExpr = MCBinaryExpr::createAdd( 2398 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2399 return RelocExpr; 2400 } 2401 } 2402 } 2403 // else fallthrough 2404 LLVM_FALLTHROUGH; 2405 2406 // The MC library also has a right-shift operator, but it isn't consistently 2407 // signed or unsigned between different targets. 2408 case Instruction::Add: 2409 case Instruction::Mul: 2410 case Instruction::SDiv: 2411 case Instruction::SRem: 2412 case Instruction::Shl: 2413 case Instruction::And: 2414 case Instruction::Or: 2415 case Instruction::Xor: { 2416 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2417 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2418 switch (CE->getOpcode()) { 2419 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2420 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2421 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2422 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2423 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2424 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2425 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2426 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2427 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2428 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2429 } 2430 } 2431 } 2432 } 2433 2434 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2435 AsmPrinter &AP, 2436 const Constant *BaseCV = nullptr, 2437 uint64_t Offset = 0); 2438 2439 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2440 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2441 2442 /// isRepeatedByteSequence - Determine whether the given value is 2443 /// composed of a repeated sequence of identical bytes and return the 2444 /// byte value. If it is not a repeated sequence, return -1. 2445 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2446 StringRef Data = V->getRawDataValues(); 2447 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2448 char C = Data[0]; 2449 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2450 if (Data[i] != C) return -1; 2451 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2452 } 2453 2454 /// isRepeatedByteSequence - Determine whether the given value is 2455 /// composed of a repeated sequence of identical bytes and return the 2456 /// byte value. If it is not a repeated sequence, return -1. 2457 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2458 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2459 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2460 assert(Size % 8 == 0); 2461 2462 // Extend the element to take zero padding into account. 2463 APInt Value = CI->getValue().zextOrSelf(Size); 2464 if (!Value.isSplat(8)) 2465 return -1; 2466 2467 return Value.zextOrTrunc(8).getZExtValue(); 2468 } 2469 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2470 // Make sure all array elements are sequences of the same repeated 2471 // byte. 2472 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2473 Constant *Op0 = CA->getOperand(0); 2474 int Byte = isRepeatedByteSequence(Op0, DL); 2475 if (Byte == -1) 2476 return -1; 2477 2478 // All array elements must be equal. 2479 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2480 if (CA->getOperand(i) != Op0) 2481 return -1; 2482 return Byte; 2483 } 2484 2485 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2486 return isRepeatedByteSequence(CDS); 2487 2488 return -1; 2489 } 2490 2491 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2492 const ConstantDataSequential *CDS, 2493 AsmPrinter &AP) { 2494 // See if we can aggregate this into a .fill, if so, emit it as such. 2495 int Value = isRepeatedByteSequence(CDS, DL); 2496 if (Value != -1) { 2497 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2498 // Don't emit a 1-byte object as a .fill. 2499 if (Bytes > 1) 2500 return AP.OutStreamer->emitFill(Bytes, Value); 2501 } 2502 2503 // If this can be emitted with .ascii/.asciz, emit it as such. 2504 if (CDS->isString()) 2505 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2506 2507 // Otherwise, emit the values in successive locations. 