1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/ObjectUtils.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 54 #include "llvm/IR/BasicBlock.h" 55 #include "llvm/IR/Comdat.h" 56 #include "llvm/IR/Constant.h" 57 #include "llvm/IR/Constants.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/DebugInfoMetadata.h" 60 #include "llvm/IR/DerivedTypes.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/GlobalAlias.h" 63 #include "llvm/IR/GlobalIFunc.h" 64 #include "llvm/IR/GlobalIndirectSymbol.h" 65 #include "llvm/IR/GlobalObject.h" 66 #include "llvm/IR/GlobalValue.h" 67 #include "llvm/IR/GlobalVariable.h" 68 #include "llvm/IR/Instruction.h" 69 #include "llvm/IR/Mangler.h" 70 #include "llvm/IR/Metadata.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Operator.h" 73 #include "llvm/IR/Type.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/MC/MCAsmInfo.h" 76 #include "llvm/MC/MCCodePadder.h" 77 #include "llvm/MC/MCContext.h" 78 #include "llvm/MC/MCDirectives.h" 79 #include "llvm/MC/MCDwarf.h" 80 #include "llvm/MC/MCExpr.h" 81 #include "llvm/MC/MCInst.h" 82 #include "llvm/MC/MCSection.h" 83 #include "llvm/MC/MCSectionELF.h" 84 #include "llvm/MC/MCSectionMachO.h" 85 #include "llvm/MC/MCStreamer.h" 86 #include "llvm/MC/MCSubtargetInfo.h" 87 #include "llvm/MC/MCSymbol.h" 88 #include "llvm/MC/MCSymbolELF.h" 89 #include "llvm/MC/MCTargetOptions.h" 90 #include "llvm/MC/MCValue.h" 91 #include "llvm/MC/SectionKind.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/ErrorHandling.h" 97 #include "llvm/Support/Format.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/Path.h" 100 #include "llvm/Support/TargetRegistry.h" 101 #include "llvm/Support/Timer.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Target/TargetFrameLowering.h" 104 #include "llvm/Target/TargetInstrInfo.h" 105 #include "llvm/Target/TargetLowering.h" 106 #include "llvm/Target/TargetLoweringObjectFile.h" 107 #include "llvm/Target/TargetMachine.h" 108 #include "llvm/Target/TargetOpcodes.h" 109 #include "llvm/Target/TargetOptions.h" 110 #include "llvm/Target/TargetRegisterInfo.h" 111 #include "llvm/Target/TargetSubtargetInfo.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cinttypes> 115 #include <cstdint> 116 #include <iterator> 117 #include <limits> 118 #include <memory> 119 #include <string> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "asm-printer" 126 127 static const char *const DWARFGroupName = "dwarf"; 128 static const char *const DWARFGroupDescription = "DWARF Emission"; 129 static const char *const DbgTimerName = "emit"; 130 static const char *const DbgTimerDescription = "Debug Info Emission"; 131 static const char *const EHTimerName = "write_exception"; 132 static const char *const EHTimerDescription = "DWARF Exception Writer"; 133 static const char *const CodeViewLineTablesGroupName = "linetables"; 134 static const char *const CodeViewLineTablesGroupDescription = 135 "CodeView Line Tables"; 136 137 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 138 139 static cl::opt<bool> 140 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 141 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 142 143 char AsmPrinter::ID = 0; 144 145 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 146 147 static gcp_map_type &getGCMap(void *&P) { 148 if (!P) 149 P = new gcp_map_type(); 150 return *(gcp_map_type*)P; 151 } 152 153 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 154 /// value in log2 form. This rounds up to the preferred alignment if possible 155 /// and legal. 156 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 157 unsigned InBits = 0) { 158 unsigned NumBits = 0; 159 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 160 NumBits = DL.getPreferredAlignmentLog(GVar); 161 162 // If InBits is specified, round it to it. 163 if (InBits > NumBits) 164 NumBits = InBits; 165 166 // If the GV has a specified alignment, take it into account. 167 if (GV->getAlignment() == 0) 168 return NumBits; 169 170 unsigned GVAlign = Log2_32(GV->getAlignment()); 171 172 // If the GVAlign is larger than NumBits, or if we are required to obey 173 // NumBits because the GV has an assigned section, obey it. 174 if (GVAlign > NumBits || GV->hasSection()) 175 NumBits = GVAlign; 176 return NumBits; 177 } 178 179 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 180 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 181 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 182 VerboseAsm = OutStreamer->isVerboseAsm(); 183 } 184 185 AsmPrinter::~AsmPrinter() { 186 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 187 188 if (GCMetadataPrinters) { 189 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 190 191 delete &GCMap; 192 GCMetadataPrinters = nullptr; 193 } 194 } 195 196 bool AsmPrinter::isPositionIndependent() const { 197 return TM.isPositionIndependent(); 198 } 199 200 /// getFunctionNumber - Return a unique ID for the current function. 201 unsigned AsmPrinter::getFunctionNumber() const { 202 return MF->getFunctionNumber(); 203 } 204 205 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 206 return *TM.getObjFileLowering(); 207 } 208 209 const DataLayout &AsmPrinter::getDataLayout() const { 210 return MMI->getModule()->getDataLayout(); 211 } 212 213 // Do not use the cached DataLayout because some client use it without a Module 214 // (llvm-dsymutil, llvm-dwarfdump). 215 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 216 217 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 218 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 219 return MF->getSubtarget<MCSubtargetInfo>(); 220 } 221 222 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 223 S.EmitInstruction(Inst, getSubtargetInfo()); 224 } 225 226 /// getCurrentSection() - Return the current section we are emitting to. 227 const MCSection *AsmPrinter::getCurrentSection() const { 228 return OutStreamer->getCurrentSectionOnly(); 229 } 230 231 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 232 AU.setPreservesAll(); 233 MachineFunctionPass::getAnalysisUsage(AU); 234 AU.addRequired<MachineModuleInfo>(); 235 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 236 AU.addRequired<GCModuleInfo>(); 237 AU.addRequired<MachineLoopInfo>(); 238 } 239 240 bool AsmPrinter::doInitialization(Module &M) { 241 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 242 243 // Initialize TargetLoweringObjectFile. 244 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 245 .Initialize(OutContext, TM); 246 247 OutStreamer->InitSections(false); 248 249 // Emit the version-min deplyment target directive if needed. 250 // 251 // FIXME: If we end up with a collection of these sorts of Darwin-specific 252 // or ELF-specific things, it may make sense to have a platform helper class 253 // that will work with the target helper class. For now keep it here, as the 254 // alternative is duplicated code in each of the target asm printers that 255 // use the directive, where it would need the same conditionalization 256 // anyway. 257 const Triple &TT = TM.getTargetTriple(); 258 // If there is a version specified, Major will be non-zero. 259 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 260 unsigned Major, Minor, Update; 261 MCVersionMinType VersionType; 262 if (TT.isWatchOS()) { 263 VersionType = MCVM_WatchOSVersionMin; 264 TT.getWatchOSVersion(Major, Minor, Update); 265 } else if (TT.isTvOS()) { 266 VersionType = MCVM_TvOSVersionMin; 267 TT.getiOSVersion(Major, Minor, Update); 268 } else if (TT.isMacOSX()) { 269 VersionType = MCVM_OSXVersionMin; 270 if (!TT.getMacOSXVersion(Major, Minor, Update)) 271 Major = 0; 272 } else { 273 VersionType = MCVM_IOSVersionMin; 274 TT.getiOSVersion(Major, Minor, Update); 275 } 276 if (Major != 0) 277 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 278 } 279 280 // Allow the target to emit any magic that it wants at the start of the file. 281 EmitStartOfAsmFile(M); 282 283 // Very minimal debug info. It is ignored if we emit actual debug info. If we 284 // don't, this at least helps the user find where a global came from. 285 if (MAI->hasSingleParameterDotFile()) { 286 // .file "foo.c" 287 OutStreamer->EmitFileDirective( 288 llvm::sys::path::filename(M.getSourceFileName())); 289 } 290 291 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 292 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 293 for (auto &I : *MI) 294 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 295 MP->beginAssembly(M, *MI, *this); 296 297 // Emit module-level inline asm if it exists. 298 if (!M.getModuleInlineAsm().empty()) { 299 // We're at the module level. Construct MCSubtarget from the default CPU 300 // and target triple. 