1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinException.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GCMetadataPrinter.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBundle.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Mangler.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCExpr.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/MCValue.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Target/TargetFrameLowering.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetLoweringObjectFile.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 static const char *const DWARFGroupName = "DWARF Emission"; 60 static const char *const DbgTimerName = "Debug Info Emission"; 61 static const char *const EHTimerName = "DWARF Exception Writer"; 62 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 63 64 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 65 66 char AsmPrinter::ID = 0; 67 68 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 69 static gcp_map_type &getGCMap(void *&P) { 70 if (!P) 71 P = new gcp_map_type(); 72 return *(gcp_map_type*)P; 73 } 74 75 76 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 77 /// value in log2 form. This rounds up to the preferred alignment if possible 78 /// and legal. 79 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 80 unsigned InBits = 0) { 81 unsigned NumBits = 0; 82 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 83 NumBits = DL.getPreferredAlignmentLog(GVar); 84 85 // If InBits is specified, round it to it. 86 if (InBits > NumBits) 87 NumBits = InBits; 88 89 // If the GV has a specified alignment, take it into account. 90 if (GV->getAlignment() == 0) 91 return NumBits; 92 93 unsigned GVAlign = Log2_32(GV->getAlignment()); 94 95 // If the GVAlign is larger than NumBits, or if we are required to obey 96 // NumBits because the GV has an assigned section, obey it. 97 if (GVAlign > NumBits || GV->hasSection()) 98 NumBits = GVAlign; 99 return NumBits; 100 } 101 102 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 103 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 104 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 105 LastMI(nullptr), LastFn(0), Counter(~0U) { 106 DD = nullptr; 107 MMI = nullptr; 108 LI = nullptr; 109 MF = nullptr; 110 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 111 CurrentFnBegin = nullptr; 112 CurrentFnEnd = nullptr; 113 GCMetadataPrinters = nullptr; 114 VerboseAsm = OutStreamer->isVerboseAsm(); 115 } 116 117 AsmPrinter::~AsmPrinter() { 118 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 119 120 if (GCMetadataPrinters) { 121 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 122 123 delete &GCMap; 124 GCMetadataPrinters = nullptr; 125 } 126 } 127 128 /// getFunctionNumber - Return a unique ID for the current function. 129 /// 130 unsigned AsmPrinter::getFunctionNumber() const { 131 return MF->getFunctionNumber(); 132 } 133 134 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 135 return *TM.getObjFileLowering(); 136 } 137 138 const DataLayout &AsmPrinter::getDataLayout() const { 139 return MMI->getModule()->getDataLayout(); 140 } 141 142 // Do not use the cached DataLayout because some client use it without a Module 143 // (llmv-dsymutil, llvm-dwarfdump). 144 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 145 146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 148 return MF->getSubtarget<MCSubtargetInfo>(); 149 } 150 151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 152 S.EmitInstruction(Inst, getSubtargetInfo()); 153 } 154 155 StringRef AsmPrinter::getTargetTriple() const { 156 return TM.getTargetTriple().str(); 157 } 158 159 /// getCurrentSection() - Return the current section we are emitting to. 160 const MCSection *AsmPrinter::getCurrentSection() const { 161 return OutStreamer->getCurrentSection().first; 162 } 163 164 165 166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesAll(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 AU.addRequired<MachineModuleInfo>(); 170 AU.addRequired<GCModuleInfo>(); 171 if (isVerbose()) 172 AU.addRequired<MachineLoopInfo>(); 173 } 174 175 bool AsmPrinter::doInitialization(Module &M) { 176 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 177 178 // Initialize TargetLoweringObjectFile. 179 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 180 .Initialize(OutContext, TM); 181 182 OutStreamer->InitSections(false); 183 184 Mang = new Mangler(); 185 186 // Emit the version-min deplyment target directive if needed. 187 // 188 // FIXME: If we end up with a collection of these sorts of Darwin-specific 189 // or ELF-specific things, it may make sense to have a platform helper class 190 // that will work with the target helper class. For now keep it here, as the 191 // alternative is duplicated code in each of the target asm printers that 192 // use the directive, where it would need the same conditionalization 193 // anyway. 194 Triple TT(getTargetTriple()); 195 if (TT.isOSDarwin()) { 196 unsigned Major, Minor, Update; 197 TT.getOSVersion(Major, Minor, Update); 198 // If there is a version specified, Major will be non-zero. 199 if (Major) { 200 MCVersionMinType VersionType; 201 if (TT.isWatchOS()) 202 VersionType = MCVM_WatchOSVersionMin; 203 else if (TT.isTvOS()) 204 VersionType = MCVM_TvOSVersionMin; 205 else if (TT.isMacOSX()) 206 VersionType = MCVM_OSXVersionMin; 207 else 208 VersionType = MCVM_IOSVersionMin; 209 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 210 } 211 } 212 213 // Allow the target to emit any magic that it wants at the start of the file. 214 EmitStartOfAsmFile(M); 215 216 // Very minimal debug info. It is ignored if we emit actual debug info. If we 217 // don't, this at least helps the user find where a global came from. 218 if (MAI->hasSingleParameterDotFile()) { 219 // .file "foo.c" 220 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 221 } 222 223 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 224 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 225 for (auto &I : *MI) 226 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 227 MP->beginAssembly(M, *MI, *this); 228 229 // Emit module-level inline asm if it exists. 230 if (!M.getModuleInlineAsm().empty()) { 231 // We're at the module level. Construct MCSubtarget from the default CPU 232 // and target triple. 233 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 234 TM.getTargetTriple().str(), TM.getTargetCPU(), 235 TM.getTargetFeatureString())); 236 OutStreamer->AddComment("Start of file scope inline assembly"); 237 OutStreamer->AddBlankLine(); 238 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 239 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 240 OutStreamer->AddComment("End of file scope inline assembly"); 241 OutStreamer->AddBlankLine(); 242 } 243 244 if (MAI->doesSupportDebugInformation()) { 245 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 246 if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 247 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 248 DbgTimerName, 249 CodeViewLineTablesGroupName)); 250 } 251 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 252 DD = new DwarfDebug(this, &M); 253 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 254 } 255 } 256 257 EHStreamer *ES = nullptr; 258 switch (MAI->getExceptionHandlingType()) { 259 case ExceptionHandling::None: 260 break; 261 case ExceptionHandling::SjLj: 262 case ExceptionHandling::DwarfCFI: 263 ES = new DwarfCFIException(this); 264 break; 265 case ExceptionHandling::ARM: 266 ES = new ARMException(this); 267 break; 268 case ExceptionHandling::WinEH: 269 switch (MAI->getWinEHEncodingType()) { 270 default: llvm_unreachable("unsupported unwinding information encoding"); 271 case WinEH::EncodingType::Invalid: 272 break; 273 case WinEH::EncodingType::X86: 274 case WinEH::EncodingType::Itanium: 275 ES = new WinException(this); 276 break; 277 } 278 break; 279 } 280 if (ES) 281 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 282 return false; 283 } 284 285 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 286 if (!MAI.hasWeakDefCanBeHiddenDirective()) 287 return false; 288 289 return canBeOmittedFromSymbolTable(GV); 290 } 291 292 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 293 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 294 switch (Linkage) { 295 case GlobalValue::CommonLinkage: 296 case GlobalValue::LinkOnceAnyLinkage: 297 case GlobalValue::LinkOnceODRLinkage: 298 case GlobalValue::WeakAnyLinkage: 299 case GlobalValue::WeakODRLinkage: 300 if (MAI->hasWeakDefDirective()) { 301 // .globl _foo 302 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 303 304 if (!canBeHidden(GV, *MAI)) 305 // .weak_definition _foo 306 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 307 else 308 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 309 } else if (MAI->hasLinkOnceDirective()) { 310 // .globl _foo 311 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 312 //NOTE: linkonce is handled by the section the symbol was assigned to. 313 } else { 314 // .weak _foo 315 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 316 } 317 return; 318 case GlobalValue::AppendingLinkage: 319 // FIXME: appending linkage variables should go into a section of 320 // their name or something. For now, just emit them as external. 321 case GlobalValue::ExternalLinkage: 322 // If external or appending, declare as a global symbol. 323 // .globl _foo 324 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 325 return; 326 case GlobalValue::PrivateLinkage: 327 case GlobalValue::InternalLinkage: 328 return; 329 case GlobalValue::AvailableExternallyLinkage: 330 llvm_unreachable("Should never emit this"); 331 case GlobalValue::ExternalWeakLinkage: 332 llvm_unreachable("Don't know how to emit these"); 333 } 334 llvm_unreachable("Unknown linkage type!"); 335 } 336 337 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 338 const GlobalValue *GV) const { 339 TM.getNameWithPrefix(Name, GV, *Mang); 340 } 341 342 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 343 return TM.getSymbol(GV, *Mang); 344 } 345 346 static MCSymbol *getOrCreateEmuTLSControlSym(MCSymbol *GVSym, MCContext &C) { 347 return C.getOrCreateSymbol(Twine("__emutls_v.") + GVSym->getName()); 348 } 349 350 static MCSymbol *getOrCreateEmuTLSInitSym(MCSymbol *GVSym, MCContext &C) { 351 return C.getOrCreateSymbol(Twine("__emutls_t.") + GVSym->getName()); 352 } 353 354 /// EmitEmulatedTLSControlVariable - Emit the control variable for an emulated TLS variable. 355 void AsmPrinter::EmitEmulatedTLSControlVariable(const GlobalVariable *GV, 356 MCSymbol *EmittedSym, 357 bool AllZeroInitValue) { 358 MCSection *TLSVarSection = getObjFileLowering().getDataSection(); 359 OutStreamer->SwitchSection(TLSVarSection); 360 MCSymbol *GVSym = getSymbol(GV); 361 EmitLinkage(GV, EmittedSym); // same linkage as GV 362 const DataLayout &DL = GV->getParent()->getDataLayout(); 363 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 364 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 365 unsigned WordSize = DL.getPointerSize(); 366 unsigned Alignment = DL.getPointerABIAlignment(); 367 EmitAlignment(Log2_32(Alignment)); 368 OutStreamer->EmitLabel(EmittedSym); 369 OutStreamer->EmitIntValue(Size, WordSize); 370 OutStreamer->EmitIntValue((1 << AlignLog), WordSize); 371 OutStreamer->EmitIntValue(0, WordSize); 372 if (GV->hasInitializer() && !AllZeroInitValue) { 373 OutStreamer->EmitSymbolValue( 374 getOrCreateEmuTLSInitSym(GVSym, OutContext), WordSize); 375 } else 376 OutStreamer->EmitIntValue(0, WordSize); 377 if (MAI->hasDotTypeDotSizeDirective()) 378 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedSym), 379 MCConstantExpr::create(4 * WordSize, OutContext)); 380 OutStreamer->AddBlankLine(); // End of the __emutls_v.