1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/GCStrategy.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineJumpTableInfo.h"
51 #include "llvm/CodeGen/MachineLoopInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
55 #include "llvm/CodeGen/MachineOperand.h"
56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalIndirectSymbol.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/MC/MCAsmInfo.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCSectionXCOFF.h"
96 #include "llvm/MC/MCStreamer.h"
97 #include "llvm/MC/MCSubtargetInfo.h"
98 #include "llvm/MC/MCSymbol.h"
99 #include "llvm/MC/MCSymbolELF.h"
100 #include "llvm/MC/MCSymbolXCOFF.h"
101 #include "llvm/MC/MCTargetOptions.h"
102 #include "llvm/MC/MCValue.h"
103 #include "llvm/MC/SectionKind.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Remarks/Remark.h"
106 #include "llvm/Remarks/RemarkFormat.h"
107 #include "llvm/Remarks/RemarkStreamer.h"
108 #include "llvm/Remarks/RemarkStringTable.h"
109 #include "llvm/Support/Casting.h"
110 #include "llvm/Support/CommandLine.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/ErrorHandling.h"
113 #include "llvm/Support/FileSystem.h"
114 #include "llvm/Support/Format.h"
115 #include "llvm/Support/MathExtras.h"
116 #include "llvm/Support/Path.h"
117 #include "llvm/Support/TargetRegistry.h"
118 #include "llvm/Support/Timer.h"
119 #include "llvm/Support/raw_ostream.h"
120 #include "llvm/Target/TargetLoweringObjectFile.h"
121 #include "llvm/Target/TargetMachine.h"
122 #include "llvm/Target/TargetOptions.h"
123 #include <algorithm>
124 #include <cassert>
125 #include <cinttypes>
126 #include <cstdint>
127 #include <iterator>
128 #include <limits>
129 #include <memory>
130 #include <string>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 
136 #define DEBUG_TYPE "asm-printer"
137 
138 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
139 static cl::opt<bool>
140     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
141                              cl::desc("Disable debug info printing"));
142 
143 const char DWARFGroupName[] = "dwarf";
144 const char DWARFGroupDescription[] = "DWARF Emission";
145 const char DbgTimerName[] = "emit";
146 const char DbgTimerDescription[] = "Debug Info Emission";
147 const char EHTimerName[] = "write_exception";
148 const char EHTimerDescription[] = "DWARF Exception Writer";
149 const char CFGuardName[] = "Control Flow Guard";
150 const char CFGuardDescription[] = "Control Flow Guard";
151 const char CodeViewLineTablesGroupName[] = "linetables";
152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
153 const char PPTimerName[] = "emit";
154 const char PPTimerDescription[] = "Pseudo Probe Emission";
155 const char PPGroupName[] = "pseudo probe";
156 const char PPGroupDescription[] = "Pseudo Probe Emission";
157 
158 STATISTIC(EmittedInsts, "Number of machine instrs printed");
159 
160 char AsmPrinter::ID = 0;
161 
162 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
163 
164 static gcp_map_type &getGCMap(void *&P) {
165   if (!P)
166     P = new gcp_map_type();
167   return *(gcp_map_type*)P;
168 }
169 
170 /// getGVAlignment - Return the alignment to use for the specified global
171 /// value.  This rounds up to the preferred alignment if possible and legal.
172 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
173                                  Align InAlign) {
174   Align Alignment;
175   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
176     Alignment = DL.getPreferredAlign(GVar);
177 
178   // If InAlign is specified, round it to it.
179   if (InAlign > Alignment)
180     Alignment = InAlign;
181 
182   // If the GV has a specified alignment, take it into account.
183   const MaybeAlign GVAlign(GV->getAlignment());
184   if (!GVAlign)
185     return Alignment;
186 
187   assert(GVAlign && "GVAlign must be set");
188 
189   // If the GVAlign is larger than NumBits, or if we are required to obey
190   // NumBits because the GV has an assigned section, obey it.
191   if (*GVAlign > Alignment || GV->hasSection())
192     Alignment = *GVAlign;
193   return Alignment;
194 }
195 
196 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
197     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
198       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
199   VerboseAsm = OutStreamer->isVerboseAsm();
200 }
201 
202 AsmPrinter::~AsmPrinter() {
203   assert(!DD && Handlers.size() == NumUserHandlers &&
204          "Debug/EH info didn't get finalized");
205 
206   if (GCMetadataPrinters) {
207     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
208 
209     delete &GCMap;
210     GCMetadataPrinters = nullptr;
211   }
212 }
213 
214 bool AsmPrinter::isPositionIndependent() const {
215   return TM.isPositionIndependent();
216 }
217 
218 /// getFunctionNumber - Return a unique ID for the current function.
219 unsigned AsmPrinter::getFunctionNumber() const {
220   return MF->getFunctionNumber();
221 }
222 
223 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
224   return *TM.getObjFileLowering();
225 }
226 
227 const DataLayout &AsmPrinter::getDataLayout() const {
228   return MMI->getModule()->getDataLayout();
229 }
230 
231 // Do not use the cached DataLayout because some client use it without a Module
232 // (dsymutil, llvm-dwarfdump).
233 unsigned AsmPrinter::getPointerSize() const {
234   return TM.getPointerSize(0); // FIXME: Default address space
235 }
236 
237 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
238   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
239   return MF->getSubtarget<MCSubtargetInfo>();
240 }
241 
242 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
243   S.emitInstruction(Inst, getSubtargetInfo());
244 }
245 
246 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
247   if (DD) {
248     assert(OutStreamer->hasRawTextSupport() &&
249            "Expected assembly output mode.");
250     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
251   }
252 }
253 
254 /// getCurrentSection() - Return the current section we are emitting to.
255 const MCSection *AsmPrinter::getCurrentSection() const {
256   return OutStreamer->getCurrentSectionOnly();
257 }
258 
259 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
260   AU.setPreservesAll();
261   MachineFunctionPass::getAnalysisUsage(AU);
262   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
263   AU.addRequired<GCModuleInfo>();
264 }
265 
266 bool AsmPrinter::doInitialization(Module &M) {
267   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
268   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
269 
270   // Initialize TargetLoweringObjectFile.
271   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
272     .Initialize(OutContext, TM);
273 
274   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
275       .getModuleMetadata(M);
276 
277   OutStreamer->InitSections(false);
278 
279   if (DisableDebugInfoPrinting)
280     MMI->setDebugInfoAvailability(false);
281 
282   // Emit the version-min deployment target directive if needed.
283   //
284   // FIXME: If we end up with a collection of these sorts of Darwin-specific
285   // or ELF-specific things, it may make sense to have a platform helper class
286   // that will work with the target helper class. For now keep it here, as the
287   // alternative is duplicated code in each of the target asm printers that
288   // use the directive, where it would need the same conditionalization
289   // anyway.
290   const Triple &Target = TM.getTargetTriple();
291   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
292 
293   // Allow the target to emit any magic that it wants at the start of the file.
294   emitStartOfAsmFile(M);
295 
296   // Very minimal debug info. It is ignored if we emit actual debug info. If we
297   // don't, this at least helps the user find where a global came from.
298   if (MAI->hasSingleParameterDotFile()) {
299     // .file "foo.c"
300     if (MAI->hasBasenameOnlyForFileDirective())
301       OutStreamer->emitFileDirective(
302           llvm::sys::path::filename(M.getSourceFileName()));
303     else
304       OutStreamer->emitFileDirective(M.getSourceFileName());
305   }
306 
307   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
308   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
309   for (auto &I : *MI)
310     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
311       MP->beginAssembly(M, *MI, *this);
312 
313   // Emit module-level inline asm if it exists.
314   if (!M.getModuleInlineAsm().empty()) {
315     // We're at the module level. Construct MCSubtarget from the default CPU
316     // and target triple.
317     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
318         TM.getTargetTriple().str(), TM.getTargetCPU(),
319         TM.getTargetFeatureString()));
320     assert(STI && "Unable to create subtarget info");
321     OutStreamer->AddComment("Start of file scope inline assembly");
322     OutStreamer->AddBlankLine();
323     emitInlineAsm(M.getModuleInlineAsm() + "\n",
324                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
325     OutStreamer->AddComment("End of file scope inline assembly");
326     OutStreamer->AddBlankLine();
327   }
328 
329   if (MAI->doesSupportDebugInformation()) {
330     bool EmitCodeView = M.getCodeViewFlag();
331     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
332       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
333                             DbgTimerName, DbgTimerDescription,
334                             CodeViewLineTablesGroupName,
335                             CodeViewLineTablesGroupDescription);
336     }
337     if (!EmitCodeView || M.getDwarfVersion()) {
338       if (!DisableDebugInfoPrinting) {
339         DD = new DwarfDebug(this);
340         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
341                               DbgTimerDescription, DWARFGroupName,
342                               DWARFGroupDescription);
343       }
344     }
345   }
346 
347   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
348     PP = new PseudoProbeHandler(this, &M);
349     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
350                           PPTimerDescription, PPGroupName, PPGroupDescription);
351   }
352 
353   switch (MAI->getExceptionHandlingType()) {
354   case ExceptionHandling::SjLj:
355   case ExceptionHandling::DwarfCFI:
356   case ExceptionHandling::ARM:
357     for (auto &F : M.getFunctionList()) {
358       if (getFunctionCFISectionType(F) != CFISection::None)
359         ModuleCFISection = getFunctionCFISectionType(F);
360       // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
361       // the module needs .eh_frame. If we have found that case, we are done.
362       if (ModuleCFISection == CFISection::EH)
363         break;
364     }
365     assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
366            ModuleCFISection != CFISection::EH);
367     break;
368   default:
369     break;
370   }
371 
372   EHStreamer *ES = nullptr;
373   switch (MAI->getExceptionHandlingType()) {
374   case ExceptionHandling::None:
375     break;
376   case ExceptionHandling::SjLj:
377   case ExceptionHandling::DwarfCFI:
378     ES = new DwarfCFIException(this);
379     break;
380   case ExceptionHandling::ARM:
381     ES = new ARMException(this);
382     break;
383   case ExceptionHandling::WinEH:
384     switch (MAI->getWinEHEncodingType()) {
385     default: llvm_unreachable("unsupported unwinding information encoding");
386     case WinEH::EncodingType::Invalid:
387       break;
388     case WinEH::EncodingType::X86:
389     case WinEH::EncodingType::Itanium:
390       ES = new WinException(this);
391       break;
392     }
393     break;
394   case ExceptionHandling::Wasm:
395     ES = new WasmException(this);
396     break;
397   case ExceptionHandling::AIX:
398     ES = new AIXException(this);
399     break;
400   }
401   if (ES)
402     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
403                           EHTimerDescription, DWARFGroupName,
404                           DWARFGroupDescription);
405 
406   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
407   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
408     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
409                           CFGuardDescription, DWARFGroupName,
410                           DWARFGroupDescription);
411 
412   for (const HandlerInfo &HI : Handlers) {
413     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
414                        HI.TimerGroupDescription, TimePassesIsEnabled);
415     HI.Handler->beginModule(&M);
416   }
417 
418   return false;
419 }
420 
421 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
422   if (!MAI.hasWeakDefCanBeHiddenDirective())
423     return false;
424 
425   return GV->canBeOmittedFromSymbolTable();
426 }
427 
428 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
429   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
430   switch (Linkage) {
431   case GlobalValue::CommonLinkage:
432   case GlobalValue::LinkOnceAnyLinkage:
433   case GlobalValue::LinkOnceODRLinkage:
434   case GlobalValue::WeakAnyLinkage:
435   case GlobalValue::WeakODRLinkage:
436     if (MAI->hasWeakDefDirective()) {
437       // .globl _foo
438       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
439 
440       if (!canBeHidden(GV, *MAI))
441         // .weak_definition _foo
442         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
443       else
444         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
445     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
446       // .globl _foo
447       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
448       //NOTE: linkonce is handled by the section the symbol was assigned to.
449     } else {
450       // .weak _foo
451       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
452     }
453     return;
454   case GlobalValue::ExternalLinkage:
455     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
456     return;
457   case GlobalValue::PrivateLinkage:
458   case GlobalValue::InternalLinkage:
459     return;
460   case GlobalValue::ExternalWeakLinkage:
461   case GlobalValue::AvailableExternallyLinkage:
462   case GlobalValue::AppendingLinkage:
463     llvm_unreachable("Should never emit this");
464   }
465   llvm_unreachable("Unknown linkage type!");
466 }
467 
468 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
469                                    const GlobalValue *GV) const {
470   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
471 }
472 
473 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
474   return TM.getSymbol(GV);
475 }
476 
477 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
478   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
479   // exact definion (intersection of GlobalValue::hasExactDefinition() and
480   // !isInterposable()). These linkages include: external, appending, internal,
481   // private. It may be profitable to use a local alias for external. The
482   // assembler would otherwise be conservative and assume a global default
483   // visibility symbol can be interposable, even if the code generator already
484   // assumed it.
485   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
486     const Module &M = *GV.getParent();
487     if (TM.getRelocationModel() != Reloc::Static &&
488         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
489       return getSymbolWithGlobalValueBase(&GV, "$local");
490   }
491   return TM.getSymbol(&GV);
492 }
493 
494 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
495 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
496   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
497   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
498          "No emulated TLS variables in the common section");
499 
500   // Never emit TLS variable xyz in emulated TLS model.
501   // The initialization value is in __emutls_t.xyz instead of xyz.
502   if (IsEmuTLSVar)
503     return;
504 
505   if (GV->hasInitializer()) {
506     // Check to see if this is a special global used by LLVM, if so, emit it.
507     if (emitSpecialLLVMGlobal(GV))
508       return;
509 
510     // Skip the emission of global equivalents. The symbol can be emitted later
511     // on by emitGlobalGOTEquivs in case it turns out to be needed.
