1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Comdat.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GCStrategy.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalIndirectSymbol.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/MC/MCAsmInfo.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCSectionXCOFF.h"
96 #include "llvm/MC/MCStreamer.h"
97 #include "llvm/MC/MCSubtargetInfo.h"
98 #include "llvm/MC/MCSymbol.h"
99 #include "llvm/MC/MCSymbolELF.h"
100 #include "llvm/MC/MCSymbolXCOFF.h"
101 #include "llvm/MC/MCTargetOptions.h"
102 #include "llvm/MC/MCValue.h"
103 #include "llvm/MC/SectionKind.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Remarks/Remark.h"
106 #include "llvm/Remarks/RemarkFormat.h"
107 #include "llvm/Remarks/RemarkStreamer.h"
108 #include "llvm/Remarks/RemarkStringTable.h"
109 #include "llvm/Support/Casting.h"
110 #include "llvm/Support/CommandLine.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/ErrorHandling.h"
113 #include "llvm/Support/FileSystem.h"
114 #include "llvm/Support/Format.h"
115 #include "llvm/Support/MathExtras.h"
116 #include "llvm/Support/Path.h"
117 #include "llvm/Support/TargetRegistry.h"
118 #include "llvm/Support/Timer.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cinttypes>
126 #include <cstdint>
127 #include <iterator>
128 #include <limits>
129 #include <memory>
130 #include <string>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "asm-printer"
137 
138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
139 static cl::opt<bool>
140     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
141                              cl::desc("Disable debug info printing"));
142 
143 const char DWARFGroupName[] = "dwarf";
144 const char DWARFGroupDescription[] = "DWARF Emission";
145 const char DbgTimerName[] = "emit";
146 const char DbgTimerDescription[] = "Debug Info Emission";
147 const char EHTimerName[] = "write_exception";
148 const char EHTimerDescription[] = "DWARF Exception Writer";
149 const char CFGuardName[] = "Control Flow Guard";
150 const char CFGuardDescription[] = "Control Flow Guard";
151 const char CodeViewLineTablesGroupName[] = "linetables";
152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
153 const char PPTimerName[] = "emit";
154 const char PPTimerDescription[] = "Pseudo Probe Emission";
155 const char PPGroupName[] = "pseudo probe";
156 const char PPGroupDescription[] = "Pseudo Probe Emission";
157 
158 STATISTIC(EmittedInsts, "Number of machine instrs printed");
159 
160 char AsmPrinter::ID = 0;
161 
162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
163 
164 static gcp_map_type &getGCMap(void *&P) {
165   if (!P)
166     P = new gcp_map_type();
167   return *(gcp_map_type*)P;
168 }
169 
170 /// getGVAlignment - Return the alignment to use for the specified global
171 /// value.  This rounds up to the preferred alignment if possible and legal.
172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
173                                  Align InAlign) {
174   Align Alignment;
175   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
176     Alignment = DL.getPreferredAlign(GVar);
177 
178   // If InAlign is specified, round it to it.
179   if (InAlign > Alignment)
180     Alignment = InAlign;
181 
182   // If the GV has a specified alignment, take it into account.
183   const MaybeAlign GVAlign(GV->getAlignment());
184   if (!GVAlign)
185     return Alignment;
186 
187   assert(GVAlign && "GVAlign must be set");
188 
189   // If the GVAlign is larger than NumBits, or if we are required to obey
190   // NumBits because the GV has an assigned section, obey it.
191   if (*GVAlign > Alignment || GV->hasSection())
192     Alignment = *GVAlign;
193   return Alignment;
194 }
195 
196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
197     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
198       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
199   VerboseAsm = OutStreamer->isVerboseAsm();
200 }
201 
202 AsmPrinter::~AsmPrinter() {
203   assert(!DD && Handlers.size() == NumUserHandlers &&
204          "Debug/EH info didn't get finalized");
205 
206   if (GCMetadataPrinters) {
207     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
208 
209     delete &GCMap;
210     GCMetadataPrinters = nullptr;
211   }
212 }
213 
214 bool AsmPrinter::isPositionIndependent() const {
215   return TM.isPositionIndependent();
216 }
217 
218 /// getFunctionNumber - Return a unique ID for the current function.
219 unsigned AsmPrinter::getFunctionNumber() const {
220   return MF->getFunctionNumber();
221 }
222 
223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
224   return *TM.getObjFileLowering();
225 }
226 
227 const DataLayout &AsmPrinter::getDataLayout() const {
228   return MMI->getModule()->getDataLayout();
229 }
230 
231 // Do not use the cached DataLayout because some client use it without a Module
232 // (dsymutil, llvm-dwarfdump).
233 unsigned AsmPrinter::getPointerSize() const {
234   return TM.getPointerSize(0); // FIXME: Default address space
235 }
236 
237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
238   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
239   return MF->getSubtarget<MCSubtargetInfo>();
240 }
241 
242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
243   S.emitInstruction(Inst, getSubtargetInfo());
244 }
245 
246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
247   if (DD) {
248     assert(OutStreamer->hasRawTextSupport() &&
249            "Expected assembly output mode.");
250     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
251   }
252 }
253 
254 /// getCurrentSection() - Return the current section we are emitting to.
255 const MCSection *AsmPrinter::getCurrentSection() const {
256   return OutStreamer->getCurrentSectionOnly();
257 }
258 
259 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
260   AU.setPreservesAll();
261   MachineFunctionPass::getAnalysisUsage(AU);
262   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
263   AU.addRequired<GCModuleInfo>();
264 }
265 
266 bool AsmPrinter::doInitialization(Module &M) {
267   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
268   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
269 
270   // Initialize TargetLoweringObjectFile.
271   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
272     .Initialize(OutContext, TM);
273 
274   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
275       .getModuleMetadata(M);
276 
277   OutStreamer->InitSections(false);
278 
279   if (DisableDebugInfoPrinting)
280     MMI->setDebugInfoAvailability(false);
281 
282   // Emit the version-min deployment target directive if needed.
283   //
284   // FIXME: If we end up with a collection of these sorts of Darwin-specific
285   // or ELF-specific things, it may make sense to have a platform helper class
286   // that will work with the target helper class. For now keep it here, as the
287   // alternative is duplicated code in each of the target asm printers that
288   // use the directive, where it would need the same conditionalization
289   // anyway.
290   const Triple &Target = TM.getTargetTriple();
291   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
292 
293   // Allow the target to emit any magic that it wants at the start of the file.
294   emitStartOfAsmFile(M);
295 
296   // Very minimal debug info. It is ignored if we emit actual debug info. If we
297   // don't, this at least helps the user find where a global came from.
298   if (MAI->hasSingleParameterDotFile()) {
299     // .file "foo.c"
300     if (MAI->hasBasenameOnlyForFileDirective())
301       OutStreamer->emitFileDirective(
302           llvm::sys::path::filename(M.getSourceFileName()));
303     else
304       OutStreamer->emitFileDirective(M.getSourceFileName());
305   }
306 
307   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
308   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
309   for (auto &I : *MI)
310     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
311       MP->beginAssembly(M, *MI, *this);
312 
313   // Emit module-level inline asm if it exists.
314   if (!M.getModuleInlineAsm().empty()) {
315     // We're at the module level. Construct MCSubtarget from the default CPU
316     // and target triple.
317     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
318         TM.getTargetTriple().str(), TM.getTargetCPU(),
319         TM.getTargetFeatureString()));
320     assert(STI && "Unable to create subtarget info");
321     OutStreamer->AddComment("Start of file scope inline assembly");
322     OutStreamer->AddBlankLine();
323     emitInlineAsm(M.getModuleInlineAsm() + "\n",
324                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
325     OutStreamer->AddComment("End of file scope inline assembly");
326     OutStreamer->AddBlankLine();
327   }
328 
329   if (MAI->doesSupportDebugInformation()) {
330     bool EmitCodeView = M.getCodeViewFlag();
331     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
332       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
333                             DbgTimerName, DbgTimerDescription,
334                             CodeViewLineTablesGroupName,
335                             CodeViewLineTablesGroupDescription);
336     }
337     if (!EmitCodeView || M.getDwarfVersion()) {
338       if (!DisableDebugInfoPrinting) {
339         DD = new DwarfDebug(this);
340         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
341                               DbgTimerDescription, DWARFGroupName,
342                               DWARFGroupDescription);
343       }
344     }
345   }
346 
347   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
348     PP = new PseudoProbeHandler(this, &M);
349     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
350                           PPTimerDescription, PPGroupName, PPGroupDescription);
351   }
352 
353   switch (MAI->getExceptionHandlingType()) {
354   case ExceptionHandling::None:
355     // We may want to emit CFI for debug.
356     LLVM_FALLTHROUGH;
357   case ExceptionHandling::SjLj:
358   case ExceptionHandling::DwarfCFI:
359   case ExceptionHandling::ARM:
360     for (auto &F : M.getFunctionList()) {
361       if (getFunctionCFISectionType(F) != CFISection::None)
362         ModuleCFISection = getFunctionCFISectionType(F);
363       // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
364       // the module needs .eh_frame. If we have found that case, we are done.
365       if (ModuleCFISection == CFISection::EH)
366         break;
367     }
368     assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
369            ModuleCFISection != CFISection::EH);
370     break;
371   default:
372     break;
373   }
374 
375   EHStreamer *ES = nullptr;
376   switch (MAI->getExceptionHandlingType()) {
377   case ExceptionHandling::None:
378     if (!needsCFIForDebug())
379       break;
380     LLVM_FALLTHROUGH;
381   case ExceptionHandling::SjLj:
382   case ExceptionHandling::DwarfCFI:
383     ES = new DwarfCFIException(this);
384     break;
385   case ExceptionHandling::ARM:
386     ES = new ARMException(this);
387     break;
388   case ExceptionHandling::WinEH:
389     switch (MAI->getWinEHEncodingType()) {
390     default: llvm_unreachable("unsupported unwinding information encoding");
391     case WinEH::EncodingType::Invalid:
392       break;
393     case WinEH::EncodingType::X86:
394     case WinEH::EncodingType::Itanium:
395       ES = new WinException(this);
396       break;
397     }
398     break;
399   case ExceptionHandling::Wasm:
400     ES = new WasmException(this);
401     break;
402   case ExceptionHandling::AIX:
403     ES = new AIXException(this);
404     break;
405   }
406   if (ES)
407     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
408                           EHTimerDescription, DWARFGroupName,
409                           DWARFGroupDescription);
410 
411   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
412   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
413     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
414                           CFGuardDescription, DWARFGroupName,
415                           DWARFGroupDescription);
416 
417   for (const HandlerInfo &HI : Handlers) {
418     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
419                        HI.TimerGroupDescription, TimePassesIsEnabled);
420     HI.Handler->beginModule(&M);
421   }
422 
423   return false;
424 }
425 
426 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
427   if (!MAI.hasWeakDefCanBeHiddenDirective())
428     return false;
429 
430   return GV->canBeOmittedFromSymbolTable();
431 }
432 
433 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
434   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
435   switch (Linkage) {
436   case GlobalValue::CommonLinkage:
437   case GlobalValue::LinkOnceAnyLinkage:
438   case GlobalValue::LinkOnceODRLinkage:
439   case GlobalValue::WeakAnyLinkage:
440   case GlobalValue::WeakODRLinkage:
441     if (MAI->hasWeakDefDirective()) {
442       // .globl _foo
443       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
444 
445       if (!canBeHidden(GV, *MAI))
446         // .weak_definition _foo
447         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
448       else
449         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
450     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
451       // .globl _foo
452       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
453       //NOTE: linkonce is handled by the section the symbol was assigned to.
454     } else {
455       // .weak _foo
456       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
457     }
458     return;
459   case GlobalValue::ExternalLinkage:
460     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
461     return;
462   case GlobalValue::PrivateLinkage:
463   case GlobalValue::InternalLinkage:
464     return;
465   case GlobalValue::ExternalWeakLinkage:
466   case GlobalValue::AvailableExternallyLinkage:
467   case GlobalValue::AppendingLinkage:
468     llvm_unreachable("Should never emit this");
469   }
470   llvm_unreachable("Unknown linkage type!");
471 }
472 
473 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
474                                    const GlobalValue *GV) const {
475   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
476 }
477 
478 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
479   return TM.getSymbol(GV);
480 }
481 
482 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
483   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
484   // exact definion (intersection of GlobalValue::hasExactDefinition() and
485   // !isInterposable()). These linkages include: external, appending, internal,
486   // private. It may be profitable to use a local alias for external. The
487   // assembler would otherwise be conservative and assume a global default
488   // visibility symbol can be interposable, even if the code generator already
489   // assumed it.
490   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
491     const Module &M = *GV.getParent();
492     if (TM.getRelocationModel() != Reloc::Static &&
493         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
494       return getSymbolWithGlobalValueBase(&GV, "$local");
495   }
496   return TM.getSymbol(&GV);
497 }
498 
499 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
500 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
501   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
502   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
503          "No emulated TLS variables in the common section");
504 
505   // Never emit TLS variable xyz in emulated TLS model.
506   // The initialization value is in __emutls_t.xyz instead of xyz.
507   if (IsEmuTLSVar)
508     return;
509 
510   if (GV->hasInitializer()) {
511     // Check to see if this is a special global used by LLVM, if so, emit it.
512     if (emitSpecialLLVMGlobal(GV))
513       return;
514 
515     // Skip the emission of global equivalents. The symbol can be emitted later
516     // on by emitGlobalGOTEquivs in case it turns out to be needed.
517     if (GlobalGOTEquivs.count(getSymbol(GV)))
518       return;
519 
520     if (isVerbose()) {
521       // When printing the control variable __emutls_v.*,
522       // we don't need to print the original TLS variable name.
523       GV->printAsOperand(OutStreamer->GetCommentOS(),
524                      /*PrintType=*/false, GV->getParent());
525       OutStreamer->GetCommentOS() << '\n';
526     }
527   }
528 
529   MCSymbol *GVSym = getSymbol(GV);
530   MCSymbol *EmittedSym = GVSym;
531 
532   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
533   // attributes.
