1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinException.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/JumpInstrTableInfo.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/GCMetadataPrinter.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBundle.h" 29 #include "llvm/CodeGen/MachineJumpTableInfo.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Mangler.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCExpr.h" 40 #include "llvm/MC/MCInst.h" 41 #include "llvm/MC/MCSection.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbolELF.h" 44 #include "llvm/MC/MCValue.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Target/TargetFrameLowering.h" 51 #include "llvm/Target/TargetInstrInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetLoweringObjectFile.h" 54 #include "llvm/Target/TargetRegisterInfo.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 using namespace llvm; 57 58 #define DEBUG_TYPE "asm-printer" 59 60 static const char *const DWARFGroupName = "DWARF Emission"; 61 static const char *const DbgTimerName = "Debug Info Emission"; 62 static const char *const EHTimerName = "DWARF Exception Writer"; 63 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 64 65 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 66 67 char AsmPrinter::ID = 0; 68 69 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 70 static gcp_map_type &getGCMap(void *&P) { 71 if (!P) 72 P = new gcp_map_type(); 73 return *(gcp_map_type*)P; 74 } 75 76 77 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 78 /// value in log2 form. This rounds up to the preferred alignment if possible 79 /// and legal. 80 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 81 unsigned InBits = 0) { 82 unsigned NumBits = 0; 83 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 84 NumBits = DL.getPreferredAlignmentLog(GVar); 85 86 // If InBits is specified, round it to it. 87 if (InBits > NumBits) 88 NumBits = InBits; 89 90 // If the GV has a specified alignment, take it into account. 91 if (GV->getAlignment() == 0) 92 return NumBits; 93 94 unsigned GVAlign = Log2_32(GV->getAlignment()); 95 96 // If the GVAlign is larger than NumBits, or if we are required to obey 97 // NumBits because the GV has an assigned section, obey it. 98 if (GVAlign > NumBits || GV->hasSection()) 99 NumBits = GVAlign; 100 return NumBits; 101 } 102 103 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 104 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 105 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 106 LastMI(nullptr), LastFn(0), Counter(~0U) { 107 DD = nullptr; 108 MMI = nullptr; 109 LI = nullptr; 110 MF = nullptr; 111 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 112 CurrentFnBegin = nullptr; 113 CurrentFnEnd = nullptr; 114 GCMetadataPrinters = nullptr; 115 VerboseAsm = OutStreamer->isVerboseAsm(); 116 } 117 118 AsmPrinter::~AsmPrinter() { 119 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 120 121 if (GCMetadataPrinters) { 122 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 123 124 delete &GCMap; 125 GCMetadataPrinters = nullptr; 126 } 127 } 128 129 /// getFunctionNumber - Return a unique ID for the current function. 130 /// 131 unsigned AsmPrinter::getFunctionNumber() const { 132 return MF->getFunctionNumber(); 133 } 134 135 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 136 return *TM.getObjFileLowering(); 137 } 138 139 /// getDataLayout - Return information about data layout. 140 const DataLayout &AsmPrinter::getDataLayout() const { 141 return *TM.getDataLayout(); 142 } 143 144 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 145 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 146 return MF->getSubtarget<MCSubtargetInfo>(); 147 } 148 149 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 150 S.EmitInstruction(Inst, getSubtargetInfo()); 151 } 152 153 StringRef AsmPrinter::getTargetTriple() const { 154 return TM.getTargetTriple().str(); 155 } 156 157 /// getCurrentSection() - Return the current section we are emitting to. 158 const MCSection *AsmPrinter::getCurrentSection() const { 159 return OutStreamer->getCurrentSection().first; 160 } 161 162 163 164 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 165 AU.setPreservesAll(); 166 MachineFunctionPass::getAnalysisUsage(AU); 167 AU.addRequired<MachineModuleInfo>(); 168 AU.addRequired<GCModuleInfo>(); 169 if (isVerbose()) 170 AU.addRequired<MachineLoopInfo>(); 171 } 172 173 bool AsmPrinter::doInitialization(Module &M) { 174 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 175 176 // Initialize TargetLoweringObjectFile. 177 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 178 .Initialize(OutContext, TM); 179 180 OutStreamer->InitSections(false); 181 182 Mang = new Mangler(); 183 184 // Emit the version-min deplyment target directive if needed. 185 // 186 // FIXME: If we end up with a collection of these sorts of Darwin-specific 187 // or ELF-specific things, it may make sense to have a platform helper class 188 // that will work with the target helper class. For now keep it here, as the 189 // alternative is duplicated code in each of the target asm printers that 190 // use the directive, where it would need the same conditionalization 191 // anyway. 192 Triple TT(getTargetTriple()); 193 if (TT.isOSDarwin()) { 194 unsigned Major, Minor, Update; 195 TT.getOSVersion(Major, Minor, Update); 196 // If there is a version specified, Major will be non-zero. 197 if (Major) 198 OutStreamer->EmitVersionMin((TT.isMacOSX() ? 199 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 200 Major, Minor, Update); 201 } 202 203 // Allow the target to emit any magic that it wants at the start of the file. 204 EmitStartOfAsmFile(M); 205 206 // Very minimal debug info. It is ignored if we emit actual debug info. If we 207 // don't, this at least helps the user find where a global came from. 208 if (MAI->hasSingleParameterDotFile()) { 209 // .file "foo.c" 210 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 211 } 212 213 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 214 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 215 for (auto &I : *MI) 216 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 217 MP->beginAssembly(M, *MI, *this); 218 219 // Emit module-level inline asm if it exists. 220 if (!M.getModuleInlineAsm().empty()) { 221 // We're at the module level. Construct MCSubtarget from the default CPU 222 // and target triple. 223 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 224 TM.getTargetTriple().str(), TM.getTargetCPU(), 225 TM.getTargetFeatureString())); 226 OutStreamer->AddComment("Start of file scope inline assembly"); 227 OutStreamer->AddBlankLine(); 228 EmitInlineAsm(M.getModuleInlineAsm()+"\n", *STI, TM.Options.MCOptions); 229 OutStreamer->AddComment("End of file scope inline assembly"); 230 OutStreamer->AddBlankLine(); 231 } 232 233 if (MAI->doesSupportDebugInformation()) { 234 bool skip_dwarf = false; 235 if (TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 236 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 237 DbgTimerName, 238 CodeViewLineTablesGroupName)); 239 // FIXME: Don't emit DWARF debug info if there's at least one function 240 // with AddressSanitizer instrumentation. 241 // This is a band-aid fix for PR22032. 242 for (auto &F : M.functions()) { 243 if (F.hasFnAttribute(Attribute::SanitizeAddress)) { 244 skip_dwarf = true; 245 break; 246 } 247 } 248 } 249 if (!skip_dwarf) { 250 DD = new DwarfDebug(this, &M); 251 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 252 } 253 } 254 255 EHStreamer *ES = nullptr; 256 switch (MAI->getExceptionHandlingType()) { 257 case ExceptionHandling::None: 258 break; 259 case ExceptionHandling::SjLj: 260 case ExceptionHandling::DwarfCFI: 261 ES = new DwarfCFIException(this); 262 break; 263 case ExceptionHandling::ARM: 264 ES = new ARMException(this); 265 break; 266 case ExceptionHandling::WinEH: 267 switch (MAI->getWinEHEncodingType()) { 268 default: llvm_unreachable("unsupported unwinding information encoding"); 269 case WinEH::EncodingType::Invalid: 270 break; 271 case WinEH::EncodingType::X86: 272 case WinEH::EncodingType::Itanium: 273 ES = new WinException(this); 274 break; 275 } 276 break; 277 } 278 if (ES) 279 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 280 return false; 281 } 282 283 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 284 if (!MAI.hasWeakDefCanBeHiddenDirective()) 285 return false; 286 287 return canBeOmittedFromSymbolTable(GV); 288 } 289 290 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 291 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 292 switch (Linkage) { 293 case GlobalValue::CommonLinkage: 294 case GlobalValue::LinkOnceAnyLinkage: 295 case GlobalValue::LinkOnceODRLinkage: 296 case GlobalValue::WeakAnyLinkage: 297 case GlobalValue::WeakODRLinkage: 298 if (MAI->hasWeakDefDirective()) { 299 // .globl _foo 300 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 301 302 if (!canBeHidden(GV, *MAI)) 303 // .weak_definition _foo 304 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 305 else 306 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 307 } else if (MAI->hasLinkOnceDirective()) { 308 // .globl _foo 309 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 310 //NOTE: linkonce is handled by the section the symbol was assigned to. 311 } else { 312 // .weak _foo 313 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 314 } 315 return; 316 case GlobalValue::AppendingLinkage: 317 // FIXME: appending linkage variables should go into a section of 318 // their name or something. For now, just emit them as external. 319 case GlobalValue::ExternalLinkage: 320 // If external or appending, declare as a global symbol. 321 // .globl _foo 322 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 323 return; 324 case GlobalValue::PrivateLinkage: 325 case GlobalValue::InternalLinkage: 326 return; 327 case GlobalValue::AvailableExternallyLinkage: 328 llvm_unreachable("Should never emit this"); 329 case GlobalValue::ExternalWeakLinkage: 330 llvm_unreachable("Don't know how to emit these"); 331 } 332 llvm_unreachable("Unknown linkage type!"); 333 } 334 335 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 336 const GlobalValue *GV) const { 337 TM.getNameWithPrefix(Name, GV, *Mang); 338 } 339 340 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 341 return TM.getSymbol(GV, *Mang); 342 } 343 344 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 345 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 346 if (GV->hasInitializer()) { 347 // Check to see if this is a special global used by LLVM, if so, emit it. 348 if (EmitSpecialLLVMGlobal(GV)) 349 return; 350 351 // Skip the emission of global equivalents. The symbol can be emitted later 352 // on by emitGlobalGOTEquivs in case it turns out to be needed. 