* variable. 381 } 382 383 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 384 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 385 bool IsEmuTLSVar = 386 GV->getThreadLocalMode() != llvm::GlobalVariable::NotThreadLocal && 387 TM.Options.EmulatedTLS; 388 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 389 "No emulated TLS variables in the common section"); 390 391 if (GV->hasInitializer()) { 392 // Check to see if this is a special global used by LLVM, if so, emit it. 393 if (EmitSpecialLLVMGlobal(GV)) 394 return; 395 396 // Skip the emission of global equivalents. The symbol can be emitted later 397 // on by emitGlobalGOTEquivs in case it turns out to be needed. 398 if (GlobalGOTEquivs.count(getSymbol(GV))) 399 return; 400 401 if (isVerbose() && !IsEmuTLSVar) { 402 // When printing the control variable __emutls_v.*, 403 // we don't need to print the original TLS variable name. 404 GV->printAsOperand(OutStreamer->GetCommentOS(), 405 /*PrintType=*/false, GV->getParent()); 406 OutStreamer->GetCommentOS() << '\n'; 407 } 408 } 409 410 MCSymbol *GVSym = getSymbol(GV); 411 MCSymbol *EmittedSym = IsEmuTLSVar ? 412 getOrCreateEmuTLSControlSym(GVSym, OutContext) : GVSym; 413 // getOrCreateEmuTLSControlSym only creates the symbol with name and default attributes. 414 // GV's or GVSym's attributes will be used for the EmittedSym. 415 416 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 417 418 if (!GV->hasInitializer()) // External globals require no extra code. 419 return; 420 421 GVSym->redefineIfPossible(); 422 if (GVSym->isDefined() || GVSym->isVariable()) 423 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 424 "' is already defined"); 425 426 if (MAI->hasDotTypeDotSizeDirective()) 427 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 428 429 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 430 431 const DataLayout &DL = GV->getParent()->getDataLayout(); 432 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 433 434 // If the alignment is specified, we *must* obey it. Overaligning a global 435 // with a specified alignment is a prompt way to break globals emitted to 436 // sections and expected to be contiguous (e.g. ObjC metadata). 437 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 438 439 bool AllZeroInitValue = false; 440 const Constant *InitValue = GV->getInitializer(); 441 if (isa<ConstantAggregateZero>(InitValue)) 442 AllZeroInitValue = true; 443 else { 444 const ConstantInt *InitIntValue = dyn_cast<ConstantInt>(InitValue); 445 if (InitIntValue && InitIntValue->isZero()) 446 AllZeroInitValue = true; 447 } 448 if (IsEmuTLSVar) 449 EmitEmulatedTLSControlVariable(GV, EmittedSym, AllZeroInitValue); 450 451 for (const HandlerInfo &HI : Handlers) { 452 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 453 HI.Handler->setSymbolSize(GVSym, Size); 454 } 455 456 // Handle common and BSS local symbols (.lcomm). 457 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 458 assert(!(IsEmuTLSVar && GVKind.isCommon()) && 459 "No emulated TLS variables in the common section"); 460 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 461 unsigned Align = 1 << AlignLog; 462 463 // Handle common symbols. 464 if (GVKind.isCommon()) { 465 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 466 Align = 0; 467 468 // .comm _foo, 42, 4 469 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 470 return; 471 } 472 473 // Handle local BSS symbols. 474 if (MAI->hasMachoZeroFillDirective()) { 475 MCSection *TheSection = 476 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 477 // .zerofill __DATA, __bss, _foo, 400, 5 478 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 479 return; 480 } 481 482 // Use .lcomm only if it supports user-specified alignment. 483 // Otherwise, while it would still be correct to use .lcomm in some 484 // cases (e.g. when Align == 1), the external assembler might enfore 485 // some -unknown- default alignment behavior, which could cause 486 // spurious differences between external and integrated assembler. 487 // Prefer to simply fall back to .local / .comm in this case. 488 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 489 // .lcomm _foo, 42 490 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 491 return; 492 } 493 494 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 495 Align = 0; 496 497 // .local _foo 498 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 499 // .comm _foo, 42, 4 500 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 501 return; 502 } 503 504 if (IsEmuTLSVar && AllZeroInitValue) 505 return; // No need of initialization values. 506 507 MCSymbol *EmittedInitSym = IsEmuTLSVar ? 508 getOrCreateEmuTLSInitSym(GVSym, OutContext) : GVSym; 509 // getOrCreateEmuTLSInitSym only creates the symbol with name and default attributes. 510 // GV's or GVSym's attributes will be used for the EmittedInitSym. 511 512 MCSection *TheSection = IsEmuTLSVar ? 513 getObjFileLowering().getReadOnlySection() : 514 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 515 516 // Handle the zerofill directive on darwin, which is a special form of BSS 517 // emission. 518 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective() && !IsEmuTLSVar) { 519 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 520 521 // .globl _foo 522 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 523 // .zerofill __DATA, __common, _foo, 400, 5 524 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 525 return; 526 } 527 528 // Handle thread local data for mach-o which requires us to output an 529 // additional structure of data and mangle the original symbol so that we 530 // can reference it later. 531 // 532 // TODO: This should become an "emit thread local global" method on TLOF. 533 // All of this macho specific stuff should be sunk down into TLOFMachO and 534 // stuff like "TLSExtraDataSection" should no longer be part of the parent 535 // TLOF class. This will also make it more obvious that stuff like 536 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 537 // specific code. 538 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective() && !IsEmuTLSVar) { 539 // Emit the .tbss symbol 540 MCSymbol *MangSym = 541 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 542 543 if (GVKind.isThreadBSS()) { 544 TheSection = getObjFileLowering().getTLSBSSSection(); 545 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 546 } else if (GVKind.isThreadData()) { 547 OutStreamer->SwitchSection(TheSection); 548 549 EmitAlignment(AlignLog, GV); 550 OutStreamer->EmitLabel(MangSym); 551 552 EmitGlobalConstant(GV->getParent()->getDataLayout(), 553 GV->getInitializer()); 554 } 555 556 OutStreamer->AddBlankLine(); 557 558 // Emit the variable struct for the runtime. 559 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 560 561 OutStreamer->SwitchSection(TLVSect); 562 // Emit the linkage here. 563 EmitLinkage(GV, GVSym); 564 OutStreamer->EmitLabel(GVSym); 565 566 // Three pointers in size: 567 // - __tlv_bootstrap - used to make sure support exists 568 // - spare pointer, used when mapped by the runtime 569 // - pointer to mangled symbol above with initializer 570 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 571 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 572 PtrSize); 573 OutStreamer->EmitIntValue(0, PtrSize); 574 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 575 576 OutStreamer->AddBlankLine(); 577 return; 578 } 579 580 OutStreamer->SwitchSection(TheSection); 581 582 // emutls_t.* symbols are only used in the current compilation unit. 583 if (!IsEmuTLSVar) 584 EmitLinkage(GV, EmittedInitSym); 585 EmitAlignment(AlignLog, GV); 586 587 OutStreamer->EmitLabel(EmittedInitSym); 588 589 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 590 591 if (MAI->hasDotTypeDotSizeDirective()) 592 // .size foo, 42 593 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym), 594 MCConstantExpr::create(Size, OutContext)); 595 596 OutStreamer->AddBlankLine(); 597 } 598 599 /// EmitFunctionHeader - This method emits the header for the current 600 /// function. 601 void AsmPrinter::EmitFunctionHeader() { 602 // Print out constants referenced by the function 603 EmitConstantPool(); 604 605 // Print the 'header' of function. 606 const Function *F = MF->getFunction(); 607 608 OutStreamer->SwitchSection( 609 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 610 EmitVisibility(CurrentFnSym, F->getVisibility()); 611 612 EmitLinkage(F, CurrentFnSym); 613 if (MAI->hasFunctionAlignment()) 614 EmitAlignment(MF->getAlignment(), F); 615 616 if (MAI->hasDotTypeDotSizeDirective()) 617 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 618 619 if (isVerbose()) { 620 F->printAsOperand(OutStreamer->GetCommentOS(), 621 /*PrintType=*/false, F->getParent()); 622 OutStreamer->GetCommentOS() << '\n'; 623 } 624 625 // Emit the prefix data. 626 if (F->hasPrefixData()) 627 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 628 629 // Emit the CurrentFnSym. This is a virtual function to allow targets to 630 // do their wild and crazy things as required. 631 EmitFunctionEntryLabel(); 632 633 // If the function had address-taken blocks that got deleted, then we have 634 // references to the dangling symbols. Emit them at the start of the function 635 // so that we don't get references to undefined symbols. 636 std::vector<MCSymbol*> DeadBlockSyms; 637 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 638 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 639 OutStreamer->AddComment("Address taken block that was later removed"); 640 OutStreamer->EmitLabel(DeadBlockSyms[i]); 641 } 642 643 if (CurrentFnBegin) { 644 if (MAI->useAssignmentForEHBegin()) { 645 MCSymbol *CurPos = OutContext.createTempSymbol(); 646 OutStreamer->EmitLabel(CurPos); 647 OutStreamer->EmitAssignment(CurrentFnBegin, 648 MCSymbolRefExpr::create(CurPos, OutContext)); 649 } else { 650 OutStreamer->EmitLabel(CurrentFnBegin); 651 } 652 } 653 654 // Emit pre-function debug and/or EH information. 655 for (const HandlerInfo &HI : Handlers) { 656 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 657 HI.Handler->beginFunction(MF); 658 } 659 660 // Emit the prologue data. 661 if (F->hasPrologueData()) 662 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 663 } 664 665 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 666 /// function. This can be overridden by targets as required to do custom stuff. 667 void AsmPrinter::EmitFunctionEntryLabel() { 668 CurrentFnSym->redefineIfPossible(); 669 670 // The function label could have already been emitted if two symbols end up 671 // conflicting due to asm renaming. Detect this and emit an error. 672 if (CurrentFnSym->isVariable()) 673 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 674 "' is a protected alias"); 675 if (CurrentFnSym->isDefined()) 676 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 677 "' label emitted multiple times to assembly file"); 678 679 return OutStreamer->EmitLabel(CurrentFnSym); 680 } 681 682 /// emitComments - Pretty-print comments for instructions. 