512     if (GlobalGOTEquivs.count(getSymbol(GV)))
513       return;
514 
515     if (isVerbose()) {
516       // When printing the control variable __emutls_v.*,
517       // we don't need to print the original TLS variable name.
518       GV->printAsOperand(OutStreamer->GetCommentOS(),
519                      /*PrintType=*/false, GV->getParent());
520       OutStreamer->GetCommentOS() << '\n';
521     }
522   }
523 
524   MCSymbol *GVSym = getSymbol(GV);
525   MCSymbol *EmittedSym = GVSym;
526 
527   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
528   // attributes.
529   // GV's or GVSym's attributes will be used for the EmittedSym.
530   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
531 
532   if (!GV->hasInitializer())   // External globals require no extra code.
533     return;
534 
535   GVSym->redefineIfPossible();
536   if (GVSym->isDefined() || GVSym->isVariable())
537     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
538                                         "' is already defined");
539 
540   if (MAI->hasDotTypeDotSizeDirective())
541     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
542 
543   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
544 
545   const DataLayout &DL = GV->getParent()->getDataLayout();
546   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
547 
548   // If the alignment is specified, we *must* obey it.  Overaligning a global
549   // with a specified alignment is a prompt way to break globals emitted to
550   // sections and expected to be contiguous (e.g. ObjC metadata).
551   const Align Alignment = getGVAlignment(GV, DL);
552 
553   for (const HandlerInfo &HI : Handlers) {
554     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
555                        HI.TimerGroupName, HI.TimerGroupDescription,
556                        TimePassesIsEnabled);
557     HI.Handler->setSymbolSize(GVSym, Size);
558   }
559 
560   // Handle common symbols
561   if (GVKind.isCommon()) {
562     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
563     // .comm _foo, 42, 4
564     const bool SupportsAlignment =
565         getObjFileLowering().getCommDirectiveSupportsAlignment();
566     OutStreamer->emitCommonSymbol(GVSym, Size,
567                                   SupportsAlignment ? Alignment.value() : 0);
568     return;
569   }
570 
571   // Determine to which section this global should be emitted.
572   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
573 
574   // If we have a bss global going to a section that supports the
575   // zerofill directive, do so here.
576   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
577       TheSection->isVirtualSection()) {
578     if (Size == 0)
579       Size = 1; // zerofill of 0 bytes is undefined.
580     emitLinkage(GV, GVSym);
581     // .zerofill __DATA, __bss, _foo, 400, 5
582     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
583     return;
584   }
585 
586   // If this is a BSS local symbol and we are emitting in the BSS
587   // section use .lcomm/.comm directive.
588   if (GVKind.isBSSLocal() &&
589       getObjFileLowering().getBSSSection() == TheSection) {
590     if (Size == 0)
591       Size = 1; // .comm Foo, 0 is undefined, avoid it.
592 
593     // Use .lcomm only if it supports user-specified alignment.
594     // Otherwise, while it would still be correct to use .lcomm in some
595     // cases (e.g. when Align == 1), the external assembler might enfore
596     // some -unknown- default alignment behavior, which could cause
597     // spurious differences between external and integrated assembler.
598     // Prefer to simply fall back to .local / .comm in this case.
599     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
600       // .lcomm _foo, 42
601       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
602       return;
603     }
604 
605     // .local _foo
606     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
607     // .comm _foo, 42, 4
608     const bool SupportsAlignment =
609         getObjFileLowering().getCommDirectiveSupportsAlignment();
610     OutStreamer->emitCommonSymbol(GVSym, Size,
611                                   SupportsAlignment ? Alignment.value() : 0);
612     return;
613   }
614 
615   // Handle thread local data for mach-o which requires us to output an
616   // additional structure of data and mangle the original symbol so that we
617   // can reference it later.
618   //
619   // TODO: This should become an "emit thread local global" method on TLOF.
620   // All of this macho specific stuff should be sunk down into TLOFMachO and
621   // stuff like "TLSExtraDataSection" should no longer be part of the parent
622   // TLOF class.  This will also make it more obvious that stuff like
623   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
624   // specific code.
625   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
626     // Emit the .tbss symbol
627     MCSymbol *MangSym =
628         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
629 
630     if (GVKind.isThreadBSS()) {
631       TheSection = getObjFileLowering().getTLSBSSSection();
632       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
633     } else if (GVKind.isThreadData()) {
634       OutStreamer->SwitchSection(TheSection);
635 
636       emitAlignment(Alignment, GV);
637       OutStreamer->emitLabel(MangSym);
638 
639       emitGlobalConstant(GV->getParent()->getDataLayout(),
640                          GV->getInitializer());
641     }
642 
643     OutStreamer->AddBlankLine();
644 
645     // Emit the variable struct for the runtime.
646     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
647 
648     OutStreamer->SwitchSection(TLVSect);
649     // Emit the linkage here.
650     emitLinkage(GV, GVSym);
651     OutStreamer->emitLabel(GVSym);
652 
653     // Three pointers in size:
654     //   - __tlv_bootstrap - used to make sure support exists
655     //   - spare pointer, used when mapped by the runtime
656     //   - pointer to mangled symbol above with initializer
657     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
658     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
659                                 PtrSize);
660     OutStreamer->emitIntValue(0, PtrSize);
661     OutStreamer->emitSymbolValue(MangSym, PtrSize);
662 
663     OutStreamer->AddBlankLine();
664     return;
665   }
666 
667   MCSymbol *EmittedInitSym = GVSym;
668 
669   OutStreamer->SwitchSection(TheSection);
670 
671   emitLinkage(GV, EmittedInitSym);
672   emitAlignment(Alignment, GV);
673 
674   OutStreamer->emitLabel(EmittedInitSym);
675   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
676   if (LocalAlias != EmittedInitSym)
677     OutStreamer->emitLabel(LocalAlias);
678 
679   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
680 
681   if (MAI->hasDotTypeDotSizeDirective())
682     // .size foo, 42
683     OutStreamer->emitELFSize(EmittedInitSym,
684                              MCConstantExpr::create(Size, OutContext));
685 
686   OutStreamer->AddBlankLine();
687 }
688 
689 /// Emit the directive and value for debug thread local expression
690 ///
691 /// \p Value - The value to emit.
692 /// \p Size - The size of the integer (in bytes) to emit.
693 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
694   OutStreamer->emitValue(Value, Size);
695 }
696 
697 void AsmPrinter::emitFunctionHeaderComment() {}
698 
699 /// EmitFunctionHeader - This method emits the header for the current
700 /// function.
701 void AsmPrinter::emitFunctionHeader() {
702   const Function &F = MF->getFunction();
703 
704   if (isVerbose())
705     OutStreamer->GetCommentOS()
706         << "-- Begin function "
707         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
708 
709   // Print out constants referenced by the function
710   emitConstantPool();
711 
712   // Print the 'header' of function.
713   // If basic block sections are desired, explicitly request a unique section
714   // for this function's entry block.
715   if (MF->front().isBeginSection())
716     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
717   else
718     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
719   OutStreamer->SwitchSection(MF->getSection());
720 
721   if (!MAI->hasVisibilityOnlyWithLinkage())
722     emitVisibility(CurrentFnSym, F.getVisibility());
723 
724   if (MAI->needsFunctionDescriptors())
725     emitLinkage(&F, CurrentFnDescSym);
726 
727   emitLinkage(&F, CurrentFnSym);
728   if (MAI->hasFunctionAlignment())
729     emitAlignment(MF->getAlignment(), &F);
730 
731   if (MAI->hasDotTypeDotSizeDirective())
732     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
733 
734   if (F.hasFnAttribute(Attribute::Cold))
735     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
736 
737   if (isVerbose()) {
738     F.printAsOperand(OutStreamer->GetCommentOS(),
739                    /*PrintType=*/false, F.getParent());
740     emitFunctionHeaderComment();
741     OutStreamer->GetCommentOS() << '\n';
742   }
743 
744   // Emit the prefix data.
745   if (F.hasPrefixData()) {
746     if (MAI->hasSubsectionsViaSymbols()) {
747       // Preserving prefix data on platforms which use subsections-via-symbols
748       // is a bit tricky. Here we introduce a symbol for the prefix data
749       // and use the .alt_entry attribute to mark the function's real entry point
750       // as an alternative entry point to the prefix-data symbol.
751       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
752       OutStreamer->emitLabel(PrefixSym);
753 
754       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
755 
756       // Emit an .alt_entry directive for the actual function symbol.
757       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
758     } else {
759       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
760     }
761   }
762 
763   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
764   // place prefix data before NOPs.
765   unsigned PatchableFunctionPrefix = 0;
766   unsigned PatchableFunctionEntry = 0;
767   (void)F.getFnAttribute("patchable-function-prefix")
768       .getValueAsString()
769       .getAsInteger(10, PatchableFunctionPrefix);
770   (void)F.getFnAttribute("patchable-function-entry")
771       .getValueAsString()
772       .getAsInteger(10, PatchableFunctionEntry);
773   if (PatchableFunctionPrefix) {
774     CurrentPatchableFunctionEntrySym =
775         OutContext.createLinkerPrivateTempSymbol();
776     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
777     emitNops(PatchableFunctionPrefix);
778   } else if (PatchableFunctionEntry) {
779     // May be reassigned when emitting the body, to reference the label after
780     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
781     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
782   }
783 
784   // Emit the function descriptor. This is a virtual function to allow targets
785   // to emit their specific function descriptor. Right now it is only used by
786   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
787   // descriptors and should be converted to use this hook as well.
788   if (MAI->needsFunctionDescriptors())
789     emitFunctionDescriptor();
790 
791   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
792   // their wild and crazy things as required.
793   emitFunctionEntryLabel();
794 
795   // If the function had address-taken blocks that got deleted, then we have
796   // references to the dangling symbols.  Emit them at the start of the function
797   // so that we don't get references to undefined symbols.
798   std::vector<MCSymbol*> DeadBlockSyms;
799   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
800   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
801     OutStreamer->AddComment("Address taken block that was later removed");
802     OutStreamer->emitLabel(DeadBlockSyms[i]);
803   }
804 
805   if (CurrentFnBegin) {
806     if (MAI->useAssignmentForEHBegin()) {
807       MCSymbol *CurPos = OutContext.createTempSymbol();
808       OutStreamer->emitLabel(CurPos);
809       OutStreamer->emitAssignment(CurrentFnBegin,
810                                  MCSymbolRefExpr::create(CurPos, OutContext));
811     } else {
812       OutStreamer->emitLabel(CurrentFnBegin);
813     }
814   }
815 
816   // Emit pre-function debug and/or EH information.
817   for (const HandlerInfo &HI : Handlers) {
818     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
819                        HI.TimerGroupDescription, TimePassesIsEnabled);
820     HI.Handler->beginFunction(MF);
821   }
822 
823   // Emit the prologue data.
824   if (F.hasPrologueData())
825     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
826 }
827 
828 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
829 /// function.  This can be overridden by targets as required to do custom stuff.
830 void AsmPrinter::emitFunctionEntryLabel() {
831   CurrentFnSym->redefineIfPossible();
832 
833   // The function label could have already been emitted if two symbols end up
834   // conflicting due to asm renaming.  Detect this and emit an error.
835   if (CurrentFnSym->isVariable())
836     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
837                        "' is a protected alias");
838 
839   OutStreamer->emitLabel(CurrentFnSym);
840 
841   if (TM.getTargetTriple().isOSBinFormatELF()) {
842     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
843     if (Sym != CurrentFnSym)
844       OutStreamer->emitLabel(Sym);
845   }
846 }
847 
848 /// emitComments - Pretty-print comments for instructions.
849 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
850   const MachineFunction *MF = MI.getMF();
851   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
852 
853   // Check for spills and reloads
854 
855   // We assume a single instruction only has a spill or reload, not
856   // both.
857   Optional<unsigned> Size;
858   if ((Size = MI.getRestoreSize(TII))) {
859     CommentOS << *Size << "-byte Reload\n";
860   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
861     if (*Size) {
862       if (*Size == unsigned(MemoryLocation::UnknownSize))
863         CommentOS << "Unknown-size Folded Reload\n";
864       else
865         CommentOS << *Size << "-byte Folded Reload\n";
866     }
867   } else if ((Size = MI.getSpillSize(TII))) {
868     CommentOS << *Size << "-byte Spill\n";
869   } else if ((Size = MI.getFoldedSpillSize(TII))) {
870     if (*Size) {
871       if (*Size == unsigned(MemoryLocation::UnknownSize))
872         CommentOS << "Unknown-size Folded Spill\n";
873       else
874         CommentOS << *Size << "-byte Folded Spill\n";
875     }
876   }
877 
878   // Check for spill-induced copies
879   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
880     CommentOS << " Reload Reuse\n";
881 }
882 
883 /// emitImplicitDef - This method emits the specified machine instruction
884 /// that is an implicit def.
885 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
886   Register RegNo = MI->getOperand(0).getReg();
887 
888   SmallString<128> Str;
889   raw_svector_ostream OS(Str);
890   OS << "implicit-def: "
891      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
892 
893   OutStreamer->AddComment(OS.str());
894   OutStreamer->AddBlankLine();
895 }
896 
897 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
898   std::string Str;
899   raw_string_ostream OS(Str);
900   OS << "kill:";
901   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
902     const MachineOperand &Op = MI->getOperand(i);
903     assert(Op.isReg() && "KILL instruction must have only register operands");
904     OS << ' ' << (Op.isDef() ? "def " : "killed ")
905        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
906   }
907   AP.OutStreamer->AddComment(OS.str());
908   AP.OutStreamer->AddBlankLine();
909 }
910 
911 /// emitDebugValueComment - This method handles the target-independent form
912 /// of DBG_VALUE, returning true if it was able to do so.  A false return
913 /// means the target will need to handle MI in EmitInstruction.
914 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
915   // This code handles only the 4-operand target-independent form.
