1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinCodeViewLineTables.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/CodeGen/GCMetadataPrinter.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstrBundle.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/Mangler.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCContext.h" 36 #include "llvm/MC/MCExpr.h" 37 #include "llvm/MC/MCInst.h" 38 #include "llvm/MC/MCSection.h" 39 #include "llvm/MC/MCStreamer.h" 40 #include "llvm/MC/MCSymbol.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/Format.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/Timer.h" 45 #include "llvm/Target/TargetFrameLowering.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetLowering.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 #include "llvm/Transforms/Utils/GlobalStatus.h" 53 using namespace llvm; 54 55 #define DEBUG_TYPE "asm-printer" 56 57 static const char *const DWARFGroupName = "DWARF Emission"; 58 static const char *const DbgTimerName = "Debug Info Emission"; 59 static const char *const EHTimerName = "DWARF Exception Writer"; 60 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 61 62 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 63 64 char AsmPrinter::ID = 0; 65 66 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 67 static gcp_map_type &getGCMap(void *&P) { 68 if (!P) 69 P = new gcp_map_type(); 70 return *(gcp_map_type*)P; 71 } 72 73 74 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 75 /// value in log2 form. This rounds up to the preferred alignment if possible 76 /// and legal. 77 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 78 unsigned InBits = 0) { 79 unsigned NumBits = 0; 80 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 81 NumBits = TD.getPreferredAlignmentLog(GVar); 82 83 // If InBits is specified, round it to it. 84 if (InBits > NumBits) 85 NumBits = InBits; 86 87 // If the GV has a specified alignment, take it into account. 88 if (GV->getAlignment() == 0) 89 return NumBits; 90 91 unsigned GVAlign = Log2_32(GV->getAlignment()); 92 93 // If the GVAlign is larger than NumBits, or if we are required to obey 94 // NumBits because the GV has an assigned section, obey it. 95 if (GVAlign > NumBits || GV->hasSection()) 96 NumBits = GVAlign; 97 return NumBits; 98 } 99 100 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 101 : MachineFunctionPass(ID), 102 TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()), 103 OutContext(Streamer.getContext()), 104 OutStreamer(Streamer), 105 LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) { 106 DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr; 107 CurrentFnSym = CurrentFnSymForSize = nullptr; 108 GCMetadataPrinters = nullptr; 109 VerboseAsm = Streamer.isVerboseAsm(); 110 } 111 112 AsmPrinter::~AsmPrinter() { 113 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 114 115 if (GCMetadataPrinters) { 116 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 117 118 delete &GCMap; 119 GCMetadataPrinters = nullptr; 120 } 121 122 delete &OutStreamer; 123 } 124 125 /// getFunctionNumber - Return a unique ID for the current function. 126 /// 127 unsigned AsmPrinter::getFunctionNumber() const { 128 return MF->getFunctionNumber(); 129 } 130 131 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 132 return TM.getTargetLowering()->getObjFileLowering(); 133 } 134 135 /// getDataLayout - Return information about data layout. 136 const DataLayout &AsmPrinter::getDataLayout() const { 137 return *TM.getDataLayout(); 138 } 139 140 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 141 return TM.getSubtarget<MCSubtargetInfo>(); 142 } 143 144 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 145 S.EmitInstruction(Inst, getSubtargetInfo()); 146 } 147 148 StringRef AsmPrinter::getTargetTriple() const { 149 return TM.getTargetTriple(); 150 } 151 152 /// getCurrentSection() - Return the current section we are emitting to. 153 const MCSection *AsmPrinter::getCurrentSection() const { 154 return OutStreamer.getCurrentSection().first; 155 } 156 157 158 159 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 160 AU.setPreservesAll(); 161 MachineFunctionPass::getAnalysisUsage(AU); 162 AU.addRequired<MachineModuleInfo>(); 163 AU.addRequired<GCModuleInfo>(); 164 if (isVerbose()) 165 AU.addRequired<MachineLoopInfo>(); 166 } 167 168 bool AsmPrinter::doInitialization(Module &M) { 169 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 170 MMI->AnalyzeModule(M); 171 172 // Initialize TargetLoweringObjectFile. 173 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 174 .Initialize(OutContext, TM); 175 176 OutStreamer.InitSections(); 177 178 Mang = new Mangler(TM.getDataLayout()); 179 180 // Emit the version-min deplyment target directive if needed. 181 // 182 // FIXME: If we end up with a collection of these sorts of Darwin-specific 183 // or ELF-specific things, it may make sense to have a platform helper class 184 // that will work with the target helper class. For now keep it here, as the 185 // alternative is duplicated code in each of the target asm printers that 186 // use the directive, where it would need the same conditionalization 187 // anyway. 188 Triple TT(getTargetTriple()); 189 if (TT.isOSDarwin()) { 190 unsigned Major, Minor, Update; 191 TT.getOSVersion(Major, Minor, Update); 192 // If there is a version specified, Major will be non-zero. 193 if (Major) 194 OutStreamer.EmitVersionMin((TT.isMacOSX() ? 195 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 196 Major, Minor, Update); 197 } 198 199 // Allow the target to emit any magic that it wants at the start of the file. 200 EmitStartOfAsmFile(M); 201 202 // Very minimal debug info. It is ignored if we emit actual debug info. If we 203 // don't, this at least helps the user find where a global came from. 204 if (MAI->hasSingleParameterDotFile()) { 205 // .file "foo.c" 206 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 207 } 208 209 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 210 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 211 for (auto &I : *MI) 212 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 213 MP->beginAssembly(*this); 214 215 // Emit module-level inline asm if it exists. 216 if (!M.getModuleInlineAsm().empty()) { 217 OutStreamer.AddComment("Start of file scope inline assembly"); 218 OutStreamer.AddBlankLine(); 219 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 220 OutStreamer.AddComment("End of file scope inline assembly"); 221 OutStreamer.AddBlankLine(); 222 } 223 224 if (MAI->doesSupportDebugInformation()) { 225 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) { 226 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 227 DbgTimerName, 228 CodeViewLineTablesGroupName)); 229 } else { 230 DD = new DwarfDebug(this, &M); 231 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 232 } 233 } 234 235 DwarfException *DE = nullptr; 236 switch (MAI->getExceptionHandlingType()) { 237 case ExceptionHandling::None: 238 break; 239 case ExceptionHandling::SjLj: 240 case ExceptionHandling::DwarfCFI: 241 DE = new DwarfCFIException(this); 242 break; 243 case ExceptionHandling::ARM: 244 DE = new ARMException(this); 245 break; 246 case ExceptionHandling::Win64: 247 DE = new Win64Exception(this); 248 break; 249 } 250 if (DE) 251 Handlers.push_back(HandlerInfo(DE, EHTimerName, DWARFGroupName)); 252 return false; 253 } 254 255 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 256 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 257 if (Linkage != GlobalValue::LinkOnceODRLinkage) 258 return false; 259 260 if (!MAI.hasWeakDefCanBeHiddenDirective()) 261 return false; 262 263 if (GV->hasUnnamedAddr()) 264 return true; 265 266 // This is only used for MachO, so right now it doesn't really matter how 267 // we handle alias. Revisit this once the MachO linker implements aliases. 268 if (isa<GlobalAlias>(GV)) 269 return false; 270 271 // If it is a non constant variable, it needs to be uniqued across shared 272 // objects. 273 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) { 274 if (!Var->isConstant()) 275 return false; 276 } 277 278 GlobalStatus GS; 279 if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared) 280 return true; 281 282 return false; 283 } 284 285 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 286 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 287 switch (Linkage) { 288 case GlobalValue::CommonLinkage: 289 case GlobalValue::LinkOnceAnyLinkage: 290 case GlobalValue::LinkOnceODRLinkage: 291 case GlobalValue::WeakAnyLinkage: 292 case GlobalValue::WeakODRLinkage: 293 if (MAI->hasWeakDefDirective()) { 294 // .globl _foo 295 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 296 297 if (!canBeHidden(GV, *MAI)) 298 // .weak_definition _foo 299 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 300 else 301 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 302 } else if (MAI->hasLinkOnceDirective()) { 303 // .globl _foo 304 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 305 //NOTE: linkonce is handled by the section the symbol was assigned to. 306 } else { 307 // .weak _foo 308 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 309 } 310 return; 311 case GlobalValue::AppendingLinkage: 312 // FIXME: appending linkage variables should go into a section of 313 // their name or something. For now, just emit them as external. 314 case GlobalValue::ExternalLinkage: 315 // If external or appending, declare as a global symbol. 