1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/TinyPtrVector.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/ConstantFolding.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/BinaryFormat/COFF.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/BinaryFormat/ELF.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/GCMetadataPrinter.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineJumpTableInfo.h"
51 #include "llvm/CodeGen/MachineLoopInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/Config/config.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GCStrategy.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalIFunc.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/IR/ValueHandle.h"
86 #include "llvm/MC/MCAsmInfo.h"
87 #include "llvm/MC/MCContext.h"
88 #include "llvm/MC/MCDirectives.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCStreamer.h"
96 #include "llvm/MC/MCSubtargetInfo.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/MC/MCSymbolELF.h"
99 #include "llvm/MC/MCTargetOptions.h"
100 #include "llvm/MC/MCValue.h"
101 #include "llvm/MC/SectionKind.h"
102 #include "llvm/Pass.h"
103 #include "llvm/Remarks/RemarkStreamer.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/FileSystem.h"
108 #include "llvm/Support/Format.h"
109 #include "llvm/Support/MathExtras.h"
110 #include "llvm/Support/Path.h"
111 #include "llvm/Support/Timer.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetLoweringObjectFile.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cinttypes>
119 #include <cstdint>
120 #include <iterator>
121 #include <memory>
122 #include <string>
123 #include <utility>
124 #include <vector>
125 
126 using namespace llvm;
127 
128 #define DEBUG_TYPE "asm-printer"
129 
130 const char DWARFGroupName[] = "dwarf";
131 const char DWARFGroupDescription[] = "DWARF Emission";
132 const char DbgTimerName[] = "emit";
133 const char DbgTimerDescription[] = "Debug Info Emission";
134 const char EHTimerName[] = "write_exception";
135 const char EHTimerDescription[] = "DWARF Exception Writer";
136 const char CFGuardName[] = "Control Flow Guard";
137 const char CFGuardDescription[] = "Control Flow Guard";
138 const char CodeViewLineTablesGroupName[] = "linetables";
139 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
140 const char PPTimerName[] = "emit";
141 const char PPTimerDescription[] = "Pseudo Probe Emission";
142 const char PPGroupName[] = "pseudo probe";
143 const char PPGroupDescription[] = "Pseudo Probe Emission";
144 
145 STATISTIC(EmittedInsts, "Number of machine instrs printed");
146 
147 char AsmPrinter::ID = 0;
148 
149 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
150 
151 static gcp_map_type &getGCMap(void *&P) {
152   if (!P)
153     P = new gcp_map_type();
154   return *(gcp_map_type*)P;
155 }
156 
157 namespace {
158 class AddrLabelMapCallbackPtr final : CallbackVH {
159   AddrLabelMap *Map = nullptr;
160 
161 public:
162   AddrLabelMapCallbackPtr() = default;
163   AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {}
164 
165   void setPtr(BasicBlock *BB) {
166     ValueHandleBase::operator=(BB);
167   }
168 
169   void setMap(AddrLabelMap *map) { Map = map; }
170 
171   void deleted() override;
172   void allUsesReplacedWith(Value *V2) override;
173 };
174 } // namespace
175 
176 class llvm::AddrLabelMap {
177   MCContext &Context;
178   struct AddrLabelSymEntry {
179     /// The symbols for the label.
180     TinyPtrVector<MCSymbol *> Symbols;
181 
182     Function *Fn;   // The containing function of the BasicBlock.
183     unsigned Index; // The index in BBCallbacks for the BasicBlock.
184   };
185 
186   DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols;
187 
188   /// Callbacks for the BasicBlock's that we have entries for.  We use this so
189   /// we get notified if a block is deleted or RAUWd.
190   std::vector<AddrLabelMapCallbackPtr> BBCallbacks;
191 
192   /// This is a per-function list of symbols whose corresponding BasicBlock got
193   /// deleted.  These symbols need to be emitted at some point in the file, so
194   /// AsmPrinter emits them after the function body.
195   DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>
196       DeletedAddrLabelsNeedingEmission;
197 
198 public:
199   AddrLabelMap(MCContext &context) : Context(context) {}
200 
201   ~AddrLabelMap() {
202     assert(DeletedAddrLabelsNeedingEmission.empty() &&
203            "Some labels for deleted blocks never got emitted");
204   }
205 
206   ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB);
207 
208   void takeDeletedSymbolsForFunction(Function *F,
209                                      std::vector<MCSymbol *> &Result);
210 
211   void UpdateForDeletedBlock(BasicBlock *BB);
212   void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New);
213 };
214 
215 ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) {
216   assert(BB->hasAddressTaken() &&
217          "Shouldn't get label for block without address taken");
218   AddrLabelSymEntry &Entry = AddrLabelSymbols[BB];
219 
220   // If we already had an entry for this block, just return it.
221   if (!Entry.Symbols.empty()) {
222     assert(BB->getParent() == Entry.Fn && "Parent changed");
223     return Entry.Symbols;
224   }
225 
226   // Otherwise, this is a new entry, create a new symbol for it and add an
227   // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd.
228   BBCallbacks.emplace_back(BB);
229   BBCallbacks.back().setMap(this);
230   Entry.Index = BBCallbacks.size() - 1;
231   Entry.Fn = BB->getParent();
232   MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol()
233                                         : Context.createTempSymbol();
234   Entry.Symbols.push_back(Sym);
235   return Entry.Symbols;
236 }
237 
238 /// If we have any deleted symbols for F, return them.
239 void AddrLabelMap::takeDeletedSymbolsForFunction(
240     Function *F, std::vector<MCSymbol *> &Result) {
241   DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I =
242       DeletedAddrLabelsNeedingEmission.find(F);
243 
244   // If there are no entries for the function, just return.
245   if (I == DeletedAddrLabelsNeedingEmission.end())
246     return;
247 
248   // Otherwise, take the list.
249   std::swap(Result, I->second);
250   DeletedAddrLabelsNeedingEmission.erase(I);
251 }
252 
253 //===- Address of Block Management ----------------------------------------===//
254 
255 ArrayRef<MCSymbol *>
256 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) {
257   // Lazily create AddrLabelSymbols.
258   if (!AddrLabelSymbols)
259     AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext);
260   return AddrLabelSymbols->getAddrLabelSymbolToEmit(
261       const_cast<BasicBlock *>(BB));
262 }
263 
264 void AsmPrinter::takeDeletedSymbolsForFunction(
265     const Function *F, std::vector<MCSymbol *> &Result) {
266   // If no blocks have had their addresses taken, we're done.
267   if (!AddrLabelSymbols)
268     return;
269   return AddrLabelSymbols->takeDeletedSymbolsForFunction(
270       const_cast<Function *>(F), Result);
271 }
272 
273 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) {
274   // If the block got deleted, there is no need for the symbol.  If the symbol
275   // was already emitted, we can just forget about it, otherwise we need to
276   // queue it up for later emission when the function is output.
277   AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]);
278   AddrLabelSymbols.erase(BB);
279   assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?");
280   BBCallbacks[Entry.Index] = nullptr; // Clear the callback.
281 
282 #if !LLVM_MEMORY_SANITIZER_BUILD
283   // BasicBlock is destroyed already, so this access is UB detectable by msan.
284   assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) &&
285          "Block/parent mismatch");
286 #endif
287 
288   for (MCSymbol *Sym : Entry.Symbols) {
289     if (Sym->isDefined())
290       return;
291 
292     // If the block is not yet defined, we need to emit it at the end of the
293     // function.  Add the symbol to the DeletedAddrLabelsNeedingEmission list
294     // for the containing Function.  Since the block is being deleted, its
295     // parent may already be removed, we have to get the function from 'Entry'.
296     DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym);
297   }
298 }
299 
300 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) {
301   // Get the entry for the RAUW'd block and remove it from our map.
302   AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]);
303   AddrLabelSymbols.erase(Old);
304   assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?");
305 
306   AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New];
307 
308   // If New is not address taken, just move our symbol over to it.
309   if (NewEntry.Symbols.empty()) {
310     BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback.
311     NewEntry = std::move(OldEntry);          // Set New's entry.
312     return;
313   }
314 
315   BBCallbacks[OldEntry.Index] = nullptr; // Update the callback.
316 
317   // Otherwise, we need to add the old symbols to the new block's set.
318   llvm::append_range(NewEntry.Symbols, OldEntry.Symbols);
319 }
320 
321 void AddrLabelMapCallbackPtr::deleted() {
322   Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr()));
323 }
324 
325 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) {
326   Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2));
327 }
328 
329 /// getGVAlignment - Return the alignment to use for the specified global
330 /// value.  This rounds up to the preferred alignment if possible and legal.
331 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
332                                  Align InAlign) {
333   Align Alignment;
334   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
335     Alignment = DL.getPreferredAlign(GVar);
336 
337   // If InAlign is specified, round it to it.
338   if (InAlign > Alignment)
339     Alignment = InAlign;
340 
341   // If the GV has a specified alignment, take it into account.
342   const MaybeAlign GVAlign(GV->getAlign());
343   if (!GVAlign)
344     return Alignment;
345 
346   assert(GVAlign && "GVAlign must be set");
347 
348   // If the GVAlign is larger than NumBits, or if we are required to obey
349   // NumBits because the GV has an assigned section, obey it.
350   if (*GVAlign > Alignment || GV->hasSection())
351     Alignment = *GVAlign;
352   return Alignment;
353 }
354 
355 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
356     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
357       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
358   VerboseAsm = OutStreamer->isVerboseAsm();
359 }
360 
361 AsmPrinter::~AsmPrinter() {
362   assert(!DD && Handlers.size() == NumUserHandlers &&
363          "Debug/EH info didn't get finalized");
364 
365   if (GCMetadataPrinters) {
366     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
367 
368     delete &GCMap;
369     GCMetadataPrinters = nullptr;
370   }
371 }
372 
373 bool AsmPrinter::isPositionIndependent() const {
374   return TM.isPositionIndependent();
375 }
376 
377 /// getFunctionNumber - Return a unique ID for the current function.
378 unsigned AsmPrinter::getFunctionNumber() const {
379   return MF->getFunctionNumber();
380 }
381 
382 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
383   return *TM.getObjFileLowering();
384 }
385 
386 const DataLayout &AsmPrinter::getDataLayout() const {
387   return MMI->getModule()->getDataLayout();
388 }
389 
390 // Do not use the cached DataLayout because some client use it without a Module
391 // (dsymutil, llvm-dwarfdump).
392 unsigned AsmPrinter::getPointerSize() const {
393   return TM.getPointerSize(0); // FIXME: Default address space
394 }
395 
396 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
397   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
398   return MF->getSubtarget<MCSubtargetInfo>();
399 }
400 
401 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
402   S.emitInstruction(Inst, getSubtargetInfo());
403 }
404 
405 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
406   if (DD) {
407     assert(OutStreamer->hasRawTextSupport() &&
408            "Expected assembly output mode.");
409     // This is NVPTX specific and it's unclear why.
410     // PR51079: If we have code without debug information we need to give up.
411     DISubprogram *MFSP = MF.getFunction().getSubprogram();
412     if (!MFSP)
413       return;
414     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
415   }
416 }
417 
418 /// getCurrentSection() - Return the current section we are emitting to.
419 const MCSection *AsmPrinter::getCurrentSection() const {
420   return OutStreamer->getCurrentSectionOnly();
421 }
422 
423 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
424   AU.setPreservesAll();
425   MachineFunctionPass::getAnalysisUsage(AU);
426   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
427   AU.addRequired<GCModuleInfo>();
428 }
429 
430 bool AsmPrinter::doInitialization(Module &M) {
431   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
432   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
433   HasSplitStack = false;
434   HasNoSplitStack = false;
435 
436   AddrLabelSymbols = nullptr;
437 
438   // Initialize TargetLoweringObjectFile.
439   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
440     .Initialize(OutContext, TM);
441 
442   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
443       .getModuleMetadata(M);
444 
445   OutStreamer->initSections(false, *TM.getMCSubtargetInfo());
446 
447   // Emit the version-min deployment target directive if needed.
448   //
449   // FIXME: If we end up with a collection of these sorts of Darwin-specific
450   // or ELF-specific things, it may make sense to have a platform helper class
451   // that will work with the target helper class. For now keep it here, as the
452   // alternative is duplicated code in each of the target asm printers that
453   // use the directive, where it would need the same conditionalization
454   // anyway.
455   const Triple &Target = TM.getTargetTriple();
456   Triple TVT(M.getDarwinTargetVariantTriple());
457   OutStreamer->emitVersionForTarget(
458       Target, M.getSDKVersion(),
459       M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT,
460       M.getDarwinTargetVariantSDKVersion());
461 
462   // Allow the target to emit any magic that it wants at the start of the file.
463   emitStartOfAsmFile(M);
464 
465   // Very minimal debug info. It is ignored if we emit actual debug info. If we
466   // don't, this at least helps the user find where a global came from.
467   if (MAI->hasSingleParameterDotFile()) {
468     // .file "foo.c"
469 
470     SmallString<128> FileName;
471     if (MAI->hasBasenameOnlyForFileDirective())
472       FileName = llvm::sys::path::filename(M.getSourceFileName());
473     else
474       FileName = M.getSourceFileName();
475     if (MAI->hasFourStringsDotFile()) {
476 #ifdef PACKAGE_VENDOR
477       const char VerStr[] =
478           PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION;
479 #else
480       const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION;
481 #endif
482       // TODO: Add timestamp and description.
483       OutStreamer->emitFileDirective(FileName, VerStr, "", "");
484     } else {
485       OutStreamer->emitFileDirective(FileName);
486     }
487   }
488 
489   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
490   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
491   for (auto &I : *MI)
492     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
493       MP->beginAssembly(M, *MI, *this);
494 
495   // Emit module-level inline asm if it exists.
496   if (!M.getModuleInlineAsm().empty()) {
497     OutStreamer->AddComment("Start of file scope inline assembly");
498     OutStreamer->AddBlankLine();
499     emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(),
500                   TM.Options.MCOptions);
501     OutStreamer->AddComment("End of file scope inline assembly");
502     OutStreamer->AddBlankLine();
503   }
504 
505   if (MAI->doesSupportDebugInformation()) {
506     bool EmitCodeView = M.getCodeViewFlag();
507     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
508       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
509                             DbgTimerName, DbgTimerDescription,
510                             CodeViewLineTablesGroupName,
511                             CodeViewLineTablesGroupDescription);
512     }
513     if (!EmitCodeView || M.getDwarfVersion()) {
514       if (MMI->hasDebugInfo()) {
515         DD = new DwarfDebug(this);
516         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
517                               DbgTimerDescription, DWARFGroupName,
518                               DWARFGroupDescription);
519       }
520     }
521   }
522 
523   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
524     PP = new PseudoProbeHandler(this);
525     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
526                           PPTimerDescription, PPGroupName, PPGroupDescription);
527   }
528 
529   switch (MAI->getExceptionHandlingType()) {
530   case ExceptionHandling::None:
531     // We may want to emit CFI for debug.
532     LLVM_FALLTHROUGH;
533   case ExceptionHandling::SjLj:
534   case ExceptionHandling::DwarfCFI:
535   case ExceptionHandling::ARM:
536     for (auto &F : M.getFunctionList()) {
537       if (getFunctionCFISectionType(F) != CFISection::None)
538         ModuleCFISection = getFunctionCFISectionType(F);
539       // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
540       // the module needs .eh_frame. If we have found that case, we are done.