683 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 684 const MachineFunction *MF = MI.getParent()->getParent(); 685 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 686 687 // Check for spills and reloads 688 int FI; 689 690 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 691 692 // We assume a single instruction only has a spill or reload, not 693 // both. 694 const MachineMemOperand *MMO; 695 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 696 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 697 MMO = *MI.memoperands_begin(); 698 CommentOS << MMO->getSize() << "-byte Reload\n"; 699 } 700 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 701 if (FrameInfo->isSpillSlotObjectIndex(FI)) 702 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 703 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 704 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 705 MMO = *MI.memoperands_begin(); 706 CommentOS << MMO->getSize() << "-byte Spill\n"; 707 } 708 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 709 if (FrameInfo->isSpillSlotObjectIndex(FI)) 710 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 711 } 712 713 // Check for spill-induced copies 714 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 715 CommentOS << " Reload Reuse\n"; 716 } 717 718 /// emitImplicitDef - This method emits the specified machine instruction 719 /// that is an implicit def. 720 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 721 unsigned RegNo = MI->getOperand(0).getReg(); 722 723 SmallString<128> Str; 724 raw_svector_ostream OS(Str); 725 OS << "implicit-def: " 726 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 727 728 OutStreamer->AddComment(OS.str()); 729 OutStreamer->AddBlankLine(); 730 } 731 732 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 733 std::string Str; 734 raw_string_ostream OS(Str); 735 OS << "kill:"; 736 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 737 const MachineOperand &Op = MI->getOperand(i); 738 assert(Op.isReg() && "KILL instruction must have only register operands"); 739 OS << ' ' 740 << PrintReg(Op.getReg(), 741 AP.MF->getSubtarget().getRegisterInfo()) 742 << (Op.isDef() ? "<def>" : "<kill>"); 743 } 744 AP.OutStreamer->AddComment(Str); 745 AP.OutStreamer->AddBlankLine(); 746 } 747 748 /// emitDebugValueComment - This method handles the target-independent form 749 /// of DBG_VALUE, returning true if it was able to do so. A false return 750 /// means the target will need to handle MI in EmitInstruction. 751 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 752 // This code handles only the 4-operand target-independent form. 753 if (MI->getNumOperands() != 4) 754 return false; 755 756 SmallString<128> Str; 757 raw_svector_ostream OS(Str); 758 OS << "DEBUG_VALUE: "; 759 760 const DILocalVariable *V = MI->getDebugVariable(); 761 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 762 StringRef Name = SP->getDisplayName(); 763 if (!Name.empty()) 764 OS << Name << ":"; 765 } 766 OS << V->getName(); 767 768 const DIExpression *Expr = MI->getDebugExpression(); 769 if (Expr->isBitPiece()) 770 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 771 << " size=" << Expr->getBitPieceSize() << "]"; 772 OS << " <- "; 773 774 // The second operand is only an offset if it's an immediate. 775 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 776 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 777 778 // Register or immediate value. Register 0 means undef. 779 if (MI->getOperand(0).isFPImm()) { 780 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 781 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 782 OS << (double)APF.convertToFloat(); 783 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 784 OS << APF.convertToDouble(); 785 } else { 786 // There is no good way to print long double. Convert a copy to 787 // double. Ah well, it's only a comment. 788 bool ignored; 789 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 790 &ignored); 791 OS << "(long double) " << APF.convertToDouble(); 792 } 793 } else if (MI->getOperand(0).isImm()) { 794 OS << MI->getOperand(0).getImm(); 795 } else if (MI->getOperand(0).isCImm()) { 796 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 797 } else { 798 unsigned Reg; 799 if (MI->getOperand(0).isReg()) { 800 Reg = MI->getOperand(0).getReg(); 801 } else { 802 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 803 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 804 Offset += TFI->getFrameIndexReference(*AP.MF, 805 MI->getOperand(0).getIndex(), Reg); 806 Deref = true; 807 } 808 if (Reg == 0) { 809 // Suppress offset, it is not meaningful here. 810 OS << "undef"; 811 // NOTE: Want this comment at start of line, don't emit with AddComment. 812 AP.OutStreamer->emitRawComment(OS.str()); 813 return true; 814 } 815 if (Deref) 816 OS << '['; 817 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 818 } 819 820 if (Deref) 821 OS << '+' << Offset << ']'; 822 823 // NOTE: Want this comment at start of line, don't emit with AddComment. 824 AP.OutStreamer->emitRawComment(OS.str()); 825 return true; 826 } 827 828 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 829 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 830 MF->getFunction()->needsUnwindTableEntry()) 831 return CFI_M_EH; 832 833 if (MMI->hasDebugInfo()) 834 return CFI_M_Debug; 835 836 return CFI_M_None; 837 } 838 839 bool AsmPrinter::needsSEHMoves() { 840 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 841 } 842 843 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 844 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 845 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 846 ExceptionHandlingType != ExceptionHandling::ARM) 847 return; 848 849 if (needsCFIMoves() == CFI_M_None) 850 return; 851 852 const MachineModuleInfo &MMI = MF->getMMI(); 853 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 854 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 855 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 856 emitCFIInstruction(CFI); 857 } 858 859 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 860 // The operands are the MCSymbol and the frame offset of the allocation. 861 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 862 int FrameOffset = MI.getOperand(1).getImm(); 863 864 // Emit a symbol assignment. 865 OutStreamer->EmitAssignment(FrameAllocSym, 866 MCConstantExpr::create(FrameOffset, OutContext)); 867 } 868 869 /// EmitFunctionBody - This method emits the body and trailer for a 870 /// function. 871 void AsmPrinter::EmitFunctionBody() { 872 EmitFunctionHeader(); 873 874 // Emit target-specific gunk before the function body. 875 EmitFunctionBodyStart(); 876 877 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 878 879 // Print out code for the function. 880 bool HasAnyRealCode = false; 881 for (auto &MBB : *MF) { 882 // Print a label for the basic block. 883 EmitBasicBlockStart(MBB); 884 for (auto &MI : MBB) { 885 886 // Print the assembly for the instruction. 887 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 888 !MI.isDebugValue()) { 889 HasAnyRealCode = true; 890 ++EmittedInsts; 891 } 892 893 if (ShouldPrintDebugScopes) { 894 for (const HandlerInfo &HI : Handlers) { 895 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 896 TimePassesIsEnabled); 897 HI.Handler->beginInstruction(&MI); 898 } 899 } 900 901 if (isVerbose()) 902 emitComments(MI, OutStreamer->GetCommentOS()); 903 904 switch (MI.getOpcode()) { 905 case TargetOpcode::CFI_INSTRUCTION: 906 emitCFIInstruction(MI); 907 break; 908 909 case TargetOpcode::LOCAL_ESCAPE: 910 emitFrameAlloc(MI); 911 break; 912 913 case TargetOpcode::EH_LABEL: 914 case TargetOpcode::GC_LABEL: 915 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 916 break; 917 case TargetOpcode::INLINEASM: 918 EmitInlineAsm(&MI); 919 break; 920 case TargetOpcode::DBG_VALUE: 921 if (isVerbose()) { 922 if (!emitDebugValueComment(&MI, *this)) 923 EmitInstruction(&MI); 924 } 925 break; 926 case TargetOpcode::IMPLICIT_DEF: 927 if (isVerbose()) emitImplicitDef(&MI); 928 break; 929 case TargetOpcode::KILL: 930 if (isVerbose()) emitKill(&MI, *this); 931 break; 932 default: 933 EmitInstruction(&MI); 934 break; 935 } 936 937 if (ShouldPrintDebugScopes) { 938 for (const HandlerInfo &HI : Handlers) { 939 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 940 TimePassesIsEnabled); 941 HI.Handler->endInstruction(); 942 } 943 } 944 } 945 946 EmitBasicBlockEnd(MBB); 947 } 948 949 // If the function is empty and the object file uses .subsections_via_symbols, 950 // then we need to emit *something* to the function body to prevent the 951 // labels from collapsing together. Just emit a noop. 952 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 953 MCInst Noop; 954 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 955 OutStreamer->AddComment("avoids zero-length function"); 956 957 // Targets can opt-out of emitting the noop here by leaving the opcode 958 // unspecified. 959 if (Noop.getOpcode()) 960 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 961 } 962 963 const Function *F = MF->getFunction(); 964 for (const auto &BB : *F) { 965 if (!BB.hasAddressTaken()) 966 continue; 967 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 968 if (Sym->isDefined()) 969 continue; 970 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 971 OutStreamer->EmitLabel(Sym); 972 } 973 974 // Emit target-specific gunk after the function body. 975 EmitFunctionBodyEnd(); 976 977 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 978 MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 979 // Create a symbol for the end of function. 980 CurrentFnEnd = createTempSymbol("func_end"); 981 OutStreamer->EmitLabel(CurrentFnEnd); 982 } 983 984 // If the target wants a .size directive for the size of the function, emit 985 // it. 986 if (MAI->hasDotTypeDotSizeDirective()) { 987 // We can get the size as difference between the function label and the 988 // temp label. 989 const MCExpr *SizeExp = MCBinaryExpr::createSub( 990 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 991 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 992 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 993 OutStreamer->emitELFSize(Sym, SizeExp); 994 } 995 996 for (const HandlerInfo &HI : Handlers) { 997 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 998 HI.Handler->markFunctionEnd(); 999 } 1000 1001 // Print out jump tables referenced by the function. 1002 EmitJumpTableInfo(); 1003 1004 // Emit post-function debug and/or EH information. 1005 for (const HandlerInfo &HI : Handlers) { 1006 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 1007 HI.Handler->endFunction(MF); 1008 } 1009 MMI->EndFunction(); 1010 1011 OutStreamer->AddBlankLine(); 1012 } 1013 1014 /// \brief Compute the number of Global Variables that uses a Constant. 1015 static unsigned getNumGlobalVariableUses(const Constant *C) { 1016 if (!C) 1017 return 0; 1018 1019 if (isa<GlobalVariable>(C)) 1020 return 1; 1021 1022 unsigned NumUses = 0; 1023 for (auto *CU : C->users()) 1024 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1025 1026 return NumUses; 1027 } 1028 1029 /// \brief Only consider global GOT equivalents if at least one user is a 1030 /// cstexpr inside an initializer of another global variables. Also, don't 1031 /// handle cstexpr inside instructions. During global variable emission, 1032 /// candidates are skipped and are emitted later in case at least one cstexpr 1033 /// isn't replaced by a PC relative GOT entry access. 