916   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
917     return false;
918 
919   SmallString<128> Str;
920   raw_svector_ostream OS(Str);
921   OS << "DEBUG_VALUE: ";
922 
923   const DILocalVariable *V = MI->getDebugVariable();
924   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
925     StringRef Name = SP->getName();
926     if (!Name.empty())
927       OS << Name << ":";
928   }
929   OS << V->getName();
930   OS << " <- ";
931 
932   const DIExpression *Expr = MI->getDebugExpression();
933   if (Expr->getNumElements()) {
934     OS << '[';
935     ListSeparator LS;
936     for (auto Op : Expr->expr_ops()) {
937       OS << LS << dwarf::OperationEncodingString(Op.getOp());
938       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
939         OS << ' ' << Op.getArg(I);
940     }
941     OS << "] ";
942   }
943 
944   // Register or immediate value. Register 0 means undef.
945   for (const MachineOperand &Op : MI->debug_operands()) {
946     if (&Op != MI->debug_operands().begin())
947       OS << ", ";
948     switch (Op.getType()) {
949     case MachineOperand::MO_FPImmediate: {
950       APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
951       if (Op.getFPImm()->getType()->isFloatTy()) {
952         OS << (double)APF.convertToFloat();
953       } else if (Op.getFPImm()->getType()->isDoubleTy()) {
954         OS << APF.convertToDouble();
955       } else {
956         // There is no good way to print long double.  Convert a copy to
957         // double.  Ah well, it's only a comment.
958         bool ignored;
959         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
960                     &ignored);
961         OS << "(long double) " << APF.convertToDouble();
962       }
963       break;
964     }
965     case MachineOperand::MO_Immediate: {
966       OS << Op.getImm();
967       break;
968     }
969     case MachineOperand::MO_CImmediate: {
970       Op.getCImm()->getValue().print(OS, false /*isSigned*/);
971       break;
972     }
973     case MachineOperand::MO_TargetIndex: {
974       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
975       // NOTE: Want this comment at start of line, don't emit with AddComment.
976       AP.OutStreamer->emitRawComment(OS.str());
977       break;
978     }
979     case MachineOperand::MO_Register:
980     case MachineOperand::MO_FrameIndex: {
981       Register Reg;
982       Optional<StackOffset> Offset;
983       if (Op.isReg()) {
984         Reg = Op.getReg();
985       } else {
986         const TargetFrameLowering *TFI =
987             AP.MF->getSubtarget().getFrameLowering();
988         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
989       }
990       if (!Reg) {
991         // Suppress offset, it is not meaningful here.
992         OS << "undef";
993         break;
994       }
995       // The second operand is only an offset if it's an immediate.
996       if (MI->isIndirectDebugValue())
997         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
998       if (Offset)
999         OS << '[';
1000       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1001       if (Offset)
1002         OS << '+' << Offset->getFixed() << ']';
1003       break;
1004     }
1005     default:
1006       llvm_unreachable("Unknown operand type");
1007     }
1008   }
1009 
1010   // NOTE: Want this comment at start of line, don't emit with AddComment.
1011   AP.OutStreamer->emitRawComment(OS.str());
1012   return true;
1013 }
1014 
1015 /// This method handles the target-independent form of DBG_LABEL, returning
1016 /// true if it was able to do so.  A false return means the target will need
1017 /// to handle MI in EmitInstruction.
1018 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1019   if (MI->getNumOperands() != 1)
1020     return false;
1021 
1022   SmallString<128> Str;
1023   raw_svector_ostream OS(Str);
1024   OS << "DEBUG_LABEL: ";
1025 
1026   const DILabel *V = MI->getDebugLabel();
1027   if (auto *SP = dyn_cast<DISubprogram>(
1028           V->getScope()->getNonLexicalBlockFileScope())) {
1029     StringRef Name = SP->getName();
1030     if (!Name.empty())
1031       OS << Name << ":";
1032   }
1033   OS << V->getName();
1034 
1035   // NOTE: Want this comment at start of line, don't emit with AddComment.
1036   AP.OutStreamer->emitRawComment(OS.str());
1037   return true;
1038 }
1039 
1040 AsmPrinter::CFISection
1041 AsmPrinter::getFunctionCFISectionType(const Function &F) const {
1042   // Ignore functions that won't get emitted.
1043   if (F.isDeclarationForLinker())
1044     return CFISection::None;
1045 
1046   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1047       F.needsUnwindTableEntry())
1048     return CFISection::EH;
1049 
1050   if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1051     return CFISection::Debug;
1052 
1053   return CFISection::None;
1054 }
1055 
1056 AsmPrinter::CFISection
1057 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
1058   return getFunctionCFISectionType(MF.getFunction());
1059 }
1060 
1061 bool AsmPrinter::needsSEHMoves() {
1062   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1063 }
1064 
1065 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1066   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1067   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1068       ExceptionHandlingType != ExceptionHandling::ARM)
1069     return;
1070 
1071   if (getFunctionCFISectionType(*MF) == CFISection::None)
1072     return;
1073 
1074   // If there is no "real" instruction following this CFI instruction, skip
1075   // emitting it; it would be beyond the end of the function's FDE range.
1076   auto *MBB = MI.getParent();
1077   auto I = std::next(MI.getIterator());
1078   while (I != MBB->end() && I->isTransient())
1079     ++I;
1080   if (I == MBB->instr_end() &&
1081       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1082     return;
1083 
1084   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1085   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1086   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1087   emitCFIInstruction(CFI);
1088 }
1089 
1090 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1091   // The operands are the MCSymbol and the frame offset of the allocation.
1092   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1093   int FrameOffset = MI.getOperand(1).getImm();
1094 
1095   // Emit a symbol assignment.
1096   OutStreamer->emitAssignment(FrameAllocSym,
1097                              MCConstantExpr::create(FrameOffset, OutContext));
1098 }
1099 
1100 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1101 /// given basic block. This can be used to capture more precise profile
1102 /// information. We use the last 4 bits (LSBs) to encode the following
1103 /// information:
1104 ///  * (1): set if return block (ret or tail call).
1105 ///  * (2): set if ends with a tail call.
1106 ///  * (3): set if exception handling (EH) landing pad.
1107 ///  * (4): set if the block can fall through to its next.
1108 /// The remaining bits are zero.
1109 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1110   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1111   return ((unsigned)MBB.isReturnBlock()) |
1112          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1113          (MBB.isEHPad() << 2) |
1114          (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3);
1115 }
1116 
1117 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1118   MCSection *BBAddrMapSection =
1119       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1120   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1121 
1122   const MCSymbol *FunctionSymbol = getFunctionBegin();
1123 
1124   OutStreamer->PushSection();
1125   OutStreamer->SwitchSection(BBAddrMapSection);
1126   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1127   // Emit the total number of basic blocks in this function.
1128   OutStreamer->emitULEB128IntValue(MF.size());
1129   // Emit BB Information for each basic block in the funciton.
1130   for (const MachineBasicBlock &MBB : MF) {
1131     const MCSymbol *MBBSymbol =
1132         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1133     // Emit the basic block offset.
1134     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1135     // Emit the basic block size. When BBs have alignments, their size cannot
1136     // always be computed from their offsets.
1137     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1138     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1139   }
1140   OutStreamer->PopSection();
1141 }
1142 
1143 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1144   auto GUID = MI.getOperand(0).getImm();
1145   auto Index = MI.getOperand(1).getImm();
1146   auto Type = MI.getOperand(2).getImm();
1147   auto Attr = MI.getOperand(3).getImm();
1148   DILocation *DebugLoc = MI.getDebugLoc();
1149   PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1150 }
1151 
1152 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1153   if (!MF.getTarget().Options.EmitStackSizeSection)
1154     return;
1155 
1156   MCSection *StackSizeSection =
1157       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1158   if (!StackSizeSection)
1159     return;
1160 
1161   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1162   // Don't emit functions with dynamic stack allocations.
1163   if (FrameInfo.hasVarSizedObjects())
1164     return;
1165 
1166   OutStreamer->PushSection();
1167   OutStreamer->SwitchSection(StackSizeSection);
1168 
1169   const MCSymbol *FunctionSymbol = getFunctionBegin();
1170   uint64_t StackSize = FrameInfo.getStackSize();
1171   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1172   OutStreamer->emitULEB128IntValue(StackSize);
1173 
1174   OutStreamer->PopSection();
1175 }
1176 
1177 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1178   MachineModuleInfo &MMI = MF.getMMI();
1179   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1180     return true;
1181 
1182   // We might emit an EH table that uses function begin and end labels even if
1183   // we don't have any landingpads.
1184   if (!MF.getFunction().hasPersonalityFn())
1185     return false;
1186   return !isNoOpWithoutInvoke(
1187       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1188 }
1189 
1190 /// EmitFunctionBody - This method emits the body and trailer for a
1191 /// function.
1192 void AsmPrinter::emitFunctionBody() {
1193   emitFunctionHeader();
1194 
1195   // Emit target-specific gunk before the function body.
1196   emitFunctionBodyStart();
1197 
1198   if (isVerbose()) {
1199     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1200     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1201     if (!MDT) {
1202       OwnedMDT = std::make_unique<MachineDominatorTree>();
1203       OwnedMDT->getBase().recalculate(*MF);
1204       MDT = OwnedMDT.get();
1205     }
1206 
1207     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1208     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1209     if (!MLI) {
1210       OwnedMLI = std::make_unique<MachineLoopInfo>();
1211       OwnedMLI->getBase().analyze(MDT->getBase());
1212       MLI = OwnedMLI.get();
1213     }
1214   }
1215 
1216   // Print out code for the function.
1217   bool HasAnyRealCode = false;
1218   int NumInstsInFunction = 0;
1219 
1220   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1221   for (auto &MBB : *MF) {
1222     // Print a label for the basic block.
1223     emitBasicBlockStart(MBB);
1224     DenseMap<StringRef, unsigned> MnemonicCounts;
1225     for (auto &MI : MBB) {
1226       // Print the assembly for the instruction.
1227       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1228           !MI.isDebugInstr()) {
1229         HasAnyRealCode = true;
1230         ++NumInstsInFunction;
1231       }
1232 
1233       // If there is a pre-instruction symbol, emit a label for it here.
1234       if (MCSymbol *S = MI.getPreInstrSymbol())
1235         OutStreamer->emitLabel(S);
1236 
1237       for (const HandlerInfo &HI : Handlers) {
1238         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1239                            HI.TimerGroupDescription, TimePassesIsEnabled);
1240         HI.Handler->beginInstruction(&MI);
1241       }
1242 
1243       if (isVerbose())
1244         emitComments(MI, OutStreamer->GetCommentOS());
1245 
1246       switch (MI.getOpcode()) {
1247       case TargetOpcode::CFI_INSTRUCTION:
1248         emitCFIInstruction(MI);
1249         break;
1250       case TargetOpcode::LOCAL_ESCAPE:
1251         emitFrameAlloc(MI);
1252         break;
1253       case TargetOpcode::ANNOTATION_LABEL:
1254       case TargetOpcode::EH_LABEL:
1255       case TargetOpcode::GC_LABEL:
1256         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1257         break;
1258       case TargetOpcode::INLINEASM:
1259       case TargetOpcode::INLINEASM_BR:
1260         emitInlineAsm(&MI);
1261         break;
1262       case TargetOpcode::DBG_VALUE:
1263       case TargetOpcode::DBG_VALUE_LIST:
1264         if (isVerbose()) {
1265           if (!emitDebugValueComment(&MI, *this))
1266             emitInstruction(&MI);
1267         }
1268         break;
1269       case TargetOpcode::DBG_INSTR_REF:
1270         // This instruction reference will have been resolved to a machine
1271         // location, and a nearby DBG_VALUE created. We can safely ignore
1272         // the instruction reference.
1273         break;
1274       case TargetOpcode::DBG_LABEL:
1275         if (isVerbose()) {
1276           if (!emitDebugLabelComment(&MI, *this))
1277             emitInstruction(&MI);
1278         }
1279         break;
1280       case TargetOpcode::IMPLICIT_DEF:
1281         if (isVerbose()) emitImplicitDef(&MI);
1282         break;
1283       case TargetOpcode::KILL:
1284         if (isVerbose()) emitKill(&MI, *this);
1285         break;
1286       case TargetOpcode::PSEUDO_PROBE:
1287         emitPseudoProbe(MI);
1288         break;
1289       default:
1290         emitInstruction(&MI);
1291         if (CanDoExtraAnalysis) {
1292           MCInst MCI;
1293           MCI.setOpcode(MI.getOpcode());
1294           auto Name = OutStreamer->getMnemonic(MCI);
1295           auto I = MnemonicCounts.insert({Name, 0u});
1296           I.first->second++;
1297         }
1298         break;
1299       }
1300 
1301       // If there is a post-instruction symbol, emit a label for it here.
1302       if (MCSymbol *S = MI.getPostInstrSymbol())
1303         OutStreamer->emitLabel(S);
1304 
1305       for (const HandlerInfo &HI : Handlers) {
1306         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1307                            HI.TimerGroupDescription, TimePassesIsEnabled);
1308         HI.Handler->endInstruction();
1309       }
1310     }
1311 
1312     // We must emit temporary symbol for the end of this basic block, if either
1313     // we have BBLabels enabled or if this basic blocks marks the end of a
1314     // section (except the section containing the entry basic block as the end
1315     // symbol for that section is CurrentFnEnd).
1316     if (MF->hasBBLabels() ||
1317         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1318          !MBB.sameSection(&MF->front())))
1319       OutStreamer->emitLabel(MBB.getEndSymbol());
1320 
1321     if (MBB.isEndSection()) {
1322       // The size directive for the section containing the entry block is
1323       // handled separately by the function section.
1324       if (!MBB.sameSection(&MF->front())) {
1325         if (MAI->hasDotTypeDotSizeDirective()) {
1326           // Emit the size directive for the basic block section.