541       if (ModuleCFISection == CFISection::EH)
542         break;
543     }
544     assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
545            ModuleCFISection != CFISection::EH);
546     break;
547   default:
548     break;
549   }
550 
551   EHStreamer *ES = nullptr;
552   switch (MAI->getExceptionHandlingType()) {
553   case ExceptionHandling::None:
554     if (!needsCFIForDebug())
555       break;
556     LLVM_FALLTHROUGH;
557   case ExceptionHandling::SjLj:
558   case ExceptionHandling::DwarfCFI:
559     ES = new DwarfCFIException(this);
560     break;
561   case ExceptionHandling::ARM:
562     ES = new ARMException(this);
563     break;
564   case ExceptionHandling::WinEH:
565     switch (MAI->getWinEHEncodingType()) {
566     default: llvm_unreachable("unsupported unwinding information encoding");
567     case WinEH::EncodingType::Invalid:
568       break;
569     case WinEH::EncodingType::X86:
570     case WinEH::EncodingType::Itanium:
571       ES = new WinException(this);
572       break;
573     }
574     break;
575   case ExceptionHandling::Wasm:
576     ES = new WasmException(this);
577     break;
578   case ExceptionHandling::AIX:
579     ES = new AIXException(this);
580     break;
581   }
582   if (ES)
583     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
584                           EHTimerDescription, DWARFGroupName,
585                           DWARFGroupDescription);
586 
587   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
588   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
589     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
590                           CFGuardDescription, DWARFGroupName,
591                           DWARFGroupDescription);
592 
593   for (const HandlerInfo &HI : Handlers) {
594     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
595                        HI.TimerGroupDescription, TimePassesIsEnabled);
596     HI.Handler->beginModule(&M);
597   }
598 
599   return false;
600 }
601 
602 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
603   if (!MAI.hasWeakDefCanBeHiddenDirective())
604     return false;
605 
606   return GV->canBeOmittedFromSymbolTable();
607 }
608 
609 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
610   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
611   switch (Linkage) {
612   case GlobalValue::CommonLinkage:
613   case GlobalValue::LinkOnceAnyLinkage:
614   case GlobalValue::LinkOnceODRLinkage:
615   case GlobalValue::WeakAnyLinkage:
616   case GlobalValue::WeakODRLinkage:
617     if (MAI->hasWeakDefDirective()) {
618       // .globl _foo
619       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
620 
621       if (!canBeHidden(GV, *MAI))
622         // .weak_definition _foo
623         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
624       else
625         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
626     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
627       // .globl _foo
628       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
629       //NOTE: linkonce is handled by the section the symbol was assigned to.
630     } else {
631       // .weak _foo
632       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
633     }
634     return;
635   case GlobalValue::ExternalLinkage:
636     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
637     return;
638   case GlobalValue::PrivateLinkage:
639   case GlobalValue::InternalLinkage:
640     return;
641   case GlobalValue::ExternalWeakLinkage:
642   case GlobalValue::AvailableExternallyLinkage:
643   case GlobalValue::AppendingLinkage:
644     llvm_unreachable("Should never emit this");
645   }
646   llvm_unreachable("Unknown linkage type!");
647 }
648 
649 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
650                                    const GlobalValue *GV) const {
651   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
652 }
653 
654 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
655   return TM.getSymbol(GV);
656 }
657 
658 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
659   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
660   // exact definion (intersection of GlobalValue::hasExactDefinition() and
661   // !isInterposable()). These linkages include: external, appending, internal,
662   // private. It may be profitable to use a local alias for external. The
663   // assembler would otherwise be conservative and assume a global default
664   // visibility symbol can be interposable, even if the code generator already
665   // assumed it.
666   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
667     const Module &M = *GV.getParent();
668     if (TM.getRelocationModel() != Reloc::Static &&
669         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
670       return getSymbolWithGlobalValueBase(&GV, "$local");
671   }
672   return TM.getSymbol(&GV);
673 }
674 
675 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
676 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
677   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
678   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
679          "No emulated TLS variables in the common section");
680 
681   // Never emit TLS variable xyz in emulated TLS model.
682   // The initialization value is in __emutls_t.xyz instead of xyz.
683   if (IsEmuTLSVar)
684     return;
685 
686   if (GV->hasInitializer()) {
687     // Check to see if this is a special global used by LLVM, if so, emit it.
688     if (emitSpecialLLVMGlobal(GV))
689       return;
690 
691     // Skip the emission of global equivalents. The symbol can be emitted later
692     // on by emitGlobalGOTEquivs in case it turns out to be needed.
693     if (GlobalGOTEquivs.count(getSymbol(GV)))
694       return;
695 
696     if (isVerbose()) {
697       // When printing the control variable __emutls_v.*,
698       // we don't need to print the original TLS variable name.
699       GV->printAsOperand(OutStreamer->GetCommentOS(),
700                      /*PrintType=*/false, GV->getParent());
701       OutStreamer->GetCommentOS() << '\n';
702     }
703   }
704 
705   MCSymbol *GVSym = getSymbol(GV);
706   MCSymbol *EmittedSym = GVSym;
707 
708   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
709   // attributes.
710   // GV's or GVSym's attributes will be used for the EmittedSym.
711   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
712 
713   if (!GV->hasInitializer())   // External globals require no extra code.
714     return;
715 
716   GVSym->redefineIfPossible();
717   if (GVSym->isDefined() || GVSym->isVariable())
718     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
719                                         "' is already defined");
720 
721   if (MAI->hasDotTypeDotSizeDirective())
722     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
723 
724   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
725 
726   const DataLayout &DL = GV->getParent()->getDataLayout();
727   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
728 
729   // If the alignment is specified, we *must* obey it.  Overaligning a global
730   // with a specified alignment is a prompt way to break globals emitted to
731   // sections and expected to be contiguous (e.g. ObjC metadata).
732   const Align Alignment = getGVAlignment(GV, DL);
733 
734   for (const HandlerInfo &HI : Handlers) {
735     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
736                        HI.TimerGroupName, HI.TimerGroupDescription,
737                        TimePassesIsEnabled);
738     HI.Handler->setSymbolSize(GVSym, Size);
739   }
740 
741   // Handle common symbols
742   if (GVKind.isCommon()) {
743     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
744     // .comm _foo, 42, 4
745     const bool SupportsAlignment =
746         getObjFileLowering().getCommDirectiveSupportsAlignment();
747     OutStreamer->emitCommonSymbol(GVSym, Size,
748                                   SupportsAlignment ? Alignment.value() : 0);
749     return;
750   }
751 
752   // Determine to which section this global should be emitted.
753   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
754 
755   // If we have a bss global going to a section that supports the
756   // zerofill directive, do so here.
757   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
758       TheSection->isVirtualSection()) {
759     if (Size == 0)
760       Size = 1; // zerofill of 0 bytes is undefined.
761     emitLinkage(GV, GVSym);
762     // .zerofill __DATA, __bss, _foo, 400, 5
763     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
764     return;
765   }
766 
767   // If this is a BSS local symbol and we are emitting in the BSS
768   // section use .lcomm/.comm directive.
769   if (GVKind.isBSSLocal() &&
770       getObjFileLowering().getBSSSection() == TheSection) {
771     if (Size == 0)
772       Size = 1; // .comm Foo, 0 is undefined, avoid it.
773 
774     // Use .lcomm only if it supports user-specified alignment.
775     // Otherwise, while it would still be correct to use .lcomm in some
776     // cases (e.g. when Align == 1), the external assembler might enfore
777     // some -unknown- default alignment behavior, which could cause
778     // spurious differences between external and integrated assembler.
779     // Prefer to simply fall back to .local / .comm in this case.
780     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
781       // .lcomm _foo, 42
782       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
783       return;
784     }
785 
786     // .local _foo
787     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
788     // .comm _foo, 42, 4
789     const bool SupportsAlignment =
790         getObjFileLowering().getCommDirectiveSupportsAlignment();
791     OutStreamer->emitCommonSymbol(GVSym, Size,
792                                   SupportsAlignment ? Alignment.value() : 0);
793     return;
794   }
795 
796   // Handle thread local data for mach-o which requires us to output an
797   // additional structure of data and mangle the original symbol so that we
798   // can reference it later.
799   //
800   // TODO: This should become an "emit thread local global" method on TLOF.
801   // All of this macho specific stuff should be sunk down into TLOFMachO and
802   // stuff like "TLSExtraDataSection" should no longer be part of the parent
803   // TLOF class.  This will also make it more obvious that stuff like
804   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
805   // specific code.
806   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
807     // Emit the .tbss symbol
808     MCSymbol *MangSym =
809         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
810 
811     if (GVKind.isThreadBSS()) {
812       TheSection = getObjFileLowering().getTLSBSSSection();
813       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
814     } else if (GVKind.isThreadData()) {
815       OutStreamer->SwitchSection(TheSection);
816 
817       emitAlignment(Alignment, GV);
818       OutStreamer->emitLabel(MangSym);
819 
820       emitGlobalConstant(GV->getParent()->getDataLayout(),
821                          GV->getInitializer());
822     }
823 
824     OutStreamer->AddBlankLine();
825 
826     // Emit the variable struct for the runtime.
827     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
828 
829     OutStreamer->SwitchSection(TLVSect);
830     // Emit the linkage here.
831     emitLinkage(GV, GVSym);
832     OutStreamer->emitLabel(GVSym);
833 
834     // Three pointers in size:
835     //   - __tlv_bootstrap - used to make sure support exists
836     //   - spare pointer, used when mapped by the runtime
837     //   - pointer to mangled symbol above with initializer
838     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
839     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
840                                 PtrSize);
841     OutStreamer->emitIntValue(0, PtrSize);
842     OutStreamer->emitSymbolValue(MangSym, PtrSize);
843 
844     OutStreamer->AddBlankLine();
845     return;
846   }
847 
848   MCSymbol *EmittedInitSym = GVSym;
849 
850   OutStreamer->SwitchSection(TheSection);
851 
852   emitLinkage(GV, EmittedInitSym);
853   emitAlignment(Alignment, GV);
854 
855   OutStreamer->emitLabel(EmittedInitSym);
856   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
857   if (LocalAlias != EmittedInitSym)
858     OutStreamer->emitLabel(LocalAlias);
859 
860   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
861 
862   if (MAI->hasDotTypeDotSizeDirective())
863     // .size foo, 42
864     OutStreamer->emitELFSize(EmittedInitSym,
865                              MCConstantExpr::create(Size, OutContext));
866 
867   OutStreamer->AddBlankLine();
868 }
869 
870 /// Emit the directive and value for debug thread local expression
871 ///
872 /// \p Value - The value to emit.
873 /// \p Size - The size of the integer (in bytes) to emit.
874 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
875   OutStreamer->emitValue(Value, Size);
876 }
877 
878 void AsmPrinter::emitFunctionHeaderComment() {}
879 
880 /// EmitFunctionHeader - This method emits the header for the current
881 /// function.
882 void AsmPrinter::emitFunctionHeader() {
883   const Function &F = MF->getFunction();
884 
885   if (isVerbose())
886     OutStreamer->GetCommentOS()
887         << "-- Begin function "
888         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
889 
890   // Print out constants referenced by the function
891   emitConstantPool();
892 
893   // Print the 'header' of function.
894   // If basic block sections are desired, explicitly request a unique section
895   // for this function's entry block.
896   if (MF->front().isBeginSection())
897     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
898   else
899     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
900   OutStreamer->SwitchSection(MF->getSection());
901 
902   if (!MAI->hasVisibilityOnlyWithLinkage())
903     emitVisibility(CurrentFnSym, F.getVisibility());
904 
905   if (MAI->needsFunctionDescriptors())
906     emitLinkage(&F, CurrentFnDescSym);
907 
908   emitLinkage(&F, CurrentFnSym);
909   if (MAI->hasFunctionAlignment())
910     emitAlignment(MF->getAlignment(), &F);
911 
912   if (MAI->hasDotTypeDotSizeDirective())
913     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
914 
915   if (F.hasFnAttribute(Attribute::Cold))
916     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
917 
918   if (isVerbose()) {
919     F.printAsOperand(OutStreamer->GetCommentOS(),
920                    /*PrintType=*/false, F.getParent());
921     emitFunctionHeaderComment();
922     OutStreamer->GetCommentOS() << '\n';
923   }
924 
925   // Emit the prefix data.
926   if (F.hasPrefixData()) {
927     if (MAI->hasSubsectionsViaSymbols()) {
928       // Preserving prefix data on platforms which use subsections-via-symbols
929       // is a bit tricky. Here we introduce a symbol for the prefix data
930       // and use the .alt_entry attribute to mark the function's real entry point
931       // as an alternative entry point to the prefix-data symbol.
932       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
933       OutStreamer->emitLabel(PrefixSym);
934 
935       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
936 
937       // Emit an .alt_entry directive for the actual function symbol.
938       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
939     } else {
940       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
941     }
942   }
943 
944   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
945   // place prefix data before NOPs.
946   unsigned PatchableFunctionPrefix = 0;
947   unsigned PatchableFunctionEntry = 0;
948   (void)F.getFnAttribute("patchable-function-prefix")
949       .getValueAsString()
950       .getAsInteger(10, PatchableFunctionPrefix);
951   (void)F.getFnAttribute("patchable-function-entry")
952       .getValueAsString()
953       .getAsInteger(10, PatchableFunctionEntry);
954   if (PatchableFunctionPrefix) {
955     CurrentPatchableFunctionEntrySym =
956         OutContext.createLinkerPrivateTempSymbol();
957     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
958     emitNops(PatchableFunctionPrefix);
959   } else if (PatchableFunctionEntry) {
960     // May be reassigned when emitting the body, to reference the label after
961     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
962     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
963   }
964 
965   // Emit the function descriptor. This is a virtual function to allow targets
966   // to emit their specific function descriptor. Right now it is only used by
967   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
968   // descriptors and should be converted to use this hook as well.
969   if (MAI->needsFunctionDescriptors())
970     emitFunctionDescriptor();
971 
972   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
973   // their wild and crazy things as required.
974   emitFunctionEntryLabel();
975 
976   // If the function had address-taken blocks that got deleted, then we have
977   // references to the dangling symbols.  Emit them at the start of the function
978   // so that we don't get references to undefined symbols.
979   std::vector<MCSymbol*> DeadBlockSyms;
980   takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
981   for (MCSymbol *DeadBlockSym : DeadBlockSyms) {
982     OutStreamer->AddComment("Address taken block that was later removed");
983     OutStreamer->emitLabel(DeadBlockSym);
984   }
985 
986   if (CurrentFnBegin) {
987     if (MAI->useAssignmentForEHBegin()) {
988       MCSymbol *CurPos = OutContext.createTempSymbol();
989       OutStreamer->emitLabel(CurPos);
990       OutStreamer->emitAssignment(CurrentFnBegin,
991                                  MCSymbolRefExpr::create(CurPos, OutContext));
992     } else {
993       OutStreamer->emitLabel(CurrentFnBegin);
994     }
995   }
996 
997   // Emit pre-function debug and/or EH information.
998   for (const HandlerInfo &HI : Handlers) {
999     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1000                        HI.TimerGroupDescription, TimePassesIsEnabled);
1001     HI.Handler->beginFunction(MF);
1002   }
1003 
1004   // Emit the prologue data.