353 if (GlobalGOTEquivs.count(getSymbol(GV))) 354 return; 355 356 if (isVerbose()) { 357 GV->printAsOperand(OutStreamer->GetCommentOS(), 358 /*PrintType=*/false, GV->getParent()); 359 OutStreamer->GetCommentOS() << '\n'; 360 } 361 } 362 363 MCSymbol *GVSym = getSymbol(GV); 364 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 365 366 if (!GV->hasInitializer()) // External globals require no extra code. 367 return; 368 369 GVSym->redefineIfPossible(); 370 if (GVSym->isDefined() || GVSym->isVariable()) 371 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 372 "' is already defined"); 373 374 if (MAI->hasDotTypeDotSizeDirective()) 375 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 376 377 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 378 379 const DataLayout *DL = TM.getDataLayout(); 380 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 381 382 // If the alignment is specified, we *must* obey it. Overaligning a global 383 // with a specified alignment is a prompt way to break globals emitted to 384 // sections and expected to be contiguous (e.g. ObjC metadata). 385 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 386 387 for (const HandlerInfo &HI : Handlers) { 388 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 389 HI.Handler->setSymbolSize(GVSym, Size); 390 } 391 392 // Handle common and BSS local symbols (.lcomm). 393 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 394 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 395 unsigned Align = 1 << AlignLog; 396 397 // Handle common symbols. 398 if (GVKind.isCommon()) { 399 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 400 Align = 0; 401 402 // .comm _foo, 42, 4 403 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 404 return; 405 } 406 407 // Handle local BSS symbols. 408 if (MAI->hasMachoZeroFillDirective()) { 409 MCSection *TheSection = 410 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 411 // .zerofill __DATA, __bss, _foo, 400, 5 412 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 413 return; 414 } 415 416 // Use .lcomm only if it supports user-specified alignment. 417 // Otherwise, while it would still be correct to use .lcomm in some 418 // cases (e.g. when Align == 1), the external assembler might enfore 419 // some -unknown- default alignment behavior, which could cause 420 // spurious differences between external and integrated assembler. 421 // Prefer to simply fall back to .local / .comm in this case. 422 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 423 // .lcomm _foo, 42 424 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 425 return; 426 } 427 428 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 429 Align = 0; 430 431 // .local _foo 432 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 433 // .comm _foo, 42, 4 434 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 435 return; 436 } 437 438 MCSection *TheSection = 439 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 440 441 // Handle the zerofill directive on darwin, which is a special form of BSS 442 // emission. 443 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 444 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 445 446 // .globl _foo 447 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 448 // .zerofill __DATA, __common, _foo, 400, 5 449 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 450 return; 451 } 452 453 // Handle thread local data for mach-o which requires us to output an 454 // additional structure of data and mangle the original symbol so that we 455 // can reference it later. 456 // 457 // TODO: This should become an "emit thread local global" method on TLOF. 458 // All of this macho specific stuff should be sunk down into TLOFMachO and 459 // stuff like "TLSExtraDataSection" should no longer be part of the parent 460 // TLOF class. This will also make it more obvious that stuff like 461 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 462 // specific code. 463 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 464 // Emit the .tbss symbol 465 MCSymbol *MangSym = 466 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 467 468 if (GVKind.isThreadBSS()) { 469 TheSection = getObjFileLowering().getTLSBSSSection(); 470 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 471 } else if (GVKind.isThreadData()) { 472 OutStreamer->SwitchSection(TheSection); 473 474 EmitAlignment(AlignLog, GV); 475 OutStreamer->EmitLabel(MangSym); 476 477 EmitGlobalConstant(GV->getInitializer()); 478 } 479 480 OutStreamer->AddBlankLine(); 481 482 // Emit the variable struct for the runtime. 483 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 484 485 OutStreamer->SwitchSection(TLVSect); 486 // Emit the linkage here. 487 EmitLinkage(GV, GVSym); 488 OutStreamer->EmitLabel(GVSym); 489 490 // Three pointers in size: 491 // - __tlv_bootstrap - used to make sure support exists 492 // - spare pointer, used when mapped by the runtime 493 // - pointer to mangled symbol above with initializer 494 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 495 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 496 PtrSize); 497 OutStreamer->EmitIntValue(0, PtrSize); 498 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 499 500 OutStreamer->AddBlankLine(); 501 return; 502 } 503 504 OutStreamer->SwitchSection(TheSection); 505 506 EmitLinkage(GV, GVSym); 507 EmitAlignment(AlignLog, GV); 508 509 OutStreamer->EmitLabel(GVSym); 510 511 EmitGlobalConstant(GV->getInitializer()); 512 513 if (MAI->hasDotTypeDotSizeDirective()) 514 // .size foo, 42 515 OutStreamer->emitELFSize(cast<MCSymbolELF>(GVSym), 516 MCConstantExpr::create(Size, OutContext)); 517 518 OutStreamer->AddBlankLine(); 519 } 520 521 /// EmitFunctionHeader - This method emits the header for the current 522 /// function. 523 void AsmPrinter::EmitFunctionHeader() { 524 // Print out constants referenced by the function 525 EmitConstantPool(); 526 527 // Print the 'header' of function. 528 const Function *F = MF->getFunction(); 529 530 OutStreamer->SwitchSection( 531 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 532 EmitVisibility(CurrentFnSym, F->getVisibility()); 533 534 EmitLinkage(F, CurrentFnSym); 535 if (MAI->hasFunctionAlignment()) 536 EmitAlignment(MF->getAlignment(), F); 537 538 if (MAI->hasDotTypeDotSizeDirective()) 539 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 540 541 if (isVerbose()) { 542 F->printAsOperand(OutStreamer->GetCommentOS(), 543 /*PrintType=*/false, F->getParent()); 544 OutStreamer->GetCommentOS() << '\n'; 545 } 546 547 // Emit the prefix data. 548 if (F->hasPrefixData()) 549 EmitGlobalConstant(F->getPrefixData()); 550 551 // Emit the CurrentFnSym. This is a virtual function to allow targets to 552 // do their wild and crazy things as required. 553 EmitFunctionEntryLabel(); 554 555 // If the function had address-taken blocks that got deleted, then we have 556 // references to the dangling symbols. Emit them at the start of the function 557 // so that we don't get references to undefined symbols. 558 std::vector<MCSymbol*> DeadBlockSyms; 559 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 560 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 561 OutStreamer->AddComment("Address taken block that was later removed"); 562 OutStreamer->EmitLabel(DeadBlockSyms[i]); 563 } 564 565 if (CurrentFnBegin) { 566 if (MAI->useAssignmentForEHBegin()) { 567 MCSymbol *CurPos = OutContext.createTempSymbol(); 568 OutStreamer->EmitLabel(CurPos); 569 OutStreamer->EmitAssignment(CurrentFnBegin, 570 MCSymbolRefExpr::create(CurPos, OutContext)); 571 } else { 572 OutStreamer->EmitLabel(CurrentFnBegin); 573 } 574 } 575 576 // Emit pre-function debug and/or EH information. 577 for (const HandlerInfo &HI : Handlers) { 578 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 579 HI.Handler->beginFunction(MF); 580 } 581 582 // Emit the prologue data. 583 if (F->hasPrologueData()) 584 EmitGlobalConstant(F->getPrologueData()); 585 } 586 587 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 588 /// function. This can be overridden by targets as required to do custom stuff. 589 void AsmPrinter::EmitFunctionEntryLabel() { 590 CurrentFnSym->redefineIfPossible(); 591 592 // The function label could have already been emitted if two symbols end up 593 // conflicting due to asm renaming. Detect this and emit an error. 594 if (CurrentFnSym->isVariable()) 595 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 596 "' is a protected alias"); 597 if (CurrentFnSym->isDefined()) 598 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 599 "' label emitted multiple times to assembly file"); 600 601 return OutStreamer->EmitLabel(CurrentFnSym); 602 } 603 604 /// emitComments - Pretty-print comments for instructions. 605 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 606 const MachineFunction *MF = MI.getParent()->getParent(); 607 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 608 609 // Check for spills and reloads 610 int FI; 611 612 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 613 614 // We assume a single instruction only has a spill or reload, not 615 // both. 616 const MachineMemOperand *MMO; 617 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 618 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 619 MMO = *MI.memoperands_begin(); 620 CommentOS << MMO->getSize() << "-byte Reload\n"; 621 } 622 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 623 if (FrameInfo->isSpillSlotObjectIndex(FI)) 624 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 625 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 626 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 627 MMO = *MI.memoperands_begin(); 628 CommentOS << MMO->getSize() << "-byte Spill\n"; 629 } 630 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 631 if (FrameInfo->isSpillSlotObjectIndex(FI)) 632 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 633 } 634 635 // Check for spill-induced copies 636 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 637 CommentOS << " Reload Reuse\n"; 638 } 639 640 /// emitImplicitDef - This method emits the specified machine instruction 641 /// that is an implicit def. 642 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 643 unsigned RegNo = MI->getOperand(0).getReg(); 644 OutStreamer->AddComment(Twine("implicit-def: ") + 645 MMI->getContext().getRegisterInfo()->getName(RegNo)); 646 OutStreamer->AddBlankLine(); 647 } 648 649 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 650 std::string Str = "kill:"; 651 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 652 const MachineOperand &Op = MI->getOperand(i); 653 assert(Op.isReg() && "KILL instruction must have only register operands"); 654 Str += ' '; 655 Str += AP.MMI->getContext().getRegisterInfo()->getName(Op.getReg()); 656 Str += (Op.isDef() ? "<def>" : "<kill>"); 657 } 658 AP.OutStreamer->AddComment(Str); 659 AP.OutStreamer->AddBlankLine(); 660 } 661 662 /// emitDebugValueComment - This method handles the target-independent form 663 /// of DBG_VALUE, returning true if it was able to do so. A false return 664 /// means the target will need to handle MI in EmitInstruction. 