316 // .globl _foo 317 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 318 return; 319 case GlobalValue::PrivateLinkage: 320 case GlobalValue::InternalLinkage: 321 return; 322 case GlobalValue::AvailableExternallyLinkage: 323 llvm_unreachable("Should never emit this"); 324 case GlobalValue::ExternalWeakLinkage: 325 llvm_unreachable("Don't know how to emit these"); 326 } 327 llvm_unreachable("Unknown linkage type!"); 328 } 329 330 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 331 const GlobalValue *GV) const { 332 TM.getNameWithPrefix(Name, GV, *Mang); 333 } 334 335 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 336 return TM.getSymbol(GV, *Mang); 337 } 338 339 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 340 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 341 if (GV->hasInitializer()) { 342 // Check to see if this is a special global used by LLVM, if so, emit it. 343 if (EmitSpecialLLVMGlobal(GV)) 344 return; 345 346 if (isVerbose()) { 347 GV->printAsOperand(OutStreamer.GetCommentOS(), 348 /*PrintType=*/false, GV->getParent()); 349 OutStreamer.GetCommentOS() << '\n'; 350 } 351 } 352 353 MCSymbol *GVSym = getSymbol(GV); 354 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 355 356 if (!GV->hasInitializer()) // External globals require no extra code. 357 return; 358 359 if (MAI->hasDotTypeDotSizeDirective()) 360 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 361 362 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 363 364 const DataLayout *DL = TM.getDataLayout(); 365 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 366 367 // If the alignment is specified, we *must* obey it. Overaligning a global 368 // with a specified alignment is a prompt way to break globals emitted to 369 // sections and expected to be contiguous (e.g. ObjC metadata). 370 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 371 372 for (const HandlerInfo &HI : Handlers) { 373 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 374 HI.Handler->setSymbolSize(GVSym, Size); 375 } 376 377 // Handle common and BSS local symbols (.lcomm). 378 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 379 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 380 unsigned Align = 1 << AlignLog; 381 382 // Handle common symbols. 383 if (GVKind.isCommon()) { 384 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 385 Align = 0; 386 387 // .comm _foo, 42, 4 388 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 389 return; 390 } 391 392 // Handle local BSS symbols. 393 if (MAI->hasMachoZeroFillDirective()) { 394 const MCSection *TheSection = 395 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 396 // .zerofill __DATA, __bss, _foo, 400, 5 397 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 398 return; 399 } 400 401 // Use .lcomm only if it supports user-specified alignment. 402 // Otherwise, while it would still be correct to use .lcomm in some 403 // cases (e.g. when Align == 1), the external assembler might enfore 404 // some -unknown- default alignment behavior, which could cause 405 // spurious differences between external and integrated assembler. 406 // Prefer to simply fall back to .local / .comm in this case. 407 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 408 // .lcomm _foo, 42 409 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 410 return; 411 } 412 413 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 414 Align = 0; 415 416 // .local _foo 417 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 418 // .comm _foo, 42, 4 419 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 420 return; 421 } 422 423 const MCSection *TheSection = 424 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 425 426 // Handle the zerofill directive on darwin, which is a special form of BSS 427 // emission. 428 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 429 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 430 431 // .globl _foo 432 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 433 // .zerofill __DATA, __common, _foo, 400, 5 434 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 435 return; 436 } 437 438 // Handle thread local data for mach-o which requires us to output an 439 // additional structure of data and mangle the original symbol so that we 440 // can reference it later. 441 // 442 // TODO: This should become an "emit thread local global" method on TLOF. 443 // All of this macho specific stuff should be sunk down into TLOFMachO and 444 // stuff like "TLSExtraDataSection" should no longer be part of the parent 445 // TLOF class. This will also make it more obvious that stuff like 446 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 447 // specific code. 448 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 449 // Emit the .tbss symbol 450 MCSymbol *MangSym = 451 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 452 453 if (GVKind.isThreadBSS()) { 454 TheSection = getObjFileLowering().getTLSBSSSection(); 455 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 456 } else if (GVKind.isThreadData()) { 457 OutStreamer.SwitchSection(TheSection); 458 459 EmitAlignment(AlignLog, GV); 460 OutStreamer.EmitLabel(MangSym); 461 462 EmitGlobalConstant(GV->getInitializer()); 463 } 464 465 OutStreamer.AddBlankLine(); 466 467 // Emit the variable struct for the runtime. 468 const MCSection *TLVSect 469 = getObjFileLowering().getTLSExtraDataSection(); 470 471 OutStreamer.SwitchSection(TLVSect); 472 // Emit the linkage here. 473 EmitLinkage(GV, GVSym); 474 OutStreamer.EmitLabel(GVSym); 475 476 // Three pointers in size: 477 // - __tlv_bootstrap - used to make sure support exists 478 // - spare pointer, used when mapped by the runtime 479 // - pointer to mangled symbol above with initializer 480 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 481 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 482 PtrSize); 483 OutStreamer.EmitIntValue(0, PtrSize); 484 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 485 486 OutStreamer.AddBlankLine(); 487 return; 488 } 489 490 OutStreamer.SwitchSection(TheSection); 491 492 EmitLinkage(GV, GVSym); 493 EmitAlignment(AlignLog, GV); 494 495 OutStreamer.EmitLabel(GVSym); 496 497 EmitGlobalConstant(GV->getInitializer()); 498 499 if (MAI->hasDotTypeDotSizeDirective()) 500 // .size foo, 42 501 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 502 503 OutStreamer.AddBlankLine(); 504 } 505 506 /// EmitFunctionHeader - This method emits the header for the current 507 /// function. 508 void AsmPrinter::EmitFunctionHeader() { 509 // Print out constants referenced by the function 510 EmitConstantPool(); 511 512 // Print the 'header' of function. 513 const Function *F = MF->getFunction(); 514 515 OutStreamer.SwitchSection( 516 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 517 EmitVisibility(CurrentFnSym, F->getVisibility()); 518 519 EmitLinkage(F, CurrentFnSym); 520 EmitAlignment(MF->getAlignment(), F); 521 522 if (MAI->hasDotTypeDotSizeDirective()) 523 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 524 525 if (isVerbose()) { 526 F->printAsOperand(OutStreamer.GetCommentOS(), 527 /*PrintType=*/false, F->getParent()); 528 OutStreamer.GetCommentOS() << '\n'; 529 } 530 531 // Emit the CurrentFnSym. This is a virtual function to allow targets to 532 // do their wild and crazy things as required. 533 EmitFunctionEntryLabel(); 534 535 // If the function had address-taken blocks that got deleted, then we have 536 // references to the dangling symbols. Emit them at the start of the function 537 // so that we don't get references to undefined symbols. 538 std::vector<MCSymbol*> DeadBlockSyms; 539 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 540 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 541 OutStreamer.AddComment("Address taken block that was later removed"); 542 OutStreamer.EmitLabel(DeadBlockSyms[i]); 543 } 544 545 // Emit pre-function debug and/or EH information. 546 for (const HandlerInfo &HI : Handlers) { 547 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 548 HI.Handler->beginFunction(MF); 549 } 550 551 // Emit the prefix data. 552 if (F->hasPrefixData()) 553 EmitGlobalConstant(F->getPrefixData()); 554 } 555 556 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 557 /// function. This can be overridden by targets as required to do custom stuff. 558 void AsmPrinter::EmitFunctionEntryLabel() { 559 // The function label could have already been emitted if two symbols end up 560 // conflicting due to asm renaming. Detect this and emit an error. 561 if (CurrentFnSym->isUndefined()) 562 return OutStreamer.EmitLabel(CurrentFnSym); 563 564 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 565 "' label emitted multiple times to assembly file"); 566 } 567 568 /// emitComments - Pretty-print comments for instructions. 569 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 570 const MachineFunction *MF = MI.getParent()->getParent(); 571 const TargetMachine &TM = MF->getTarget(); 572 573 // Check for spills and reloads 574 int FI; 575 576 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 577 578 // We assume a single instruction only has a spill or reload, not 579 // both. 580 const MachineMemOperand *MMO; 581 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 582 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 583 MMO = *MI.memoperands_begin(); 584 CommentOS << MMO->getSize() << "-byte Reload\n"; 585 } 586 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 587 if (FrameInfo->isSpillSlotObjectIndex(FI)) 588 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 589 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 590 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 591 MMO = *MI.memoperands_begin(); 592 CommentOS << MMO->getSize() << "-byte Spill\n"; 593 } 594 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 595 if (FrameInfo->isSpillSlotObjectIndex(FI)) 596 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 597 } 598 599 // Check for spill-induced copies 600 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 601 CommentOS << " Reload Reuse\n"; 602 } 603 604 /// emitImplicitDef - This method emits the specified machine instruction 605 /// that is an implicit def. 606 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 607 unsigned RegNo = MI->getOperand(0).getReg(); 608 OutStreamer.AddComment(Twine("implicit-def: ") + 609 TM.getRegisterInfo()->getName(RegNo)); 610 OutStreamer.AddBlankLine(); 611 } 612 613 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 614 std::string Str = "kill:"; 615 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 616 const MachineOperand &Op = MI->getOperand(i); 617 assert(Op.isReg() && "KILL instruction must have only register operands"); 618 Str += ' '; 619 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 620 Str += (Op.isDef() ? "<def>" : "<kill>"); 621 } 622 AP.OutStreamer.AddComment(Str); 623 AP.OutStreamer.AddBlankLine(); 624 } 625 626 /// emitDebugValueComment - This method handles the target-independent form 627 /// of DBG_VALUE, returning true if it was able to do so. A false return 628 /// means the target will need to handle MI in EmitInstruction. 