1005   if (F.hasPrologueData())
1006     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
1007 }
1008 
1009 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
1010 /// function.  This can be overridden by targets as required to do custom stuff.
1011 void AsmPrinter::emitFunctionEntryLabel() {
1012   CurrentFnSym->redefineIfPossible();
1013 
1014   // The function label could have already been emitted if two symbols end up
1015   // conflicting due to asm renaming.  Detect this and emit an error.
1016   if (CurrentFnSym->isVariable())
1017     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
1018                        "' is a protected alias");
1019 
1020   OutStreamer->emitLabel(CurrentFnSym);
1021 
1022   if (TM.getTargetTriple().isOSBinFormatELF()) {
1023     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
1024     if (Sym != CurrentFnSym)
1025       OutStreamer->emitLabel(Sym);
1026   }
1027 }
1028 
1029 /// emitComments - Pretty-print comments for instructions.
1030 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
1031   const MachineFunction *MF = MI.getMF();
1032   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1033 
1034   // Check for spills and reloads
1035 
1036   // We assume a single instruction only has a spill or reload, not
1037   // both.
1038   Optional<unsigned> Size;
1039   if ((Size = MI.getRestoreSize(TII))) {
1040     CommentOS << *Size << "-byte Reload\n";
1041   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
1042     if (*Size) {
1043       if (*Size == unsigned(MemoryLocation::UnknownSize))
1044         CommentOS << "Unknown-size Folded Reload\n";
1045       else
1046         CommentOS << *Size << "-byte Folded Reload\n";
1047     }
1048   } else if ((Size = MI.getSpillSize(TII))) {
1049     CommentOS << *Size << "-byte Spill\n";
1050   } else if ((Size = MI.getFoldedSpillSize(TII))) {
1051     if (*Size) {
1052       if (*Size == unsigned(MemoryLocation::UnknownSize))
1053         CommentOS << "Unknown-size Folded Spill\n";
1054       else
1055         CommentOS << *Size << "-byte Folded Spill\n";
1056     }
1057   }
1058 
1059   // Check for spill-induced copies
1060   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
1061     CommentOS << " Reload Reuse\n";
1062 }
1063 
1064 /// emitImplicitDef - This method emits the specified machine instruction
1065 /// that is an implicit def.
1066 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
1067   Register RegNo = MI->getOperand(0).getReg();
1068 
1069   SmallString<128> Str;
1070   raw_svector_ostream OS(Str);
1071   OS << "implicit-def: "
1072      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
1073 
1074   OutStreamer->AddComment(OS.str());
1075   OutStreamer->AddBlankLine();
1076 }
1077 
1078 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
1079   std::string Str;
1080   raw_string_ostream OS(Str);
1081   OS << "kill:";
1082   for (const MachineOperand &Op : MI->operands()) {
1083     assert(Op.isReg() && "KILL instruction must have only register operands");
1084     OS << ' ' << (Op.isDef() ? "def " : "killed ")
1085        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
1086   }
1087   AP.OutStreamer->AddComment(OS.str());
1088   AP.OutStreamer->AddBlankLine();
1089 }
1090 
1091 /// emitDebugValueComment - This method handles the target-independent form
1092 /// of DBG_VALUE, returning true if it was able to do so.  A false return
1093 /// means the target will need to handle MI in EmitInstruction.
1094 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
1095   // This code handles only the 4-operand target-independent form.
1096   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
1097     return false;
1098 
1099   SmallString<128> Str;
1100   raw_svector_ostream OS(Str);
1101   OS << "DEBUG_VALUE: ";
1102 
1103   const DILocalVariable *V = MI->getDebugVariable();
1104   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
1105     StringRef Name = SP->getName();
1106     if (!Name.empty())
1107       OS << Name << ":";
1108   }
1109   OS << V->getName();
1110   OS << " <- ";
1111 
1112   const DIExpression *Expr = MI->getDebugExpression();
1113   if (Expr->getNumElements()) {
1114     OS << '[';
1115     ListSeparator LS;
1116     for (auto Op : Expr->expr_ops()) {
1117       OS << LS << dwarf::OperationEncodingString(Op.getOp());
1118       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
1119         OS << ' ' << Op.getArg(I);
1120     }
1121     OS << "] ";
1122   }
1123 
1124   // Register or immediate value. Register 0 means undef.
1125   for (const MachineOperand &Op : MI->debug_operands()) {
1126     if (&Op != MI->debug_operands().begin())
1127       OS << ", ";
1128     switch (Op.getType()) {
1129     case MachineOperand::MO_FPImmediate: {
1130       APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
1131       Type *ImmTy = Op.getFPImm()->getType();
1132       if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
1133           ImmTy->isDoubleTy()) {
1134         OS << APF.convertToDouble();
1135       } else {
1136         // There is no good way to print long double.  Convert a copy to
1137         // double.  Ah well, it's only a comment.
1138         bool ignored;
1139         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1140                     &ignored);
1141         OS << "(long double) " << APF.convertToDouble();
1142       }
1143       break;
1144     }
1145     case MachineOperand::MO_Immediate: {
1146       OS << Op.getImm();
1147       break;
1148     }
1149     case MachineOperand::MO_CImmediate: {
1150       Op.getCImm()->getValue().print(OS, false /*isSigned*/);
1151       break;
1152     }
1153     case MachineOperand::MO_TargetIndex: {
1154       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
1155       // NOTE: Want this comment at start of line, don't emit with AddComment.
1156       AP.OutStreamer->emitRawComment(OS.str());
1157       break;
1158     }
1159     case MachineOperand::MO_Register:
1160     case MachineOperand::MO_FrameIndex: {
1161       Register Reg;
1162       Optional<StackOffset> Offset;
1163       if (Op.isReg()) {
1164         Reg = Op.getReg();
1165       } else {
1166         const TargetFrameLowering *TFI =
1167             AP.MF->getSubtarget().getFrameLowering();
1168         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
1169       }
1170       if (!Reg) {
1171         // Suppress offset, it is not meaningful here.
1172         OS << "undef";
1173         break;
1174       }
1175       // The second operand is only an offset if it's an immediate.
1176       if (MI->isIndirectDebugValue())
1177         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1178       if (Offset)
1179         OS << '[';
1180       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1181       if (Offset)
1182         OS << '+' << Offset->getFixed() << ']';
1183       break;
1184     }
1185     default:
1186       llvm_unreachable("Unknown operand type");
1187     }
1188   }
1189 
1190   // NOTE: Want this comment at start of line, don't emit with AddComment.
1191   AP.OutStreamer->emitRawComment(OS.str());
1192   return true;
1193 }
1194 
1195 /// This method handles the target-independent form of DBG_LABEL, returning
1196 /// true if it was able to do so.  A false return means the target will need
1197 /// to handle MI in EmitInstruction.
1198 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1199   if (MI->getNumOperands() != 1)
1200     return false;
1201 
1202   SmallString<128> Str;
1203   raw_svector_ostream OS(Str);
1204   OS << "DEBUG_LABEL: ";
1205 
1206   const DILabel *V = MI->getDebugLabel();
1207   if (auto *SP = dyn_cast<DISubprogram>(
1208           V->getScope()->getNonLexicalBlockFileScope())) {
1209     StringRef Name = SP->getName();
1210     if (!Name.empty())
1211       OS << Name << ":";
1212   }
1213   OS << V->getName();
1214 
1215   // NOTE: Want this comment at start of line, don't emit with AddComment.
1216   AP.OutStreamer->emitRawComment(OS.str());
1217   return true;
1218 }
1219 
1220 AsmPrinter::CFISection
1221 AsmPrinter::getFunctionCFISectionType(const Function &F) const {
1222   // Ignore functions that won't get emitted.
1223   if (F.isDeclarationForLinker())
1224     return CFISection::None;
1225 
1226   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1227       F.needsUnwindTableEntry())
1228     return CFISection::EH;
1229 
1230   if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1231     return CFISection::Debug;
1232 
1233   return CFISection::None;
1234 }
1235 
1236 AsmPrinter::CFISection
1237 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
1238   return getFunctionCFISectionType(MF.getFunction());
1239 }
1240 
1241 bool AsmPrinter::needsSEHMoves() {
1242   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1243 }
1244 
1245 bool AsmPrinter::needsCFIForDebug() const {
1246   return MAI->getExceptionHandlingType() == ExceptionHandling::None &&
1247          MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug;
1248 }
1249 
1250 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1251   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1252   if (!needsCFIForDebug() &&
1253       ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1254       ExceptionHandlingType != ExceptionHandling::ARM)
1255     return;
1256 
1257   if (getFunctionCFISectionType(*MF) == CFISection::None)
1258     return;
1259 
1260   // If there is no "real" instruction following this CFI instruction, skip
1261   // emitting it; it would be beyond the end of the function's FDE range.
1262   auto *MBB = MI.getParent();
1263   auto I = std::next(MI.getIterator());
1264   while (I != MBB->end() && I->isTransient())
1265     ++I;
1266   if (I == MBB->instr_end() &&
1267       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1268     return;
1269 
1270   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1271   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1272   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1273   emitCFIInstruction(CFI);
1274 }
1275 
1276 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1277   // The operands are the MCSymbol and the frame offset of the allocation.
1278   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1279   int FrameOffset = MI.getOperand(1).getImm();
1280 
1281   // Emit a symbol assignment.
1282   OutStreamer->emitAssignment(FrameAllocSym,
1283                              MCConstantExpr::create(FrameOffset, OutContext));
1284 }
1285 
1286 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1287 /// given basic block. This can be used to capture more precise profile
1288 /// information. We use the last 4 bits (LSBs) to encode the following
1289 /// information:
1290 ///  * (1): set if return block (ret or tail call).
1291 ///  * (2): set if ends with a tail call.
1292 ///  * (3): set if exception handling (EH) landing pad.
1293 ///  * (4): set if the block can fall through to its next.
1294 /// The remaining bits are zero.
1295 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1296   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1297   return ((unsigned)MBB.isReturnBlock()) |
1298          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1299          (MBB.isEHPad() << 2) |
1300          (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3);
1301 }
1302 
1303 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1304   MCSection *BBAddrMapSection =
1305       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1306   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1307 
1308   const MCSymbol *FunctionSymbol = getFunctionBegin();
1309 
1310   OutStreamer->PushSection();
1311   OutStreamer->SwitchSection(BBAddrMapSection);
1312   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1313   // Emit the total number of basic blocks in this function.
1314   OutStreamer->emitULEB128IntValue(MF.size());
1315   // Emit BB Information for each basic block in the funciton.
1316   for (const MachineBasicBlock &MBB : MF) {
1317     const MCSymbol *MBBSymbol =
1318         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1319     // Emit the basic block offset.
1320     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1321     // Emit the basic block size. When BBs have alignments, their size cannot
1322     // always be computed from their offsets.
1323     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1324     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1325   }
1326   OutStreamer->PopSection();
1327 }
1328 
1329 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1330   if (PP) {
1331     auto GUID = MI.getOperand(0).getImm();
1332     auto Index = MI.getOperand(1).getImm();
1333     auto Type = MI.getOperand(2).getImm();
1334     auto Attr = MI.getOperand(3).getImm();
1335     DILocation *DebugLoc = MI.getDebugLoc();
1336     PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1337   }
1338 }
1339 
1340 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1341   if (!MF.getTarget().Options.EmitStackSizeSection)
1342     return;
1343 
1344   MCSection *StackSizeSection =
1345       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1346   if (!StackSizeSection)
1347     return;
1348 
1349   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1350   // Don't emit functions with dynamic stack allocations.
1351   if (FrameInfo.hasVarSizedObjects())
1352     return;
1353 
1354   OutStreamer->PushSection();
1355   OutStreamer->SwitchSection(StackSizeSection);
1356 
1357   const MCSymbol *FunctionSymbol = getFunctionBegin();
1358   uint64_t StackSize =
1359       FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1360   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1361   OutStreamer->emitULEB128IntValue(StackSize);
1362 
1363   OutStreamer->PopSection();
1364 }
1365 
1366 void AsmPrinter::emitStackUsage(const MachineFunction &MF) {
1367   const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
1368 
1369   // OutputFilename empty implies -fstack-usage is not passed.
1370   if (OutputFilename.empty())
1371     return;
1372 
1373   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1374   uint64_t StackSize =
1375       FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1376 
1377   if (StackUsageStream == nullptr) {
1378     std::error_code EC;
1379     StackUsageStream =
1380         std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
1381     if (EC) {
1382       errs() << "Could not open file: " << EC.message();
1383       return;
1384     }
1385   }
1386 
1387   *StackUsageStream << MF.getFunction().getParent()->getName();
1388   if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
1389     *StackUsageStream << ':' << DSP->getLine();
1390 
1391   *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
1392   if (FrameInfo.hasVarSizedObjects())
1393     *StackUsageStream << "dynamic\n";
1394   else
1395     *StackUsageStream << "static\n";
1396 }
1397 
1398 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1399   MachineModuleInfo &MMI = MF.getMMI();
1400   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1401     return true;
1402 
1403   // We might emit an EH table that uses function begin and end labels even if
1404   // we don't have any landingpads.
1405   if (!MF.getFunction().hasPersonalityFn())
1406     return false;
1407   return !isNoOpWithoutInvoke(
1408       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1409 }
1410 
1411 /// EmitFunctionBody - This method emits the body and trailer for a
1412 /// function.
1413 void AsmPrinter::emitFunctionBody() {
1414   emitFunctionHeader();
1415 
1416   // Emit target-specific gunk before the function body.
1417   emitFunctionBodyStart();
1418 
1419   if (isVerbose()) {
1420     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1421     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1422     if (!MDT) {
1423       OwnedMDT = std::make_unique<MachineDominatorTree>();
1424       OwnedMDT->getBase().recalculate(*MF);
1425       MDT = OwnedMDT.get();
1426     }
1427 
1428     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1429     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1430     if (!MLI) {
1431       OwnedMLI = std::make_unique<MachineLoopInfo>();
1432       OwnedMLI->getBase().analyze(MDT->getBase());
1433       MLI = OwnedMLI.get();
1434     }
1435   }
1436 
1437   // Print out code for the function.
1438   bool HasAnyRealCode = false;
1439   int NumInstsInFunction = 0;
1440 
1441   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1442   for (auto &MBB : *MF) {
1443     // Print a label for the basic block.
1444     emitBasicBlockStart(MBB);
1445     DenseMap<StringRef, unsigned> MnemonicCounts;
1446     for (auto &MI : MBB) {
1447       // Print the assembly for the instruction.
1448       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1449           !MI.isDebugInstr()) {
1450         HasAnyRealCode = true;
1451         ++NumInstsInFunction;
1452       }
1453 
1454       // If there is a pre-instruction symbol, emit a label for it here.