1327           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1328               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1329               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1330               OutContext);
1331           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1332         }
1333         MBBSectionRanges[MBB.getSectionIDNum()] =
1334             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1335       }
1336     }
1337     emitBasicBlockEnd(MBB);
1338 
1339     if (CanDoExtraAnalysis) {
1340       // Skip empty blocks.
1341       if (MBB.empty())
1342         continue;
1343 
1344       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1345                                           MBB.begin()->getDebugLoc(), &MBB);
1346 
1347       // Generate instruction mix remark. First, sort counts in descending order
1348       // by count and name.
1349       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1350       for (auto &KV : MnemonicCounts)
1351         MnemonicVec.emplace_back(KV.first, KV.second);
1352 
1353       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1354                            const std::pair<StringRef, unsigned> &B) {
1355         if (A.second > B.second)
1356           return true;
1357         if (A.second == B.second)
1358           return StringRef(A.first) < StringRef(B.first);
1359         return false;
1360       });
1361       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1362       for (auto &KV : MnemonicVec) {
1363         auto Name = (Twine("INST_") + KV.first.trim()).str();
1364         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1365       }
1366       ORE->emit(R);
1367     }
1368   }
1369 
1370   EmittedInsts += NumInstsInFunction;
1371   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1372                                       MF->getFunction().getSubprogram(),
1373                                       &MF->front());
1374   R << ore::NV("NumInstructions", NumInstsInFunction)
1375     << " instructions in function";
1376   ORE->emit(R);
1377 
1378   // If the function is empty and the object file uses .subsections_via_symbols,
1379   // then we need to emit *something* to the function body to prevent the
1380   // labels from collapsing together.  Just emit a noop.
1381   // Similarly, don't emit empty functions on Windows either. It can lead to
1382   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1383   // after linking, causing the kernel not to load the binary:
1384   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1385   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1386   const Triple &TT = TM.getTargetTriple();
1387   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1388                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1389     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
1390 
1391     // Targets can opt-out of emitting the noop here by leaving the opcode
1392     // unspecified.
1393     if (Noop.getOpcode()) {
1394       OutStreamer->AddComment("avoids zero-length function");
1395       emitNops(1);
1396     }
1397   }
1398 
1399   // Switch to the original section in case basic block sections was used.
1400   OutStreamer->SwitchSection(MF->getSection());
1401 
1402   const Function &F = MF->getFunction();
1403   for (const auto &BB : F) {
1404     if (!BB.hasAddressTaken())
1405       continue;
1406     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1407     if (Sym->isDefined())
1408       continue;
1409     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1410     OutStreamer->emitLabel(Sym);
1411   }
1412 
1413   // Emit target-specific gunk after the function body.
1414   emitFunctionBodyEnd();
1415 
1416   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1417       MAI->hasDotTypeDotSizeDirective()) {
1418     // Create a symbol for the end of function.
1419     CurrentFnEnd = createTempSymbol("func_end");
1420     OutStreamer->emitLabel(CurrentFnEnd);
1421   }
1422 
1423   // If the target wants a .size directive for the size of the function, emit
1424   // it.
1425   if (MAI->hasDotTypeDotSizeDirective()) {
1426     // We can get the size as difference between the function label and the
1427     // temp label.
1428     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1429         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1430         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1431     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1432   }
1433 
1434   for (const HandlerInfo &HI : Handlers) {
1435     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1436                        HI.TimerGroupDescription, TimePassesIsEnabled);
1437     HI.Handler->markFunctionEnd();
1438   }
1439 
1440   MBBSectionRanges[MF->front().getSectionIDNum()] =
1441       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1442 
1443   // Print out jump tables referenced by the function.
1444   emitJumpTableInfo();
1445 
1446   // Emit post-function debug and/or EH information.
1447   for (const HandlerInfo &HI : Handlers) {
1448     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1449                        HI.TimerGroupDescription, TimePassesIsEnabled);
1450     HI.Handler->endFunction(MF);
1451   }
1452 
1453   // Emit section containing BB address offsets and their metadata, when
1454   // BB labels are requested for this function. Skip empty functions.
1455   if (MF->hasBBLabels() && HasAnyRealCode)
1456     emitBBAddrMapSection(*MF);
1457 
1458   // Emit section containing stack size metadata.
1459   emitStackSizeSection(*MF);
1460 
1461   emitPatchableFunctionEntries();
1462 
1463   if (isVerbose())
1464     OutStreamer->GetCommentOS() << "-- End function\n";
1465 
1466   OutStreamer->AddBlankLine();
1467 }
1468 
1469 /// Compute the number of Global Variables that uses a Constant.
1470 static unsigned getNumGlobalVariableUses(const Constant *C) {
1471   if (!C)
1472     return 0;
1473 
1474   if (isa<GlobalVariable>(C))
1475     return 1;
1476 
1477   unsigned NumUses = 0;
1478   for (auto *CU : C->users())
1479     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1480 
1481   return NumUses;
1482 }
1483 
1484 /// Only consider global GOT equivalents if at least one user is a
1485 /// cstexpr inside an initializer of another global variables. Also, don't
1486 /// handle cstexpr inside instructions. During global variable emission,
1487 /// candidates are skipped and are emitted later in case at least one cstexpr
1488 /// isn't replaced by a PC relative GOT entry access.
1489 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1490                                      unsigned &NumGOTEquivUsers) {
1491   // Global GOT equivalents are unnamed private globals with a constant
1492   // pointer initializer to another global symbol. They must point to a
1493   // GlobalVariable or Function, i.e., as GlobalValue.
1494   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1495       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1496       !isa<GlobalValue>(GV->getOperand(0)))
1497     return false;
1498 
1499   // To be a got equivalent, at least one of its users need to be a constant
1500   // expression used by another global variable.
1501   for (auto *U : GV->users())
1502     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1503 
1504   return NumGOTEquivUsers > 0;
1505 }
1506 
1507 /// Unnamed constant global variables solely contaning a pointer to
1508 /// another globals variable is equivalent to a GOT table entry; it contains the
1509 /// the address of another symbol. Optimize it and replace accesses to these
1510 /// "GOT equivalents" by using the GOT entry for the final global instead.
1511 /// Compute GOT equivalent candidates among all global variables to avoid
1512 /// emitting them if possible later on, after it use is replaced by a GOT entry
1513 /// access.
1514 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1515   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1516     return;
1517 
1518   for (const auto &G : M.globals()) {
1519     unsigned NumGOTEquivUsers = 0;
1520     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1521       continue;
1522 
1523     const MCSymbol *GOTEquivSym = getSymbol(&G);
1524     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1525   }
1526 }
1527 
1528 /// Constant expressions using GOT equivalent globals may not be eligible
1529 /// for PC relative GOT entry conversion, in such cases we need to emit such
1530 /// globals we previously omitted in EmitGlobalVariable.
1531 void AsmPrinter::emitGlobalGOTEquivs() {
1532   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1533     return;
1534 
1535   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1536   for (auto &I : GlobalGOTEquivs) {
1537     const GlobalVariable *GV = I.second.first;
1538     unsigned Cnt = I.second.second;
1539     if (Cnt)
1540       FailedCandidates.push_back(GV);
1541   }
1542   GlobalGOTEquivs.clear();
1543 
1544   for (auto *GV : FailedCandidates)
1545     emitGlobalVariable(GV);
1546 }
1547 
1548 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1549                                           const GlobalIndirectSymbol& GIS) {
1550   MCSymbol *Name = getSymbol(&GIS);
1551   bool IsFunction = GIS.getValueType()->isFunctionTy();
1552   // Treat bitcasts of functions as functions also. This is important at least
1553   // on WebAssembly where object and function addresses can't alias each other.
1554   if (!IsFunction)
1555     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1556       if (CE->getOpcode() == Instruction::BitCast)
1557         IsFunction =
1558           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1559 
1560   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1561   // so AIX has to use the extra-label-at-definition strategy. At this
1562   // point, all the extra label is emitted, we just have to emit linkage for
1563   // those labels.
1564   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1565     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1566     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1567            "Visibility should be handled with emitLinkage() on AIX.");
1568     emitLinkage(&GIS, Name);
1569     // If it's a function, also emit linkage for aliases of function entry
1570     // point.
1571     if (IsFunction)
1572       emitLinkage(&GIS,
1573                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1574     return;
1575   }
1576 
1577   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1578     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1579   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1580     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1581   else
1582     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1583 
1584   // Set the symbol type to function if the alias has a function type.
1585   // This affects codegen when the aliasee is not a function.
1586   if (IsFunction)
1587     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1588                                                ? MCSA_ELF_TypeIndFunction
1589                                                : MCSA_ELF_TypeFunction);
1590 
1591   emitVisibility(Name, GIS.getVisibility());
1592 
1593   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1594 
1595   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1596     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1597 
1598   // Emit the directives as assignments aka .set:
1599   OutStreamer->emitAssignment(Name, Expr);
1600   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1601   if (LocalAlias != Name)
1602     OutStreamer->emitAssignment(LocalAlias, Expr);
1603 
1604   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1605     // If the aliasee does not correspond to a symbol in the output, i.e. the
1606     // alias is not of an object or the aliased object is private, then set the
1607     // size of the alias symbol from the type of the alias. We don't do this in
1608     // other situations as the alias and aliasee having differing types but same
1609     // size may be intentional.
1610     const GlobalObject *BaseObject = GA->getBaseObject();
1611     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1612         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1613       const DataLayout &DL = M.getDataLayout();
1614       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1615       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1616     }
1617   }
1618 }
1619 
1620 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1621   if (!RS.needsSection())
1622     return;
1623 
1624   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1625 
1626   Optional<SmallString<128>> Filename;
1627   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1628     Filename = *FilenameRef;
1629     sys::fs::make_absolute(*Filename);
1630     assert(!Filename->empty() && "The filename can't be empty.");
1631   }
1632 
1633   std::string Buf;
1634   raw_string_ostream OS(Buf);
1635   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1636       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1637                : RemarkSerializer.metaSerializer(OS);
1638   MetaSerializer->emit();
1639 
1640   // Switch to the remarks section.
1641   MCSection *RemarksSection =
1642       OutContext.getObjectFileInfo()->getRemarksSection();
1643   OutStreamer->SwitchSection(RemarksSection);
1644 
1645   OutStreamer->emitBinaryData(OS.str());
1646 }
1647 
1648 bool AsmPrinter::doFinalization(Module &M) {
1649   // Set the MachineFunction to nullptr so that we can catch attempted
1650   // accesses to MF specific features at the module level and so that
1651   // we can conditionalize accesses based on whether or not it is nullptr.
1652   MF = nullptr;
1653 
1654   // Gather all GOT equivalent globals in the module. We really need two
1655   // passes over the globals: one to compute and another to avoid its emission
1656   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1657   // where the got equivalent shows up before its use.
1658   computeGlobalGOTEquivs(M);
1659 
1660   // Emit global variables.
1661   for (const auto &G : M.globals())
1662     emitGlobalVariable(&G);
1663 
1664   // Emit remaining GOT equivalent globals.
1665   emitGlobalGOTEquivs();
1666 
1667   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1668 
1669   // Emit linkage(XCOFF) and visibility info for declarations
1670   for (const Function &F : M) {
1671     if (!F.isDeclarationForLinker())
1672       continue;
1673 
1674     MCSymbol *Name = getSymbol(&F);
1675     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1676 
1677     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1678       GlobalValue::VisibilityTypes V = F.getVisibility();
1679       if (V == GlobalValue::DefaultVisibility)
1680         continue;
1681 
1682       emitVisibility(Name, V, false);
1683       continue;
1684     }
1685 
1686     if (F.isIntrinsic())
1687       continue;
1688 
1689     // Handle the XCOFF case.
1690     // Variable `Name` is the function descriptor symbol (see above). Get the
1691     // function entry point symbol.
1692     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1693     // Emit linkage for the function entry point.
1694     emitLinkage(&F, FnEntryPointSym);
1695 
1696     // Emit linkage for the function descriptor.
1697     emitLinkage(&F, Name);
1698   }
1699 
1700   // Emit the remarks section contents.
1701   // FIXME: Figure out when is the safest time to emit this section. It should
1702   // not come after debug info.
1703   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1704     emitRemarksSection(*RS);
1705 
1706   TLOF.emitModuleMetadata(*OutStreamer, M);
1707 
1708   if (TM.getTargetTriple().isOSBinFormatELF()) {
1709     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1710 
1711     // Output stubs for external and common global variables.
1712     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1713     if (!Stubs.empty()) {
1714       OutStreamer->SwitchSection(TLOF.getDataSection());
1715       const DataLayout &DL = M.getDataLayout();
1716 
1717       emitAlignment(Align(DL.getPointerSize()));
1718       for (const auto &Stub : Stubs) {
1719         OutStreamer->emitLabel(Stub.first);
1720         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1721                                      DL.getPointerSize());
1722       }
1723     }
1724   }
1725 
1726   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1727     MachineModuleInfoCOFF &MMICOFF =
1728         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1729 
1730     // Output stubs for external and common global variables.
1731     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1732     if (!Stubs.empty()) {
1733       const DataLayout &DL = M.getDataLayout();
1734 
1735       for (const auto &Stub : Stubs) {
1736         SmallString<256> SectionName = StringRef(".rdata$");
1737         SectionName += Stub.first->getName();
1738         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1739             SectionName,
1740             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1741                 COFF::IMAGE_SCN_LNK_COMDAT,
1742             SectionKind::getReadOnly(), Stub.first->getName(),
1743             COFF::IMAGE_COMDAT_SELECT_ANY));
1744         emitAlignment(Align(DL.getPointerSize()));
1745         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1746         OutStreamer->emitLabel(Stub.first);
1747         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1748                                      DL.getPointerSize());
1749       }
1750     }
1751   }
1752 
1753   // Finalize debug and EH information.