629 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 630 // This code handles only the 3-operand target-independent form. 631 if (MI->getNumOperands() != 3) 632 return false; 633 634 SmallString<128> Str; 635 raw_svector_ostream OS(Str); 636 OS << "DEBUG_VALUE: "; 637 638 DIVariable V(MI->getOperand(2).getMetadata()); 639 if (V.getContext().isSubprogram()) { 640 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 641 if (!Name.empty()) 642 OS << Name << ":"; 643 } 644 OS << V.getName() << " <- "; 645 646 // The second operand is only an offset if it's an immediate. 647 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 648 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 649 650 // Register or immediate value. Register 0 means undef. 651 if (MI->getOperand(0).isFPImm()) { 652 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 653 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 654 OS << (double)APF.convertToFloat(); 655 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 656 OS << APF.convertToDouble(); 657 } else { 658 // There is no good way to print long double. Convert a copy to 659 // double. Ah well, it's only a comment. 660 bool ignored; 661 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 662 &ignored); 663 OS << "(long double) " << APF.convertToDouble(); 664 } 665 } else if (MI->getOperand(0).isImm()) { 666 OS << MI->getOperand(0).getImm(); 667 } else if (MI->getOperand(0).isCImm()) { 668 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 669 } else { 670 unsigned Reg; 671 if (MI->getOperand(0).isReg()) { 672 Reg = MI->getOperand(0).getReg(); 673 } else { 674 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 675 const TargetFrameLowering *TFI = AP.TM.getFrameLowering(); 676 Offset += TFI->getFrameIndexReference(*AP.MF, 677 MI->getOperand(0).getIndex(), Reg); 678 Deref = true; 679 } 680 if (Reg == 0) { 681 // Suppress offset, it is not meaningful here. 682 OS << "undef"; 683 // NOTE: Want this comment at start of line, don't emit with AddComment. 684 AP.OutStreamer.emitRawComment(OS.str()); 685 return true; 686 } 687 if (Deref) 688 OS << '['; 689 OS << AP.TM.getRegisterInfo()->getName(Reg); 690 } 691 692 if (Deref) 693 OS << '+' << Offset << ']'; 694 695 // NOTE: Want this comment at start of line, don't emit with AddComment. 696 AP.OutStreamer.emitRawComment(OS.str()); 697 return true; 698 } 699 700 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 701 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 702 MF->getFunction()->needsUnwindTableEntry()) 703 return CFI_M_EH; 704 705 if (MMI->hasDebugInfo()) 706 return CFI_M_Debug; 707 708 return CFI_M_None; 709 } 710 711 bool AsmPrinter::needsSEHMoves() { 712 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 713 MF->getFunction()->needsUnwindTableEntry(); 714 } 715 716 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 717 ExceptionHandling::ExceptionsType ExceptionHandlingType = 718 MAI->getExceptionHandlingType(); 719 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 720 ExceptionHandlingType != ExceptionHandling::ARM) 721 return; 722 723 if (needsCFIMoves() == CFI_M_None) 724 return; 725 726 if (MMI->getCompactUnwindEncoding() != 0) 727 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 728 729 const MachineModuleInfo &MMI = MF->getMMI(); 730 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 731 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 732 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 733 emitCFIInstruction(CFI); 734 } 735 736 /// EmitFunctionBody - This method emits the body and trailer for a 737 /// function. 738 void AsmPrinter::EmitFunctionBody() { 739 // Emit target-specific gunk before the function body. 740 EmitFunctionBodyStart(); 741 742 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 743 744 // Print out code for the function. 745 bool HasAnyRealCode = false; 746 const MachineInstr *LastMI = nullptr; 747 for (auto &MBB : *MF) { 748 // Print a label for the basic block. 749 EmitBasicBlockStart(MBB); 750 for (auto &MI : MBB) { 751 LastMI = &MI; 752 753 // Print the assembly for the instruction. 754 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 755 !MI.isDebugValue()) { 756 HasAnyRealCode = true; 757 ++EmittedInsts; 758 } 759 760 if (ShouldPrintDebugScopes) { 761 for (const HandlerInfo &HI : Handlers) { 762 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 763 TimePassesIsEnabled); 764 HI.Handler->beginInstruction(&MI); 765 } 766 } 767 768 if (isVerbose()) 769 emitComments(MI, OutStreamer.GetCommentOS()); 770 771 switch (MI.getOpcode()) { 772 case TargetOpcode::CFI_INSTRUCTION: 773 emitCFIInstruction(MI); 774 break; 775 776 case TargetOpcode::EH_LABEL: 777 case TargetOpcode::GC_LABEL: 778 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol()); 779 break; 780 case TargetOpcode::INLINEASM: 781 EmitInlineAsm(&MI); 782 break; 783 case TargetOpcode::DBG_VALUE: 784 if (isVerbose()) { 785 if (!emitDebugValueComment(&MI, *this)) 786 EmitInstruction(&MI); 787 } 788 break; 789 case TargetOpcode::IMPLICIT_DEF: 790 if (isVerbose()) emitImplicitDef(&MI); 791 break; 792 case TargetOpcode::KILL: 793 if (isVerbose()) emitKill(&MI, *this); 794 break; 795 default: 796 EmitInstruction(&MI); 797 break; 798 } 799 800 if (ShouldPrintDebugScopes) { 801 for (const HandlerInfo &HI : Handlers) { 802 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 803 TimePassesIsEnabled); 804 HI.Handler->endInstruction(); 805 } 806 } 807 } 808 } 809 810 // If the last instruction was a prolog label, then we have a situation where 811 // we emitted a prolog but no function body. This results in the ending prolog 812 // label equaling the end of function label and an invalid "row" in the 813 // FDE. We need to emit a noop in this situation so that the FDE's rows are 814 // valid. 815 bool RequiresNoop = LastMI && LastMI->isCFIInstruction(); 816 817 // If the function is empty and the object file uses .subsections_via_symbols, 818 // then we need to emit *something* to the function body to prevent the 819 // labels from collapsing together. Just emit a noop. 820 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 821 MCInst Noop; 822 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 823 if (Noop.getOpcode()) { 824 OutStreamer.AddComment("avoids zero-length function"); 825 OutStreamer.EmitInstruction(Noop, getSubtargetInfo()); 826 } else // Target not mc-ized yet. 827 OutStreamer.EmitRawText(StringRef("\tnop\n")); 828 } 829 830 const Function *F = MF->getFunction(); 831 for (const auto &BB : *F) { 832 if (!BB.hasAddressTaken()) 833 continue; 834 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 835 if (Sym->isDefined()) 836 continue; 837 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 838 OutStreamer.EmitLabel(Sym); 839 } 840 841 // Emit target-specific gunk after the function body. 842 EmitFunctionBodyEnd(); 843 844 // If the target wants a .size directive for the size of the function, emit 845 // it. 846 if (MAI->hasDotTypeDotSizeDirective()) { 847 // Create a symbol for the end of function, so we can get the size as 848 // difference between the function label and the temp label. 849 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 850 OutStreamer.EmitLabel(FnEndLabel); 851 852 const MCExpr *SizeExp = 853 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 854 MCSymbolRefExpr::Create(CurrentFnSymForSize, 855 OutContext), 856 OutContext); 857 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 858 } 859 860 // Emit post-function debug and/or EH information. 861 for (const HandlerInfo &HI : Handlers) { 862 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 863 HI.Handler->endFunction(MF); 864 } 865 MMI->EndFunction(); 866 867 // Print out jump tables referenced by the function. 868 EmitJumpTableInfo(); 869 870 OutStreamer.AddBlankLine(); 871 } 872 873 bool AsmPrinter::doFinalization(Module &M) { 874 // Emit global variables. 875 for (const auto &G : M.globals()) 876 EmitGlobalVariable(&G); 877 878 // Emit visibility info for declarations 879 for (const Function &F : M) { 880 if (!F.isDeclaration()) 881 continue; 882 GlobalValue::VisibilityTypes V = F.getVisibility(); 883 if (V == GlobalValue::DefaultVisibility) 884 continue; 885 886 MCSymbol *Name = getSymbol(&F); 887 EmitVisibility(Name, V, false); 888 } 889 890 // Emit module flags. 891 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 892 M.getModuleFlagsMetadata(ModuleFlags); 893 if (!ModuleFlags.empty()) 894 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM); 895 896 // Make sure we wrote out everything we need. 897 OutStreamer.Flush(); 898 899 // Finalize debug and EH information. 900 for (const HandlerInfo &HI : Handlers) { 901 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 902 TimePassesIsEnabled); 903 HI.Handler->endModule(); 904 delete HI.Handler; 905 } 906 Handlers.clear(); 907 DD = nullptr; 908 909 // If the target wants to know about weak references, print them all. 910 if (MAI->getWeakRefDirective()) { 911 // FIXME: This is not lazy, it would be nice to only print weak references 912 // to stuff that is actually used. Note that doing so would require targets 913 // to notice uses in operands (due to constant exprs etc). This should 914 // happen with the MC stuff eventually. 