1455       if (MCSymbol *S = MI.getPreInstrSymbol())
1456         OutStreamer->emitLabel(S);
1457 
1458       for (const HandlerInfo &HI : Handlers) {
1459         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1460                            HI.TimerGroupDescription, TimePassesIsEnabled);
1461         HI.Handler->beginInstruction(&MI);
1462       }
1463 
1464       if (isVerbose())
1465         emitComments(MI, OutStreamer->GetCommentOS());
1466 
1467       switch (MI.getOpcode()) {
1468       case TargetOpcode::CFI_INSTRUCTION:
1469         emitCFIInstruction(MI);
1470         break;
1471       case TargetOpcode::LOCAL_ESCAPE:
1472         emitFrameAlloc(MI);
1473         break;
1474       case TargetOpcode::ANNOTATION_LABEL:
1475       case TargetOpcode::EH_LABEL:
1476       case TargetOpcode::GC_LABEL:
1477         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1478         break;
1479       case TargetOpcode::INLINEASM:
1480       case TargetOpcode::INLINEASM_BR:
1481         emitInlineAsm(&MI);
1482         break;
1483       case TargetOpcode::DBG_VALUE:
1484       case TargetOpcode::DBG_VALUE_LIST:
1485         if (isVerbose()) {
1486           if (!emitDebugValueComment(&MI, *this))
1487             emitInstruction(&MI);
1488         }
1489         break;
1490       case TargetOpcode::DBG_INSTR_REF:
1491         // This instruction reference will have been resolved to a machine
1492         // location, and a nearby DBG_VALUE created. We can safely ignore
1493         // the instruction reference.
1494         break;
1495       case TargetOpcode::DBG_PHI:
1496         // This instruction is only used to label a program point, it's purely
1497         // meta information.
1498         break;
1499       case TargetOpcode::DBG_LABEL:
1500         if (isVerbose()) {
1501           if (!emitDebugLabelComment(&MI, *this))
1502             emitInstruction(&MI);
1503         }
1504         break;
1505       case TargetOpcode::IMPLICIT_DEF:
1506         if (isVerbose()) emitImplicitDef(&MI);
1507         break;
1508       case TargetOpcode::KILL:
1509         if (isVerbose()) emitKill(&MI, *this);
1510         break;
1511       case TargetOpcode::PSEUDO_PROBE:
1512         emitPseudoProbe(MI);
1513         break;
1514       case TargetOpcode::ARITH_FENCE:
1515         if (isVerbose())
1516           OutStreamer->emitRawComment("ARITH_FENCE");
1517         break;
1518       default:
1519         emitInstruction(&MI);
1520         if (CanDoExtraAnalysis) {
1521           MCInst MCI;
1522           MCI.setOpcode(MI.getOpcode());
1523           auto Name = OutStreamer->getMnemonic(MCI);
1524           auto I = MnemonicCounts.insert({Name, 0u});
1525           I.first->second++;
1526         }
1527         break;
1528       }
1529 
1530       // If there is a post-instruction symbol, emit a label for it here.
1531       if (MCSymbol *S = MI.getPostInstrSymbol())
1532         OutStreamer->emitLabel(S);
1533 
1534       for (const HandlerInfo &HI : Handlers) {
1535         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1536                            HI.TimerGroupDescription, TimePassesIsEnabled);
1537         HI.Handler->endInstruction();
1538       }
1539     }
1540 
1541     // We must emit temporary symbol for the end of this basic block, if either
1542     // we have BBLabels enabled or if this basic blocks marks the end of a
1543     // section.
1544     if (MF->hasBBLabels() ||
1545         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection()))
1546       OutStreamer->emitLabel(MBB.getEndSymbol());
1547 
1548     if (MBB.isEndSection()) {
1549       // The size directive for the section containing the entry block is
1550       // handled separately by the function section.
1551       if (!MBB.sameSection(&MF->front())) {
1552         if (MAI->hasDotTypeDotSizeDirective()) {
1553           // Emit the size directive for the basic block section.
1554           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1555               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1556               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1557               OutContext);
1558           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1559         }
1560         MBBSectionRanges[MBB.getSectionIDNum()] =
1561             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1562       }
1563     }
1564     emitBasicBlockEnd(MBB);
1565 
1566     if (CanDoExtraAnalysis) {
1567       // Skip empty blocks.
1568       if (MBB.empty())
1569         continue;
1570 
1571       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1572                                           MBB.begin()->getDebugLoc(), &MBB);
1573 
1574       // Generate instruction mix remark. First, sort counts in descending order
1575       // by count and name.
1576       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1577       for (auto &KV : MnemonicCounts)
1578         MnemonicVec.emplace_back(KV.first, KV.second);
1579 
1580       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1581                            const std::pair<StringRef, unsigned> &B) {
1582         if (A.second > B.second)
1583           return true;
1584         if (A.second == B.second)
1585           return StringRef(A.first) < StringRef(B.first);
1586         return false;
1587       });
1588       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1589       for (auto &KV : MnemonicVec) {
1590         auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str();
1591         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1592       }
1593       ORE->emit(R);
1594     }
1595   }
1596 
1597   EmittedInsts += NumInstsInFunction;
1598   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1599                                       MF->getFunction().getSubprogram(),
1600                                       &MF->front());
1601   R << ore::NV("NumInstructions", NumInstsInFunction)
1602     << " instructions in function";
1603   ORE->emit(R);
1604 
1605   // If the function is empty and the object file uses .subsections_via_symbols,
1606   // then we need to emit *something* to the function body to prevent the
1607   // labels from collapsing together.  Just emit a noop.
1608   // Similarly, don't emit empty functions on Windows either. It can lead to
1609   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1610   // after linking, causing the kernel not to load the binary:
1611   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1612   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1613   const Triple &TT = TM.getTargetTriple();
1614   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1615                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1616     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
1617 
1618     // Targets can opt-out of emitting the noop here by leaving the opcode
1619     // unspecified.
1620     if (Noop.getOpcode()) {
1621       OutStreamer->AddComment("avoids zero-length function");
1622       emitNops(1);
1623     }
1624   }
1625 
1626   // Switch to the original section in case basic block sections was used.
1627   OutStreamer->SwitchSection(MF->getSection());
1628 
1629   const Function &F = MF->getFunction();
1630   for (const auto &BB : F) {
1631     if (!BB.hasAddressTaken())
1632       continue;
1633     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1634     if (Sym->isDefined())
1635       continue;
1636     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1637     OutStreamer->emitLabel(Sym);
1638   }
1639 
1640   // Emit target-specific gunk after the function body.
1641   emitFunctionBodyEnd();
1642 
1643   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1644       MAI->hasDotTypeDotSizeDirective()) {
1645     // Create a symbol for the end of function.
1646     CurrentFnEnd = createTempSymbol("func_end");
1647     OutStreamer->emitLabel(CurrentFnEnd);
1648   }
1649 
1650   // If the target wants a .size directive for the size of the function, emit
1651   // it.
1652   if (MAI->hasDotTypeDotSizeDirective()) {
1653     // We can get the size as difference between the function label and the
1654     // temp label.
1655     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1656         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1657         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1658     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1659   }
1660 
1661   for (const HandlerInfo &HI : Handlers) {
1662     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1663                        HI.TimerGroupDescription, TimePassesIsEnabled);
1664     HI.Handler->markFunctionEnd();
1665   }
1666 
1667   MBBSectionRanges[MF->front().getSectionIDNum()] =
1668       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1669 
1670   // Print out jump tables referenced by the function.
1671   emitJumpTableInfo();
1672 
1673   // Emit post-function debug and/or EH information.
1674   for (const HandlerInfo &HI : Handlers) {
1675     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1676                        HI.TimerGroupDescription, TimePassesIsEnabled);
1677     HI.Handler->endFunction(MF);
1678   }
1679 
1680   // Emit section containing BB address offsets and their metadata, when
1681   // BB labels are requested for this function. Skip empty functions.
1682   if (MF->hasBBLabels() && HasAnyRealCode)
1683     emitBBAddrMapSection(*MF);
1684 
1685   // Emit section containing stack size metadata.
1686   emitStackSizeSection(*MF);
1687 
1688   // Emit .su file containing function stack size information.
1689   emitStackUsage(*MF);
1690 
1691   emitPatchableFunctionEntries();
1692 
1693   if (isVerbose())
1694     OutStreamer->GetCommentOS() << "-- End function\n";
1695 
1696   OutStreamer->AddBlankLine();
1697 }
1698 
1699 /// Compute the number of Global Variables that uses a Constant.
1700 static unsigned getNumGlobalVariableUses(const Constant *C) {
1701   if (!C)
1702     return 0;
1703 
1704   if (isa<GlobalVariable>(C))
1705     return 1;
1706 
1707   unsigned NumUses = 0;
1708   for (auto *CU : C->users())
1709     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1710 
1711   return NumUses;
1712 }
1713 
1714 /// Only consider global GOT equivalents if at least one user is a
1715 /// cstexpr inside an initializer of another global variables. Also, don't
1716 /// handle cstexpr inside instructions. During global variable emission,
1717 /// candidates are skipped and are emitted later in case at least one cstexpr
1718 /// isn't replaced by a PC relative GOT entry access.
1719 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1720                                      unsigned &NumGOTEquivUsers) {
1721   // Global GOT equivalents are unnamed private globals with a constant
1722   // pointer initializer to another global symbol. They must point to a
1723   // GlobalVariable or Function, i.e., as GlobalValue.
1724   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1725       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1726       !isa<GlobalValue>(GV->getOperand(0)))
1727     return false;
1728 
1729   // To be a got equivalent, at least one of its users need to be a constant
1730   // expression used by another global variable.
1731   for (auto *U : GV->users())
1732     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1733 
1734   return NumGOTEquivUsers > 0;
1735 }
1736 
1737 /// Unnamed constant global variables solely contaning a pointer to
1738 /// another globals variable is equivalent to a GOT table entry; it contains the
1739 /// the address of another symbol. Optimize it and replace accesses to these
1740 /// "GOT equivalents" by using the GOT entry for the final global instead.
1741 /// Compute GOT equivalent candidates among all global variables to avoid
1742 /// emitting them if possible later on, after it use is replaced by a GOT entry
1743 /// access.
1744 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1745   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1746     return;
1747 
1748   for (const auto &G : M.globals()) {
1749     unsigned NumGOTEquivUsers = 0;
1750     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1751       continue;
1752 
1753     const MCSymbol *GOTEquivSym = getSymbol(&G);
1754     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1755   }
1756 }
1757 
1758 /// Constant expressions using GOT equivalent globals may not be eligible
1759 /// for PC relative GOT entry conversion, in such cases we need to emit such
1760 /// globals we previously omitted in EmitGlobalVariable.
1761 void AsmPrinter::emitGlobalGOTEquivs() {
1762   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1763     return;
1764 
1765   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1766   for (auto &I : GlobalGOTEquivs) {
1767     const GlobalVariable *GV = I.second.first;
1768     unsigned Cnt = I.second.second;
1769     if (Cnt)
1770       FailedCandidates.push_back(GV);
1771   }
1772   GlobalGOTEquivs.clear();
1773 
1774   for (auto *GV : FailedCandidates)
1775     emitGlobalVariable(GV);
1776 }
1777 
1778 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) {
1779   MCSymbol *Name = getSymbol(&GA);
1780   bool IsFunction = GA.getValueType()->isFunctionTy();
1781   // Treat bitcasts of functions as functions also. This is important at least
1782   // on WebAssembly where object and function addresses can't alias each other.
1783   if (!IsFunction)
1784     IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts());
1785 
1786   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1787   // so AIX has to use the extra-label-at-definition strategy. At this
1788   // point, all the extra label is emitted, we just have to emit linkage for
1789   // those labels.
1790   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1791     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1792            "Visibility should be handled with emitLinkage() on AIX.");
1793     emitLinkage(&GA, Name);
1794     // If it's a function, also emit linkage for aliases of function entry
1795     // point.
1796     if (IsFunction)
1797       emitLinkage(&GA,
1798                   getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM));
1799     return;
1800   }
1801 
1802   if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective())
1803     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1804   else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage())
1805     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1806   else
1807     assert(GA.hasLocalLinkage() && "Invalid alias linkage");
1808 
1809   // Set the symbol type to function if the alias has a function type.
1810   // This affects codegen when the aliasee is not a function.
1811   if (IsFunction) {
1812     OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1813     if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1814       OutStreamer->BeginCOFFSymbolDef(Name);
1815       OutStreamer->emitCOFFSymbolStorageClass(
1816           GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC
1817                                : COFF::IMAGE_SYM_CLASS_EXTERNAL);
1818       OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION
1819                                       << COFF::SCT_COMPLEX_TYPE_SHIFT);
1820       OutStreamer->EndCOFFSymbolDef();
1821     }
1822   }
1823 
1824   emitVisibility(Name, GA.getVisibility());
1825 
1826   const MCExpr *Expr = lowerConstant(GA.getAliasee());
1827 
1828   if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1829     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1830 
1831   // Emit the directives as assignments aka .set:
1832   OutStreamer->emitAssignment(Name, Expr);
1833   MCSymbol *LocalAlias = getSymbolPreferLocal(GA);
1834   if (LocalAlias != Name)
1835     OutStreamer->emitAssignment(LocalAlias, Expr);
1836 
1837   // If the aliasee does not correspond to a symbol in the output, i.e. the
1838   // alias is not of an object or the aliased object is private, then set the
1839   // size of the alias symbol from the type of the alias. We don't do this in
1840   // other situations as the alias and aliasee having differing types but same
1841   // size may be intentional.
1842   const GlobalObject *BaseObject = GA.getAliaseeObject();
1843   if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() &&
1844       (!BaseObject || BaseObject->hasPrivateLinkage())) {
1845     const DataLayout &DL = M.getDataLayout();
1846     uint64_t Size = DL.getTypeAllocSize(GA.getValueType());
1847     OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1848   }
1849 }
1850 
1851 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) {
1852   assert(!TM.getTargetTriple().isOSBinFormatXCOFF() &&
1853          "IFunc is not supported on AIX.");
1854 
1855   MCSymbol *Name = getSymbol(&GI);
1856 
1857   if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective())
1858     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1859   else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage())
1860     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1861   else
1862     assert(GI.hasLocalLinkage() && "Invalid ifunc linkage");
1863 
1864   OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1865   emitVisibility(Name, GI.getVisibility());
1866 
1867   // Emit the directives as assignments aka .set:
1868   const MCExpr *Expr = lowerConstant(GI.getResolver());
1869   OutStreamer->emitAssignment(Name, Expr);
1870   MCSymbol *LocalAlias = getSymbolPreferLocal(GI);
1871   if (LocalAlias != Name)
1872     OutStreamer->emitAssignment(LocalAlias, Expr);
1873 }
1874 
1875 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1876   if (!RS.needsSection())
1877     return;
1878 
1879   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1880 
1881   Optional<SmallString<128>> Filename;
1882   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1883     Filename = *FilenameRef;
1884     sys::fs::make_absolute(*Filename);
1885     assert(!Filename->empty() && "The filename can't be empty.");
1886   }
1887 
1888   std::string Buf;
1889   raw_string_ostream OS(Buf);
1890   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1891       Filename ? RemarkSerializer.metaSerializer(OS, Filename->str())
1892                : RemarkSerializer.metaSerializer(OS);
1893   MetaSerializer->emit();
1894 
1895   // Switch to the remarks section.
1896   MCSection *RemarksSection =
1897       OutContext.getObjectFileInfo()->getRemarksSection();
1898   OutStreamer->SwitchSection(RemarksSection);
1899 
1900   OutStreamer->emitBinaryData(OS.str());
1901 }
1902 
1903 bool AsmPrinter::doFinalization(Module &M) {
1904   // Set the MachineFunction to nullptr so that we can catch attempted
1905   // accesses to MF specific features at the module level and so that
1906   // we can conditionalize accesses based on whether or not it is nullptr.