2508 unsigned ElementByteSize = CDS->getElementByteSize(); 2509 if (isa<IntegerType>(CDS->getElementType())) { 2510 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2511 if (AP.isVerbose()) 2512 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2513 CDS->getElementAsInteger(i)); 2514 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2515 ElementByteSize); 2516 } 2517 } else { 2518 Type *ET = CDS->getElementType(); 2519 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2520 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2521 } 2522 2523 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2524 unsigned EmittedSize = 2525 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2526 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2527 if (unsigned Padding = Size - EmittedSize) 2528 AP.OutStreamer->emitZeros(Padding); 2529 } 2530 2531 static void emitGlobalConstantArray(const DataLayout &DL, 2532 const ConstantArray *CA, AsmPrinter &AP, 2533 const Constant *BaseCV, uint64_t Offset) { 2534 // See if we can aggregate some values. Make sure it can be 2535 // represented as a series of bytes of the constant value. 2536 int Value = isRepeatedByteSequence(CA, DL); 2537 2538 if (Value != -1) { 2539 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2540 AP.OutStreamer->emitFill(Bytes, Value); 2541 } 2542 else { 2543 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2544 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2545 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2546 } 2547 } 2548 } 2549 2550 static void emitGlobalConstantVector(const DataLayout &DL, 2551 const ConstantVector *CV, AsmPrinter &AP) { 2552 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2553 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2554 2555 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2556 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2557 CV->getType()->getNumElements(); 2558 if (unsigned Padding = Size - EmittedSize) 2559 AP.OutStreamer->emitZeros(Padding); 2560 } 2561 2562 static void emitGlobalConstantStruct(const DataLayout &DL, 2563 const ConstantStruct *CS, AsmPrinter &AP, 2564 const Constant *BaseCV, uint64_t Offset) { 2565 // Print the fields in successive locations. Pad to align if needed! 2566 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2567 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2568 uint64_t SizeSoFar = 0; 2569 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2570 const Constant *Field = CS->getOperand(i); 2571 2572 // Print the actual field value. 2573 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2574 2575 // Check if padding is needed and insert one or more 0s. 2576 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2577 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2578 - Layout->getElementOffset(i)) - FieldSize; 2579 SizeSoFar += FieldSize + PadSize; 2580 2581 // Insert padding - this may include padding to increase the size of the 2582 // current field up to the ABI size (if the struct is not packed) as well 2583 // as padding to ensure that the next field starts at the right offset. 2584 AP.OutStreamer->emitZeros(PadSize); 2585 } 2586 assert(SizeSoFar == Layout->getSizeInBytes() && 2587 "Layout of constant struct may be incorrect!"); 2588 } 2589 2590 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2591 assert(ET && "Unknown float type"); 2592 APInt API = APF.bitcastToAPInt(); 2593 2594 // First print a comment with what we think the original floating-point value 2595 // should have been. 2596 if (AP.isVerbose()) { 2597 SmallString<8> StrVal; 2598 APF.toString(StrVal); 2599 ET->print(AP.OutStreamer->GetCommentOS()); 2600 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2601 } 2602 2603 // Now iterate through the APInt chunks, emitting them in endian-correct 2604 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2605 // floats). 2606 unsigned NumBytes = API.getBitWidth() / 8; 2607 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2608 const uint64_t *p = API.getRawData(); 2609 2610 // PPC's long double has odd notions of endianness compared to how LLVM 2611 // handles it: p[0] goes first for *big* endian on PPC. 2612 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2613 int Chunk = API.getNumWords() - 1; 2614 2615 if (TrailingBytes) 2616 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2617 2618 for (; Chunk >= 0; --Chunk) 2619 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2620 } else { 2621 unsigned Chunk; 2622 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2623 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2624 2625 if (TrailingBytes) 2626 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2627 } 2628 2629 // Emit the tail padding for the long double. 