534   // GV's or GVSym's attributes will be used for the EmittedSym.
535   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
536 
537   if (!GV->hasInitializer())   // External globals require no extra code.
538     return;
539 
540   GVSym->redefineIfPossible();
541   if (GVSym->isDefined() || GVSym->isVariable())
542     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
543                                         "' is already defined");
544 
545   if (MAI->hasDotTypeDotSizeDirective())
546     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
547 
548   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
549 
550   const DataLayout &DL = GV->getParent()->getDataLayout();
551   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
552 
553   // If the alignment is specified, we *must* obey it.  Overaligning a global
554   // with a specified alignment is a prompt way to break globals emitted to
555   // sections and expected to be contiguous (e.g. ObjC metadata).
556   const Align Alignment = getGVAlignment(GV, DL);
557 
558   for (const HandlerInfo &HI : Handlers) {
559     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
560                        HI.TimerGroupName, HI.TimerGroupDescription,
561                        TimePassesIsEnabled);
562     HI.Handler->setSymbolSize(GVSym, Size);
563   }
564 
565   // Handle common symbols
566   if (GVKind.isCommon()) {
567     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
568     // .comm _foo, 42, 4
569     const bool SupportsAlignment =
570         getObjFileLowering().getCommDirectiveSupportsAlignment();
571     OutStreamer->emitCommonSymbol(GVSym, Size,
572                                   SupportsAlignment ? Alignment.value() : 0);
573     return;
574   }
575 
576   // Determine to which section this global should be emitted.
577   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
578 
579   // If we have a bss global going to a section that supports the
580   // zerofill directive, do so here.
581   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
582       TheSection->isVirtualSection()) {
583     if (Size == 0)
584       Size = 1; // zerofill of 0 bytes is undefined.
585     emitLinkage(GV, GVSym);
586     // .zerofill __DATA, __bss, _foo, 400, 5
587     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
588     return;
589   }
590 
591   // If this is a BSS local symbol and we are emitting in the BSS
592   // section use .lcomm/.comm directive.
593   if (GVKind.isBSSLocal() &&
594       getObjFileLowering().getBSSSection() == TheSection) {
595     if (Size == 0)
596       Size = 1; // .comm Foo, 0 is undefined, avoid it.
597 
598     // Use .lcomm only if it supports user-specified alignment.
599     // Otherwise, while it would still be correct to use .lcomm in some
600     // cases (e.g. when Align == 1), the external assembler might enfore
601     // some -unknown- default alignment behavior, which could cause
602     // spurious differences between external and integrated assembler.
603     // Prefer to simply fall back to .local / .comm in this case.
604     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
605       // .lcomm _foo, 42
606       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
607       return;
608     }
609 
610     // .local _foo
611     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
612     // .comm _foo, 42, 4
613     const bool SupportsAlignment =
614         getObjFileLowering().getCommDirectiveSupportsAlignment();
615     OutStreamer->emitCommonSymbol(GVSym, Size,
616                                   SupportsAlignment ? Alignment.value() : 0);
617     return;
618   }
619 
620   // Handle thread local data for mach-o which requires us to output an
621   // additional structure of data and mangle the original symbol so that we
622   // can reference it later.
623   //
624   // TODO: This should become an "emit thread local global" method on TLOF.
625   // All of this macho specific stuff should be sunk down into TLOFMachO and
626   // stuff like "TLSExtraDataSection" should no longer be part of the parent
627   // TLOF class.  This will also make it more obvious that stuff like
628   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
629   // specific code.
630   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
631     // Emit the .tbss symbol
632     MCSymbol *MangSym =
633         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
634 
635     if (GVKind.isThreadBSS()) {
636       TheSection = getObjFileLowering().getTLSBSSSection();
637       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
638     } else if (GVKind.isThreadData()) {
639       OutStreamer->SwitchSection(TheSection);
640 
641       emitAlignment(Alignment, GV);
642       OutStreamer->emitLabel(MangSym);
643 
644       emitGlobalConstant(GV->getParent()->getDataLayout(),
645                          GV->getInitializer());
646     }
647 
648     OutStreamer->AddBlankLine();
649 
650     // Emit the variable struct for the runtime.
651     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
652 
653     OutStreamer->SwitchSection(TLVSect);
654     // Emit the linkage here.
655     emitLinkage(GV, GVSym);
656     OutStreamer->emitLabel(GVSym);
657 
658     // Three pointers in size:
659     //   - __tlv_bootstrap - used to make sure support exists
660     //   - spare pointer, used when mapped by the runtime
661     //   - pointer to mangled symbol above with initializer
662     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
663     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
664                                 PtrSize);
665     OutStreamer->emitIntValue(0, PtrSize);
666     OutStreamer->emitSymbolValue(MangSym, PtrSize);
667 
668     OutStreamer->AddBlankLine();
669     return;
670   }
671 
672   MCSymbol *EmittedInitSym = GVSym;
673 
674   OutStreamer->SwitchSection(TheSection);
675 
676   emitLinkage(GV, EmittedInitSym);
677   emitAlignment(Alignment, GV);
678 
679   OutStreamer->emitLabel(EmittedInitSym);
680   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
681   if (LocalAlias != EmittedInitSym)
682     OutStreamer->emitLabel(LocalAlias);
683 
684   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
685 
686   if (MAI->hasDotTypeDotSizeDirective())
687     // .size foo, 42
688     OutStreamer->emitELFSize(EmittedInitSym,
689                              MCConstantExpr::create(Size, OutContext));
690 
691   OutStreamer->AddBlankLine();
692 }
693 
694 /// Emit the directive and value for debug thread local expression
695 ///
696 /// \p Value - The value to emit.
697 /// \p Size - The size of the integer (in bytes) to emit.
698 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
699   OutStreamer->emitValue(Value, Size);
700 }
701 
702 void AsmPrinter::emitFunctionHeaderComment() {}
703 
704 /// EmitFunctionHeader - This method emits the header for the current
705 /// function.
706 void AsmPrinter::emitFunctionHeader() {
707   const Function &F = MF->getFunction();
708 
709   if (isVerbose())
710     OutStreamer->GetCommentOS()
711         << "-- Begin function "
712         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
713 
714   // Print out constants referenced by the function
715   emitConstantPool();
716 
717   // Print the 'header' of function.
718   // If basic block sections are desired, explicitly request a unique section
719   // for this function's entry block.
720   if (MF->front().isBeginSection())
721     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
722   else
723     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
724   OutStreamer->SwitchSection(MF->getSection());
725 
726   if (!MAI->hasVisibilityOnlyWithLinkage())
727     emitVisibility(CurrentFnSym, F.getVisibility());
728 
729   if (MAI->needsFunctionDescriptors())
730     emitLinkage(&F, CurrentFnDescSym);
731 
732   emitLinkage(&F, CurrentFnSym);
733   if (MAI->hasFunctionAlignment())
734     emitAlignment(MF->getAlignment(), &F);
735 
736   if (MAI->hasDotTypeDotSizeDirective())
737     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
738 
739   if (F.hasFnAttribute(Attribute::Cold))
740     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
741 
742   if (isVerbose()) {
743     F.printAsOperand(OutStreamer->GetCommentOS(),
744                    /*PrintType=*/false, F.getParent());
745     emitFunctionHeaderComment();
746     OutStreamer->GetCommentOS() << '\n';
747   }
748 
749   // Emit the prefix data.
750   if (F.hasPrefixData()) {
751     if (MAI->hasSubsectionsViaSymbols()) {
752       // Preserving prefix data on platforms which use subsections-via-symbols
753       // is a bit tricky. Here we introduce a symbol for the prefix data
754       // and use the .alt_entry attribute to mark the function's real entry point
755       // as an alternative entry point to the prefix-data symbol.
756       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
757       OutStreamer->emitLabel(PrefixSym);
758 
759       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
760 
761       // Emit an .alt_entry directive for the actual function symbol.
762       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
763     } else {
764       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
765     }
766   }
767 
768   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
769   // place prefix data before NOPs.
770   unsigned PatchableFunctionPrefix = 0;
771   unsigned PatchableFunctionEntry = 0;
772   (void)F.getFnAttribute("patchable-function-prefix")
773       .getValueAsString()
774       .getAsInteger(10, PatchableFunctionPrefix);
775   (void)F.getFnAttribute("patchable-function-entry")
776       .getValueAsString()
777       .getAsInteger(10, PatchableFunctionEntry);
778   if (PatchableFunctionPrefix) {
779     CurrentPatchableFunctionEntrySym =
780         OutContext.createLinkerPrivateTempSymbol();
781     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
782     emitNops(PatchableFunctionPrefix);
783   } else if (PatchableFunctionEntry) {
784     // May be reassigned when emitting the body, to reference the label after
785     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
786     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
787   }
788 
789   // Emit the function descriptor. This is a virtual function to allow targets
790   // to emit their specific function descriptor. Right now it is only used by
791   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
792   // descriptors and should be converted to use this hook as well.
793   if (MAI->needsFunctionDescriptors())
794     emitFunctionDescriptor();
795 
796   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
797   // their wild and crazy things as required.
798   emitFunctionEntryLabel();
799 
800   // If the function had address-taken blocks that got deleted, then we have
801   // references to the dangling symbols.  Emit them at the start of the function
802   // so that we don't get references to undefined symbols.
803   std::vector<MCSymbol*> DeadBlockSyms;
804   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
805   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
806     OutStreamer->AddComment("Address taken block that was later removed");
807     OutStreamer->emitLabel(DeadBlockSyms[i]);
808   }
809 
810   if (CurrentFnBegin) {
811     if (MAI->useAssignmentForEHBegin()) {
812       MCSymbol *CurPos = OutContext.createTempSymbol();
813       OutStreamer->emitLabel(CurPos);
814       OutStreamer->emitAssignment(CurrentFnBegin,
815                                  MCSymbolRefExpr::create(CurPos, OutContext));
816     } else {
817       OutStreamer->emitLabel(CurrentFnBegin);
818     }
819   }
820 
821   // Emit pre-function debug and/or EH information.
822   for (const HandlerInfo &HI : Handlers) {
823     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
824                        HI.TimerGroupDescription, TimePassesIsEnabled);
825     HI.Handler->beginFunction(MF);
826   }
827 
828   // Emit the prologue data.
829   if (F.hasPrologueData())
830     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
831 }
832 
833 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
834 /// function.  This can be overridden by targets as required to do custom stuff.
835 void AsmPrinter::emitFunctionEntryLabel() {
836   CurrentFnSym->redefineIfPossible();
837 
838   // The function label could have already been emitted if two symbols end up
839   // conflicting due to asm renaming.  Detect this and emit an error.
840   if (CurrentFnSym->isVariable())
841     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
842                        "' is a protected alias");
843 
844   OutStreamer->emitLabel(CurrentFnSym);
845 
846   if (TM.getTargetTriple().isOSBinFormatELF()) {
847     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
848     if (Sym != CurrentFnSym)
849       OutStreamer->emitLabel(Sym);
850   }
851 }
852 
853 /// emitComments - Pretty-print comments for instructions.
854 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
855   const MachineFunction *MF = MI.getMF();
856   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
857 
858   // Check for spills and reloads
859 
860   // We assume a single instruction only has a spill or reload, not
861   // both.
862   Optional<unsigned> Size;
863   if ((Size = MI.getRestoreSize(TII))) {
864     CommentOS << *Size << "-byte Reload\n";
865   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
866     if (*Size) {
867       if (*Size == unsigned(MemoryLocation::UnknownSize))
868         CommentOS << "Unknown-size Folded Reload\n";
869       else
870         CommentOS << *Size << "-byte Folded Reload\n";
871     }
872   } else if ((Size = MI.getSpillSize(TII))) {
873     CommentOS << *Size << "-byte Spill\n";
874   } else if ((Size = MI.getFoldedSpillSize(TII))) {
875     if (*Size) {
876       if (*Size == unsigned(MemoryLocation::UnknownSize))
877         CommentOS << "Unknown-size Folded Spill\n";
878       else
879         CommentOS << *Size << "-byte Folded Spill\n";
880     }
881   }
882 
883   // Check for spill-induced copies
884   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
885     CommentOS << " Reload Reuse\n";
886 }
887 
888 /// emitImplicitDef - This method emits the specified machine instruction
889 /// that is an implicit def.
890 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
891   Register RegNo = MI->getOperand(0).getReg();
892 
893   SmallString<128> Str;
894   raw_svector_ostream OS(Str);
895   OS << "implicit-def: "
896      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
897 
898   OutStreamer->AddComment(OS.str());
899   OutStreamer->AddBlankLine();
900 }
901 
902 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
903   std::string Str;
904   raw_string_ostream OS(Str);
905   OS << "kill:";
906   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
907     const MachineOperand &Op = MI->getOperand(i);
908     assert(Op.isReg() && "KILL instruction must have only register operands");
909     OS << ' ' << (Op.isDef() ? "def " : "killed ")
910        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
911   }
912   AP.OutStreamer->AddComment(OS.str());
913   AP.OutStreamer->AddBlankLine();
914 }
915 
916 /// emitDebugValueComment - This method handles the target-independent form
917 /// of DBG_VALUE, returning true if it was able to do so.  A false return
918 /// means the target will need to handle MI in EmitInstruction.
919 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
920   // This code handles only the 4-operand target-independent form.
921   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
922     return false;
923 
924   SmallString<128> Str;
925   raw_svector_ostream OS(Str);
926   OS << "DEBUG_VALUE: ";
927 
928   const DILocalVariable *V = MI->getDebugVariable();
929   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
930     StringRef Name = SP->getName();
931     if (!Name.empty())
932       OS << Name << ":";
933   }
934   OS << V->getName();
935   OS << " <- ";
936 
937   const DIExpression *Expr = MI->getDebugExpression();
938   if (Expr->getNumElements()) {
939     OS << '[';
940     ListSeparator LS;
941     for (auto Op : Expr->expr_ops()) {
942       OS << LS << dwarf::OperationEncodingString(Op.getOp());
943       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
944         OS << ' ' << Op.getArg(I);
945     }
946     OS << "] ";
947   }
948 
949   // Register or immediate value. Register 0 means undef.