1907   MF = nullptr;
1908 
1909   // Gather all GOT equivalent globals in the module. We really need two
1910   // passes over the globals: one to compute and another to avoid its emission
1911   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1912   // where the got equivalent shows up before its use.
1913   computeGlobalGOTEquivs(M);
1914 
1915   // Emit global variables.
1916   for (const auto &G : M.globals())
1917     emitGlobalVariable(&G);
1918 
1919   // Emit remaining GOT equivalent globals.
1920   emitGlobalGOTEquivs();
1921 
1922   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1923 
1924   // Emit linkage(XCOFF) and visibility info for declarations
1925   for (const Function &F : M) {
1926     if (!F.isDeclarationForLinker())
1927       continue;
1928 
1929     MCSymbol *Name = getSymbol(&F);
1930     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1931 
1932     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1933       GlobalValue::VisibilityTypes V = F.getVisibility();
1934       if (V == GlobalValue::DefaultVisibility)
1935         continue;
1936 
1937       emitVisibility(Name, V, false);
1938       continue;
1939     }
1940 
1941     if (F.isIntrinsic())
1942       continue;
1943 
1944     // Handle the XCOFF case.
1945     // Variable `Name` is the function descriptor symbol (see above). Get the
1946     // function entry point symbol.
1947     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1948     // Emit linkage for the function entry point.
1949     emitLinkage(&F, FnEntryPointSym);
1950 
1951     // Emit linkage for the function descriptor.
1952     emitLinkage(&F, Name);
1953   }
1954 
1955   // Emit the remarks section contents.
1956   // FIXME: Figure out when is the safest time to emit this section. It should
1957   // not come after debug info.
1958   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1959     emitRemarksSection(*RS);
1960 
1961   TLOF.emitModuleMetadata(*OutStreamer, M);
1962 
1963   if (TM.getTargetTriple().isOSBinFormatELF()) {
1964     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1965 
1966     // Output stubs for external and common global variables.
1967     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1968     if (!Stubs.empty()) {
1969       OutStreamer->SwitchSection(TLOF.getDataSection());
1970       const DataLayout &DL = M.getDataLayout();
1971 
1972       emitAlignment(Align(DL.getPointerSize()));
1973       for (const auto &Stub : Stubs) {
1974         OutStreamer->emitLabel(Stub.first);
1975         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1976                                      DL.getPointerSize());
1977       }
1978     }
1979   }
1980 
1981   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1982     MachineModuleInfoCOFF &MMICOFF =
1983         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1984 
1985     // Output stubs for external and common global variables.
1986     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1987     if (!Stubs.empty()) {
1988       const DataLayout &DL = M.getDataLayout();
1989 
1990       for (const auto &Stub : Stubs) {
1991         SmallString<256> SectionName = StringRef(".rdata$");
1992         SectionName += Stub.first->getName();
1993         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1994             SectionName,
1995             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1996                 COFF::IMAGE_SCN_LNK_COMDAT,
1997             SectionKind::getReadOnly(), Stub.first->getName(),
1998             COFF::IMAGE_COMDAT_SELECT_ANY));
1999         emitAlignment(Align(DL.getPointerSize()));
2000         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
2001         OutStreamer->emitLabel(Stub.first);
2002         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2003                                      DL.getPointerSize());
2004       }
2005     }
2006   }
2007 
2008   // This needs to happen before emitting debug information since that can end
2009   // arbitrary sections.
2010   if (auto *TS = OutStreamer->getTargetStreamer())
2011     TS->emitConstantPools();
2012 
2013   // Finalize debug and EH information.
2014   for (const HandlerInfo &HI : Handlers) {
2015     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
2016                        HI.TimerGroupDescription, TimePassesIsEnabled);
2017     HI.Handler->endModule();
2018   }
2019 
2020   // This deletes all the ephemeral handlers that AsmPrinter added, while
2021   // keeping all the user-added handlers alive until the AsmPrinter is
2022   // destroyed.
2023   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
2024   DD = nullptr;
2025 
2026   // If the target wants to know about weak references, print them all.
2027   if (MAI->getWeakRefDirective()) {
2028     // FIXME: This is not lazy, it would be nice to only print weak references
2029     // to stuff that is actually used.  Note that doing so would require targets
2030     // to notice uses in operands (due to constant exprs etc).  This should
2031     // happen with the MC stuff eventually.
2032 
2033     // Print out module-level global objects here.
2034     for (const auto &GO : M.global_objects()) {
2035       if (!GO.hasExternalWeakLinkage())
2036         continue;
2037       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
2038     }
2039     if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) {
2040       auto SymbolName = "swift_async_extendedFramePointerFlags";
2041       auto Global = M.getGlobalVariable(SymbolName);
2042       if (!Global) {
2043         auto Int8PtrTy = Type::getInt8PtrTy(M.getContext());
2044         Global = new GlobalVariable(M, Int8PtrTy, false,
2045                                     GlobalValue::ExternalWeakLinkage, nullptr,
2046                                     SymbolName);
2047         OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference);
2048       }
2049     }
2050   }
2051 
2052   // Print aliases in topological order, that is, for each alias a = b,
2053   // b must be printed before a.
2054   // This is because on some targets (e.g. PowerPC) linker expects aliases in
2055   // such an order to generate correct TOC information.
2056   SmallVector<const GlobalAlias *, 16> AliasStack;
2057   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
2058   for (const auto &Alias : M.aliases()) {
2059     for (const GlobalAlias *Cur = &Alias; Cur;
2060          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
2061       if (!AliasVisited.insert(Cur).second)
2062         break;
2063       AliasStack.push_back(Cur);
2064     }
2065     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
2066       emitGlobalAlias(M, *AncestorAlias);
2067     AliasStack.clear();
2068   }
2069   for (const auto &IFunc : M.ifuncs())
2070     emitGlobalIFunc(M, IFunc);
2071 
2072   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
2073   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
2074   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
2075     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
2076       MP->finishAssembly(M, *MI, *this);
2077 
2078   // Emit llvm.ident metadata in an '.ident' directive.
2079   emitModuleIdents(M);
2080 
2081   // Emit bytes for llvm.commandline metadata.
2082   emitModuleCommandLines(M);
2083 
2084   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
2085   // split-stack is used.
2086   if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) {
2087     OutStreamer->SwitchSection(
2088         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
2089     if (HasNoSplitStack)
2090       OutStreamer->SwitchSection(
2091           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
2092   }
2093 
2094   // If we don't have any trampolines, then we don't require stack memory
2095   // to be executable. Some targets have a directive to declare this.
2096   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
2097   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
2098     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
2099       OutStreamer->SwitchSection(S);
2100 
2101   if (TM.Options.EmitAddrsig) {
2102     // Emit address-significance attributes for all globals.
2103     OutStreamer->emitAddrsig();
2104     for (const GlobalValue &GV : M.global_values()) {
2105       if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() &&
2106           !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() &&
2107           !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr())
2108         OutStreamer->emitAddrsigSym(getSymbol(&GV));
2109     }
2110   }
2111 
2112   // Emit symbol partition specifications (ELF only).
2113   if (TM.getTargetTriple().isOSBinFormatELF()) {
2114     unsigned UniqueID = 0;
2115     for (const GlobalValue &GV : M.global_values()) {
2116       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
2117           GV.getVisibility() != GlobalValue::DefaultVisibility)
2118         continue;
2119 
2120       OutStreamer->SwitchSection(
2121           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
2122                                    "", false, ++UniqueID, nullptr));
2123       OutStreamer->emitBytes(GV.getPartition());
2124       OutStreamer->emitZeros(1);
2125       OutStreamer->emitValue(
2126           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
2127           MAI->getCodePointerSize());
2128     }
2129   }
2130 
2131   // Allow the target to emit any magic that it wants at the end of the file,
2132   // after everything else has gone out.
2133   emitEndOfAsmFile(M);
2134 
2135   MMI = nullptr;
2136   AddrLabelSymbols = nullptr;
2137 
2138   OutStreamer->Finish();
2139   OutStreamer->reset();
2140   OwnedMLI.reset();
2141   OwnedMDT.reset();
2142 
2143   return false;
2144 }
2145 
2146 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
2147   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
2148   if (Res.second)
2149     Res.first->second = createTempSymbol("exception");
2150   return Res.first->second;
2151 }
2152 
2153 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
2154   this->MF = &MF;
2155   const Function &F = MF.getFunction();
2156 
2157   // Record that there are split-stack functions, so we will emit a special
2158   // section to tell the linker.
2159   if (MF.shouldSplitStack()) {
2160     HasSplitStack = true;
2161 
2162     if (!MF.getFrameInfo().needsSplitStackProlog())
2163       HasNoSplitStack = true;
2164   } else
2165     HasNoSplitStack = true;
2166 
2167   // Get the function symbol.
2168   if (!MAI->needsFunctionDescriptors()) {
2169     CurrentFnSym = getSymbol(&MF.getFunction());
2170   } else {
2171     assert(TM.getTargetTriple().isOSAIX() &&
2172            "Only AIX uses the function descriptor hooks.");
2173     // AIX is unique here in that the name of the symbol emitted for the
2174     // function body does not have the same name as the source function's
2175     // C-linkage name.
2176     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
2177                                " initalized first.");
2178 
2179     // Get the function entry point symbol.
2180     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
2181   }
2182 
2183   CurrentFnSymForSize = CurrentFnSym;
2184   CurrentFnBegin = nullptr;
2185   CurrentSectionBeginSym = nullptr;
2186   MBBSectionRanges.clear();
2187   MBBSectionExceptionSyms.clear();
2188   bool NeedsLocalForSize = MAI->needsLocalForSize();
2189   if (F.hasFnAttribute("patchable-function-entry") ||
2190       F.hasFnAttribute("function-instrument") ||
2191       F.hasFnAttribute("xray-instruction-threshold") ||
2192       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
2193       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
2194     CurrentFnBegin = createTempSymbol("func_begin");
2195     if (NeedsLocalForSize)
2196       CurrentFnSymForSize = CurrentFnBegin;
2197   }
2198 
2199   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2200 }
2201 
2202 namespace {
2203 
2204 // Keep track the alignment, constpool entries per Section.
2205   struct SectionCPs {
2206     MCSection *S;
2207     Align Alignment;
2208     SmallVector<unsigned, 4> CPEs;
2209 
2210     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
2211   };
2212 
2213 } // end anonymous namespace
2214 
2215 /// EmitConstantPool - Print to the current output stream assembly
2216 /// representations of the constants in the constant pool MCP. This is
2217 /// used to print out constants which have been "spilled to memory" by
2218 /// the code generator.
2219 void AsmPrinter::emitConstantPool() {
2220   const MachineConstantPool *MCP = MF->getConstantPool();
2221   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
2222   if (CP.empty()) return;
2223 
2224   // Calculate sections for constant pool entries. We collect entries to go into
2225   // the same section together to reduce amount of section switch statements.
2226   SmallVector<SectionCPs, 4> CPSections;
2227   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
2228     const MachineConstantPoolEntry &CPE = CP[i];
2229     Align Alignment = CPE.getAlign();
2230 
2231     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
2232 
2233     const Constant *C = nullptr;
2234     if (!CPE.isMachineConstantPoolEntry())
2235       C = CPE.Val.ConstVal;
2236 
2237     MCSection *S = getObjFileLowering().getSectionForConstant(
2238         getDataLayout(), Kind, C, Alignment);
2239 
2240     // The number of sections are small, just do a linear search from the
2241     // last section to the first.
2242     bool Found = false;
2243     unsigned SecIdx = CPSections.size();
2244     while (SecIdx != 0) {
2245       if (CPSections[--SecIdx].S == S) {
2246         Found = true;
2247         break;
2248       }
2249     }
2250     if (!Found) {
2251       SecIdx = CPSections.size();
2252       CPSections.push_back(SectionCPs(S, Alignment));
2253     }
2254 
2255     if (Alignment > CPSections[SecIdx].Alignment)
2256       CPSections[SecIdx].Alignment = Alignment;
2257     CPSections[SecIdx].CPEs.push_back(i);
2258   }
2259 
2260   // Now print stuff into the calculated sections.
2261   const MCSection *CurSection = nullptr;
2262   unsigned Offset = 0;
2263   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
2264     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
2265       unsigned CPI = CPSections[i].CPEs[j];
2266       MCSymbol *Sym = GetCPISymbol(CPI);
2267       if (!Sym->isUndefined())
2268         continue;
2269 
2270       if (CurSection != CPSections[i].S) {
2271         OutStreamer->SwitchSection(CPSections[i].S);
2272         emitAlignment(Align(CPSections[i].Alignment));
2273         CurSection = CPSections[i].S;
2274         Offset = 0;
2275       }
2276 
2277       MachineConstantPoolEntry CPE = CP[CPI];
2278 
2279       // Emit inter-object padding for alignment.
2280       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2281       OutStreamer->emitZeros(NewOffset - Offset);
2282 
2283       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2284 
2285       OutStreamer->emitLabel(Sym);
2286       if (CPE.isMachineConstantPoolEntry())
2287         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2288       else
2289         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2290     }
2291   }
2292 }
2293 
2294 // Print assembly representations of the jump tables used by the current
2295 // function.
2296 void AsmPrinter::emitJumpTableInfo() {
2297   const DataLayout &DL = MF->getDataLayout();
2298   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2299   if (!MJTI) return;
2300   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2301   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2302   if (JT.empty()) return;
2303 
2304   // Pick the directive to use to print the jump table entries, and switch to
2305   // the appropriate section.
2306   const Function &F = MF->getFunction();
2307   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2308   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2309       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2310       F);
2311   if (JTInDiffSection) {
2312     // Drop it in the readonly section.
2313     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2314     OutStreamer->SwitchSection(ReadOnlySection);
2315   }
2316 
2317   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2318 
2319   // Jump tables in code sections are marked with a data_region directive
2320   // where that's supported.
2321   if (!JTInDiffSection)
2322     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2323 
2324   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2325     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2326 
2327     // If this jump table was deleted, ignore it.
2328     if (JTBBs.empty()) continue;
2329 
2330     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2331     /// emit a .set directive for each unique entry.
2332     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2333         MAI->doesSetDirectiveSuppressReloc()) {
2334       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2335       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2336       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2337       for (const MachineBasicBlock *MBB : JTBBs) {
2338         if (!EmittedSets.insert(MBB).second)
2339           continue;
2340 
2341         // .set LJTSet, LBB32-base
2342         const MCExpr *LHS =
2343           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2344         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2345                                     MCBinaryExpr::createSub(LHS, Base,
2346                                                             OutContext));
2347       }
2348     }
2349 
2350     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2351     // before each jump table.  The first label is never referenced, but tells
2352     // the assembler and linker the extents of the jump table object.  The
2353     // second label is actually referenced by the code.
2354     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2355       // FIXME: This doesn't have to have any specific name, just any randomly
2356       // named and numbered local label started with 'l' would work.  Simplify
2357       // GetJTISymbol.
2358       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2359 
2360     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2361     OutStreamer->emitLabel(JTISymbol);
2362 
2363     for (const MachineBasicBlock *MBB : JTBBs)
2364       emitJumpTableEntry(MJTI, MBB, JTI);
2365   }
2366   if (!JTInDiffSection)
2367     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2368 }
2369 
2370 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2371 /// current stream.