2630 const DataLayout &DL = AP.getDataLayout(); 2631 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2632 } 2633 2634 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2635 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2636 } 2637 2638 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2639 const DataLayout &DL = AP.getDataLayout(); 2640 unsigned BitWidth = CI->getBitWidth(); 2641 2642 // Copy the value as we may massage the layout for constants whose bit width 2643 // is not a multiple of 64-bits. 2644 APInt Realigned(CI->getValue()); 2645 uint64_t ExtraBits = 0; 2646 unsigned ExtraBitsSize = BitWidth & 63; 2647 2648 if (ExtraBitsSize) { 2649 // The bit width of the data is not a multiple of 64-bits. 2650 // The extra bits are expected to be at the end of the chunk of the memory. 2651 // Little endian: 2652 // * Nothing to be done, just record the extra bits to emit. 2653 // Big endian: 2654 // * Record the extra bits to emit. 2655 // * Realign the raw data to emit the chunks of 64-bits. 2656 if (DL.isBigEndian()) { 2657 // Basically the structure of the raw data is a chunk of 64-bits cells: 2658 // 0 1 BitWidth / 64 2659 // [chunk1][chunk2] ... [chunkN]. 2660 // The most significant chunk is chunkN and it should be emitted first. 2661 // However, due to the alignment issue chunkN contains useless bits. 2662 // Realign the chunks so that they contain only useful information: 2663 // ExtraBits 0 1 (BitWidth / 64) - 1 2664 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2665 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2666 ExtraBits = Realigned.getRawData()[0] & 2667 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2668 Realigned.lshrInPlace(ExtraBitsSize); 2669 } else 2670 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2671 } 2672 2673 // We don't expect assemblers to support integer data directives 2674 // for more than 64 bits, so we emit the data in at most 64-bit 2675 // quantities at a time. 2676 const uint64_t *RawData = Realigned.getRawData(); 2677 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2678 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2679 AP.OutStreamer->emitIntValue(Val, 8); 2680 } 2681 2682 if (ExtraBitsSize) { 2683 // Emit the extra bits after the 64-bits chunks. 2684 2685 // Emit a directive that fills the expected size. 2686 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2687 Size -= (BitWidth / 64) * 8; 2688 assert(Size && Size * 8 >= ExtraBitsSize && 2689 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2690 == ExtraBits && "Directive too small for extra bits."); 2691 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2692 } 2693 } 2694 2695 /// Transform a not absolute MCExpr containing a reference to a GOT 2696 /// equivalent global, by a target specific GOT pc relative access to the 2697 /// final symbol. 2698 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2699 const Constant *BaseCst, 2700 uint64_t Offset) { 2701 // The global @foo below illustrates a global that uses a got equivalent. 2702 // 2703 // @bar = global i32 42 2704 // @gotequiv = private unnamed_addr constant i32* @bar 2705 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2706 // i64 ptrtoint (i32* @foo to i64)) 2707 // to i32) 2708 // 2709 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2710 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2711 // form: 2712 // 2713 // foo = cstexpr, where 2714 // cstexpr := <gotequiv> - "." + <cst> 2715 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2716 // 2717 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2718 // 2719 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2720 // gotpcrelcst := <offset from @foo base> + <cst> 2721 MCValue MV; 2722 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2723 return; 2724 const MCSymbolRefExpr *SymA = MV.getSymA(); 2725 if (!SymA) 2726 return; 2727 2728 // Check that GOT equivalent symbol is cached. 2729 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2730 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2731 return; 2732 2733 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2734 if (!BaseGV) 2735 return; 2736 2737 // Check for a valid base symbol 2738 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2739 const MCSymbolRefExpr *SymB = MV.getSymB(); 2740 2741 if (!SymB || BaseSym != &SymB->getSymbol()) 2742 return; 2743 2744 // Make sure to match: 2745 // 2746 // gotpcrelcst := <offset from @foo base> + <cst> 2747 // 2748 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2749 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2750 // if the target knows how to encode it. 2751 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2752 if (GOTPCRelCst < 0) 2753 return; 2754 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2755 return; 2756 2757 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2758 // 2759 // bar: 2760 // .long 42 2761 // gotequiv: 2762 // .quad bar 2763 // foo: 2764 // .long gotequiv - "." + <cst> 2765 // 2766 // is replaced by the target specific equivalent to: 2767 // 2768 // bar: 2769 // .long 42 2770 // foo: 2771 // .long bar@GOTPCREL+<gotpcrelcst> 2772 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2773 const GlobalVariable *GV = Result.first; 2774 int NumUses = (int)Result.second; 2775 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2776 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2777 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2778 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2779 2780 // Update GOT equivalent usage information 2781 --NumUses; 2782 if (NumUses >= 0) 2783 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2784 } 2785 2786 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2787 AsmPrinter &AP, const Constant *BaseCV, 2788 uint64_t Offset) { 2789 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2790 2791 // Globals with sub-elements such as combinations of arrays and structs 2792 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2793 // constant symbol base and the current position with BaseCV and Offset. 2794 if (!BaseCV && CV->hasOneUse()) 2795 BaseCV = dyn_cast<Constant>(CV->user_back()); 2796 2797 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2798 return AP.OutStreamer->emitZeros(Size); 2799 2800 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2801 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2802 2803 if (StoreSize < 8) { 2804 if (AP.isVerbose()) 2805 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2806 CI->getZExtValue()); 2807 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2808 } else { 2809 emitGlobalConstantLargeInt(CI, AP); 2810 } 2811 2812 // Emit tail padding if needed 2813 if (Size != StoreSize) 2814 AP.OutStreamer->emitZeros(Size - StoreSize); 2815 2816 return; 2817 } 2818 2819 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2820 return emitGlobalConstantFP(CFP, AP); 2821 2822 if (isa<ConstantPointerNull>(CV)) { 2823 AP.OutStreamer->emitIntValue(0, Size); 2824 return; 2825 } 2826 2827 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2828 return emitGlobalConstantDataSequential(DL, CDS, AP); 2829 2830 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2831 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2832 2833 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2834 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2835 2836 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2837 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2838 // vectors). 2839 if (CE->getOpcode() == Instruction::BitCast) 2840 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2841 2842 if (Size > 8) { 2843 // If the constant expression's size is greater than 64-bits, then we have 2844 // to emit the value in chunks. Try to constant fold the value and emit it 2845 // that way. 2846 Constant *New = ConstantFoldConstant(CE, DL); 2847 if (New != CE) 2848 return emitGlobalConstantImpl(DL, New, AP); 2849 } 2850 } 2851 2852 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2853 return emitGlobalConstantVector(DL, V, AP); 2854 2855 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2856 // thread the streamer with EmitValue. 2857 const MCExpr *ME = AP.lowerConstant(CV); 2858 2859 // Since lowerConstant already folded and got rid of all IR pointer and 2860 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2861 // directly. 2862 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2863 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2864 2865 AP.OutStreamer->emitValue(ME, Size); 2866 } 2867 2868 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2869 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2870 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2871 if (Size) 2872 emitGlobalConstantImpl(DL, CV, *this); 2873 else if (MAI->hasSubsectionsViaSymbols()) { 2874 // If the global has zero size, emit a single byte so that two labels don't 2875 // look like they are at the same location. 2876 OutStreamer->emitIntValue(0, 1); 2877 } 2878 } 2879 2880 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2881 // Target doesn't support this yet! 2882 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2883 } 2884 2885 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2886 if (Offset > 0) 2887 OS << '+' << Offset; 2888 else if (Offset < 0) 2889 OS << Offset; 2890 } 2891 2892 void AsmPrinter::emitNops(unsigned N) { 2893 MCInst Nop; 2894 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2895 for (; N; --N) 2896 EmitToStreamer(*OutStreamer, Nop); 2897 } 2898 2899 //===----------------------------------------------------------------------===// 2900 // Symbol Lowering Routines. 