1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/ProfileSummaryInfo.h"
35 #include "llvm/BinaryFormat/COFF.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/BinaryFormat/ELF.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineConstantPool.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBundle.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineLoopInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineModuleInfo.h"
55 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
56 #include "llvm/CodeGen/MachineOperand.h"
57 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
58 #include "llvm/CodeGen/MachineSizeOpts.h"
59 #include "llvm/CodeGen/StackMaps.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Comdat.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GlobalAlias.h"
74 #include "llvm/IR/GlobalIFunc.h"
75 #include "llvm/IR/GlobalIndirectSymbol.h"
76 #include "llvm/IR/GlobalObject.h"
77 #include "llvm/IR/GlobalValue.h"
78 #include "llvm/IR/GlobalVariable.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Mangler.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCAsmInfo.h"
87 #include "llvm/MC/MCContext.h"
88 #include "llvm/MC/MCDirectives.h"
89 #include "llvm/MC/MCDwarf.h"
90 #include "llvm/MC/MCExpr.h"
91 #include "llvm/MC/MCInst.h"
92 #include "llvm/MC/MCSection.h"
93 #include "llvm/MC/MCSectionCOFF.h"
94 #include "llvm/MC/MCSectionELF.h"
95 #include "llvm/MC/MCSectionMachO.h"
96 #include "llvm/MC/MCSectionXCOFF.h"
97 #include "llvm/MC/MCStreamer.h"
98 #include "llvm/MC/MCSubtargetInfo.h"
99 #include "llvm/MC/MCSymbol.h"
100 #include "llvm/MC/MCSymbolELF.h"
101 #include "llvm/MC/MCSymbolXCOFF.h"
102 #include "llvm/MC/MCTargetOptions.h"
103 #include "llvm/MC/MCValue.h"
104 #include "llvm/MC/SectionKind.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Remarks/Remark.h"
107 #include "llvm/Remarks/RemarkFormat.h"
108 #include "llvm/Remarks/RemarkStreamer.h"
109 #include "llvm/Remarks/RemarkStringTable.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Compiler.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/Format.h"
115 #include "llvm/Support/MathExtras.h"
116 #include "llvm/Support/Path.h"
117 #include "llvm/Support/TargetRegistry.h"
118 #include "llvm/Support/Timer.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cinttypes>
126 #include <cstdint>
127 #include <iterator>
128 #include <limits>
129 #include <memory>
130 #include <string>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "asm-printer"
137 
138 static const char *const DWARFGroupName = "dwarf";
139 static const char *const DWARFGroupDescription = "DWARF Emission";
140 static const char *const DbgTimerName = "emit";
141 static const char *const DbgTimerDescription = "Debug Info Emission";
142 static const char *const EHTimerName = "write_exception";
143 static const char *const EHTimerDescription = "DWARF Exception Writer";
144 static const char *const CFGuardName = "Control Flow Guard";
145 static const char *const CFGuardDescription = "Control Flow Guard";
146 static const char *const CodeViewLineTablesGroupName = "linetables";
147 static const char *const CodeViewLineTablesGroupDescription =
148   "CodeView Line Tables";
149 
150 STATISTIC(EmittedInsts, "Number of machine instrs printed");
151 
152 char AsmPrinter::ID = 0;
153 
154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
155 
156 static gcp_map_type &getGCMap(void *&P) {
157   if (!P)
158     P = new gcp_map_type();
159   return *(gcp_map_type*)P;
160 }
161 
162 /// getGVAlignment - Return the alignment to use for the specified global
163 /// value.  This rounds up to the preferred alignment if possible and legal.
164 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL,
165                                  Align InAlign) {
166   Align Alignment;
167   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
168     Alignment = Align(DL.getPreferredAlignment(GVar));
169 
170   // If InAlign is specified, round it to it.
171   if (InAlign > Alignment)
172     Alignment = InAlign;
173 
174   // If the GV has a specified alignment, take it into account.
175   const MaybeAlign GVAlign(GV->getAlignment());
176   if (!GVAlign)
177     return Alignment;
178 
179   assert(GVAlign && "GVAlign must be set");
180 
181   // If the GVAlign is larger than NumBits, or if we are required to obey
182   // NumBits because the GV has an assigned section, obey it.
183   if (*GVAlign > Alignment || GV->hasSection())
184     Alignment = *GVAlign;
185   return Alignment;
186 }
187 
188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
189     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
190       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
191   VerboseAsm = OutStreamer->isVerboseAsm();
192 }
193 
194 AsmPrinter::~AsmPrinter() {
195   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
196 
197   if (GCMetadataPrinters) {
198     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
199 
200     delete &GCMap;
201     GCMetadataPrinters = nullptr;
202   }
203 }
204 
205 bool AsmPrinter::isPositionIndependent() const {
206   return TM.isPositionIndependent();
207 }
208 
209 /// getFunctionNumber - Return a unique ID for the current function.
210 unsigned AsmPrinter::getFunctionNumber() const {
211   return MF->getFunctionNumber();
212 }
213 
214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
215   return *TM.getObjFileLowering();
216 }
217 
218 const DataLayout &AsmPrinter::getDataLayout() const {
219   return MMI->getModule()->getDataLayout();
220 }
221 
222 // Do not use the cached DataLayout because some client use it without a Module
223 // (dsymutil, llvm-dwarfdump).
224 unsigned AsmPrinter::getPointerSize() const {
225   return TM.getPointerSize(0); // FIXME: Default address space
226 }
227 
228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
229   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
230   return MF->getSubtarget<MCSubtargetInfo>();
231 }
232 
233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
234   S.emitInstruction(Inst, getSubtargetInfo());
235 }
236 
237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
238   assert(DD && "Dwarf debug file is not defined.");
239   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
240   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
241 }
242 
243 /// getCurrentSection() - Return the current section we are emitting to.
244 const MCSection *AsmPrinter::getCurrentSection() const {
245   return OutStreamer->getCurrentSectionOnly();
246 }
247 
248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
249   AU.setPreservesAll();
250   MachineFunctionPass::getAnalysisUsage(AU);
251   AU.addRequired<MachineModuleInfoWrapperPass>();
252   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
253   AU.addRequired<GCModuleInfo>();
254   AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
255   AU.addRequired<ProfileSummaryInfoWrapperPass>();
256 }
257 
258 bool AsmPrinter::doInitialization(Module &M) {
259   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
260   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
261 
262   // Initialize TargetLoweringObjectFile.
263   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
264     .Initialize(OutContext, TM);
265 
266   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
267       .getModuleMetadata(M);
268 
269   OutStreamer->InitSections(false);
270 
271   // Emit the version-min deployment target directive if needed.
272   //
273   // FIXME: If we end up with a collection of these sorts of Darwin-specific
274   // or ELF-specific things, it may make sense to have a platform helper class
275   // that will work with the target helper class. For now keep it here, as the
276   // alternative is duplicated code in each of the target asm printers that
277   // use the directive, where it would need the same conditionalization
278   // anyway.
279   const Triple &Target = TM.getTargetTriple();
280   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
281 
282   // Allow the target to emit any magic that it wants at the start of the file.
283   emitStartOfAsmFile(M);
284 
285   // Very minimal debug info. It is ignored if we emit actual debug info. If we
286   // don't, this at least helps the user find where a global came from.
287   if (MAI->hasSingleParameterDotFile()) {
288     // .file "foo.c"
289     OutStreamer->emitFileDirective(
290         llvm::sys::path::filename(M.getSourceFileName()));
291   }
292 
293   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
294   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
295   for (auto &I : *MI)
296     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
297       MP->beginAssembly(M, *MI, *this);
298 
299   // Emit module-level inline asm if it exists.
300   if (!M.getModuleInlineAsm().empty()) {
301     // We're at the module level. Construct MCSubtarget from the default CPU
302     // and target triple.
303     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
304         TM.getTargetTriple().str(), TM.getTargetCPU(),
305         TM.getTargetFeatureString()));
306     OutStreamer->AddComment("Start of file scope inline assembly");
307     OutStreamer->AddBlankLine();
308     emitInlineAsm(M.getModuleInlineAsm() + "\n",
309                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
310     OutStreamer->AddComment("End of file scope inline assembly");
311     OutStreamer->AddBlankLine();
312   }
313 
314   if (MAI->doesSupportDebugInformation()) {
315     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
316     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
317       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
318                             DbgTimerName, DbgTimerDescription,
319                             CodeViewLineTablesGroupName,
320                             CodeViewLineTablesGroupDescription);
321     }
322     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
323       DD = new DwarfDebug(this, &M);
324       DD->beginModule();
325       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
326                             DbgTimerDescription, DWARFGroupName,
327                             DWARFGroupDescription);
328     }
329   }
330 
331   switch (MAI->getExceptionHandlingType()) {
332   case ExceptionHandling::SjLj:
333   case ExceptionHandling::DwarfCFI:
334   case ExceptionHandling::ARM:
335     isCFIMoveForDebugging = true;
336     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
337       break;
338     for (auto &F: M.getFunctionList()) {
339       // If the module contains any function with unwind data,
340       // .eh_frame has to be emitted.
341       // Ignore functions that won't get emitted.
342       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
343         isCFIMoveForDebugging = false;
344         break;
345       }
346     }
347     break;
348   default:
349     isCFIMoveForDebugging = false;
350     break;
351   }
352 
353   EHStreamer *ES = nullptr;
354   switch (MAI->getExceptionHandlingType()) {
355   case ExceptionHandling::None:
356     break;
357   case ExceptionHandling::SjLj:
358   case ExceptionHandling::DwarfCFI:
359     ES = new DwarfCFIException(this);
360     break;
361   case ExceptionHandling::ARM:
362     ES = new ARMException(this);
363     break;
364   case ExceptionHandling::WinEH:
365     switch (MAI->getWinEHEncodingType()) {
366     default: llvm_unreachable("unsupported unwinding information encoding");
367     case WinEH::EncodingType::Invalid:
368       break;
369     case WinEH::EncodingType::X86:
370     case WinEH::EncodingType::Itanium:
371       ES = new WinException(this);
372       break;
373     }
374     break;
375   case ExceptionHandling::Wasm:
376     ES = new WasmException(this);
377     break;
378   }
379   if (ES)
380     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
381                           EHTimerDescription, DWARFGroupName,
382                           DWARFGroupDescription);
383 
384   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
385   if (mdconst::extract_or_null<ConstantInt>(
386           MMI->getModule()->getModuleFlag("cfguard")))
387     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
388                           CFGuardDescription, DWARFGroupName,
389                           DWARFGroupDescription);
390   return false;
391 }
392 
393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
394   if (!MAI.hasWeakDefCanBeHiddenDirective())
395     return false;
396 
397   return GV->canBeOmittedFromSymbolTable();
398 }
399 
400 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
401   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
402   switch (Linkage) {
403   case GlobalValue::CommonLinkage:
404   case GlobalValue::LinkOnceAnyLinkage:
405   case GlobalValue::LinkOnceODRLinkage:
406   case GlobalValue::WeakAnyLinkage:
407   case GlobalValue::WeakODRLinkage:
408     if (MAI->hasWeakDefDirective()) {
409       // .globl _foo
410       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
411 
412       if (!canBeHidden(GV, *MAI))
413         // .weak_definition _foo
414         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
415       else
416         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
417     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
418       // .globl _foo
419       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
420       //NOTE: linkonce is handled by the section the symbol was assigned to.
421     } else {
422       // .weak _foo
423       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
424     }
425     return;
426   case GlobalValue::ExternalLinkage:
427     // If external, declare as a global symbol: .globl _foo
428     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
429     return;
430   case GlobalValue::PrivateLinkage:
431     return;
432   case GlobalValue::InternalLinkage:
433     if (MAI->hasDotLGloblDirective())
434       OutStreamer->emitSymbolAttribute(GVSym, MCSA_LGlobal);
435     return;
436   case GlobalValue::AppendingLinkage:
437   case GlobalValue::AvailableExternallyLinkage:
438   case GlobalValue::ExternalWeakLinkage:
439     llvm_unreachable("Should never emit this");
440   }
441   llvm_unreachable("Unknown linkage type!");
442 }
443 
444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
445                                    const GlobalValue *GV) const {
446   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
447 }
448 
449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
450   return TM.getSymbol(GV);
451 }
452 
453 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
454   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
455   // exact definion (intersection of GlobalValue::hasExactDefinition() and
456   // !isInterposable()). These linkages include: external, appending, internal,
457   // private. It may be profitable to use a local alias for external. The
458   // assembler would otherwise be conservative and assume a global default
459   // visibility symbol can be interposable, even if the code generator already
460   // assumed it.
461   if (TM.getTargetTriple().isOSBinFormatELF() &&
462       GlobalObject::isExternalLinkage(GV.getLinkage()) && GV.isDSOLocal() &&
463       !GV.isDeclaration() && !isa<GlobalIFunc>(GV) && !GV.hasComdat())
464     return getSymbolWithGlobalValueBase(&GV, "$local");
465   return TM.getSymbol(&GV);
466 }
467 
468 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
469 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
470   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
471   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
472          "No emulated TLS variables in the common section");
473 
474   // Never emit TLS variable xyz in emulated TLS model.