950   for (const MachineOperand &Op : MI->debug_operands()) {
951     if (&Op != MI->debug_operands().begin())
952       OS << ", ";
953     switch (Op.getType()) {
954     case MachineOperand::MO_FPImmediate: {
955       APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
956       Type *ImmTy = Op.getFPImm()->getType();
957       if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
958           ImmTy->isDoubleTy()) {
959         OS << APF.convertToDouble();
960       } else {
961         // There is no good way to print long double.  Convert a copy to
962         // double.  Ah well, it's only a comment.
963         bool ignored;
964         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
965                     &ignored);
966         OS << "(long double) " << APF.convertToDouble();
967       }
968       break;
969     }
970     case MachineOperand::MO_Immediate: {
971       OS << Op.getImm();
972       break;
973     }
974     case MachineOperand::MO_CImmediate: {
975       Op.getCImm()->getValue().print(OS, false /*isSigned*/);
976       break;
977     }
978     case MachineOperand::MO_TargetIndex: {
979       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
980       // NOTE: Want this comment at start of line, don't emit with AddComment.
981       AP.OutStreamer->emitRawComment(OS.str());
982       break;
983     }
984     case MachineOperand::MO_Register:
985     case MachineOperand::MO_FrameIndex: {
986       Register Reg;
987       Optional<StackOffset> Offset;
988       if (Op.isReg()) {
989         Reg = Op.getReg();
990       } else {
991         const TargetFrameLowering *TFI =
992             AP.MF->getSubtarget().getFrameLowering();
993         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
994       }
995       if (!Reg) {
996         // Suppress offset, it is not meaningful here.
997         OS << "undef";
998         break;
999       }
1000       // The second operand is only an offset if it's an immediate.
1001       if (MI->isIndirectDebugValue())
1002         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1003       if (Offset)
1004         OS << '[';
1005       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1006       if (Offset)
1007         OS << '+' << Offset->getFixed() << ']';
1008       break;
1009     }
1010     default:
1011       llvm_unreachable("Unknown operand type");
1012     }
1013   }
1014 
1015   // NOTE: Want this comment at start of line, don't emit with AddComment.
1016   AP.OutStreamer->emitRawComment(OS.str());
1017   return true;
1018 }
1019 
1020 /// This method handles the target-independent form of DBG_LABEL, returning
1021 /// true if it was able to do so.  A false return means the target will need
1022 /// to handle MI in EmitInstruction.
1023 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1024   if (MI->getNumOperands() != 1)
1025     return false;
1026 
1027   SmallString<128> Str;
1028   raw_svector_ostream OS(Str);
1029   OS << "DEBUG_LABEL: ";
1030 
1031   const DILabel *V = MI->getDebugLabel();
1032   if (auto *SP = dyn_cast<DISubprogram>(
1033           V->getScope()->getNonLexicalBlockFileScope())) {
1034     StringRef Name = SP->getName();
1035     if (!Name.empty())
1036       OS << Name << ":";
1037   }
1038   OS << V->getName();
1039 
1040   // NOTE: Want this comment at start of line, don't emit with AddComment.
1041   AP.OutStreamer->emitRawComment(OS.str());
1042   return true;
1043 }
1044 
1045 AsmPrinter::CFISection
1046 AsmPrinter::getFunctionCFISectionType(const Function &F) const {
1047   // Ignore functions that won't get emitted.
1048   if (F.isDeclarationForLinker())
1049     return CFISection::None;
1050 
1051   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1052       F.needsUnwindTableEntry())
1053     return CFISection::EH;
1054 
1055   if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1056     return CFISection::Debug;
1057 
1058   return CFISection::None;
1059 }
1060 
1061 AsmPrinter::CFISection
1062 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
1063   return getFunctionCFISectionType(MF.getFunction());
1064 }
1065 
1066 bool AsmPrinter::needsSEHMoves() {
1067   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1068 }
1069 
1070 bool AsmPrinter::needsCFIForDebug() const {
1071   return MAI->getExceptionHandlingType() == ExceptionHandling::None &&
1072          MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug;
1073 }
1074 
1075 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1076   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1077   if (!needsCFIForDebug() &&
1078       ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1079       ExceptionHandlingType != ExceptionHandling::ARM)
1080     return;
1081 
1082   if (getFunctionCFISectionType(*MF) == CFISection::None)
1083     return;
1084 
1085   // If there is no "real" instruction following this CFI instruction, skip
1086   // emitting it; it would be beyond the end of the function's FDE range.
1087   auto *MBB = MI.getParent();
1088   auto I = std::next(MI.getIterator());
1089   while (I != MBB->end() && I->isTransient())
1090     ++I;
1091   if (I == MBB->instr_end() &&
1092       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1093     return;
1094 
1095   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1096   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1097   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1098   emitCFIInstruction(CFI);
1099 }
1100 
1101 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1102   // The operands are the MCSymbol and the frame offset of the allocation.
1103   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1104   int FrameOffset = MI.getOperand(1).getImm();
1105 
1106   // Emit a symbol assignment.
1107   OutStreamer->emitAssignment(FrameAllocSym,
1108                              MCConstantExpr::create(FrameOffset, OutContext));
1109 }
1110 
1111 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1112 /// given basic block. This can be used to capture more precise profile
1113 /// information. We use the last 4 bits (LSBs) to encode the following
1114 /// information:
1115 ///  * (1): set if return block (ret or tail call).
1116 ///  * (2): set if ends with a tail call.
1117 ///  * (3): set if exception handling (EH) landing pad.
1118 ///  * (4): set if the block can fall through to its next.
1119 /// The remaining bits are zero.
1120 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1121   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1122   return ((unsigned)MBB.isReturnBlock()) |
1123          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1124          (MBB.isEHPad() << 2) |
1125          (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3);
1126 }
1127 
1128 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1129   MCSection *BBAddrMapSection =
1130       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1131   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1132 
1133   const MCSymbol *FunctionSymbol = getFunctionBegin();
1134 
1135   OutStreamer->PushSection();
1136   OutStreamer->SwitchSection(BBAddrMapSection);
1137   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1138   // Emit the total number of basic blocks in this function.
1139   OutStreamer->emitULEB128IntValue(MF.size());
1140   // Emit BB Information for each basic block in the funciton.
1141   for (const MachineBasicBlock &MBB : MF) {
1142     const MCSymbol *MBBSymbol =
1143         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1144     // Emit the basic block offset.
1145     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1146     // Emit the basic block size. When BBs have alignments, their size cannot
1147     // always be computed from their offsets.
1148     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1149     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1150   }
1151   OutStreamer->PopSection();
1152 }
1153 
1154 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1155   auto GUID = MI.getOperand(0).getImm();
1156   auto Index = MI.getOperand(1).getImm();
1157   auto Type = MI.getOperand(2).getImm();
1158   auto Attr = MI.getOperand(3).getImm();
1159   DILocation *DebugLoc = MI.getDebugLoc();
1160   PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1161 }
1162 
1163 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1164   if (!MF.getTarget().Options.EmitStackSizeSection)
1165     return;
1166 
1167   MCSection *StackSizeSection =
1168       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1169   if (!StackSizeSection)
1170     return;
1171 
1172   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1173   // Don't emit functions with dynamic stack allocations.
1174   if (FrameInfo.hasVarSizedObjects())
1175     return;
1176 
1177   OutStreamer->PushSection();
1178   OutStreamer->SwitchSection(StackSizeSection);
1179 
1180   const MCSymbol *FunctionSymbol = getFunctionBegin();
1181   uint64_t StackSize = FrameInfo.getStackSize();
1182   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1183   OutStreamer->emitULEB128IntValue(StackSize);
1184 
1185   OutStreamer->PopSection();
1186 }
1187 
1188 void AsmPrinter::emitStackUsage(const MachineFunction &MF) {
1189   const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
1190 
1191   // OutputFilename empty implies -fstack-usage is not passed.
1192   if (OutputFilename.empty())
1193     return;
1194 
1195   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1196   uint64_t StackSize = FrameInfo.getStackSize();
1197 
1198   if (StackUsageStream == nullptr) {
1199     std::error_code EC;
1200     StackUsageStream =
1201         std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
1202     if (EC) {
1203       errs() << "Could not open file: " << EC.message();
1204       return;
1205     }
1206   }
1207 
1208   *StackUsageStream << MF.getFunction().getParent()->getName();
1209   if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
1210     *StackUsageStream << ':' << DSP->getLine();
1211 
1212   *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
1213   if (FrameInfo.hasVarSizedObjects())
1214     *StackUsageStream << "dynamic\n";
1215   else
1216     *StackUsageStream << "static\n";
1217 }
1218 
1219 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1220   MachineModuleInfo &MMI = MF.getMMI();
1221   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1222     return true;
1223 
1224   // We might emit an EH table that uses function begin and end labels even if
1225   // we don't have any landingpads.
1226   if (!MF.getFunction().hasPersonalityFn())
1227     return false;
1228   return !isNoOpWithoutInvoke(
1229       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1230 }
1231 
1232 /// EmitFunctionBody - This method emits the body and trailer for a
1233 /// function.
1234 void AsmPrinter::emitFunctionBody() {
1235   emitFunctionHeader();
1236 
1237   // Emit target-specific gunk before the function body.
1238   emitFunctionBodyStart();
1239 
1240   if (isVerbose()) {
1241     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1242     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1243     if (!MDT) {
1244       OwnedMDT = std::make_unique<MachineDominatorTree>();
1245       OwnedMDT->getBase().recalculate(*MF);
1246       MDT = OwnedMDT.get();
1247     }
1248 
1249     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1250     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1251     if (!MLI) {
1252       OwnedMLI = std::make_unique<MachineLoopInfo>();
1253       OwnedMLI->getBase().analyze(MDT->getBase());
1254       MLI = OwnedMLI.get();
1255     }
1256   }
1257 
1258   // Print out code for the function.
1259   bool HasAnyRealCode = false;
1260   int NumInstsInFunction = 0;
1261 
1262   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1263   for (auto &MBB : *MF) {
1264     // Print a label for the basic block.
1265     emitBasicBlockStart(MBB);
1266     DenseMap<StringRef, unsigned> MnemonicCounts;
1267     for (auto &MI : MBB) {
1268       // Print the assembly for the instruction.
1269       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1270           !MI.isDebugInstr()) {
1271         HasAnyRealCode = true;
1272         ++NumInstsInFunction;
1273       }
1274 
1275       // If there is a pre-instruction symbol, emit a label for it here.
1276       if (MCSymbol *S = MI.getPreInstrSymbol())
1277         OutStreamer->emitLabel(S);
1278 
1279       for (const HandlerInfo &HI : Handlers) {
1280         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1281                            HI.TimerGroupDescription, TimePassesIsEnabled);
1282         HI.Handler->beginInstruction(&MI);
1283       }
1284 
1285       if (isVerbose())
1286         emitComments(MI, OutStreamer->GetCommentOS());
1287 
1288       switch (MI.getOpcode()) {
1289       case TargetOpcode::CFI_INSTRUCTION:
1290         emitCFIInstruction(MI);
1291         break;
1292       case TargetOpcode::LOCAL_ESCAPE:
1293         emitFrameAlloc(MI);
1294         break;
1295       case TargetOpcode::ANNOTATION_LABEL:
1296       case TargetOpcode::EH_LABEL:
1297       case TargetOpcode::GC_LABEL:
1298         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1299         break;
1300       case TargetOpcode::INLINEASM:
1301       case TargetOpcode::INLINEASM_BR:
1302         emitInlineAsm(&MI);
1303         break;
1304       case TargetOpcode::DBG_VALUE:
1305       case TargetOpcode::DBG_VALUE_LIST:
1306         if (isVerbose()) {
1307           if (!emitDebugValueComment(&MI, *this))
1308             emitInstruction(&MI);
1309         }
1310         break;
1311       case TargetOpcode::DBG_INSTR_REF:
1312         // This instruction reference will have been resolved to a machine
1313         // location, and a nearby DBG_VALUE created. We can safely ignore
1314         // the instruction reference.
1315         break;
1316       case TargetOpcode::DBG_PHI:
1317         // This instruction is only used to label a program point, it's purely
1318         // meta information.
1319         break;
1320       case TargetOpcode::DBG_LABEL:
1321         if (isVerbose()) {
1322           if (!emitDebugLabelComment(&MI, *this))
1323             emitInstruction(&MI);
1324         }
1325         break;
1326       case TargetOpcode::IMPLICIT_DEF:
1327         if (isVerbose()) emitImplicitDef(&MI);
1328         break;
1329       case TargetOpcode::KILL:
1330         if (isVerbose()) emitKill(&MI, *this);
1331         break;
1332       case TargetOpcode::PSEUDO_PROBE:
1333         emitPseudoProbe(MI);
1334         break;
1335       default:
1336         emitInstruction(&MI);
1337         if (CanDoExtraAnalysis) {
1338           MCInst MCI;
1339           MCI.setOpcode(MI.getOpcode());
1340           auto Name = OutStreamer->getMnemonic(MCI);
1341           auto I = MnemonicCounts.insert({Name, 0u});
1342           I.first->second++;
1343         }
1344         break;
1345       }
1346 
1347       // If there is a post-instruction symbol, emit a label for it here.
1348       if (MCSymbol *S = MI.getPostInstrSymbol())
1349         OutStreamer->emitLabel(S);
1350 
1351       for (const HandlerInfo &HI : Handlers) {
1352         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1353                            HI.TimerGroupDescription, TimePassesIsEnabled);
1354         HI.Handler->endInstruction();
1355       }
1356     }
1357 
1358     // We must emit temporary symbol for the end of this basic block, if either
1359     // we have BBLabels enabled or if this basic blocks marks the end of a
1360     // section (except the section containing the entry basic block as the end
1361     // symbol for that section is CurrentFnEnd).