915 916 // Print out module-level global variables here. 917 for (const auto &G : M.globals()) { 918 if (!G.hasExternalWeakLinkage()) 919 continue; 920 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 921 } 922 923 for (const auto &F : M) { 924 if (!F.hasExternalWeakLinkage()) 925 continue; 926 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 927 } 928 } 929 930 if (MAI->hasSetDirective()) { 931 OutStreamer.AddBlankLine(); 932 for (const auto &Alias : M.aliases()) { 933 MCSymbol *Name = getSymbol(&Alias); 934 935 const GlobalValue *GV = Alias.getAliasee(); 936 assert(!GV->isDeclaration()); 937 MCSymbol *Target = getSymbol(GV); 938 939 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 940 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 941 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 942 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 943 else 944 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 945 946 EmitVisibility(Name, Alias.getVisibility()); 947 948 // Emit the directives as assignments aka .set: 949 OutStreamer.EmitAssignment(Name, 950 MCSymbolRefExpr::Create(Target, OutContext)); 951 } 952 } 953 954 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 955 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 956 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 957 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 958 MP->finishAssembly(*this); 959 960 // Emit llvm.ident metadata in an '.ident' directive. 961 EmitModuleIdents(M); 962 963 // If we don't have any trampolines, then we don't require stack memory 964 // to be executable. Some targets have a directive to declare this. 965 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 966 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 967 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 968 OutStreamer.SwitchSection(S); 969 970 // Allow the target to emit any magic that it wants at the end of the file, 971 // after everything else has gone out. 972 EmitEndOfAsmFile(M); 973 974 delete Mang; Mang = nullptr; 975 MMI = nullptr; 976 977 OutStreamer.Finish(); 978 OutStreamer.reset(); 979 980 return false; 981 } 982 983 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 984 this->MF = &MF; 985 // Get the function symbol. 986 CurrentFnSym = getSymbol(MF.getFunction()); 987 CurrentFnSymForSize = CurrentFnSym; 988 989 if (isVerbose()) 990 LI = &getAnalysis<MachineLoopInfo>(); 991 } 992 993 namespace { 994 // SectionCPs - Keep track the alignment, constpool entries per Section. 995 struct SectionCPs { 996 const MCSection *S; 997 unsigned Alignment; 998 SmallVector<unsigned, 4> CPEs; 999 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1000 }; 1001 } 1002 1003 /// EmitConstantPool - Print to the current output stream assembly 1004 /// representations of the constants in the constant pool MCP. This is 1005 /// used to print out constants which have been "spilled to memory" by 1006 /// the code generator. 1007 /// 1008 void AsmPrinter::EmitConstantPool() { 1009 const MachineConstantPool *MCP = MF->getConstantPool(); 1010 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1011 if (CP.empty()) return; 1012 1013 // Calculate sections for constant pool entries. We collect entries to go into 1014 // the same section together to reduce amount of section switch statements. 1015 SmallVector<SectionCPs, 4> CPSections; 1016 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1017 const MachineConstantPoolEntry &CPE = CP[i]; 1018 unsigned Align = CPE.getAlignment(); 1019 1020 SectionKind Kind; 1021 switch (CPE.getRelocationInfo()) { 1022 default: llvm_unreachable("Unknown section kind"); 1023 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 1024 case 1: 1025 Kind = SectionKind::getReadOnlyWithRelLocal(); 1026 break; 1027 case 0: 1028 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) { 1029 case 4: Kind = SectionKind::getMergeableConst4(); break; 1030 case 8: Kind = SectionKind::getMergeableConst8(); break; 1031 case 16: Kind = SectionKind::getMergeableConst16();break; 1032 default: Kind = SectionKind::getMergeableConst(); break; 1033 } 1034 } 1035 1036 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1037 1038 // The number of sections are small, just do a linear search from the 1039 // last section to the first. 1040 bool Found = false; 1041 unsigned SecIdx = CPSections.size(); 1042 while (SecIdx != 0) { 1043 if (CPSections[--SecIdx].S == S) { 1044 Found = true; 1045 break; 1046 } 1047 } 1048 if (!Found) { 1049 SecIdx = CPSections.size(); 1050 CPSections.push_back(SectionCPs(S, Align)); 1051 } 1052 1053 if (Align > CPSections[SecIdx].Alignment) 1054 CPSections[SecIdx].Alignment = Align; 1055 CPSections[SecIdx].CPEs.push_back(i); 1056 } 1057 1058 // Now print stuff into the calculated sections. 1059 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1060 OutStreamer.SwitchSection(CPSections[i].S); 1061 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1062 1063 unsigned Offset = 0; 1064 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1065 unsigned CPI = CPSections[i].CPEs[j]; 1066 MachineConstantPoolEntry CPE = CP[CPI]; 1067 1068 // Emit inter-object padding for alignment. 1069 unsigned AlignMask = CPE.getAlignment() - 1; 1070 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1071 OutStreamer.EmitZeros(NewOffset - Offset); 1072 1073 Type *Ty = CPE.getType(); 1074 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty); 1075 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1076 1077 if (CPE.isMachineConstantPoolEntry()) 1078 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1079 else 1080 EmitGlobalConstant(CPE.Val.ConstVal); 1081 } 1082 } 1083 } 1084 1085 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1086 /// by the current function to the current output stream. 1087 /// 1088 void AsmPrinter::EmitJumpTableInfo() { 1089 const DataLayout *DL = MF->getTarget().getDataLayout(); 1090 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1091 if (!MJTI) return; 1092 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1093 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1094 if (JT.empty()) return; 1095 1096 // Pick the directive to use to print the jump table entries, and switch to 1097 // the appropriate section. 1098 const Function *F = MF->getFunction(); 1099 bool JTInDiffSection = false; 1100 if (// In PIC mode, we need to emit the jump table to the same section as the 1101 // function body itself, otherwise the label differences won't make sense. 1102 // FIXME: Need a better predicate for this: what about custom entries? 1103 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1104 // We should also do if the section name is NULL or function is declared 1105 // in discardable section 1106 // FIXME: this isn't the right predicate, should be based on the MCSection 1107 // for the function. 1108 F->isWeakForLinker()) { 1109 OutStreamer.SwitchSection( 1110 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 1111 } else { 1112 // Otherwise, drop it in the readonly section. 1113 const MCSection *ReadOnlySection = 1114 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1115 OutStreamer.SwitchSection(ReadOnlySection); 1116 JTInDiffSection = true; 1117 } 1118 1119 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout()))); 1120 1121 // Jump tables in code sections are marked with a data_region directive 1122 // where that's supported. 1123 if (!JTInDiffSection) 1124 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1125 1126 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1127 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1128 1129 // If this jump table was deleted, ignore it. 1130 if (JTBBs.empty()) continue; 1131 1132 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1133 // .set directive for each unique entry. This reduces the number of 1134 // relocations the assembler will generate for the jump table. 1135 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1136 MAI->hasSetDirective()) { 1137 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1138 const TargetLowering *TLI = TM.getTargetLowering(); 1139 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1140 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1141 const MachineBasicBlock *MBB = JTBBs[ii]; 1142 if (!EmittedSets.insert(MBB)) continue; 1143 1144 // .set LJTSet, LBB32-base 1145 const MCExpr *LHS = 1146 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1147 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1148 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1149 } 1150 } 1151 1152 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1153 // before each jump table. The first label is never referenced, but tells 1154 // the assembler and linker the extents of the jump table object. The 1155 // second label is actually referenced by the code. 1156 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1157 // FIXME: This doesn't have to have any specific name, just any randomly 1158 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1159 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1160 1161 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1162 1163 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1164 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1165 } 1166 if (!JTInDiffSection) 1167 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1168 } 1169 1170 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1171 /// current stream. 