665 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 666 // This code handles only the 4-operand target-independent form. 667 if (MI->getNumOperands() != 4) 668 return false; 669 670 SmallString<128> Str; 671 raw_svector_ostream OS(Str); 672 OS << "DEBUG_VALUE: "; 673 674 const DILocalVariable *V = MI->getDebugVariable(); 675 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 676 StringRef Name = SP->getDisplayName(); 677 if (!Name.empty()) 678 OS << Name << ":"; 679 } 680 OS << V->getName(); 681 682 const DIExpression *Expr = MI->getDebugExpression(); 683 if (Expr->isBitPiece()) 684 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 685 << " size=" << Expr->getBitPieceSize() << "]"; 686 OS << " <- "; 687 688 // The second operand is only an offset if it's an immediate. 689 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 690 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 691 692 // Register or immediate value. Register 0 means undef. 693 if (MI->getOperand(0).isFPImm()) { 694 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 695 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 696 OS << (double)APF.convertToFloat(); 697 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 698 OS << APF.convertToDouble(); 699 } else { 700 // There is no good way to print long double. Convert a copy to 701 // double. Ah well, it's only a comment. 702 bool ignored; 703 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 704 &ignored); 705 OS << "(long double) " << APF.convertToDouble(); 706 } 707 } else if (MI->getOperand(0).isImm()) { 708 OS << MI->getOperand(0).getImm(); 709 } else if (MI->getOperand(0).isCImm()) { 710 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 711 } else { 712 unsigned Reg; 713 if (MI->getOperand(0).isReg()) { 714 Reg = MI->getOperand(0).getReg(); 715 } else { 716 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 717 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 718 Offset += TFI->getFrameIndexReference(*AP.MF, 719 MI->getOperand(0).getIndex(), Reg); 720 Deref = true; 721 } 722 if (Reg == 0) { 723 // Suppress offset, it is not meaningful here. 724 OS << "undef"; 725 // NOTE: Want this comment at start of line, don't emit with AddComment. 726 AP.OutStreamer->emitRawComment(OS.str()); 727 return true; 728 } 729 if (Deref) 730 OS << '['; 731 OS << AP.MMI->getContext().getRegisterInfo()->getName(Reg); 732 } 733 734 if (Deref) 735 OS << '+' << Offset << ']'; 736 737 // NOTE: Want this comment at start of line, don't emit with AddComment. 738 AP.OutStreamer->emitRawComment(OS.str()); 739 return true; 740 } 741 742 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 743 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 744 MF->getFunction()->needsUnwindTableEntry()) 745 return CFI_M_EH; 746 747 if (MMI->hasDebugInfo()) 748 return CFI_M_Debug; 749 750 return CFI_M_None; 751 } 752 753 bool AsmPrinter::needsSEHMoves() { 754 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 755 } 756 757 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 758 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 759 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 760 ExceptionHandlingType != ExceptionHandling::ARM) 761 return; 762 763 if (needsCFIMoves() == CFI_M_None) 764 return; 765 766 const MachineModuleInfo &MMI = MF->getMMI(); 767 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 768 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 769 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 770 emitCFIInstruction(CFI); 771 } 772 773 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 774 // The operands are the MCSymbol and the frame offset of the allocation. 775 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 776 int FrameOffset = MI.getOperand(1).getImm(); 777 778 // Emit a symbol assignment. 779 OutStreamer->EmitAssignment(FrameAllocSym, 780 MCConstantExpr::create(FrameOffset, OutContext)); 781 } 782 783 /// EmitFunctionBody - This method emits the body and trailer for a 784 /// function. 785 void AsmPrinter::EmitFunctionBody() { 786 EmitFunctionHeader(); 787 788 // Emit target-specific gunk before the function body. 789 EmitFunctionBodyStart(); 790 791 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 792 793 // Print out code for the function. 794 bool HasAnyRealCode = false; 795 for (auto &MBB : *MF) { 796 // Print a label for the basic block. 797 EmitBasicBlockStart(MBB); 798 for (auto &MI : MBB) { 799 800 // Print the assembly for the instruction. 801 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 802 !MI.isDebugValue()) { 803 HasAnyRealCode = true; 804 ++EmittedInsts; 805 } 806 807 if (ShouldPrintDebugScopes) { 808 for (const HandlerInfo &HI : Handlers) { 809 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 810 TimePassesIsEnabled); 811 HI.Handler->beginInstruction(&MI); 812 } 813 } 814 815 if (isVerbose()) 816 emitComments(MI, OutStreamer->GetCommentOS()); 817 818 switch (MI.getOpcode()) { 819 case TargetOpcode::CFI_INSTRUCTION: 820 emitCFIInstruction(MI); 821 break; 822 823 case TargetOpcode::FRAME_ALLOC: 824 emitFrameAlloc(MI); 825 break; 826 827 case TargetOpcode::EH_LABEL: 828 case TargetOpcode::GC_LABEL: 829 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 830 break; 831 case TargetOpcode::INLINEASM: 832 EmitInlineAsm(&MI); 833 break; 834 case TargetOpcode::DBG_VALUE: 835 if (isVerbose()) { 836 if (!emitDebugValueComment(&MI, *this)) 837 EmitInstruction(&MI); 838 } 839 break; 840 case TargetOpcode::IMPLICIT_DEF: 841 if (isVerbose()) emitImplicitDef(&MI); 842 break; 843 case TargetOpcode::KILL: 844 if (isVerbose()) emitKill(&MI, *this); 845 break; 846 default: 847 EmitInstruction(&MI); 848 break; 849 } 850 851 if (ShouldPrintDebugScopes) { 852 for (const HandlerInfo &HI : Handlers) { 853 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 854 TimePassesIsEnabled); 855 HI.Handler->endInstruction(); 856 } 857 } 858 } 859 860 EmitBasicBlockEnd(MBB); 861 } 862 863 // If the function is empty and the object file uses .subsections_via_symbols, 864 // then we need to emit *something* to the function body to prevent the 865 // labels from collapsing together. Just emit a noop. 866 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 867 MCInst Noop; 868 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 869 OutStreamer->AddComment("avoids zero-length function"); 870 871 // Targets can opt-out of emitting the noop here by leaving the opcode 872 // unspecified. 873 if (Noop.getOpcode()) 874 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 875 } 876 877 const Function *F = MF->getFunction(); 878 for (const auto &BB : *F) { 879 if (!BB.hasAddressTaken()) 880 continue; 881 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 882 if (Sym->isDefined()) 883 continue; 884 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 885 OutStreamer->EmitLabel(Sym); 886 } 887 888 // Emit target-specific gunk after the function body. 889 EmitFunctionBodyEnd(); 890 891 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 892 MAI->hasDotTypeDotSizeDirective()) { 893 // Create a symbol for the end of function. 894 CurrentFnEnd = createTempSymbol("func_end"); 895 OutStreamer->EmitLabel(CurrentFnEnd); 896 } 897 898 // If the target wants a .size directive for the size of the function, emit 899 // it. 900 if (MAI->hasDotTypeDotSizeDirective()) { 901 // We can get the size as difference between the function label and the 902 // temp label. 903 const MCExpr *SizeExp = MCBinaryExpr::createSub( 904 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 905 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 906 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 907 OutStreamer->emitELFSize(Sym, SizeExp); 908 } 909 910 for (const HandlerInfo &HI : Handlers) { 911 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 912 HI.Handler->markFunctionEnd(); 913 } 914 915 // Print out jump tables referenced by the function. 916 EmitJumpTableInfo(); 917 918 // Emit post-function debug and/or EH information. 919 for (const HandlerInfo &HI : Handlers) { 920 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 921 HI.Handler->endFunction(MF); 922 } 923 MMI->EndFunction(); 924 925 OutStreamer->AddBlankLine(); 926 } 927 928 /// \brief Compute the number of Global Variables that uses a Constant. 929 static unsigned getNumGlobalVariableUses(const Constant *C) { 930 if (!C) 931 return 0; 932 933 if (isa<GlobalVariable>(C)) 934 return 1; 935 936 unsigned NumUses = 0; 937 for (auto *CU : C->users()) 938 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 939 940 return NumUses; 941 } 942 943 /// \brief Only consider global GOT equivalents if at least one user is a 944 /// cstexpr inside an initializer of another global variables. Also, don't 945 /// handle cstexpr inside instructions. During global variable emission, 946 /// candidates are skipped and are emitted later in case at least one cstexpr 947 /// isn't replaced by a PC relative GOT entry access. 948 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 949 unsigned &NumGOTEquivUsers) { 950 // Global GOT equivalents are unnamed private globals with a constant 951 // pointer initializer to another global symbol. They must point to a 952 // GlobalVariable or Function, i.e., as GlobalValue. 953 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 954 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 955 return false; 956 957 // To be a got equivalent, at least one of its users need to be a constant 958 // expression used by another global variable. 959 for (auto *U : GV->users()) 960 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 961 962 return NumGOTEquivUsers > 0; 963 } 964 965 /// \brief Unnamed constant global variables solely contaning a pointer to 966 /// another globals variable is equivalent to a GOT table entry; it contains the 967 /// the address of another symbol. Optimize it and replace accesses to these 968 /// "GOT equivalents" by using the GOT entry for the final global instead. 969 /// Compute GOT equivalent candidates among all global variables to avoid 970 /// emitting them if possible later on, after it use is replaced by a GOT entry 971 /// access. 972 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 973 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 974 return; 975 976 for (const auto &G : M.globals()) { 977 unsigned NumGOTEquivUsers = 0; 978 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 979 continue; 980 981 const MCSymbol *GOTEquivSym = getSymbol(&G); 982 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 983 } 984 } 985 986 /// \brief Constant expressions using GOT equivalent globals may not be eligible 987 /// for PC relative GOT entry conversion, in such cases we need to emit such 988 /// globals we previously omitted in EmitGlobalVariable. 