1754   for (const HandlerInfo &HI : Handlers) {
1755     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1756                        HI.TimerGroupDescription, TimePassesIsEnabled);
1757     HI.Handler->endModule();
1758   }
1759 
1760   // This deletes all the ephemeral handlers that AsmPrinter added, while
1761   // keeping all the user-added handlers alive until the AsmPrinter is
1762   // destroyed.
1763   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1764   DD = nullptr;
1765 
1766   // If the target wants to know about weak references, print them all.
1767   if (MAI->getWeakRefDirective()) {
1768     // FIXME: This is not lazy, it would be nice to only print weak references
1769     // to stuff that is actually used.  Note that doing so would require targets
1770     // to notice uses in operands (due to constant exprs etc).  This should
1771     // happen with the MC stuff eventually.
1772 
1773     // Print out module-level global objects here.
1774     for (const auto &GO : M.global_objects()) {
1775       if (!GO.hasExternalWeakLinkage())
1776         continue;
1777       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1778     }
1779   }
1780 
1781   // Print aliases in topological order, that is, for each alias a = b,
1782   // b must be printed before a.
1783   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1784   // such an order to generate correct TOC information.
1785   SmallVector<const GlobalAlias *, 16> AliasStack;
1786   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1787   for (const auto &Alias : M.aliases()) {
1788     for (const GlobalAlias *Cur = &Alias; Cur;
1789          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1790       if (!AliasVisited.insert(Cur).second)
1791         break;
1792       AliasStack.push_back(Cur);
1793     }
1794     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1795       emitGlobalIndirectSymbol(M, *AncestorAlias);
1796     AliasStack.clear();
1797   }
1798   for (const auto &IFunc : M.ifuncs())
1799     emitGlobalIndirectSymbol(M, IFunc);
1800 
1801   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1802   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1803   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1804     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1805       MP->finishAssembly(M, *MI, *this);
1806 
1807   // Emit llvm.ident metadata in an '.ident' directive.
1808   emitModuleIdents(M);
1809 
1810   // Emit bytes for llvm.commandline metadata.
1811   emitModuleCommandLines(M);
1812 
1813   // Emit __morestack address if needed for indirect calls.
1814   if (MMI->usesMorestackAddr()) {
1815     Align Alignment(1);
1816     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1817         getDataLayout(), SectionKind::getReadOnly(),
1818         /*C=*/nullptr, Alignment);
1819     OutStreamer->SwitchSection(ReadOnlySection);
1820 
1821     MCSymbol *AddrSymbol =
1822         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1823     OutStreamer->emitLabel(AddrSymbol);
1824 
1825     unsigned PtrSize = MAI->getCodePointerSize();
1826     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1827                                  PtrSize);
1828   }
1829 
1830   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1831   // split-stack is used.
1832   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1833     OutStreamer->SwitchSection(
1834         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1835     if (MMI->hasNosplitStack())
1836       OutStreamer->SwitchSection(
1837           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1838   }
1839 
1840   // If we don't have any trampolines, then we don't require stack memory
1841   // to be executable. Some targets have a directive to declare this.
1842   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1843   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1844     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1845       OutStreamer->SwitchSection(S);
1846 
1847   if (TM.Options.EmitAddrsig) {
1848     // Emit address-significance attributes for all globals.
1849     OutStreamer->emitAddrsig();
1850     for (const GlobalValue &GV : M.global_values()) {
1851       if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() &&
1852           !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() &&
1853           !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr())
1854         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1855     }
1856   }
1857 
1858   // Emit symbol partition specifications (ELF only).
1859   if (TM.getTargetTriple().isOSBinFormatELF()) {
1860     unsigned UniqueID = 0;
1861     for (const GlobalValue &GV : M.global_values()) {
1862       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1863           GV.getVisibility() != GlobalValue::DefaultVisibility)
1864         continue;
1865 
1866       OutStreamer->SwitchSection(
1867           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1868                                    "", false, ++UniqueID, nullptr));
1869       OutStreamer->emitBytes(GV.getPartition());
1870       OutStreamer->emitZeros(1);
1871       OutStreamer->emitValue(
1872           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1873           MAI->getCodePointerSize());
1874     }
1875   }
1876 
1877   // Allow the target to emit any magic that it wants at the end of the file,
1878   // after everything else has gone out.
1879   emitEndOfAsmFile(M);
1880 
1881   MMI = nullptr;
1882 
1883   OutStreamer->Finish();
1884   OutStreamer->reset();
1885   OwnedMLI.reset();
1886   OwnedMDT.reset();
1887 
1888   return false;
1889 }
1890 
1891 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1892   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1893   if (Res.second)
1894     Res.first->second = createTempSymbol("exception");
1895   return Res.first->second;
1896 }
1897 
1898 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1899   this->MF = &MF;
1900   const Function &F = MF.getFunction();
1901 
1902   // Get the function symbol.
1903   if (!MAI->needsFunctionDescriptors()) {
1904     CurrentFnSym = getSymbol(&MF.getFunction());
1905   } else {
1906     assert(TM.getTargetTriple().isOSAIX() &&
1907            "Only AIX uses the function descriptor hooks.");
1908     // AIX is unique here in that the name of the symbol emitted for the
1909     // function body does not have the same name as the source function's
1910     // C-linkage name.
1911     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1912                                " initalized first.");
1913 
1914     // Get the function entry point symbol.
1915     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1916   }
1917 
1918   CurrentFnSymForSize = CurrentFnSym;
1919   CurrentFnBegin = nullptr;
1920   CurrentSectionBeginSym = nullptr;
1921   MBBSectionRanges.clear();
1922   MBBSectionExceptionSyms.clear();
1923   bool NeedsLocalForSize = MAI->needsLocalForSize();
1924   if (F.hasFnAttribute("patchable-function-entry") ||
1925       F.hasFnAttribute("function-instrument") ||
1926       F.hasFnAttribute("xray-instruction-threshold") ||
1927       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1928       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1929     CurrentFnBegin = createTempSymbol("func_begin");
1930     if (NeedsLocalForSize)
1931       CurrentFnSymForSize = CurrentFnBegin;
1932   }
1933 
1934   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1935 }
1936 
1937 namespace {
1938 
1939 // Keep track the alignment, constpool entries per Section.
1940   struct SectionCPs {
1941     MCSection *S;
1942     Align Alignment;
1943     SmallVector<unsigned, 4> CPEs;
1944 
1945     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1946   };
1947 
1948 } // end anonymous namespace
1949 
1950 /// EmitConstantPool - Print to the current output stream assembly
1951 /// representations of the constants in the constant pool MCP. This is
1952 /// used to print out constants which have been "spilled to memory" by
1953 /// the code generator.
1954 void AsmPrinter::emitConstantPool() {
1955   const MachineConstantPool *MCP = MF->getConstantPool();
1956   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1957   if (CP.empty()) return;
1958 
1959   // Calculate sections for constant pool entries. We collect entries to go into
1960   // the same section together to reduce amount of section switch statements.
1961   SmallVector<SectionCPs, 4> CPSections;
1962   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1963     const MachineConstantPoolEntry &CPE = CP[i];
1964     Align Alignment = CPE.getAlign();
1965 
1966     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1967 
1968     const Constant *C = nullptr;
1969     if (!CPE.isMachineConstantPoolEntry())
1970       C = CPE.Val.ConstVal;
1971 
1972     MCSection *S = getObjFileLowering().getSectionForConstant(
1973         getDataLayout(), Kind, C, Alignment);
1974 
1975     // The number of sections are small, just do a linear search from the
1976     // last section to the first.
1977     bool Found = false;
1978     unsigned SecIdx = CPSections.size();
1979     while (SecIdx != 0) {
1980       if (CPSections[--SecIdx].S == S) {
1981         Found = true;
1982         break;
1983       }
1984     }
1985     if (!Found) {
1986       SecIdx = CPSections.size();
1987       CPSections.push_back(SectionCPs(S, Alignment));
1988     }
1989 
1990     if (Alignment > CPSections[SecIdx].Alignment)
1991       CPSections[SecIdx].Alignment = Alignment;
1992     CPSections[SecIdx].CPEs.push_back(i);
1993   }
1994 
1995   // Now print stuff into the calculated sections.
1996   const MCSection *CurSection = nullptr;
1997   unsigned Offset = 0;
1998   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1999     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
2000       unsigned CPI = CPSections[i].CPEs[j];
2001       MCSymbol *Sym = GetCPISymbol(CPI);
2002       if (!Sym->isUndefined())
2003         continue;
2004 
2005       if (CurSection != CPSections[i].S) {
2006         OutStreamer->SwitchSection(CPSections[i].S);
2007         emitAlignment(Align(CPSections[i].Alignment));
2008         CurSection = CPSections[i].S;
2009         Offset = 0;
2010       }
2011 
2012       MachineConstantPoolEntry CPE = CP[CPI];
2013 
2014       // Emit inter-object padding for alignment.
2015       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2016       OutStreamer->emitZeros(NewOffset - Offset);
2017 
2018       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2019 
2020       OutStreamer->emitLabel(Sym);
2021       if (CPE.isMachineConstantPoolEntry())
2022         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2023       else
2024         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2025     }
2026   }
2027 }
2028 
2029 // Print assembly representations of the jump tables used by the current
2030 // function.
2031 void AsmPrinter::emitJumpTableInfo() {
2032   const DataLayout &DL = MF->getDataLayout();
2033   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2034   if (!MJTI) return;
2035   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2036   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2037   if (JT.empty()) return;
2038 
2039   // Pick the directive to use to print the jump table entries, and switch to
2040   // the appropriate section.
2041   const Function &F = MF->getFunction();
2042   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2043   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2044       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2045       F);
2046   if (JTInDiffSection) {
2047     // Drop it in the readonly section.
2048     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2049     OutStreamer->SwitchSection(ReadOnlySection);
2050   }
2051 
2052   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2053 
2054   // Jump tables in code sections are marked with a data_region directive
2055   // where that's supported.
2056   if (!JTInDiffSection)
2057     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2058 
2059   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2060     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2061 
2062     // If this jump table was deleted, ignore it.
2063     if (JTBBs.empty()) continue;
2064 
2065     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2066     /// emit a .set directive for each unique entry.
2067     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2068         MAI->doesSetDirectiveSuppressReloc()) {
2069       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2070       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2071       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2072       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2073         const MachineBasicBlock *MBB = JTBBs[ii];
2074         if (!EmittedSets.insert(MBB).second)
2075           continue;
2076 
2077         // .set LJTSet, LBB32-base
2078         const MCExpr *LHS =
2079           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2080         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2081                                     MCBinaryExpr::createSub(LHS, Base,
2082                                                             OutContext));
2083       }
2084     }
2085 
2086     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2087     // before each jump table.  The first label is never referenced, but tells
2088     // the assembler and linker the extents of the jump table object.  The
2089     // second label is actually referenced by the code.
2090     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2091       // FIXME: This doesn't have to have any specific name, just any randomly
2092       // named and numbered local label started with 'l' would work.  Simplify
2093       // GetJTISymbol.
2094       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2095 
2096     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2097     OutStreamer->emitLabel(JTISymbol);
2098 
2099     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2100       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2101   }
2102   if (!JTInDiffSection)
2103     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2104 }
2105 
2106 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2107 /// current stream.
2108 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2109                                     const MachineBasicBlock *MBB,
2110                                     unsigned UID) const {
2111   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2112   const MCExpr *Value = nullptr;
2113   switch (MJTI->getEntryKind()) {
2114   case MachineJumpTableInfo::EK_Inline:
2115     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2116   case MachineJumpTableInfo::EK_Custom32:
2117     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2118         MJTI, MBB, UID, OutContext);
2119     break;
2120   case MachineJumpTableInfo::EK_BlockAddress:
2121     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2122     //     .word LBB123
2123     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2124     break;
2125   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2126     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2127     // with a relocation as gp-relative, e.g.:
2128     //     .gprel32 LBB123
2129     MCSymbol *MBBSym = MBB->getSymbol();
2130     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2131     return;
2132   }
2133 
2134   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2135     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2136     // with a relocation as gp-relative, e.g.:
2137     //     .gpdword LBB123
2138     MCSymbol *MBBSym = MBB->getSymbol();
2139     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2140     return;
2141   }
2142 
2143   case MachineJumpTableInfo::EK_LabelDifference32: {
2144     // Each entry is the address of the block minus the address of the jump
2145     // table. This is used for PIC jump tables where gprel32 is not supported.
2146     // e.g.:
2147     //      .word LBB123 - LJTI1_2
2148     // If the .set directive avoids relocations, this is emitted as:
2149     //      .set L4_5_set_123, LBB123 - LJTI1_2
2150     //      .word L4_5_set_123
2151     if (MAI->doesSetDirectiveSuppressReloc()) {
2152       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2153                                       OutContext);
2154       break;
2155     }
2156     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2157     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2158     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2159     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2160     break;
2161   }
2162   }
2163 
2164   assert(Value && "Unknown entry kind!");
2165 
2166   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2167   OutStreamer->emitValue(Value, EntrySize);
2168 }
2169 
2170 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2171 /// special global used by LLVM.  If so, emit it and return true, otherwise
2172 /// do nothing and return false.
2173 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2174   if (GV->getName() == "llvm.used") {
2175     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2176       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2177     return true;
2178   }
2179 
2180   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2181   if (GV->getSection() == "llvm.metadata" ||
2182       GV->hasAvailableExternallyLinkage())
2183     return true;
2184 
2185   if (!GV->hasAppendingLinkage()) return false;
2186 
2187   assert(GV->hasInitializer() && "Not a special LLVM global!");
2188 
2189   if (GV->getName() == "llvm.global_ctors") {
2190     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2191                        /* isCtor */ true);
2192 
2193     return true;
2194   }
2195 
2196   if (GV->getName() == "llvm.global_dtors") {
2197     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2198                        /* isCtor */ false);
2199 
2200     return true;
2201   }
2202 
2203   report_fatal_error("unknown special variable");
2204 }
2205 
2206 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2207 /// global in the specified llvm.used list.