475   // The initialization value is in __emutls_t.xyz instead of xyz.
476   if (IsEmuTLSVar)
477     return;
478 
479   if (GV->hasInitializer()) {
480     // Check to see if this is a special global used by LLVM, if so, emit it.
481     if (emitSpecialLLVMGlobal(GV))
482       return;
483 
484     // Skip the emission of global equivalents. The symbol can be emitted later
485     // on by emitGlobalGOTEquivs in case it turns out to be needed.
486     if (GlobalGOTEquivs.count(getSymbol(GV)))
487       return;
488 
489     if (isVerbose()) {
490       // When printing the control variable __emutls_v.*,
491       // we don't need to print the original TLS variable name.
492       GV->printAsOperand(OutStreamer->GetCommentOS(),
493                      /*PrintType=*/false, GV->getParent());
494       OutStreamer->GetCommentOS() << '\n';
495     }
496   }
497 
498   MCSymbol *GVSym = getSymbol(GV);
499   MCSymbol *EmittedSym = GVSym;
500 
501   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
502   // attributes.
503   // GV's or GVSym's attributes will be used for the EmittedSym.
504   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
505 
506   if (!GV->hasInitializer())   // External globals require no extra code.
507     return;
508 
509   GVSym->redefineIfPossible();
510   if (GVSym->isDefined() || GVSym->isVariable())
511     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
512                        "' is already defined");
513 
514   if (MAI->hasDotTypeDotSizeDirective())
515     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
516 
517   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
518 
519   const DataLayout &DL = GV->getParent()->getDataLayout();
520   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
521 
522   // If the alignment is specified, we *must* obey it.  Overaligning a global
523   // with a specified alignment is a prompt way to break globals emitted to
524   // sections and expected to be contiguous (e.g. ObjC metadata).
525   const Align Alignment = getGVAlignment(GV, DL);
526 
527   for (const HandlerInfo &HI : Handlers) {
528     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
529                        HI.TimerGroupName, HI.TimerGroupDescription,
530                        TimePassesIsEnabled);
531     HI.Handler->setSymbolSize(GVSym, Size);
532   }
533 
534   // Handle common symbols
535   if (GVKind.isCommon()) {
536     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
537     // .comm _foo, 42, 4
538     const bool SupportsAlignment =
539         getObjFileLowering().getCommDirectiveSupportsAlignment();
540     OutStreamer->emitCommonSymbol(GVSym, Size,
541                                   SupportsAlignment ? Alignment.value() : 0);
542     return;
543   }
544 
545   // Determine to which section this global should be emitted.
546   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
547 
548   // If we have a bss global going to a section that supports the
549   // zerofill directive, do so here.
550   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
551       TheSection->isVirtualSection()) {
552     if (Size == 0)
553       Size = 1; // zerofill of 0 bytes is undefined.
554     emitLinkage(GV, GVSym);
555     // .zerofill __DATA, __bss, _foo, 400, 5
556     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
557     return;
558   }
559 
560   // If this is a BSS local symbol and we are emitting in the BSS
561   // section use .lcomm/.comm directive.
562   if (GVKind.isBSSLocal() &&
563       getObjFileLowering().getBSSSection() == TheSection) {
564     if (Size == 0)
565       Size = 1; // .comm Foo, 0 is undefined, avoid it.
566 
567     // Use .lcomm only if it supports user-specified alignment.
568     // Otherwise, while it would still be correct to use .lcomm in some
569     // cases (e.g. when Align == 1), the external assembler might enfore
570     // some -unknown- default alignment behavior, which could cause
571     // spurious differences between external and integrated assembler.
572     // Prefer to simply fall back to .local / .comm in this case.
573     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
574       // .lcomm _foo, 42
575       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
576       return;
577     }
578 
579     // .local _foo
580     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
581     // .comm _foo, 42, 4
582     const bool SupportsAlignment =
583         getObjFileLowering().getCommDirectiveSupportsAlignment();
584     OutStreamer->emitCommonSymbol(GVSym, Size,
585                                   SupportsAlignment ? Alignment.value() : 0);
586     return;
587   }
588 
589   // Handle thread local data for mach-o which requires us to output an
590   // additional structure of data and mangle the original symbol so that we
591   // can reference it later.
592   //
593   // TODO: This should become an "emit thread local global" method on TLOF.
594   // All of this macho specific stuff should be sunk down into TLOFMachO and
595   // stuff like "TLSExtraDataSection" should no longer be part of the parent
596   // TLOF class.  This will also make it more obvious that stuff like
597   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
598   // specific code.
599   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
600     // Emit the .tbss symbol
601     MCSymbol *MangSym =
602         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
603 
604     if (GVKind.isThreadBSS()) {
605       TheSection = getObjFileLowering().getTLSBSSSection();
606       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
607     } else if (GVKind.isThreadData()) {
608       OutStreamer->SwitchSection(TheSection);
609 
610       emitAlignment(Alignment, GV);
611       OutStreamer->emitLabel(MangSym);
612 
613       emitGlobalConstant(GV->getParent()->getDataLayout(),
614                          GV->getInitializer());
615     }
616 
617     OutStreamer->AddBlankLine();
618 
619     // Emit the variable struct for the runtime.
620     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
621 
622     OutStreamer->SwitchSection(TLVSect);
623     // Emit the linkage here.
624     emitLinkage(GV, GVSym);
625     OutStreamer->emitLabel(GVSym);
626 
627     // Three pointers in size:
628     //   - __tlv_bootstrap - used to make sure support exists
629     //   - spare pointer, used when mapped by the runtime
630     //   - pointer to mangled symbol above with initializer
631     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
632     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
633                                 PtrSize);
634     OutStreamer->emitIntValue(0, PtrSize);
635     OutStreamer->emitSymbolValue(MangSym, PtrSize);
636 
637     OutStreamer->AddBlankLine();
638     return;
639   }
640 
641   MCSymbol *EmittedInitSym = GVSym;
642 
643   OutStreamer->SwitchSection(TheSection);
644 
645   emitLinkage(GV, EmittedInitSym);
646   emitAlignment(Alignment, GV);
647 
648   OutStreamer->emitLabel(EmittedInitSym);
649   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
650   if (LocalAlias != EmittedInitSym)
651     OutStreamer->emitLabel(LocalAlias);
652 
653   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
654 
655   if (MAI->hasDotTypeDotSizeDirective())
656     // .size foo, 42
657     OutStreamer->emitELFSize(EmittedInitSym,
658                              MCConstantExpr::create(Size, OutContext));
659 
660   OutStreamer->AddBlankLine();
661 }
662 
663 /// Emit the directive and value for debug thread local expression
664 ///
665 /// \p Value - The value to emit.
666 /// \p Size - The size of the integer (in bytes) to emit.
667 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
668   OutStreamer->emitValue(Value, Size);
669 }
670 
671 void AsmPrinter::emitFunctionHeaderComment() {}
672 
673 /// EmitFunctionHeader - This method emits the header for the current
674 /// function.
675 void AsmPrinter::emitFunctionHeader() {
676   const Function &F = MF->getFunction();
677 
678   if (isVerbose())
679     OutStreamer->GetCommentOS()
680         << "-- Begin function "
681         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
682 
683   // Print out constants referenced by the function
684   emitConstantPool();
685 
686   // Print the 'header' of function.
687   MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
688   OutStreamer->SwitchSection(MF->getSection());
689 
690   emitVisibility(CurrentFnSym, F.getVisibility());
691 
692   if (MAI->needsFunctionDescriptors() &&
693       F.getLinkage() != GlobalValue::InternalLinkage)
694     emitLinkage(&F, CurrentFnDescSym);
695 
696   emitLinkage(&F, CurrentFnSym);
697   if (MAI->hasFunctionAlignment())
698     emitAlignment(MF->getAlignment(), &F);
699 
700   if (MAI->hasDotTypeDotSizeDirective())
701     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
702 
703   if (F.hasFnAttribute(Attribute::Cold))
704     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
705 
706   if (isVerbose()) {
707     F.printAsOperand(OutStreamer->GetCommentOS(),
708                    /*PrintType=*/false, F.getParent());
709     emitFunctionHeaderComment();
710     OutStreamer->GetCommentOS() << '\n';
711   }
712 
713   // Emit the prefix data.
714   if (F.hasPrefixData()) {
715     if (MAI->hasSubsectionsViaSymbols()) {
716       // Preserving prefix data on platforms which use subsections-via-symbols
717       // is a bit tricky. Here we introduce a symbol for the prefix data
718       // and use the .alt_entry attribute to mark the function's real entry point
719       // as an alternative entry point to the prefix-data symbol.
720       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
721       OutStreamer->emitLabel(PrefixSym);
722 
723       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
724 
725       // Emit an .alt_entry directive for the actual function symbol.
726       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
727     } else {
728       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
729     }
730   }
731 
732   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
733   // place prefix data before NOPs.
734   unsigned PatchableFunctionPrefix = 0;
735   unsigned PatchableFunctionEntry = 0;
736   (void)F.getFnAttribute("patchable-function-prefix")
737       .getValueAsString()
738       .getAsInteger(10, PatchableFunctionPrefix);
739   (void)F.getFnAttribute("patchable-function-entry")
740       .getValueAsString()
741       .getAsInteger(10, PatchableFunctionEntry);
742   if (PatchableFunctionPrefix) {
743     CurrentPatchableFunctionEntrySym =
744         OutContext.createLinkerPrivateTempSymbol();
745     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
746     emitNops(PatchableFunctionPrefix);
747   } else if (PatchableFunctionEntry) {
748     // May be reassigned when emitting the body, to reference the label after
749     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
750     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
751   }
752 
753   // Emit the function descriptor. This is a virtual function to allow targets
754   // to emit their specific function descriptor. Right now it is only used by
755   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
756   // descriptors and should be converted to use this hook as well.
757   if (MAI->needsFunctionDescriptors())
758     emitFunctionDescriptor();
759 
760   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
761   // their wild and crazy things as required.
762   emitFunctionEntryLabel();
763 
764   if (CurrentFnBegin) {
765     if (MAI->useAssignmentForEHBegin()) {
766       MCSymbol *CurPos = OutContext.createTempSymbol();
767       OutStreamer->emitLabel(CurPos);
768       OutStreamer->emitAssignment(CurrentFnBegin,
769                                  MCSymbolRefExpr::create(CurPos, OutContext));
770     } else {
771       OutStreamer->emitLabel(CurrentFnBegin);
772     }
773   }
774 
775   // Emit pre-function debug and/or EH information.
776   for (const HandlerInfo &HI : Handlers) {
777     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
778                        HI.TimerGroupDescription, TimePassesIsEnabled);
779     HI.Handler->beginFunction(MF);
780   }
781 
782   // Emit the prologue data.
783   if (F.hasPrologueData())
784     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
785 }
786 
787 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
788 /// function.  This can be overridden by targets as required to do custom stuff.
789 void AsmPrinter::emitFunctionEntryLabel() {
790   CurrentFnSym->redefineIfPossible();
791 
792   // The function label could have already been emitted if two symbols end up
793   // conflicting due to asm renaming.  Detect this and emit an error.
794   if (CurrentFnSym->isVariable())
795     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
796                        "' is a protected alias");
797   if (CurrentFnSym->isDefined())
798     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
799                        "' label emitted multiple times to assembly file");
800 
801   OutStreamer->emitLabel(CurrentFnSym);
802 
803   if (TM.getTargetTriple().isOSBinFormatELF()) {
804     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
805     if (Sym != CurrentFnSym)
806       OutStreamer->emitLabel(Sym);
807   }
808 }
809 
810 /// emitComments - Pretty-print comments for instructions.
811 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
812   const MachineFunction *MF = MI.getMF();
813   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
814 
815   // Check for spills and reloads
816 
817   // We assume a single instruction only has a spill or reload, not
818   // both.
819   Optional<unsigned> Size;
820   if ((Size = MI.getRestoreSize(TII))) {
821     CommentOS << *Size << "-byte Reload\n";
822   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
823     if (*Size)
824       CommentOS << *Size << "-byte Folded Reload\n";
825   } else if ((Size = MI.getSpillSize(TII))) {
826     CommentOS << *Size << "-byte Spill\n";
827   } else if ((Size = MI.getFoldedSpillSize(TII))) {
828     if (*Size)
829       CommentOS << *Size << "-byte Folded Spill\n";
830   }
831 
832   // Check for spill-induced copies
833   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
834     CommentOS << " Reload Reuse\n";
835 }
836 
837 /// emitImplicitDef - This method emits the specified machine instruction
838 /// that is an implicit def.