1362     if (MF->hasBBLabels() ||
1363         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1364          !MBB.sameSection(&MF->front())))
1365       OutStreamer->emitLabel(MBB.getEndSymbol());
1366 
1367     if (MBB.isEndSection()) {
1368       // The size directive for the section containing the entry block is
1369       // handled separately by the function section.
1370       if (!MBB.sameSection(&MF->front())) {
1371         if (MAI->hasDotTypeDotSizeDirective()) {
1372           // Emit the size directive for the basic block section.
1373           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1374               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1375               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1376               OutContext);
1377           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1378         }
1379         MBBSectionRanges[MBB.getSectionIDNum()] =
1380             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1381       }
1382     }
1383     emitBasicBlockEnd(MBB);
1384 
1385     if (CanDoExtraAnalysis) {
1386       // Skip empty blocks.
1387       if (MBB.empty())
1388         continue;
1389 
1390       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1391                                           MBB.begin()->getDebugLoc(), &MBB);
1392 
1393       // Generate instruction mix remark. First, sort counts in descending order
1394       // by count and name.
1395       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1396       for (auto &KV : MnemonicCounts)
1397         MnemonicVec.emplace_back(KV.first, KV.second);
1398 
1399       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1400                            const std::pair<StringRef, unsigned> &B) {
1401         if (A.second > B.second)
1402           return true;
1403         if (A.second == B.second)
1404           return StringRef(A.first) < StringRef(B.first);
1405         return false;
1406       });
1407       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1408       for (auto &KV : MnemonicVec) {
1409         auto Name = (Twine("INST_") + KV.first.trim()).str();
1410         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1411       }
1412       ORE->emit(R);
1413     }
1414   }
1415 
1416   EmittedInsts += NumInstsInFunction;
1417   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1418                                       MF->getFunction().getSubprogram(),
1419                                       &MF->front());
1420   R << ore::NV("NumInstructions", NumInstsInFunction)
1421     << " instructions in function";
1422   ORE->emit(R);
1423 
1424   // If the function is empty and the object file uses .subsections_via_symbols,
1425   // then we need to emit *something* to the function body to prevent the
1426   // labels from collapsing together.  Just emit a noop.
1427   // Similarly, don't emit empty functions on Windows either. It can lead to
1428   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1429   // after linking, causing the kernel not to load the binary:
1430   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1431   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1432   const Triple &TT = TM.getTargetTriple();
1433   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1434                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1435     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
1436 
1437     // Targets can opt-out of emitting the noop here by leaving the opcode
1438     // unspecified.
1439     if (Noop.getOpcode()) {
1440       OutStreamer->AddComment("avoids zero-length function");
1441       emitNops(1);
1442     }
1443   }
1444 
1445   // Switch to the original section in case basic block sections was used.
1446   OutStreamer->SwitchSection(MF->getSection());
1447 
1448   const Function &F = MF->getFunction();
1449   for (const auto &BB : F) {
1450     if (!BB.hasAddressTaken())
1451       continue;
1452     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1453     if (Sym->isDefined())
1454       continue;
1455     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1456     OutStreamer->emitLabel(Sym);
1457   }
1458 
1459   // Emit target-specific gunk after the function body.
1460   emitFunctionBodyEnd();
1461 
1462   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1463       MAI->hasDotTypeDotSizeDirective()) {
1464     // Create a symbol for the end of function.
1465     CurrentFnEnd = createTempSymbol("func_end");
1466     OutStreamer->emitLabel(CurrentFnEnd);
1467   }
1468 
1469   // If the target wants a .size directive for the size of the function, emit
1470   // it.
1471   if (MAI->hasDotTypeDotSizeDirective()) {
1472     // We can get the size as difference between the function label and the
1473     // temp label.
1474     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1475         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1476         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1477     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1478   }
1479 
1480   for (const HandlerInfo &HI : Handlers) {
1481     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1482                        HI.TimerGroupDescription, TimePassesIsEnabled);
1483     HI.Handler->markFunctionEnd();
1484   }
1485 
1486   MBBSectionRanges[MF->front().getSectionIDNum()] =
1487       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1488 
1489   // Print out jump tables referenced by the function.
1490   emitJumpTableInfo();
1491 
1492   // Emit post-function debug and/or EH information.
1493   for (const HandlerInfo &HI : Handlers) {
1494     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1495                        HI.TimerGroupDescription, TimePassesIsEnabled);
1496     HI.Handler->endFunction(MF);
1497   }
1498 
1499   // Emit section containing BB address offsets and their metadata, when
1500   // BB labels are requested for this function. Skip empty functions.
1501   if (MF->hasBBLabels() && HasAnyRealCode)
1502     emitBBAddrMapSection(*MF);
1503 
1504   // Emit section containing stack size metadata.
1505   emitStackSizeSection(*MF);
1506 
1507   // Emit .su file containing function stack size information.
1508   emitStackUsage(*MF);
1509 
1510   emitPatchableFunctionEntries();
1511 
1512   if (isVerbose())
1513     OutStreamer->GetCommentOS() << "-- End function\n";
1514 
1515   OutStreamer->AddBlankLine();
1516 }
1517 
1518 /// Compute the number of Global Variables that uses a Constant.
1519 static unsigned getNumGlobalVariableUses(const Constant *C) {
1520   if (!C)
1521     return 0;
1522 
1523   if (isa<GlobalVariable>(C))
1524     return 1;
1525 
1526   unsigned NumUses = 0;
1527   for (auto *CU : C->users())
1528     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1529 
1530   return NumUses;
1531 }
1532 
1533 /// Only consider global GOT equivalents if at least one user is a
1534 /// cstexpr inside an initializer of another global variables. Also, don't
1535 /// handle cstexpr inside instructions. During global variable emission,
1536 /// candidates are skipped and are emitted later in case at least one cstexpr
1537 /// isn't replaced by a PC relative GOT entry access.
1538 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1539                                      unsigned &NumGOTEquivUsers) {
1540   // Global GOT equivalents are unnamed private globals with a constant
1541   // pointer initializer to another global symbol. They must point to a
1542   // GlobalVariable or Function, i.e., as GlobalValue.
1543   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1544       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1545       !isa<GlobalValue>(GV->getOperand(0)))
1546     return false;
1547 
1548   // To be a got equivalent, at least one of its users need to be a constant
1549   // expression used by another global variable.
1550   for (auto *U : GV->users())
1551     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1552 
1553   return NumGOTEquivUsers > 0;
1554 }
1555 
1556 /// Unnamed constant global variables solely contaning a pointer to
1557 /// another globals variable is equivalent to a GOT table entry; it contains the
1558 /// the address of another symbol. Optimize it and replace accesses to these
1559 /// "GOT equivalents" by using the GOT entry for the final global instead.
1560 /// Compute GOT equivalent candidates among all global variables to avoid
1561 /// emitting them if possible later on, after it use is replaced by a GOT entry
1562 /// access.
1563 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1564   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1565     return;
1566 
1567   for (const auto &G : M.globals()) {
1568     unsigned NumGOTEquivUsers = 0;
1569     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1570       continue;
1571 
1572     const MCSymbol *GOTEquivSym = getSymbol(&G);
1573     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1574   }
1575 }
1576 
1577 /// Constant expressions using GOT equivalent globals may not be eligible
1578 /// for PC relative GOT entry conversion, in such cases we need to emit such
1579 /// globals we previously omitted in EmitGlobalVariable.
1580 void AsmPrinter::emitGlobalGOTEquivs() {
1581   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1582     return;
1583 
1584   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1585   for (auto &I : GlobalGOTEquivs) {
1586     const GlobalVariable *GV = I.second.first;
1587     unsigned Cnt = I.second.second;
1588     if (Cnt)
1589       FailedCandidates.push_back(GV);
1590   }
1591   GlobalGOTEquivs.clear();
1592 
1593   for (auto *GV : FailedCandidates)
1594     emitGlobalVariable(GV);
1595 }
1596 
1597 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1598                                           const GlobalIndirectSymbol& GIS) {
1599   MCSymbol *Name = getSymbol(&GIS);
1600   bool IsFunction = GIS.getValueType()->isFunctionTy();
1601   // Treat bitcasts of functions as functions also. This is important at least
1602   // on WebAssembly where object and function addresses can't alias each other.
1603   if (!IsFunction)
1604     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1605       if (CE->getOpcode() == Instruction::BitCast)
1606         IsFunction =
1607           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1608 
1609   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1610   // so AIX has to use the extra-label-at-definition strategy. At this
1611   // point, all the extra label is emitted, we just have to emit linkage for
1612   // those labels.
1613   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1614     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1615     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1616            "Visibility should be handled with emitLinkage() on AIX.");
1617     emitLinkage(&GIS, Name);
1618     // If it's a function, also emit linkage for aliases of function entry
1619     // point.
1620     if (IsFunction)
1621       emitLinkage(&GIS,
1622                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1623     return;
1624   }
1625 
1626   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1627     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1628   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1629     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1630   else
1631     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1632 
1633   // Set the symbol type to function if the alias has a function type.
1634   // This affects codegen when the aliasee is not a function.
1635   if (IsFunction)
1636     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1637                                                ? MCSA_ELF_TypeIndFunction
1638                                                : MCSA_ELF_TypeFunction);
1639 
1640   emitVisibility(Name, GIS.getVisibility());
1641 
1642   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1643 
1644   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1645     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1646 
1647   // Emit the directives as assignments aka .set:
1648   OutStreamer->emitAssignment(Name, Expr);
1649   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1650   if (LocalAlias != Name)
1651     OutStreamer->emitAssignment(LocalAlias, Expr);
1652 
1653   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1654     // If the aliasee does not correspond to a symbol in the output, i.e. the
1655     // alias is not of an object or the aliased object is private, then set the
1656     // size of the alias symbol from the type of the alias. We don't do this in
1657     // other situations as the alias and aliasee having differing types but same
1658     // size may be intentional.
1659     const GlobalObject *BaseObject = GA->getBaseObject();
1660     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1661         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1662       const DataLayout &DL = M.getDataLayout();
1663       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1664       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1665     }
1666   }
1667 }
1668 
1669 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1670   if (!RS.needsSection())
1671     return;
1672 
1673   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1674 
1675   Optional<SmallString<128>> Filename;
1676   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1677     Filename = *FilenameRef;
1678     sys::fs::make_absolute(*Filename);
1679     assert(!Filename->empty() && "The filename can't be empty.");
1680   }
1681 
1682   std::string Buf;
1683   raw_string_ostream OS(Buf);
1684   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1685       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1686                : RemarkSerializer.metaSerializer(OS);
1687   MetaSerializer->emit();
1688 
1689   // Switch to the remarks section.
1690   MCSection *RemarksSection =
1691       OutContext.getObjectFileInfo()->getRemarksSection();
1692   OutStreamer->SwitchSection(RemarksSection);
1693 
1694   OutStreamer->emitBinaryData(OS.str());
1695 }
1696 
1697 bool AsmPrinter::doFinalization(Module &M) {
1698   // Set the MachineFunction to nullptr so that we can catch attempted
1699   // accesses to MF specific features at the module level and so that
1700   // we can conditionalize accesses based on whether or not it is nullptr.
1701   MF = nullptr;
1702 
1703   // Gather all GOT equivalent globals in the module. We really need two
1704   // passes over the globals: one to compute and another to avoid its emission
1705   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1706   // where the got equivalent shows up before its use.
1707   computeGlobalGOTEquivs(M);
1708 
1709   // Emit global variables.
1710   for (const auto &G : M.globals())
1711     emitGlobalVariable(&G);
1712 
1713   // Emit remaining GOT equivalent globals.
1714   emitGlobalGOTEquivs();
1715 
1716   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1717 
1718   // Emit linkage(XCOFF) and visibility info for declarations
1719   for (const Function &F : M) {
1720     if (!F.isDeclarationForLinker())
1721       continue;
1722 
1723     MCSymbol *Name = getSymbol(&F);
1724     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1725 
1726     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1727       GlobalValue::VisibilityTypes V = F.getVisibility();
1728       if (V == GlobalValue::DefaultVisibility)
1729         continue;
1730 
1731       emitVisibility(Name, V, false);
1732       continue;
1733     }
1734 
1735     if (F.isIntrinsic())
1736       continue;
1737 
1738     // Handle the XCOFF case.
1739     // Variable `Name` is the function descriptor symbol (see above). Get the
1740     // function entry point symbol.
1741     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1742     // Emit linkage for the function entry point.
1743     emitLinkage(&F, FnEntryPointSym);
1744 
1745     // Emit linkage for the function descriptor.
1746     emitLinkage(&F, Name);
1747   }
1748 
1749   // Emit the remarks section contents.
1750   // FIXME: Figure out when is the safest time to emit this section. It should
1751   // not come after debug info.
1752   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1753     emitRemarksSection(*RS);
1754 
1755   TLOF.emitModuleMetadata(*OutStreamer, M);
1756 
1757   if (TM.getTargetTriple().isOSBinFormatELF()) {
1758     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1759 
1760     // Output stubs for external and common global variables.
1761     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1762     if (!Stubs.empty()) {
1763       OutStreamer->SwitchSection(TLOF.getDataSection());
1764       const DataLayout &DL = M.getDataLayout();
1765 
1766       emitAlignment(Align(DL.getPointerSize()));
1767       for (const auto &Stub : Stubs) {
1768         OutStreamer->emitLabel(Stub.first);
1769         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1770                                      DL.getPointerSize());
1771       }
1772     }
1773   }
1774 
1775   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1776     MachineModuleInfoCOFF &MMICOFF =
1777         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1778 
1779     // Output stubs for external and common global variables.