1172 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1173 const MachineBasicBlock *MBB, 1174 unsigned UID) const { 1175 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1176 const MCExpr *Value = nullptr; 1177 switch (MJTI->getEntryKind()) { 1178 case MachineJumpTableInfo::EK_Inline: 1179 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1180 case MachineJumpTableInfo::EK_Custom32: 1181 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1182 OutContext); 1183 break; 1184 case MachineJumpTableInfo::EK_BlockAddress: 1185 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1186 // .word LBB123 1187 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1188 break; 1189 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1190 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1191 // with a relocation as gp-relative, e.g.: 1192 // .gprel32 LBB123 1193 MCSymbol *MBBSym = MBB->getSymbol(); 1194 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1195 return; 1196 } 1197 1198 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1199 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1200 // with a relocation as gp-relative, e.g.: 1201 // .gpdword LBB123 1202 MCSymbol *MBBSym = MBB->getSymbol(); 1203 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1204 return; 1205 } 1206 1207 case MachineJumpTableInfo::EK_LabelDifference32: { 1208 // EK_LabelDifference32 - Each entry is the address of the block minus 1209 // the address of the jump table. This is used for PIC jump tables where 1210 // gprel32 is not supported. e.g.: 1211 // .word LBB123 - LJTI1_2 1212 // If the .set directive is supported, this is emitted as: 1213 // .set L4_5_set_123, LBB123 - LJTI1_2 1214 // .word L4_5_set_123 1215 1216 // If we have emitted set directives for the jump table entries, print 1217 // them rather than the entries themselves. If we're emitting PIC, then 1218 // emit the table entries as differences between two text section labels. 1219 if (MAI->hasSetDirective()) { 1220 // If we used .set, reference the .set's symbol. 1221 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1222 OutContext); 1223 break; 1224 } 1225 // Otherwise, use the difference as the jump table entry. 1226 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1227 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1228 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1229 break; 1230 } 1231 } 1232 1233 assert(Value && "Unknown entry kind!"); 1234 1235 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout()); 1236 OutStreamer.EmitValue(Value, EntrySize); 1237 } 1238 1239 1240 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1241 /// special global used by LLVM. If so, emit it and return true, otherwise 1242 /// do nothing and return false. 1243 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1244 if (GV->getName() == "llvm.used") { 1245 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1246 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1247 return true; 1248 } 1249 1250 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1251 if (GV->getSection() == "llvm.metadata" || 1252 GV->hasAvailableExternallyLinkage()) 1253 return true; 1254 1255 if (!GV->hasAppendingLinkage()) return false; 1256 1257 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1258 1259 if (GV->getName() == "llvm.global_ctors") { 1260 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1261 1262 if (TM.getRelocationModel() == Reloc::Static && 1263 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1264 StringRef Sym(".constructors_used"); 1265 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1266 MCSA_Reference); 1267 } 1268 return true; 1269 } 1270 1271 if (GV->getName() == "llvm.global_dtors") { 1272 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1273 1274 if (TM.getRelocationModel() == Reloc::Static && 1275 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1276 StringRef Sym(".destructors_used"); 1277 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1278 MCSA_Reference); 1279 } 1280 return true; 1281 } 1282 1283 return false; 1284 } 1285 1286 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1287 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1288 /// is true, as being used with this directive. 1289 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1290 // Should be an array of 'i8*'. 1291 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1292 const GlobalValue *GV = 1293 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1294 if (GV) 1295 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1296 } 1297 } 1298 1299 namespace { 1300 struct Structor { 1301 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1302 int Priority; 1303 llvm::Constant *Func; 1304 llvm::GlobalValue *ComdatKey; 1305 }; 1306 } // end namespace 1307 1308 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1309 /// priority. 1310 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1311 // Should be an array of '{ int, void ()* }' structs. The first value is the 1312 // init priority. 1313 if (!isa<ConstantArray>(List)) return; 1314 1315 // Sanity check the structors list. 1316 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1317 if (!InitList) return; // Not an array! 1318 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1319 // FIXME: Only allow the 3-field form in LLVM 4.0. 1320 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1321 return; // Not an array of two or three elements! 1322 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1323 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1324 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1325 return; // Not (int, ptr, ptr). 1326 1327 // Gather the structors in a form that's convenient for sorting by priority. 1328 SmallVector<Structor, 8> Structors; 1329 for (Value *O : InitList->operands()) { 1330 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1331 if (!CS) continue; // Malformed. 1332 if (CS->getOperand(1)->isNullValue()) 1333 break; // Found a null terminator, skip the rest. 1334 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1335 if (!Priority) continue; // Malformed. 1336 Structors.push_back(Structor()); 1337 Structor &S = Structors.back(); 1338 S.Priority = Priority->getLimitedValue(65535); 1339 S.Func = CS->getOperand(1); 1340 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1341 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1342 } 1343 1344 // Emit the function pointers in the target-specific order 1345 const DataLayout *DL = TM.getDataLayout(); 1346 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1347 std::stable_sort(Structors.begin(), Structors.end(), 1348 [](const Structor &L, 1349 const Structor &R) { return L.Priority < R.Priority; }); 1350 for (Structor &S : Structors) { 1351 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1352 const MCSymbol *KeySym = nullptr; 1353 const MCSection *KeySec = nullptr; 1354 if (S.ComdatKey) { 1355 KeySym = getSymbol(S.ComdatKey); 1356 KeySec = getObjFileLowering().SectionForGlobal(S.ComdatKey, *Mang, TM); 1357 } 1358 const MCSection *OutputSection = 1359 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym, KeySec) 1360 : Obj.getStaticDtorSection(S.Priority, KeySym, KeySec)); 1361 OutStreamer.SwitchSection(OutputSection); 1362 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1363 EmitAlignment(Align); 1364 EmitXXStructor(S.Func); 1365 } 1366 } 1367 1368 void AsmPrinter::EmitModuleIdents(Module &M) { 1369 if (!MAI->hasIdentDirective()) 1370 return; 1371 1372 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1373 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1374 const MDNode *N = NMD->getOperand(i); 1375 assert(N->getNumOperands() == 1 && 1376 "llvm.ident metadata entry can have only one operand"); 1377 const MDString *S = cast<MDString>(N->getOperand(0)); 1378 OutStreamer.EmitIdent(S->getString()); 1379 } 1380 } 1381 } 1382 1383 //===--------------------------------------------------------------------===// 1384 // Emission and print routines 1385 // 1386 1387 /// EmitInt8 - Emit a byte directive and value. 1388 /// 1389 void AsmPrinter::EmitInt8(int Value) const { 1390 OutStreamer.EmitIntValue(Value, 1); 1391 } 1392 1393 /// EmitInt16 - Emit a short directive and value. 1394 /// 1395 void AsmPrinter::EmitInt16(int Value) const { 1396 OutStreamer.EmitIntValue(Value, 2); 1397 } 1398 1399 /// EmitInt32 - Emit a long directive and value. 1400 /// 1401 void AsmPrinter::EmitInt32(int Value) const { 1402 OutStreamer.EmitIntValue(Value, 4); 1403 } 1404 1405 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1406 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1407 /// labels. This implicitly uses .set if it is available. 1408 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1409 unsigned Size) const { 1410 // Get the Hi-Lo expression. 1411 const MCExpr *Diff = 1412 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1413 MCSymbolRefExpr::Create(Lo, OutContext), 1414 OutContext); 1415 1416 if (!MAI->hasSetDirective()) { 1417 OutStreamer.EmitValue(Diff, Size); 1418 return; 1419 } 1420 1421 // Otherwise, emit with .set (aka assignment). 1422 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1423 OutStreamer.EmitAssignment(SetLabel, Diff); 1424 OutStreamer.EmitSymbolValue(SetLabel, Size); 1425 } 1426 1427 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1428 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1429 /// specify the labels. This implicitly uses .set if it is available. 1430 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1431 const MCSymbol *Lo, 1432 unsigned Size) const { 1433 1434 // Emit Hi+Offset - Lo 1435 // Get the Hi+Offset expression. 1436 const MCExpr *Plus = 1437 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1438 MCConstantExpr::Create(Offset, OutContext), 1439 OutContext); 1440 1441 // Get the Hi+Offset-Lo expression. 1442 const MCExpr *Diff = 1443 MCBinaryExpr::CreateSub(Plus, 1444 MCSymbolRefExpr::Create(Lo, OutContext), 1445 OutContext); 1446 1447 if (!MAI->hasSetDirective()) 1448 OutStreamer.EmitValue(Diff, Size); 1449 else { 1450 // Otherwise, emit with .set (aka assignment). 