1034 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1035 unsigned &NumGOTEquivUsers) { 1036 // Global GOT equivalents are unnamed private globals with a constant 1037 // pointer initializer to another global symbol. They must point to a 1038 // GlobalVariable or Function, i.e., as GlobalValue. 1039 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 1040 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 1041 return false; 1042 1043 // To be a got equivalent, at least one of its users need to be a constant 1044 // expression used by another global variable. 1045 for (auto *U : GV->users()) 1046 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1047 1048 return NumGOTEquivUsers > 0; 1049 } 1050 1051 /// \brief Unnamed constant global variables solely contaning a pointer to 1052 /// another globals variable is equivalent to a GOT table entry; it contains the 1053 /// the address of another symbol. Optimize it and replace accesses to these 1054 /// "GOT equivalents" by using the GOT entry for the final global instead. 1055 /// Compute GOT equivalent candidates among all global variables to avoid 1056 /// emitting them if possible later on, after it use is replaced by a GOT entry 1057 /// access. 1058 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1059 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1060 return; 1061 1062 for (const auto &G : M.globals()) { 1063 unsigned NumGOTEquivUsers = 0; 1064 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1065 continue; 1066 1067 const MCSymbol *GOTEquivSym = getSymbol(&G); 1068 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1069 } 1070 } 1071 1072 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1073 /// for PC relative GOT entry conversion, in such cases we need to emit such 1074 /// globals we previously omitted in EmitGlobalVariable. 1075 void AsmPrinter::emitGlobalGOTEquivs() { 1076 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1077 return; 1078 1079 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1080 for (auto &I : GlobalGOTEquivs) { 1081 const GlobalVariable *GV = I.second.first; 1082 unsigned Cnt = I.second.second; 1083 if (Cnt) 1084 FailedCandidates.push_back(GV); 1085 } 1086 GlobalGOTEquivs.clear(); 1087 1088 for (auto *GV : FailedCandidates) 1089 EmitGlobalVariable(GV); 1090 } 1091 1092 bool AsmPrinter::doFinalization(Module &M) { 1093 // Set the MachineFunction to nullptr so that we can catch attempted 1094 // accesses to MF specific features at the module level and so that 1095 // we can conditionalize accesses based on whether or not it is nullptr. 1096 MF = nullptr; 1097 1098 // Gather all GOT equivalent globals in the module. We really need two 1099 // passes over the globals: one to compute and another to avoid its emission 1100 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1101 // where the got equivalent shows up before its use. 1102 computeGlobalGOTEquivs(M); 1103 1104 // Emit global variables. 1105 for (const auto &G : M.globals()) 1106 EmitGlobalVariable(&G); 1107 1108 // Emit remaining GOT equivalent globals. 1109 emitGlobalGOTEquivs(); 1110 1111 // Emit visibility info for declarations 1112 for (const Function &F : M) { 1113 if (!F.isDeclarationForLinker()) 1114 continue; 1115 GlobalValue::VisibilityTypes V = F.getVisibility(); 1116 if (V == GlobalValue::DefaultVisibility) 1117 continue; 1118 1119 MCSymbol *Name = getSymbol(&F); 1120 EmitVisibility(Name, V, false); 1121 } 1122 1123 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1124 1125 // Emit module flags. 1126 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1127 M.getModuleFlagsMetadata(ModuleFlags); 1128 if (!ModuleFlags.empty()) 1129 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1130 1131 if (TM.getTargetTriple().isOSBinFormatELF()) { 1132 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1133 1134 // Output stubs for external and common global variables. 1135 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1136 if (!Stubs.empty()) { 1137 OutStreamer->SwitchSection(TLOF.getDataSection()); 1138 const DataLayout &DL = M.getDataLayout(); 1139 1140 for (const auto &Stub : Stubs) { 1141 OutStreamer->EmitLabel(Stub.first); 1142 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1143 DL.getPointerSize()); 1144 } 1145 } 1146 } 1147 1148 // Finalize debug and EH information. 1149 for (const HandlerInfo &HI : Handlers) { 1150 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1151 TimePassesIsEnabled); 1152 HI.Handler->endModule(); 1153 delete HI.Handler; 1154 } 1155 Handlers.clear(); 1156 DD = nullptr; 1157 1158 // If the target wants to know about weak references, print them all. 1159 if (MAI->getWeakRefDirective()) { 1160 // FIXME: This is not lazy, it would be nice to only print weak references 1161 // to stuff that is actually used. Note that doing so would require targets 1162 // to notice uses in operands (due to constant exprs etc). This should 1163 // happen with the MC stuff eventually. 1164 1165 // Print out module-level global variables here. 1166 for (const auto &G : M.globals()) { 1167 if (!G.hasExternalWeakLinkage()) 1168 continue; 1169 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1170 } 1171 1172 for (const auto &F : M) { 1173 if (!F.hasExternalWeakLinkage()) 1174 continue; 1175 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1176 } 1177 } 1178 1179 OutStreamer->AddBlankLine(); 1180 for (const auto &Alias : M.aliases()) { 1181 MCSymbol *Name = getSymbol(&Alias); 1182 1183 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1184 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1185 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1186 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1187 else 1188 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1189 1190 EmitVisibility(Name, Alias.getVisibility()); 1191 1192 // Emit the directives as assignments aka .set: 1193 OutStreamer->EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1194 1195 // If the aliasee does not correspond to a symbol in the output, i.e. the 1196 // alias is not of an object or the aliased object is private, then set the 1197 // size of the alias symbol from the type of the alias. We don't do this in 1198 // other situations as the alias and aliasee having differing types but same 1199 // size may be intentional. 1200 const GlobalObject *BaseObject = Alias.getBaseObject(); 1201 if (MAI->hasDotTypeDotSizeDirective() && Alias.getValueType()->isSized() && 1202 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1203 const DataLayout &DL = M.getDataLayout(); 1204 uint64_t Size = DL.getTypeAllocSize(Alias.getValueType()); 1205 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name), 1206 MCConstantExpr::create(Size, OutContext)); 1207 } 1208 } 1209 1210 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1211 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1212 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1213 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1214 MP->finishAssembly(M, *MI, *this); 1215 1216 // Emit llvm.ident metadata in an '.ident' directive. 1217 EmitModuleIdents(M); 1218 1219 // Emit __morestack address if needed for indirect calls. 1220 if (MMI->usesMorestackAddr()) { 1221 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1222 getDataLayout(), SectionKind::getReadOnly(), 1223 /*C=*/nullptr); 1224 OutStreamer->SwitchSection(ReadOnlySection); 1225 1226 MCSymbol *AddrSymbol = 1227 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1228 OutStreamer->EmitLabel(AddrSymbol); 1229 1230 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1231 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1232 PtrSize); 1233 } 1234 1235 // If we don't have any trampolines, then we don't require stack memory 1236 // to be executable. Some targets have a directive to declare this. 1237 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1238 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1239 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1240 OutStreamer->SwitchSection(S); 1241 1242 // Allow the target to emit any magic that it wants at the end of the file, 1243 // after everything else has gone out. 1244 EmitEndOfAsmFile(M); 1245 1246 delete Mang; Mang = nullptr; 1247 MMI = nullptr; 1248 1249 OutStreamer->Finish(); 1250 OutStreamer->reset(); 1251 1252 return false; 1253 } 1254 1255 MCSymbol *AsmPrinter::getCurExceptionSym() { 1256 if (!CurExceptionSym) 1257 CurExceptionSym = createTempSymbol("exception"); 1258 return CurExceptionSym; 1259 } 1260 1261 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1262 this->MF = &MF; 1263 // Get the function symbol. 1264 CurrentFnSym = getSymbol(MF.getFunction()); 1265 CurrentFnSymForSize = CurrentFnSym; 1266 CurrentFnBegin = nullptr; 1267 CurExceptionSym = nullptr; 1268 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1269 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1270 MMI->hasEHFunclets() || NeedsLocalForSize) { 1271 CurrentFnBegin = createTempSymbol("func_begin"); 1272 if (NeedsLocalForSize) 1273 CurrentFnSymForSize = CurrentFnBegin; 1274 } 1275 1276 if (isVerbose()) 1277 LI = &getAnalysis<MachineLoopInfo>(); 1278 } 1279 1280 namespace { 1281 // Keep track the alignment, constpool entries per Section. 1282 struct SectionCPs { 1283 MCSection *S; 1284 unsigned Alignment; 1285 SmallVector<unsigned, 4> CPEs; 1286 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1287 }; 1288 } 1289 1290 /// EmitConstantPool - Print to the current output stream assembly 1291 /// representations of the constants in the constant pool MCP. This is 1292 /// used to print out constants which have been "spilled to memory" by 1293 /// the code generator. 1294 /// 1295 void AsmPrinter::EmitConstantPool() { 1296 const MachineConstantPool *MCP = MF->getConstantPool(); 1297 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1298 if (CP.empty()) return; 1299 1300 // Calculate sections for constant pool entries. We collect entries to go into 1301 // the same section together to reduce amount of section switch statements. 1302 SmallVector<SectionCPs, 4> CPSections; 1303 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1304 const MachineConstantPoolEntry &CPE = CP[i]; 1305 unsigned Align = CPE.getAlignment(); 1306 1307 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1308 1309 const Constant *C = nullptr; 1310 if (!CPE.isMachineConstantPoolEntry()) 1311 C = CPE.Val.ConstVal; 1312 1313 MCSection *S = 1314 getObjFileLowering().getSectionForConstant(getDataLayout(), Kind, C); 1315 1316 // The number of sections are small, just do a linear search from the 1317 // last section to the first. 1318 bool Found = false; 1319 unsigned SecIdx = CPSections.size(); 1320 while (SecIdx != 0) { 1321 if (CPSections[--SecIdx].S == S) { 1322 Found = true; 1323 break; 1324 } 1325 } 1326 if (!Found) { 1327 SecIdx = CPSections.size(); 1328 CPSections.push_back(SectionCPs(S, Align)); 1329 } 1330 1331 if (Align > CPSections[SecIdx].Alignment) 1332 CPSections[SecIdx].Alignment = Align; 1333 CPSections[SecIdx].CPEs.push_back(i); 1334 } 1335 1336 // Now print stuff into the calculated sections. 1337 const MCSection *CurSection = nullptr; 1338 unsigned Offset = 0; 1339 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1340 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1341 unsigned CPI = CPSections[i].CPEs[j]; 1342 MCSymbol *Sym = GetCPISymbol(CPI); 1343 if (!Sym->isUndefined()) 1344 continue; 1345 1346 if (CurSection != CPSections[i].S) { 1347 OutStreamer->SwitchSection(CPSections[i].S); 1348 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1349 CurSection = CPSections[i].S; 1350 Offset = 0; 1351 } 1352 1353 MachineConstantPoolEntry CPE = CP[CPI]; 1354 1355 // Emit inter-object padding for alignment. 