1780     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1781     if (!Stubs.empty()) {
1782       const DataLayout &DL = M.getDataLayout();
1783 
1784       for (const auto &Stub : Stubs) {
1785         SmallString<256> SectionName = StringRef(".rdata$");
1786         SectionName += Stub.first->getName();
1787         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1788             SectionName,
1789             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1790                 COFF::IMAGE_SCN_LNK_COMDAT,
1791             SectionKind::getReadOnly(), Stub.first->getName(),
1792             COFF::IMAGE_COMDAT_SELECT_ANY));
1793         emitAlignment(Align(DL.getPointerSize()));
1794         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1795         OutStreamer->emitLabel(Stub.first);
1796         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1797                                      DL.getPointerSize());
1798       }
1799     }
1800   }
1801 
1802   // Finalize debug and EH information.
1803   for (const HandlerInfo &HI : Handlers) {
1804     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1805                        HI.TimerGroupDescription, TimePassesIsEnabled);
1806     HI.Handler->endModule();
1807   }
1808 
1809   // This deletes all the ephemeral handlers that AsmPrinter added, while
1810   // keeping all the user-added handlers alive until the AsmPrinter is
1811   // destroyed.
1812   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1813   DD = nullptr;
1814 
1815   // If the target wants to know about weak references, print them all.
1816   if (MAI->getWeakRefDirective()) {
1817     // FIXME: This is not lazy, it would be nice to only print weak references
1818     // to stuff that is actually used.  Note that doing so would require targets
1819     // to notice uses in operands (due to constant exprs etc).  This should
1820     // happen with the MC stuff eventually.
1821 
1822     // Print out module-level global objects here.
1823     for (const auto &GO : M.global_objects()) {
1824       if (!GO.hasExternalWeakLinkage())
1825         continue;
1826       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1827     }
1828   }
1829 
1830   // Print aliases in topological order, that is, for each alias a = b,
1831   // b must be printed before a.
1832   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1833   // such an order to generate correct TOC information.
1834   SmallVector<const GlobalAlias *, 16> AliasStack;
1835   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1836   for (const auto &Alias : M.aliases()) {
1837     for (const GlobalAlias *Cur = &Alias; Cur;
1838          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1839       if (!AliasVisited.insert(Cur).second)
1840         break;
1841       AliasStack.push_back(Cur);
1842     }
1843     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1844       emitGlobalIndirectSymbol(M, *AncestorAlias);
1845     AliasStack.clear();
1846   }
1847   for (const auto &IFunc : M.ifuncs())
1848     emitGlobalIndirectSymbol(M, IFunc);
1849 
1850   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1851   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1852   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1853     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1854       MP->finishAssembly(M, *MI, *this);
1855 
1856   // Emit llvm.ident metadata in an '.ident' directive.
1857   emitModuleIdents(M);
1858 
1859   // Emit bytes for llvm.commandline metadata.
1860   emitModuleCommandLines(M);
1861 
1862   // Emit __morestack address if needed for indirect calls.
1863   if (MMI->usesMorestackAddr()) {
1864     Align Alignment(1);
1865     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1866         getDataLayout(), SectionKind::getReadOnly(),
1867         /*C=*/nullptr, Alignment);
1868     OutStreamer->SwitchSection(ReadOnlySection);
1869 
1870     MCSymbol *AddrSymbol =
1871         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1872     OutStreamer->emitLabel(AddrSymbol);
1873 
1874     unsigned PtrSize = MAI->getCodePointerSize();
1875     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1876                                  PtrSize);
1877   }
1878 
1879   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1880   // split-stack is used.
1881   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1882     OutStreamer->SwitchSection(
1883         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1884     if (MMI->hasNosplitStack())
1885       OutStreamer->SwitchSection(
1886           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1887   }
1888 
1889   // If we don't have any trampolines, then we don't require stack memory
1890   // to be executable. Some targets have a directive to declare this.
1891   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1892   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1893     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1894       OutStreamer->SwitchSection(S);
1895 
1896   if (TM.Options.EmitAddrsig) {
1897     // Emit address-significance attributes for all globals.
1898     OutStreamer->emitAddrsig();
1899     for (const GlobalValue &GV : M.global_values()) {
1900       if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() &&
1901           !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() &&
1902           !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr())
1903         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1904     }
1905   }
1906 
1907   // Emit symbol partition specifications (ELF only).
1908   if (TM.getTargetTriple().isOSBinFormatELF()) {
1909     unsigned UniqueID = 0;
1910     for (const GlobalValue &GV : M.global_values()) {
1911       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1912           GV.getVisibility() != GlobalValue::DefaultVisibility)
1913         continue;
1914 
1915       OutStreamer->SwitchSection(
1916           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1917                                    "", false, ++UniqueID, nullptr));
1918       OutStreamer->emitBytes(GV.getPartition());
1919       OutStreamer->emitZeros(1);
1920       OutStreamer->emitValue(
1921           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1922           MAI->getCodePointerSize());
1923     }
1924   }
1925 
1926   // Allow the target to emit any magic that it wants at the end of the file,
1927   // after everything else has gone out.
1928   emitEndOfAsmFile(M);
1929 
1930   MMI = nullptr;
1931 
1932   OutStreamer->Finish();
1933   OutStreamer->reset();
1934   OwnedMLI.reset();
1935   OwnedMDT.reset();
1936 
1937   return false;
1938 }
1939 
1940 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1941   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1942   if (Res.second)
1943     Res.first->second = createTempSymbol("exception");
1944   return Res.first->second;
1945 }
1946 
1947 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1948   this->MF = &MF;
1949   const Function &F = MF.getFunction();
1950 
1951   // Get the function symbol.
1952   if (!MAI->needsFunctionDescriptors()) {
1953     CurrentFnSym = getSymbol(&MF.getFunction());
1954   } else {
1955     assert(TM.getTargetTriple().isOSAIX() &&
1956            "Only AIX uses the function descriptor hooks.");
1957     // AIX is unique here in that the name of the symbol emitted for the
1958     // function body does not have the same name as the source function's
1959     // C-linkage name.
1960     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1961                                " initalized first.");
1962 
1963     // Get the function entry point symbol.
1964     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1965   }
1966 
1967   CurrentFnSymForSize = CurrentFnSym;
1968   CurrentFnBegin = nullptr;
1969   CurrentSectionBeginSym = nullptr;
1970   MBBSectionRanges.clear();
1971   MBBSectionExceptionSyms.clear();
1972   bool NeedsLocalForSize = MAI->needsLocalForSize();
1973   if (F.hasFnAttribute("patchable-function-entry") ||
1974       F.hasFnAttribute("function-instrument") ||
1975       F.hasFnAttribute("xray-instruction-threshold") ||
1976       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1977       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1978     CurrentFnBegin = createTempSymbol("func_begin");
1979     if (NeedsLocalForSize)
1980       CurrentFnSymForSize = CurrentFnBegin;
1981   }
1982 
1983   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1984 }
1985 
1986 namespace {
1987 
1988 // Keep track the alignment, constpool entries per Section.
1989   struct SectionCPs {
1990     MCSection *S;
1991     Align Alignment;
1992     SmallVector<unsigned, 4> CPEs;
1993 
1994     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1995   };
1996 
1997 } // end anonymous namespace
1998 
1999 /// EmitConstantPool - Print to the current output stream assembly
2000 /// representations of the constants in the constant pool MCP. This is
2001 /// used to print out constants which have been "spilled to memory" by
2002 /// the code generator.
2003 void AsmPrinter::emitConstantPool() {
2004   const MachineConstantPool *MCP = MF->getConstantPool();
2005   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
2006   if (CP.empty()) return;
2007 
2008   // Calculate sections for constant pool entries. We collect entries to go into
2009   // the same section together to reduce amount of section switch statements.
2010   SmallVector<SectionCPs, 4> CPSections;
2011   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
2012     const MachineConstantPoolEntry &CPE = CP[i];
2013     Align Alignment = CPE.getAlign();
2014 
2015     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
2016 
2017     const Constant *C = nullptr;
2018     if (!CPE.isMachineConstantPoolEntry())
2019       C = CPE.Val.ConstVal;
2020 
2021     MCSection *S = getObjFileLowering().getSectionForConstant(
2022         getDataLayout(), Kind, C, Alignment);
2023 
2024     // The number of sections are small, just do a linear search from the
2025     // last section to the first.
2026     bool Found = false;
2027     unsigned SecIdx = CPSections.size();
2028     while (SecIdx != 0) {
2029       if (CPSections[--SecIdx].S == S) {
2030         Found = true;
2031         break;
2032       }
2033     }
2034     if (!Found) {
2035       SecIdx = CPSections.size();
2036       CPSections.push_back(SectionCPs(S, Alignment));
2037     }
2038 
2039     if (Alignment > CPSections[SecIdx].Alignment)
2040       CPSections[SecIdx].Alignment = Alignment;
2041     CPSections[SecIdx].CPEs.push_back(i);
2042   }
2043 
2044   // Now print stuff into the calculated sections.
2045   const MCSection *CurSection = nullptr;
2046   unsigned Offset = 0;
2047   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
2048     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
2049       unsigned CPI = CPSections[i].CPEs[j];
2050       MCSymbol *Sym = GetCPISymbol(CPI);
2051       if (!Sym->isUndefined())
2052         continue;
2053 
2054       if (CurSection != CPSections[i].S) {
2055         OutStreamer->SwitchSection(CPSections[i].S);
2056         emitAlignment(Align(CPSections[i].Alignment));
2057         CurSection = CPSections[i].S;
2058         Offset = 0;
2059       }
2060 
2061       MachineConstantPoolEntry CPE = CP[CPI];
2062 
2063       // Emit inter-object padding for alignment.
2064       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2065       OutStreamer->emitZeros(NewOffset - Offset);
2066 
2067       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2068 
2069       OutStreamer->emitLabel(Sym);
2070       if (CPE.isMachineConstantPoolEntry())
2071         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2072       else
2073         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2074     }
2075   }
2076 }
2077 
2078 // Print assembly representations of the jump tables used by the current
2079 // function.
2080 void AsmPrinter::emitJumpTableInfo() {
2081   const DataLayout &DL = MF->getDataLayout();
2082   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2083   if (!MJTI) return;
2084   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2085   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2086   if (JT.empty()) return;
2087 
2088   // Pick the directive to use to print the jump table entries, and switch to
2089   // the appropriate section.
2090   const Function &F = MF->getFunction();
2091   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2092   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2093       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2094       F);
2095   if (JTInDiffSection) {
2096     // Drop it in the readonly section.
2097     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2098     OutStreamer->SwitchSection(ReadOnlySection);
2099   }
2100 
2101   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2102 
2103   // Jump tables in code sections are marked with a data_region directive
2104   // where that's supported.
2105   if (!JTInDiffSection)
2106     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2107 
2108   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2109     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2110 
2111     // If this jump table was deleted, ignore it.
2112     if (JTBBs.empty()) continue;
2113 
2114     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2115     /// emit a .set directive for each unique entry.
2116     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2117         MAI->doesSetDirectiveSuppressReloc()) {
2118       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2119       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2120       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2121       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2122         const MachineBasicBlock *MBB = JTBBs[ii];
2123         if (!EmittedSets.insert(MBB).second)
2124           continue;
2125 
2126         // .set LJTSet, LBB32-base
2127         const MCExpr *LHS =
2128           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2129         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2130                                     MCBinaryExpr::createSub(LHS, Base,
2131                                                             OutContext));
2132       }
2133     }
2134 
2135     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2136     // before each jump table.  The first label is never referenced, but tells
2137     // the assembler and linker the extents of the jump table object.  The
2138     // second label is actually referenced by the code.
2139     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2140       // FIXME: This doesn't have to have any specific name, just any randomly
2141       // named and numbered local label started with 'l' would work.  Simplify
2142       // GetJTISymbol.
2143       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2144 
2145     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2146     OutStreamer->emitLabel(JTISymbol);
2147 
2148     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2149       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2150   }
2151   if (!JTInDiffSection)
2152     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2153 }
2154 
2155 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2156 /// current stream.
2157 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2158                                     const MachineBasicBlock *MBB,
2159                                     unsigned UID) const {
2160   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2161   const MCExpr *Value = nullptr;
2162   switch (MJTI->getEntryKind()) {
2163   case MachineJumpTableInfo::EK_Inline:
2164     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2165   case MachineJumpTableInfo::EK_Custom32:
2166     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2167         MJTI, MBB, UID, OutContext);
2168     break;
2169   case MachineJumpTableInfo::EK_BlockAddress:
2170     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2171     //     .word LBB123
2172     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2173     break;
2174   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2175     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2176     // with a relocation as gp-relative, e.g.:
2177     //     .gprel32 LBB123
2178     MCSymbol *MBBSym = MBB->getSymbol();
2179     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2180     return;
2181   }
2182 
2183   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2184     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2185     // with a relocation as gp-relative, e.g.:
2186     //     .gpdword LBB123
2187     MCSymbol *MBBSym = MBB->getSymbol();
2188     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2189     return;
2190   }
2191 
2192   case MachineJumpTableInfo::EK_LabelDifference32: {
2193     // Each entry is the address of the block minus the address of the jump
2194     // table. This is used for PIC jump tables where gprel32 is not supported.
2195     // e.g.:
2196     //      .word LBB123 - LJTI1_2
2197     // If the .set directive avoids relocations, this is emitted as:
2198     //      .set L4_5_set_123, LBB123 - LJTI1_2
2199     //      .word L4_5_set_123
2200     if (MAI->doesSetDirectiveSuppressReloc()) {
2201       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2202                                       OutContext);
2203       break;
2204     }
2205     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2206     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2207     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2208     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2209     break;
2210   }
2211   }
2212 
2213   assert(Value && "Unknown entry kind!");
2214 
2215   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2216   OutStreamer->emitValue(Value, EntrySize);
2217 }
2218 
2219 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2220 /// special global used by LLVM.  If so, emit it and return true, otherwise
2221 /// do nothing and return false.