1451 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1452 OutStreamer.EmitAssignment(SetLabel, Diff); 1453 OutStreamer.EmitSymbolValue(SetLabel, Size); 1454 } 1455 } 1456 1457 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1458 /// where the size in bytes of the directive is specified by Size and Label 1459 /// specifies the label. This implicitly uses .set if it is available. 1460 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1461 unsigned Size, 1462 bool IsSectionRelative) const { 1463 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1464 OutStreamer.EmitCOFFSecRel32(Label); 1465 return; 1466 } 1467 1468 // Emit Label+Offset (or just Label if Offset is zero) 1469 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1470 if (Offset) 1471 Expr = MCBinaryExpr::CreateAdd( 1472 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1473 1474 OutStreamer.EmitValue(Expr, Size); 1475 } 1476 1477 //===----------------------------------------------------------------------===// 1478 1479 // EmitAlignment - Emit an alignment directive to the specified power of 1480 // two boundary. For example, if you pass in 3 here, you will get an 8 1481 // byte alignment. If a global value is specified, and if that global has 1482 // an explicit alignment requested, it will override the alignment request 1483 // if required for correctness. 1484 // 1485 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1486 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits); 1487 1488 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1489 1490 if (getCurrentSection()->getKind().isText()) 1491 OutStreamer.EmitCodeAlignment(1 << NumBits); 1492 else 1493 OutStreamer.EmitValueToAlignment(1 << NumBits); 1494 } 1495 1496 //===----------------------------------------------------------------------===// 1497 // Constant emission. 1498 //===----------------------------------------------------------------------===// 1499 1500 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1501 /// 1502 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1503 MCContext &Ctx = AP.OutContext; 1504 1505 if (CV->isNullValue() || isa<UndefValue>(CV)) 1506 return MCConstantExpr::Create(0, Ctx); 1507 1508 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1509 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1510 1511 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1512 return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx); 1513 1514 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1515 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1516 1517 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1518 if (!CE) { 1519 llvm_unreachable("Unknown constant value to lower!"); 1520 } 1521 1522 if (const MCExpr *RelocExpr = 1523 AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang, 1524 AP.TM)) 1525 return RelocExpr; 1526 1527 switch (CE->getOpcode()) { 1528 default: 1529 // If the code isn't optimized, there may be outstanding folding 1530 // opportunities. Attempt to fold the expression using DataLayout as a 1531 // last resort before giving up. 1532 if (Constant *C = 1533 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) 1534 if (C != CE) 1535 return lowerConstant(C, AP); 1536 1537 // Otherwise report the problem to the user. 1538 { 1539 std::string S; 1540 raw_string_ostream OS(S); 1541 OS << "Unsupported expression in static initializer: "; 1542 CE->printAsOperand(OS, /*PrintType=*/false, 1543 !AP.MF ? nullptr : AP.MF->getFunction()->getParent()); 1544 report_fatal_error(OS.str()); 1545 } 1546 case Instruction::GetElementPtr: { 1547 const DataLayout &DL = *AP.TM.getDataLayout(); 1548 // Generate a symbolic expression for the byte address 1549 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1550 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1551 1552 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1553 if (!OffsetAI) 1554 return Base; 1555 1556 int64_t Offset = OffsetAI.getSExtValue(); 1557 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1558 Ctx); 1559 } 1560 1561 case Instruction::Trunc: 1562 // We emit the value and depend on the assembler to truncate the generated 1563 // expression properly. This is important for differences between 1564 // blockaddress labels. Since the two labels are in the same function, it 1565 // is reasonable to treat their delta as a 32-bit value. 1566 // FALL THROUGH. 1567 case Instruction::BitCast: 1568 return lowerConstant(CE->getOperand(0), AP); 1569 1570 case Instruction::IntToPtr: { 1571 const DataLayout &DL = *AP.TM.getDataLayout(); 1572 // Handle casts to pointers by changing them into casts to the appropriate 1573 // integer type. This promotes constant folding and simplifies this code. 1574 Constant *Op = CE->getOperand(0); 1575 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1576 false/*ZExt*/); 1577 return lowerConstant(Op, AP); 1578 } 1579 1580 case Instruction::PtrToInt: { 1581 const DataLayout &DL = *AP.TM.getDataLayout(); 1582 // Support only foldable casts to/from pointers that can be eliminated by 1583 // changing the pointer to the appropriately sized integer type. 1584 Constant *Op = CE->getOperand(0); 1585 Type *Ty = CE->getType(); 1586 1587 const MCExpr *OpExpr = lowerConstant(Op, AP); 1588 1589 // We can emit the pointer value into this slot if the slot is an 1590 // integer slot equal to the size of the pointer. 1591 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1592 return OpExpr; 1593 1594 // Otherwise the pointer is smaller than the resultant integer, mask off 1595 // the high bits so we are sure to get a proper truncation if the input is 1596 // a constant expr. 1597 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1598 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1599 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1600 } 1601 1602 // The MC library also has a right-shift operator, but it isn't consistently 1603 // signed or unsigned between different targets. 1604 case Instruction::Add: 1605 case Instruction::Sub: 1606 case Instruction::Mul: 1607 case Instruction::SDiv: 1608 case Instruction::SRem: 1609 case Instruction::Shl: 1610 case Instruction::And: 1611 case Instruction::Or: 1612 case Instruction::Xor: { 1613 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1614 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1615 switch (CE->getOpcode()) { 1616 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1617 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1618 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1619 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1620 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1621 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1622 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1623 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1624 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1625 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1626 } 1627 } 1628 } 1629 } 1630 1631 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP); 1632 1633 /// isRepeatedByteSequence - Determine whether the given value is 1634 /// composed of a repeated sequence of identical bytes and return the 1635 /// byte value. If it is not a repeated sequence, return -1. 1636 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1637 StringRef Data = V->getRawDataValues(); 1638 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1639 char C = Data[0]; 1640 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1641 if (Data[i] != C) return -1; 1642 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1643 } 1644 1645 1646 /// isRepeatedByteSequence - Determine whether the given value is 1647 /// composed of a repeated sequence of identical bytes and return the 1648 /// byte value. If it is not a repeated sequence, return -1. 1649 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1650 1651 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1652 if (CI->getBitWidth() > 64) return -1; 1653 1654 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType()); 1655 uint64_t Value = CI->getZExtValue(); 1656 1657 // Make sure the constant is at least 8 bits long and has a power 1658 // of 2 bit width. This guarantees the constant bit width is 1659 // always a multiple of 8 bits, avoiding issues with padding out 1660 // to Size and other such corner cases. 1661 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1662 1663 uint8_t Byte = static_cast<uint8_t>(Value); 1664 1665 for (unsigned i = 1; i < Size; ++i) { 1666 Value >>= 8; 1667 if (static_cast<uint8_t>(Value) != Byte) return -1; 1668 } 1669 return Byte; 1670 } 1671 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1672 // Make sure all array elements are sequences of the same repeated 1673 // byte. 1674 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1675 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1676 if (Byte == -1) return -1; 1677 1678 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1679 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1680 if (ThisByte == -1) return -1; 1681 if (Byte != ThisByte) return -1; 1682 } 1683 return Byte; 1684 } 1685 1686 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1687 return isRepeatedByteSequence(CDS); 1688 1689 return -1; 1690 } 1691 1692 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1693 AsmPrinter &AP){ 1694 1695 // See if we can aggregate this into a .fill, if so, emit it as such. 1696 int Value = isRepeatedByteSequence(CDS, AP.TM); 1697 if (Value != -1) { 1698 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType()); 1699 // Don't emit a 1-byte object as a .fill. 1700 if (Bytes > 1) 1701 return AP.OutStreamer.EmitFill(Bytes, Value); 1702 } 1703 1704 // If this can be emitted with .ascii/.asciz, emit it as such. 1705 if (CDS->isString()) 1706 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1707 1708 // Otherwise, emit the values in successive locations. 