2208 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2209   // Should be an array of 'i8*'.
2210   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2211     const GlobalValue *GV =
2212       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2213     if (GV)
2214       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2215   }
2216 }
2217 
2218 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2219                                           const Constant *List,
2220                                           SmallVector<Structor, 8> &Structors) {
2221   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2222   // the init priority.
2223   if (!isa<ConstantArray>(List))
2224     return;
2225 
2226   // Gather the structors in a form that's convenient for sorting by priority.
2227   for (Value *O : cast<ConstantArray>(List)->operands()) {
2228     auto *CS = cast<ConstantStruct>(O);
2229     if (CS->getOperand(1)->isNullValue())
2230       break; // Found a null terminator, skip the rest.
2231     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2232     if (!Priority)
2233       continue; // Malformed.
2234     Structors.push_back(Structor());
2235     Structor &S = Structors.back();
2236     S.Priority = Priority->getLimitedValue(65535);
2237     S.Func = CS->getOperand(1);
2238     if (!CS->getOperand(2)->isNullValue()) {
2239       if (TM.getTargetTriple().isOSAIX())
2240         llvm::report_fatal_error(
2241             "associated data of XXStructor list is not yet supported on AIX");
2242       S.ComdatKey =
2243           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2244     }
2245   }
2246 
2247   // Emit the function pointers in the target-specific order
2248   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2249     return L.Priority < R.Priority;
2250   });
2251 }
2252 
2253 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2254 /// priority.
2255 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2256                                     bool IsCtor) {
2257   SmallVector<Structor, 8> Structors;
2258   preprocessXXStructorList(DL, List, Structors);
2259   if (Structors.empty())
2260     return;
2261 
2262   const Align Align = DL.getPointerPrefAlignment();
2263   for (Structor &S : Structors) {
2264     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2265     const MCSymbol *KeySym = nullptr;
2266     if (GlobalValue *GV = S.ComdatKey) {
2267       if (GV->isDeclarationForLinker())
2268         // If the associated variable is not defined in this module
2269         // (it might be available_externally, or have been an
2270         // available_externally definition that was dropped by the
2271         // EliminateAvailableExternally pass), some other TU
2272         // will provide its dynamic initializer.
2273         continue;
2274 
2275       KeySym = getSymbol(GV);
2276     }
2277 
2278     MCSection *OutputSection =
2279         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2280                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2281     OutStreamer->SwitchSection(OutputSection);
2282     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2283       emitAlignment(Align);
2284     emitXXStructor(DL, S.Func);
2285   }
2286 }
2287 
2288 void AsmPrinter::emitModuleIdents(Module &M) {
2289   if (!MAI->hasIdentDirective())
2290     return;
2291 
2292   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2293     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2294       const MDNode *N = NMD->getOperand(i);
2295       assert(N->getNumOperands() == 1 &&
2296              "llvm.ident metadata entry can have only one operand");
2297       const MDString *S = cast<MDString>(N->getOperand(0));
2298       OutStreamer->emitIdent(S->getString());
2299     }
2300   }
2301 }
2302 
2303 void AsmPrinter::emitModuleCommandLines(Module &M) {
2304   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2305   if (!CommandLine)
2306     return;
2307 
2308   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2309   if (!NMD || !NMD->getNumOperands())
2310     return;
2311 
2312   OutStreamer->PushSection();
2313   OutStreamer->SwitchSection(CommandLine);
2314   OutStreamer->emitZeros(1);
2315   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2316     const MDNode *N = NMD->getOperand(i);
2317     assert(N->getNumOperands() == 1 &&
2318            "llvm.commandline metadata entry can have only one operand");
2319     const MDString *S = cast<MDString>(N->getOperand(0));
2320     OutStreamer->emitBytes(S->getString());
2321     OutStreamer->emitZeros(1);
2322   }
2323   OutStreamer->PopSection();
2324 }
2325 
2326 //===--------------------------------------------------------------------===//
2327 // Emission and print routines
2328 //
2329 
2330 /// Emit a byte directive and value.
2331 ///
2332 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2333 
2334 /// Emit a short directive and value.
2335 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2336 
2337 /// Emit a long directive and value.
2338 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2339 
2340 /// Emit a long long directive and value.
2341 void AsmPrinter::emitInt64(uint64_t Value) const {
2342   OutStreamer->emitInt64(Value);
2343 }
2344 
2345 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2346 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2347 /// .set if it avoids relocations.
2348 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2349                                      unsigned Size) const {
2350   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2351 }
2352 
2353 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2354 /// where the size in bytes of the directive is specified by Size and Label
2355 /// specifies the label.  This implicitly uses .set if it is available.
2356 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2357                                      unsigned Size,
2358                                      bool IsSectionRelative) const {
2359   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2360     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2361     if (Size > 4)
2362       OutStreamer->emitZeros(Size - 4);
2363     return;
2364   }
2365 
2366   // Emit Label+Offset (or just Label if Offset is zero)
2367   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2368   if (Offset)
2369     Expr = MCBinaryExpr::createAdd(
2370         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2371 
2372   OutStreamer->emitValue(Expr, Size);
2373 }
2374 
2375 //===----------------------------------------------------------------------===//
2376 
2377 // EmitAlignment - Emit an alignment directive to the specified power of
2378 // two boundary.  If a global value is specified, and if that global has
2379 // an explicit alignment requested, it will override the alignment request
2380 // if required for correctness.
2381 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2382   if (GV)
2383     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2384 
2385   if (Alignment == Align(1))
2386     return; // 1-byte aligned: no need to emit alignment.
2387 
2388   if (getCurrentSection()->getKind().isText())
2389     OutStreamer->emitCodeAlignment(Alignment.value());
2390   else
2391     OutStreamer->emitValueToAlignment(Alignment.value());
2392 }
2393 
2394 //===----------------------------------------------------------------------===//
2395 // Constant emission.
2396 //===----------------------------------------------------------------------===//
2397 
2398 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2399   MCContext &Ctx = OutContext;
2400 
2401   if (CV->isNullValue() || isa<UndefValue>(CV))
2402     return MCConstantExpr::create(0, Ctx);
2403 
2404   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2405     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2406 
2407   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2408     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2409 
2410   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2411     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2412 
2413   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2414     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2415 
2416   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2417   if (!CE) {
2418     llvm_unreachable("Unknown constant value to lower!");
2419   }
2420 
2421   switch (CE->getOpcode()) {
2422   case Instruction::AddrSpaceCast: {
2423     const Constant *Op = CE->getOperand(0);
2424     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2425     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2426     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2427       return lowerConstant(Op);
2428 
2429     // Fallthrough to error.
2430     LLVM_FALLTHROUGH;
2431   }
2432   default: {
2433     // If the code isn't optimized, there may be outstanding folding
2434     // opportunities. Attempt to fold the expression using DataLayout as a
2435     // last resort before giving up.
2436     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2437     if (C != CE)
2438       return lowerConstant(C);
2439 
2440     // Otherwise report the problem to the user.
2441     std::string S;
2442     raw_string_ostream OS(S);
2443     OS << "Unsupported expression in static initializer: ";
2444     CE->printAsOperand(OS, /*PrintType=*/false,
2445                    !MF ? nullptr : MF->getFunction().getParent());
2446     report_fatal_error(OS.str());
2447   }
2448   case Instruction::GetElementPtr: {
2449     // Generate a symbolic expression for the byte address
2450     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2451     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2452 
2453     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2454     if (!OffsetAI)
2455       return Base;
2456 
2457     int64_t Offset = OffsetAI.getSExtValue();
2458     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2459                                    Ctx);
2460   }
2461 
2462   case Instruction::Trunc:
2463     // We emit the value and depend on the assembler to truncate the generated
2464     // expression properly.  This is important for differences between
2465     // blockaddress labels.  Since the two labels are in the same function, it
2466     // is reasonable to treat their delta as a 32-bit value.
2467     LLVM_FALLTHROUGH;
2468   case Instruction::BitCast:
2469     return lowerConstant(CE->getOperand(0));
2470 
2471   case Instruction::IntToPtr: {
2472     const DataLayout &DL = getDataLayout();
2473 
2474     // Handle casts to pointers by changing them into casts to the appropriate
2475     // integer type.  This promotes constant folding and simplifies this code.
2476     Constant *Op = CE->getOperand(0);
2477     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2478                                       false/*ZExt*/);
2479     return lowerConstant(Op);
2480   }
2481 
2482   case Instruction::PtrToInt: {
2483     const DataLayout &DL = getDataLayout();
2484 
2485     // Support only foldable casts to/from pointers that can be eliminated by
2486     // changing the pointer to the appropriately sized integer type.
2487     Constant *Op = CE->getOperand(0);
2488     Type *Ty = CE->getType();
2489 
2490     const MCExpr *OpExpr = lowerConstant(Op);
2491 
2492     // We can emit the pointer value into this slot if the slot is an
2493     // integer slot equal to the size of the pointer.
2494     //
2495     // If the pointer is larger than the resultant integer, then
2496     // as with Trunc just depend on the assembler to truncate it.
2497     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2498         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2499       return OpExpr;
2500 
2501     // Otherwise the pointer is smaller than the resultant integer, mask off
2502     // the high bits so we are sure to get a proper truncation if the input is
2503     // a constant expr.
2504     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2505     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2506     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2507   }
2508 
2509   case Instruction::Sub: {
2510     GlobalValue *LHSGV;
2511     APInt LHSOffset;
2512     DSOLocalEquivalent *DSOEquiv;
2513     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2514                                    getDataLayout(), &DSOEquiv)) {
2515       GlobalValue *RHSGV;
2516       APInt RHSOffset;
2517       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2518                                      getDataLayout())) {
2519         const MCExpr *RelocExpr =
2520             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2521         if (!RelocExpr) {
2522           const MCExpr *LHSExpr =
2523               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2524           if (DSOEquiv &&
2525               getObjFileLowering().supportDSOLocalEquivalentLowering())
2526             LHSExpr =
2527                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2528           RelocExpr = MCBinaryExpr::createSub(
2529               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2530         }
2531         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2532         if (Addend != 0)
2533           RelocExpr = MCBinaryExpr::createAdd(
2534               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2535         return RelocExpr;
2536       }
2537     }
2538   }
2539   // else fallthrough
2540   LLVM_FALLTHROUGH;
2541 
2542   // The MC library also has a right-shift operator, but it isn't consistently
2543   // signed or unsigned between different targets.
2544   case Instruction::Add:
2545   case Instruction::Mul:
2546   case Instruction::SDiv:
2547   case Instruction::SRem:
2548   case Instruction::Shl:
2549   case Instruction::And:
2550   case Instruction::Or:
2551   case Instruction::Xor: {
2552     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2553     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2554     switch (CE->getOpcode()) {
2555     default: llvm_unreachable("Unknown binary operator constant cast expr");
2556     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2557     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2558     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2559     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2560     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2561     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2562     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2563     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2564     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2565     }
2566   }
2567   }
2568 }
2569 
2570 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2571                                    AsmPrinter &AP,
2572                                    const Constant *BaseCV = nullptr,
2573                                    uint64_t Offset = 0);
2574 
2575 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2576 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2577 
2578 /// isRepeatedByteSequence - Determine whether the given value is
2579 /// composed of a repeated sequence of identical bytes and return the
2580 /// byte value.  If it is not a repeated sequence, return -1.
2581 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2582   StringRef Data = V->getRawDataValues();
2583   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2584   char C = Data[0];
2585   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2586     if (Data[i] != C) return -1;
2587   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2588 }
2589 
2590 /// isRepeatedByteSequence - Determine whether the given value is
2591 /// composed of a repeated sequence of identical bytes and return the
2592 /// byte value.  If it is not a repeated sequence, return -1.
2593 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2594   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2595     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2596     assert(Size % 8 == 0);
2597 
2598     // Extend the element to take zero padding into account.
2599     APInt Value = CI->getValue().zextOrSelf(Size);
2600     if (!Value.isSplat(8))
2601       return -1;
2602 
2603     return Value.zextOrTrunc(8).getZExtValue();
2604   }
2605   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2606     // Make sure all array elements are sequences of the same repeated
2607     // byte.
2608     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2609     Constant *Op0 = CA->getOperand(0);
2610     int Byte = isRepeatedByteSequence(Op0, DL);
2611     if (Byte == -1)
2612       return -1;
2613 
2614     // All array elements must be equal.
2615     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2616       if (CA->getOperand(i) != Op0)
2617         return -1;
2618     return Byte;
2619   }
2620 
2621   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2622     return isRepeatedByteSequence(CDS);
2623 
2624   return -1;
2625 }
2626 
2627 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2628                                              const ConstantDataSequential *CDS,
2629                                              AsmPrinter &AP) {
2630   // See if we can aggregate this into a .fill, if so, emit it as such.
2631   int Value = isRepeatedByteSequence(CDS, DL);
2632   if (Value != -1) {
2633     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2634     // Don't emit a 1-byte object as a .fill.
2635     if (Bytes > 1)
2636       return AP.OutStreamer->emitFill(Bytes, Value);
2637   }
2638 
2639   // If this can be emitted with .ascii/.asciz, emit it as such.
2640   if (CDS->isString())
2641     return AP.OutStreamer->emitBytes(CDS->getAsString());
2642 
2643   // Otherwise, emit the values in successive locations.