1356 unsigned AlignMask = CPE.getAlignment() - 1; 1357 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1358 OutStreamer->EmitZeros(NewOffset - Offset); 1359 1360 Type *Ty = CPE.getType(); 1361 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1362 1363 OutStreamer->EmitLabel(Sym); 1364 if (CPE.isMachineConstantPoolEntry()) 1365 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1366 else 1367 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1368 } 1369 } 1370 } 1371 1372 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1373 /// by the current function to the current output stream. 1374 /// 1375 void AsmPrinter::EmitJumpTableInfo() { 1376 const DataLayout &DL = MF->getDataLayout(); 1377 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1378 if (!MJTI) return; 1379 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1380 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1381 if (JT.empty()) return; 1382 1383 // Pick the directive to use to print the jump table entries, and switch to 1384 // the appropriate section. 1385 const Function *F = MF->getFunction(); 1386 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1387 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1388 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1389 *F); 1390 if (JTInDiffSection) { 1391 // Drop it in the readonly section. 1392 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1393 OutStreamer->SwitchSection(ReadOnlySection); 1394 } 1395 1396 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1397 1398 // Jump tables in code sections are marked with a data_region directive 1399 // where that's supported. 1400 if (!JTInDiffSection) 1401 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1402 1403 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1404 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1405 1406 // If this jump table was deleted, ignore it. 1407 if (JTBBs.empty()) continue; 1408 1409 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1410 /// emit a .set directive for each unique entry. 1411 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1412 MAI->doesSetDirectiveSuppressesReloc()) { 1413 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1414 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1415 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1416 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1417 const MachineBasicBlock *MBB = JTBBs[ii]; 1418 if (!EmittedSets.insert(MBB).second) 1419 continue; 1420 1421 // .set LJTSet, LBB32-base 1422 const MCExpr *LHS = 1423 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1424 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1425 MCBinaryExpr::createSub(LHS, Base, 1426 OutContext)); 1427 } 1428 } 1429 1430 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1431 // before each jump table. The first label is never referenced, but tells 1432 // the assembler and linker the extents of the jump table object. The 1433 // second label is actually referenced by the code. 1434 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1435 // FIXME: This doesn't have to have any specific name, just any randomly 1436 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1437 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1438 1439 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1440 1441 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1442 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1443 } 1444 if (!JTInDiffSection) 1445 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1446 } 1447 1448 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1449 /// current stream. 1450 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1451 const MachineBasicBlock *MBB, 1452 unsigned UID) const { 1453 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1454 const MCExpr *Value = nullptr; 1455 switch (MJTI->getEntryKind()) { 1456 case MachineJumpTableInfo::EK_Inline: 1457 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1458 case MachineJumpTableInfo::EK_Custom32: 1459 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1460 MJTI, MBB, UID, OutContext); 1461 break; 1462 case MachineJumpTableInfo::EK_BlockAddress: 1463 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1464 // .word LBB123 1465 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1466 break; 1467 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1468 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1469 // with a relocation as gp-relative, e.g.: 1470 // .gprel32 LBB123 1471 MCSymbol *MBBSym = MBB->getSymbol(); 1472 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1473 return; 1474 } 1475 1476 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1477 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1478 // with a relocation as gp-relative, e.g.: 1479 // .gpdword LBB123 1480 MCSymbol *MBBSym = MBB->getSymbol(); 1481 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1482 return; 1483 } 1484 1485 case MachineJumpTableInfo::EK_LabelDifference32: { 1486 // Each entry is the address of the block minus the address of the jump 1487 // table. This is used for PIC jump tables where gprel32 is not supported. 1488 // e.g.: 1489 // .word LBB123 - LJTI1_2 1490 // If the .set directive avoids relocations, this is emitted as: 1491 // .set L4_5_set_123, LBB123 - LJTI1_2 1492 // .word L4_5_set_123 1493 if (MAI->doesSetDirectiveSuppressesReloc()) { 1494 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1495 OutContext); 1496 break; 1497 } 1498 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1499 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1500 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1501 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1502 break; 1503 } 1504 } 1505 1506 assert(Value && "Unknown entry kind!"); 1507 1508 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1509 OutStreamer->EmitValue(Value, EntrySize); 1510 } 1511 1512 1513 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1514 /// special global used by LLVM. If so, emit it and return true, otherwise 1515 /// do nothing and return false. 1516 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1517 if (GV->getName() == "llvm.used") { 1518 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1519 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1520 return true; 1521 } 1522 1523 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1524 if (StringRef(GV->getSection()) == "llvm.metadata" || 1525 GV->hasAvailableExternallyLinkage()) 1526 return true; 1527 1528 if (!GV->hasAppendingLinkage()) return false; 1529 1530 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1531 1532 if (GV->getName() == "llvm.global_ctors") { 1533 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1534 /* isCtor */ true); 1535 1536 if (TM.getRelocationModel() == Reloc::Static && 1537 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1538 StringRef Sym(".constructors_used"); 1539 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1540 MCSA_Reference); 1541 } 1542 return true; 1543 } 1544 1545 if (GV->getName() == "llvm.global_dtors") { 1546 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1547 /* isCtor */ false); 1548 1549 if (TM.getRelocationModel() == Reloc::Static && 1550 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1551 StringRef Sym(".destructors_used"); 1552 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1553 MCSA_Reference); 1554 } 1555 return true; 1556 } 1557 1558 return false; 1559 } 1560 1561 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1562 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1563 /// is true, as being used with this directive. 1564 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1565 // Should be an array of 'i8*'. 1566 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1567 const GlobalValue *GV = 1568 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1569 if (GV) 1570 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1571 } 1572 } 1573 1574 namespace { 1575 struct Structor { 1576 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1577 int Priority; 1578 llvm::Constant *Func; 1579 llvm::GlobalValue *ComdatKey; 1580 }; 1581 } // end namespace 1582 1583 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1584 /// priority. 1585 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1586 bool isCtor) { 1587 // Should be an array of '{ int, void ()* }' structs. The first value is the 1588 // init priority. 1589 if (!isa<ConstantArray>(List)) return; 1590 1591 // Sanity check the structors list. 1592 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1593 if (!InitList) return; // Not an array! 1594 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1595 // FIXME: Only allow the 3-field form in LLVM 4.0. 1596 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1597 return; // Not an array of two or three elements! 1598 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1599 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1600 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1601 return; // Not (int, ptr, ptr). 1602 1603 // Gather the structors in a form that's convenient for sorting by priority. 1604 SmallVector<Structor, 8> Structors; 1605 for (Value *O : InitList->operands()) { 1606 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1607 if (!CS) continue; // Malformed. 1608 if (CS->getOperand(1)->isNullValue()) 1609 break; // Found a null terminator, skip the rest. 1610 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1611 if (!Priority) continue; // Malformed. 1612 Structors.push_back(Structor()); 1613 Structor &S = Structors.back(); 1614 S.Priority = Priority->getLimitedValue(65535); 1615 S.Func = CS->getOperand(1); 1616 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1617 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1618 } 1619 1620 // Emit the function pointers in the target-specific order 1621 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1622 std::stable_sort(Structors.begin(), Structors.end(), 1623 [](const Structor &L, 1624 const Structor &R) { return L.Priority < R.Priority; }); 1625 for (Structor &S : Structors) { 1626 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1627 const MCSymbol *KeySym = nullptr; 1628 if (GlobalValue *GV = S.ComdatKey) { 1629 if (GV->hasAvailableExternallyLinkage()) 1630 // If the associated variable is available_externally, some other TU 1631 // will provide its dynamic initializer. 1632 continue; 1633 1634 KeySym = getSymbol(GV); 1635 } 1636 MCSection *OutputSection = 1637 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1638 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1639 OutStreamer->SwitchSection(OutputSection); 1640 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1641 EmitAlignment(Align); 1642 EmitXXStructor(DL, S.Func); 1643 } 1644 } 1645 1646 void AsmPrinter::EmitModuleIdents(Module &M) { 1647 if (!MAI->hasIdentDirective()) 1648 return; 1649 1650 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1651 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1652 const MDNode *N = NMD->getOperand(i); 1653 assert(N->getNumOperands() == 1 && 1654 "llvm.ident metadata entry can have only one operand"); 1655 const MDString *S = cast<MDString>(N->getOperand(0)); 1656 OutStreamer->EmitIdent(S->getString()); 1657 } 1658 } 1659 } 1660 1661 //===--------------------------------------------------------------------===// 1662 // Emission and print routines 1663 // 1664 1665 /// EmitInt8 - Emit a byte directive and value. 