1709 unsigned ElementByteSize = CDS->getElementByteSize(); 1710 if (isa<IntegerType>(CDS->getElementType())) { 1711 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1712 if (AP.isVerbose()) 1713 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1714 CDS->getElementAsInteger(i)); 1715 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1716 ElementByteSize); 1717 } 1718 } else if (ElementByteSize == 4) { 1719 // FP Constants are printed as integer constants to avoid losing 1720 // precision. 1721 assert(CDS->getElementType()->isFloatTy()); 1722 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1723 union { 1724 float F; 1725 uint32_t I; 1726 }; 1727 1728 F = CDS->getElementAsFloat(i); 1729 if (AP.isVerbose()) 1730 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1731 AP.OutStreamer.EmitIntValue(I, 4); 1732 } 1733 } else { 1734 assert(CDS->getElementType()->isDoubleTy()); 1735 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1736 union { 1737 double F; 1738 uint64_t I; 1739 }; 1740 1741 F = CDS->getElementAsDouble(i); 1742 if (AP.isVerbose()) 1743 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1744 AP.OutStreamer.EmitIntValue(I, 8); 1745 } 1746 } 1747 1748 const DataLayout &DL = *AP.TM.getDataLayout(); 1749 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1750 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1751 CDS->getNumElements(); 1752 if (unsigned Padding = Size - EmittedSize) 1753 AP.OutStreamer.EmitZeros(Padding); 1754 1755 } 1756 1757 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) { 1758 // See if we can aggregate some values. Make sure it can be 1759 // represented as a series of bytes of the constant value. 1760 int Value = isRepeatedByteSequence(CA, AP.TM); 1761 1762 if (Value != -1) { 1763 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType()); 1764 AP.OutStreamer.EmitFill(Bytes, Value); 1765 } 1766 else { 1767 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1768 emitGlobalConstantImpl(CA->getOperand(i), AP); 1769 } 1770 } 1771 1772 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1773 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1774 emitGlobalConstantImpl(CV->getOperand(i), AP); 1775 1776 const DataLayout &DL = *AP.TM.getDataLayout(); 1777 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1778 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1779 CV->getType()->getNumElements(); 1780 if (unsigned Padding = Size - EmittedSize) 1781 AP.OutStreamer.EmitZeros(Padding); 1782 } 1783 1784 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) { 1785 // Print the fields in successive locations. Pad to align if needed! 1786 const DataLayout *DL = AP.TM.getDataLayout(); 1787 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1788 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1789 uint64_t SizeSoFar = 0; 1790 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1791 const Constant *Field = CS->getOperand(i); 1792 1793 // Check if padding is needed and insert one or more 0s. 1794 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1795 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1796 - Layout->getElementOffset(i)) - FieldSize; 1797 SizeSoFar += FieldSize + PadSize; 1798 1799 // Now print the actual field value. 1800 emitGlobalConstantImpl(Field, AP); 1801 1802 // Insert padding - this may include padding to increase the size of the 1803 // current field up to the ABI size (if the struct is not packed) as well 1804 // as padding to ensure that the next field starts at the right offset. 1805 AP.OutStreamer.EmitZeros(PadSize); 1806 } 1807 assert(SizeSoFar == Layout->getSizeInBytes() && 1808 "Layout of constant struct may be incorrect!"); 1809 } 1810 1811 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1812 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1813 1814 // First print a comment with what we think the original floating-point value 1815 // should have been. 1816 if (AP.isVerbose()) { 1817 SmallString<8> StrVal; 1818 CFP->getValueAPF().toString(StrVal); 1819 1820 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1821 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1822 } 1823 1824 // Now iterate through the APInt chunks, emitting them in endian-correct 1825 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1826 // floats). 1827 unsigned NumBytes = API.getBitWidth() / 8; 1828 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1829 const uint64_t *p = API.getRawData(); 1830 1831 // PPC's long double has odd notions of endianness compared to how LLVM 1832 // handles it: p[0] goes first for *big* endian on PPC. 1833 if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) { 1834 int Chunk = API.getNumWords() - 1; 1835 1836 if (TrailingBytes) 1837 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1838 1839 for (; Chunk >= 0; --Chunk) 1840 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1841 } else { 1842 unsigned Chunk; 1843 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1844 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1845 1846 if (TrailingBytes) 1847 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1848 } 1849 1850 // Emit the tail padding for the long double. 1851 const DataLayout &DL = *AP.TM.getDataLayout(); 1852 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1853 DL.getTypeStoreSize(CFP->getType())); 1854 } 1855 1856 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1857 const DataLayout *DL = AP.TM.getDataLayout(); 1858 unsigned BitWidth = CI->getBitWidth(); 1859 1860 // Copy the value as we may massage the layout for constants whose bit width 1861 // is not a multiple of 64-bits. 1862 APInt Realigned(CI->getValue()); 1863 uint64_t ExtraBits = 0; 1864 unsigned ExtraBitsSize = BitWidth & 63; 1865 1866 if (ExtraBitsSize) { 1867 // The bit width of the data is not a multiple of 64-bits. 1868 // The extra bits are expected to be at the end of the chunk of the memory. 1869 // Little endian: 1870 // * Nothing to be done, just record the extra bits to emit. 1871 // Big endian: 1872 // * Record the extra bits to emit. 1873 // * Realign the raw data to emit the chunks of 64-bits. 1874 if (DL->isBigEndian()) { 1875 // Basically the structure of the raw data is a chunk of 64-bits cells: 1876 // 0 1 BitWidth / 64 1877 // [chunk1][chunk2] ... [chunkN]. 1878 // The most significant chunk is chunkN and it should be emitted first. 1879 // However, due to the alignment issue chunkN contains useless bits. 1880 // Realign the chunks so that they contain only useless information: 1881 // ExtraBits 0 1 (BitWidth / 64) - 1 1882 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 1883 ExtraBits = Realigned.getRawData()[0] & 1884 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 1885 Realigned = Realigned.lshr(ExtraBitsSize); 1886 } else 1887 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 1888 } 1889 1890 // We don't expect assemblers to support integer data directives 1891 // for more than 64 bits, so we emit the data in at most 64-bit 1892 // quantities at a time. 1893 const uint64_t *RawData = Realigned.getRawData(); 1894 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1895 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1896 AP.OutStreamer.EmitIntValue(Val, 8); 1897 } 1898 1899 if (ExtraBitsSize) { 1900 // Emit the extra bits after the 64-bits chunks. 1901 1902 // Emit a directive that fills the expected size. 1903 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType()); 1904 Size -= (BitWidth / 64) * 8; 1905 assert(Size && Size * 8 >= ExtraBitsSize && 1906 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 1907 == ExtraBits && "Directive too small for extra bits."); 1908 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 1909 } 1910 } 1911 1912 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) { 1913 const DataLayout *DL = AP.TM.getDataLayout(); 1914 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 1915 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1916 return AP.OutStreamer.EmitZeros(Size); 1917 1918 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1919 switch (Size) { 1920 case 1: 1921 case 2: 1922 case 4: 1923 case 8: 1924 if (AP.isVerbose()) 1925 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1926 CI->getZExtValue()); 1927 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 1928 return; 1929 default: 1930 emitGlobalConstantLargeInt(CI, AP); 1931 return; 1932 } 1933 } 1934 1935 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1936 return emitGlobalConstantFP(CFP, AP); 1937 1938 if (isa<ConstantPointerNull>(CV)) { 1939 AP.OutStreamer.EmitIntValue(0, Size); 1940 return; 1941 } 1942 1943 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1944 return emitGlobalConstantDataSequential(CDS, AP); 1945 1946 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1947 return emitGlobalConstantArray(CVA, AP); 1948 1949 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1950 return emitGlobalConstantStruct(CVS, AP); 1951 1952 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 1953 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 1954 // vectors). 1955 if (CE->getOpcode() == Instruction::BitCast) 1956 return emitGlobalConstantImpl(CE->getOperand(0), AP); 1957 1958 if (Size > 8) { 1959 // If the constant expression's size is greater than 64-bits, then we have 1960 // to emit the value in chunks. Try to constant fold the value and emit it 1961 // that way. 1962 Constant *New = ConstantFoldConstantExpression(CE, DL); 1963 if (New && New != CE) 1964 return emitGlobalConstantImpl(New, AP); 1965 } 1966 } 1967 1968 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1969 return emitGlobalConstantVector(V, AP); 1970 1971 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1972 // thread the streamer with EmitValue. 