989 void AsmPrinter::emitGlobalGOTEquivs() { 990 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 991 return; 992 993 SmallVector<const GlobalVariable *, 8> FailedCandidates; 994 for (auto &I : GlobalGOTEquivs) { 995 const GlobalVariable *GV = I.second.first; 996 unsigned Cnt = I.second.second; 997 if (Cnt) 998 FailedCandidates.push_back(GV); 999 } 1000 GlobalGOTEquivs.clear(); 1001 1002 for (auto *GV : FailedCandidates) 1003 EmitGlobalVariable(GV); 1004 } 1005 1006 bool AsmPrinter::doFinalization(Module &M) { 1007 // Set the MachineFunction to nullptr so that we can catch attempted 1008 // accesses to MF specific features at the module level and so that 1009 // we can conditionalize accesses based on whether or not it is nullptr. 1010 MF = nullptr; 1011 1012 // Gather all GOT equivalent globals in the module. We really need two 1013 // passes over the globals: one to compute and another to avoid its emission 1014 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1015 // where the got equivalent shows up before its use. 1016 computeGlobalGOTEquivs(M); 1017 1018 // Emit global variables. 1019 for (const auto &G : M.globals()) 1020 EmitGlobalVariable(&G); 1021 1022 // Emit remaining GOT equivalent globals. 1023 emitGlobalGOTEquivs(); 1024 1025 // Emit visibility info for declarations 1026 for (const Function &F : M) { 1027 if (!F.isDeclaration()) 1028 continue; 1029 GlobalValue::VisibilityTypes V = F.getVisibility(); 1030 if (V == GlobalValue::DefaultVisibility) 1031 continue; 1032 1033 MCSymbol *Name = getSymbol(&F); 1034 EmitVisibility(Name, V, false); 1035 } 1036 1037 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1038 1039 // Emit module flags. 1040 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1041 M.getModuleFlagsMetadata(ModuleFlags); 1042 if (!ModuleFlags.empty()) 1043 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1044 1045 if (TM.getTargetTriple().isOSBinFormatELF()) { 1046 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1047 1048 // Output stubs for external and common global variables. 1049 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1050 if (!Stubs.empty()) { 1051 OutStreamer->SwitchSection(TLOF.getDataRelSection()); 1052 const DataLayout *DL = TM.getDataLayout(); 1053 1054 for (const auto &Stub : Stubs) { 1055 OutStreamer->EmitLabel(Stub.first); 1056 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1057 DL->getPointerSize()); 1058 } 1059 } 1060 } 1061 1062 // Make sure we wrote out everything we need. 1063 OutStreamer->Flush(); 1064 1065 // Finalize debug and EH information. 1066 for (const HandlerInfo &HI : Handlers) { 1067 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1068 TimePassesIsEnabled); 1069 HI.Handler->endModule(); 1070 delete HI.Handler; 1071 } 1072 Handlers.clear(); 1073 DD = nullptr; 1074 1075 // If the target wants to know about weak references, print them all. 1076 if (MAI->getWeakRefDirective()) { 1077 // FIXME: This is not lazy, it would be nice to only print weak references 1078 // to stuff that is actually used. Note that doing so would require targets 1079 // to notice uses in operands (due to constant exprs etc). This should 1080 // happen with the MC stuff eventually. 1081 1082 // Print out module-level global variables here. 1083 for (const auto &G : M.globals()) { 1084 if (!G.hasExternalWeakLinkage()) 1085 continue; 1086 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1087 } 1088 1089 for (const auto &F : M) { 1090 if (!F.hasExternalWeakLinkage()) 1091 continue; 1092 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1093 } 1094 } 1095 1096 OutStreamer->AddBlankLine(); 1097 for (const auto &Alias : M.aliases()) { 1098 MCSymbol *Name = getSymbol(&Alias); 1099 1100 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1101 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1102 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1103 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1104 else 1105 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1106 1107 EmitVisibility(Name, Alias.getVisibility()); 1108 1109 // Emit the directives as assignments aka .set: 1110 OutStreamer->EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1111 } 1112 1113 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1114 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1115 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1116 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1117 MP->finishAssembly(M, *MI, *this); 1118 1119 // Emit llvm.ident metadata in an '.ident' directive. 1120 EmitModuleIdents(M); 1121 1122 // Emit __morestack address if needed for indirect calls. 1123 if (MMI->usesMorestackAddr()) { 1124 MCSection *ReadOnlySection = 1125 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(), 1126 /*C=*/nullptr); 1127 OutStreamer->SwitchSection(ReadOnlySection); 1128 1129 MCSymbol *AddrSymbol = 1130 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1131 OutStreamer->EmitLabel(AddrSymbol); 1132 1133 unsigned PtrSize = TM.getDataLayout()->getPointerSize(0); 1134 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1135 PtrSize); 1136 } 1137 1138 // If we don't have any trampolines, then we don't require stack memory 1139 // to be executable. Some targets have a directive to declare this. 1140 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1141 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1142 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1143 OutStreamer->SwitchSection(S); 1144 1145 // Allow the target to emit any magic that it wants at the end of the file, 1146 // after everything else has gone out. 1147 EmitEndOfAsmFile(M); 1148 1149 delete Mang; Mang = nullptr; 1150 MMI = nullptr; 1151 1152 OutStreamer->Finish(); 1153 OutStreamer->reset(); 1154 1155 return false; 1156 } 1157 1158 MCSymbol *AsmPrinter::getCurExceptionSym() { 1159 if (!CurExceptionSym) 1160 CurExceptionSym = createTempSymbol("exception"); 1161 return CurExceptionSym; 1162 } 1163 1164 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1165 this->MF = &MF; 1166 // Get the function symbol. 1167 CurrentFnSym = getSymbol(MF.getFunction()); 1168 CurrentFnSymForSize = CurrentFnSym; 1169 CurrentFnBegin = nullptr; 1170 CurExceptionSym = nullptr; 1171 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1172 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1173 NeedsLocalForSize) { 1174 CurrentFnBegin = createTempSymbol("func_begin"); 1175 if (NeedsLocalForSize) 1176 CurrentFnSymForSize = CurrentFnBegin; 1177 } 1178 1179 if (isVerbose()) 1180 LI = &getAnalysis<MachineLoopInfo>(); 1181 } 1182 1183 namespace { 1184 // Keep track the alignment, constpool entries per Section. 1185 struct SectionCPs { 1186 MCSection *S; 1187 unsigned Alignment; 1188 SmallVector<unsigned, 4> CPEs; 1189 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1190 }; 1191 } 1192 1193 /// EmitConstantPool - Print to the current output stream assembly 1194 /// representations of the constants in the constant pool MCP. This is 1195 /// used to print out constants which have been "spilled to memory" by 1196 /// the code generator. 1197 /// 1198 void AsmPrinter::EmitConstantPool() { 1199 const MachineConstantPool *MCP = MF->getConstantPool(); 1200 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1201 if (CP.empty()) return; 1202 1203 // Calculate sections for constant pool entries. We collect entries to go into 1204 // the same section together to reduce amount of section switch statements. 1205 SmallVector<SectionCPs, 4> CPSections; 1206 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1207 const MachineConstantPoolEntry &CPE = CP[i]; 1208 unsigned Align = CPE.getAlignment(); 1209 1210 SectionKind Kind = 1211 CPE.getSectionKind(TM.getDataLayout()); 1212 1213 const Constant *C = nullptr; 1214 if (!CPE.isMachineConstantPoolEntry()) 1215 C = CPE.Val.ConstVal; 1216 1217 MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C); 1218 1219 // The number of sections are small, just do a linear search from the 1220 // last section to the first. 1221 bool Found = false; 1222 unsigned SecIdx = CPSections.size(); 1223 while (SecIdx != 0) { 1224 if (CPSections[--SecIdx].S == S) { 1225 Found = true; 1226 break; 1227 } 1228 } 1229 if (!Found) { 1230 SecIdx = CPSections.size(); 1231 CPSections.push_back(SectionCPs(S, Align)); 1232 } 1233 1234 if (Align > CPSections[SecIdx].Alignment) 1235 CPSections[SecIdx].Alignment = Align; 1236 CPSections[SecIdx].CPEs.push_back(i); 1237 } 1238 1239 // Now print stuff into the calculated sections. 1240 const MCSection *CurSection = nullptr; 1241 unsigned Offset = 0; 1242 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1243 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1244 unsigned CPI = CPSections[i].CPEs[j]; 1245 MCSymbol *Sym = GetCPISymbol(CPI); 1246 if (!Sym->isUndefined()) 1247 continue; 1248 1249 if (CurSection != CPSections[i].S) { 1250 OutStreamer->SwitchSection(CPSections[i].S); 1251 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1252 CurSection = CPSections[i].S; 1253 Offset = 0; 1254 } 1255 1256 MachineConstantPoolEntry CPE = CP[CPI]; 1257 1258 // Emit inter-object padding for alignment. 1259 unsigned AlignMask = CPE.getAlignment() - 1; 1260 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1261 OutStreamer->EmitZeros(NewOffset - Offset); 1262 1263 Type *Ty = CPE.getType(); 1264 Offset = NewOffset + 1265 TM.getDataLayout()->getTypeAllocSize(Ty); 1266 1267 OutStreamer->EmitLabel(Sym); 1268 if (CPE.isMachineConstantPoolEntry()) 1269 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1270 else 1271 EmitGlobalConstant(CPE.Val.ConstVal); 1272 } 1273 } 1274 } 1275 1276 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1277 /// by the current function to the current output stream. 1278 /// 1279 void AsmPrinter::EmitJumpTableInfo() { 1280 const DataLayout *DL = MF->getTarget().getDataLayout(); 1281 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1282 if (!MJTI) return; 1283 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1284 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1285 if (JT.empty()) return; 1286 1287 // Pick the directive to use to print the jump table entries, and switch to 1288 // the appropriate section. 1289 const Function *F = MF->getFunction(); 1290 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1291 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1292 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1293 *F); 1294 if (JTInDiffSection) { 1295 // Drop it in the readonly section. 1296 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1297 OutStreamer->SwitchSection(ReadOnlySection); 1298 } 1299 1300 EmitAlignment(Log2_32( 1301 MJTI->getEntryAlignment(*TM.getDataLayout()))); 1302 1303 // Jump tables in code sections are marked with a data_region directive 1304 // where that's supported. 