301 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 302 TM.getTargetTriple().str(), TM.getTargetCPU(), 303 TM.getTargetFeatureString())); 304 OutStreamer->AddComment("Start of file scope inline assembly"); 305 OutStreamer->AddBlankLine(); 306 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 307 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 308 OutStreamer->AddComment("End of file scope inline assembly"); 309 OutStreamer->AddBlankLine(); 310 } 311 312 if (MAI->doesSupportDebugInformation()) { 313 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 314 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 315 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 316 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 317 DbgTimerName, DbgTimerDescription, 318 CodeViewLineTablesGroupName, 319 CodeViewLineTablesGroupDescription)); 320 } 321 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 322 DD = new DwarfDebug(this, &M); 323 DD->beginModule(); 324 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 325 DWARFGroupName, DWARFGroupDescription)); 326 } 327 } 328 329 switch (MAI->getExceptionHandlingType()) { 330 case ExceptionHandling::SjLj: 331 case ExceptionHandling::DwarfCFI: 332 case ExceptionHandling::ARM: 333 isCFIMoveForDebugging = true; 334 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 335 break; 336 for (auto &F: M.getFunctionList()) { 337 // If the module contains any function with unwind data, 338 // .eh_frame has to be emitted. 339 // Ignore functions that won't get emitted. 340 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 341 isCFIMoveForDebugging = false; 342 break; 343 } 344 } 345 break; 346 default: 347 isCFIMoveForDebugging = false; 348 break; 349 } 350 351 EHStreamer *ES = nullptr; 352 switch (MAI->getExceptionHandlingType()) { 353 case ExceptionHandling::None: 354 break; 355 case ExceptionHandling::SjLj: 356 case ExceptionHandling::DwarfCFI: 357 ES = new DwarfCFIException(this); 358 break; 359 case ExceptionHandling::ARM: 360 ES = new ARMException(this); 361 break; 362 case ExceptionHandling::WinEH: 363 switch (MAI->getWinEHEncodingType()) { 364 default: llvm_unreachable("unsupported unwinding information encoding"); 365 case WinEH::EncodingType::Invalid: 366 break; 367 case WinEH::EncodingType::X86: 368 case WinEH::EncodingType::Itanium: 369 ES = new WinException(this); 370 break; 371 } 372 break; 373 } 374 if (ES) 375 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 376 DWARFGroupName, DWARFGroupDescription)); 377 return false; 378 } 379 380 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 381 if (!MAI.hasWeakDefCanBeHiddenDirective()) 382 return false; 383 384 return canBeOmittedFromSymbolTable(GV); 385 } 386 387 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 388 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 389 switch (Linkage) { 390 case GlobalValue::CommonLinkage: 391 case GlobalValue::LinkOnceAnyLinkage: 392 case GlobalValue::LinkOnceODRLinkage: 393 case GlobalValue::WeakAnyLinkage: 394 case GlobalValue::WeakODRLinkage: 395 if (MAI->hasWeakDefDirective()) { 396 // .globl _foo 397 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 398 399 if (!canBeHidden(GV, *MAI)) 400 // .weak_definition _foo 401 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 402 else 403 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 404 } else if (MAI->hasLinkOnceDirective()) { 405 // .globl _foo 406 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 407 //NOTE: linkonce is handled by the section the symbol was assigned to. 408 } else { 409 // .weak _foo 410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 411 } 412 return; 413 case GlobalValue::ExternalLinkage: 414 // If external, declare as a global symbol: .globl _foo 415 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 416 return; 417 case GlobalValue::PrivateLinkage: 418 case GlobalValue::InternalLinkage: 419 return; 420 case GlobalValue::AppendingLinkage: 421 case GlobalValue::AvailableExternallyLinkage: 422 case GlobalValue::ExternalWeakLinkage: 423 llvm_unreachable("Should never emit this"); 424 } 425 llvm_unreachable("Unknown linkage type!"); 426 } 427 428 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 429 const GlobalValue *GV) const { 430 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 431 } 432 433 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 434 return TM.getSymbol(GV); 435 } 436 437 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 438 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 439 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 440 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 441 "No emulated TLS variables in the common section"); 442 443 // Never emit TLS variable xyz in emulated TLS model. 444 // The initialization value is in __emutls_t.xyz instead of xyz. 445 if (IsEmuTLSVar) 446 return; 447 448 if (GV->hasInitializer()) { 449 // Check to see if this is a special global used by LLVM, if so, emit it. 450 if (EmitSpecialLLVMGlobal(GV)) 451 return; 452 453 // Skip the emission of global equivalents. The symbol can be emitted later 454 // on by emitGlobalGOTEquivs in case it turns out to be needed. 455 if (GlobalGOTEquivs.count(getSymbol(GV))) 456 return; 457 458 if (isVerbose()) { 459 // When printing the control variable __emutls_v.*, 460 // we don't need to print the original TLS variable name. 461 GV->printAsOperand(OutStreamer->GetCommentOS(), 462 /*PrintType=*/false, GV->getParent()); 463 OutStreamer->GetCommentOS() << '\n'; 464 } 465 } 466 467 MCSymbol *GVSym = getSymbol(GV); 468 MCSymbol *EmittedSym = GVSym; 469 470 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 471 // attributes. 472 // GV's or GVSym's attributes will be used for the EmittedSym. 473 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 474 475 if (!GV->hasInitializer()) // External globals require no extra code. 476 return; 477 478 GVSym->redefineIfPossible(); 479 if (GVSym->isDefined() || GVSym->isVariable()) 480 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 481 "' is already defined"); 482 483 if (MAI->hasDotTypeDotSizeDirective()) 484 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 485 486 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 487 488 const DataLayout &DL = GV->getParent()->getDataLayout(); 489 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 490 491 // If the alignment is specified, we *must* obey it. Overaligning a global 492 // with a specified alignment is a prompt way to break globals emitted to 493 // sections and expected to be contiguous (e.g. ObjC metadata). 494 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 495 496 for (const HandlerInfo &HI : Handlers) { 497 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 498 HI.TimerGroupName, HI.TimerGroupDescription, 499 TimePassesIsEnabled); 500 HI.Handler->setSymbolSize(GVSym, Size); 501 } 502 503 // Handle common symbols 504 if (GVKind.isCommon()) { 505 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 506 unsigned Align = 1 << AlignLog; 507 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 508 Align = 0; 509 510 // .comm _foo, 42, 4 511 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 512 return; 513 } 514 515 // Determine to which section this global should be emitted. 516 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 517 518 // If we have a bss global going to a section that supports the 519 // zerofill directive, do so here. 520 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 521 TheSection->isVirtualSection()) { 522 if (Size == 0) 523 Size = 1; // zerofill of 0 bytes is undefined. 524 unsigned Align = 1 << AlignLog; 525 EmitLinkage(GV, GVSym); 526 // .zerofill __DATA, __bss, _foo, 400, 5 527 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 528 return; 529 } 530 531 // If this is a BSS local symbol and we are emitting in the BSS 532 // section use .lcomm/.comm directive. 533 if (GVKind.isBSSLocal() && 534 getObjFileLowering().getBSSSection() == TheSection) { 535 if (Size == 0) 536 Size = 1; // .comm Foo, 0 is undefined, avoid it. 537 unsigned Align = 1 << AlignLog; 538 539 // Use .lcomm only if it supports user-specified alignment. 540 // Otherwise, while it would still be correct to use .lcomm in some 541 // cases (e.g. when Align == 1), the external assembler might enfore 542 // some -unknown- default alignment behavior, which could cause 543 // spurious differences between external and integrated assembler. 544 // Prefer to simply fall back to .local / .comm in this case. 545 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 546 // .lcomm _foo, 42 547 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 548 return; 549 } 550 551 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 552 Align = 0; 553 554 // .local _foo 555 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 556 // .comm _foo, 42, 4 557 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 558 return; 559 } 560 561 // Handle thread local data for mach-o which requires us to output an 562 // additional structure of data and mangle the original symbol so that we 563 // can reference it later. 564 // 565 // TODO: This should become an "emit thread local global" method on TLOF. 566 // All of this macho specific stuff should be sunk down into TLOFMachO and 567 // stuff like "TLSExtraDataSection" should no longer be part of the parent 568 // TLOF class. This will also make it more obvious that stuff like 569 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 570 // specific code. 571 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 572 // Emit the .tbss symbol 573 MCSymbol *MangSym = 574 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 575 576 if (GVKind.isThreadBSS()) { 577 TheSection = getObjFileLowering().getTLSBSSSection(); 578 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 579 } else if (GVKind.isThreadData()) { 580 OutStreamer->SwitchSection(TheSection); 581 582 EmitAlignment(AlignLog, GV); 583 OutStreamer->EmitLabel(MangSym); 584 585 EmitGlobalConstant(GV->getParent()->getDataLayout(), 586 GV->getInitializer()); 587 } 588 589 OutStreamer->AddBlankLine(); 590 591 // Emit the variable struct for the runtime. 