839 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
840   Register RegNo = MI->getOperand(0).getReg();
841 
842   SmallString<128> Str;
843   raw_svector_ostream OS(Str);
844   OS << "implicit-def: "
845      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
846 
847   OutStreamer->AddComment(OS.str());
848   OutStreamer->AddBlankLine();
849 }
850 
851 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
852   std::string Str;
853   raw_string_ostream OS(Str);
854   OS << "kill:";
855   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
856     const MachineOperand &Op = MI->getOperand(i);
857     assert(Op.isReg() && "KILL instruction must have only register operands");
858     OS << ' ' << (Op.isDef() ? "def " : "killed ")
859        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
860   }
861   AP.OutStreamer->AddComment(OS.str());
862   AP.OutStreamer->AddBlankLine();
863 }
864 
865 /// emitDebugValueComment - This method handles the target-independent form
866 /// of DBG_VALUE, returning true if it was able to do so.  A false return
867 /// means the target will need to handle MI in EmitInstruction.
868 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
869   // This code handles only the 4-operand target-independent form.
870   if (MI->getNumOperands() != 4)
871     return false;
872 
873   SmallString<128> Str;
874   raw_svector_ostream OS(Str);
875   OS << "DEBUG_VALUE: ";
876 
877   const DILocalVariable *V = MI->getDebugVariable();
878   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
879     StringRef Name = SP->getName();
880     if (!Name.empty())
881       OS << Name << ":";
882   }
883   OS << V->getName();
884   OS << " <- ";
885 
886   // The second operand is only an offset if it's an immediate.
887   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
888   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
889   const DIExpression *Expr = MI->getDebugExpression();
890   if (Expr->getNumElements()) {
891     OS << '[';
892     bool NeedSep = false;
893     for (auto Op : Expr->expr_ops()) {
894       if (NeedSep)
895         OS << ", ";
896       else
897         NeedSep = true;
898       OS << dwarf::OperationEncodingString(Op.getOp());
899       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
900         OS << ' ' << Op.getArg(I);
901     }
902     OS << "] ";
903   }
904 
905   // Register or immediate value. Register 0 means undef.
906   if (MI->getOperand(0).isFPImm()) {
907     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
908     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
909       OS << (double)APF.convertToFloat();
910     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
911       OS << APF.convertToDouble();
912     } else {
913       // There is no good way to print long double.  Convert a copy to
914       // double.  Ah well, it's only a comment.
915       bool ignored;
916       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
917                   &ignored);
918       OS << "(long double) " << APF.convertToDouble();
919     }
920   } else if (MI->getOperand(0).isImm()) {
921     OS << MI->getOperand(0).getImm();
922   } else if (MI->getOperand(0).isCImm()) {
923     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
924   } else if (MI->getOperand(0).isTargetIndex()) {
925     auto Op = MI->getOperand(0);
926     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
927     return true;
928   } else {
929     Register Reg;
930     if (MI->getOperand(0).isReg()) {
931       Reg = MI->getOperand(0).getReg();
932     } else {
933       assert(MI->getOperand(0).isFI() && "Unknown operand type");
934       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
935       Offset += TFI->getFrameIndexReference(*AP.MF,
936                                             MI->getOperand(0).getIndex(), Reg);
937       MemLoc = true;
938     }
939     if (Reg == 0) {
940       // Suppress offset, it is not meaningful here.
941       OS << "undef";
942       // NOTE: Want this comment at start of line, don't emit with AddComment.
943       AP.OutStreamer->emitRawComment(OS.str());
944       return true;
945     }
946     if (MemLoc)
947       OS << '[';
948     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
949   }
950 
951   if (MemLoc)
952     OS << '+' << Offset << ']';
953 
954   // NOTE: Want this comment at start of line, don't emit with AddComment.
955   AP.OutStreamer->emitRawComment(OS.str());
956   return true;
957 }
958 
959 /// This method handles the target-independent form of DBG_LABEL, returning
960 /// true if it was able to do so.  A false return means the target will need
961 /// to handle MI in EmitInstruction.
962 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
963   if (MI->getNumOperands() != 1)
964     return false;
965 
966   SmallString<128> Str;
967   raw_svector_ostream OS(Str);
968   OS << "DEBUG_LABEL: ";
969 
970   const DILabel *V = MI->getDebugLabel();
971   if (auto *SP = dyn_cast<DISubprogram>(
972           V->getScope()->getNonLexicalBlockFileScope())) {
973     StringRef Name = SP->getName();
974     if (!Name.empty())
975       OS << Name << ":";
976   }
977   OS << V->getName();
978 
979   // NOTE: Want this comment at start of line, don't emit with AddComment.
980   AP.OutStreamer->emitRawComment(OS.str());
981   return true;
982 }
983 
984 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
985   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
986       MF->getFunction().needsUnwindTableEntry())
987     return CFI_M_EH;
988 
989   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
990     return CFI_M_Debug;
991 
992   return CFI_M_None;
993 }
994 
995 bool AsmPrinter::needsSEHMoves() {
996   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
997 }
998 
999 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1000   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1001   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1002       ExceptionHandlingType != ExceptionHandling::ARM)
1003     return;
1004 
1005   if (needsCFIMoves() == CFI_M_None)
1006     return;
1007 
1008   // If there is no "real" instruction following this CFI instruction, skip
1009   // emitting it; it would be beyond the end of the function's FDE range.
1010   auto *MBB = MI.getParent();
1011   auto I = std::next(MI.getIterator());
1012   while (I != MBB->end() && I->isTransient())
1013     ++I;
1014   if (I == MBB->instr_end() &&
1015       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1016     return;
1017 
1018   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1019   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1020   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1021   emitCFIInstruction(CFI);
1022 }
1023 
1024 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1025   // The operands are the MCSymbol and the frame offset of the allocation.
1026   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1027   int FrameOffset = MI.getOperand(1).getImm();
1028 
1029   // Emit a symbol assignment.
1030   OutStreamer->emitAssignment(FrameAllocSym,
1031                              MCConstantExpr::create(FrameOffset, OutContext));
1032 }
1033 
1034 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1035   if (!MF.getTarget().Options.EmitStackSizeSection)
1036     return;
1037 
1038   MCSection *StackSizeSection =
1039       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1040   if (!StackSizeSection)
1041     return;
1042 
1043   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1044   // Don't emit functions with dynamic stack allocations.
1045   if (FrameInfo.hasVarSizedObjects())
1046     return;
1047 
1048   OutStreamer->PushSection();
1049   OutStreamer->SwitchSection(StackSizeSection);
1050 
1051   const MCSymbol *FunctionSymbol = getFunctionBegin();
1052   uint64_t StackSize = FrameInfo.getStackSize();
1053   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1054   OutStreamer->emitULEB128IntValue(StackSize);
1055 
1056   OutStreamer->PopSection();
1057 }
1058 
1059 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1060                                            MachineModuleInfo *MMI) {
1061   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1062     return true;
1063 
1064   // We might emit an EH table that uses function begin and end labels even if
1065   // we don't have any landingpads.
1066   if (!MF.getFunction().hasPersonalityFn())
1067     return false;
1068   return !isNoOpWithoutInvoke(
1069       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1070 }
1071 
1072 /// EmitFunctionBody - This method emits the body and trailer for a
1073 /// function.
1074 void AsmPrinter::emitFunctionBody() {
1075   emitFunctionHeader();
1076 
1077   // Emit target-specific gunk before the function body.
1078   emitFunctionBodyStart();
1079 
1080   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1081 
1082   if (isVerbose()) {
1083     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1084     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1085     if (!MDT) {
1086       OwnedMDT = std::make_unique<MachineDominatorTree>();
1087       OwnedMDT->getBase().recalculate(*MF);
1088       MDT = OwnedMDT.get();
1089     }
1090 
1091     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1092     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1093     if (!MLI) {
1094       OwnedMLI = std::make_unique<MachineLoopInfo>();
1095       OwnedMLI->getBase().analyze(MDT->getBase());
1096       MLI = OwnedMLI.get();
1097     }
1098   }
1099 
1100   // Print out code for the function.
1101   bool HasAnyRealCode = false;
1102   int NumInstsInFunction = 0;
1103 
1104   for (auto &MBB : *MF) {
1105     // Print a label for the basic block.
1106     emitBasicBlockStart(MBB);
1107     for (auto &MI : MBB) {
1108       // Print the assembly for the instruction.
1109       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1110           !MI.isDebugInstr()) {
1111         HasAnyRealCode = true;
1112         ++NumInstsInFunction;
1113       }
1114 
1115       // If there is a pre-instruction symbol, emit a label for it here.
1116       if (MCSymbol *S = MI.getPreInstrSymbol())
1117         OutStreamer->emitLabel(S);
1118 
1119       if (ShouldPrintDebugScopes) {
1120         for (const HandlerInfo &HI : Handlers) {
1121           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1122                              HI.TimerGroupName, HI.TimerGroupDescription,
1123                              TimePassesIsEnabled);
1124           HI.Handler->beginInstruction(&MI);
1125         }
1126       }
1127 
1128       if (isVerbose())
1129         emitComments(MI, OutStreamer->GetCommentOS());
1130 
1131       switch (MI.getOpcode()) {
1132       case TargetOpcode::CFI_INSTRUCTION:
1133         emitCFIInstruction(MI);
1134         break;
1135       case TargetOpcode::LOCAL_ESCAPE:
1136         emitFrameAlloc(MI);
1137         break;
1138       case TargetOpcode::ANNOTATION_LABEL:
1139       case TargetOpcode::EH_LABEL:
1140       case TargetOpcode::GC_LABEL:
1141         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1142         break;
1143       case TargetOpcode::INLINEASM:
1144       case TargetOpcode::INLINEASM_BR:
1145         emitInlineAsm(&MI);
1146         break;
1147       case TargetOpcode::DBG_VALUE:
1148         if (isVerbose()) {
1149           if (!emitDebugValueComment(&MI, *this))
1150             emitInstruction(&MI);
1151         }
1152         break;
1153       case TargetOpcode::DBG_LABEL:
1154         if (isVerbose()) {
1155           if (!emitDebugLabelComment(&MI, *this))
1156             emitInstruction(&MI);
1157         }
1158         break;
1159       case TargetOpcode::IMPLICIT_DEF:
1160         if (isVerbose()) emitImplicitDef(&MI);
1161         break;
1162       case TargetOpcode::KILL:
1163         if (isVerbose()) emitKill(&MI, *this);
1164         break;
1165       default:
1166         emitInstruction(&MI);
1167         break;
1168       }
1169 
1170       // If there is a post-instruction symbol, emit a label for it here.
1171       if (MCSymbol *S = MI.getPostInstrSymbol())
1172         OutStreamer->emitLabel(S);
1173 
1174       if (ShouldPrintDebugScopes) {
1175         for (const HandlerInfo &HI : Handlers) {
1176           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1177                              HI.TimerGroupName, HI.TimerGroupDescription,
1178                              TimePassesIsEnabled);
1179           HI.Handler->endInstruction();
1180         }
1181       }
1182     }
1183 
1184     // We need a temporary symbol for the end of this basic block, if either we
1185     // have BBLabels enabled and we want to emit size directive for the BBs, or
1186     // if this basic blocks marks the end of a section (except the section
1187     // containing the entry basic block as the end symbol for that section is
1188     // CurrentFnEnd).
1189     MCSymbol *CurrentBBEnd = nullptr;
1190     if ((MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels()) ||
1191         (MBB.isEndSection() && !MBB.sameSection(&MF->front()))) {
1192       CurrentBBEnd = OutContext.createTempSymbol();
1193       OutStreamer->emitLabel(CurrentBBEnd);
1194     }
1195 
1196     // Helper for emitting the size directive associated with a basic block
1197     // symbol.
1198     auto emitELFSizeDirective = [&](MCSymbol *SymForSize) {
1199       assert(CurrentBBEnd && "Basicblock end symbol not set!");
1200       const MCExpr *SizeExp = MCBinaryExpr::createSub(
1201           MCSymbolRefExpr::create(CurrentBBEnd, OutContext),
1202           MCSymbolRefExpr::create(SymForSize, OutContext), OutContext);
1203       OutStreamer->emitELFSize(SymForSize, SizeExp);
1204     };
1205 
1206     // Emit size directive for the size of each basic block, if BBLabels is
1207     // enabled.
1208     if (MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels())
1209       emitELFSizeDirective(MBB.getSymbol());
1210 
1211     // Emit size directive for the size of each basic block section once we
1212     // get to the end of that section.
1213     if (MBB.isEndSection()) {
1214       if (!MBB.sameSection(&MF->front())) {
1215         if (MAI->hasDotTypeDotSizeDirective())
1216           emitELFSizeDirective(CurrentSectionBeginSym);
1217       }
1218     }
1219     emitBasicBlockEnd(MBB);
1220   }
1221 
1222   EmittedInsts += NumInstsInFunction;
1223   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1224                                       MF->getFunction().getSubprogram(),
1225                                       &MF->front());
1226   R << ore::NV("NumInstructions", NumInstsInFunction)
1227     << " instructions in function";
1228   ORE->emit(R);
1229 
1230   // If the function is empty and the object file uses .subsections_via_symbols,
1231   // then we need to emit *something* to the function body to prevent the
1232   // labels from collapsing together.  Just emit a noop.
1233   // Similarly, don't emit empty functions on Windows either. It can lead to
1234   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1235   // after linking, causing the kernel not to load the binary:
1236   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1237   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1238   const Triple &TT = TM.getTargetTriple();
1239   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1240                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1241     MCInst Noop;
1242     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1243 
1244     // Targets can opt-out of emitting the noop here by leaving the opcode
1245     // unspecified.