2222 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2223   if (GV->getName() == "llvm.used") {
2224     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2225       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2226     return true;
2227   }
2228 
2229   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2230   if (GV->getSection() == "llvm.metadata" ||
2231       GV->hasAvailableExternallyLinkage())
2232     return true;
2233 
2234   if (!GV->hasAppendingLinkage()) return false;
2235 
2236   assert(GV->hasInitializer() && "Not a special LLVM global!");
2237 
2238   if (GV->getName() == "llvm.global_ctors") {
2239     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2240                        /* isCtor */ true);
2241 
2242     return true;
2243   }
2244 
2245   if (GV->getName() == "llvm.global_dtors") {
2246     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2247                        /* isCtor */ false);
2248 
2249     return true;
2250   }
2251 
2252   report_fatal_error("unknown special variable");
2253 }
2254 
2255 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2256 /// global in the specified llvm.used list.
2257 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2258   // Should be an array of 'i8*'.
2259   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2260     const GlobalValue *GV =
2261       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2262     if (GV)
2263       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2264   }
2265 }
2266 
2267 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2268                                           const Constant *List,
2269                                           SmallVector<Structor, 8> &Structors) {
2270   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2271   // the init priority.
2272   if (!isa<ConstantArray>(List))
2273     return;
2274 
2275   // Gather the structors in a form that's convenient for sorting by priority.
2276   for (Value *O : cast<ConstantArray>(List)->operands()) {
2277     auto *CS = cast<ConstantStruct>(O);
2278     if (CS->getOperand(1)->isNullValue())
2279       break; // Found a null terminator, skip the rest.
2280     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2281     if (!Priority)
2282       continue; // Malformed.
2283     Structors.push_back(Structor());
2284     Structor &S = Structors.back();
2285     S.Priority = Priority->getLimitedValue(65535);
2286     S.Func = CS->getOperand(1);
2287     if (!CS->getOperand(2)->isNullValue()) {
2288       if (TM.getTargetTriple().isOSAIX())
2289         llvm::report_fatal_error(
2290             "associated data of XXStructor list is not yet supported on AIX");
2291       S.ComdatKey =
2292           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2293     }
2294   }
2295 
2296   // Emit the function pointers in the target-specific order
2297   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2298     return L.Priority < R.Priority;
2299   });
2300 }
2301 
2302 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2303 /// priority.
2304 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2305                                     bool IsCtor) {
2306   SmallVector<Structor, 8> Structors;
2307   preprocessXXStructorList(DL, List, Structors);
2308   if (Structors.empty())
2309     return;
2310 
2311   const Align Align = DL.getPointerPrefAlignment();
2312   for (Structor &S : Structors) {
2313     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2314     const MCSymbol *KeySym = nullptr;
2315     if (GlobalValue *GV = S.ComdatKey) {
2316       if (GV->isDeclarationForLinker())
2317         // If the associated variable is not defined in this module
2318         // (it might be available_externally, or have been an
2319         // available_externally definition that was dropped by the
2320         // EliminateAvailableExternally pass), some other TU
2321         // will provide its dynamic initializer.
2322         continue;
2323 
2324       KeySym = getSymbol(GV);
2325     }
2326 
2327     MCSection *OutputSection =
2328         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2329                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2330     OutStreamer->SwitchSection(OutputSection);
2331     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2332       emitAlignment(Align);
2333     emitXXStructor(DL, S.Func);
2334   }
2335 }
2336 
2337 void AsmPrinter::emitModuleIdents(Module &M) {
2338   if (!MAI->hasIdentDirective())
2339     return;
2340 
2341   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2342     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2343       const MDNode *N = NMD->getOperand(i);
2344       assert(N->getNumOperands() == 1 &&
2345              "llvm.ident metadata entry can have only one operand");
2346       const MDString *S = cast<MDString>(N->getOperand(0));
2347       OutStreamer->emitIdent(S->getString());
2348     }
2349   }
2350 }
2351 
2352 void AsmPrinter::emitModuleCommandLines(Module &M) {
2353   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2354   if (!CommandLine)
2355     return;
2356 
2357   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2358   if (!NMD || !NMD->getNumOperands())
2359     return;
2360 
2361   OutStreamer->PushSection();
2362   OutStreamer->SwitchSection(CommandLine);
2363   OutStreamer->emitZeros(1);
2364   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2365     const MDNode *N = NMD->getOperand(i);
2366     assert(N->getNumOperands() == 1 &&
2367            "llvm.commandline metadata entry can have only one operand");
2368     const MDString *S = cast<MDString>(N->getOperand(0));
2369     OutStreamer->emitBytes(S->getString());
2370     OutStreamer->emitZeros(1);
2371   }
2372   OutStreamer->PopSection();
2373 }
2374 
2375 //===--------------------------------------------------------------------===//
2376 // Emission and print routines
2377 //
2378 
2379 /// Emit a byte directive and value.
2380 ///
2381 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2382 
2383 /// Emit a short directive and value.
2384 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2385 
2386 /// Emit a long directive and value.
2387 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2388 
2389 /// Emit a long long directive and value.
2390 void AsmPrinter::emitInt64(uint64_t Value) const {
2391   OutStreamer->emitInt64(Value);
2392 }
2393 
2394 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2395 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2396 /// .set if it avoids relocations.
2397 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2398                                      unsigned Size) const {
2399   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2400 }
2401 
2402 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2403 /// where the size in bytes of the directive is specified by Size and Label
2404 /// specifies the label.  This implicitly uses .set if it is available.
2405 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2406                                      unsigned Size,
2407                                      bool IsSectionRelative) const {
2408   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2409     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2410     if (Size > 4)
2411       OutStreamer->emitZeros(Size - 4);
2412     return;
2413   }
2414 
2415   // Emit Label+Offset (or just Label if Offset is zero)
2416   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2417   if (Offset)
2418     Expr = MCBinaryExpr::createAdd(
2419         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2420 
2421   OutStreamer->emitValue(Expr, Size);
2422 }
2423 
2424 //===----------------------------------------------------------------------===//
2425 
2426 // EmitAlignment - Emit an alignment directive to the specified power of
2427 // two boundary.  If a global value is specified, and if that global has
2428 // an explicit alignment requested, it will override the alignment request
2429 // if required for correctness.
2430 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2431   if (GV)
2432     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2433 
2434   if (Alignment == Align(1))
2435     return; // 1-byte aligned: no need to emit alignment.
2436 
2437   if (getCurrentSection()->getKind().isText())
2438     OutStreamer->emitCodeAlignment(Alignment.value());
2439   else
2440     OutStreamer->emitValueToAlignment(Alignment.value());
2441 }
2442 
2443 //===----------------------------------------------------------------------===//
2444 // Constant emission.
2445 //===----------------------------------------------------------------------===//
2446 
2447 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2448   MCContext &Ctx = OutContext;
2449 
2450   if (CV->isNullValue() || isa<UndefValue>(CV))
2451     return MCConstantExpr::create(0, Ctx);
2452 
2453   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2454     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2455 
2456   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2457     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2458 
2459   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2460     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2461 
2462   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2463     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2464 
2465   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2466   if (!CE) {
2467     llvm_unreachable("Unknown constant value to lower!");
2468   }
2469 
2470   switch (CE->getOpcode()) {
2471   case Instruction::AddrSpaceCast: {
2472     const Constant *Op = CE->getOperand(0);
2473     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2474     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2475     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2476       return lowerConstant(Op);
2477 
2478     // Fallthrough to error.
2479     LLVM_FALLTHROUGH;
2480   }
2481   default: {
2482     // If the code isn't optimized, there may be outstanding folding
2483     // opportunities. Attempt to fold the expression using DataLayout as a
2484     // last resort before giving up.
2485     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2486     if (C != CE)
2487       return lowerConstant(C);
2488 
2489     // Otherwise report the problem to the user.
2490     std::string S;
2491     raw_string_ostream OS(S);
2492     OS << "Unsupported expression in static initializer: ";
2493     CE->printAsOperand(OS, /*PrintType=*/false,
2494                    !MF ? nullptr : MF->getFunction().getParent());
2495     report_fatal_error(OS.str());
2496   }
2497   case Instruction::GetElementPtr: {
2498     // Generate a symbolic expression for the byte address
2499     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2500     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2501 
2502     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2503     if (!OffsetAI)
2504       return Base;
2505 
2506     int64_t Offset = OffsetAI.getSExtValue();
2507     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2508                                    Ctx);
2509   }
2510 
2511   case Instruction::Trunc:
2512     // We emit the value and depend on the assembler to truncate the generated
2513     // expression properly.  This is important for differences between
2514     // blockaddress labels.  Since the two labels are in the same function, it
2515     // is reasonable to treat their delta as a 32-bit value.
2516     LLVM_FALLTHROUGH;
2517   case Instruction::BitCast:
2518     return lowerConstant(CE->getOperand(0));
2519 
2520   case Instruction::IntToPtr: {
2521     const DataLayout &DL = getDataLayout();
2522 
2523     // Handle casts to pointers by changing them into casts to the appropriate
2524     // integer type.  This promotes constant folding and simplifies this code.
2525     Constant *Op = CE->getOperand(0);
2526     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2527                                       false/*ZExt*/);
2528     return lowerConstant(Op);
2529   }
2530 
2531   case Instruction::PtrToInt: {
2532     const DataLayout &DL = getDataLayout();
2533 
2534     // Support only foldable casts to/from pointers that can be eliminated by
2535     // changing the pointer to the appropriately sized integer type.
2536     Constant *Op = CE->getOperand(0);
2537     Type *Ty = CE->getType();
2538 
2539     const MCExpr *OpExpr = lowerConstant(Op);
2540 
2541     // We can emit the pointer value into this slot if the slot is an
2542     // integer slot equal to the size of the pointer.
2543     //
2544     // If the pointer is larger than the resultant integer, then
2545     // as with Trunc just depend on the assembler to truncate it.
2546     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2547         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2548       return OpExpr;
2549 
2550     // Otherwise the pointer is smaller than the resultant integer, mask off
2551     // the high bits so we are sure to get a proper truncation if the input is
2552     // a constant expr.
2553     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2554     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2555     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2556   }
2557 
2558   case Instruction::Sub: {
2559     GlobalValue *LHSGV;
2560     APInt LHSOffset;
2561     DSOLocalEquivalent *DSOEquiv;
2562     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2563                                    getDataLayout(), &DSOEquiv)) {
2564       GlobalValue *RHSGV;
2565       APInt RHSOffset;
2566       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2567                                      getDataLayout())) {
2568         const MCExpr *RelocExpr =
2569             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2570         if (!RelocExpr) {
2571           const MCExpr *LHSExpr =
2572               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2573           if (DSOEquiv &&
2574               getObjFileLowering().supportDSOLocalEquivalentLowering())
2575             LHSExpr =
2576                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2577           RelocExpr = MCBinaryExpr::createSub(
2578               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2579         }
2580         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2581         if (Addend != 0)
2582           RelocExpr = MCBinaryExpr::createAdd(
2583               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2584         return RelocExpr;
2585       }
2586     }
2587   }
2588   // else fallthrough
2589   LLVM_FALLTHROUGH;
2590 
2591   // The MC library also has a right-shift operator, but it isn't consistently
2592   // signed or unsigned between different targets.
2593   case Instruction::Add:
2594   case Instruction::Mul:
2595   case Instruction::SDiv:
2596   case Instruction::SRem:
2597   case Instruction::Shl:
2598   case Instruction::And:
2599   case Instruction::Or:
2600   case Instruction::Xor: {
2601     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2602     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2603     switch (CE->getOpcode()) {
2604     default: llvm_unreachable("Unknown binary operator constant cast expr");
2605     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2606     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2607     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2608     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2609     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2610     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2611     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2612     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2613     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2614     }
2615   }
2616   }
2617 }
2618 
2619 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2620                                    AsmPrinter &AP,
2621                                    const Constant *BaseCV = nullptr,
2622                                    uint64_t Offset = 0);
2623 
2624 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2625 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2626 
2627 /// isRepeatedByteSequence - Determine whether the given value is
2628 /// composed of a repeated sequence of identical bytes and return the
2629 /// byte value.  If it is not a repeated sequence, return -1.
2630 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2631   StringRef Data = V->getRawDataValues();
2632   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2633   char C = Data[0];
2634   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2635     if (Data[i] != C) return -1;
2636   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2637 }
2638 
2639 /// isRepeatedByteSequence - Determine whether the given value is
2640 /// composed of a repeated sequence of identical bytes and return the
2641 /// byte value.  If it is not a repeated sequence, return -1.
2642 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2643   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2644     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2645     assert(Size % 8 == 0);
2646 
2647     // Extend the element to take zero padding into account.
2648     APInt Value = CI->getValue().zextOrSelf(Size);
2649     if (!Value.isSplat(8))
2650       return -1;
2651 
2652     return Value.zextOrTrunc(8).getZExtValue();
2653   }
2654   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2655     // Make sure all array elements are sequences of the same repeated
2656     // byte.
2657     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2658     Constant *Op0 = CA->getOperand(0);
2659     int Byte = isRepeatedByteSequence(Op0, DL);
2660     if (Byte == -1)
2661       return -1;
2662 
2663     // All array elements must be equal.
2664     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2665       if (CA->getOperand(i) != Op0)
2666         return -1;
2667     return Byte;
2668   }
2669 
2670   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2671     return isRepeatedByteSequence(CDS);
2672 
2673   return -1;
2674 }
2675 
2676 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2677                                              const ConstantDataSequential *CDS,
2678                                              AsmPrinter &AP) {
2679   // See if we can aggregate this into a .fill, if so, emit it as such.
2680   int Value = isRepeatedByteSequence(CDS, DL);
2681   if (Value != -1) {
2682     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2683     // Don't emit a 1-byte object as a .fill.
2684     if (Bytes > 1)
2685       return AP.OutStreamer->emitFill(Bytes, Value);
2686   }
2687 
2688   // If this can be emitted with .ascii/.asciz, emit it as such.
2689   if (CDS->isString())
2690     return AP.OutStreamer->emitBytes(CDS->getAsString());
2691 
2692   // Otherwise, emit the values in successive locations.