2372 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2373                                     const MachineBasicBlock *MBB,
2374                                     unsigned UID) const {
2375   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2376   const MCExpr *Value = nullptr;
2377   switch (MJTI->getEntryKind()) {
2378   case MachineJumpTableInfo::EK_Inline:
2379     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2380   case MachineJumpTableInfo::EK_Custom32:
2381     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2382         MJTI, MBB, UID, OutContext);
2383     break;
2384   case MachineJumpTableInfo::EK_BlockAddress:
2385     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2386     //     .word LBB123
2387     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2388     break;
2389   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2390     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2391     // with a relocation as gp-relative, e.g.:
2392     //     .gprel32 LBB123
2393     MCSymbol *MBBSym = MBB->getSymbol();
2394     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2395     return;
2396   }
2397 
2398   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2399     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2400     // with a relocation as gp-relative, e.g.:
2401     //     .gpdword LBB123
2402     MCSymbol *MBBSym = MBB->getSymbol();
2403     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2404     return;
2405   }
2406 
2407   case MachineJumpTableInfo::EK_LabelDifference32: {
2408     // Each entry is the address of the block minus the address of the jump
2409     // table. This is used for PIC jump tables where gprel32 is not supported.
2410     // e.g.:
2411     //      .word LBB123 - LJTI1_2
2412     // If the .set directive avoids relocations, this is emitted as:
2413     //      .set L4_5_set_123, LBB123 - LJTI1_2
2414     //      .word L4_5_set_123
2415     if (MAI->doesSetDirectiveSuppressReloc()) {
2416       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2417                                       OutContext);
2418       break;
2419     }
2420     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2421     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2422     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2423     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2424     break;
2425   }
2426   }
2427 
2428   assert(Value && "Unknown entry kind!");
2429 
2430   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2431   OutStreamer->emitValue(Value, EntrySize);
2432 }
2433 
2434 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2435 /// special global used by LLVM.  If so, emit it and return true, otherwise
2436 /// do nothing and return false.
2437 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2438   if (GV->getName() == "llvm.used") {
2439     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2440       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2441     return true;
2442   }
2443 
2444   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2445   if (GV->getSection() == "llvm.metadata" ||
2446       GV->hasAvailableExternallyLinkage())
2447     return true;
2448 
2449   if (!GV->hasAppendingLinkage()) return false;
2450 
2451   assert(GV->hasInitializer() && "Not a special LLVM global!");
2452 
2453   if (GV->getName() == "llvm.global_ctors") {
2454     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2455                        /* isCtor */ true);
2456 
2457     return true;
2458   }
2459 
2460   if (GV->getName() == "llvm.global_dtors") {
2461     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2462                        /* isCtor */ false);
2463 
2464     return true;
2465   }
2466 
2467   report_fatal_error("unknown special variable");
2468 }
2469 
2470 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2471 /// global in the specified llvm.used list.
2472 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2473   // Should be an array of 'i8*'.
2474   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2475     const GlobalValue *GV =
2476       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2477     if (GV)
2478       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2479   }
2480 }
2481 
2482 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2483                                           const Constant *List,
2484                                           SmallVector<Structor, 8> &Structors) {
2485   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2486   // the init priority.
2487   if (!isa<ConstantArray>(List))
2488     return;
2489 
2490   // Gather the structors in a form that's convenient for sorting by priority.
2491   for (Value *O : cast<ConstantArray>(List)->operands()) {
2492     auto *CS = cast<ConstantStruct>(O);
2493     if (CS->getOperand(1)->isNullValue())
2494       break; // Found a null terminator, skip the rest.
2495     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2496     if (!Priority)
2497       continue; // Malformed.
2498     Structors.push_back(Structor());
2499     Structor &S = Structors.back();
2500     S.Priority = Priority->getLimitedValue(65535);
2501     S.Func = CS->getOperand(1);
2502     if (!CS->getOperand(2)->isNullValue()) {
2503       if (TM.getTargetTriple().isOSAIX())
2504         llvm::report_fatal_error(
2505             "associated data of XXStructor list is not yet supported on AIX");
2506       S.ComdatKey =
2507           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2508     }
2509   }
2510 
2511   // Emit the function pointers in the target-specific order
2512   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2513     return L.Priority < R.Priority;
2514   });
2515 }
2516 
2517 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2518 /// priority.
2519 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2520                                     bool IsCtor) {
2521   SmallVector<Structor, 8> Structors;
2522   preprocessXXStructorList(DL, List, Structors);
2523   if (Structors.empty())
2524     return;
2525 
2526   // Emit the structors in reverse order if we are using the .ctor/.dtor
2527   // initialization scheme.
2528   if (!TM.Options.UseInitArray)
2529     std::reverse(Structors.begin(), Structors.end());
2530 
2531   const Align Align = DL.getPointerPrefAlignment();
2532   for (Structor &S : Structors) {
2533     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2534     const MCSymbol *KeySym = nullptr;
2535     if (GlobalValue *GV = S.ComdatKey) {
2536       if (GV->isDeclarationForLinker())
2537         // If the associated variable is not defined in this module
2538         // (it might be available_externally, or have been an
2539         // available_externally definition that was dropped by the
2540         // EliminateAvailableExternally pass), some other TU
2541         // will provide its dynamic initializer.
2542         continue;
2543 
2544       KeySym = getSymbol(GV);
2545     }
2546 
2547     MCSection *OutputSection =
2548         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2549                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2550     OutStreamer->SwitchSection(OutputSection);
2551     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2552       emitAlignment(Align);
2553     emitXXStructor(DL, S.Func);
2554   }
2555 }
2556 
2557 void AsmPrinter::emitModuleIdents(Module &M) {
2558   if (!MAI->hasIdentDirective())
2559     return;
2560 
2561   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2562     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2563       const MDNode *N = NMD->getOperand(i);
2564       assert(N->getNumOperands() == 1 &&
2565              "llvm.ident metadata entry can have only one operand");
2566       const MDString *S = cast<MDString>(N->getOperand(0));
2567       OutStreamer->emitIdent(S->getString());
2568     }
2569   }
2570 }
2571 
2572 void AsmPrinter::emitModuleCommandLines(Module &M) {
2573   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2574   if (!CommandLine)
2575     return;
2576 
2577   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2578   if (!NMD || !NMD->getNumOperands())
2579     return;
2580 
2581   OutStreamer->PushSection();
2582   OutStreamer->SwitchSection(CommandLine);
2583   OutStreamer->emitZeros(1);
2584   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2585     const MDNode *N = NMD->getOperand(i);
2586     assert(N->getNumOperands() == 1 &&
2587            "llvm.commandline metadata entry can have only one operand");
2588     const MDString *S = cast<MDString>(N->getOperand(0));
2589     OutStreamer->emitBytes(S->getString());
2590     OutStreamer->emitZeros(1);
2591   }
2592   OutStreamer->PopSection();
2593 }
2594 
2595 //===--------------------------------------------------------------------===//
2596 // Emission and print routines
2597 //
2598 
2599 /// Emit a byte directive and value.
2600 ///
2601 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2602 
2603 /// Emit a short directive and value.
2604 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2605 
2606 /// Emit a long directive and value.
2607 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2608 
2609 /// Emit a long long directive and value.
2610 void AsmPrinter::emitInt64(uint64_t Value) const {
2611   OutStreamer->emitInt64(Value);
2612 }
2613 
2614 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2615 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2616 /// .set if it avoids relocations.
2617 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2618                                      unsigned Size) const {
2619   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2620 }
2621 
2622 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2623 /// where the size in bytes of the directive is specified by Size and Label
2624 /// specifies the label.  This implicitly uses .set if it is available.
2625 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2626                                      unsigned Size,
2627                                      bool IsSectionRelative) const {
2628   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2629     OutStreamer->emitCOFFSecRel32(Label, Offset);
2630     if (Size > 4)
2631       OutStreamer->emitZeros(Size - 4);
2632     return;
2633   }
2634 
2635   // Emit Label+Offset (or just Label if Offset is zero)
2636   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2637   if (Offset)
2638     Expr = MCBinaryExpr::createAdd(
2639         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2640 
2641   OutStreamer->emitValue(Expr, Size);
2642 }
2643 
2644 //===----------------------------------------------------------------------===//
2645 
2646 // EmitAlignment - Emit an alignment directive to the specified power of
2647 // two boundary.  If a global value is specified, and if that global has
2648 // an explicit alignment requested, it will override the alignment request
2649 // if required for correctness.
2650 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV,
2651                                unsigned MaxBytesToEmit) const {
2652   if (GV)
2653     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2654 
2655   if (Alignment == Align(1))
2656     return; // 1-byte aligned: no need to emit alignment.
2657 
2658   if (getCurrentSection()->getKind().isText()) {
2659     const MCSubtargetInfo *STI = nullptr;
2660     if (this->MF)
2661       STI = &getSubtargetInfo();
2662     else
2663       STI = TM.getMCSubtargetInfo();
2664     OutStreamer->emitCodeAlignment(Alignment.value(), STI, MaxBytesToEmit);
2665   } else
2666     OutStreamer->emitValueToAlignment(Alignment.value(), 0, 1, MaxBytesToEmit);
2667 }
2668 
2669 //===----------------------------------------------------------------------===//
2670 // Constant emission.
2671 //===----------------------------------------------------------------------===//
2672 
2673 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2674   MCContext &Ctx = OutContext;
2675 
2676   if (CV->isNullValue() || isa<UndefValue>(CV))
2677     return MCConstantExpr::create(0, Ctx);
2678 
2679   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2680     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2681 
2682   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2683     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2684 
2685   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2686     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2687 
2688   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2689     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2690 
2691   if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV))
2692     return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx);
2693 
2694   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2695   if (!CE) {
2696     llvm_unreachable("Unknown constant value to lower!");
2697   }
2698 
2699   switch (CE->getOpcode()) {
2700   case Instruction::AddrSpaceCast: {
2701     const Constant *Op = CE->getOperand(0);
2702     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2703     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2704     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2705       return lowerConstant(Op);
2706 
2707     // Fallthrough to error.
2708     LLVM_FALLTHROUGH;
2709   }
2710   default: {
2711     // If the code isn't optimized, there may be outstanding folding
2712     // opportunities. Attempt to fold the expression using DataLayout as a
2713     // last resort before giving up.
2714     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2715     if (C != CE)
2716       return lowerConstant(C);
2717 
2718     // Otherwise report the problem to the user.
2719     std::string S;
2720     raw_string_ostream OS(S);
2721     OS << "Unsupported expression in static initializer: ";
2722     CE->printAsOperand(OS, /*PrintType=*/false,
2723                    !MF ? nullptr : MF->getFunction().getParent());
2724     report_fatal_error(Twine(OS.str()));
2725   }
2726   case Instruction::GetElementPtr: {
2727     // Generate a symbolic expression for the byte address
2728     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2729     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2730 
2731     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2732     if (!OffsetAI)
2733       return Base;
2734 
2735     int64_t Offset = OffsetAI.getSExtValue();
2736     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2737                                    Ctx);
2738   }
2739 
2740   case Instruction::Trunc:
2741     // We emit the value and depend on the assembler to truncate the generated
2742     // expression properly.  This is important for differences between
2743     // blockaddress labels.  Since the two labels are in the same function, it
2744     // is reasonable to treat their delta as a 32-bit value.
2745     LLVM_FALLTHROUGH;
2746   case Instruction::BitCast:
2747     return lowerConstant(CE->getOperand(0));
2748 
2749   case Instruction::IntToPtr: {
2750     const DataLayout &DL = getDataLayout();
2751 
2752     // Handle casts to pointers by changing them into casts to the appropriate
2753     // integer type.  This promotes constant folding and simplifies this code.
2754     Constant *Op = CE->getOperand(0);
2755     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2756                                       false/*ZExt*/);
2757     return lowerConstant(Op);
2758   }
2759 
2760   case Instruction::PtrToInt: {
2761     const DataLayout &DL = getDataLayout();
2762 
2763     // Support only foldable casts to/from pointers that can be eliminated by
2764     // changing the pointer to the appropriately sized integer type.
2765     Constant *Op = CE->getOperand(0);
2766     Type *Ty = CE->getType();
2767 
2768     const MCExpr *OpExpr = lowerConstant(Op);
2769 
2770     // We can emit the pointer value into this slot if the slot is an
2771     // integer slot equal to the size of the pointer.
2772     //
2773     // If the pointer is larger than the resultant integer, then
2774     // as with Trunc just depend on the assembler to truncate it.
2775     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2776         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2777       return OpExpr;
2778 
2779     // Otherwise the pointer is smaller than the resultant integer, mask off
2780     // the high bits so we are sure to get a proper truncation if the input is
2781     // a constant expr.
2782     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2783     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2784     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2785   }
2786 
2787   case Instruction::Sub: {
2788     GlobalValue *LHSGV;
2789     APInt LHSOffset;
2790     DSOLocalEquivalent *DSOEquiv;
2791     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2792                                    getDataLayout(), &DSOEquiv)) {
2793       GlobalValue *RHSGV;
2794       APInt RHSOffset;
2795       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2796                                      getDataLayout())) {
2797         const MCExpr *RelocExpr =
2798             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2799         if (!RelocExpr) {
2800           const MCExpr *LHSExpr =
2801               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2802           if (DSOEquiv &&
2803               getObjFileLowering().supportDSOLocalEquivalentLowering())
2804             LHSExpr =
2805                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2806           RelocExpr = MCBinaryExpr::createSub(
2807               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2808         }
2809         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2810         if (Addend != 0)
2811           RelocExpr = MCBinaryExpr::createAdd(
2812               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2813         return RelocExpr;
2814       }
2815     }
2816   }
2817   // else fallthrough
2818   LLVM_FALLTHROUGH;
2819 
2820   // The MC library also has a right-shift operator, but it isn't consistently
2821   // signed or unsigned between different targets.
2822   case Instruction::Add:
2823   case Instruction::Mul:
2824   case Instruction::SDiv:
2825   case Instruction::SRem:
2826   case Instruction::Shl:
2827   case Instruction::And:
2828   case Instruction::Or:
2829   case Instruction::Xor: {
2830     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2831     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2832     switch (CE->getOpcode()) {
2833     default: llvm_unreachable("Unknown binary operator constant cast expr");
2834     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2835     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2836     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2837     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2838     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2839     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2840     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2841     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2842     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2843     }
2844   }
2845   }
2846 }
2847 
2848 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2849                                    AsmPrinter &AP,
2850                                    const Constant *BaseCV = nullptr,
2851                                    uint64_t Offset = 0);
2852 
2853 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2854 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2855 
2856 /// isRepeatedByteSequence - Determine whether the given value is
2857 /// composed of a repeated sequence of identical bytes and return the
2858 /// byte value.  If it is not a repeated sequence, return -1.
2859 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2860   StringRef Data = V->getRawDataValues();
2861   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2862   char C = Data[0];
2863   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2864     if (Data[i] != C) return -1;
2865   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2866 }
2867 
2868 /// isRepeatedByteSequence - Determine whether the given value is
2869 /// composed of a repeated sequence of identical bytes and return the
2870 /// byte value.  If it is not a repeated sequence, return -1.