1305 if (!JTInDiffSection) 1306 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1307 1308 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1309 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1310 1311 // If this jump table was deleted, ignore it. 1312 if (JTBBs.empty()) continue; 1313 1314 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1315 /// emit a .set directive for each unique entry. 1316 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1317 MAI->doesSetDirectiveSuppressesReloc()) { 1318 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1319 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1320 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1321 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1322 const MachineBasicBlock *MBB = JTBBs[ii]; 1323 if (!EmittedSets.insert(MBB).second) 1324 continue; 1325 1326 // .set LJTSet, LBB32-base 1327 const MCExpr *LHS = 1328 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1329 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1330 MCBinaryExpr::createSub(LHS, Base, 1331 OutContext)); 1332 } 1333 } 1334 1335 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1336 // before each jump table. The first label is never referenced, but tells 1337 // the assembler and linker the extents of the jump table object. The 1338 // second label is actually referenced by the code. 1339 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1340 // FIXME: This doesn't have to have any specific name, just any randomly 1341 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1342 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1343 1344 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1345 1346 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1347 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1348 } 1349 if (!JTInDiffSection) 1350 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1351 } 1352 1353 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1354 /// current stream. 1355 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1356 const MachineBasicBlock *MBB, 1357 unsigned UID) const { 1358 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1359 const MCExpr *Value = nullptr; 1360 switch (MJTI->getEntryKind()) { 1361 case MachineJumpTableInfo::EK_Inline: 1362 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1363 case MachineJumpTableInfo::EK_Custom32: 1364 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1365 MJTI, MBB, UID, OutContext); 1366 break; 1367 case MachineJumpTableInfo::EK_BlockAddress: 1368 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1369 // .word LBB123 1370 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1371 break; 1372 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1373 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1374 // with a relocation as gp-relative, e.g.: 1375 // .gprel32 LBB123 1376 MCSymbol *MBBSym = MBB->getSymbol(); 1377 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1378 return; 1379 } 1380 1381 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1382 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1383 // with a relocation as gp-relative, e.g.: 1384 // .gpdword LBB123 1385 MCSymbol *MBBSym = MBB->getSymbol(); 1386 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1387 return; 1388 } 1389 1390 case MachineJumpTableInfo::EK_LabelDifference32: { 1391 // Each entry is the address of the block minus the address of the jump 1392 // table. This is used for PIC jump tables where gprel32 is not supported. 1393 // e.g.: 1394 // .word LBB123 - LJTI1_2 1395 // If the .set directive avoids relocations, this is emitted as: 1396 // .set L4_5_set_123, LBB123 - LJTI1_2 1397 // .word L4_5_set_123 1398 if (MAI->doesSetDirectiveSuppressesReloc()) { 1399 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1400 OutContext); 1401 break; 1402 } 1403 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1404 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1405 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1406 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1407 break; 1408 } 1409 } 1410 1411 assert(Value && "Unknown entry kind!"); 1412 1413 unsigned EntrySize = 1414 MJTI->getEntrySize(*TM.getDataLayout()); 1415 OutStreamer->EmitValue(Value, EntrySize); 1416 } 1417 1418 1419 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1420 /// special global used by LLVM. If so, emit it and return true, otherwise 1421 /// do nothing and return false. 1422 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1423 if (GV->getName() == "llvm.used") { 1424 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1425 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1426 return true; 1427 } 1428 1429 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1430 if (StringRef(GV->getSection()) == "llvm.metadata" || 1431 GV->hasAvailableExternallyLinkage()) 1432 return true; 1433 1434 if (!GV->hasAppendingLinkage()) return false; 1435 1436 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1437 1438 if (GV->getName() == "llvm.global_ctors") { 1439 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1440 1441 if (TM.getRelocationModel() == Reloc::Static && 1442 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1443 StringRef Sym(".constructors_used"); 1444 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1445 MCSA_Reference); 1446 } 1447 return true; 1448 } 1449 1450 if (GV->getName() == "llvm.global_dtors") { 1451 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1452 1453 if (TM.getRelocationModel() == Reloc::Static && 1454 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1455 StringRef Sym(".destructors_used"); 1456 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1457 MCSA_Reference); 1458 } 1459 return true; 1460 } 1461 1462 return false; 1463 } 1464 1465 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1466 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1467 /// is true, as being used with this directive. 1468 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1469 // Should be an array of 'i8*'. 1470 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1471 const GlobalValue *GV = 1472 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1473 if (GV) 1474 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1475 } 1476 } 1477 1478 namespace { 1479 struct Structor { 1480 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1481 int Priority; 1482 llvm::Constant *Func; 1483 llvm::GlobalValue *ComdatKey; 1484 }; 1485 } // end namespace 1486 1487 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1488 /// priority. 1489 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1490 // Should be an array of '{ int, void ()* }' structs. The first value is the 1491 // init priority. 1492 if (!isa<ConstantArray>(List)) return; 1493 1494 // Sanity check the structors list. 1495 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1496 if (!InitList) return; // Not an array! 1497 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1498 // FIXME: Only allow the 3-field form in LLVM 4.0. 1499 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1500 return; // Not an array of two or three elements! 1501 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1502 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1503 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1504 return; // Not (int, ptr, ptr). 1505 1506 // Gather the structors in a form that's convenient for sorting by priority. 1507 SmallVector<Structor, 8> Structors; 1508 for (Value *O : InitList->operands()) { 1509 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1510 if (!CS) continue; // Malformed. 1511 if (CS->getOperand(1)->isNullValue()) 1512 break; // Found a null terminator, skip the rest. 1513 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1514 if (!Priority) continue; // Malformed. 1515 Structors.push_back(Structor()); 1516 Structor &S = Structors.back(); 1517 S.Priority = Priority->getLimitedValue(65535); 1518 S.Func = CS->getOperand(1); 1519 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1520 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1521 } 1522 1523 // Emit the function pointers in the target-specific order 1524 const DataLayout *DL = TM.getDataLayout(); 1525 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1526 std::stable_sort(Structors.begin(), Structors.end(), 1527 [](const Structor &L, 1528 const Structor &R) { return L.Priority < R.Priority; }); 1529 for (Structor &S : Structors) { 1530 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1531 const MCSymbol *KeySym = nullptr; 1532 if (GlobalValue *GV = S.ComdatKey) { 1533 if (GV->hasAvailableExternallyLinkage()) 1534 // If the associated variable is available_externally, some other TU 1535 // will provide its dynamic initializer. 1536 continue; 1537 1538 KeySym = getSymbol(GV); 1539 } 1540 MCSection *OutputSection = 1541 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1542 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1543 OutStreamer->SwitchSection(OutputSection); 1544 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1545 EmitAlignment(Align); 1546 EmitXXStructor(S.Func); 1547 } 1548 } 1549 1550 void AsmPrinter::EmitModuleIdents(Module &M) { 1551 if (!MAI->hasIdentDirective()) 1552 return; 1553 1554 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1555 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1556 const MDNode *N = NMD->getOperand(i); 1557 assert(N->getNumOperands() == 1 && 1558 "llvm.ident metadata entry can have only one operand"); 1559 const MDString *S = cast<MDString>(N->getOperand(0)); 1560 OutStreamer->EmitIdent(S->getString()); 1561 } 1562 } 1563 } 1564 1565 //===--------------------------------------------------------------------===// 1566 // Emission and print routines 1567 // 1568 1569 /// EmitInt8 - Emit a byte directive and value. 1570 /// 1571 void AsmPrinter::EmitInt8(int Value) const { 1572 OutStreamer->EmitIntValue(Value, 1); 1573 } 1574 1575 /// EmitInt16 - Emit a short directive and value. 1576 /// 1577 void AsmPrinter::EmitInt16(int Value) const { 1578 OutStreamer->EmitIntValue(Value, 2); 1579 } 1580 1581 /// EmitInt32 - Emit a long directive and value. 1582 /// 1583 void AsmPrinter::EmitInt32(int Value) const { 1584 OutStreamer->EmitIntValue(Value, 4); 1585 } 1586 1587 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1588 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1589 /// .set if it avoids relocations. 1590 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1591 unsigned Size) const { 1592 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1593 } 1594 1595 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1596 /// where the size in bytes of the directive is specified by Size and Label 1597 /// specifies the label. This implicitly uses .set if it is available. 