2693   unsigned ElementByteSize = CDS->getElementByteSize();
2694   if (isa<IntegerType>(CDS->getElementType())) {
2695     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2696       if (AP.isVerbose())
2697         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2698                                                  CDS->getElementAsInteger(i));
2699       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2700                                    ElementByteSize);
2701     }
2702   } else {
2703     Type *ET = CDS->getElementType();
2704     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2705       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2706   }
2707 
2708   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2709   unsigned EmittedSize =
2710       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2711   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2712   if (unsigned Padding = Size - EmittedSize)
2713     AP.OutStreamer->emitZeros(Padding);
2714 }
2715 
2716 static void emitGlobalConstantArray(const DataLayout &DL,
2717                                     const ConstantArray *CA, AsmPrinter &AP,
2718                                     const Constant *BaseCV, uint64_t Offset) {
2719   // See if we can aggregate some values.  Make sure it can be
2720   // represented as a series of bytes of the constant value.
2721   int Value = isRepeatedByteSequence(CA, DL);
2722 
2723   if (Value != -1) {
2724     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2725     AP.OutStreamer->emitFill(Bytes, Value);
2726   }
2727   else {
2728     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2729       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2730       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2731     }
2732   }
2733 }
2734 
2735 static void emitGlobalConstantVector(const DataLayout &DL,
2736                                      const ConstantVector *CV, AsmPrinter &AP) {
2737   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2738     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2739 
2740   unsigned Size = DL.getTypeAllocSize(CV->getType());
2741   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2742                          CV->getType()->getNumElements();
2743   if (unsigned Padding = Size - EmittedSize)
2744     AP.OutStreamer->emitZeros(Padding);
2745 }
2746 
2747 static void emitGlobalConstantStruct(const DataLayout &DL,
2748                                      const ConstantStruct *CS, AsmPrinter &AP,
2749                                      const Constant *BaseCV, uint64_t Offset) {
2750   // Print the fields in successive locations. Pad to align if needed!
2751   unsigned Size = DL.getTypeAllocSize(CS->getType());
2752   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2753   uint64_t SizeSoFar = 0;
2754   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2755     const Constant *Field = CS->getOperand(i);
2756 
2757     // Print the actual field value.
2758     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2759 
2760     // Check if padding is needed and insert one or more 0s.
2761     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2762     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2763                         - Layout->getElementOffset(i)) - FieldSize;
2764     SizeSoFar += FieldSize + PadSize;
2765 
2766     // Insert padding - this may include padding to increase the size of the
2767     // current field up to the ABI size (if the struct is not packed) as well
2768     // as padding to ensure that the next field starts at the right offset.
2769     AP.OutStreamer->emitZeros(PadSize);
2770   }
2771   assert(SizeSoFar == Layout->getSizeInBytes() &&
2772          "Layout of constant struct may be incorrect!");
2773 }
2774 
2775 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2776   assert(ET && "Unknown float type");
2777   APInt API = APF.bitcastToAPInt();
2778 
2779   // First print a comment with what we think the original floating-point value
2780   // should have been.
2781   if (AP.isVerbose()) {
2782     SmallString<8> StrVal;
2783     APF.toString(StrVal);
2784     ET->print(AP.OutStreamer->GetCommentOS());
2785     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2786   }
2787 
2788   // Now iterate through the APInt chunks, emitting them in endian-correct
2789   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2790   // floats).
2791   unsigned NumBytes = API.getBitWidth() / 8;
2792   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2793   const uint64_t *p = API.getRawData();
2794 
2795   // PPC's long double has odd notions of endianness compared to how LLVM
2796   // handles it: p[0] goes first for *big* endian on PPC.
2797   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2798     int Chunk = API.getNumWords() - 1;
2799 
2800     if (TrailingBytes)
2801       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2802 
2803     for (; Chunk >= 0; --Chunk)
2804       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2805   } else {
2806     unsigned Chunk;
2807     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2808       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2809 
2810     if (TrailingBytes)
2811       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2812   }
2813 
2814   // Emit the tail padding for the long double.
2815   const DataLayout &DL = AP.getDataLayout();
2816   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2817 }
2818 
2819 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2820   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2821 }
2822 
2823 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2824   const DataLayout &DL = AP.getDataLayout();
2825   unsigned BitWidth = CI->getBitWidth();
2826 
2827   // Copy the value as we may massage the layout for constants whose bit width
2828   // is not a multiple of 64-bits.
2829   APInt Realigned(CI->getValue());
2830   uint64_t ExtraBits = 0;
2831   unsigned ExtraBitsSize = BitWidth & 63;
2832 
2833   if (ExtraBitsSize) {
2834     // The bit width of the data is not a multiple of 64-bits.
2835     // The extra bits are expected to be at the end of the chunk of the memory.
2836     // Little endian:
2837     // * Nothing to be done, just record the extra bits to emit.
2838     // Big endian:
2839     // * Record the extra bits to emit.
2840     // * Realign the raw data to emit the chunks of 64-bits.
2841     if (DL.isBigEndian()) {
2842       // Basically the structure of the raw data is a chunk of 64-bits cells:
2843       //    0        1         BitWidth / 64
2844       // [chunk1][chunk2] ... [chunkN].
2845       // The most significant chunk is chunkN and it should be emitted first.
2846       // However, due to the alignment issue chunkN contains useless bits.
2847       // Realign the chunks so that they contain only useful information:
2848       // ExtraBits     0       1       (BitWidth / 64) - 1
2849       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2850       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2851       ExtraBits = Realigned.getRawData()[0] &
2852         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2853       Realigned.lshrInPlace(ExtraBitsSize);
2854     } else
2855       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2856   }
2857 
2858   // We don't expect assemblers to support integer data directives
2859   // for more than 64 bits, so we emit the data in at most 64-bit
2860   // quantities at a time.
2861   const uint64_t *RawData = Realigned.getRawData();
2862   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2863     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2864     AP.OutStreamer->emitIntValue(Val, 8);
2865   }
2866 
2867   if (ExtraBitsSize) {
2868     // Emit the extra bits after the 64-bits chunks.
2869 
2870     // Emit a directive that fills the expected size.
2871     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2872     Size -= (BitWidth / 64) * 8;
2873     assert(Size && Size * 8 >= ExtraBitsSize &&
2874            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2875            == ExtraBits && "Directive too small for extra bits.");
2876     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2877   }
2878 }
2879 
2880 /// Transform a not absolute MCExpr containing a reference to a GOT
2881 /// equivalent global, by a target specific GOT pc relative access to the
2882 /// final symbol.
2883 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2884                                          const Constant *BaseCst,
2885                                          uint64_t Offset) {
2886   // The global @foo below illustrates a global that uses a got equivalent.
2887   //
2888   //  @bar = global i32 42
2889   //  @gotequiv = private unnamed_addr constant i32* @bar
2890   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2891   //                             i64 ptrtoint (i32* @foo to i64))
2892   //                        to i32)
2893   //
2894   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2895   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2896   // form:
2897   //
2898   //  foo = cstexpr, where
2899   //    cstexpr := <gotequiv> - "." + <cst>
2900   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2901   //
2902   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2903   //
2904   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2905   //    gotpcrelcst := <offset from @foo base> + <cst>
2906   MCValue MV;
2907   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2908     return;
2909   const MCSymbolRefExpr *SymA = MV.getSymA();
2910   if (!SymA)
2911     return;
2912 
2913   // Check that GOT equivalent symbol is cached.
2914   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2915   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2916     return;
2917 
2918   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2919   if (!BaseGV)
2920     return;
2921 
2922   // Check for a valid base symbol
2923   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2924   const MCSymbolRefExpr *SymB = MV.getSymB();
2925 
2926   if (!SymB || BaseSym != &SymB->getSymbol())
2927     return;
2928 
2929   // Make sure to match:
2930   //
2931   //    gotpcrelcst := <offset from @foo base> + <cst>
2932   //
2933   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2934   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2935   // if the target knows how to encode it.
2936   int64_t GOTPCRelCst = Offset + MV.getConstant();
2937   if (GOTPCRelCst < 0)
2938     return;
2939   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2940     return;
2941 
2942   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2943   //
2944   //  bar:
2945   //    .long 42
2946   //  gotequiv:
2947   //    .quad bar
2948   //  foo:
2949   //    .long gotequiv - "." + <cst>
2950   //
2951   // is replaced by the target specific equivalent to:
2952   //
2953   //  bar:
2954   //    .long 42
2955   //  foo:
2956   //    .long bar@GOTPCREL+<gotpcrelcst>
2957   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2958   const GlobalVariable *GV = Result.first;
2959   int NumUses = (int)Result.second;
2960   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2961   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2962   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2963       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2964 
2965   // Update GOT equivalent usage information
2966   --NumUses;
2967   if (NumUses >= 0)
2968     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2969 }
2970 
2971 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2972                                    AsmPrinter &AP, const Constant *BaseCV,
2973                                    uint64_t Offset) {
2974   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2975 
2976   // Globals with sub-elements such as combinations of arrays and structs
2977   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2978   // constant symbol base and the current position with BaseCV and Offset.
2979   if (!BaseCV && CV->hasOneUse())
2980     BaseCV = dyn_cast<Constant>(CV->user_back());
2981 
2982   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2983     return AP.OutStreamer->emitZeros(Size);
2984 
2985   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2986     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2987 
2988     if (StoreSize <= 8) {
2989       if (AP.isVerbose())
2990         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2991                                                  CI->getZExtValue());
2992       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2993     } else {
2994       emitGlobalConstantLargeInt(CI, AP);
2995     }
2996 
2997     // Emit tail padding if needed
2998     if (Size != StoreSize)
2999       AP.OutStreamer->emitZeros(Size - StoreSize);
3000 
3001     return;
3002   }
3003 
3004   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
3005     return emitGlobalConstantFP(CFP, AP);
3006 
3007   if (isa<ConstantPointerNull>(CV)) {
3008     AP.OutStreamer->emitIntValue(0, Size);
3009     return;
3010   }
3011 
3012   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
3013     return emitGlobalConstantDataSequential(DL, CDS, AP);
3014 
3015   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
3016     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
3017 
3018   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
3019     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
3020 
3021   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
3022     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
3023     // vectors).
3024     if (CE->getOpcode() == Instruction::BitCast)
3025       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
3026 
3027     if (Size > 8) {
3028       // If the constant expression's size is greater than 64-bits, then we have
3029       // to emit the value in chunks. Try to constant fold the value and emit it
3030       // that way.
3031       Constant *New = ConstantFoldConstant(CE, DL);
3032       if (New != CE)
3033         return emitGlobalConstantImpl(DL, New, AP);
3034     }
3035   }
3036 
3037   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
3038     return emitGlobalConstantVector(DL, V, AP);
3039 
3040   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
3041   // thread the streamer with EmitValue.
3042   const MCExpr *ME = AP.lowerConstant(CV);
3043 
3044   // Since lowerConstant already folded and got rid of all IR pointer and
3045   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
3046   // directly.
3047   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
3048     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
3049 
3050   AP.OutStreamer->emitValue(ME, Size);
3051 }
3052 
3053 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
3054 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
3055   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3056   if (Size)
3057     emitGlobalConstantImpl(DL, CV, *this);
3058   else if (MAI->hasSubsectionsViaSymbols()) {
3059     // If the global has zero size, emit a single byte so that two labels don't
3060     // look like they are at the same location.
3061     OutStreamer->emitIntValue(0, 1);
3062   }
3063 }
3064 
3065 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
3066   // Target doesn't support this yet!
3067   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3068 }
3069 
3070 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
3071   if (Offset > 0)
3072     OS << '+' << Offset;
3073   else if (Offset < 0)
3074     OS << Offset;
3075 }
3076 
3077 void AsmPrinter::emitNops(unsigned N) {
3078   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
3079   for (; N; --N)
3080     EmitToStreamer(*OutStreamer, Nop);
3081 }
3082 
3083 //===----------------------------------------------------------------------===//
3084 // Symbol Lowering Routines.
3085 //===----------------------------------------------------------------------===//
3086 
3087 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3088   return OutContext.createTempSymbol(Name, true);
3089 }
3090 
3091 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3092   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
3093 }
3094 
3095 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3096   return MMI->getAddrLabelSymbol(BB);
3097 }
3098 
3099 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3100 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3101   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3102     const MachineConstantPoolEntry &CPE =
3103         MF->getConstantPool()->getConstants()[CPID];
3104     if (!CPE.isMachineConstantPoolEntry()) {
3105       const DataLayout &DL = MF->getDataLayout();
3106       SectionKind Kind = CPE.getSectionKind(&DL);
3107       const Constant *C = CPE.Val.ConstVal;
3108       Align Alignment = CPE.Alignment;
3109       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3110               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3111                                                          Alignment))) {
3112         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3113           if (Sym->isUndefined())
3114             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3115           return Sym;
3116         }
3117       }
3118     }
3119   }
3120 
3121   const DataLayout &DL = getDataLayout();
3122   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3123                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3124                                       Twine(CPID));
3125 }
3126 
3127 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3128 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3129   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3130 }
3131 
3132 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3133 /// FIXME: privatize to AsmPrinter.
3134 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3135   const DataLayout &DL = getDataLayout();
3136   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3137                                       Twine(getFunctionNumber()) + "_" +
3138                                       Twine(UID) + "_set_" + Twine(MBBID));
3139 }
3140 
3141 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3142                                                    StringRef Suffix) const {
3143   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3144 }
3145 
3146 /// Return the MCSymbol for the specified ExternalSymbol.
3147 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3148   SmallString<60> NameStr;
3149   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3150   return OutContext.getOrCreateSymbol(NameStr);
3151 }
3152 
3153 /// PrintParentLoopComment - Print comments about parent loops of this one.
3154 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3155                                    unsigned FunctionNumber) {
3156   if (!Loop) return;
3157   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3158   OS.indent(Loop->getLoopDepth()*2)
3159     << "Parent Loop BB" << FunctionNumber << "_"
3160     << Loop->getHeader()->getNumber()
3161     << " Depth=" << Loop->getLoopDepth() << '\n';
3162 }
3163 
3164 /// PrintChildLoopComment - Print comments about child loops within
3165 /// the loop for this basic block, with nesting.