1246     if (Noop.getOpcode()) {
1247       OutStreamer->AddComment("avoids zero-length function");
1248       emitNops(1);
1249     }
1250   }
1251 
1252   // Switch to the original section in case basic block sections was used.
1253   OutStreamer->SwitchSection(MF->getSection());
1254 
1255   const Function &F = MF->getFunction();
1256   for (const auto &BB : F) {
1257     if (!BB.hasAddressTaken())
1258       continue;
1259     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1260     if (Sym->isDefined())
1261       continue;
1262     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1263     OutStreamer->emitLabel(Sym);
1264   }
1265 
1266   // Emit target-specific gunk after the function body.
1267   emitFunctionBodyEnd();
1268 
1269   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1270       MAI->hasDotTypeDotSizeDirective()) {
1271     // Create a symbol for the end of function.
1272     CurrentFnEnd = createTempSymbol("func_end");
1273     OutStreamer->emitLabel(CurrentFnEnd);
1274   }
1275 
1276   // If the target wants a .size directive for the size of the function, emit
1277   // it.
1278   if (MAI->hasDotTypeDotSizeDirective()) {
1279     // We can get the size as difference between the function label and the
1280     // temp label.
1281     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1282         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1283         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1284     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1285   }
1286 
1287   for (const HandlerInfo &HI : Handlers) {
1288     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1289                        HI.TimerGroupDescription, TimePassesIsEnabled);
1290     HI.Handler->markFunctionEnd();
1291   }
1292 
1293 
1294   // Print out jump tables referenced by the function.
1295   emitJumpTableInfo();
1296 
1297   // Emit post-function debug and/or EH information.
1298   for (const HandlerInfo &HI : Handlers) {
1299     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1300                        HI.TimerGroupDescription, TimePassesIsEnabled);
1301     HI.Handler->endFunction(MF);
1302   }
1303 
1304   // Emit section containing stack size metadata.
1305   emitStackSizeSection(*MF);
1306 
1307   emitPatchableFunctionEntries();
1308 
1309   if (isVerbose())
1310     OutStreamer->GetCommentOS() << "-- End function\n";
1311 
1312   OutStreamer->AddBlankLine();
1313 }
1314 
1315 /// Compute the number of Global Variables that uses a Constant.
1316 static unsigned getNumGlobalVariableUses(const Constant *C) {
1317   if (!C)
1318     return 0;
1319 
1320   if (isa<GlobalVariable>(C))
1321     return 1;
1322 
1323   unsigned NumUses = 0;
1324   for (auto *CU : C->users())
1325     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1326 
1327   return NumUses;
1328 }
1329 
1330 /// Only consider global GOT equivalents if at least one user is a
1331 /// cstexpr inside an initializer of another global variables. Also, don't
1332 /// handle cstexpr inside instructions. During global variable emission,
1333 /// candidates are skipped and are emitted later in case at least one cstexpr
1334 /// isn't replaced by a PC relative GOT entry access.
1335 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1336                                      unsigned &NumGOTEquivUsers) {
1337   // Global GOT equivalents are unnamed private globals with a constant
1338   // pointer initializer to another global symbol. They must point to a
1339   // GlobalVariable or Function, i.e., as GlobalValue.
1340   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1341       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1342       !isa<GlobalValue>(GV->getOperand(0)))
1343     return false;
1344 
1345   // To be a got equivalent, at least one of its users need to be a constant
1346   // expression used by another global variable.
1347   for (auto *U : GV->users())
1348     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1349 
1350   return NumGOTEquivUsers > 0;
1351 }
1352 
1353 /// Unnamed constant global variables solely contaning a pointer to
1354 /// another globals variable is equivalent to a GOT table entry; it contains the
1355 /// the address of another symbol. Optimize it and replace accesses to these
1356 /// "GOT equivalents" by using the GOT entry for the final global instead.
1357 /// Compute GOT equivalent candidates among all global variables to avoid
1358 /// emitting them if possible later on, after it use is replaced by a GOT entry
1359 /// access.
1360 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1361   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1362     return;
1363 
1364   for (const auto &G : M.globals()) {
1365     unsigned NumGOTEquivUsers = 0;
1366     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1367       continue;
1368 
1369     const MCSymbol *GOTEquivSym = getSymbol(&G);
1370     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1371   }
1372 }
1373 
1374 /// Constant expressions using GOT equivalent globals may not be eligible
1375 /// for PC relative GOT entry conversion, in such cases we need to emit such
1376 /// globals we previously omitted in EmitGlobalVariable.
1377 void AsmPrinter::emitGlobalGOTEquivs() {
1378   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1379     return;
1380 
1381   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1382   for (auto &I : GlobalGOTEquivs) {
1383     const GlobalVariable *GV = I.second.first;
1384     unsigned Cnt = I.second.second;
1385     if (Cnt)
1386       FailedCandidates.push_back(GV);
1387   }
1388   GlobalGOTEquivs.clear();
1389 
1390   for (auto *GV : FailedCandidates)
1391     emitGlobalVariable(GV);
1392 }
1393 
1394 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1395                                           const GlobalIndirectSymbol& GIS) {
1396   MCSymbol *Name = getSymbol(&GIS);
1397 
1398   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1399     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1400   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1401     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1402   else
1403     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1404 
1405   bool IsFunction = GIS.getValueType()->isFunctionTy();
1406 
1407   // Treat bitcasts of functions as functions also. This is important at least
1408   // on WebAssembly where object and function addresses can't alias each other.
1409   if (!IsFunction)
1410     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1411       if (CE->getOpcode() == Instruction::BitCast)
1412         IsFunction =
1413           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1414 
1415   // Set the symbol type to function if the alias has a function type.
1416   // This affects codegen when the aliasee is not a function.
1417   if (IsFunction)
1418     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1419                                                ? MCSA_ELF_TypeIndFunction
1420                                                : MCSA_ELF_TypeFunction);
1421 
1422   emitVisibility(Name, GIS.getVisibility());
1423 
1424   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1425 
1426   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1427     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1428 
1429   // Emit the directives as assignments aka .set:
1430   OutStreamer->emitAssignment(Name, Expr);
1431   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1432   if (LocalAlias != Name)
1433     OutStreamer->emitAssignment(LocalAlias, Expr);
1434 
1435   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1436     // If the aliasee does not correspond to a symbol in the output, i.e. the
1437     // alias is not of an object or the aliased object is private, then set the
1438     // size of the alias symbol from the type of the alias. We don't do this in
1439     // other situations as the alias and aliasee having differing types but same
1440     // size may be intentional.
1441     const GlobalObject *BaseObject = GA->getBaseObject();
1442     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1443         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1444       const DataLayout &DL = M.getDataLayout();
1445       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1446       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1447     }
1448   }
1449 }
1450 
1451 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1452   if (!RS.needsSection())
1453     return;
1454 
1455   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1456 
1457   Optional<SmallString<128>> Filename;
1458   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1459     Filename = *FilenameRef;
1460     sys::fs::make_absolute(*Filename);
1461     assert(!Filename->empty() && "The filename can't be empty.");
1462   }
1463 
1464   std::string Buf;
1465   raw_string_ostream OS(Buf);
1466   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1467       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1468                : RemarkSerializer.metaSerializer(OS);
1469   MetaSerializer->emit();
1470 
1471   // Switch to the remarks section.
1472   MCSection *RemarksSection =
1473       OutContext.getObjectFileInfo()->getRemarksSection();
1474   OutStreamer->SwitchSection(RemarksSection);
1475 
1476   OutStreamer->emitBinaryData(OS.str());
1477 }
1478 
1479 bool AsmPrinter::doFinalization(Module &M) {
1480   // Set the MachineFunction to nullptr so that we can catch attempted
1481   // accesses to MF specific features at the module level and so that
1482   // we can conditionalize accesses based on whether or not it is nullptr.
1483   MF = nullptr;
1484 
1485   // Gather all GOT equivalent globals in the module. We really need two
1486   // passes over the globals: one to compute and another to avoid its emission
1487   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1488   // where the got equivalent shows up before its use.
1489   computeGlobalGOTEquivs(M);
1490 
1491   // Emit global variables.
1492   for (const auto &G : M.globals())
1493     emitGlobalVariable(&G);
1494 
1495   // Emit remaining GOT equivalent globals.
1496   emitGlobalGOTEquivs();
1497 
1498   // Emit visibility info for declarations
1499   for (const Function &F : M) {
1500     if (!F.isDeclarationForLinker())
1501       continue;
1502     GlobalValue::VisibilityTypes V = F.getVisibility();
1503     if (V == GlobalValue::DefaultVisibility)
1504       continue;
1505 
1506     MCSymbol *Name = getSymbol(&F);
1507     emitVisibility(Name, V, false);
1508   }
1509 
1510   // Emit the remarks section contents.
1511   // FIXME: Figure out when is the safest time to emit this section. It should
1512   // not come after debug info.
1513   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1514     emitRemarksSection(*RS);
1515 
1516   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1517 
1518   TLOF.emitModuleMetadata(*OutStreamer, M);
1519 
1520   if (TM.getTargetTriple().isOSBinFormatELF()) {
1521     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1522 
1523     // Output stubs for external and common global variables.
1524     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1525     if (!Stubs.empty()) {
1526       OutStreamer->SwitchSection(TLOF.getDataSection());
1527       const DataLayout &DL = M.getDataLayout();
1528 
1529       emitAlignment(Align(DL.getPointerSize()));
1530       for (const auto &Stub : Stubs) {
1531         OutStreamer->emitLabel(Stub.first);
1532         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1533                                      DL.getPointerSize());
1534       }
1535     }
1536   }
1537 
1538   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1539     MachineModuleInfoCOFF &MMICOFF =
1540         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1541 
1542     // Output stubs for external and common global variables.
1543     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1544     if (!Stubs.empty()) {
1545       const DataLayout &DL = M.getDataLayout();
1546 
1547       for (const auto &Stub : Stubs) {
1548         SmallString<256> SectionName = StringRef(".rdata$");
1549         SectionName += Stub.first->getName();
1550         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1551             SectionName,
1552             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1553                 COFF::IMAGE_SCN_LNK_COMDAT,
1554             SectionKind::getReadOnly(), Stub.first->getName(),
1555             COFF::IMAGE_COMDAT_SELECT_ANY));
1556         emitAlignment(Align(DL.getPointerSize()));
1557         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1558         OutStreamer->emitLabel(Stub.first);
1559         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1560                                      DL.getPointerSize());
1561       }
1562     }
1563   }
1564 
1565   // Finalize debug and EH information.
1566   for (const HandlerInfo &HI : Handlers) {
1567     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1568                        HI.TimerGroupDescription, TimePassesIsEnabled);
1569     HI.Handler->endModule();
1570   }
1571   Handlers.clear();
1572   DD = nullptr;
1573 
1574   // If the target wants to know about weak references, print them all.
1575   if (MAI->getWeakRefDirective()) {
1576     // FIXME: This is not lazy, it would be nice to only print weak references
1577     // to stuff that is actually used.  Note that doing so would require targets
1578     // to notice uses in operands (due to constant exprs etc).  This should
1579     // happen with the MC stuff eventually.
1580 
1581     // Print out module-level global objects here.
1582     for (const auto &GO : M.global_objects()) {
1583       if (!GO.hasExternalWeakLinkage())
1584         continue;
1585       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1586     }
1587   }
1588 
1589   // Print aliases in topological order, that is, for each alias a = b,
1590   // b must be printed before a.
1591   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1592   // such an order to generate correct TOC information.
1593   SmallVector<const GlobalAlias *, 16> AliasStack;
1594   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1595   for (const auto &Alias : M.aliases()) {
1596     for (const GlobalAlias *Cur = &Alias; Cur;
1597          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1598       if (!AliasVisited.insert(Cur).second)
1599         break;
1600       AliasStack.push_back(Cur);
1601     }
1602     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1603       emitGlobalIndirectSymbol(M, *AncestorAlias);
1604     AliasStack.clear();
1605   }
1606   for (const auto &IFunc : M.ifuncs())
1607     emitGlobalIndirectSymbol(M, IFunc);
1608 
1609   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1610   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1611   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1612     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1613       MP->finishAssembly(M, *MI, *this);
1614 
1615   // Emit llvm.ident metadata in an '.ident' directive.
1616   emitModuleIdents(M);
1617 
1618   // Emit bytes for llvm.commandline metadata.
1619   emitModuleCommandLines(M);
1620 
1621   // Emit __morestack address if needed for indirect calls.
1622   if (MMI->usesMorestackAddr()) {
1623     unsigned Align = 1;
1624     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1625         getDataLayout(), SectionKind::getReadOnly(),
1626         /*C=*/nullptr, Align);
1627     OutStreamer->SwitchSection(ReadOnlySection);
1628 
1629     MCSymbol *AddrSymbol =
1630         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1631     OutStreamer->emitLabel(AddrSymbol);
1632 
1633     unsigned PtrSize = MAI->getCodePointerSize();
1634     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1635                                  PtrSize);
1636   }
1637 
1638   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1639   // split-stack is used.