2901 //===----------------------------------------------------------------------===// 2902 2903 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2904 return OutContext.createTempSymbol(Name, true); 2905 } 2906 2907 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2908 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2909 } 2910 2911 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2912 return MMI->getAddrLabelSymbol(BB); 2913 } 2914 2915 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2916 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2917 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2918 const MachineConstantPoolEntry &CPE = 2919 MF->getConstantPool()->getConstants()[CPID]; 2920 if (!CPE.isMachineConstantPoolEntry()) { 2921 const DataLayout &DL = MF->getDataLayout(); 2922 SectionKind Kind = CPE.getSectionKind(&DL); 2923 const Constant *C = CPE.Val.ConstVal; 2924 Align Alignment = CPE.Alignment; 2925 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2926 getObjFileLowering().getSectionForConstant(DL, Kind, C, 2927 Alignment))) { 2928 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2929 if (Sym->isUndefined()) 2930 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2931 return Sym; 2932 } 2933 } 2934 } 2935 } 2936 2937 const DataLayout &DL = getDataLayout(); 2938 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2939 "CPI" + Twine(getFunctionNumber()) + "_" + 2940 Twine(CPID)); 2941 } 2942 2943 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2944 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2945 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2946 } 2947 2948 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2949 /// FIXME: privatize to AsmPrinter. 2950 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2951 const DataLayout &DL = getDataLayout(); 2952 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2953 Twine(getFunctionNumber()) + "_" + 2954 Twine(UID) + "_set_" + Twine(MBBID)); 2955 } 2956 2957 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2958 StringRef Suffix) const { 2959 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2960 } 2961 2962 /// Return the MCSymbol for the specified ExternalSymbol. 2963 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2964 SmallString<60> NameStr; 2965 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2966 return OutContext.getOrCreateSymbol(NameStr); 2967 } 2968 2969 /// PrintParentLoopComment - Print comments about parent loops of this one. 2970 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2971 unsigned FunctionNumber) { 2972 if (!Loop) return; 2973 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2974 OS.indent(Loop->getLoopDepth()*2) 2975 << "Parent Loop BB" << FunctionNumber << "_" 2976 << Loop->getHeader()->getNumber() 2977 << " Depth=" << Loop->getLoopDepth() << '\n'; 2978 } 2979 2980 /// PrintChildLoopComment - Print comments about child loops within 2981 /// the loop for this basic block, with nesting. 2982 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2983 unsigned FunctionNumber) { 2984 // Add child loop information 2985 for (const MachineLoop *CL : *Loop) { 2986 OS.indent(CL->getLoopDepth()*2) 2987 << "Child Loop BB" << FunctionNumber << "_" 2988 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2989 << '\n'; 2990 PrintChildLoopComment(OS, CL, FunctionNumber); 2991 } 2992 } 2993 2994 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2995 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2996 const MachineLoopInfo *LI, 2997 const AsmPrinter &AP) { 2998 // Add loop depth information 2999 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3000 if (!Loop) return; 3001 3002 MachineBasicBlock *Header = Loop->getHeader(); 3003 assert(Header && "No header for loop"); 3004 3005 // If this block is not a loop header, just print out what is the loop header 3006 // and return. 3007 if (Header != &MBB) { 3008 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3009 Twine(AP.getFunctionNumber())+"_" + 3010 Twine(Loop->getHeader()->getNumber())+ 3011 " Depth="+Twine(Loop->getLoopDepth())); 3012 return; 3013 } 3014 3015 // Otherwise, it is a loop header. Print out information about child and 3016 // parent loops. 