592 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 593 594 OutStreamer->SwitchSection(TLVSect); 595 // Emit the linkage here. 596 EmitLinkage(GV, GVSym); 597 OutStreamer->EmitLabel(GVSym); 598 599 // Three pointers in size: 600 // - __tlv_bootstrap - used to make sure support exists 601 // - spare pointer, used when mapped by the runtime 602 // - pointer to mangled symbol above with initializer 603 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 604 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 605 PtrSize); 606 OutStreamer->EmitIntValue(0, PtrSize); 607 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 608 609 OutStreamer->AddBlankLine(); 610 return; 611 } 612 613 MCSymbol *EmittedInitSym = GVSym; 614 615 OutStreamer->SwitchSection(TheSection); 616 617 EmitLinkage(GV, EmittedInitSym); 618 EmitAlignment(AlignLog, GV); 619 620 OutStreamer->EmitLabel(EmittedInitSym); 621 622 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 623 624 if (MAI->hasDotTypeDotSizeDirective()) 625 // .size foo, 42 626 OutStreamer->emitELFSize(EmittedInitSym, 627 MCConstantExpr::create(Size, OutContext)); 628 629 OutStreamer->AddBlankLine(); 630 } 631 632 /// Emit the directive and value for debug thread local expression 633 /// 634 /// \p Value - The value to emit. 635 /// \p Size - The size of the integer (in bytes) to emit. 636 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 637 unsigned Size) const { 638 OutStreamer->EmitValue(Value, Size); 639 } 640 641 /// EmitFunctionHeader - This method emits the header for the current 642 /// function. 643 void AsmPrinter::EmitFunctionHeader() { 644 const Function *F = MF->getFunction(); 645 646 if (isVerbose()) 647 OutStreamer->GetCommentOS() 648 << "-- Begin function " 649 << GlobalValue::dropLLVMManglingEscape(F->getName()) << '\n'; 650 651 // Print out constants referenced by the function 652 EmitConstantPool(); 653 654 // Print the 'header' of function. 655 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 656 EmitVisibility(CurrentFnSym, F->getVisibility()); 657 658 EmitLinkage(F, CurrentFnSym); 659 if (MAI->hasFunctionAlignment()) 660 EmitAlignment(MF->getAlignment(), F); 661 662 if (MAI->hasDotTypeDotSizeDirective()) 663 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 664 665 if (isVerbose()) { 666 F->printAsOperand(OutStreamer->GetCommentOS(), 667 /*PrintType=*/false, F->getParent()); 668 OutStreamer->GetCommentOS() << '\n'; 669 } 670 671 // Emit the prefix data. 672 if (F->hasPrefixData()) { 673 if (MAI->hasSubsectionsViaSymbols()) { 674 // Preserving prefix data on platforms which use subsections-via-symbols 675 // is a bit tricky. Here we introduce a symbol for the prefix data 676 // and use the .alt_entry attribute to mark the function's real entry point 677 // as an alternative entry point to the prefix-data symbol. 678 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 679 OutStreamer->EmitLabel(PrefixSym); 680 681 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 682 683 // Emit an .alt_entry directive for the actual function symbol. 684 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 685 } else { 686 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 687 } 688 } 689 690 // Emit the CurrentFnSym. This is a virtual function to allow targets to 691 // do their wild and crazy things as required. 692 EmitFunctionEntryLabel(); 693 694 // If the function had address-taken blocks that got deleted, then we have 695 // references to the dangling symbols. Emit them at the start of the function 696 // so that we don't get references to undefined symbols. 697 std::vector<MCSymbol*> DeadBlockSyms; 698 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 699 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 700 OutStreamer->AddComment("Address taken block that was later removed"); 701 OutStreamer->EmitLabel(DeadBlockSyms[i]); 702 } 703 704 if (CurrentFnBegin) { 705 if (MAI->useAssignmentForEHBegin()) { 706 MCSymbol *CurPos = OutContext.createTempSymbol(); 707 OutStreamer->EmitLabel(CurPos); 708 OutStreamer->EmitAssignment(CurrentFnBegin, 709 MCSymbolRefExpr::create(CurPos, OutContext)); 710 } else { 711 OutStreamer->EmitLabel(CurrentFnBegin); 712 } 713 } 714 715 // Emit pre-function debug and/or EH information. 716 for (const HandlerInfo &HI : Handlers) { 717 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 718 HI.TimerGroupDescription, TimePassesIsEnabled); 719 HI.Handler->beginFunction(MF); 720 } 721 722 // Emit the prologue data. 723 if (F->hasPrologueData()) 724 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 725 } 726 727 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 728 /// function. This can be overridden by targets as required to do custom stuff. 729 void AsmPrinter::EmitFunctionEntryLabel() { 730 CurrentFnSym->redefineIfPossible(); 731 732 // The function label could have already been emitted if two symbols end up 733 // conflicting due to asm renaming. Detect this and emit an error. 734 if (CurrentFnSym->isVariable()) 735 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 736 "' is a protected alias"); 737 if (CurrentFnSym->isDefined()) 738 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 739 "' label emitted multiple times to assembly file"); 740 741 return OutStreamer->EmitLabel(CurrentFnSym); 742 } 743 744 /// emitComments - Pretty-print comments for instructions. 745 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 746 AsmPrinter *AP) { 747 const MachineFunction *MF = MI.getMF(); 748 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 749 750 // Check for spills and reloads 751 int FI; 752 753 const MachineFrameInfo &MFI = MF->getFrameInfo(); 754 bool Commented = false; 755 756 // We assume a single instruction only has a spill or reload, not 757 // both. 758 const MachineMemOperand *MMO; 759 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 760 if (MFI.isSpillSlotObjectIndex(FI)) { 761 MMO = *MI.memoperands_begin(); 762 CommentOS << MMO->getSize() << "-byte Reload"; 763 Commented = true; 764 } 765 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 766 if (MFI.isSpillSlotObjectIndex(FI)) { 767 CommentOS << MMO->getSize() << "-byte Folded Reload"; 768 Commented = true; 769 } 770 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 771 if (MFI.isSpillSlotObjectIndex(FI)) { 772 MMO = *MI.memoperands_begin(); 773 CommentOS << MMO->getSize() << "-byte Spill"; 774 Commented = true; 775 } 776 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 777 if (MFI.isSpillSlotObjectIndex(FI)) { 778 CommentOS << MMO->getSize() << "-byte Folded Spill"; 779 Commented = true; 780 } 781 } 782 783 // Check for spill-induced copies 784 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 785 Commented = true; 786 CommentOS << " Reload Reuse"; 787 } 788 789 if (Commented && AP->EnablePrintSchedInfo) 790 // If any comment was added above and we need sched info comment then 791 // add this new comment just after the above comment w/o "\n" between them. 792 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 793 else if (Commented) 794 CommentOS << "\n"; 795 } 796 797 /// emitImplicitDef - This method emits the specified machine instruction 798 /// that is an implicit def. 799 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 800 unsigned RegNo = MI->getOperand(0).getReg(); 801 802 SmallString<128> Str; 803 raw_svector_ostream OS(Str); 804 OS << "implicit-def: " 805 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 806 807 OutStreamer->AddComment(OS.str()); 808 OutStreamer->AddBlankLine(); 809 } 810 811 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 812 std::string Str; 813 raw_string_ostream OS(Str); 814 OS << "kill:"; 815 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 816 const MachineOperand &Op = MI->getOperand(i); 817 assert(Op.isReg() && "KILL instruction must have only register operands"); 818 OS << ' ' 819 << PrintReg(Op.getReg(), 820 AP.MF->getSubtarget().getRegisterInfo()) 821 << (Op.isDef() ? "<def>" : "<kill>"); 822 } 823 AP.OutStreamer->AddComment(OS.str()); 824 AP.OutStreamer->AddBlankLine(); 825 } 826 827 /// emitDebugValueComment - This method handles the target-independent form 828 /// of DBG_VALUE, returning true if it was able to do so. A false return 829 /// means the target will need to handle MI in EmitInstruction. 830 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 831 // This code handles only the 4-operand target-independent form. 832 if (MI->getNumOperands() != 4) 833 return false; 834 835 SmallString<128> Str; 836 raw_svector_ostream OS(Str); 837 OS << "DEBUG_VALUE: "; 838 839 const DILocalVariable *V = MI->getDebugVariable(); 840 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 841 StringRef Name = SP->getName(); 842 if (!Name.empty()) 843 OS << Name << ":"; 844 } 845 OS << V->getName(); 846 OS << " <- "; 847 848 // The second operand is only an offset if it's an immediate. 