2644   unsigned ElementByteSize = CDS->getElementByteSize();
2645   if (isa<IntegerType>(CDS->getElementType())) {
2646     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2647       if (AP.isVerbose())
2648         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2649                                                  CDS->getElementAsInteger(i));
2650       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2651                                    ElementByteSize);
2652     }
2653   } else {
2654     Type *ET = CDS->getElementType();
2655     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2656       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2657   }
2658 
2659   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2660   unsigned EmittedSize =
2661       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2662   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2663   if (unsigned Padding = Size - EmittedSize)
2664     AP.OutStreamer->emitZeros(Padding);
2665 }
2666 
2667 static void emitGlobalConstantArray(const DataLayout &DL,
2668                                     const ConstantArray *CA, AsmPrinter &AP,
2669                                     const Constant *BaseCV, uint64_t Offset) {
2670   // See if we can aggregate some values.  Make sure it can be
2671   // represented as a series of bytes of the constant value.
2672   int Value = isRepeatedByteSequence(CA, DL);
2673 
2674   if (Value != -1) {
2675     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2676     AP.OutStreamer->emitFill(Bytes, Value);
2677   }
2678   else {
2679     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2680       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2681       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2682     }
2683   }
2684 }
2685 
2686 static void emitGlobalConstantVector(const DataLayout &DL,
2687                                      const ConstantVector *CV, AsmPrinter &AP) {
2688   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2689     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2690 
2691   unsigned Size = DL.getTypeAllocSize(CV->getType());
2692   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2693                          CV->getType()->getNumElements();
2694   if (unsigned Padding = Size - EmittedSize)
2695     AP.OutStreamer->emitZeros(Padding);
2696 }
2697 
2698 static void emitGlobalConstantStruct(const DataLayout &DL,
2699                                      const ConstantStruct *CS, AsmPrinter &AP,
2700                                      const Constant *BaseCV, uint64_t Offset) {
2701   // Print the fields in successive locations. Pad to align if needed!
2702   unsigned Size = DL.getTypeAllocSize(CS->getType());
2703   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2704   uint64_t SizeSoFar = 0;
2705   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2706     const Constant *Field = CS->getOperand(i);
2707 
2708     // Print the actual field value.
2709     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2710 
2711     // Check if padding is needed and insert one or more 0s.
2712     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2713     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2714                         - Layout->getElementOffset(i)) - FieldSize;
2715     SizeSoFar += FieldSize + PadSize;
2716 
2717     // Insert padding - this may include padding to increase the size of the
2718     // current field up to the ABI size (if the struct is not packed) as well
2719     // as padding to ensure that the next field starts at the right offset.
2720     AP.OutStreamer->emitZeros(PadSize);
2721   }
2722   assert(SizeSoFar == Layout->getSizeInBytes() &&
2723          "Layout of constant struct may be incorrect!");
2724 }
2725 
2726 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2727   assert(ET && "Unknown float type");
2728   APInt API = APF.bitcastToAPInt();
2729 
2730   // First print a comment with what we think the original floating-point value
2731   // should have been.
2732   if (AP.isVerbose()) {
2733     SmallString<8> StrVal;
2734     APF.toString(StrVal);
2735     ET->print(AP.OutStreamer->GetCommentOS());
2736     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2737   }
2738 
2739   // Now iterate through the APInt chunks, emitting them in endian-correct
2740   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2741   // floats).
2742   unsigned NumBytes = API.getBitWidth() / 8;
2743   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2744   const uint64_t *p = API.getRawData();
2745 
2746   // PPC's long double has odd notions of endianness compared to how LLVM
2747   // handles it: p[0] goes first for *big* endian on PPC.
2748   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2749     int Chunk = API.getNumWords() - 1;
2750 
2751     if (TrailingBytes)
2752       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2753 
2754     for (; Chunk >= 0; --Chunk)
2755       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2756   } else {
2757     unsigned Chunk;
2758     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2759       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2760 
2761     if (TrailingBytes)
2762       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2763   }
2764 
2765   // Emit the tail padding for the long double.
2766   const DataLayout &DL = AP.getDataLayout();
2767   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2768 }
2769 
2770 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2771   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2772 }
2773 
2774 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2775   const DataLayout &DL = AP.getDataLayout();
2776   unsigned BitWidth = CI->getBitWidth();
2777 
2778   // Copy the value as we may massage the layout for constants whose bit width
2779   // is not a multiple of 64-bits.
2780   APInt Realigned(CI->getValue());
2781   uint64_t ExtraBits = 0;
2782   unsigned ExtraBitsSize = BitWidth & 63;
2783 
2784   if (ExtraBitsSize) {
2785     // The bit width of the data is not a multiple of 64-bits.
2786     // The extra bits are expected to be at the end of the chunk of the memory.
2787     // Little endian:
2788     // * Nothing to be done, just record the extra bits to emit.
2789     // Big endian:
2790     // * Record the extra bits to emit.
2791     // * Realign the raw data to emit the chunks of 64-bits.
2792     if (DL.isBigEndian()) {
2793       // Basically the structure of the raw data is a chunk of 64-bits cells:
2794       //    0        1         BitWidth / 64
2795       // [chunk1][chunk2] ... [chunkN].
2796       // The most significant chunk is chunkN and it should be emitted first.
2797       // However, due to the alignment issue chunkN contains useless bits.
2798       // Realign the chunks so that they contain only useful information:
2799       // ExtraBits     0       1       (BitWidth / 64) - 1
2800       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2801       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2802       ExtraBits = Realigned.getRawData()[0] &
2803         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2804       Realigned.lshrInPlace(ExtraBitsSize);
2805     } else
2806       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2807   }
2808 
2809   // We don't expect assemblers to support integer data directives
2810   // for more than 64 bits, so we emit the data in at most 64-bit
2811   // quantities at a time.
2812   const uint64_t *RawData = Realigned.getRawData();
2813   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2814     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2815     AP.OutStreamer->emitIntValue(Val, 8);
2816   }
2817 
2818   if (ExtraBitsSize) {
2819     // Emit the extra bits after the 64-bits chunks.
2820 
2821     // Emit a directive that fills the expected size.
2822     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2823     Size -= (BitWidth / 64) * 8;
2824     assert(Size && Size * 8 >= ExtraBitsSize &&
2825            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2826            == ExtraBits && "Directive too small for extra bits.");
2827     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2828   }
2829 }
2830 
2831 /// Transform a not absolute MCExpr containing a reference to a GOT
2832 /// equivalent global, by a target specific GOT pc relative access to the
2833 /// final symbol.
2834 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2835                                          const Constant *BaseCst,
2836                                          uint64_t Offset) {
2837   // The global @foo below illustrates a global that uses a got equivalent.
2838   //
2839   //  @bar = global i32 42
2840   //  @gotequiv = private unnamed_addr constant i32* @bar
2841   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2842   //                             i64 ptrtoint (i32* @foo to i64))
2843   //                        to i32)
2844   //
2845   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2846   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2847   // form:
2848   //
2849   //  foo = cstexpr, where
2850   //    cstexpr := <gotequiv> - "." + <cst>
2851   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2852   //
2853   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2854   //
2855   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2856   //    gotpcrelcst := <offset from @foo base> + <cst>
2857   MCValue MV;
2858   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2859     return;
2860   const MCSymbolRefExpr *SymA = MV.getSymA();
2861   if (!SymA)
2862     return;
2863 
2864   // Check that GOT equivalent symbol is cached.
2865   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2866   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2867     return;
2868 
2869   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2870   if (!BaseGV)
2871     return;
2872 
2873   // Check for a valid base symbol
2874   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2875   const MCSymbolRefExpr *SymB = MV.getSymB();
2876 
2877   if (!SymB || BaseSym != &SymB->getSymbol())
2878     return;
2879 
2880   // Make sure to match:
2881   //
2882   //    gotpcrelcst := <offset from @foo base> + <cst>
2883   //
2884   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2885   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2886   // if the target knows how to encode it.
2887   int64_t GOTPCRelCst = Offset + MV.getConstant();
2888   if (GOTPCRelCst < 0)
2889     return;
2890   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2891     return;
2892 
2893   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2894   //
2895   //  bar:
2896   //    .long 42
2897   //  gotequiv:
2898   //    .quad bar
2899   //  foo:
2900   //    .long gotequiv - "." + <cst>
2901   //
2902   // is replaced by the target specific equivalent to:
2903   //
2904   //  bar:
2905   //    .long 42
2906   //  foo:
2907   //    .long bar@GOTPCREL+<gotpcrelcst>
2908   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2909   const GlobalVariable *GV = Result.first;
2910   int NumUses = (int)Result.second;
2911   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2912   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2913   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2914       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2915 
2916   // Update GOT equivalent usage information
2917   --NumUses;
2918   if (NumUses >= 0)
2919     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2920 }
2921 
2922 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2923                                    AsmPrinter &AP, const Constant *BaseCV,
2924                                    uint64_t Offset) {
2925   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2926 
2927   // Globals with sub-elements such as combinations of arrays and structs
2928   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2929   // constant symbol base and the current position with BaseCV and Offset.
2930   if (!BaseCV && CV->hasOneUse())
2931     BaseCV = dyn_cast<Constant>(CV->user_back());
2932 
2933   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2934     return AP.OutStreamer->emitZeros(Size);
2935 
2936   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2937     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2938 
2939     if (StoreSize <= 8) {
2940       if (AP.isVerbose())
2941         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2942                                                  CI->getZExtValue());
2943       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2944     } else {
2945       emitGlobalConstantLargeInt(CI, AP);
2946     }
2947 
2948     // Emit tail padding if needed
2949     if (Size != StoreSize)
2950       AP.OutStreamer->emitZeros(Size - StoreSize);
2951 
2952     return;
2953   }
2954 
2955   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2956     return emitGlobalConstantFP(CFP, AP);
2957 
2958   if (isa<ConstantPointerNull>(CV)) {
2959     AP.OutStreamer->emitIntValue(0, Size);
2960     return;
2961   }
2962 
2963   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2964     return emitGlobalConstantDataSequential(DL, CDS, AP);
2965 
2966   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2967     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2968 
2969   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2970     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2971 
2972   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2973     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2974     // vectors).
2975     if (CE->getOpcode() == Instruction::BitCast)
2976       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2977 
2978     if (Size > 8) {
2979       // If the constant expression's size is greater than 64-bits, then we have
2980       // to emit the value in chunks. Try to constant fold the value and emit it
2981       // that way.
2982       Constant *New = ConstantFoldConstant(CE, DL);
2983       if (New != CE)
2984         return emitGlobalConstantImpl(DL, New, AP);
2985     }
2986   }
2987 
2988   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2989     return emitGlobalConstantVector(DL, V, AP);
2990 
2991   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2992   // thread the streamer with EmitValue.
2993   const MCExpr *ME = AP.lowerConstant(CV);
2994 
2995   // Since lowerConstant already folded and got rid of all IR pointer and
2996   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2997   // directly.
2998   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2999     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
3000 
3001   AP.OutStreamer->emitValue(ME, Size);
3002 }
3003 
3004 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
3005 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
3006   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3007   if (Size)
3008     emitGlobalConstantImpl(DL, CV, *this);
3009   else if (MAI->hasSubsectionsViaSymbols()) {
3010     // If the global has zero size, emit a single byte so that two labels don't
3011     // look like they are at the same location.
3012     OutStreamer->emitIntValue(0, 1);
3013   }
3014 }
3015 
3016 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
3017   // Target doesn't support this yet!
3018   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3019 }
3020 
3021 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
3022   if (Offset > 0)
3023     OS << '+' << Offset;
3024   else if (Offset < 0)
3025     OS << Offset;
3026 }
3027 
3028 void AsmPrinter::emitNops(unsigned N) {
3029   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
3030   for (; N; --N)
3031     EmitToStreamer(*OutStreamer, Nop);
3032 }
3033 
3034 //===----------------------------------------------------------------------===//
3035 // Symbol Lowering Routines.
3036 //===----------------------------------------------------------------------===//
3037 
3038 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3039   return OutContext.createTempSymbol(Name, true);
3040 }
3041 
3042 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3043   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
3044 }
3045 
3046 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3047   return MMI->getAddrLabelSymbol(BB);
3048 }
3049 
3050 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3051 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3052   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3053     const MachineConstantPoolEntry &CPE =
3054         MF->getConstantPool()->getConstants()[CPID];
3055     if (!CPE.isMachineConstantPoolEntry()) {
3056       const DataLayout &DL = MF->getDataLayout();
3057       SectionKind Kind = CPE.getSectionKind(&DL);
3058       const Constant *C = CPE.Val.ConstVal;
3059       Align Alignment = CPE.Alignment;
3060       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3061               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3062                                                          Alignment))) {
3063         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3064           if (Sym->isUndefined())
3065             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3066           return Sym;
3067         }
3068       }
3069     }
3070   }
3071 
3072   const DataLayout &DL = getDataLayout();
3073   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3074                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3075                                       Twine(CPID));
3076 }
3077 
3078 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3079 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3080   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3081 }
3082 
3083 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3084 /// FIXME: privatize to AsmPrinter.
3085 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3086   const DataLayout &DL = getDataLayout();
3087   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3088                                       Twine(getFunctionNumber()) + "_" +
3089                                       Twine(UID) + "_set_" + Twine(MBBID));
3090 }
3091 
3092 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3093                                                    StringRef Suffix) const {
3094   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3095 }
3096 
3097 /// Return the MCSymbol for the specified ExternalSymbol.
3098 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3099   SmallString<60> NameStr;
3100   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3101   return OutContext.getOrCreateSymbol(NameStr);
3102 }
3103 
3104 /// PrintParentLoopComment - Print comments about parent loops of this one.
3105 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3106                                    unsigned FunctionNumber) {
3107   if (!Loop) return;
3108   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3109   OS.indent(Loop->getLoopDepth()*2)
3110     << "Parent Loop BB" << FunctionNumber << "_"
3111     << Loop->getHeader()->getNumber()
3112     << " Depth=" << Loop->getLoopDepth() << '\n';
3113 }
3114 
3115 /// PrintChildLoopComment - Print comments about child loops within
3116 /// the loop for this basic block, with nesting.