3017 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3018 3019 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3020 3021 OS << "=>"; 3022 OS.indent(Loop->getLoopDepth()*2-2); 3023 3024 OS << "This "; 3025 if (Loop->empty()) 3026 OS << "Inner "; 3027 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3028 3029 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3030 } 3031 3032 /// emitBasicBlockStart - This method prints the label for the specified 3033 /// MachineBasicBlock, an alignment (if present) and a comment describing 3034 /// it if appropriate. 3035 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3036 // End the previous funclet and start a new one. 3037 if (MBB.isEHFuncletEntry()) { 3038 for (const HandlerInfo &HI : Handlers) { 3039 HI.Handler->endFunclet(); 3040 HI.Handler->beginFunclet(MBB); 3041 } 3042 } 3043 3044 // Emit an alignment directive for this block, if needed. 3045 const Align Alignment = MBB.getAlignment(); 3046 if (Alignment != Align(1)) 3047 emitAlignment(Alignment); 3048 3049 // If the block has its address taken, emit any labels that were used to 3050 // reference the block. It is possible that there is more than one label 3051 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3052 // the references were generated. 3053 if (MBB.hasAddressTaken()) { 3054 const BasicBlock *BB = MBB.getBasicBlock(); 3055 if (isVerbose()) 3056 OutStreamer->AddComment("Block address taken"); 3057 3058 // MBBs can have their address taken as part of CodeGen without having 3059 // their corresponding BB's address taken in IR 3060 if (BB->hasAddressTaken()) 3061 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3062 OutStreamer->emitLabel(Sym); 3063 } 3064 3065 // Print some verbose block comments. 3066 if (isVerbose()) { 3067 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3068 if (BB->hasName()) { 3069 BB->printAsOperand(OutStreamer->GetCommentOS(), 3070 /*PrintType=*/false, BB->getModule()); 3071 OutStreamer->GetCommentOS() << '\n'; 3072 } 3073 } 3074 3075 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3076 emitBasicBlockLoopComments(MBB, MLI, *this); 3077 } 3078 3079 if (MBB.pred_empty() || 3080 (!MF->hasBBLabels() && isBlockOnlyReachableByFallthrough(&MBB) && 3081 !MBB.isEHFuncletEntry() && !MBB.hasLabelMustBeEmitted())) { 3082 if (isVerbose()) { 3083 // NOTE: Want this comment at start of line, don't emit with AddComment. 3084 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3085 false); 3086 } 3087 } else { 3088 if (isVerbose() && MBB.hasLabelMustBeEmitted()) { 3089 OutStreamer->AddComment("Label of block must be emitted"); 3090 } 3091 auto *BBSymbol = MBB.getSymbol(); 3092 // Switch to a new section if this basic block must begin a section. 3093 if (MBB.isBeginSection()) { 3094 OutStreamer->SwitchSection( 3095 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3096 MBB, TM)); 3097 CurrentSectionBeginSym = BBSymbol; 3098 } 3099 OutStreamer->emitLabel(BBSymbol); 3100 // With BB sections, each basic block must handle CFI information on its own 3101 // if it begins a section. 3102 if (MBB.isBeginSection()) 3103 for (const HandlerInfo &HI : Handlers) 3104 HI.Handler->beginBasicBlock(MBB); 3105 } 3106 } 3107 3108 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3109 // Check if CFI information needs to be updated for this MBB with basic block 3110 // sections. 3111 if (MBB.isEndSection()) 3112 for (const HandlerInfo &HI : Handlers) 3113 HI.Handler->endBasicBlock(MBB); 3114 } 3115 3116 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3117 bool IsDefinition) const { 3118 MCSymbolAttr Attr = MCSA_Invalid; 3119 3120 switch (Visibility) { 3121 default: break; 3122 case GlobalValue::HiddenVisibility: 3123 if (IsDefinition) 3124 Attr = MAI->getHiddenVisibilityAttr(); 3125 else 3126 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3127 break; 3128 case GlobalValue::ProtectedVisibility: 3129 Attr = MAI->getProtectedVisibilityAttr(); 3130 break; 3131 } 3132 3133 if (Attr != MCSA_Invalid) 3134 OutStreamer->emitSymbolAttribute(Sym, Attr); 3135 } 3136 3137 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3138 /// exactly one predecessor and the control transfer mechanism between 3139 /// the predecessor and this block is a fall-through. 3140 bool AsmPrinter:: 3141 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3142 // With BasicBlock Sections, beginning of the section is not a fallthrough. 3143 if (MBB->isBeginSection()) 3144 return false; 3145 3146 // If this is a landing pad, it isn't a fall through. If it has no preds, 3147 // then nothing falls through to it. 3148 if (MBB->isEHPad() || MBB->pred_empty()) 3149 return false; 3150 3151 // If there isn't exactly one predecessor, it can't be a fall through. 