2871 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2872   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2873     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2874     assert(Size % 8 == 0);
2875 
2876     // Extend the element to take zero padding into account.
2877     APInt Value = CI->getValue().zext(Size);
2878     if (!Value.isSplat(8))
2879       return -1;
2880 
2881     return Value.zextOrTrunc(8).getZExtValue();
2882   }
2883   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2884     // Make sure all array elements are sequences of the same repeated
2885     // byte.
2886     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2887     Constant *Op0 = CA->getOperand(0);
2888     int Byte = isRepeatedByteSequence(Op0, DL);
2889     if (Byte == -1)
2890       return -1;
2891 
2892     // All array elements must be equal.
2893     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2894       if (CA->getOperand(i) != Op0)
2895         return -1;
2896     return Byte;
2897   }
2898 
2899   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2900     return isRepeatedByteSequence(CDS);
2901 
2902   return -1;
2903 }
2904 
2905 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2906                                              const ConstantDataSequential *CDS,
2907                                              AsmPrinter &AP) {
2908   // See if we can aggregate this into a .fill, if so, emit it as such.
2909   int Value = isRepeatedByteSequence(CDS, DL);
2910   if (Value != -1) {
2911     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2912     // Don't emit a 1-byte object as a .fill.
2913     if (Bytes > 1)
2914       return AP.OutStreamer->emitFill(Bytes, Value);
2915   }
2916 
2917   // If this can be emitted with .ascii/.asciz, emit it as such.
2918   if (CDS->isString())
2919     return AP.OutStreamer->emitBytes(CDS->getAsString());
2920 
2921   // Otherwise, emit the values in successive locations.
2922   unsigned ElementByteSize = CDS->getElementByteSize();
2923   if (isa<IntegerType>(CDS->getElementType())) {
2924     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2925       if (AP.isVerbose())
2926         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2927                                                  CDS->getElementAsInteger(i));
2928       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2929                                    ElementByteSize);
2930     }
2931   } else {
2932     Type *ET = CDS->getElementType();
2933     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2934       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2935   }
2936 
2937   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2938   unsigned EmittedSize =
2939       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2940   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2941   if (unsigned Padding = Size - EmittedSize)
2942     AP.OutStreamer->emitZeros(Padding);
2943 }
2944 
2945 static void emitGlobalConstantArray(const DataLayout &DL,
2946                                     const ConstantArray *CA, AsmPrinter &AP,
2947                                     const Constant *BaseCV, uint64_t Offset) {
2948   // See if we can aggregate some values.  Make sure it can be
2949   // represented as a series of bytes of the constant value.
2950   int Value = isRepeatedByteSequence(CA, DL);
2951 
2952   if (Value != -1) {
2953     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2954     AP.OutStreamer->emitFill(Bytes, Value);
2955   }
2956   else {
2957     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2958       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2959       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2960     }
2961   }
2962 }
2963 
2964 static void emitGlobalConstantVector(const DataLayout &DL,
2965                                      const ConstantVector *CV, AsmPrinter &AP) {
2966   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2967     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2968 
2969   unsigned Size = DL.getTypeAllocSize(CV->getType());
2970   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2971                          CV->getType()->getNumElements();
2972   if (unsigned Padding = Size - EmittedSize)
2973     AP.OutStreamer->emitZeros(Padding);
2974 }
2975 
2976 static void emitGlobalConstantStruct(const DataLayout &DL,
2977                                      const ConstantStruct *CS, AsmPrinter &AP,
2978                                      const Constant *BaseCV, uint64_t Offset) {
2979   // Print the fields in successive locations. Pad to align if needed!
2980   unsigned Size = DL.getTypeAllocSize(CS->getType());
2981   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2982   uint64_t SizeSoFar = 0;
2983   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2984     const Constant *Field = CS->getOperand(i);
2985 
2986     // Print the actual field value.
2987     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2988 
2989     // Check if padding is needed and insert one or more 0s.
2990     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2991     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2992                         - Layout->getElementOffset(i)) - FieldSize;
2993     SizeSoFar += FieldSize + PadSize;
2994 
2995     // Insert padding - this may include padding to increase the size of the
2996     // current field up to the ABI size (if the struct is not packed) as well
2997     // as padding to ensure that the next field starts at the right offset.
2998     AP.OutStreamer->emitZeros(PadSize);
2999   }
3000   assert(SizeSoFar == Layout->getSizeInBytes() &&
3001          "Layout of constant struct may be incorrect!");
3002 }
3003 
3004 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
3005   assert(ET && "Unknown float type");
3006   APInt API = APF.bitcastToAPInt();
3007 
3008   // First print a comment with what we think the original floating-point value
3009   // should have been.
3010   if (AP.isVerbose()) {
3011     SmallString<8> StrVal;
3012     APF.toString(StrVal);
3013     ET->print(AP.OutStreamer->GetCommentOS());
3014     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
3015   }
3016 
3017   // Now iterate through the APInt chunks, emitting them in endian-correct
3018   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
3019   // floats).
3020   unsigned NumBytes = API.getBitWidth() / 8;
3021   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
3022   const uint64_t *p = API.getRawData();
3023 
3024   // PPC's long double has odd notions of endianness compared to how LLVM
3025   // handles it: p[0] goes first for *big* endian on PPC.
3026   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
3027     int Chunk = API.getNumWords() - 1;
3028 
3029     if (TrailingBytes)
3030       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
3031 
3032     for (; Chunk >= 0; --Chunk)
3033       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
3034   } else {
3035     unsigned Chunk;
3036     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
3037       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
3038 
3039     if (TrailingBytes)
3040       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
3041   }
3042 
3043   // Emit the tail padding for the long double.
3044   const DataLayout &DL = AP.getDataLayout();
3045   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
3046 }
3047 
3048 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
3049   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
3050 }
3051 
3052 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
3053   const DataLayout &DL = AP.getDataLayout();
3054   unsigned BitWidth = CI->getBitWidth();
3055 
3056   // Copy the value as we may massage the layout for constants whose bit width
3057   // is not a multiple of 64-bits.
3058   APInt Realigned(CI->getValue());
3059   uint64_t ExtraBits = 0;
3060   unsigned ExtraBitsSize = BitWidth & 63;
3061 
3062   if (ExtraBitsSize) {
3063     // The bit width of the data is not a multiple of 64-bits.
3064     // The extra bits are expected to be at the end of the chunk of the memory.
3065     // Little endian:
3066     // * Nothing to be done, just record the extra bits to emit.
3067     // Big endian:
3068     // * Record the extra bits to emit.
3069     // * Realign the raw data to emit the chunks of 64-bits.
3070     if (DL.isBigEndian()) {
3071       // Basically the structure of the raw data is a chunk of 64-bits cells:
3072       //    0        1         BitWidth / 64
3073       // [chunk1][chunk2] ... [chunkN].
3074       // The most significant chunk is chunkN and it should be emitted first.
3075       // However, due to the alignment issue chunkN contains useless bits.
3076       // Realign the chunks so that they contain only useful information:
3077       // ExtraBits     0       1       (BitWidth / 64) - 1
3078       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
3079       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
3080       ExtraBits = Realigned.getRawData()[0] &
3081         (((uint64_t)-1) >> (64 - ExtraBitsSize));
3082       Realigned.lshrInPlace(ExtraBitsSize);
3083     } else
3084       ExtraBits = Realigned.getRawData()[BitWidth / 64];
3085   }
3086 
3087   // We don't expect assemblers to support integer data directives
3088   // for more than 64 bits, so we emit the data in at most 64-bit
3089   // quantities at a time.
3090   const uint64_t *RawData = Realigned.getRawData();
3091   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
3092     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
3093     AP.OutStreamer->emitIntValue(Val, 8);
3094   }
3095 
3096   if (ExtraBitsSize) {
3097     // Emit the extra bits after the 64-bits chunks.
3098 
3099     // Emit a directive that fills the expected size.
3100     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
3101     Size -= (BitWidth / 64) * 8;
3102     assert(Size && Size * 8 >= ExtraBitsSize &&
3103            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
3104            == ExtraBits && "Directive too small for extra bits.");
3105     AP.OutStreamer->emitIntValue(ExtraBits, Size);
3106   }
3107 }
3108 
3109 /// Transform a not absolute MCExpr containing a reference to a GOT
3110 /// equivalent global, by a target specific GOT pc relative access to the
3111 /// final symbol.
3112 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
3113                                          const Constant *BaseCst,
3114                                          uint64_t Offset) {
3115   // The global @foo below illustrates a global that uses a got equivalent.
3116   //
3117   //  @bar = global i32 42
3118   //  @gotequiv = private unnamed_addr constant i32* @bar
3119   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
3120   //                             i64 ptrtoint (i32* @foo to i64))
3121   //                        to i32)
3122   //
3123   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
3124   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
3125   // form:
3126   //
3127   //  foo = cstexpr, where
3128   //    cstexpr := <gotequiv> - "." + <cst>
3129   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
3130   //
3131   // After canonicalization by evaluateAsRelocatable `ME` turns into:
3132   //
3133   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
3134   //    gotpcrelcst := <offset from @foo base> + <cst>
3135   MCValue MV;
3136   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
3137     return;
3138   const MCSymbolRefExpr *SymA = MV.getSymA();
3139   if (!SymA)
3140     return;
3141 
3142   // Check that GOT equivalent symbol is cached.
3143   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
3144   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
3145     return;
3146 
3147   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
3148   if (!BaseGV)
3149     return;
3150 
3151   // Check for a valid base symbol
3152   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
3153   const MCSymbolRefExpr *SymB = MV.getSymB();
3154 
3155   if (!SymB || BaseSym != &SymB->getSymbol())
3156     return;
3157 
3158   // Make sure to match:
3159   //
3160   //    gotpcrelcst := <offset from @foo base> + <cst>
3161   //
3162   // If gotpcrelcst is positive it means that we can safely fold the pc rel
3163   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
3164   // if the target knows how to encode it.
3165   int64_t GOTPCRelCst = Offset + MV.getConstant();
3166   if (GOTPCRelCst < 0)
3167     return;
3168   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
3169     return;
3170 
3171   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
3172   //
3173   //  bar:
3174   //    .long 42
3175   //  gotequiv:
3176   //    .quad bar
3177   //  foo:
3178   //    .long gotequiv - "." + <cst>
3179   //
3180   // is replaced by the target specific equivalent to:
3181   //
3182   //  bar:
3183   //    .long 42
3184   //  foo:
3185   //    .long bar@GOTPCREL+<gotpcrelcst>
3186   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
3187   const GlobalVariable *GV = Result.first;
3188   int NumUses = (int)Result.second;
3189   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
3190   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
3191   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
3192       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
3193 
3194   // Update GOT equivalent usage information
3195   --NumUses;
3196   if (NumUses >= 0)
3197     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
3198 }
3199 
3200 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
3201                                    AsmPrinter &AP, const Constant *BaseCV,
3202                                    uint64_t Offset) {
3203   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3204 
3205   // Globals with sub-elements such as combinations of arrays and structs
3206   // are handled recursively by emitGlobalConstantImpl. Keep track of the
3207   // constant symbol base and the current position with BaseCV and Offset.
3208   if (!BaseCV && CV->hasOneUse())
3209     BaseCV = dyn_cast<Constant>(CV->user_back());
3210 
3211   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
3212     return AP.OutStreamer->emitZeros(Size);
3213 
3214   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
3215     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
3216 
3217     if (StoreSize <= 8) {
3218       if (AP.isVerbose())
3219         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
3220                                                  CI->getZExtValue());
3221       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
3222     } else {
3223       emitGlobalConstantLargeInt(CI, AP);
3224     }
3225 
3226     // Emit tail padding if needed
3227     if (Size != StoreSize)
3228       AP.OutStreamer->emitZeros(Size - StoreSize);
3229 
3230     return;
3231   }
3232 
3233   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
3234     return emitGlobalConstantFP(CFP, AP);
3235 
3236   if (isa<ConstantPointerNull>(CV)) {
3237     AP.OutStreamer->emitIntValue(0, Size);
3238     return;
3239   }
3240 
3241   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
3242     return emitGlobalConstantDataSequential(DL, CDS, AP);
3243 
3244   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
3245     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
3246 
3247   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
3248     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
3249 
3250   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
3251     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
3252     // vectors).
3253     if (CE->getOpcode() == Instruction::BitCast)
3254       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
3255 
3256     if (Size > 8) {
3257       // If the constant expression's size is greater than 64-bits, then we have
3258       // to emit the value in chunks. Try to constant fold the value and emit it
3259       // that way.
3260       Constant *New = ConstantFoldConstant(CE, DL);
3261       if (New != CE)
3262         return emitGlobalConstantImpl(DL, New, AP);
3263     }
3264   }
3265 
3266   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
3267     return emitGlobalConstantVector(DL, V, AP);
3268 
3269   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
3270   // thread the streamer with EmitValue.
3271   const MCExpr *ME = AP.lowerConstant(CV);
3272 
3273   // Since lowerConstant already folded and got rid of all IR pointer and
3274   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
3275   // directly.
3276   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
3277     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
3278 
3279   AP.OutStreamer->emitValue(ME, Size);
3280 }
3281 
3282 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
3283 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
3284   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3285   if (Size)
3286     emitGlobalConstantImpl(DL, CV, *this);
3287   else if (MAI->hasSubsectionsViaSymbols()) {
3288     // If the global has zero size, emit a single byte so that two labels don't
3289     // look like they are at the same location.
3290     OutStreamer->emitIntValue(0, 1);
3291   }
3292 }
3293 
3294 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
3295   // Target doesn't support this yet!
3296   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3297 }
3298 
3299 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
3300   if (Offset > 0)
3301     OS << '+' << Offset;
3302   else if (Offset < 0)
3303     OS << Offset;
3304 }
3305 
3306 void AsmPrinter::emitNops(unsigned N) {
3307   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
3308   for (; N; --N)
3309     EmitToStreamer(*OutStreamer, Nop);
3310 }
3311 
3312 //===----------------------------------------------------------------------===//
3313 // Symbol Lowering Routines.
3314 //===----------------------------------------------------------------------===//
3315 
3316 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3317   return OutContext.createTempSymbol(Name, true);
3318 }
3319 
3320 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3321   return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(
3322       BA->getBasicBlock());
3323 }
3324 
3325 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3326   return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB);
3327 }
3328 
3329 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3330 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3331   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3332     const MachineConstantPoolEntry &CPE =
3333         MF->getConstantPool()->getConstants()[CPID];
3334     if (!CPE.isMachineConstantPoolEntry()) {
3335       const DataLayout &DL = MF->getDataLayout();
3336       SectionKind Kind = CPE.getSectionKind(&DL);
3337       const Constant *C = CPE.Val.ConstVal;
3338       Align Alignment = CPE.Alignment;
3339       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3340               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3341                                                          Alignment))) {
3342         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3343           if (Sym->isUndefined())
3344             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3345           return Sym;
3346         }
3347       }
3348     }
3349   }
3350 
3351   const DataLayout &DL = getDataLayout();
3352   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3353                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3354                                       Twine(CPID));
3355 }
3356 
3357 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3358 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3359   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3360 }
3361 
3362 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3363 /// FIXME: privatize to AsmPrinter.