849 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 850 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 851 const DIExpression *Expr = MI->getDebugExpression(); 852 if (Expr->getNumElements()) { 853 OS << '['; 854 bool NeedSep = false; 855 for (auto Op : Expr->expr_ops()) { 856 if (NeedSep) 857 OS << ", "; 858 else 859 NeedSep = true; 860 OS << dwarf::OperationEncodingString(Op.getOp()); 861 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 862 OS << ' ' << Op.getArg(I); 863 } 864 OS << "] "; 865 } 866 867 // Register or immediate value. Register 0 means undef. 868 if (MI->getOperand(0).isFPImm()) { 869 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 870 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 871 OS << (double)APF.convertToFloat(); 872 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 873 OS << APF.convertToDouble(); 874 } else { 875 // There is no good way to print long double. Convert a copy to 876 // double. Ah well, it's only a comment. 877 bool ignored; 878 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 879 &ignored); 880 OS << "(long double) " << APF.convertToDouble(); 881 } 882 } else if (MI->getOperand(0).isImm()) { 883 OS << MI->getOperand(0).getImm(); 884 } else if (MI->getOperand(0).isCImm()) { 885 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 886 } else { 887 unsigned Reg; 888 if (MI->getOperand(0).isReg()) { 889 Reg = MI->getOperand(0).getReg(); 890 } else { 891 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 892 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 893 Offset += TFI->getFrameIndexReference(*AP.MF, 894 MI->getOperand(0).getIndex(), Reg); 895 MemLoc = true; 896 } 897 if (Reg == 0) { 898 // Suppress offset, it is not meaningful here. 899 OS << "undef"; 900 // NOTE: Want this comment at start of line, don't emit with AddComment. 901 AP.OutStreamer->emitRawComment(OS.str()); 902 return true; 903 } 904 if (MemLoc) 905 OS << '['; 906 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 907 } 908 909 if (MemLoc) 910 OS << '+' << Offset << ']'; 911 912 // NOTE: Want this comment at start of line, don't emit with AddComment. 913 AP.OutStreamer->emitRawComment(OS.str()); 914 return true; 915 } 916 917 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 918 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 919 MF->getFunction()->needsUnwindTableEntry()) 920 return CFI_M_EH; 921 922 if (MMI->hasDebugInfo()) 923 return CFI_M_Debug; 924 925 return CFI_M_None; 926 } 927 928 bool AsmPrinter::needsSEHMoves() { 929 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 930 } 931 932 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 933 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 934 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 935 ExceptionHandlingType != ExceptionHandling::ARM) 936 return; 937 938 if (needsCFIMoves() == CFI_M_None) 939 return; 940 941 // If there is no "real" instruction following this CFI instruction, skip 942 // emitting it; it would be beyond the end of the function's FDE range. 943 auto *MBB = MI.getParent(); 944 auto I = std::next(MI.getIterator()); 945 while (I != MBB->end() && I->isTransient()) 946 ++I; 947 if (I == MBB->instr_end() && 948 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 949 return; 950 951 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 952 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 953 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 954 emitCFIInstruction(CFI); 955 } 956 957 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 958 // The operands are the MCSymbol and the frame offset of the allocation. 959 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 960 int FrameOffset = MI.getOperand(1).getImm(); 961 962 // Emit a symbol assignment. 963 OutStreamer->EmitAssignment(FrameAllocSym, 964 MCConstantExpr::create(FrameOffset, OutContext)); 965 } 966 967 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 968 MachineModuleInfo *MMI) { 969 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 970 return true; 971 972 // We might emit an EH table that uses function begin and end labels even if 973 // we don't have any landingpads. 974 if (!MF.getFunction()->hasPersonalityFn()) 975 return false; 976 return !isNoOpWithoutInvoke( 977 classifyEHPersonality(MF.getFunction()->getPersonalityFn())); 978 } 979 980 /// EmitFunctionBody - This method emits the body and trailer for a 981 /// function. 982 void AsmPrinter::EmitFunctionBody() { 983 EmitFunctionHeader(); 984 985 // Emit target-specific gunk before the function body. 986 EmitFunctionBodyStart(); 987 988 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 989 990 // Print out code for the function. 991 bool HasAnyRealCode = false; 992 int NumInstsInFunction = 0; 993 for (auto &MBB : *MF) { 994 // Print a label for the basic block. 995 EmitBasicBlockStart(MBB); 996 for (auto &MI : MBB) { 997 // Print the assembly for the instruction. 998 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 999 !MI.isDebugValue()) { 1000 HasAnyRealCode = true; 1001 ++NumInstsInFunction; 1002 } 1003 1004 if (ShouldPrintDebugScopes) { 1005 for (const HandlerInfo &HI : Handlers) { 1006 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1007 HI.TimerGroupName, HI.TimerGroupDescription, 1008 TimePassesIsEnabled); 1009 HI.Handler->beginInstruction(&MI); 1010 } 1011 } 1012 1013 if (isVerbose()) 1014 emitComments(MI, OutStreamer->GetCommentOS(), this); 1015 1016 switch (MI.getOpcode()) { 1017 case TargetOpcode::CFI_INSTRUCTION: 1018 emitCFIInstruction(MI); 1019 break; 1020 case TargetOpcode::LOCAL_ESCAPE: 1021 emitFrameAlloc(MI); 1022 break; 1023 case TargetOpcode::EH_LABEL: 1024 case TargetOpcode::GC_LABEL: 1025 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1026 break; 1027 case TargetOpcode::INLINEASM: 1028 EmitInlineAsm(&MI); 1029 break; 1030 case TargetOpcode::DBG_VALUE: 1031 if (isVerbose()) { 1032 if (!emitDebugValueComment(&MI, *this)) 1033 EmitInstruction(&MI); 1034 } 1035 break; 1036 case TargetOpcode::IMPLICIT_DEF: 1037 if (isVerbose()) emitImplicitDef(&MI); 1038 break; 1039 case TargetOpcode::KILL: 1040 if (isVerbose()) emitKill(&MI, *this); 1041 break; 1042 default: 1043 EmitInstruction(&MI); 1044 break; 1045 } 1046 1047 if (ShouldPrintDebugScopes) { 1048 for (const HandlerInfo &HI : Handlers) { 1049 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1050 HI.TimerGroupName, HI.TimerGroupDescription, 1051 TimePassesIsEnabled); 1052 HI.Handler->endInstruction(); 1053 } 1054 } 1055 } 1056 1057 EmitBasicBlockEnd(MBB); 1058 } 1059 1060 EmittedInsts += NumInstsInFunction; 1061 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1062 MF->getFunction()->getSubprogram(), 1063 &MF->front()); 1064 R << ore::NV("NumInstructions", NumInstsInFunction) 1065 << " instructions in function"; 1066 ORE->emit(R); 1067 1068 // If the function is empty and the object file uses .subsections_via_symbols, 1069 // then we need to emit *something* to the function body to prevent the 1070 // labels from collapsing together. Just emit a noop. 1071 // Similarly, don't emit empty functions on Windows either. It can lead to 1072 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1073 // after linking, causing the kernel not to load the binary: 1074 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1075 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1076 const Triple &TT = TM.getTargetTriple(); 1077 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1078 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1079 MCInst Noop; 1080 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1081 1082 // Targets can opt-out of emitting the noop here by leaving the opcode 1083 // unspecified. 1084 if (Noop.getOpcode()) { 1085 OutStreamer->AddComment("avoids zero-length function"); 1086 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1087 } 1088 } 1089 1090 const Function *F = MF->getFunction(); 1091 for (const auto &BB : *F) { 1092 if (!BB.hasAddressTaken()) 1093 continue; 1094 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1095 if (Sym->isDefined()) 1096 continue; 1097 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1098 OutStreamer->EmitLabel(Sym); 1099 } 1100 1101 // Emit target-specific gunk after the function body. 1102 EmitFunctionBodyEnd(); 1103 1104 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1105 MAI->hasDotTypeDotSizeDirective()) { 1106 // Create a symbol for the end of function. 1107 CurrentFnEnd = createTempSymbol("func_end"); 1108 OutStreamer->EmitLabel(CurrentFnEnd); 1109 } 1110 1111 // If the target wants a .size directive for the size of the function, emit 1112 // it. 1113 if (MAI->hasDotTypeDotSizeDirective()) { 1114 // We can get the size as difference between the function label and the 1115 // temp label. 1116 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1117 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1118 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1119 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1120 } 1121 1122 for (const HandlerInfo &HI : Handlers) { 1123 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1124 HI.TimerGroupDescription, TimePassesIsEnabled); 1125 HI.Handler->markFunctionEnd(); 1126 } 1127 1128 // Print out jump tables referenced by the function. 