1640   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1641     OutStreamer->SwitchSection(
1642         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1643     if (MMI->hasNosplitStack())
1644       OutStreamer->SwitchSection(
1645           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1646   }
1647 
1648   // If we don't have any trampolines, then we don't require stack memory
1649   // to be executable. Some targets have a directive to declare this.
1650   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1651   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1652     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1653       OutStreamer->SwitchSection(S);
1654 
1655   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1656     // Emit /EXPORT: flags for each exported global as necessary.
1657     const auto &TLOF = getObjFileLowering();
1658     std::string Flags;
1659 
1660     for (const GlobalValue &GV : M.global_values()) {
1661       raw_string_ostream OS(Flags);
1662       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1663       OS.flush();
1664       if (!Flags.empty()) {
1665         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1666         OutStreamer->emitBytes(Flags);
1667       }
1668       Flags.clear();
1669     }
1670 
1671     // Emit /INCLUDE: flags for each used global as necessary.
1672     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1673       assert(LU->hasInitializer() &&
1674              "expected llvm.used to have an initializer");
1675       assert(isa<ArrayType>(LU->getValueType()) &&
1676              "expected llvm.used to be an array type");
1677       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1678         for (const Value *Op : A->operands()) {
1679           const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1680           // Global symbols with internal or private linkage are not visible to
1681           // the linker, and thus would cause an error when the linker tried to
1682           // preserve the symbol due to the `/include:` directive.
1683           if (GV->hasLocalLinkage())
1684             continue;
1685 
1686           raw_string_ostream OS(Flags);
1687           TLOF.emitLinkerFlagsForUsed(OS, GV);
1688           OS.flush();
1689 
1690           if (!Flags.empty()) {
1691             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1692             OutStreamer->emitBytes(Flags);
1693           }
1694           Flags.clear();
1695         }
1696       }
1697     }
1698   }
1699 
1700   if (TM.Options.EmitAddrsig) {
1701     // Emit address-significance attributes for all globals.
1702     OutStreamer->emitAddrsig();
1703     for (const GlobalValue &GV : M.global_values())
1704       if (!GV.use_empty() && !GV.isThreadLocal() &&
1705           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1706           !GV.hasAtLeastLocalUnnamedAddr())
1707         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1708   }
1709 
1710   // Emit symbol partition specifications (ELF only).
1711   if (TM.getTargetTriple().isOSBinFormatELF()) {
1712     unsigned UniqueID = 0;
1713     for (const GlobalValue &GV : M.global_values()) {
1714       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1715           GV.getVisibility() != GlobalValue::DefaultVisibility)
1716         continue;
1717 
1718       OutStreamer->SwitchSection(
1719           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1720                                    "", ++UniqueID, nullptr));
1721       OutStreamer->emitBytes(GV.getPartition());
1722       OutStreamer->emitZeros(1);
1723       OutStreamer->emitValue(
1724           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1725           MAI->getCodePointerSize());
1726     }
1727   }
1728 
1729   // Allow the target to emit any magic that it wants at the end of the file,
1730   // after everything else has gone out.
1731   emitEndOfAsmFile(M);
1732 
1733   MMI = nullptr;
1734 
1735   OutStreamer->Finish();
1736   OutStreamer->reset();
1737   OwnedMLI.reset();
1738   OwnedMDT.reset();
1739 
1740   return false;
1741 }
1742 
1743 MCSymbol *AsmPrinter::getCurExceptionSym() {
1744   if (!CurExceptionSym)
1745     CurExceptionSym = createTempSymbol("exception");
1746   return CurExceptionSym;
1747 }
1748 
1749 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1750   this->MF = &MF;
1751   const Function &F = MF.getFunction();
1752 
1753   // Get the function symbol.
1754   if (!MAI->needsFunctionDescriptors()) {
1755     CurrentFnSym = getSymbol(&MF.getFunction());
1756   } else {
1757     assert(TM.getTargetTriple().isOSAIX() &&
1758            "Only AIX uses the function descriptor hooks.");
1759     // AIX is unique here in that the name of the symbol emitted for the
1760     // function body does not have the same name as the source function's
1761     // C-linkage name.
1762     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1763                                " initalized first.");
1764 
1765     // Get the function entry point symbol.
1766     CurrentFnSym = OutContext.getOrCreateSymbol(
1767         "." + cast<MCSymbolXCOFF>(CurrentFnDescSym)->getUnqualifiedName());
1768   }
1769 
1770   CurrentFnSymForSize = CurrentFnSym;
1771   CurrentFnBegin = nullptr;
1772   CurrentSectionBeginSym = nullptr;
1773   CurExceptionSym = nullptr;
1774   bool NeedsLocalForSize = MAI->needsLocalForSize();
1775   if (F.hasFnAttribute("patchable-function-entry") ||
1776       needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1777       MF.getTarget().Options.EmitStackSizeSection) {
1778     CurrentFnBegin = createTempSymbol("func_begin");
1779     if (NeedsLocalForSize)
1780       CurrentFnSymForSize = CurrentFnBegin;
1781   }
1782 
1783   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1784   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1785   MBFI = (PSI && PSI->hasProfileSummary()) ?
1786          // ORE conditionally computes MBFI. If available, use it, otherwise
1787          // request it.
1788          (ORE->getBFI() ? ORE->getBFI() :
1789           &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()) :
1790          nullptr;
1791 }
1792 
1793 namespace {
1794 
1795 // Keep track the alignment, constpool entries per Section.
1796   struct SectionCPs {
1797     MCSection *S;
1798     unsigned Alignment;
1799     SmallVector<unsigned, 4> CPEs;
1800 
1801     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1802   };
1803 
1804 } // end anonymous namespace
1805 
1806 /// EmitConstantPool - Print to the current output stream assembly
1807 /// representations of the constants in the constant pool MCP. This is
1808 /// used to print out constants which have been "spilled to memory" by
1809 /// the code generator.
1810 void AsmPrinter::emitConstantPool() {
1811   const MachineConstantPool *MCP = MF->getConstantPool();
1812   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1813   if (CP.empty()) return;
1814 
1815   // Calculate sections for constant pool entries. We collect entries to go into
1816   // the same section together to reduce amount of section switch statements.
1817   SmallVector<SectionCPs, 4> CPSections;
1818   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1819     const MachineConstantPoolEntry &CPE = CP[i];
1820     unsigned Align = CPE.getAlignment();
1821 
1822     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1823 
1824     const Constant *C = nullptr;
1825     if (!CPE.isMachineConstantPoolEntry())
1826       C = CPE.Val.ConstVal;
1827 
1828     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1829                                                               Kind, C, Align);
1830 
1831     // The number of sections are small, just do a linear search from the
1832     // last section to the first.
1833     bool Found = false;
1834     unsigned SecIdx = CPSections.size();
1835     while (SecIdx != 0) {
1836       if (CPSections[--SecIdx].S == S) {
1837         Found = true;
1838         break;
1839       }
1840     }
1841     if (!Found) {
1842       SecIdx = CPSections.size();
1843       CPSections.push_back(SectionCPs(S, Align));
1844     }
1845 
1846     if (Align > CPSections[SecIdx].Alignment)
1847       CPSections[SecIdx].Alignment = Align;
1848     CPSections[SecIdx].CPEs.push_back(i);
1849   }
1850 
1851   // Now print stuff into the calculated sections.
1852   const MCSection *CurSection = nullptr;
1853   unsigned Offset = 0;
1854   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1855     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1856       unsigned CPI = CPSections[i].CPEs[j];
1857       MCSymbol *Sym = GetCPISymbol(CPI);
1858       if (!Sym->isUndefined())
1859         continue;
1860 
1861       if (CurSection != CPSections[i].S) {
1862         OutStreamer->SwitchSection(CPSections[i].S);
1863         emitAlignment(Align(CPSections[i].Alignment));
1864         CurSection = CPSections[i].S;
1865         Offset = 0;
1866       }
1867 
1868       MachineConstantPoolEntry CPE = CP[CPI];
1869 
1870       // Emit inter-object padding for alignment.
1871       unsigned AlignMask = CPE.getAlignment() - 1;
1872       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1873       OutStreamer->emitZeros(NewOffset - Offset);
1874 
1875       Type *Ty = CPE.getType();
1876       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1877 
1878       OutStreamer->emitLabel(Sym);
1879       if (CPE.isMachineConstantPoolEntry())
1880         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1881       else
1882         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1883     }
1884   }
1885 }
1886 
1887 // Print assembly representations of the jump tables used by the current
1888 // function.
1889 void AsmPrinter::emitJumpTableInfo() {
1890   const DataLayout &DL = MF->getDataLayout();
1891   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1892   if (!MJTI) return;
1893   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1894   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1895   if (JT.empty()) return;
1896 
1897   // Pick the directive to use to print the jump table entries, and switch to
1898   // the appropriate section.
1899   const Function &F = MF->getFunction();
1900   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1901   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1902       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1903       F);
1904   if (JTInDiffSection) {
1905     // Drop it in the readonly section.
1906     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1907     OutStreamer->SwitchSection(ReadOnlySection);
1908   }
1909 
1910   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
1911 
1912   // Jump tables in code sections are marked with a data_region directive
1913   // where that's supported.
1914   if (!JTInDiffSection)
1915     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
1916 
1917   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1918     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1919 
1920     // If this jump table was deleted, ignore it.
1921     if (JTBBs.empty()) continue;
1922 
1923     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1924     /// emit a .set directive for each unique entry.
1925     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1926         MAI->doesSetDirectiveSuppressReloc()) {
1927       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1928       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1929       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1930       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1931         const MachineBasicBlock *MBB = JTBBs[ii];
1932         if (!EmittedSets.insert(MBB).second)
1933           continue;
1934 
1935         // .set LJTSet, LBB32-base
1936         const MCExpr *LHS =
1937           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1938         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1939                                     MCBinaryExpr::createSub(LHS, Base,
1940                                                             OutContext));
1941       }
1942     }
1943 
1944     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1945     // before each jump table.  The first label is never referenced, but tells
1946     // the assembler and linker the extents of the jump table object.  The
1947     // second label is actually referenced by the code.
1948     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1949       // FIXME: This doesn't have to have any specific name, just any randomly
1950       // named and numbered local label started with 'l' would work.  Simplify
1951       // GetJTISymbol.
1952       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
1953 
1954     MCSymbol* JTISymbol = GetJTISymbol(JTI);
1955     OutStreamer->emitLabel(JTISymbol);
1956 
1957     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1958       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1959   }
1960   if (!JTInDiffSection)
1961     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
1962 }
1963 
1964 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1965 /// current stream.
1966 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1967                                     const MachineBasicBlock *MBB,
1968                                     unsigned UID) const {
1969   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1970   const MCExpr *Value = nullptr;
1971   switch (MJTI->getEntryKind()) {
1972   case MachineJumpTableInfo::EK_Inline:
1973     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1974   case MachineJumpTableInfo::EK_Custom32:
1975     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1976         MJTI, MBB, UID, OutContext);
1977     break;
1978   case MachineJumpTableInfo::EK_BlockAddress:
1979     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1980     //     .word LBB123
1981     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1982     break;
1983   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1984     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1985     // with a relocation as gp-relative, e.g.:
1986     //     .gprel32 LBB123
1987     MCSymbol *MBBSym = MBB->getSymbol();
1988     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1989     return;
1990   }
1991 
1992   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1993     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1994     // with a relocation as gp-relative, e.g.:
1995     //     .gpdword LBB123
1996     MCSymbol *MBBSym = MBB->getSymbol();
1997     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1998     return;
1999   }
2000 
2001   case MachineJumpTableInfo::EK_LabelDifference32: {
2002     // Each entry is the address of the block minus the address of the jump
2003     // table. This is used for PIC jump tables where gprel32 is not supported.
2004     // e.g.:
2005     //      .word LBB123 - LJTI1_2
2006     // If the .set directive avoids relocations, this is emitted as:
2007     //      .set L4_5_set_123, LBB123 - LJTI1_2
2008     //      .word L4_5_set_123
2009     if (MAI->doesSetDirectiveSuppressReloc()) {
2010       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2011                                       OutContext);
2012       break;
2013     }
2014     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2015     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2016     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2017     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2018     break;
2019   }
2020   }
2021 
2022   assert(Value && "Unknown entry kind!");
2023 
2024   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2025   OutStreamer->emitValue(Value, EntrySize);
2026 }
2027 
2028 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2029 /// special global used by LLVM.  If so, emit it and return true, otherwise
2030 /// do nothing and return false.
2031 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2032   if (GV->getName() == "llvm.used") {
2033     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2034       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2035     return true;
2036   }
2037 
2038   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2039   if (GV->getSection() == "llvm.metadata" ||
2040       GV->hasAvailableExternallyLinkage())
2041     return true;
2042 
2043   if (!GV->hasAppendingLinkage()) return false;
2044 
2045   assert(GV->hasInitializer() && "Not a special LLVM global!");
2046 
2047   if (GV->getName() == "llvm.global_ctors") {
2048     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2049                        /* isCtor */ true);
2050 
2051     return true;
2052   }
2053 
2054   if (GV->getName() == "llvm.global_dtors") {
2055     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2056                        /* isCtor */ false);
2057 
2058     return true;
2059   }
2060 
2061   report_fatal_error("unknown special variable");
2062 }
2063 
2064 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2065 /// global in the specified llvm.used list.