1666 /// 1667 void AsmPrinter::EmitInt8(int Value) const { 1668 OutStreamer->EmitIntValue(Value, 1); 1669 } 1670 1671 /// EmitInt16 - Emit a short directive and value. 1672 /// 1673 void AsmPrinter::EmitInt16(int Value) const { 1674 OutStreamer->EmitIntValue(Value, 2); 1675 } 1676 1677 /// EmitInt32 - Emit a long directive and value. 1678 /// 1679 void AsmPrinter::EmitInt32(int Value) const { 1680 OutStreamer->EmitIntValue(Value, 4); 1681 } 1682 1683 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1684 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1685 /// .set if it avoids relocations. 1686 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1687 unsigned Size) const { 1688 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1689 } 1690 1691 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1692 /// where the size in bytes of the directive is specified by Size and Label 1693 /// specifies the label. This implicitly uses .set if it is available. 1694 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1695 unsigned Size, 1696 bool IsSectionRelative) const { 1697 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1698 OutStreamer->EmitCOFFSecRel32(Label); 1699 return; 1700 } 1701 1702 // Emit Label+Offset (or just Label if Offset is zero) 1703 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1704 if (Offset) 1705 Expr = MCBinaryExpr::createAdd( 1706 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1707 1708 OutStreamer->EmitValue(Expr, Size); 1709 } 1710 1711 //===----------------------------------------------------------------------===// 1712 1713 // EmitAlignment - Emit an alignment directive to the specified power of 1714 // two boundary. For example, if you pass in 3 here, you will get an 8 1715 // byte alignment. If a global value is specified, and if that global has 1716 // an explicit alignment requested, it will override the alignment request 1717 // if required for correctness. 1718 // 1719 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1720 if (GV) 1721 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1722 1723 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1724 1725 assert(NumBits < 1726 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1727 "undefined behavior"); 1728 if (getCurrentSection()->getKind().isText()) 1729 OutStreamer->EmitCodeAlignment(1u << NumBits); 1730 else 1731 OutStreamer->EmitValueToAlignment(1u << NumBits); 1732 } 1733 1734 //===----------------------------------------------------------------------===// 1735 // Constant emission. 1736 //===----------------------------------------------------------------------===// 1737 1738 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1739 MCContext &Ctx = OutContext; 1740 1741 if (CV->isNullValue() || isa<UndefValue>(CV)) 1742 return MCConstantExpr::create(0, Ctx); 1743 1744 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1745 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1746 1747 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1748 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1749 1750 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1751 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1752 1753 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1754 if (!CE) { 1755 llvm_unreachable("Unknown constant value to lower!"); 1756 } 1757 1758 if (const MCExpr *RelocExpr 1759 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1760 return RelocExpr; 1761 1762 switch (CE->getOpcode()) { 1763 default: 1764 // If the code isn't optimized, there may be outstanding folding 1765 // opportunities. Attempt to fold the expression using DataLayout as a 1766 // last resort before giving up. 1767 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout())) 1768 if (C != CE) 1769 return lowerConstant(C); 1770 1771 // Otherwise report the problem to the user. 1772 { 1773 std::string S; 1774 raw_string_ostream OS(S); 1775 OS << "Unsupported expression in static initializer: "; 1776 CE->printAsOperand(OS, /*PrintType=*/false, 1777 !MF ? nullptr : MF->getFunction()->getParent()); 1778 report_fatal_error(OS.str()); 1779 } 1780 case Instruction::GetElementPtr: { 1781 // Generate a symbolic expression for the byte address 1782 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1783 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1784 1785 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1786 if (!OffsetAI) 1787 return Base; 1788 1789 int64_t Offset = OffsetAI.getSExtValue(); 1790 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1791 Ctx); 1792 } 1793 1794 case Instruction::Trunc: 1795 // We emit the value and depend on the assembler to truncate the generated 1796 // expression properly. This is important for differences between 1797 // blockaddress labels. Since the two labels are in the same function, it 1798 // is reasonable to treat their delta as a 32-bit value. 1799 // FALL THROUGH. 1800 case Instruction::BitCast: 1801 return lowerConstant(CE->getOperand(0)); 1802 1803 case Instruction::IntToPtr: { 1804 const DataLayout &DL = getDataLayout(); 1805 1806 // Handle casts to pointers by changing them into casts to the appropriate 1807 // integer type. This promotes constant folding and simplifies this code. 1808 Constant *Op = CE->getOperand(0); 1809 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1810 false/*ZExt*/); 1811 return lowerConstant(Op); 1812 } 1813 1814 case Instruction::PtrToInt: { 1815 const DataLayout &DL = getDataLayout(); 1816 1817 // Support only foldable casts to/from pointers that can be eliminated by 1818 // changing the pointer to the appropriately sized integer type. 1819 Constant *Op = CE->getOperand(0); 1820 Type *Ty = CE->getType(); 1821 1822 const MCExpr *OpExpr = lowerConstant(Op); 1823 1824 // We can emit the pointer value into this slot if the slot is an 1825 // integer slot equal to the size of the pointer. 1826 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1827 return OpExpr; 1828 1829 // Otherwise the pointer is smaller than the resultant integer, mask off 1830 // the high bits so we are sure to get a proper truncation if the input is 1831 // a constant expr. 1832 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1833 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1834 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1835 } 1836 1837 // The MC library also has a right-shift operator, but it isn't consistently 1838 // signed or unsigned between different targets. 1839 case Instruction::Add: 1840 case Instruction::Sub: 1841 case Instruction::Mul: 1842 case Instruction::SDiv: 1843 case Instruction::SRem: 1844 case Instruction::Shl: 1845 case Instruction::And: 1846 case Instruction::Or: 1847 case Instruction::Xor: { 1848 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1849 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1850 switch (CE->getOpcode()) { 1851 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1852 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1853 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1854 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1855 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1856 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1857 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1858 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1859 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1860 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1861 } 1862 } 1863 } 1864 } 1865 1866 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1867 AsmPrinter &AP, 1868 const Constant *BaseCV = nullptr, 1869 uint64_t Offset = 0); 1870 1871 /// isRepeatedByteSequence - Determine whether the given value is 1872 /// composed of a repeated sequence of identical bytes and return the 1873 /// byte value. If it is not a repeated sequence, return -1. 1874 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1875 StringRef Data = V->getRawDataValues(); 1876 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1877 char C = Data[0]; 1878 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1879 if (Data[i] != C) return -1; 1880 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1881 } 1882 1883 1884 /// isRepeatedByteSequence - Determine whether the given value is 1885 /// composed of a repeated sequence of identical bytes and return the 1886 /// byte value. If it is not a repeated sequence, return -1. 1887 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1888 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1889 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1890 assert(Size % 8 == 0); 1891 1892 // Extend the element to take zero padding into account. 1893 APInt Value = CI->getValue().zextOrSelf(Size); 1894 if (!Value.isSplat(8)) 1895 return -1; 1896 1897 return Value.zextOrTrunc(8).getZExtValue(); 1898 } 1899 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1900 // Make sure all array elements are sequences of the same repeated 1901 // byte. 1902 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1903 Constant *Op0 = CA->getOperand(0); 1904 int Byte = isRepeatedByteSequence(Op0, DL); 1905 if (Byte == -1) 1906 return -1; 1907 1908 // All array elements must be equal. 1909 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1910 if (CA->getOperand(i) != Op0) 1911 return -1; 1912 return Byte; 1913 } 1914 1915 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1916 return isRepeatedByteSequence(CDS); 1917 1918 return -1; 1919 } 1920 1921 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1922 const ConstantDataSequential *CDS, 1923 AsmPrinter &AP) { 1924 1925 // See if we can aggregate this into a .fill, if so, emit it as such. 1926 int Value = isRepeatedByteSequence(CDS, DL); 1927 if (Value != -1) { 1928 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1929 // Don't emit a 1-byte object as a .fill. 1930 if (Bytes > 1) 1931 return AP.OutStreamer->EmitFill(Bytes, Value); 1932 } 1933 1934 // If this can be emitted with .ascii/.asciz, emit it as such. 1935 if (CDS->isString()) 1936 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1937 1938 // Otherwise, emit the values in successive locations. 1939 unsigned ElementByteSize = CDS->getElementByteSize(); 1940 if (isa<IntegerType>(CDS->getElementType())) { 1941 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1942 if (AP.isVerbose()) 1943 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1944 CDS->getElementAsInteger(i)); 1945 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1946 ElementByteSize); 1947 } 1948 } else if (ElementByteSize == 4) { 1949 // FP Constants are printed as integer constants to avoid losing 1950 // precision. 