1973 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size); 1974 } 1975 1976 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1977 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 1978 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 1979 if (Size) 1980 emitGlobalConstantImpl(CV, *this); 1981 else if (MAI->hasSubsectionsViaSymbols()) { 1982 // If the global has zero size, emit a single byte so that two labels don't 1983 // look like they are at the same location. 1984 OutStreamer.EmitIntValue(0, 1); 1985 } 1986 } 1987 1988 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1989 // Target doesn't support this yet! 1990 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1991 } 1992 1993 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1994 if (Offset > 0) 1995 OS << '+' << Offset; 1996 else if (Offset < 0) 1997 OS << Offset; 1998 } 1999 2000 //===----------------------------------------------------------------------===// 2001 // Symbol Lowering Routines. 2002 //===----------------------------------------------------------------------===// 2003 2004 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 2005 /// temporary label with the specified stem and unique ID. 2006 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const { 2007 const DataLayout *DL = TM.getDataLayout(); 2008 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2009 Name + Twine(ID)); 2010 } 2011 2012 /// GetTempSymbol - Return an assembler temporary label with the specified 2013 /// stem. 2014 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const { 2015 const DataLayout *DL = TM.getDataLayout(); 2016 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2017 Name); 2018 } 2019 2020 2021 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2022 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2023 } 2024 2025 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2026 return MMI->getAddrLabelSymbol(BB); 2027 } 2028 2029 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2030 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2031 const DataLayout *DL = TM.getDataLayout(); 2032 return OutContext.GetOrCreateSymbol 2033 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2034 + "_" + Twine(CPID)); 2035 } 2036 2037 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2038 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2039 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2040 } 2041 2042 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2043 /// FIXME: privatize to AsmPrinter. 2044 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2045 const DataLayout *DL = TM.getDataLayout(); 2046 return OutContext.GetOrCreateSymbol 2047 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2048 Twine(UID) + "_set_" + Twine(MBBID)); 2049 } 2050 2051 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2052 StringRef Suffix) const { 2053 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2054 TM); 2055 } 2056 2057 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2058 /// ExternalSymbol. 2059 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2060 SmallString<60> NameStr; 2061 Mang->getNameWithPrefix(NameStr, Sym); 2062 return OutContext.GetOrCreateSymbol(NameStr.str()); 2063 } 2064 2065 2066 2067 /// PrintParentLoopComment - Print comments about parent loops of this one. 2068 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2069 unsigned FunctionNumber) { 2070 if (!Loop) return; 2071 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2072 OS.indent(Loop->getLoopDepth()*2) 2073 << "Parent Loop BB" << FunctionNumber << "_" 2074 << Loop->getHeader()->getNumber() 2075 << " Depth=" << Loop->getLoopDepth() << '\n'; 2076 } 2077 2078 2079 /// PrintChildLoopComment - Print comments about child loops within 2080 /// the loop for this basic block, with nesting. 2081 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2082 unsigned FunctionNumber) { 2083 // Add child loop information 2084 for (const MachineLoop *CL : *Loop) { 2085 OS.indent(CL->getLoopDepth()*2) 2086 << "Child Loop BB" << FunctionNumber << "_" 2087 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2088 << '\n'; 2089 PrintChildLoopComment(OS, CL, FunctionNumber); 2090 } 2091 } 2092 2093 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2094 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2095 const MachineLoopInfo *LI, 2096 const AsmPrinter &AP) { 2097 // Add loop depth information 2098 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2099 if (!Loop) return; 2100 2101 MachineBasicBlock *Header = Loop->getHeader(); 2102 assert(Header && "No header for loop"); 2103 2104 // If this block is not a loop header, just print out what is the loop header 2105 // and return. 2106 if (Header != &MBB) { 2107 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2108 Twine(AP.getFunctionNumber())+"_" + 2109 Twine(Loop->getHeader()->getNumber())+ 2110 " Depth="+Twine(Loop->getLoopDepth())); 2111 return; 2112 } 2113 2114 // Otherwise, it is a loop header. Print out information about child and 2115 // parent loops. 2116 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2117 2118 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2119 2120 OS << "=>"; 2121 OS.indent(Loop->getLoopDepth()*2-2); 2122 2123 OS << "This "; 2124 if (Loop->empty()) 2125 OS << "Inner "; 2126 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2127 2128 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2129 } 2130 2131 2132 /// EmitBasicBlockStart - This method prints the label for the specified 2133 /// MachineBasicBlock, an alignment (if present) and a comment describing 2134 /// it if appropriate. 2135 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2136 // Emit an alignment directive for this block, if needed. 2137 if (unsigned Align = MBB.getAlignment()) 2138 EmitAlignment(Align); 2139 2140 // If the block has its address taken, emit any labels that were used to 2141 // reference the block. It is possible that there is more than one label 2142 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2143 // the references were generated. 2144 if (MBB.hasAddressTaken()) { 2145 const BasicBlock *BB = MBB.getBasicBlock(); 2146 if (isVerbose()) 2147 OutStreamer.AddComment("Block address taken"); 2148 2149 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB); 2150 for (auto *Sym : Symbols) 2151 OutStreamer.EmitLabel(Sym); 2152 } 2153 2154 // Print some verbose block comments. 2155 if (isVerbose()) { 2156 if (const BasicBlock *BB = MBB.getBasicBlock()) 2157 if (BB->hasName()) 2158 OutStreamer.AddComment("%" + BB->getName()); 2159 emitBasicBlockLoopComments(MBB, LI, *this); 2160 } 2161 2162 // Print the main label for the block. 2163 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2164 if (isVerbose()) { 2165 // NOTE: Want this comment at start of line, don't emit with AddComment. 2166 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2167 } 2168 } else { 2169 OutStreamer.EmitLabel(MBB.getSymbol()); 2170 } 2171 } 2172 2173 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2174 bool IsDefinition) const { 2175 MCSymbolAttr Attr = MCSA_Invalid; 2176 2177 switch (Visibility) { 2178 default: break; 2179 case GlobalValue::HiddenVisibility: 2180 if (IsDefinition) 2181 Attr = MAI->getHiddenVisibilityAttr(); 2182 else 2183 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2184 break; 2185 case GlobalValue::ProtectedVisibility: 2186 Attr = MAI->getProtectedVisibilityAttr(); 2187 break; 2188 } 2189 2190 if (Attr != MCSA_Invalid) 2191 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2192 } 2193 2194 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2195 /// exactly one predecessor and the control transfer mechanism between 2196 /// the predecessor and this block is a fall-through. 2197 bool AsmPrinter:: 2198 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2199 // If this is a landing pad, it isn't a fall through. If it has no preds, 2200 // then nothing falls through to it. 2201 if (MBB->isLandingPad() || MBB->pred_empty()) 2202 return false; 2203 2204 // If there isn't exactly one predecessor, it can't be a fall through. 2205 if (MBB->pred_size() > 1) 2206 return false; 2207 2208 // The predecessor has to be immediately before this block. 2209 MachineBasicBlock *Pred = *MBB->pred_begin(); 2210 if (!Pred->isLayoutSuccessor(MBB)) 2211 return false; 2212 2213 // If the block is completely empty, then it definitely does fall through. 2214 if (Pred->empty()) 2215 return true; 2216 2217 // Check the terminators in the previous blocks 2218 for (const auto &MI : Pred->terminators()) { 2219 // If it is not a simple branch, we are in a table somewhere. 2220 if (!MI.isBranch() || MI.isIndirectBranch()) 2221 return false; 2222 2223 // If we are the operands of one of the branches, this is not a fall 2224 // through. Note that targets with delay slots will usually bundle 2225 // terminators with the delay slot instruction. 2226 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2227 if (OP->isJTI()) 2228 return false; 2229 if (OP->isMBB() && OP->getMBB() == MBB) 2230 return false; 2231 } 2232 } 2233 2234 return true; 2235 } 2236 2237 2238 2239 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2240 if (!S.usesMetadata()) 2241 return nullptr; 2242 2243 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2244 gcp_map_type::iterator GCPI = GCMap.find(&S); 2245 if (GCPI != GCMap.end()) 2246 return GCPI->second.get(); 2247 2248 const char *Name = S.getName().c_str(); 2249 2250 for (GCMetadataPrinterRegistry::iterator 2251 I = GCMetadataPrinterRegistry::begin(), 2252 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2253 if (strcmp(Name, I->getName()) == 0) { 2254 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2255 GMP->S = &S; 2256 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2257 return IterBool.first->second.get(); 2258 } 2259 2260 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2261 } 2262 2263 /// Pin vtable to this file. 2264 AsmPrinterHandler::~AsmPrinterHandler() {} 2265