2066 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2067   // Should be an array of 'i8*'.
2068   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2069     const GlobalValue *GV =
2070       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2071     if (GV)
2072       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2073   }
2074 }
2075 
2076 namespace {
2077 
2078 struct Structor {
2079   int Priority = 0;
2080   Constant *Func = nullptr;
2081   GlobalValue *ComdatKey = nullptr;
2082 
2083   Structor() = default;
2084 };
2085 
2086 } // end anonymous namespace
2087 
2088 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2089 /// priority.
2090 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2091                                     bool isCtor) {
2092   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
2093   // init priority.
2094   if (!isa<ConstantArray>(List)) return;
2095 
2096   // Gather the structors in a form that's convenient for sorting by priority.
2097   SmallVector<Structor, 8> Structors;
2098   for (Value *O : cast<ConstantArray>(List)->operands()) {
2099     auto *CS = cast<ConstantStruct>(O);
2100     if (CS->getOperand(1)->isNullValue())
2101       break;  // Found a null terminator, skip the rest.
2102     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2103     if (!Priority) continue; // Malformed.
2104     Structors.push_back(Structor());
2105     Structor &S = Structors.back();
2106     S.Priority = Priority->getLimitedValue(65535);
2107     S.Func = CS->getOperand(1);
2108     if (!CS->getOperand(2)->isNullValue())
2109       S.ComdatKey =
2110           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2111   }
2112 
2113   // Emit the function pointers in the target-specific order
2114   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2115     return L.Priority < R.Priority;
2116   });
2117   const Align Align = DL.getPointerPrefAlignment();
2118   for (Structor &S : Structors) {
2119     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2120     const MCSymbol *KeySym = nullptr;
2121     if (GlobalValue *GV = S.ComdatKey) {
2122       if (GV->isDeclarationForLinker())
2123         // If the associated variable is not defined in this module
2124         // (it might be available_externally, or have been an
2125         // available_externally definition that was dropped by the
2126         // EliminateAvailableExternally pass), some other TU
2127         // will provide its dynamic initializer.
2128         continue;
2129 
2130       KeySym = getSymbol(GV);
2131     }
2132     MCSection *OutputSection =
2133         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2134                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2135     OutStreamer->SwitchSection(OutputSection);
2136     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2137       emitAlignment(Align);
2138     emitXXStructor(DL, S.Func);
2139   }
2140 }
2141 
2142 void AsmPrinter::emitModuleIdents(Module &M) {
2143   if (!MAI->hasIdentDirective())
2144     return;
2145 
2146   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2147     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2148       const MDNode *N = NMD->getOperand(i);
2149       assert(N->getNumOperands() == 1 &&
2150              "llvm.ident metadata entry can have only one operand");
2151       const MDString *S = cast<MDString>(N->getOperand(0));
2152       OutStreamer->emitIdent(S->getString());
2153     }
2154   }
2155 }
2156 
2157 void AsmPrinter::emitModuleCommandLines(Module &M) {
2158   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2159   if (!CommandLine)
2160     return;
2161 
2162   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2163   if (!NMD || !NMD->getNumOperands())
2164     return;
2165 
2166   OutStreamer->PushSection();
2167   OutStreamer->SwitchSection(CommandLine);
2168   OutStreamer->emitZeros(1);
2169   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2170     const MDNode *N = NMD->getOperand(i);
2171     assert(N->getNumOperands() == 1 &&
2172            "llvm.commandline metadata entry can have only one operand");
2173     const MDString *S = cast<MDString>(N->getOperand(0));
2174     OutStreamer->emitBytes(S->getString());
2175     OutStreamer->emitZeros(1);
2176   }
2177   OutStreamer->PopSection();
2178 }
2179 
2180 //===--------------------------------------------------------------------===//
2181 // Emission and print routines
2182 //
2183 
2184 /// Emit a byte directive and value.
2185 ///
2186 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2187 
2188 /// Emit a short directive and value.
2189 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2190 
2191 /// Emit a long directive and value.
2192 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2193 
2194 /// Emit a long long directive and value.
2195 void AsmPrinter::emitInt64(uint64_t Value) const {
2196   OutStreamer->emitInt64(Value);
2197 }
2198 
2199 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2200 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2201 /// .set if it avoids relocations.
2202 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2203                                      unsigned Size) const {
2204   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2205 }
2206 
2207 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2208 /// where the size in bytes of the directive is specified by Size and Label
2209 /// specifies the label.  This implicitly uses .set if it is available.
2210 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2211                                      unsigned Size,
2212                                      bool IsSectionRelative) const {
2213   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2214     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2215     if (Size > 4)
2216       OutStreamer->emitZeros(Size - 4);
2217     return;
2218   }
2219 
2220   // Emit Label+Offset (or just Label if Offset is zero)
2221   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2222   if (Offset)
2223     Expr = MCBinaryExpr::createAdd(
2224         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2225 
2226   OutStreamer->emitValue(Expr, Size);
2227 }
2228 
2229 //===----------------------------------------------------------------------===//
2230 
2231 // EmitAlignment - Emit an alignment directive to the specified power of
2232 // two boundary.  If a global value is specified, and if that global has
2233 // an explicit alignment requested, it will override the alignment request
2234 // if required for correctness.
2235 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2236   if (GV)
2237     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2238 
2239   if (Alignment == Align(1))
2240     return; // 1-byte aligned: no need to emit alignment.
2241 
2242   if (getCurrentSection()->getKind().isText())
2243     OutStreamer->emitCodeAlignment(Alignment.value());
2244   else
2245     OutStreamer->emitValueToAlignment(Alignment.value());
2246 }
2247 
2248 //===----------------------------------------------------------------------===//
2249 // Constant emission.
2250 //===----------------------------------------------------------------------===//
2251 
2252 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2253   MCContext &Ctx = OutContext;
2254 
2255   if (CV->isNullValue() || isa<UndefValue>(CV))
2256     return MCConstantExpr::create(0, Ctx);
2257 
2258   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2259     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2260 
2261   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2262     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2263 
2264   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2265     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2266 
2267   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2268   if (!CE) {
2269     llvm_unreachable("Unknown constant value to lower!");
2270   }
2271 
2272   switch (CE->getOpcode()) {
2273   default: {
2274     // If the code isn't optimized, there may be outstanding folding
2275     // opportunities. Attempt to fold the expression using DataLayout as a
2276     // last resort before giving up.
2277     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2278     if (C != CE)
2279       return lowerConstant(C);
2280 
2281     // Otherwise report the problem to the user.
2282     std::string S;
2283     raw_string_ostream OS(S);
2284     OS << "Unsupported expression in static initializer: ";
2285     CE->printAsOperand(OS, /*PrintType=*/false,
2286                    !MF ? nullptr : MF->getFunction().getParent());
2287     report_fatal_error(OS.str());
2288   }
2289   case Instruction::GetElementPtr: {
2290     // Generate a symbolic expression for the byte address
2291     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2292     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2293 
2294     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2295     if (!OffsetAI)
2296       return Base;
2297 
2298     int64_t Offset = OffsetAI.getSExtValue();
2299     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2300                                    Ctx);
2301   }
2302 
2303   case Instruction::Trunc:
2304     // We emit the value and depend on the assembler to truncate the generated
2305     // expression properly.  This is important for differences between
2306     // blockaddress labels.  Since the two labels are in the same function, it
2307     // is reasonable to treat their delta as a 32-bit value.
2308     LLVM_FALLTHROUGH;
2309   case Instruction::BitCast:
2310     return lowerConstant(CE->getOperand(0));
2311 
2312   case Instruction::IntToPtr: {
2313     const DataLayout &DL = getDataLayout();
2314 
2315     // Handle casts to pointers by changing them into casts to the appropriate
2316     // integer type.  This promotes constant folding and simplifies this code.
2317     Constant *Op = CE->getOperand(0);
2318     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2319                                       false/*ZExt*/);
2320     return lowerConstant(Op);
2321   }
2322 
2323   case Instruction::PtrToInt: {
2324     const DataLayout &DL = getDataLayout();
2325 
2326     // Support only foldable casts to/from pointers that can be eliminated by
2327     // changing the pointer to the appropriately sized integer type.
2328     Constant *Op = CE->getOperand(0);
2329     Type *Ty = CE->getType();
2330 
2331     const MCExpr *OpExpr = lowerConstant(Op);
2332 
2333     // We can emit the pointer value into this slot if the slot is an
2334     // integer slot equal to the size of the pointer.
2335     //
2336     // If the pointer is larger than the resultant integer, then
2337     // as with Trunc just depend on the assembler to truncate it.
2338     if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2339       return OpExpr;
2340 
2341     // Otherwise the pointer is smaller than the resultant integer, mask off
2342     // the high bits so we are sure to get a proper truncation if the input is
2343     // a constant expr.
2344     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2345     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2346     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2347   }
2348 
2349   case Instruction::Sub: {
2350     GlobalValue *LHSGV;
2351     APInt LHSOffset;
2352     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2353                                    getDataLayout())) {
2354       GlobalValue *RHSGV;
2355       APInt RHSOffset;
2356       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2357                                      getDataLayout())) {
2358         const MCExpr *RelocExpr =
2359             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2360         if (!RelocExpr)
2361           RelocExpr = MCBinaryExpr::createSub(
2362               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2363               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2364         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2365         if (Addend != 0)
2366           RelocExpr = MCBinaryExpr::createAdd(
2367               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2368         return RelocExpr;
2369       }
2370     }
2371   }
2372   // else fallthrough
2373   LLVM_FALLTHROUGH;
2374 
2375   // The MC library also has a right-shift operator, but it isn't consistently
2376   // signed or unsigned between different targets.
2377   case Instruction::Add:
2378   case Instruction::Mul:
2379   case Instruction::SDiv:
2380   case Instruction::SRem:
2381   case Instruction::Shl:
2382   case Instruction::And:
2383   case Instruction::Or:
2384   case Instruction::Xor: {
2385     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2386     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2387     switch (CE->getOpcode()) {
2388     default: llvm_unreachable("Unknown binary operator constant cast expr");
2389     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2390     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2391     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2392     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2393     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2394     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2395     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2396     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2397     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2398     }
2399   }
2400   }
2401 }
2402 
2403 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2404                                    AsmPrinter &AP,
2405                                    const Constant *BaseCV = nullptr,
2406                                    uint64_t Offset = 0);
2407 
2408 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2409 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2410 
2411 /// isRepeatedByteSequence - Determine whether the given value is
2412 /// composed of a repeated sequence of identical bytes and return the
2413 /// byte value.  If it is not a repeated sequence, return -1.
2414 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2415   StringRef Data = V->getRawDataValues();
2416   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2417   char C = Data[0];
2418   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2419     if (Data[i] != C) return -1;
2420   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2421 }
2422 
2423 /// isRepeatedByteSequence - Determine whether the given value is
2424 /// composed of a repeated sequence of identical bytes and return the
2425 /// byte value.  If it is not a repeated sequence, return -1.
2426 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2427   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2428     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2429     assert(Size % 8 == 0);
2430 
2431     // Extend the element to take zero padding into account.
2432     APInt Value = CI->getValue().zextOrSelf(Size);
2433     if (!Value.isSplat(8))
2434       return -1;
2435 
2436     return Value.zextOrTrunc(8).getZExtValue();
2437   }
2438   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2439     // Make sure all array elements are sequences of the same repeated
2440     // byte.
2441     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2442     Constant *Op0 = CA->getOperand(0);
2443     int Byte = isRepeatedByteSequence(Op0, DL);
2444     if (Byte == -1)
2445       return -1;
2446 
2447     // All array elements must be equal.
2448     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2449       if (CA->getOperand(i) != Op0)
2450         return -1;
2451     return Byte;
2452   }
2453 
2454   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2455     return isRepeatedByteSequence(CDS);
2456 
2457   return -1;
2458 }
2459 
2460 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2461                                              const ConstantDataSequential *CDS,
2462                                              AsmPrinter &AP) {
2463   // See if we can aggregate this into a .fill, if so, emit it as such.
2464   int Value = isRepeatedByteSequence(CDS, DL);
2465   if (Value != -1) {
2466     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2467     // Don't emit a 1-byte object as a .fill.
2468     if (Bytes > 1)
2469       return AP.OutStreamer->emitFill(Bytes, Value);
2470   }
2471 
2472   // If this can be emitted with .ascii/.asciz, emit it as such.
2473   if (CDS->isString())
2474     return AP.OutStreamer->emitBytes(CDS->getAsString());
2475 
2476   // Otherwise, emit the values in successive locations.