3117 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3118                                   unsigned FunctionNumber) {
3119   // Add child loop information
3120   for (const MachineLoop *CL : *Loop) {
3121     OS.indent(CL->getLoopDepth()*2)
3122       << "Child Loop BB" << FunctionNumber << "_"
3123       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3124       << '\n';
3125     PrintChildLoopComment(OS, CL, FunctionNumber);
3126   }
3127 }
3128 
3129 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3130 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3131                                        const MachineLoopInfo *LI,
3132                                        const AsmPrinter &AP) {
3133   // Add loop depth information
3134   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3135   if (!Loop) return;
3136 
3137   MachineBasicBlock *Header = Loop->getHeader();
3138   assert(Header && "No header for loop");
3139 
3140   // If this block is not a loop header, just print out what is the loop header
3141   // and return.
3142   if (Header != &MBB) {
3143     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3144                                Twine(AP.getFunctionNumber())+"_" +
3145                                Twine(Loop->getHeader()->getNumber())+
3146                                " Depth="+Twine(Loop->getLoopDepth()));
3147     return;
3148   }
3149 
3150   // Otherwise, it is a loop header.  Print out information about child and
3151   // parent loops.
3152   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3153 
3154   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3155 
3156   OS << "=>";
3157   OS.indent(Loop->getLoopDepth()*2-2);
3158 
3159   OS << "This ";
3160   if (Loop->isInnermost())
3161     OS << "Inner ";
3162   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3163 
3164   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3165 }
3166 
3167 /// emitBasicBlockStart - This method prints the label for the specified
3168 /// MachineBasicBlock, an alignment (if present) and a comment describing
3169 /// it if appropriate.
3170 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3171   // End the previous funclet and start a new one.
3172   if (MBB.isEHFuncletEntry()) {
3173     for (const HandlerInfo &HI : Handlers) {
3174       HI.Handler->endFunclet();
3175       HI.Handler->beginFunclet(MBB);
3176     }
3177   }
3178 
3179   // Emit an alignment directive for this block, if needed.
3180   const Align Alignment = MBB.getAlignment();
3181   if (Alignment != Align(1))
3182     emitAlignment(Alignment);
3183 
3184   // Switch to a new section if this basic block must begin a section. The
3185   // entry block is always placed in the function section and is handled
3186   // separately.
3187   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3188     OutStreamer->SwitchSection(
3189         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3190                                                             MBB, TM));
3191     CurrentSectionBeginSym = MBB.getSymbol();
3192   }
3193 
3194   // If the block has its address taken, emit any labels that were used to
3195   // reference the block.  It is possible that there is more than one label
3196   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3197   // the references were generated.
3198   if (MBB.hasAddressTaken()) {
3199     const BasicBlock *BB = MBB.getBasicBlock();
3200     if (isVerbose())
3201       OutStreamer->AddComment("Block address taken");
3202 
3203     // MBBs can have their address taken as part of CodeGen without having
3204     // their corresponding BB's address taken in IR
3205     if (BB->hasAddressTaken())
3206       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3207         OutStreamer->emitLabel(Sym);
3208   }
3209 
3210   // Print some verbose block comments.
3211   if (isVerbose()) {
3212     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3213       if (BB->hasName()) {
3214         BB->printAsOperand(OutStreamer->GetCommentOS(),
3215                            /*PrintType=*/false, BB->getModule());
3216         OutStreamer->GetCommentOS() << '\n';
3217       }
3218     }
3219 
3220     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3221     emitBasicBlockLoopComments(MBB, MLI, *this);
3222   }
3223 
3224   // Print the main label for the block.
3225   if (shouldEmitLabelForBasicBlock(MBB)) {
3226     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3227       OutStreamer->AddComment("Label of block must be emitted");
3228     OutStreamer->emitLabel(MBB.getSymbol());
3229   } else {
3230     if (isVerbose()) {
3231       // NOTE: Want this comment at start of line, don't emit with AddComment.
3232       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3233                                   false);
3234     }
3235   }
3236 
3237   if (MBB.isEHCatchretTarget() &&
3238       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3239     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3240   }
3241 
3242   // With BB sections, each basic block must handle CFI information on its own
3243   // if it begins a section (Entry block is handled separately by
3244   // AsmPrinterHandler::beginFunction).
3245   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3246     for (const HandlerInfo &HI : Handlers)
3247       HI.Handler->beginBasicBlock(MBB);
3248 }
3249 
3250 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3251   // Check if CFI information needs to be updated for this MBB with basic block
3252   // sections.
3253   if (MBB.isEndSection())
3254     for (const HandlerInfo &HI : Handlers)
3255       HI.Handler->endBasicBlock(MBB);
3256 }
3257 
3258 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3259                                 bool IsDefinition) const {
3260   MCSymbolAttr Attr = MCSA_Invalid;
3261 
3262   switch (Visibility) {
3263   default: break;
3264   case GlobalValue::HiddenVisibility:
3265     if (IsDefinition)
3266       Attr = MAI->getHiddenVisibilityAttr();
3267     else
3268       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3269     break;
3270   case GlobalValue::ProtectedVisibility:
3271     Attr = MAI->getProtectedVisibilityAttr();
3272     break;
3273   }
3274 
3275   if (Attr != MCSA_Invalid)
3276     OutStreamer->emitSymbolAttribute(Sym, Attr);
3277 }
3278 
3279 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3280     const MachineBasicBlock &MBB) const {
3281   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3282   // in the labels mode (option `=labels`) and every section beginning in the
3283   // sections mode (`=all` and `=list=`).
3284   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3285     return true;
3286   // A label is needed for any block with at least one predecessor (when that
3287   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3288   // entry, or if a label is forced).
3289   return !MBB.pred_empty() &&
3290          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3291           MBB.hasLabelMustBeEmitted());
3292 }
3293 
3294 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3295 /// exactly one predecessor and the control transfer mechanism between
3296 /// the predecessor and this block is a fall-through.
3297 bool AsmPrinter::
3298 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3299   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3300   // then nothing falls through to it.
3301   if (MBB->isEHPad() || MBB->pred_empty())
3302     return false;
3303 
3304   // If there isn't exactly one predecessor, it can't be a fall through.
3305   if (MBB->pred_size() > 1)
3306     return false;
3307 
3308   // The predecessor has to be immediately before this block.
3309   MachineBasicBlock *Pred = *MBB->pred_begin();
3310   if (!Pred->isLayoutSuccessor(MBB))
3311     return false;
3312 
3313   // If the block is completely empty, then it definitely does fall through.
3314   if (Pred->empty())
3315     return true;
3316 
3317   // Check the terminators in the previous blocks
3318   for (const auto &MI : Pred->terminators()) {
3319     // If it is not a simple branch, we are in a table somewhere.
3320     if (!MI.isBranch() || MI.isIndirectBranch())
3321       return false;
3322 
3323     // If we are the operands of one of the branches, this is not a fall
3324     // through. Note that targets with delay slots will usually bundle
3325     // terminators with the delay slot instruction.
3326     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3327       if (OP->isJTI())
3328         return false;
3329       if (OP->isMBB() && OP->getMBB() == MBB)
3330         return false;
3331     }
3332   }
3333 
3334   return true;
3335 }
3336 
3337 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3338   if (!S.usesMetadata())
3339     return nullptr;
3340 
3341   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3342   gcp_map_type::iterator GCPI = GCMap.find(&S);
3343   if (GCPI != GCMap.end())
3344     return GCPI->second.get();
3345 
3346   auto Name = S.getName();
3347 
3348   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3349        GCMetadataPrinterRegistry::entries())
3350     if (Name == GCMetaPrinter.getName()) {
3351       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3352       GMP->S = &S;
3353       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3354       return IterBool.first->second.get();
3355     }
3356 
3357   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3358 }
3359 
3360 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3361   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3362   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3363   bool NeedsDefault = false;
3364   if (MI->begin() == MI->end())
3365     // No GC strategy, use the default format.
3366     NeedsDefault = true;
3367   else
3368     for (auto &I : *MI) {
3369       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3370         if (MP->emitStackMaps(SM, *this))
3371           continue;
3372       // The strategy doesn't have printer or doesn't emit custom stack maps.
3373       // Use the default format.
3374       NeedsDefault = true;
3375     }
3376 
3377   if (NeedsDefault)
3378     SM.serializeToStackMapSection();
3379 }
3380 
3381 /// Pin vtable to this file.
3382 AsmPrinterHandler::~AsmPrinterHandler() = default;
3383 
3384 void AsmPrinterHandler::markFunctionEnd() {}
3385 
3386 // In the binary's "xray_instr_map" section, an array of these function entries
3387 // describes each instrumentation point.  When XRay patches your code, the index
3388 // into this table will be given to your handler as a patch point identifier.
3389 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3390   auto Kind8 = static_cast<uint8_t>(Kind);
3391   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3392   Out->emitBinaryData(
3393       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3394   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3395   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3396   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3397   Out->emitZeros(Padding);
3398 }
3399 
3400 void AsmPrinter::emitXRayTable() {
3401   if (Sleds.empty())
3402     return;
3403 
3404   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3405   const Function &F = MF->getFunction();
3406   MCSection *InstMap = nullptr;
3407   MCSection *FnSledIndex = nullptr;
3408   const Triple &TT = TM.getTargetTriple();
3409   // Use PC-relative addresses on all targets.
3410   if (TT.isOSBinFormatELF()) {
3411     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3412     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3413     StringRef GroupName;
3414     if (F.hasComdat()) {
3415       Flags |= ELF::SHF_GROUP;
3416       GroupName = F.getComdat()->getName();
3417     }
3418     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3419                                        Flags, 0, GroupName, F.hasComdat(),
3420                                        MCSection::NonUniqueID, LinkedToSym);
3421 
3422     if (!TM.Options.XRayOmitFunctionIndex)
3423       FnSledIndex = OutContext.getELFSection(
3424           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3425           GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
3426   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3427     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3428                                          SectionKind::getReadOnlyWithRel());
3429     if (!TM.Options.XRayOmitFunctionIndex)
3430       FnSledIndex = OutContext.getMachOSection(
3431           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3432   } else {
3433     llvm_unreachable("Unsupported target");
3434   }
3435 
3436   auto WordSizeBytes = MAI->getCodePointerSize();
3437 
3438   // Now we switch to the instrumentation map section. Because this is done
3439   // per-function, we are able to create an index entry that will represent the
3440   // range of sleds associated with a function.
3441   auto &Ctx = OutContext;
3442   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3443   OutStreamer->SwitchSection(InstMap);
3444   OutStreamer->emitLabel(SledsStart);
3445   for (const auto &Sled : Sleds) {
3446     MCSymbol *Dot = Ctx.createTempSymbol();
3447     OutStreamer->emitLabel(Dot);
3448     OutStreamer->emitValueImpl(
3449         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3450                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3451         WordSizeBytes);
3452     OutStreamer->emitValueImpl(
3453         MCBinaryExpr::createSub(
3454             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3455             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3456                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3457                                     Ctx),
3458             Ctx),
3459         WordSizeBytes);
3460     Sled.emit(WordSizeBytes, OutStreamer.get());
3461   }
3462   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3463   OutStreamer->emitLabel(SledsEnd);
3464 
3465   // We then emit a single entry in the index per function. We use the symbols
3466   // that bound the instrumentation map as the range for a specific function.
3467   // Each entry here will be 2 * word size aligned, as we're writing down two
3468   // pointers. This should work for both 32-bit and 64-bit platforms.
3469   if (FnSledIndex) {
3470     OutStreamer->SwitchSection(FnSledIndex);
3471     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3472     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3473     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3474     OutStreamer->SwitchSection(PrevSection);
3475   }
3476   Sleds.clear();
3477 }
3478 
3479 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3480                             SledKind Kind, uint8_t Version) {
3481   const Function &F = MI.getMF()->getFunction();
3482   auto Attr = F.getFnAttribute("function-instrument");
3483   bool LogArgs = F.hasFnAttribute("xray-log-args");
3484   bool AlwaysInstrument =
3485     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3486   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3487     Kind = SledKind::LOG_ARGS_ENTER;
3488   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3489                                        AlwaysInstrument, &F, Version});
3490 }
3491 
3492 void AsmPrinter::emitPatchableFunctionEntries() {
3493   const Function &F = MF->getFunction();
3494   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3495   (void)F.getFnAttribute("patchable-function-prefix")
3496       .getValueAsString()
3497       .getAsInteger(10, PatchableFunctionPrefix);
3498   (void)F.getFnAttribute("patchable-function-entry")
3499       .getValueAsString()
3500       .getAsInteger(10, PatchableFunctionEntry);
3501   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3502     return;
3503   const unsigned PointerSize = getPointerSize();
3504   if (TM.getTargetTriple().isOSBinFormatELF()) {
3505     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3506     const MCSymbolELF *LinkedToSym = nullptr;
3507     StringRef GroupName;
3508 
3509     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3510     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3511     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3512       Flags |= ELF::SHF_LINK_ORDER;
3513       if (F.hasComdat()) {
3514         Flags |= ELF::SHF_GROUP;
3515         GroupName = F.getComdat()->getName();
3516       }
3517       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3518     }
3519     OutStreamer->SwitchSection(OutContext.getELFSection(
3520         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3521         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
3522     emitAlignment(Align(PointerSize));
3523     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3524   }
3525 }
3526 
3527 uint16_t AsmPrinter::getDwarfVersion() const {
3528   return OutStreamer->getContext().getDwarfVersion();
3529 }
3530 
3531 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3532   OutStreamer->getContext().setDwarfVersion(Version);
3533 }
3534 
3535 bool AsmPrinter::isDwarf64() const {
3536   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3537 }
3538 
3539 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3540   return dwarf::getDwarfOffsetByteSize(
3541       OutStreamer->getContext().getDwarfFormat());
3542 }
3543 
3544 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3545   return dwarf::getUnitLengthFieldByteSize(
3546       OutStreamer->getContext().getDwarfFormat());
3547 }
3548