1129 EmitJumpTableInfo(); 1130 1131 // Emit post-function debug and/or EH information. 1132 for (const HandlerInfo &HI : Handlers) { 1133 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1134 HI.TimerGroupDescription, TimePassesIsEnabled); 1135 HI.Handler->endFunction(MF); 1136 } 1137 1138 if (isVerbose()) 1139 OutStreamer->GetCommentOS() << "-- End function\n"; 1140 1141 OutStreamer->AddBlankLine(); 1142 } 1143 1144 /// \brief Compute the number of Global Variables that uses a Constant. 1145 static unsigned getNumGlobalVariableUses(const Constant *C) { 1146 if (!C) 1147 return 0; 1148 1149 if (isa<GlobalVariable>(C)) 1150 return 1; 1151 1152 unsigned NumUses = 0; 1153 for (auto *CU : C->users()) 1154 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1155 1156 return NumUses; 1157 } 1158 1159 /// \brief Only consider global GOT equivalents if at least one user is a 1160 /// cstexpr inside an initializer of another global variables. Also, don't 1161 /// handle cstexpr inside instructions. During global variable emission, 1162 /// candidates are skipped and are emitted later in case at least one cstexpr 1163 /// isn't replaced by a PC relative GOT entry access. 1164 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1165 unsigned &NumGOTEquivUsers) { 1166 // Global GOT equivalents are unnamed private globals with a constant 1167 // pointer initializer to another global symbol. They must point to a 1168 // GlobalVariable or Function, i.e., as GlobalValue. 1169 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1170 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1171 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1172 return false; 1173 1174 // To be a got equivalent, at least one of its users need to be a constant 1175 // expression used by another global variable. 1176 for (auto *U : GV->users()) 1177 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1178 1179 return NumGOTEquivUsers > 0; 1180 } 1181 1182 /// \brief Unnamed constant global variables solely contaning a pointer to 1183 /// another globals variable is equivalent to a GOT table entry; it contains the 1184 /// the address of another symbol. Optimize it and replace accesses to these 1185 /// "GOT equivalents" by using the GOT entry for the final global instead. 1186 /// Compute GOT equivalent candidates among all global variables to avoid 1187 /// emitting them if possible later on, after it use is replaced by a GOT entry 1188 /// access. 1189 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1190 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1191 return; 1192 1193 for (const auto &G : M.globals()) { 1194 unsigned NumGOTEquivUsers = 0; 1195 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1196 continue; 1197 1198 const MCSymbol *GOTEquivSym = getSymbol(&G); 1199 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1200 } 1201 } 1202 1203 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1204 /// for PC relative GOT entry conversion, in such cases we need to emit such 1205 /// globals we previously omitted in EmitGlobalVariable. 1206 void AsmPrinter::emitGlobalGOTEquivs() { 1207 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1208 return; 1209 1210 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1211 for (auto &I : GlobalGOTEquivs) { 1212 const GlobalVariable *GV = I.second.first; 1213 unsigned Cnt = I.second.second; 1214 if (Cnt) 1215 FailedCandidates.push_back(GV); 1216 } 1217 GlobalGOTEquivs.clear(); 1218 1219 for (auto *GV : FailedCandidates) 1220 EmitGlobalVariable(GV); 1221 } 1222 1223 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1224 const GlobalIndirectSymbol& GIS) { 1225 MCSymbol *Name = getSymbol(&GIS); 1226 1227 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1228 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1229 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1230 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1231 else 1232 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1233 1234 // Set the symbol type to function if the alias has a function type. 1235 // This affects codegen when the aliasee is not a function. 1236 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1237 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1238 if (isa<GlobalIFunc>(GIS)) 1239 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1240 } 1241 1242 EmitVisibility(Name, GIS.getVisibility()); 1243 1244 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1245 1246 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1247 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1248 1249 // Emit the directives as assignments aka .set: 1250 OutStreamer->EmitAssignment(Name, Expr); 1251 1252 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1253 // If the aliasee does not correspond to a symbol in the output, i.e. the 1254 // alias is not of an object or the aliased object is private, then set the 1255 // size of the alias symbol from the type of the alias. We don't do this in 1256 // other situations as the alias and aliasee having differing types but same 1257 // size may be intentional. 1258 const GlobalObject *BaseObject = GA->getBaseObject(); 1259 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1260 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1261 const DataLayout &DL = M.getDataLayout(); 1262 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1263 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1264 } 1265 } 1266 } 1267 1268 bool AsmPrinter::doFinalization(Module &M) { 1269 // Set the MachineFunction to nullptr so that we can catch attempted 1270 // accesses to MF specific features at the module level and so that 1271 // we can conditionalize accesses based on whether or not it is nullptr. 1272 MF = nullptr; 1273 1274 // Gather all GOT equivalent globals in the module. We really need two 1275 // passes over the globals: one to compute and another to avoid its emission 1276 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1277 // where the got equivalent shows up before its use. 1278 computeGlobalGOTEquivs(M); 1279 1280 // Emit global variables. 1281 for (const auto &G : M.globals()) 1282 EmitGlobalVariable(&G); 1283 1284 // Emit remaining GOT equivalent globals. 1285 emitGlobalGOTEquivs(); 1286 1287 // Emit visibility info for declarations 1288 for (const Function &F : M) { 1289 if (!F.isDeclarationForLinker()) 1290 continue; 1291 GlobalValue::VisibilityTypes V = F.getVisibility(); 1292 if (V == GlobalValue::DefaultVisibility) 1293 continue; 1294 1295 MCSymbol *Name = getSymbol(&F); 1296 EmitVisibility(Name, V, false); 1297 } 1298 1299 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1300 1301 TLOF.emitModuleMetadata(*OutStreamer, M, TM); 1302 1303 if (TM.getTargetTriple().isOSBinFormatELF()) { 1304 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1305 1306 // Output stubs for external and common global variables. 1307 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1308 if (!Stubs.empty()) { 1309 OutStreamer->SwitchSection(TLOF.getDataSection()); 1310 const DataLayout &DL = M.getDataLayout(); 1311 1312 for (const auto &Stub : Stubs) { 1313 OutStreamer->EmitLabel(Stub.first); 1314 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1315 DL.getPointerSize()); 1316 } 1317 } 1318 } 1319 1320 // Finalize debug and EH information. 1321 for (const HandlerInfo &HI : Handlers) { 1322 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1323 HI.TimerGroupDescription, TimePassesIsEnabled); 1324 HI.Handler->endModule(); 1325 delete HI.Handler; 1326 } 1327 Handlers.clear(); 1328 DD = nullptr; 1329 1330 // If the target wants to know about weak references, print them all. 1331 if (MAI->getWeakRefDirective()) { 1332 // FIXME: This is not lazy, it would be nice to only print weak references 1333 // to stuff that is actually used. Note that doing so would require targets 1334 // to notice uses in operands (due to constant exprs etc). This should 1335 // happen with the MC stuff eventually. 1336 1337 // Print out module-level global objects here. 1338 for (const auto &GO : M.global_objects()) { 1339 if (!GO.hasExternalWeakLinkage()) 1340 continue; 1341 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1342 } 1343 } 1344 1345 OutStreamer->AddBlankLine(); 1346 1347 // Print aliases in topological order, that is, for each alias a = b, 1348 // b must be printed before a. 1349 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1350 // such an order to generate correct TOC information. 1351 SmallVector<const GlobalAlias *, 16> AliasStack; 1352 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1353 for (const auto &Alias : M.aliases()) { 1354 for (const GlobalAlias *Cur = &Alias; Cur; 1355 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1356 if (!AliasVisited.insert(Cur).second) 1357 break; 1358 AliasStack.push_back(Cur); 1359 } 1360 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1361 emitGlobalIndirectSymbol(M, *AncestorAlias); 1362 AliasStack.clear(); 1363 } 1364 for (const auto &IFunc : M.ifuncs()) 1365 emitGlobalIndirectSymbol(M, IFunc); 1366 1367 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1368 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1369 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1370 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1371 MP->finishAssembly(M, *MI, *this); 1372 1373 // Emit llvm.ident metadata in an '.ident' directive. 