3364 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3365   const DataLayout &DL = getDataLayout();
3366   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3367                                       Twine(getFunctionNumber()) + "_" +
3368                                       Twine(UID) + "_set_" + Twine(MBBID));
3369 }
3370 
3371 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3372                                                    StringRef Suffix) const {
3373   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3374 }
3375 
3376 /// Return the MCSymbol for the specified ExternalSymbol.
3377 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3378   SmallString<60> NameStr;
3379   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3380   return OutContext.getOrCreateSymbol(NameStr);
3381 }
3382 
3383 /// PrintParentLoopComment - Print comments about parent loops of this one.
3384 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3385                                    unsigned FunctionNumber) {
3386   if (!Loop) return;
3387   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3388   OS.indent(Loop->getLoopDepth()*2)
3389     << "Parent Loop BB" << FunctionNumber << "_"
3390     << Loop->getHeader()->getNumber()
3391     << " Depth=" << Loop->getLoopDepth() << '\n';
3392 }
3393 
3394 /// PrintChildLoopComment - Print comments about child loops within
3395 /// the loop for this basic block, with nesting.
3396 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3397                                   unsigned FunctionNumber) {
3398   // Add child loop information
3399   for (const MachineLoop *CL : *Loop) {
3400     OS.indent(CL->getLoopDepth()*2)
3401       << "Child Loop BB" << FunctionNumber << "_"
3402       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3403       << '\n';
3404     PrintChildLoopComment(OS, CL, FunctionNumber);
3405   }
3406 }
3407 
3408 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3409 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3410                                        const MachineLoopInfo *LI,
3411                                        const AsmPrinter &AP) {
3412   // Add loop depth information
3413   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3414   if (!Loop) return;
3415 
3416   MachineBasicBlock *Header = Loop->getHeader();
3417   assert(Header && "No header for loop");
3418 
3419   // If this block is not a loop header, just print out what is the loop header
3420   // and return.
3421   if (Header != &MBB) {
3422     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3423                                Twine(AP.getFunctionNumber())+"_" +
3424                                Twine(Loop->getHeader()->getNumber())+
3425                                " Depth="+Twine(Loop->getLoopDepth()));
3426     return;
3427   }
3428 
3429   // Otherwise, it is a loop header.  Print out information about child and
3430   // parent loops.
3431   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3432 
3433   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3434 
3435   OS << "=>";
3436   OS.indent(Loop->getLoopDepth()*2-2);
3437 
3438   OS << "This ";
3439   if (Loop->isInnermost())
3440     OS << "Inner ";
3441   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3442 
3443   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3444 }
3445 
3446 /// emitBasicBlockStart - This method prints the label for the specified
3447 /// MachineBasicBlock, an alignment (if present) and a comment describing
3448 /// it if appropriate.
3449 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3450   // End the previous funclet and start a new one.
3451   if (MBB.isEHFuncletEntry()) {
3452     for (const HandlerInfo &HI : Handlers) {
3453       HI.Handler->endFunclet();
3454       HI.Handler->beginFunclet(MBB);
3455     }
3456   }
3457 
3458   // Emit an alignment directive for this block, if needed.
3459   const Align Alignment = MBB.getAlignment();
3460   if (Alignment != Align(1))
3461     emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment());
3462 
3463   // Switch to a new section if this basic block must begin a section. The
3464   // entry block is always placed in the function section and is handled
3465   // separately.
3466   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3467     OutStreamer->SwitchSection(
3468         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3469                                                             MBB, TM));
3470     CurrentSectionBeginSym = MBB.getSymbol();
3471   }
3472 
3473   // If the block has its address taken, emit any labels that were used to
3474   // reference the block.  It is possible that there is more than one label
3475   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3476   // the references were generated.
3477   const BasicBlock *BB = MBB.getBasicBlock();
3478   if (MBB.hasAddressTaken()) {
3479     if (isVerbose())
3480       OutStreamer->AddComment("Block address taken");
3481 
3482     // MBBs can have their address taken as part of CodeGen without having
3483     // their corresponding BB's address taken in IR
3484     if (BB && BB->hasAddressTaken())
3485       for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB))
3486         OutStreamer->emitLabel(Sym);
3487   }
3488 
3489   // Print some verbose block comments.
3490   if (isVerbose()) {
3491     if (BB) {
3492       if (BB->hasName()) {
3493         BB->printAsOperand(OutStreamer->GetCommentOS(),
3494                            /*PrintType=*/false, BB->getModule());
3495         OutStreamer->GetCommentOS() << '\n';
3496       }
3497     }
3498 
3499     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3500     emitBasicBlockLoopComments(MBB, MLI, *this);
3501   }
3502 
3503   // Print the main label for the block.
3504   if (shouldEmitLabelForBasicBlock(MBB)) {
3505     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3506       OutStreamer->AddComment("Label of block must be emitted");
3507     OutStreamer->emitLabel(MBB.getSymbol());
3508   } else {
3509     if (isVerbose()) {
3510       // NOTE: Want this comment at start of line, don't emit with AddComment.
3511       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3512                                   false);
3513     }
3514   }
3515 
3516   if (MBB.isEHCatchretTarget() &&
3517       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3518     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3519   }
3520 
3521   // With BB sections, each basic block must handle CFI information on its own
3522   // if it begins a section (Entry block is handled separately by
3523   // AsmPrinterHandler::beginFunction).
3524   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3525     for (const HandlerInfo &HI : Handlers)
3526       HI.Handler->beginBasicBlock(MBB);
3527 }
3528 
3529 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3530   // Check if CFI information needs to be updated for this MBB with basic block
3531   // sections.
3532   if (MBB.isEndSection())
3533     for (const HandlerInfo &HI : Handlers)
3534       HI.Handler->endBasicBlock(MBB);
3535 }
3536 
3537 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3538                                 bool IsDefinition) const {
3539   MCSymbolAttr Attr = MCSA_Invalid;
3540 
3541   switch (Visibility) {
3542   default: break;
3543   case GlobalValue::HiddenVisibility:
3544     if (IsDefinition)
3545       Attr = MAI->getHiddenVisibilityAttr();
3546     else
3547       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3548     break;
3549   case GlobalValue::ProtectedVisibility:
3550     Attr = MAI->getProtectedVisibilityAttr();
3551     break;
3552   }
3553 
3554   if (Attr != MCSA_Invalid)
3555     OutStreamer->emitSymbolAttribute(Sym, Attr);
3556 }
3557 
3558 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3559     const MachineBasicBlock &MBB) const {
3560   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3561   // in the labels mode (option `=labels`) and every section beginning in the
3562   // sections mode (`=all` and `=list=`).
3563   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3564     return true;
3565   // A label is needed for any block with at least one predecessor (when that
3566   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3567   // entry, or if a label is forced).
3568   return !MBB.pred_empty() &&
3569          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3570           MBB.hasLabelMustBeEmitted());
3571 }
3572 
3573 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3574 /// exactly one predecessor and the control transfer mechanism between
3575 /// the predecessor and this block is a fall-through.
3576 bool AsmPrinter::
3577 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3578   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3579   // then nothing falls through to it.
3580   if (MBB->isEHPad() || MBB->pred_empty())
3581     return false;
3582 
3583   // If there isn't exactly one predecessor, it can't be a fall through.
3584   if (MBB->pred_size() > 1)
3585     return false;
3586 
3587   // The predecessor has to be immediately before this block.
3588   MachineBasicBlock *Pred = *MBB->pred_begin();
3589   if (!Pred->isLayoutSuccessor(MBB))
3590     return false;
3591 
3592   // If the block is completely empty, then it definitely does fall through.
3593   if (Pred->empty())
3594     return true;
3595 
3596   // Check the terminators in the previous blocks
3597   for (const auto &MI : Pred->terminators()) {
3598     // If it is not a simple branch, we are in a table somewhere.
3599     if (!MI.isBranch() || MI.isIndirectBranch())
3600       return false;
3601 
3602     // If we are the operands of one of the branches, this is not a fall
3603     // through. Note that targets with delay slots will usually bundle
3604     // terminators with the delay slot instruction.
3605     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3606       if (OP->isJTI())
3607         return false;
3608       if (OP->isMBB() && OP->getMBB() == MBB)
3609         return false;
3610     }
3611   }
3612 
3613   return true;
3614 }
3615 
3616 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3617   if (!S.usesMetadata())
3618     return nullptr;
3619 
3620   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3621   gcp_map_type::iterator GCPI = GCMap.find(&S);
3622   if (GCPI != GCMap.end())
3623     return GCPI->second.get();
3624 
3625   auto Name = S.getName();
3626 
3627   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3628        GCMetadataPrinterRegistry::entries())
3629     if (Name == GCMetaPrinter.getName()) {
3630       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3631       GMP->S = &S;
3632       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3633       return IterBool.first->second.get();
3634     }
3635 
3636   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3637 }
3638 
3639 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3640   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3641   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3642   bool NeedsDefault = false;
3643   if (MI->begin() == MI->end())
3644     // No GC strategy, use the default format.
3645     NeedsDefault = true;
3646   else
3647     for (auto &I : *MI) {
3648       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3649         if (MP->emitStackMaps(SM, *this))
3650           continue;
3651       // The strategy doesn't have printer or doesn't emit custom stack maps.
3652       // Use the default format.
3653       NeedsDefault = true;
3654     }
3655 
3656   if (NeedsDefault)
3657     SM.serializeToStackMapSection();
3658 }
3659 
3660 /// Pin vtable to this file.
3661 AsmPrinterHandler::~AsmPrinterHandler() = default;
3662 
3663 void AsmPrinterHandler::markFunctionEnd() {}
3664 
3665 // In the binary's "xray_instr_map" section, an array of these function entries
3666 // describes each instrumentation point.  When XRay patches your code, the index
3667 // into this table will be given to your handler as a patch point identifier.
3668 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3669   auto Kind8 = static_cast<uint8_t>(Kind);
3670   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3671   Out->emitBinaryData(
3672       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3673   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3674   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3675   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3676   Out->emitZeros(Padding);
3677 }
3678 
3679 void AsmPrinter::emitXRayTable() {
3680   if (Sleds.empty())
3681     return;
3682 
3683   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3684   const Function &F = MF->getFunction();
3685   MCSection *InstMap = nullptr;
3686   MCSection *FnSledIndex = nullptr;
3687   const Triple &TT = TM.getTargetTriple();
3688   // Use PC-relative addresses on all targets.
3689   if (TT.isOSBinFormatELF()) {
3690     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3691     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3692     StringRef GroupName;
3693     if (F.hasComdat()) {
3694       Flags |= ELF::SHF_GROUP;
3695       GroupName = F.getComdat()->getName();
3696     }
3697     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3698                                        Flags, 0, GroupName, F.hasComdat(),
3699                                        MCSection::NonUniqueID, LinkedToSym);
3700 
3701     if (!TM.Options.XRayOmitFunctionIndex)
3702       FnSledIndex = OutContext.getELFSection(
3703           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3704           GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
3705   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3706     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3707                                          SectionKind::getReadOnlyWithRel());
3708     if (!TM.Options.XRayOmitFunctionIndex)
3709       FnSledIndex = OutContext.getMachOSection(
3710           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3711   } else {
3712     llvm_unreachable("Unsupported target");
3713   }
3714 
3715   auto WordSizeBytes = MAI->getCodePointerSize();
3716 
3717   // Now we switch to the instrumentation map section. Because this is done
3718   // per-function, we are able to create an index entry that will represent the
3719   // range of sleds associated with a function.
3720   auto &Ctx = OutContext;
3721   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3722   OutStreamer->SwitchSection(InstMap);
3723   OutStreamer->emitLabel(SledsStart);
3724   for (const auto &Sled : Sleds) {
3725     MCSymbol *Dot = Ctx.createTempSymbol();
3726     OutStreamer->emitLabel(Dot);
3727     OutStreamer->emitValueImpl(
3728         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3729                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3730         WordSizeBytes);
3731     OutStreamer->emitValueImpl(
3732         MCBinaryExpr::createSub(
3733             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3734             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3735                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3736                                     Ctx),
3737             Ctx),
3738         WordSizeBytes);
3739     Sled.emit(WordSizeBytes, OutStreamer.get());
3740   }
3741   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3742   OutStreamer->emitLabel(SledsEnd);
3743 
3744   // We then emit a single entry in the index per function. We use the symbols
3745   // that bound the instrumentation map as the range for a specific function.
3746   // Each entry here will be 2 * word size aligned, as we're writing down two
3747   // pointers. This should work for both 32-bit and 64-bit platforms.
3748   if (FnSledIndex) {
3749     OutStreamer->SwitchSection(FnSledIndex);
3750     OutStreamer->emitCodeAlignment(2 * WordSizeBytes, &getSubtargetInfo());
3751     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3752     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3753     OutStreamer->SwitchSection(PrevSection);
3754   }
3755   Sleds.clear();
3756 }
3757 
3758 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3759                             SledKind Kind, uint8_t Version) {
3760   const Function &F = MI.getMF()->getFunction();
3761   auto Attr = F.getFnAttribute("function-instrument");
3762   bool LogArgs = F.hasFnAttribute("xray-log-args");
3763   bool AlwaysInstrument =
3764     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3765   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3766     Kind = SledKind::LOG_ARGS_ENTER;
3767   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3768                                        AlwaysInstrument, &F, Version});
3769 }
3770 
3771 void AsmPrinter::emitPatchableFunctionEntries() {
3772   const Function &F = MF->getFunction();
3773   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3774   (void)F.getFnAttribute("patchable-function-prefix")
3775       .getValueAsString()
3776       .getAsInteger(10, PatchableFunctionPrefix);
3777   (void)F.getFnAttribute("patchable-function-entry")
3778       .getValueAsString()
3779       .getAsInteger(10, PatchableFunctionEntry);
3780   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3781     return;
3782   const unsigned PointerSize = getPointerSize();
3783   if (TM.getTargetTriple().isOSBinFormatELF()) {
3784     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3785     const MCSymbolELF *LinkedToSym = nullptr;
3786     StringRef GroupName;
3787 
3788     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3789     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3790     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3791       Flags |= ELF::SHF_LINK_ORDER;
3792       if (F.hasComdat()) {
3793         Flags |= ELF::SHF_GROUP;
3794         GroupName = F.getComdat()->getName();
3795       }
3796       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3797     }
3798     OutStreamer->SwitchSection(OutContext.getELFSection(
3799         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3800         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
3801     emitAlignment(Align(PointerSize));
3802     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3803   }
3804 }
3805 
3806 uint16_t AsmPrinter::getDwarfVersion() const {
3807   return OutStreamer->getContext().getDwarfVersion();
3808 }
3809 
3810 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3811   OutStreamer->getContext().setDwarfVersion(Version);
3812 }
3813 
3814 bool AsmPrinter::isDwarf64() const {
3815   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3816 }
3817 
3818 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3819   return dwarf::getDwarfOffsetByteSize(
3820       OutStreamer->getContext().getDwarfFormat());
3821 }
3822 
3823 dwarf::FormParams AsmPrinter::getDwarfFormParams() const {
3824   return {getDwarfVersion(), uint8_t(getPointerSize()),
3825           OutStreamer->getContext().getDwarfFormat(),
3826           MAI->doesDwarfUseRelocationsAcrossSections()};
3827 }
3828 
3829 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3830   return dwarf::getUnitLengthFieldByteSize(
3831       OutStreamer->getContext().getDwarfFormat());
3832 }
3833