1598 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1599 unsigned Size, 1600 bool IsSectionRelative) const { 1601 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1602 OutStreamer->EmitCOFFSecRel32(Label); 1603 return; 1604 } 1605 1606 // Emit Label+Offset (or just Label if Offset is zero) 1607 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1608 if (Offset) 1609 Expr = MCBinaryExpr::createAdd( 1610 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1611 1612 OutStreamer->EmitValue(Expr, Size); 1613 } 1614 1615 //===----------------------------------------------------------------------===// 1616 1617 // EmitAlignment - Emit an alignment directive to the specified power of 1618 // two boundary. For example, if you pass in 3 here, you will get an 8 1619 // byte alignment. If a global value is specified, and if that global has 1620 // an explicit alignment requested, it will override the alignment request 1621 // if required for correctness. 1622 // 1623 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1624 if (GV) 1625 NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), 1626 NumBits); 1627 1628 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1629 1630 assert(NumBits < 1631 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1632 "undefined behavior"); 1633 if (getCurrentSection()->getKind().isText()) 1634 OutStreamer->EmitCodeAlignment(1u << NumBits); 1635 else 1636 OutStreamer->EmitValueToAlignment(1u << NumBits); 1637 } 1638 1639 //===----------------------------------------------------------------------===// 1640 // Constant emission. 1641 //===----------------------------------------------------------------------===// 1642 1643 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1644 MCContext &Ctx = OutContext; 1645 1646 if (CV->isNullValue() || isa<UndefValue>(CV)) 1647 return MCConstantExpr::create(0, Ctx); 1648 1649 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1650 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1651 1652 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1653 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1654 1655 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1656 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1657 1658 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1659 if (!CE) { 1660 llvm_unreachable("Unknown constant value to lower!"); 1661 } 1662 1663 if (const MCExpr *RelocExpr 1664 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1665 return RelocExpr; 1666 1667 switch (CE->getOpcode()) { 1668 default: 1669 // If the code isn't optimized, there may be outstanding folding 1670 // opportunities. Attempt to fold the expression using DataLayout as a 1671 // last resort before giving up. 1672 if (Constant *C = ConstantFoldConstantExpression(CE, *TM.getDataLayout())) 1673 if (C != CE) 1674 return lowerConstant(C); 1675 1676 // Otherwise report the problem to the user. 1677 { 1678 std::string S; 1679 raw_string_ostream OS(S); 1680 OS << "Unsupported expression in static initializer: "; 1681 CE->printAsOperand(OS, /*PrintType=*/false, 1682 !MF ? nullptr : MF->getFunction()->getParent()); 1683 report_fatal_error(OS.str()); 1684 } 1685 case Instruction::GetElementPtr: { 1686 const DataLayout &DL = *TM.getDataLayout(); 1687 1688 // Generate a symbolic expression for the byte address 1689 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1690 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1691 1692 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1693 if (!OffsetAI) 1694 return Base; 1695 1696 int64_t Offset = OffsetAI.getSExtValue(); 1697 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1698 Ctx); 1699 } 1700 1701 case Instruction::Trunc: 1702 // We emit the value and depend on the assembler to truncate the generated 1703 // expression properly. This is important for differences between 1704 // blockaddress labels. Since the two labels are in the same function, it 1705 // is reasonable to treat their delta as a 32-bit value. 1706 // FALL THROUGH. 1707 case Instruction::BitCast: 1708 return lowerConstant(CE->getOperand(0)); 1709 1710 case Instruction::IntToPtr: { 1711 const DataLayout &DL = *TM.getDataLayout(); 1712 1713 // Handle casts to pointers by changing them into casts to the appropriate 1714 // integer type. This promotes constant folding and simplifies this code. 1715 Constant *Op = CE->getOperand(0); 1716 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1717 false/*ZExt*/); 1718 return lowerConstant(Op); 1719 } 1720 1721 case Instruction::PtrToInt: { 1722 const DataLayout &DL = *TM.getDataLayout(); 1723 1724 // Support only foldable casts to/from pointers that can be eliminated by 1725 // changing the pointer to the appropriately sized integer type. 1726 Constant *Op = CE->getOperand(0); 1727 Type *Ty = CE->getType(); 1728 1729 const MCExpr *OpExpr = lowerConstant(Op); 1730 1731 // We can emit the pointer value into this slot if the slot is an 1732 // integer slot equal to the size of the pointer. 1733 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1734 return OpExpr; 1735 1736 // Otherwise the pointer is smaller than the resultant integer, mask off 1737 // the high bits so we are sure to get a proper truncation if the input is 1738 // a constant expr. 1739 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1740 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1741 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1742 } 1743 1744 // The MC library also has a right-shift operator, but it isn't consistently 1745 // signed or unsigned between different targets. 1746 case Instruction::Add: 1747 case Instruction::Sub: 1748 case Instruction::Mul: 1749 case Instruction::SDiv: 1750 case Instruction::SRem: 1751 case Instruction::Shl: 1752 case Instruction::And: 1753 case Instruction::Or: 1754 case Instruction::Xor: { 1755 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1756 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1757 switch (CE->getOpcode()) { 1758 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1759 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1760 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1761 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1762 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1763 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1764 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1765 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1766 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1767 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1768 } 1769 } 1770 } 1771 } 1772 1773 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP, 1774 const Constant *BaseCV = nullptr, 1775 uint64_t Offset = 0); 1776 1777 /// isRepeatedByteSequence - Determine whether the given value is 1778 /// composed of a repeated sequence of identical bytes and return the 1779 /// byte value. If it is not a repeated sequence, return -1. 1780 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1781 StringRef Data = V->getRawDataValues(); 1782 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1783 char C = Data[0]; 1784 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1785 if (Data[i] != C) return -1; 1786 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1787 } 1788 1789 1790 /// isRepeatedByteSequence - Determine whether the given value is 1791 /// composed of a repeated sequence of identical bytes and return the 1792 /// byte value. If it is not a repeated sequence, return -1. 1793 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1794 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1795 uint64_t Size = TM.getDataLayout()->getTypeAllocSizeInBits(V->getType()); 1796 assert(Size % 8 == 0); 1797 1798 // Extend the element to take zero padding into account. 1799 APInt Value = CI->getValue().zextOrSelf(Size); 1800 if (!Value.isSplat(8)) 1801 return -1; 1802 1803 return Value.zextOrTrunc(8).getZExtValue(); 1804 } 1805 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1806 // Make sure all array elements are sequences of the same repeated 1807 // byte. 1808 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1809 Constant *Op0 = CA->getOperand(0); 1810 int Byte = isRepeatedByteSequence(Op0, TM); 1811 if (Byte == -1) 1812 return -1; 1813 1814 // All array elements must be equal. 1815 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1816 if (CA->getOperand(i) != Op0) 1817 return -1; 1818 return Byte; 1819 } 1820 1821 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1822 return isRepeatedByteSequence(CDS); 1823 1824 return -1; 1825 } 1826 1827 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1828 AsmPrinter &AP){ 1829 1830 // See if we can aggregate this into a .fill, if so, emit it as such. 1831 int Value = isRepeatedByteSequence(CDS, AP.TM); 1832 if (Value != -1) { 1833 uint64_t Bytes = 1834 AP.TM.getDataLayout()->getTypeAllocSize( 1835 CDS->getType()); 1836 // Don't emit a 1-byte object as a .fill. 1837 if (Bytes > 1) 1838 return AP.OutStreamer->EmitFill(Bytes, Value); 1839 } 1840 1841 // If this can be emitted with .ascii/.asciz, emit it as such. 1842 if (CDS->isString()) 1843 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1844 1845 // Otherwise, emit the values in successive locations. 1846 unsigned ElementByteSize = CDS->getElementByteSize(); 1847 if (isa<IntegerType>(CDS->getElementType())) { 1848 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1849 if (AP.isVerbose()) 1850 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1851 CDS->getElementAsInteger(i)); 1852 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1853 ElementByteSize); 1854 } 1855 } else if (ElementByteSize == 4) { 1856 // FP Constants are printed as integer constants to avoid losing 1857 // precision. 1858 assert(CDS->getElementType()->isFloatTy()); 1859 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1860 union { 1861 float F; 1862 uint32_t I; 1863 }; 1864 1865 F = CDS->getElementAsFloat(i); 1866 if (AP.isVerbose()) 1867 AP.OutStreamer->GetCommentOS() << "float " << F << '\n'; 1868 AP.OutStreamer->EmitIntValue(I, 4); 1869 } 1870 } else { 1871 assert(CDS->getElementType()->isDoubleTy()); 1872 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1873 union { 1874 double F; 1875 uint64_t I; 1876 }; 1877 1878 F = CDS->getElementAsDouble(i); 1879 if (AP.isVerbose()) 1880 AP.OutStreamer->GetCommentOS() << "double " << F << '\n'; 1881 AP.OutStreamer->EmitIntValue(I, 8); 1882 } 1883 } 1884 1885 const DataLayout &DL = *AP.TM.getDataLayout(); 1886 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1887 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1888 CDS->getNumElements(); 1889 if (unsigned Padding = Size - EmittedSize) 1890 AP.OutStreamer->EmitZeros(Padding); 1891 1892 } 1893 1894 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP, 1895 const Constant *BaseCV, uint64_t Offset) { 1896 // See if we can aggregate some values. Make sure it can be 1897 // represented as a series of bytes of the constant value. 