1374 EmitModuleIdents(M); 1375 1376 // Emit __morestack address if needed for indirect calls. 1377 if (MMI->usesMorestackAddr()) { 1378 unsigned Align = 1; 1379 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1380 getDataLayout(), SectionKind::getReadOnly(), 1381 /*C=*/nullptr, Align); 1382 OutStreamer->SwitchSection(ReadOnlySection); 1383 1384 MCSymbol *AddrSymbol = 1385 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1386 OutStreamer->EmitLabel(AddrSymbol); 1387 1388 unsigned PtrSize = MAI->getCodePointerSize(); 1389 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1390 PtrSize); 1391 } 1392 1393 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1394 // split-stack is used. 1395 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1396 OutStreamer->SwitchSection( 1397 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1398 if (MMI->hasNosplitStack()) 1399 OutStreamer->SwitchSection( 1400 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1401 } 1402 1403 // If we don't have any trampolines, then we don't require stack memory 1404 // to be executable. Some targets have a directive to declare this. 1405 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1406 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1407 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1408 OutStreamer->SwitchSection(S); 1409 1410 // Allow the target to emit any magic that it wants at the end of the file, 1411 // after everything else has gone out. 1412 EmitEndOfAsmFile(M); 1413 1414 MMI = nullptr; 1415 1416 OutStreamer->Finish(); 1417 OutStreamer->reset(); 1418 1419 return false; 1420 } 1421 1422 MCSymbol *AsmPrinter::getCurExceptionSym() { 1423 if (!CurExceptionSym) 1424 CurExceptionSym = createTempSymbol("exception"); 1425 return CurExceptionSym; 1426 } 1427 1428 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1429 this->MF = &MF; 1430 // Get the function symbol. 1431 CurrentFnSym = getSymbol(MF.getFunction()); 1432 CurrentFnSymForSize = CurrentFnSym; 1433 CurrentFnBegin = nullptr; 1434 CurExceptionSym = nullptr; 1435 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1436 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) { 1437 CurrentFnBegin = createTempSymbol("func_begin"); 1438 if (NeedsLocalForSize) 1439 CurrentFnSymForSize = CurrentFnBegin; 1440 } 1441 1442 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1443 LI = &getAnalysis<MachineLoopInfo>(); 1444 1445 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1446 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1447 ? PrintSchedule 1448 : STI.supportPrintSchedInfo(); 1449 } 1450 1451 namespace { 1452 1453 // Keep track the alignment, constpool entries per Section. 1454 struct SectionCPs { 1455 MCSection *S; 1456 unsigned Alignment; 1457 SmallVector<unsigned, 4> CPEs; 1458 1459 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1460 }; 1461 1462 } // end anonymous namespace 1463 1464 /// EmitConstantPool - Print to the current output stream assembly 1465 /// representations of the constants in the constant pool MCP. This is 1466 /// used to print out constants which have been "spilled to memory" by 1467 /// the code generator. 1468 void AsmPrinter::EmitConstantPool() { 1469 const MachineConstantPool *MCP = MF->getConstantPool(); 1470 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1471 if (CP.empty()) return; 1472 1473 // Calculate sections for constant pool entries. We collect entries to go into 1474 // the same section together to reduce amount of section switch statements. 1475 SmallVector<SectionCPs, 4> CPSections; 1476 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1477 const MachineConstantPoolEntry &CPE = CP[i]; 1478 unsigned Align = CPE.getAlignment(); 1479 1480 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1481 1482 const Constant *C = nullptr; 1483 if (!CPE.isMachineConstantPoolEntry()) 1484 C = CPE.Val.ConstVal; 1485 1486 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1487 Kind, C, Align); 1488 1489 // The number of sections are small, just do a linear search from the 1490 // last section to the first. 1491 bool Found = false; 1492 unsigned SecIdx = CPSections.size(); 1493 while (SecIdx != 0) { 1494 if (CPSections[--SecIdx].S == S) { 1495 Found = true; 1496 break; 1497 } 1498 } 1499 if (!Found) { 1500 SecIdx = CPSections.size(); 1501 CPSections.push_back(SectionCPs(S, Align)); 1502 } 1503 1504 if (Align > CPSections[SecIdx].Alignment) 1505 CPSections[SecIdx].Alignment = Align; 1506 CPSections[SecIdx].CPEs.push_back(i); 1507 } 1508 1509 // Now print stuff into the calculated sections. 1510 const MCSection *CurSection = nullptr; 1511 unsigned Offset = 0; 1512 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1513 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1514 unsigned CPI = CPSections[i].CPEs[j]; 1515 MCSymbol *Sym = GetCPISymbol(CPI); 1516 if (!Sym->isUndefined()) 1517 continue; 1518 1519 if (CurSection != CPSections[i].S) { 1520 OutStreamer->SwitchSection(CPSections[i].S); 1521 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1522 CurSection = CPSections[i].S; 1523 Offset = 0; 1524 } 1525 1526 MachineConstantPoolEntry CPE = CP[CPI]; 1527 1528 // Emit inter-object padding for alignment. 1529 unsigned AlignMask = CPE.getAlignment() - 1; 1530 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1531 OutStreamer->EmitZeros(NewOffset - Offset); 1532 1533 Type *Ty = CPE.getType(); 1534 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1535 1536 OutStreamer->EmitLabel(Sym); 1537 if (CPE.isMachineConstantPoolEntry()) 1538 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1539 else 1540 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1541 } 1542 } 1543 } 1544 1545 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1546 /// by the current function to the current output stream. 1547 void AsmPrinter::EmitJumpTableInfo() { 1548 const DataLayout &DL = MF->getDataLayout(); 1549 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1550 if (!MJTI) return; 1551 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1552 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1553 if (JT.empty()) return; 1554 1555 // Pick the directive to use to print the jump table entries, and switch to 1556 // the appropriate section. 1557 const Function *F = MF->getFunction(); 1558 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1559 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1560 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1561 *F); 1562 if (JTInDiffSection) { 1563 // Drop it in the readonly section. 1564 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1565 OutStreamer->SwitchSection(ReadOnlySection); 1566 } 1567 1568 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1569 1570 // Jump tables in code sections are marked with a data_region directive 1571 // where that's supported. 1572 if (!JTInDiffSection) 1573 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1574 1575 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1576 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1577 1578 // If this jump table was deleted, ignore it. 1579 if (JTBBs.empty()) continue; 1580 1581 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1582 /// emit a .set directive for each unique entry. 1583 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1584 MAI->doesSetDirectiveSuppressReloc()) { 1585 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1586 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1587 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1588 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1589 const MachineBasicBlock *MBB = JTBBs[ii]; 1590 if (!EmittedSets.insert(MBB).second) 1591 continue; 1592 1593 // .set LJTSet, LBB32-base 1594 const MCExpr *LHS = 1595 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1596 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1597 MCBinaryExpr::createSub(LHS, Base, 1598 OutContext)); 1599 } 1600 } 1601 1602 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1603 // before each jump table. The first label is never referenced, but tells 1604 // the assembler and linker the extents of the jump table object. The 1605 // second label is actually referenced by the code. 1606 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1607 // FIXME: This doesn't have to have any specific name, just any randomly 1608 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1609 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1610 1611 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1612 1613 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1614 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1615 } 1616 if (!JTInDiffSection) 1617 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1618 } 1619 1620 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1621 /// current stream. 