3166 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3167                                   unsigned FunctionNumber) {
3168   // Add child loop information
3169   for (const MachineLoop *CL : *Loop) {
3170     OS.indent(CL->getLoopDepth()*2)
3171       << "Child Loop BB" << FunctionNumber << "_"
3172       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3173       << '\n';
3174     PrintChildLoopComment(OS, CL, FunctionNumber);
3175   }
3176 }
3177 
3178 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3179 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3180                                        const MachineLoopInfo *LI,
3181                                        const AsmPrinter &AP) {
3182   // Add loop depth information
3183   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3184   if (!Loop) return;
3185 
3186   MachineBasicBlock *Header = Loop->getHeader();
3187   assert(Header && "No header for loop");
3188 
3189   // If this block is not a loop header, just print out what is the loop header
3190   // and return.
3191   if (Header != &MBB) {
3192     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3193                                Twine(AP.getFunctionNumber())+"_" +
3194                                Twine(Loop->getHeader()->getNumber())+
3195                                " Depth="+Twine(Loop->getLoopDepth()));
3196     return;
3197   }
3198 
3199   // Otherwise, it is a loop header.  Print out information about child and
3200   // parent loops.
3201   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3202 
3203   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3204 
3205   OS << "=>";
3206   OS.indent(Loop->getLoopDepth()*2-2);
3207 
3208   OS << "This ";
3209   if (Loop->isInnermost())
3210     OS << "Inner ";
3211   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3212 
3213   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3214 }
3215 
3216 /// emitBasicBlockStart - This method prints the label for the specified
3217 /// MachineBasicBlock, an alignment (if present) and a comment describing
3218 /// it if appropriate.
3219 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3220   // End the previous funclet and start a new one.
3221   if (MBB.isEHFuncletEntry()) {
3222     for (const HandlerInfo &HI : Handlers) {
3223       HI.Handler->endFunclet();
3224       HI.Handler->beginFunclet(MBB);
3225     }
3226   }
3227 
3228   // Emit an alignment directive for this block, if needed.
3229   const Align Alignment = MBB.getAlignment();
3230   if (Alignment != Align(1))
3231     emitAlignment(Alignment);
3232 
3233   // Switch to a new section if this basic block must begin a section. The
3234   // entry block is always placed in the function section and is handled
3235   // separately.
3236   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3237     OutStreamer->SwitchSection(
3238         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3239                                                             MBB, TM));
3240     CurrentSectionBeginSym = MBB.getSymbol();
3241   }
3242 
3243   // If the block has its address taken, emit any labels that were used to
3244   // reference the block.  It is possible that there is more than one label
3245   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3246   // the references were generated.
3247   if (MBB.hasAddressTaken()) {
3248     const BasicBlock *BB = MBB.getBasicBlock();
3249     if (isVerbose())
3250       OutStreamer->AddComment("Block address taken");
3251 
3252     // MBBs can have their address taken as part of CodeGen without having
3253     // their corresponding BB's address taken in IR
3254     if (BB->hasAddressTaken())
3255       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3256         OutStreamer->emitLabel(Sym);
3257   }
3258 
3259   // Print some verbose block comments.
3260   if (isVerbose()) {
3261     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3262       if (BB->hasName()) {
3263         BB->printAsOperand(OutStreamer->GetCommentOS(),
3264                            /*PrintType=*/false, BB->getModule());
3265         OutStreamer->GetCommentOS() << '\n';
3266       }
3267     }
3268 
3269     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3270     emitBasicBlockLoopComments(MBB, MLI, *this);
3271   }
3272 
3273   // Print the main label for the block.
3274   if (shouldEmitLabelForBasicBlock(MBB)) {
3275     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3276       OutStreamer->AddComment("Label of block must be emitted");
3277     OutStreamer->emitLabel(MBB.getSymbol());
3278   } else {
3279     if (isVerbose()) {
3280       // NOTE: Want this comment at start of line, don't emit with AddComment.
3281       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3282                                   false);
3283     }
3284   }
3285 
3286   if (MBB.isEHCatchretTarget() &&
3287       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3288     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3289   }
3290 
3291   // With BB sections, each basic block must handle CFI information on its own
3292   // if it begins a section (Entry block is handled separately by
3293   // AsmPrinterHandler::beginFunction).
3294   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3295     for (const HandlerInfo &HI : Handlers)
3296       HI.Handler->beginBasicBlock(MBB);
3297 }
3298 
3299 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3300   // Check if CFI information needs to be updated for this MBB with basic block
3301   // sections.
3302   if (MBB.isEndSection())
3303     for (const HandlerInfo &HI : Handlers)
3304       HI.Handler->endBasicBlock(MBB);
3305 }
3306 
3307 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3308                                 bool IsDefinition) const {
3309   MCSymbolAttr Attr = MCSA_Invalid;
3310 
3311   switch (Visibility) {
3312   default: break;
3313   case GlobalValue::HiddenVisibility:
3314     if (IsDefinition)
3315       Attr = MAI->getHiddenVisibilityAttr();
3316     else
3317       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3318     break;
3319   case GlobalValue::ProtectedVisibility:
3320     Attr = MAI->getProtectedVisibilityAttr();
3321     break;
3322   }
3323 
3324   if (Attr != MCSA_Invalid)
3325     OutStreamer->emitSymbolAttribute(Sym, Attr);
3326 }
3327 
3328 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3329     const MachineBasicBlock &MBB) const {
3330   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3331   // in the labels mode (option `=labels`) and every section beginning in the
3332   // sections mode (`=all` and `=list=`).
3333   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3334     return true;
3335   // A label is needed for any block with at least one predecessor (when that
3336   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3337   // entry, or if a label is forced).
3338   return !MBB.pred_empty() &&
3339          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3340           MBB.hasLabelMustBeEmitted());
3341 }
3342 
3343 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3344 /// exactly one predecessor and the control transfer mechanism between
3345 /// the predecessor and this block is a fall-through.
3346 bool AsmPrinter::
3347 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3348   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3349   // then nothing falls through to it.
3350   if (MBB->isEHPad() || MBB->pred_empty())
3351     return false;
3352 
3353   // If there isn't exactly one predecessor, it can't be a fall through.
3354   if (MBB->pred_size() > 1)
3355     return false;
3356 
3357   // The predecessor has to be immediately before this block.
3358   MachineBasicBlock *Pred = *MBB->pred_begin();
3359   if (!Pred->isLayoutSuccessor(MBB))
3360     return false;
3361 
3362   // If the block is completely empty, then it definitely does fall through.
3363   if (Pred->empty())
3364     return true;
3365 
3366   // Check the terminators in the previous blocks
3367   for (const auto &MI : Pred->terminators()) {
3368     // If it is not a simple branch, we are in a table somewhere.
3369     if (!MI.isBranch() || MI.isIndirectBranch())
3370       return false;
3371 
3372     // If we are the operands of one of the branches, this is not a fall
3373     // through. Note that targets with delay slots will usually bundle
3374     // terminators with the delay slot instruction.
3375     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3376       if (OP->isJTI())
3377         return false;
3378       if (OP->isMBB() && OP->getMBB() == MBB)
3379         return false;
3380     }
3381   }
3382 
3383   return true;
3384 }
3385 
3386 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3387   if (!S.usesMetadata())
3388     return nullptr;
3389 
3390   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3391   gcp_map_type::iterator GCPI = GCMap.find(&S);
3392   if (GCPI != GCMap.end())
3393     return GCPI->second.get();
3394 
3395   auto Name = S.getName();
3396 
3397   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3398        GCMetadataPrinterRegistry::entries())
3399     if (Name == GCMetaPrinter.getName()) {
3400       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3401       GMP->S = &S;
3402       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3403       return IterBool.first->second.get();
3404     }
3405 
3406   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3407 }
3408 
3409 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3410   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3411   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3412   bool NeedsDefault = false;
3413   if (MI->begin() == MI->end())
3414     // No GC strategy, use the default format.
3415     NeedsDefault = true;
3416   else
3417     for (auto &I : *MI) {
3418       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3419         if (MP->emitStackMaps(SM, *this))
3420           continue;
3421       // The strategy doesn't have printer or doesn't emit custom stack maps.
3422       // Use the default format.
3423       NeedsDefault = true;
3424     }
3425 
3426   if (NeedsDefault)
3427     SM.serializeToStackMapSection();
3428 }
3429 
3430 /// Pin vtable to this file.
3431 AsmPrinterHandler::~AsmPrinterHandler() = default;
3432 
3433 void AsmPrinterHandler::markFunctionEnd() {}
3434 
3435 // In the binary's "xray_instr_map" section, an array of these function entries
3436 // describes each instrumentation point.  When XRay patches your code, the index
3437 // into this table will be given to your handler as a patch point identifier.
3438 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3439   auto Kind8 = static_cast<uint8_t>(Kind);
3440   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3441   Out->emitBinaryData(
3442       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3443   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3444   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3445   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3446   Out->emitZeros(Padding);
3447 }
3448 
3449 void AsmPrinter::emitXRayTable() {
3450   if (Sleds.empty())
3451     return;
3452 
3453   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3454   const Function &F = MF->getFunction();
3455   MCSection *InstMap = nullptr;
3456   MCSection *FnSledIndex = nullptr;
3457   const Triple &TT = TM.getTargetTriple();
3458   // Use PC-relative addresses on all targets.
3459   if (TT.isOSBinFormatELF()) {
3460     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3461     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3462     StringRef GroupName;
3463     if (F.hasComdat()) {
3464       Flags |= ELF::SHF_GROUP;
3465       GroupName = F.getComdat()->getName();
3466     }
3467     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3468                                        Flags, 0, GroupName, F.hasComdat(),
3469                                        MCSection::NonUniqueID, LinkedToSym);
3470 
3471     if (!TM.Options.XRayOmitFunctionIndex)
3472       FnSledIndex = OutContext.getELFSection(
3473           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3474           GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
3475   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3476     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3477                                          SectionKind::getReadOnlyWithRel());
3478     if (!TM.Options.XRayOmitFunctionIndex)
3479       FnSledIndex = OutContext.getMachOSection(
3480           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3481   } else {
3482     llvm_unreachable("Unsupported target");
3483   }
3484 
3485   auto WordSizeBytes = MAI->getCodePointerSize();
3486 
3487   // Now we switch to the instrumentation map section. Because this is done
3488   // per-function, we are able to create an index entry that will represent the
3489   // range of sleds associated with a function.
3490   auto &Ctx = OutContext;
3491   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3492   OutStreamer->SwitchSection(InstMap);
3493   OutStreamer->emitLabel(SledsStart);
3494   for (const auto &Sled : Sleds) {
3495     MCSymbol *Dot = Ctx.createTempSymbol();
3496     OutStreamer->emitLabel(Dot);
3497     OutStreamer->emitValueImpl(
3498         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3499                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3500         WordSizeBytes);
3501     OutStreamer->emitValueImpl(
3502         MCBinaryExpr::createSub(
3503             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3504             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3505                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3506                                     Ctx),
3507             Ctx),
3508         WordSizeBytes);
3509     Sled.emit(WordSizeBytes, OutStreamer.get());
3510   }
3511   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3512   OutStreamer->emitLabel(SledsEnd);
3513 
3514   // We then emit a single entry in the index per function. We use the symbols
3515   // that bound the instrumentation map as the range for a specific function.
3516   // Each entry here will be 2 * word size aligned, as we're writing down two
3517   // pointers. This should work for both 32-bit and 64-bit platforms.
3518   if (FnSledIndex) {
3519     OutStreamer->SwitchSection(FnSledIndex);
3520     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3521     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3522     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3523     OutStreamer->SwitchSection(PrevSection);
3524   }
3525   Sleds.clear();
3526 }
3527 
3528 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3529                             SledKind Kind, uint8_t Version) {
3530   const Function &F = MI.getMF()->getFunction();
3531   auto Attr = F.getFnAttribute("function-instrument");
3532   bool LogArgs = F.hasFnAttribute("xray-log-args");
3533   bool AlwaysInstrument =
3534     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3535   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3536     Kind = SledKind::LOG_ARGS_ENTER;
3537   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3538                                        AlwaysInstrument, &F, Version});
3539 }
3540 
3541 void AsmPrinter::emitPatchableFunctionEntries() {
3542   const Function &F = MF->getFunction();
3543   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3544   (void)F.getFnAttribute("patchable-function-prefix")
3545       .getValueAsString()
3546       .getAsInteger(10, PatchableFunctionPrefix);
3547   (void)F.getFnAttribute("patchable-function-entry")
3548       .getValueAsString()
3549       .getAsInteger(10, PatchableFunctionEntry);
3550   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3551     return;
3552   const unsigned PointerSize = getPointerSize();
3553   if (TM.getTargetTriple().isOSBinFormatELF()) {
3554     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3555     const MCSymbolELF *LinkedToSym = nullptr;
3556     StringRef GroupName;
3557 
3558     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3559     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3560     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3561       Flags |= ELF::SHF_LINK_ORDER;
3562       if (F.hasComdat()) {
3563         Flags |= ELF::SHF_GROUP;
3564         GroupName = F.getComdat()->getName();
3565       }
3566       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3567     }
3568     OutStreamer->SwitchSection(OutContext.getELFSection(
3569         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3570         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
3571     emitAlignment(Align(PointerSize));
3572     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3573   }
3574 }
3575 
3576 uint16_t AsmPrinter::getDwarfVersion() const {
3577   return OutStreamer->getContext().getDwarfVersion();
3578 }
3579 
3580 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3581   OutStreamer->getContext().setDwarfVersion(Version);
3582 }
3583 
3584 bool AsmPrinter::isDwarf64() const {
3585   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3586 }
3587 
3588 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3589   return dwarf::getDwarfOffsetByteSize(
3590       OutStreamer->getContext().getDwarfFormat());
3591 }
3592 
3593 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3594   return dwarf::getUnitLengthFieldByteSize(
3595       OutStreamer->getContext().getDwarfFormat());
3596 }
3597