3152 if (MBB->pred_size() > 1) 3153 return false; 3154 3155 // The predecessor has to be immediately before this block. 3156 MachineBasicBlock *Pred = *MBB->pred_begin(); 3157 if (!Pred->isLayoutSuccessor(MBB)) 3158 return false; 3159 3160 // If the block is completely empty, then it definitely does fall through. 3161 if (Pred->empty()) 3162 return true; 3163 3164 // Check the terminators in the previous blocks 3165 for (const auto &MI : Pred->terminators()) { 3166 // If it is not a simple branch, we are in a table somewhere. 3167 if (!MI.isBranch() || MI.isIndirectBranch()) 3168 return false; 3169 3170 // If we are the operands of one of the branches, this is not a fall 3171 // through. Note that targets with delay slots will usually bundle 3172 // terminators with the delay slot instruction. 3173 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3174 if (OP->isJTI()) 3175 return false; 3176 if (OP->isMBB() && OP->getMBB() == MBB) 3177 return false; 3178 } 3179 } 3180 3181 return true; 3182 } 3183 3184 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3185 if (!S.usesMetadata()) 3186 return nullptr; 3187 3188 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3189 gcp_map_type::iterator GCPI = GCMap.find(&S); 3190 if (GCPI != GCMap.end()) 3191 return GCPI->second.get(); 3192 3193 auto Name = S.getName(); 3194 3195 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3196 GCMetadataPrinterRegistry::entries()) 3197 if (Name == GCMetaPrinter.getName()) { 3198 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3199 GMP->S = &S; 3200 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3201 return IterBool.first->second.get(); 3202 } 3203 3204 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3205 } 3206 3207 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3208 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3209 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3210 bool NeedsDefault = false; 3211 if (MI->begin() == MI->end()) 3212 // No GC strategy, use the default format. 3213 NeedsDefault = true; 3214 else 3215 for (auto &I : *MI) { 3216 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3217 if (MP->emitStackMaps(SM, *this)) 3218 continue; 3219 // The strategy doesn't have printer or doesn't emit custom stack maps. 3220 // Use the default format. 3221 NeedsDefault = true; 3222 } 3223 3224 if (NeedsDefault) 3225 SM.serializeToStackMapSection(); 3226 } 3227 3228 /// Pin vtable to this file. 3229 AsmPrinterHandler::~AsmPrinterHandler() = default; 3230 3231 void AsmPrinterHandler::markFunctionEnd() {} 3232 3233 // In the binary's "xray_instr_map" section, an array of these function entries 3234 // describes each instrumentation point. When XRay patches your code, the index 3235 // into this table will be given to your handler as a patch point identifier. 3236 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3237 auto Kind8 = static_cast<uint8_t>(Kind); 3238 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3239 Out->emitBinaryData( 3240 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3241 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3242 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3243 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3244 Out->emitZeros(Padding); 3245 } 3246 3247 void AsmPrinter::emitXRayTable() { 3248 if (Sleds.empty()) 3249 return; 3250 3251 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3252 const Function &F = MF->getFunction(); 3253 MCSection *InstMap = nullptr; 3254 MCSection *FnSledIndex = nullptr; 3255 const Triple &TT = TM.getTargetTriple(); 3256 // Use PC-relative addresses on all targets. 3257 if (TT.isOSBinFormatELF()) { 3258 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3259 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3260 StringRef GroupName; 3261 if (F.hasComdat()) { 3262 Flags |= ELF::SHF_GROUP; 3263 GroupName = F.getComdat()->getName(); 3264 } 3265 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3266 Flags, 0, GroupName, 3267 MCSection::NonUniqueID, LinkedToSym); 3268 3269 if (!TM.Options.XRayOmitFunctionIndex) 3270 FnSledIndex = OutContext.getELFSection( 3271 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3272 GroupName, MCSection::NonUniqueID, LinkedToSym); 3273 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3274 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3275 SectionKind::getReadOnlyWithRel()); 3276 if (!TM.Options.XRayOmitFunctionIndex) 3277 FnSledIndex = OutContext.getMachOSection( 3278 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3279 } else { 3280 llvm_unreachable("Unsupported target"); 3281 } 3282 3283 auto WordSizeBytes = MAI->getCodePointerSize(); 3284 3285 // Now we switch to the instrumentation map section. Because this is done 3286 // per-function, we are able to create an index entry that will represent the 3287 // range of sleds associated with a function. 