1622 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1623 const MachineBasicBlock *MBB, 1624 unsigned UID) const { 1625 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1626 const MCExpr *Value = nullptr; 1627 switch (MJTI->getEntryKind()) { 1628 case MachineJumpTableInfo::EK_Inline: 1629 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1630 case MachineJumpTableInfo::EK_Custom32: 1631 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1632 MJTI, MBB, UID, OutContext); 1633 break; 1634 case MachineJumpTableInfo::EK_BlockAddress: 1635 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1636 // .word LBB123 1637 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1638 break; 1639 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1640 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1641 // with a relocation as gp-relative, e.g.: 1642 // .gprel32 LBB123 1643 MCSymbol *MBBSym = MBB->getSymbol(); 1644 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1645 return; 1646 } 1647 1648 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1649 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1650 // with a relocation as gp-relative, e.g.: 1651 // .gpdword LBB123 1652 MCSymbol *MBBSym = MBB->getSymbol(); 1653 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1654 return; 1655 } 1656 1657 case MachineJumpTableInfo::EK_LabelDifference32: { 1658 // Each entry is the address of the block minus the address of the jump 1659 // table. This is used for PIC jump tables where gprel32 is not supported. 1660 // e.g.: 1661 // .word LBB123 - LJTI1_2 1662 // If the .set directive avoids relocations, this is emitted as: 1663 // .set L4_5_set_123, LBB123 - LJTI1_2 1664 // .word L4_5_set_123 1665 if (MAI->doesSetDirectiveSuppressReloc()) { 1666 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1667 OutContext); 1668 break; 1669 } 1670 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1671 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1672 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1673 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1674 break; 1675 } 1676 } 1677 1678 assert(Value && "Unknown entry kind!"); 1679 1680 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1681 OutStreamer->EmitValue(Value, EntrySize); 1682 } 1683 1684 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1685 /// special global used by LLVM. If so, emit it and return true, otherwise 1686 /// do nothing and return false. 1687 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1688 if (GV->getName() == "llvm.used") { 1689 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1690 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1691 return true; 1692 } 1693 1694 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1695 if (GV->getSection() == "llvm.metadata" || 1696 GV->hasAvailableExternallyLinkage()) 1697 return true; 1698 1699 if (!GV->hasAppendingLinkage()) return false; 1700 1701 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1702 1703 if (GV->getName() == "llvm.global_ctors") { 1704 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1705 /* isCtor */ true); 1706 1707 return true; 1708 } 1709 1710 if (GV->getName() == "llvm.global_dtors") { 1711 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1712 /* isCtor */ false); 1713 1714 return true; 1715 } 1716 1717 report_fatal_error("unknown special variable"); 1718 } 1719 1720 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1721 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1722 /// is true, as being used with this directive. 1723 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1724 // Should be an array of 'i8*'. 1725 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1726 const GlobalValue *GV = 1727 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1728 if (GV) 1729 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1730 } 1731 } 1732 1733 namespace { 1734 1735 struct Structor { 1736 int Priority = 0; 1737 Constant *Func = nullptr; 1738 GlobalValue *ComdatKey = nullptr; 1739 1740 Structor() = default; 1741 }; 1742 1743 } // end anonymous namespace 1744 1745 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1746 /// priority. 1747 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1748 bool isCtor) { 1749 // Should be an array of '{ int, void ()* }' structs. The first value is the 1750 // init priority. 1751 if (!isa<ConstantArray>(List)) return; 1752 1753 // Sanity check the structors list. 1754 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1755 if (!InitList) return; // Not an array! 1756 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1757 // FIXME: Only allow the 3-field form in LLVM 4.0. 1758 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1759 return; // Not an array of two or three elements! 1760 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1761 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1762 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1763 return; // Not (int, ptr, ptr). 1764 1765 // Gather the structors in a form that's convenient for sorting by priority. 1766 SmallVector<Structor, 8> Structors; 1767 for (Value *O : InitList->operands()) { 1768 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1769 if (!CS) continue; // Malformed. 1770 if (CS->getOperand(1)->isNullValue()) 1771 break; // Found a null terminator, skip the rest. 1772 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1773 if (!Priority) continue; // Malformed. 1774 Structors.push_back(Structor()); 1775 Structor &S = Structors.back(); 1776 S.Priority = Priority->getLimitedValue(65535); 1777 S.Func = CS->getOperand(1); 1778 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1779 S.ComdatKey = 1780 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1781 } 1782 1783 // Emit the function pointers in the target-specific order 1784 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1785 std::stable_sort(Structors.begin(), Structors.end(), 1786 [](const Structor &L, 1787 const Structor &R) { return L.Priority < R.Priority; }); 1788 for (Structor &S : Structors) { 1789 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1790 const MCSymbol *KeySym = nullptr; 1791 if (GlobalValue *GV = S.ComdatKey) { 1792 if (GV->isDeclarationForLinker()) 1793 // If the associated variable is not defined in this module 1794 // (it might be available_externally, or have been an 1795 // available_externally definition that was dropped by the 1796 // EliminateAvailableExternally pass), some other TU 1797 // will provide its dynamic initializer. 1798 continue; 1799 1800 KeySym = getSymbol(GV); 1801 } 1802 MCSection *OutputSection = 1803 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1804 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1805 OutStreamer->SwitchSection(OutputSection); 1806 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1807 EmitAlignment(Align); 1808 EmitXXStructor(DL, S.Func); 1809 } 1810 } 1811 1812 void AsmPrinter::EmitModuleIdents(Module &M) { 1813 if (!MAI->hasIdentDirective()) 1814 return; 1815 1816 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1817 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1818 const MDNode *N = NMD->getOperand(i); 1819 assert(N->getNumOperands() == 1 && 1820 "llvm.ident metadata entry can have only one operand"); 1821 const MDString *S = cast<MDString>(N->getOperand(0)); 1822 OutStreamer->EmitIdent(S->getString()); 1823 } 1824 } 1825 } 1826 1827 //===--------------------------------------------------------------------===// 1828 // Emission and print routines 1829 // 1830 1831 /// EmitInt8 - Emit a byte directive and value. 1832 /// 1833 void AsmPrinter::EmitInt8(int Value) const { 1834 OutStreamer->EmitIntValue(Value, 1); 1835 } 1836 1837 /// EmitInt16 - Emit a short directive and value. 1838 void AsmPrinter::EmitInt16(int Value) const { 1839 OutStreamer->EmitIntValue(Value, 2); 1840 } 1841 1842 /// EmitInt32 - Emit a long directive and value. 1843 void AsmPrinter::EmitInt32(int Value) const { 1844 OutStreamer->EmitIntValue(Value, 4); 1845 } 1846 1847 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1848 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1849 /// .set if it avoids relocations. 1850 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1851 unsigned Size) const { 1852 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1853 } 1854 1855 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1856 /// where the size in bytes of the directive is specified by Size and Label 1857 /// specifies the label. This implicitly uses .set if it is available. 1858 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1859 unsigned Size, 1860 bool IsSectionRelative) const { 1861 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1862 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1863 if (Size > 4) 1864 OutStreamer->EmitZeros(Size - 4); 1865 return; 1866 } 1867 1868 // Emit Label+Offset (or just Label if Offset is zero) 1869 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1870 if (Offset) 1871 Expr = MCBinaryExpr::createAdd( 1872 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1873 1874 OutStreamer->EmitValue(Expr, Size); 1875 } 1876 1877 //===----------------------------------------------------------------------===// 1878 1879 // EmitAlignment - Emit an alignment directive to the specified power of 1880 // two boundary. For example, if you pass in 3 here, you will get an 8 1881 // byte alignment. If a global value is specified, and if that global has 1882 // an explicit alignment requested, it will override the alignment request 1883 // if required for correctness. 