2477   unsigned ElementByteSize = CDS->getElementByteSize();
2478   if (isa<IntegerType>(CDS->getElementType())) {
2479     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2480       if (AP.isVerbose())
2481         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2482                                                  CDS->getElementAsInteger(i));
2483       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2484                                    ElementByteSize);
2485     }
2486   } else {
2487     Type *ET = CDS->getElementType();
2488     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2489       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2490   }
2491 
2492   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2493   unsigned EmittedSize =
2494       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2495   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2496   if (unsigned Padding = Size - EmittedSize)
2497     AP.OutStreamer->emitZeros(Padding);
2498 }
2499 
2500 static void emitGlobalConstantArray(const DataLayout &DL,
2501                                     const ConstantArray *CA, AsmPrinter &AP,
2502                                     const Constant *BaseCV, uint64_t Offset) {
2503   // See if we can aggregate some values.  Make sure it can be
2504   // represented as a series of bytes of the constant value.
2505   int Value = isRepeatedByteSequence(CA, DL);
2506 
2507   if (Value != -1) {
2508     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2509     AP.OutStreamer->emitFill(Bytes, Value);
2510   }
2511   else {
2512     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2513       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2514       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2515     }
2516   }
2517 }
2518 
2519 static void emitGlobalConstantVector(const DataLayout &DL,
2520                                      const ConstantVector *CV, AsmPrinter &AP) {
2521   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2522     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2523 
2524   unsigned Size = DL.getTypeAllocSize(CV->getType());
2525   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2526                          CV->getType()->getNumElements();
2527   if (unsigned Padding = Size - EmittedSize)
2528     AP.OutStreamer->emitZeros(Padding);
2529 }
2530 
2531 static void emitGlobalConstantStruct(const DataLayout &DL,
2532                                      const ConstantStruct *CS, AsmPrinter &AP,
2533                                      const Constant *BaseCV, uint64_t Offset) {
2534   // Print the fields in successive locations. Pad to align if needed!
2535   unsigned Size = DL.getTypeAllocSize(CS->getType());
2536   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2537   uint64_t SizeSoFar = 0;
2538   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2539     const Constant *Field = CS->getOperand(i);
2540 
2541     // Print the actual field value.
2542     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2543 
2544     // Check if padding is needed and insert one or more 0s.
2545     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2546     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2547                         - Layout->getElementOffset(i)) - FieldSize;
2548     SizeSoFar += FieldSize + PadSize;
2549 
2550     // Insert padding - this may include padding to increase the size of the
2551     // current field up to the ABI size (if the struct is not packed) as well
2552     // as padding to ensure that the next field starts at the right offset.
2553     AP.OutStreamer->emitZeros(PadSize);
2554   }
2555   assert(SizeSoFar == Layout->getSizeInBytes() &&
2556          "Layout of constant struct may be incorrect!");
2557 }
2558 
2559 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2560   assert(ET && "Unknown float type");
2561   APInt API = APF.bitcastToAPInt();
2562 
2563   // First print a comment with what we think the original floating-point value
2564   // should have been.
2565   if (AP.isVerbose()) {
2566     SmallString<8> StrVal;
2567     APF.toString(StrVal);
2568     ET->print(AP.OutStreamer->GetCommentOS());
2569     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2570   }
2571 
2572   // Now iterate through the APInt chunks, emitting them in endian-correct
2573   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2574   // floats).
2575   unsigned NumBytes = API.getBitWidth() / 8;
2576   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2577   const uint64_t *p = API.getRawData();
2578 
2579   // PPC's long double has odd notions of endianness compared to how LLVM
2580   // handles it: p[0] goes first for *big* endian on PPC.
2581   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2582     int Chunk = API.getNumWords() - 1;
2583 
2584     if (TrailingBytes)
2585       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2586 
2587     for (; Chunk >= 0; --Chunk)
2588       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2589   } else {
2590     unsigned Chunk;
2591     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2592       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2593 
2594     if (TrailingBytes)
2595       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2596   }
2597 
2598   // Emit the tail padding for the long double.
2599   const DataLayout &DL = AP.getDataLayout();
2600   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2601 }
2602 
2603 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2604   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2605 }
2606 
2607 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2608   const DataLayout &DL = AP.getDataLayout();
2609   unsigned BitWidth = CI->getBitWidth();
2610 
2611   // Copy the value as we may massage the layout for constants whose bit width
2612   // is not a multiple of 64-bits.
2613   APInt Realigned(CI->getValue());
2614   uint64_t ExtraBits = 0;
2615   unsigned ExtraBitsSize = BitWidth & 63;
2616 
2617   if (ExtraBitsSize) {
2618     // The bit width of the data is not a multiple of 64-bits.
2619     // The extra bits are expected to be at the end of the chunk of the memory.
2620     // Little endian:
2621     // * Nothing to be done, just record the extra bits to emit.
2622     // Big endian:
2623     // * Record the extra bits to emit.
2624     // * Realign the raw data to emit the chunks of 64-bits.
2625     if (DL.isBigEndian()) {
2626       // Basically the structure of the raw data is a chunk of 64-bits cells:
2627       //    0        1         BitWidth / 64
2628       // [chunk1][chunk2] ... [chunkN].
2629       // The most significant chunk is chunkN and it should be emitted first.
2630       // However, due to the alignment issue chunkN contains useless bits.
2631       // Realign the chunks so that they contain only useless information:
2632       // ExtraBits     0       1       (BitWidth / 64) - 1
2633       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2634       ExtraBits = Realigned.getRawData()[0] &
2635         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2636       Realigned.lshrInPlace(ExtraBitsSize);
2637     } else
2638       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2639   }
2640 
2641   // We don't expect assemblers to support integer data directives
2642   // for more than 64 bits, so we emit the data in at most 64-bit
2643   // quantities at a time.
2644   const uint64_t *RawData = Realigned.getRawData();
2645   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2646     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2647     AP.OutStreamer->emitIntValue(Val, 8);
2648   }
2649 
2650   if (ExtraBitsSize) {
2651     // Emit the extra bits after the 64-bits chunks.
2652 
2653     // Emit a directive that fills the expected size.
2654     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2655     Size -= (BitWidth / 64) * 8;
2656     assert(Size && Size * 8 >= ExtraBitsSize &&
2657            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2658            == ExtraBits && "Directive too small for extra bits.");
2659     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2660   }
2661 }
2662 
2663 /// Transform a not absolute MCExpr containing a reference to a GOT
2664 /// equivalent global, by a target specific GOT pc relative access to the
2665 /// final symbol.
2666 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2667                                          const Constant *BaseCst,
2668                                          uint64_t Offset) {
2669   // The global @foo below illustrates a global that uses a got equivalent.
2670   //
2671   //  @bar = global i32 42
2672   //  @gotequiv = private unnamed_addr constant i32* @bar
2673   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2674   //                             i64 ptrtoint (i32* @foo to i64))
2675   //                        to i32)
2676   //
2677   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2678   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2679   // form:
2680   //
2681   //  foo = cstexpr, where
2682   //    cstexpr := <gotequiv> - "." + <cst>
2683   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2684   //
2685   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2686   //
2687   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2688   //    gotpcrelcst := <offset from @foo base> + <cst>
2689   MCValue MV;
2690   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2691     return;
2692   const MCSymbolRefExpr *SymA = MV.getSymA();
2693   if (!SymA)
2694     return;
2695 
2696   // Check that GOT equivalent symbol is cached.
2697   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2698   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2699     return;
2700 
2701   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2702   if (!BaseGV)
2703     return;
2704 
2705   // Check for a valid base symbol
2706   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2707   const MCSymbolRefExpr *SymB = MV.getSymB();
2708 
2709   if (!SymB || BaseSym != &SymB->getSymbol())
2710     return;
2711 
2712   // Make sure to match:
2713   //
2714   //    gotpcrelcst := <offset from @foo base> + <cst>
2715   //
2716   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2717   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2718   // if the target knows how to encode it.
2719   int64_t GOTPCRelCst = Offset + MV.getConstant();
2720   if (GOTPCRelCst < 0)
2721     return;
2722   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2723     return;
2724 
2725   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2726   //
2727   //  bar:
2728   //    .long 42
2729   //  gotequiv:
2730   //    .quad bar
2731   //  foo:
2732   //    .long gotequiv - "." + <cst>
2733   //
2734   // is replaced by the target specific equivalent to:
2735   //
2736   //  bar:
2737   //    .long 42
2738   //  foo:
2739   //    .long bar@GOTPCREL+<gotpcrelcst>
2740   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2741   const GlobalVariable *GV = Result.first;
2742   int NumUses = (int)Result.second;
2743   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2744   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2745   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2746       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2747 
2748   // Update GOT equivalent usage information
2749   --NumUses;
2750   if (NumUses >= 0)
2751     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2752 }
2753 
2754 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2755                                    AsmPrinter &AP, const Constant *BaseCV,
2756                                    uint64_t Offset) {
2757   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2758 
2759   // Globals with sub-elements such as combinations of arrays and structs
2760   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2761   // constant symbol base and the current position with BaseCV and Offset.
2762   if (!BaseCV && CV->hasOneUse())
2763     BaseCV = dyn_cast<Constant>(CV->user_back());
2764 
2765   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2766     return AP.OutStreamer->emitZeros(Size);
2767 
2768   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2769     switch (Size) {
2770     case 1:
2771     case 2:
2772     case 4:
2773     case 8:
2774       if (AP.isVerbose())
2775         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2776                                                  CI->getZExtValue());
2777       AP.OutStreamer->emitIntValue(CI->getZExtValue(), Size);
2778       return;
2779     default:
2780       emitGlobalConstantLargeInt(CI, AP);
2781       return;
2782     }
2783   }
2784 
2785   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2786     return emitGlobalConstantFP(CFP, AP);
2787 
2788   if (isa<ConstantPointerNull>(CV)) {
2789     AP.OutStreamer->emitIntValue(0, Size);
2790     return;
2791   }
2792 
2793   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2794     return emitGlobalConstantDataSequential(DL, CDS, AP);
2795 
2796   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2797     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2798 
2799   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2800     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2801 
2802   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2803     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2804     // vectors).
2805     if (CE->getOpcode() == Instruction::BitCast)
2806       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2807 
2808     if (Size > 8) {
2809       // If the constant expression's size is greater than 64-bits, then we have
2810       // to emit the value in chunks. Try to constant fold the value and emit it
2811       // that way.
2812       Constant *New = ConstantFoldConstant(CE, DL);
2813       if (New != CE)
2814         return emitGlobalConstantImpl(DL, New, AP);
2815     }
2816   }
2817 
2818   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2819     return emitGlobalConstantVector(DL, V, AP);
2820 
2821   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2822   // thread the streamer with EmitValue.
2823   const MCExpr *ME = AP.lowerConstant(CV);
2824 
2825   // Since lowerConstant already folded and got rid of all IR pointer and
2826   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2827   // directly.
2828   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2829     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2830 
2831   AP.OutStreamer->emitValue(ME, Size);
2832 }
2833 
2834 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2835 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2836   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2837   if (Size)
2838     emitGlobalConstantImpl(DL, CV, *this);
2839   else if (MAI->hasSubsectionsViaSymbols()) {
2840     // If the global has zero size, emit a single byte so that two labels don't
2841     // look like they are at the same location.
2842     OutStreamer->emitIntValue(0, 1);
2843   }
2844 }
2845 
2846 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2847   // Target doesn't support this yet!
2848   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2849 }
2850 
2851 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2852   if (Offset > 0)
2853     OS << '+' << Offset;
2854   else if (Offset < 0)
2855     OS << Offset;
2856 }
2857 
2858 void AsmPrinter::emitNops(unsigned N) {
2859   MCInst Nop;
2860   MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2861   for (; N; --N)
2862     EmitToStreamer(*OutStreamer, Nop);
2863 }
2864 
2865 //===----------------------------------------------------------------------===//
2866 // Symbol Lowering Routines.
2867 //===----------------------------------------------------------------------===//
2868 
2869 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2870   return OutContext.createTempSymbol(Name, true);
2871 }
2872 
2873 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2874   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2875 }
2876 
2877 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2878   return MMI->getAddrLabelSymbol(BB);
2879 }
2880 
2881 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2882 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2883   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2884     const MachineConstantPoolEntry &CPE =
2885         MF->getConstantPool()->getConstants()[CPID];
2886     if (!CPE.isMachineConstantPoolEntry()) {
2887       const DataLayout &DL = MF->getDataLayout();
2888       SectionKind Kind = CPE.getSectionKind(&DL);
2889       const Constant *C = CPE.Val.ConstVal;
2890       unsigned Align = CPE.Alignment;
2891       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2892               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2893         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2894           if (Sym->isUndefined())
2895             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
2896           return Sym;
2897         }
2898       }
2899     }
2900   }
2901 
2902   const DataLayout &DL = getDataLayout();
2903   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2904                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2905                                       Twine(CPID));
2906 }
2907 
2908 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2909 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2910   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2911 }
2912 
2913 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2914 /// FIXME: privatize to AsmPrinter.
2915 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2916   const DataLayout &DL = getDataLayout();
2917   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2918                                       Twine(getFunctionNumber()) + "_" +
2919                                       Twine(UID) + "_set_" + Twine(MBBID));
2920 }
2921 
2922 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2923                                                    StringRef Suffix) const {
2924   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2925 }
2926 
2927 /// Return the MCSymbol for the specified ExternalSymbol.