3288 auto &Ctx = OutContext; 3289 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3290 OutStreamer->SwitchSection(InstMap); 3291 OutStreamer->emitLabel(SledsStart); 3292 for (const auto &Sled : Sleds) { 3293 MCSymbol *Dot = Ctx.createTempSymbol(); 3294 OutStreamer->emitLabel(Dot); 3295 OutStreamer->emitValueImpl( 3296 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3297 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3298 WordSizeBytes); 3299 OutStreamer->emitValueImpl( 3300 MCBinaryExpr::createSub( 3301 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3302 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3303 MCConstantExpr::create(WordSizeBytes, Ctx), 3304 Ctx), 3305 Ctx), 3306 WordSizeBytes); 3307 Sled.emit(WordSizeBytes, OutStreamer.get()); 3308 } 3309 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3310 OutStreamer->emitLabel(SledsEnd); 3311 3312 // We then emit a single entry in the index per function. We use the symbols 3313 // that bound the instrumentation map as the range for a specific function. 3314 // Each entry here will be 2 * word size aligned, as we're writing down two 3315 // pointers. This should work for both 32-bit and 64-bit platforms. 3316 if (FnSledIndex) { 3317 OutStreamer->SwitchSection(FnSledIndex); 3318 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3319 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3320 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3321 OutStreamer->SwitchSection(PrevSection); 3322 } 3323 Sleds.clear(); 3324 } 3325 3326 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3327 SledKind Kind, uint8_t Version) { 3328 const Function &F = MI.getMF()->getFunction(); 3329 auto Attr = F.getFnAttribute("function-instrument"); 3330 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3331 bool AlwaysInstrument = 3332 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3333 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3334 Kind = SledKind::LOG_ARGS_ENTER; 3335 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3336 AlwaysInstrument, &F, Version}); 3337 } 3338 3339 void AsmPrinter::emitPatchableFunctionEntries() { 3340 const Function &F = MF->getFunction(); 3341 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3342 (void)F.getFnAttribute("patchable-function-prefix") 3343 .getValueAsString() 3344 .getAsInteger(10, PatchableFunctionPrefix); 3345 (void)F.getFnAttribute("patchable-function-entry") 3346 .getValueAsString() 3347 .getAsInteger(10, PatchableFunctionEntry); 3348 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3349 return; 3350 const unsigned PointerSize = getPointerSize(); 3351 if (TM.getTargetTriple().isOSBinFormatELF()) { 3352 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3353 const MCSymbolELF *LinkedToSym = nullptr; 3354 StringRef GroupName; 3355 3356 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3357 // if we are using the integrated assembler. 3358 if (MAI->useIntegratedAssembler()) { 3359 Flags |= ELF::SHF_LINK_ORDER; 3360 if (F.hasComdat()) { 3361 Flags |= ELF::SHF_GROUP; 3362 GroupName = F.getComdat()->getName(); 3363 } 3364 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3365 } 3366 OutStreamer->SwitchSection(OutContext.getELFSection( 3367 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3368 MCSection::NonUniqueID, LinkedToSym)); 3369 emitAlignment(Align(PointerSize)); 3370 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3371 } 3372 } 3373 3374 uint16_t AsmPrinter::getDwarfVersion() const { 3375 return OutStreamer->getContext().getDwarfVersion(); 3376 } 3377 3378 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3379 OutStreamer->getContext().setDwarfVersion(Version); 3380 } 3381 3382 bool AsmPrinter::isDwarf64() const { 3383 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3384 } 3385 3386 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3387 return dwarf::getDwarfOffsetByteSize( 3388 OutStreamer->getContext().getDwarfFormat()); 3389 } 3390 3391 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3392 return dwarf::getUnitLengthFieldByteSize( 3393 OutStreamer->getContext().getDwarfFormat()); 3394 } 3395