1898 int Value = isRepeatedByteSequence(CA, AP.TM); 1899 const DataLayout &DL = *AP.TM.getDataLayout(); 1900 1901 if (Value != -1) { 1902 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1903 AP.OutStreamer->EmitFill(Bytes, Value); 1904 } 1905 else { 1906 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1907 emitGlobalConstantImpl(CA->getOperand(i), AP, BaseCV, Offset); 1908 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1909 } 1910 } 1911 } 1912 1913 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1914 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1915 emitGlobalConstantImpl(CV->getOperand(i), AP); 1916 1917 const DataLayout &DL = *AP.TM.getDataLayout(); 1918 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1919 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1920 CV->getType()->getNumElements(); 1921 if (unsigned Padding = Size - EmittedSize) 1922 AP.OutStreamer->EmitZeros(Padding); 1923 } 1924 1925 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP, 1926 const Constant *BaseCV, uint64_t Offset) { 1927 // Print the fields in successive locations. Pad to align if needed! 1928 const DataLayout *DL = AP.TM.getDataLayout(); 1929 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1930 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1931 uint64_t SizeSoFar = 0; 1932 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1933 const Constant *Field = CS->getOperand(i); 1934 1935 // Print the actual field value. 1936 emitGlobalConstantImpl(Field, AP, BaseCV, Offset+SizeSoFar); 1937 1938 // Check if padding is needed and insert one or more 0s. 1939 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1940 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1941 - Layout->getElementOffset(i)) - FieldSize; 1942 SizeSoFar += FieldSize + PadSize; 1943 1944 // Insert padding - this may include padding to increase the size of the 1945 // current field up to the ABI size (if the struct is not packed) as well 1946 // as padding to ensure that the next field starts at the right offset. 1947 AP.OutStreamer->EmitZeros(PadSize); 1948 } 1949 assert(SizeSoFar == Layout->getSizeInBytes() && 1950 "Layout of constant struct may be incorrect!"); 1951 } 1952 1953 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1954 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1955 1956 // First print a comment with what we think the original floating-point value 1957 // should have been. 1958 if (AP.isVerbose()) { 1959 SmallString<8> StrVal; 1960 CFP->getValueAPF().toString(StrVal); 1961 1962 if (CFP->getType()) 1963 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 1964 else 1965 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 1966 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 1967 } 1968 1969 // Now iterate through the APInt chunks, emitting them in endian-correct 1970 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1971 // floats). 1972 unsigned NumBytes = API.getBitWidth() / 8; 1973 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1974 const uint64_t *p = API.getRawData(); 1975 1976 // PPC's long double has odd notions of endianness compared to how LLVM 1977 // handles it: p[0] goes first for *big* endian on PPC. 1978 if (AP.TM.getDataLayout()->isBigEndian() && 1979 !CFP->getType()->isPPC_FP128Ty()) { 1980 int Chunk = API.getNumWords() - 1; 1981 1982 if (TrailingBytes) 1983 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 1984 1985 for (; Chunk >= 0; --Chunk) 1986 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 1987 } else { 1988 unsigned Chunk; 1989 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1990 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 1991 1992 if (TrailingBytes) 1993 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 1994 } 1995 1996 // Emit the tail padding for the long double. 1997 const DataLayout &DL = *AP.TM.getDataLayout(); 1998 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1999 DL.getTypeStoreSize(CFP->getType())); 2000 } 2001 2002 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2003 const DataLayout *DL = AP.TM.getDataLayout(); 2004 unsigned BitWidth = CI->getBitWidth(); 2005 2006 // Copy the value as we may massage the layout for constants whose bit width 2007 // is not a multiple of 64-bits. 2008 APInt Realigned(CI->getValue()); 2009 uint64_t ExtraBits = 0; 2010 unsigned ExtraBitsSize = BitWidth & 63; 2011 2012 if (ExtraBitsSize) { 2013 // The bit width of the data is not a multiple of 64-bits. 2014 // The extra bits are expected to be at the end of the chunk of the memory. 2015 // Little endian: 2016 // * Nothing to be done, just record the extra bits to emit. 2017 // Big endian: 2018 // * Record the extra bits to emit. 2019 // * Realign the raw data to emit the chunks of 64-bits. 2020 if (DL->isBigEndian()) { 2021 // Basically the structure of the raw data is a chunk of 64-bits cells: 2022 // 0 1 BitWidth / 64 2023 // [chunk1][chunk2] ... [chunkN]. 2024 // The most significant chunk is chunkN and it should be emitted first. 2025 // However, due to the alignment issue chunkN contains useless bits. 2026 // Realign the chunks so that they contain only useless information: 2027 // ExtraBits 0 1 (BitWidth / 64) - 1 2028 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2029 ExtraBits = Realigned.getRawData()[0] & 2030 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2031 Realigned = Realigned.lshr(ExtraBitsSize); 2032 } else 2033 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2034 } 2035 2036 // We don't expect assemblers to support integer data directives 2037 // for more than 64 bits, so we emit the data in at most 64-bit 2038 // quantities at a time. 2039 const uint64_t *RawData = Realigned.getRawData(); 2040 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2041 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2042 AP.OutStreamer->EmitIntValue(Val, 8); 2043 } 2044 2045 if (ExtraBitsSize) { 2046 // Emit the extra bits after the 64-bits chunks. 2047 2048 // Emit a directive that fills the expected size. 2049 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize( 2050 CI->getType()); 2051 Size -= (BitWidth / 64) * 8; 2052 assert(Size && Size * 8 >= ExtraBitsSize && 2053 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2054 == ExtraBits && "Directive too small for extra bits."); 2055 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2056 } 2057 } 2058 2059 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2060 /// equivalent global, by a target specific GOT pc relative access to the 2061 /// final symbol. 2062 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2063 const Constant *BaseCst, 2064 uint64_t Offset) { 2065 // The global @foo below illustrates a global that uses a got equivalent. 2066 // 2067 // @bar = global i32 42 2068 // @gotequiv = private unnamed_addr constant i32* @bar 2069 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2070 // i64 ptrtoint (i32* @foo to i64)) 2071 // to i32) 2072 // 2073 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2074 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2075 // form: 2076 // 2077 // foo = cstexpr, where 2078 // cstexpr := <gotequiv> - "." + <cst> 2079 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2080 // 2081 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2082 // 2083 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2084 // gotpcrelcst := <offset from @foo base> + <cst> 2085 // 2086 MCValue MV; 2087 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2088 return; 2089 const MCSymbolRefExpr *SymA = MV.getSymA(); 2090 if (!SymA) 2091 return; 2092 2093 // Check that GOT equivalent symbol is cached. 2094 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2095 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2096 return; 2097 2098 const GlobalValue *BaseGV = dyn_cast<GlobalValue>(BaseCst); 2099 if (!BaseGV) 2100 return; 2101 2102 // Check for a valid base symbol 2103 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2104 const MCSymbolRefExpr *SymB = MV.getSymB(); 2105 2106 if (!SymB || BaseSym != &SymB->getSymbol()) 2107 return; 2108 2109 // Make sure to match: 2110 // 2111 // gotpcrelcst := <offset from @foo base> + <cst> 2112 // 2113 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2114 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2115 // if the target knows how to encode it. 2116 // 2117 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2118 if (GOTPCRelCst < 0) 2119 return; 2120 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2121 return; 2122 2123 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2124 // 2125 // bar: 2126 // .long 42 2127 // gotequiv: 2128 // .quad bar 2129 // foo: 2130 // .long gotequiv - "." + <cst> 2131 // 2132 // is replaced by the target specific equivalent to: 2133 // 2134 // bar: 2135 // .long 42 2136 // foo: 2137 // .long bar@GOTPCREL+<gotpcrelcst> 2138 // 2139 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2140 const GlobalVariable *GV = Result.first; 2141 int NumUses = (int)Result.second; 2142 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2143 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2144 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2145 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2146 2147 // Update GOT equivalent usage information 2148 --NumUses; 2149 if (NumUses >= 0) 2150 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2151 } 2152 2153 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP, 2154 const Constant *BaseCV, uint64_t Offset) { 2155 const DataLayout *DL = AP.TM.getDataLayout(); 2156 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 2157 2158 // Globals with sub-elements such as combinations of arrays and structs 2159 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2160 // constant symbol base and the current position with BaseCV and Offset. 2161 if (!BaseCV && CV->hasOneUse()) 2162 BaseCV = dyn_cast<Constant>(CV->user_back()); 2163 2164 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2165 return AP.OutStreamer->EmitZeros(Size); 2166 2167 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2168 switch (Size) { 2169 case 1: 2170 case 2: 2171 case 4: 2172 case 8: 2173 if (AP.isVerbose()) 2174 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2175 CI->getZExtValue()); 2176 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2177 return; 2178 default: 2179 emitGlobalConstantLargeInt(CI, AP); 2180 return; 2181 } 2182 } 2183 2184 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2185 return emitGlobalConstantFP(CFP, AP); 2186 2187 if (isa<ConstantPointerNull>(CV)) { 2188 AP.OutStreamer->EmitIntValue(0, Size); 2189 return; 2190 } 2191 2192 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2193 return emitGlobalConstantDataSequential(CDS, AP); 2194 2195 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2196 return emitGlobalConstantArray(CVA, AP, BaseCV, Offset); 2197 2198 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2199 return emitGlobalConstantStruct(CVS, AP, BaseCV, Offset); 2200 2201 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2202 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2203 // vectors). 