2928 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2929   SmallString<60> NameStr;
2930   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2931   return OutContext.getOrCreateSymbol(NameStr);
2932 }
2933 
2934 /// PrintParentLoopComment - Print comments about parent loops of this one.
2935 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2936                                    unsigned FunctionNumber) {
2937   if (!Loop) return;
2938   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2939   OS.indent(Loop->getLoopDepth()*2)
2940     << "Parent Loop BB" << FunctionNumber << "_"
2941     << Loop->getHeader()->getNumber()
2942     << " Depth=" << Loop->getLoopDepth() << '\n';
2943 }
2944 
2945 /// PrintChildLoopComment - Print comments about child loops within
2946 /// the loop for this basic block, with nesting.
2947 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2948                                   unsigned FunctionNumber) {
2949   // Add child loop information
2950   for (const MachineLoop *CL : *Loop) {
2951     OS.indent(CL->getLoopDepth()*2)
2952       << "Child Loop BB" << FunctionNumber << "_"
2953       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2954       << '\n';
2955     PrintChildLoopComment(OS, CL, FunctionNumber);
2956   }
2957 }
2958 
2959 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2960 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2961                                        const MachineLoopInfo *LI,
2962                                        const AsmPrinter &AP) {
2963   // Add loop depth information
2964   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2965   if (!Loop) return;
2966 
2967   MachineBasicBlock *Header = Loop->getHeader();
2968   assert(Header && "No header for loop");
2969 
2970   // If this block is not a loop header, just print out what is the loop header
2971   // and return.
2972   if (Header != &MBB) {
2973     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2974                                Twine(AP.getFunctionNumber())+"_" +
2975                                Twine(Loop->getHeader()->getNumber())+
2976                                " Depth="+Twine(Loop->getLoopDepth()));
2977     return;
2978   }
2979 
2980   // Otherwise, it is a loop header.  Print out information about child and
2981   // parent loops.
2982   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2983 
2984   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2985 
2986   OS << "=>";
2987   OS.indent(Loop->getLoopDepth()*2-2);
2988 
2989   OS << "This ";
2990   if (Loop->empty())
2991     OS << "Inner ";
2992   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2993 
2994   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2995 }
2996 
2997 /// emitBasicBlockStart - This method prints the label for the specified
2998 /// MachineBasicBlock, an alignment (if present) and a comment describing
2999 /// it if appropriate.
3000 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3001   // End the previous funclet and start a new one.
3002   if (MBB.isEHFuncletEntry()) {
3003     for (const HandlerInfo &HI : Handlers) {
3004       HI.Handler->endFunclet();
3005       HI.Handler->beginFunclet(MBB);
3006     }
3007   }
3008 
3009   // Emit an alignment directive for this block, if needed.
3010   const Align Alignment = MBB.getAlignment();
3011   if (Alignment != Align(1))
3012     emitAlignment(Alignment);
3013 
3014   // If the block has its address taken, emit any labels that were used to
3015   // reference the block.  It is possible that there is more than one label
3016   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3017   // the references were generated.
3018   if (MBB.hasAddressTaken()) {
3019     const BasicBlock *BB = MBB.getBasicBlock();
3020     if (isVerbose())
3021       OutStreamer->AddComment("Block address taken");
3022 
3023     // MBBs can have their address taken as part of CodeGen without having
3024     // their corresponding BB's address taken in IR
3025     if (BB->hasAddressTaken())
3026       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3027         OutStreamer->emitLabel(Sym);
3028   }
3029 
3030   // Print some verbose block comments.
3031   if (isVerbose()) {
3032     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3033       if (BB->hasName()) {
3034         BB->printAsOperand(OutStreamer->GetCommentOS(),
3035                            /*PrintType=*/false, BB->getModule());
3036         OutStreamer->GetCommentOS() << '\n';
3037       }
3038     }
3039 
3040     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3041     emitBasicBlockLoopComments(MBB, MLI, *this);
3042   }
3043 
3044   if (MBB.pred_empty() ||
3045       (!MF->hasBBLabels() && isBlockOnlyReachableByFallthrough(&MBB) &&
3046        !MBB.isEHFuncletEntry() && !MBB.hasLabelMustBeEmitted())) {
3047     if (isVerbose()) {
3048       // NOTE: Want this comment at start of line, don't emit with AddComment.
3049       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3050                                   false);
3051     }
3052   } else {
3053     if (isVerbose() && MBB.hasLabelMustBeEmitted()) {
3054       OutStreamer->AddComment("Label of block must be emitted");
3055     }
3056     // Switch to a new section if this basic block must begin a section.
3057     if (MBB.isBeginSection()) {
3058       OutStreamer->SwitchSection(
3059           getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3060                                                               MBB, TM));
3061       CurrentSectionBeginSym = MBB.getSymbol();
3062     }
3063     OutStreamer->emitLabel(MBB.getSymbol());
3064   }
3065 }
3066 
3067 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {}
3068 
3069 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3070                                 bool IsDefinition) const {
3071   MCSymbolAttr Attr = MCSA_Invalid;
3072 
3073   switch (Visibility) {
3074   default: break;
3075   case GlobalValue::HiddenVisibility:
3076     if (IsDefinition)
3077       Attr = MAI->getHiddenVisibilityAttr();
3078     else
3079       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3080     break;
3081   case GlobalValue::ProtectedVisibility:
3082     Attr = MAI->getProtectedVisibilityAttr();
3083     break;
3084   }
3085 
3086   if (Attr != MCSA_Invalid)
3087     OutStreamer->emitSymbolAttribute(Sym, Attr);
3088 }
3089 
3090 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3091 /// exactly one predecessor and the control transfer mechanism between
3092 /// the predecessor and this block is a fall-through.
3093 bool AsmPrinter::
3094 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3095   // With BasicBlock Sections, beginning of the section is not a fallthrough.
3096   if (MBB->isBeginSection())
3097     return false;
3098 
3099   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3100   // then nothing falls through to it.
3101   if (MBB->isEHPad() || MBB->pred_empty())
3102     return false;
3103 
3104   // If there isn't exactly one predecessor, it can't be a fall through.
3105   if (MBB->pred_size() > 1)
3106     return false;
3107 
3108   // The predecessor has to be immediately before this block.
3109   MachineBasicBlock *Pred = *MBB->pred_begin();
3110   if (!Pred->isLayoutSuccessor(MBB))
3111     return false;
3112 
3113   // If the block is completely empty, then it definitely does fall through.
3114   if (Pred->empty())
3115     return true;
3116 
3117   // Check the terminators in the previous blocks
3118   for (const auto &MI : Pred->terminators()) {
3119     // If it is not a simple branch, we are in a table somewhere.
3120     if (!MI.isBranch() || MI.isIndirectBranch())
3121       return false;
3122 
3123     // If we are the operands of one of the branches, this is not a fall
3124     // through. Note that targets with delay slots will usually bundle
3125     // terminators with the delay slot instruction.
3126     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3127       if (OP->isJTI())
3128         return false;
3129       if (OP->isMBB() && OP->getMBB() == MBB)
3130         return false;
3131     }
3132   }
3133 
3134   return true;
3135 }
3136 
3137 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3138   if (!S.usesMetadata())
3139     return nullptr;
3140 
3141   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3142   gcp_map_type::iterator GCPI = GCMap.find(&S);
3143   if (GCPI != GCMap.end())
3144     return GCPI->second.get();
3145 
3146   auto Name = S.getName();
3147 
3148   for (GCMetadataPrinterRegistry::iterator
3149          I = GCMetadataPrinterRegistry::begin(),
3150          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
3151     if (Name == I->getName()) {
3152       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
3153       GMP->S = &S;
3154       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3155       return IterBool.first->second.get();
3156     }
3157 
3158   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3159 }
3160 
3161 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3162   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3163   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3164   bool NeedsDefault = false;
3165   if (MI->begin() == MI->end())
3166     // No GC strategy, use the default format.
3167     NeedsDefault = true;
3168   else
3169     for (auto &I : *MI) {
3170       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3171         if (MP->emitStackMaps(SM, *this))
3172           continue;
3173       // The strategy doesn't have printer or doesn't emit custom stack maps.
3174       // Use the default format.
3175       NeedsDefault = true;
3176     }
3177 
3178   if (NeedsDefault)
3179     SM.serializeToStackMapSection();
3180 }
3181 
3182 /// Pin vtable to this file.
3183 AsmPrinterHandler::~AsmPrinterHandler() = default;
3184 
3185 void AsmPrinterHandler::markFunctionEnd() {}
3186 
3187 // In the binary's "xray_instr_map" section, an array of these function entries
3188 // describes each instrumentation point.  When XRay patches your code, the index
3189 // into this table will be given to your handler as a patch point identifier.
3190 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3191                                          const MCSymbol *CurrentFnSym) const {
3192   Out->emitSymbolValue(Sled, Bytes);
3193   Out->emitSymbolValue(CurrentFnSym, Bytes);
3194   auto Kind8 = static_cast<uint8_t>(Kind);
3195   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3196   Out->emitBinaryData(
3197       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3198   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3199   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3200   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3201   Out->emitZeros(Padding);
3202 }
3203 
3204 void AsmPrinter::emitXRayTable() {
3205   if (Sleds.empty())
3206     return;
3207 
3208   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3209   const Function &F = MF->getFunction();
3210   MCSection *InstMap = nullptr;
3211   MCSection *FnSledIndex = nullptr;
3212   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3213     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3214     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3215     StringRef GroupName;
3216     if (F.hasComdat()) {
3217       Flags |= ELF::SHF_GROUP;
3218       GroupName = F.getComdat()->getName();
3219     }
3220     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3221                                        Flags, 0, GroupName,
3222                                        MCSection::NonUniqueID, LinkedToSym);
3223     FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS,
3224                                            Flags, 0, GroupName,
3225                                            MCSection::NonUniqueID, LinkedToSym);
3226   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3227     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3228                                          SectionKind::getReadOnlyWithRel());
3229     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3230                                              SectionKind::getReadOnlyWithRel());
3231   } else {
3232     llvm_unreachable("Unsupported target");
3233   }
3234 
3235   auto WordSizeBytes = MAI->getCodePointerSize();
3236 
3237   // Now we switch to the instrumentation map section. Because this is done
3238   // per-function, we are able to create an index entry that will represent the
3239   // range of sleds associated with a function.
3240   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3241   OutStreamer->SwitchSection(InstMap);
3242   OutStreamer->emitLabel(SledsStart);
3243   for (const auto &Sled : Sleds)
3244     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3245   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3246   OutStreamer->emitLabel(SledsEnd);
3247 
3248   // We then emit a single entry in the index per function. We use the symbols
3249   // that bound the instrumentation map as the range for a specific function.
3250   // Each entry here will be 2 * word size aligned, as we're writing down two
3251   // pointers. This should work for both 32-bit and 64-bit platforms.
3252   OutStreamer->SwitchSection(FnSledIndex);
3253   OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3254   OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3255   OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3256   OutStreamer->SwitchSection(PrevSection);
3257   Sleds.clear();
3258 }
3259 
3260 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3261                             SledKind Kind, uint8_t Version) {
3262   const Function &F = MI.getMF()->getFunction();
3263   auto Attr = F.getFnAttribute("function-instrument");
3264   bool LogArgs = F.hasFnAttribute("xray-log-args");
3265   bool AlwaysInstrument =
3266     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3267   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3268     Kind = SledKind::LOG_ARGS_ENTER;
3269   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3270                                        AlwaysInstrument, &F, Version});
3271 }
3272 
3273 void AsmPrinter::emitPatchableFunctionEntries() {
3274   const Function &F = MF->getFunction();
3275   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3276   (void)F.getFnAttribute("patchable-function-prefix")
3277       .getValueAsString()
3278       .getAsInteger(10, PatchableFunctionPrefix);
3279   (void)F.getFnAttribute("patchable-function-entry")
3280       .getValueAsString()
3281       .getAsInteger(10, PatchableFunctionEntry);
3282   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3283     return;
3284   const unsigned PointerSize = getPointerSize();
3285   if (TM.getTargetTriple().isOSBinFormatELF()) {
3286     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3287     const MCSymbolELF *LinkedToSym = nullptr;
3288     StringRef GroupName;
3289 
3290     // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only
3291     // if we are using the integrated assembler.
3292     if (MAI->useIntegratedAssembler()) {
3293       Flags |= ELF::SHF_LINK_ORDER;
3294       if (F.hasComdat()) {
3295         Flags |= ELF::SHF_GROUP;
3296         GroupName = F.getComdat()->getName();
3297       }
3298       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3299     }
3300     OutStreamer->SwitchSection(OutContext.getELFSection(
3301         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3302         MCSection::NonUniqueID, LinkedToSym));
3303     emitAlignment(Align(PointerSize));
3304     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3305   }
3306 }
3307 
3308 uint16_t AsmPrinter::getDwarfVersion() const {
3309   return OutStreamer->getContext().getDwarfVersion();
3310 }
3311 
3312 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3313   OutStreamer->getContext().setDwarfVersion(Version);
3314 }
3315