1951 assert(CDS->getElementType()->isFloatTy()); 1952 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1953 union { 1954 float F; 1955 uint32_t I; 1956 }; 1957 1958 F = CDS->getElementAsFloat(i); 1959 if (AP.isVerbose()) 1960 AP.OutStreamer->GetCommentOS() << "float " << F << '\n'; 1961 AP.OutStreamer->EmitIntValue(I, 4); 1962 } 1963 } else { 1964 assert(CDS->getElementType()->isDoubleTy()); 1965 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1966 union { 1967 double F; 1968 uint64_t I; 1969 }; 1970 1971 F = CDS->getElementAsDouble(i); 1972 if (AP.isVerbose()) 1973 AP.OutStreamer->GetCommentOS() << "double " << F << '\n'; 1974 AP.OutStreamer->EmitIntValue(I, 8); 1975 } 1976 } 1977 1978 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1979 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1980 CDS->getNumElements(); 1981 if (unsigned Padding = Size - EmittedSize) 1982 AP.OutStreamer->EmitZeros(Padding); 1983 1984 } 1985 1986 static void emitGlobalConstantArray(const DataLayout &DL, 1987 const ConstantArray *CA, AsmPrinter &AP, 1988 const Constant *BaseCV, uint64_t Offset) { 1989 // See if we can aggregate some values. Make sure it can be 1990 // represented as a series of bytes of the constant value. 1991 int Value = isRepeatedByteSequence(CA, DL); 1992 1993 if (Value != -1) { 1994 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1995 AP.OutStreamer->EmitFill(Bytes, Value); 1996 } 1997 else { 1998 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1999 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2000 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2001 } 2002 } 2003 } 2004 2005 static void emitGlobalConstantVector(const DataLayout &DL, 2006 const ConstantVector *CV, AsmPrinter &AP) { 2007 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2008 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2009 2010 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2011 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2012 CV->getType()->getNumElements(); 2013 if (unsigned Padding = Size - EmittedSize) 2014 AP.OutStreamer->EmitZeros(Padding); 2015 } 2016 2017 static void emitGlobalConstantStruct(const DataLayout &DL, 2018 const ConstantStruct *CS, AsmPrinter &AP, 2019 const Constant *BaseCV, uint64_t Offset) { 2020 // Print the fields in successive locations. Pad to align if needed! 2021 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2022 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2023 uint64_t SizeSoFar = 0; 2024 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2025 const Constant *Field = CS->getOperand(i); 2026 2027 // Print the actual field value. 2028 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2029 2030 // Check if padding is needed and insert one or more 0s. 2031 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2032 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2033 - Layout->getElementOffset(i)) - FieldSize; 2034 SizeSoFar += FieldSize + PadSize; 2035 2036 // Insert padding - this may include padding to increase the size of the 2037 // current field up to the ABI size (if the struct is not packed) as well 2038 // as padding to ensure that the next field starts at the right offset. 2039 AP.OutStreamer->EmitZeros(PadSize); 2040 } 2041 assert(SizeSoFar == Layout->getSizeInBytes() && 2042 "Layout of constant struct may be incorrect!"); 2043 } 2044 2045 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2046 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2047 2048 // First print a comment with what we think the original floating-point value 2049 // should have been. 2050 if (AP.isVerbose()) { 2051 SmallString<8> StrVal; 2052 CFP->getValueAPF().toString(StrVal); 2053 2054 if (CFP->getType()) 2055 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2056 else 2057 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2058 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2059 } 2060 2061 // Now iterate through the APInt chunks, emitting them in endian-correct 2062 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2063 // floats). 2064 unsigned NumBytes = API.getBitWidth() / 8; 2065 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2066 const uint64_t *p = API.getRawData(); 2067 2068 // PPC's long double has odd notions of endianness compared to how LLVM 2069 // handles it: p[0] goes first for *big* endian on PPC. 2070 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2071 int Chunk = API.getNumWords() - 1; 2072 2073 if (TrailingBytes) 2074 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2075 2076 for (; Chunk >= 0; --Chunk) 2077 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2078 } else { 2079 unsigned Chunk; 2080 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2081 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2082 2083 if (TrailingBytes) 2084 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2085 } 2086 2087 // Emit the tail padding for the long double. 2088 const DataLayout &DL = AP.getDataLayout(); 2089 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2090 DL.getTypeStoreSize(CFP->getType())); 2091 } 2092 2093 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2094 const DataLayout &DL = AP.getDataLayout(); 2095 unsigned BitWidth = CI->getBitWidth(); 2096 2097 // Copy the value as we may massage the layout for constants whose bit width 2098 // is not a multiple of 64-bits. 2099 APInt Realigned(CI->getValue()); 2100 uint64_t ExtraBits = 0; 2101 unsigned ExtraBitsSize = BitWidth & 63; 2102 2103 if (ExtraBitsSize) { 2104 // The bit width of the data is not a multiple of 64-bits. 2105 // The extra bits are expected to be at the end of the chunk of the memory. 2106 // Little endian: 2107 // * Nothing to be done, just record the extra bits to emit. 2108 // Big endian: 2109 // * Record the extra bits to emit. 2110 // * Realign the raw data to emit the chunks of 64-bits. 2111 if (DL.isBigEndian()) { 2112 // Basically the structure of the raw data is a chunk of 64-bits cells: 2113 // 0 1 BitWidth / 64 2114 // [chunk1][chunk2] ... [chunkN]. 2115 // The most significant chunk is chunkN and it should be emitted first. 2116 // However, due to the alignment issue chunkN contains useless bits. 2117 // Realign the chunks so that they contain only useless information: 2118 // ExtraBits 0 1 (BitWidth / 64) - 1 2119 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2120 ExtraBits = Realigned.getRawData()[0] & 2121 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2122 Realigned = Realigned.lshr(ExtraBitsSize); 2123 } else 2124 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2125 } 2126 2127 // We don't expect assemblers to support integer data directives 2128 // for more than 64 bits, so we emit the data in at most 64-bit 2129 // quantities at a time. 2130 const uint64_t *RawData = Realigned.getRawData(); 2131 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2132 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2133 AP.OutStreamer->EmitIntValue(Val, 8); 2134 } 2135 2136 if (ExtraBitsSize) { 2137 // Emit the extra bits after the 64-bits chunks. 2138 2139 // Emit a directive that fills the expected size. 2140 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2141 Size -= (BitWidth / 64) * 8; 2142 assert(Size && Size * 8 >= ExtraBitsSize && 2143 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2144 == ExtraBits && "Directive too small for extra bits."); 2145 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2146 } 2147 } 2148 2149 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2150 /// equivalent global, by a target specific GOT pc relative access to the 2151 /// final symbol. 2152 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2153 const Constant *BaseCst, 2154 uint64_t Offset) { 2155 // The global @foo below illustrates a global that uses a got equivalent. 2156 // 2157 // @bar = global i32 42 2158 // @gotequiv = private unnamed_addr constant i32* @bar 2159 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2160 // i64 ptrtoint (i32* @foo to i64)) 2161 // to i32) 2162 // 2163 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2164 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2165 // form: 2166 // 2167 // foo = cstexpr, where 2168 // cstexpr := <gotequiv> - "." + <cst> 2169 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2170 // 2171 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2172 // 2173 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2174 // gotpcrelcst := <offset from @foo base> + <cst> 2175 // 2176 MCValue MV; 2177 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2178 return; 2179 const MCSymbolRefExpr *SymA = MV.getSymA(); 2180 if (!SymA) 2181 return; 2182 2183 // Check that GOT equivalent symbol is cached. 2184 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2185 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2186 return; 2187 2188 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2189 if (!BaseGV) 2190 return; 2191 2192 // Check for a valid base symbol 2193 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2194 const MCSymbolRefExpr *SymB = MV.getSymB(); 2195 2196 if (!SymB || BaseSym != &SymB->getSymbol()) 2197 return; 2198 2199 // Make sure to match: 2200 // 2201 // gotpcrelcst := <offset from @foo base> + <cst> 2202 // 2203 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2204 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2205 // if the target knows how to encode it. 2206 // 2207 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2208 if (GOTPCRelCst < 0) 2209 return; 2210 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2211 return; 2212 2213 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2214 // 2215 // bar: 2216 // .long 42 2217 // gotequiv: 2218 // .quad bar 2219 // foo: 2220 // .long gotequiv - "." + <cst> 2221 // 2222 // is replaced by the target specific equivalent to: 2223 // 2224 // bar: 2225 // .long 42 2226 // foo: 2227 // .long bar@GOTPCREL+<gotpcrelcst> 2228 // 2229 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2230 const GlobalVariable *GV = Result.first; 2231 int NumUses = (int)Result.second; 2232 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2233 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2234 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2235 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2236 2237 // Update GOT equivalent usage information 2238 --NumUses; 2239 if (NumUses >= 0) 2240 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2241 } 2242 2243 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2244 AsmPrinter &AP, const Constant *BaseCV, 2245 uint64_t Offset) { 2246 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2247 2248 // Globals with sub-elements such as combinations of arrays and structs 2249 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2250 // constant symbol base and the current position with BaseCV and Offset. 2251 if (!BaseCV && CV->hasOneUse()) 2252 BaseCV = dyn_cast<Constant>(CV->user_back()); 2253 2254 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2255 return AP.OutStreamer->EmitZeros(Size); 2256 2257 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2258 switch (Size) { 2259 case 1: 2260 case 2: 2261 case 4: 2262 case 8: 2263 if (AP.isVerbose()) 2264 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2265 CI->getZExtValue()); 2266 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2267 return; 2268 default: 2269 emitGlobalConstantLargeInt(CI, AP); 2270 return; 2271 } 2272 } 2273 2274 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2275 return emitGlobalConstantFP(CFP, AP); 2276 2277 if (isa<ConstantPointerNull>(CV)) { 2278 AP.OutStreamer->EmitIntValue(0, Size); 2279 return; 2280 } 2281 2282 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2283 return emitGlobalConstantDataSequential(DL, CDS, AP); 2284 2285 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2286 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2287 2288 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2289 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2290 2291 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2292 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2293 // vectors). 