2204 if (CE->getOpcode() == Instruction::BitCast) 2205 return emitGlobalConstantImpl(CE->getOperand(0), AP); 2206 2207 if (Size > 8) { 2208 // If the constant expression's size is greater than 64-bits, then we have 2209 // to emit the value in chunks. Try to constant fold the value and emit it 2210 // that way. 2211 Constant *New = ConstantFoldConstantExpression(CE, *DL); 2212 if (New && New != CE) 2213 return emitGlobalConstantImpl(New, AP); 2214 } 2215 } 2216 2217 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2218 return emitGlobalConstantVector(V, AP); 2219 2220 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2221 // thread the streamer with EmitValue. 2222 const MCExpr *ME = AP.lowerConstant(CV); 2223 2224 // Since lowerConstant already folded and got rid of all IR pointer and 2225 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2226 // directly. 2227 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2228 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2229 2230 AP.OutStreamer->EmitValue(ME, Size); 2231 } 2232 2233 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2234 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 2235 uint64_t Size = 2236 TM.getDataLayout()->getTypeAllocSize(CV->getType()); 2237 if (Size) 2238 emitGlobalConstantImpl(CV, *this); 2239 else if (MAI->hasSubsectionsViaSymbols()) { 2240 // If the global has zero size, emit a single byte so that two labels don't 2241 // look like they are at the same location. 2242 OutStreamer->EmitIntValue(0, 1); 2243 } 2244 } 2245 2246 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2247 // Target doesn't support this yet! 2248 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2249 } 2250 2251 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2252 if (Offset > 0) 2253 OS << '+' << Offset; 2254 else if (Offset < 0) 2255 OS << Offset; 2256 } 2257 2258 //===----------------------------------------------------------------------===// 2259 // Symbol Lowering Routines. 2260 //===----------------------------------------------------------------------===// 2261 2262 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2263 return OutContext.createTempSymbol(Name, true); 2264 } 2265 2266 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2267 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2268 } 2269 2270 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2271 return MMI->getAddrLabelSymbol(BB); 2272 } 2273 2274 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2275 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2276 const DataLayout *DL = TM.getDataLayout(); 2277 return OutContext.getOrCreateSymbol 2278 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2279 + "_" + Twine(CPID)); 2280 } 2281 2282 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2283 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2284 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2285 } 2286 2287 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2288 /// FIXME: privatize to AsmPrinter. 2289 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2290 const DataLayout *DL = TM.getDataLayout(); 2291 return OutContext.getOrCreateSymbol 2292 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2293 Twine(UID) + "_set_" + Twine(MBBID)); 2294 } 2295 2296 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2297 StringRef Suffix) const { 2298 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2299 TM); 2300 } 2301 2302 /// Return the MCSymbol for the specified ExternalSymbol. 2303 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2304 SmallString<60> NameStr; 2305 Mangler::getNameWithPrefix(NameStr, Sym, *TM.getDataLayout()); 2306 return OutContext.getOrCreateSymbol(NameStr); 2307 } 2308 2309 2310 2311 /// PrintParentLoopComment - Print comments about parent loops of this one. 2312 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2313 unsigned FunctionNumber) { 2314 if (!Loop) return; 2315 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2316 OS.indent(Loop->getLoopDepth()*2) 2317 << "Parent Loop BB" << FunctionNumber << "_" 2318 << Loop->getHeader()->getNumber() 2319 << " Depth=" << Loop->getLoopDepth() << '\n'; 2320 } 2321 2322 2323 /// PrintChildLoopComment - Print comments about child loops within 2324 /// the loop for this basic block, with nesting. 2325 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2326 unsigned FunctionNumber) { 2327 // Add child loop information 2328 for (const MachineLoop *CL : *Loop) { 2329 OS.indent(CL->getLoopDepth()*2) 2330 << "Child Loop BB" << FunctionNumber << "_" 2331 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2332 << '\n'; 2333 PrintChildLoopComment(OS, CL, FunctionNumber); 2334 } 2335 } 2336 2337 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2338 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2339 const MachineLoopInfo *LI, 2340 const AsmPrinter &AP) { 2341 // Add loop depth information 2342 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2343 if (!Loop) return; 2344 2345 MachineBasicBlock *Header = Loop->getHeader(); 2346 assert(Header && "No header for loop"); 2347 2348 // If this block is not a loop header, just print out what is the loop header 2349 // and return. 2350 if (Header != &MBB) { 2351 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2352 Twine(AP.getFunctionNumber())+"_" + 2353 Twine(Loop->getHeader()->getNumber())+ 2354 " Depth="+Twine(Loop->getLoopDepth())); 2355 return; 2356 } 2357 2358 // Otherwise, it is a loop header. Print out information about child and 2359 // parent loops. 2360 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2361 2362 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2363 2364 OS << "=>"; 2365 OS.indent(Loop->getLoopDepth()*2-2); 2366 2367 OS << "This "; 2368 if (Loop->empty()) 2369 OS << "Inner "; 2370 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2371 2372 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2373 } 2374 2375 2376 /// EmitBasicBlockStart - This method prints the label for the specified 2377 /// MachineBasicBlock, an alignment (if present) and a comment describing 2378 /// it if appropriate. 2379 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2380 // Emit an alignment directive for this block, if needed. 2381 if (unsigned Align = MBB.getAlignment()) 2382 EmitAlignment(Align); 2383 2384 // If the block has its address taken, emit any labels that were used to 2385 // reference the block. It is possible that there is more than one label 2386 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2387 // the references were generated. 2388 if (MBB.hasAddressTaken()) { 2389 const BasicBlock *BB = MBB.getBasicBlock(); 2390 if (isVerbose()) 2391 OutStreamer->AddComment("Block address taken"); 2392 2393 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2394 OutStreamer->EmitLabel(Sym); 2395 } 2396 2397 // Print some verbose block comments. 2398 if (isVerbose()) { 2399 if (const BasicBlock *BB = MBB.getBasicBlock()) 2400 if (BB->hasName()) 2401 OutStreamer->AddComment("%" + BB->getName()); 2402 emitBasicBlockLoopComments(MBB, LI, *this); 2403 } 2404 2405 // Print the main label for the block. 2406 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2407 if (isVerbose()) { 2408 // NOTE: Want this comment at start of line, don't emit with AddComment. 2409 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2410 } 2411 } else { 2412 OutStreamer->EmitLabel(MBB.getSymbol()); 2413 } 2414 } 2415 2416 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2417 bool IsDefinition) const { 2418 MCSymbolAttr Attr = MCSA_Invalid; 2419 2420 switch (Visibility) { 2421 default: break; 2422 case GlobalValue::HiddenVisibility: 2423 if (IsDefinition) 2424 Attr = MAI->getHiddenVisibilityAttr(); 2425 else 2426 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2427 break; 2428 case GlobalValue::ProtectedVisibility: 2429 Attr = MAI->getProtectedVisibilityAttr(); 2430 break; 2431 } 2432 2433 if (Attr != MCSA_Invalid) 2434 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2435 } 2436 2437 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2438 /// exactly one predecessor and the control transfer mechanism between 2439 /// the predecessor and this block is a fall-through. 2440 bool AsmPrinter:: 2441 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2442 // If this is a landing pad, it isn't a fall through. If it has no preds, 2443 // then nothing falls through to it. 2444 if (MBB->isLandingPad() || MBB->pred_empty()) 2445 return false; 2446 2447 // If there isn't exactly one predecessor, it can't be a fall through. 2448 if (MBB->pred_size() > 1) 2449 return false; 2450 2451 // The predecessor has to be immediately before this block. 2452 MachineBasicBlock *Pred = *MBB->pred_begin(); 2453 if (!Pred->isLayoutSuccessor(MBB)) 2454 return false; 2455 2456 // If the block is completely empty, then it definitely does fall through. 2457 if (Pred->empty()) 2458 return true; 2459 2460 // Check the terminators in the previous blocks 2461 for (const auto &MI : Pred->terminators()) { 2462 // If it is not a simple branch, we are in a table somewhere. 2463 if (!MI.isBranch() || MI.isIndirectBranch()) 2464 return false; 2465 2466 // If we are the operands of one of the branches, this is not a fall 2467 // through. Note that targets with delay slots will usually bundle 2468 // terminators with the delay slot instruction. 2469 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2470 if (OP->isJTI()) 2471 return false; 2472 if (OP->isMBB() && OP->getMBB() == MBB) 2473 return false; 2474 } 2475 } 2476 2477 return true; 2478 } 2479 2480 2481 2482 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2483 if (!S.usesMetadata()) 2484 return nullptr; 2485 2486 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2487 " stackmap formats, please see the documentation for a description of" 2488 " the default format. If you really need a custom serialized format," 2489 " please file a bug"); 2490 2491 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2492 gcp_map_type::iterator GCPI = GCMap.find(&S); 2493 if (GCPI != GCMap.end()) 2494 return GCPI->second.get(); 2495 2496 const char *Name = S.getName().c_str(); 2497 2498 for (GCMetadataPrinterRegistry::iterator 2499 I = GCMetadataPrinterRegistry::begin(), 2500 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2501 if (strcmp(Name, I->getName()) == 0) { 2502 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2503 GMP->S = &S; 2504 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2505 return IterBool.first->second.get(); 2506 } 2507 2508 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2509 } 2510 2511 /// Pin vtable to this file. 2512 AsmPrinterHandler::~AsmPrinterHandler() {} 2513 2514 void AsmPrinterHandler::markFunctionEnd() {} 2515