2294 if (CE->getOpcode() == Instruction::BitCast) 2295 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2296 2297 if (Size > 8) { 2298 // If the constant expression's size is greater than 64-bits, then we have 2299 // to emit the value in chunks. Try to constant fold the value and emit it 2300 // that way. 2301 Constant *New = ConstantFoldConstantExpression(CE, DL); 2302 if (New && New != CE) 2303 return emitGlobalConstantImpl(DL, New, AP); 2304 } 2305 } 2306 2307 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2308 return emitGlobalConstantVector(DL, V, AP); 2309 2310 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2311 // thread the streamer with EmitValue. 2312 const MCExpr *ME = AP.lowerConstant(CV); 2313 2314 // Since lowerConstant already folded and got rid of all IR pointer and 2315 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2316 // directly. 2317 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2318 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2319 2320 AP.OutStreamer->EmitValue(ME, Size); 2321 } 2322 2323 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2324 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2325 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2326 if (Size) 2327 emitGlobalConstantImpl(DL, CV, *this); 2328 else if (MAI->hasSubsectionsViaSymbols()) { 2329 // If the global has zero size, emit a single byte so that two labels don't 2330 // look like they are at the same location. 2331 OutStreamer->EmitIntValue(0, 1); 2332 } 2333 } 2334 2335 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2336 // Target doesn't support this yet! 2337 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2338 } 2339 2340 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2341 if (Offset > 0) 2342 OS << '+' << Offset; 2343 else if (Offset < 0) 2344 OS << Offset; 2345 } 2346 2347 //===----------------------------------------------------------------------===// 2348 // Symbol Lowering Routines. 2349 //===----------------------------------------------------------------------===// 2350 2351 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2352 return OutContext.createTempSymbol(Name, true); 2353 } 2354 2355 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2356 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2357 } 2358 2359 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2360 return MMI->getAddrLabelSymbol(BB); 2361 } 2362 2363 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2364 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2365 const DataLayout &DL = getDataLayout(); 2366 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2367 "CPI" + Twine(getFunctionNumber()) + "_" + 2368 Twine(CPID)); 2369 } 2370 2371 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2372 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2373 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2374 } 2375 2376 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2377 /// FIXME: privatize to AsmPrinter. 2378 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2379 const DataLayout &DL = getDataLayout(); 2380 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2381 Twine(getFunctionNumber()) + "_" + 2382 Twine(UID) + "_set_" + Twine(MBBID)); 2383 } 2384 2385 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2386 StringRef Suffix) const { 2387 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2388 TM); 2389 } 2390 2391 /// Return the MCSymbol for the specified ExternalSymbol. 2392 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2393 SmallString<60> NameStr; 2394 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2395 return OutContext.getOrCreateSymbol(NameStr); 2396 } 2397 2398 2399 2400 /// PrintParentLoopComment - Print comments about parent loops of this one. 2401 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2402 unsigned FunctionNumber) { 2403 if (!Loop) return; 2404 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2405 OS.indent(Loop->getLoopDepth()*2) 2406 << "Parent Loop BB" << FunctionNumber << "_" 2407 << Loop->getHeader()->getNumber() 2408 << " Depth=" << Loop->getLoopDepth() << '\n'; 2409 } 2410 2411 2412 /// PrintChildLoopComment - Print comments about child loops within 2413 /// the loop for this basic block, with nesting. 2414 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2415 unsigned FunctionNumber) { 2416 // Add child loop information 2417 for (const MachineLoop *CL : *Loop) { 2418 OS.indent(CL->getLoopDepth()*2) 2419 << "Child Loop BB" << FunctionNumber << "_" 2420 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2421 << '\n'; 2422 PrintChildLoopComment(OS, CL, FunctionNumber); 2423 } 2424 } 2425 2426 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2427 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2428 const MachineLoopInfo *LI, 2429 const AsmPrinter &AP) { 2430 // Add loop depth information 2431 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2432 if (!Loop) return; 2433 2434 MachineBasicBlock *Header = Loop->getHeader(); 2435 assert(Header && "No header for loop"); 2436 2437 // If this block is not a loop header, just print out what is the loop header 2438 // and return. 2439 if (Header != &MBB) { 2440 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2441 Twine(AP.getFunctionNumber())+"_" + 2442 Twine(Loop->getHeader()->getNumber())+ 2443 " Depth="+Twine(Loop->getLoopDepth())); 2444 return; 2445 } 2446 2447 // Otherwise, it is a loop header. Print out information about child and 2448 // parent loops. 2449 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2450 2451 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2452 2453 OS << "=>"; 2454 OS.indent(Loop->getLoopDepth()*2-2); 2455 2456 OS << "This "; 2457 if (Loop->empty()) 2458 OS << "Inner "; 2459 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2460 2461 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2462 } 2463 2464 2465 /// EmitBasicBlockStart - This method prints the label for the specified 2466 /// MachineBasicBlock, an alignment (if present) and a comment describing 2467 /// it if appropriate. 2468 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2469 // End the previous funclet and start a new one. 2470 if (MBB.isEHFuncletEntry()) { 2471 for (const HandlerInfo &HI : Handlers) { 2472 HI.Handler->endFunclet(); 2473 HI.Handler->beginFunclet(MBB); 2474 } 2475 } 2476 2477 // Emit an alignment directive for this block, if needed. 2478 if (unsigned Align = MBB.getAlignment()) 2479 EmitAlignment(Align); 2480 2481 // If the block has its address taken, emit any labels that were used to 2482 // reference the block. It is possible that there is more than one label 2483 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2484 // the references were generated. 2485 if (MBB.hasAddressTaken()) { 2486 const BasicBlock *BB = MBB.getBasicBlock(); 2487 if (isVerbose()) 2488 OutStreamer->AddComment("Block address taken"); 2489 2490 // MBBs can have their address taken as part of CodeGen without having 2491 // their corresponding BB's address taken in IR 2492 if (BB->hasAddressTaken()) 2493 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2494 OutStreamer->EmitLabel(Sym); 2495 } 2496 2497 // Print some verbose block comments. 2498 if (isVerbose()) { 2499 if (const BasicBlock *BB = MBB.getBasicBlock()) 2500 if (BB->hasName()) 2501 OutStreamer->AddComment("%" + BB->getName()); 2502 emitBasicBlockLoopComments(MBB, LI, *this); 2503 } 2504 2505 // Print the main label for the block. 2506 if (MBB.pred_empty() || 2507 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2508 if (isVerbose()) { 2509 // NOTE: Want this comment at start of line, don't emit with AddComment. 2510 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2511 } 2512 } else { 2513 OutStreamer->EmitLabel(MBB.getSymbol()); 2514 } 2515 } 2516 2517 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2518 bool IsDefinition) const { 2519 MCSymbolAttr Attr = MCSA_Invalid; 2520 2521 switch (Visibility) { 2522 default: break; 2523 case GlobalValue::HiddenVisibility: 2524 if (IsDefinition) 2525 Attr = MAI->getHiddenVisibilityAttr(); 2526 else 2527 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2528 break; 2529 case GlobalValue::ProtectedVisibility: 2530 Attr = MAI->getProtectedVisibilityAttr(); 2531 break; 2532 } 2533 2534 if (Attr != MCSA_Invalid) 2535 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2536 } 2537 2538 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2539 /// exactly one predecessor and the control transfer mechanism between 2540 /// the predecessor and this block is a fall-through. 2541 bool AsmPrinter:: 2542 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2543 // If this is a landing pad, it isn't a fall through. If it has no preds, 2544 // then nothing falls through to it. 2545 if (MBB->isEHPad() || MBB->pred_empty()) 2546 return false; 2547 2548 // If there isn't exactly one predecessor, it can't be a fall through. 2549 if (MBB->pred_size() > 1) 2550 return false; 2551 2552 // The predecessor has to be immediately before this block. 2553 MachineBasicBlock *Pred = *MBB->pred_begin(); 2554 if (!Pred->isLayoutSuccessor(MBB)) 2555 return false; 2556 2557 // If the block is completely empty, then it definitely does fall through. 2558 if (Pred->empty()) 2559 return true; 2560 2561 // Check the terminators in the previous blocks 2562 for (const auto &MI : Pred->terminators()) { 2563 // If it is not a simple branch, we are in a table somewhere. 2564 if (!MI.isBranch() || MI.isIndirectBranch()) 2565 return false; 2566 2567 // If we are the operands of one of the branches, this is not a fall 2568 // through. Note that targets with delay slots will usually bundle 2569 // terminators with the delay slot instruction. 2570 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2571 if (OP->isJTI()) 2572 return false; 2573 if (OP->isMBB() && OP->getMBB() == MBB) 2574 return false; 2575 } 2576 } 2577 2578 return true; 2579 } 2580 2581 2582 2583 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2584 if (!S.usesMetadata()) 2585 return nullptr; 2586 2587 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2588 " stackmap formats, please see the documentation for a description of" 2589 " the default format. If you really need a custom serialized format," 2590 " please file a bug"); 2591 2592 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2593 gcp_map_type::iterator GCPI = GCMap.find(&S); 2594 if (GCPI != GCMap.end()) 2595 return GCPI->second.get(); 2596 2597 const char *Name = S.getName().c_str(); 2598 2599 for (GCMetadataPrinterRegistry::iterator 2600 I = GCMetadataPrinterRegistry::begin(), 2601 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2602 if (strcmp(Name, I->getName()) == 0) { 2603 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2604 GMP->S = &S; 2605 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2606 return IterBool.first->second.get(); 2607 } 2608 2609 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2610 } 2611 2612 /// Pin vtable to this file. 2613 AsmPrinterHandler::~AsmPrinterHandler() {} 2614 2615 void AsmPrinterHandler::markFunctionEnd() {} 2616