1884 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1885 if (GV) 1886 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1887 1888 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1889 1890 assert(NumBits < 1891 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1892 "undefined behavior"); 1893 if (getCurrentSection()->getKind().isText()) 1894 OutStreamer->EmitCodeAlignment(1u << NumBits); 1895 else 1896 OutStreamer->EmitValueToAlignment(1u << NumBits); 1897 } 1898 1899 //===----------------------------------------------------------------------===// 1900 // Constant emission. 1901 //===----------------------------------------------------------------------===// 1902 1903 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1904 MCContext &Ctx = OutContext; 1905 1906 if (CV->isNullValue() || isa<UndefValue>(CV)) 1907 return MCConstantExpr::create(0, Ctx); 1908 1909 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1910 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1911 1912 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1913 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1914 1915 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1916 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1917 1918 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1919 if (!CE) { 1920 llvm_unreachable("Unknown constant value to lower!"); 1921 } 1922 1923 switch (CE->getOpcode()) { 1924 default: 1925 // If the code isn't optimized, there may be outstanding folding 1926 // opportunities. Attempt to fold the expression using DataLayout as a 1927 // last resort before giving up. 1928 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1929 if (C != CE) 1930 return lowerConstant(C); 1931 1932 // Otherwise report the problem to the user. 1933 { 1934 std::string S; 1935 raw_string_ostream OS(S); 1936 OS << "Unsupported expression in static initializer: "; 1937 CE->printAsOperand(OS, /*PrintType=*/false, 1938 !MF ? nullptr : MF->getFunction()->getParent()); 1939 report_fatal_error(OS.str()); 1940 } 1941 case Instruction::GetElementPtr: { 1942 // Generate a symbolic expression for the byte address 1943 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1944 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1945 1946 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1947 if (!OffsetAI) 1948 return Base; 1949 1950 int64_t Offset = OffsetAI.getSExtValue(); 1951 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1952 Ctx); 1953 } 1954 1955 case Instruction::Trunc: 1956 // We emit the value and depend on the assembler to truncate the generated 1957 // expression properly. This is important for differences between 1958 // blockaddress labels. Since the two labels are in the same function, it 1959 // is reasonable to treat their delta as a 32-bit value. 1960 LLVM_FALLTHROUGH; 1961 case Instruction::BitCast: 1962 return lowerConstant(CE->getOperand(0)); 1963 1964 case Instruction::IntToPtr: { 1965 const DataLayout &DL = getDataLayout(); 1966 1967 // Handle casts to pointers by changing them into casts to the appropriate 1968 // integer type. This promotes constant folding and simplifies this code. 1969 Constant *Op = CE->getOperand(0); 1970 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1971 false/*ZExt*/); 1972 return lowerConstant(Op); 1973 } 1974 1975 case Instruction::PtrToInt: { 1976 const DataLayout &DL = getDataLayout(); 1977 1978 // Support only foldable casts to/from pointers that can be eliminated by 1979 // changing the pointer to the appropriately sized integer type. 1980 Constant *Op = CE->getOperand(0); 1981 Type *Ty = CE->getType(); 1982 1983 const MCExpr *OpExpr = lowerConstant(Op); 1984 1985 // We can emit the pointer value into this slot if the slot is an 1986 // integer slot equal to the size of the pointer. 1987 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1988 return OpExpr; 1989 1990 // Otherwise the pointer is smaller than the resultant integer, mask off 1991 // the high bits so we are sure to get a proper truncation if the input is 1992 // a constant expr. 1993 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1994 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1995 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1996 } 1997 1998 case Instruction::Sub: { 1999 GlobalValue *LHSGV; 2000 APInt LHSOffset; 2001 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2002 getDataLayout())) { 2003 GlobalValue *RHSGV; 2004 APInt RHSOffset; 2005 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2006 getDataLayout())) { 2007 const MCExpr *RelocExpr = 2008 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2009 if (!RelocExpr) 2010 RelocExpr = MCBinaryExpr::createSub( 2011 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2012 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2013 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2014 if (Addend != 0) 2015 RelocExpr = MCBinaryExpr::createAdd( 2016 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2017 return RelocExpr; 2018 } 2019 } 2020 } 2021 // else fallthrough 2022 2023 // The MC library also has a right-shift operator, but it isn't consistently 2024 // signed or unsigned between different targets. 2025 case Instruction::Add: 2026 case Instruction::Mul: 2027 case Instruction::SDiv: 2028 case Instruction::SRem: 2029 case Instruction::Shl: 2030 case Instruction::And: 2031 case Instruction::Or: 2032 case Instruction::Xor: { 2033 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2034 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2035 switch (CE->getOpcode()) { 2036 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2037 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2038 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2039 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2040 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2041 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2042 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2043 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2044 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2045 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2046 } 2047 } 2048 } 2049 } 2050 2051 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2052 AsmPrinter &AP, 2053 const Constant *BaseCV = nullptr, 2054 uint64_t Offset = 0); 2055 2056 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2057 2058 /// isRepeatedByteSequence - Determine whether the given value is 2059 /// composed of a repeated sequence of identical bytes and return the 2060 /// byte value. If it is not a repeated sequence, return -1. 2061 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2062 StringRef Data = V->getRawDataValues(); 2063 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2064 char C = Data[0]; 2065 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2066 if (Data[i] != C) return -1; 2067 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2068 } 2069 2070 /// isRepeatedByteSequence - Determine whether the given value is 2071 /// composed of a repeated sequence of identical bytes and return the 2072 /// byte value. If it is not a repeated sequence, return -1. 2073 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2074 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2075 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2076 assert(Size % 8 == 0); 2077 2078 // Extend the element to take zero padding into account. 2079 APInt Value = CI->getValue().zextOrSelf(Size); 2080 if (!Value.isSplat(8)) 2081 return -1; 2082 2083 return Value.zextOrTrunc(8).getZExtValue(); 2084 } 2085 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2086 // Make sure all array elements are sequences of the same repeated 2087 // byte. 2088 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2089 Constant *Op0 = CA->getOperand(0); 2090 int Byte = isRepeatedByteSequence(Op0, DL); 2091 if (Byte == -1) 2092 return -1; 2093 2094 // All array elements must be equal. 2095 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2096 if (CA->getOperand(i) != Op0) 2097 return -1; 2098 return Byte; 2099 } 2100 2101 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2102 return isRepeatedByteSequence(CDS); 2103 2104 return -1; 2105 } 2106 2107 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2108 const ConstantDataSequential *CDS, 2109 AsmPrinter &AP) { 2110 // See if we can aggregate this into a .fill, if so, emit it as such. 2111 int Value = isRepeatedByteSequence(CDS, DL); 2112 if (Value != -1) { 2113 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2114 // Don't emit a 1-byte object as a .fill. 2115 if (Bytes > 1) 2116 return AP.OutStreamer->emitFill(Bytes, Value); 2117 } 2118 2119 // If this can be emitted with .ascii/.asciz, emit it as such. 2120 if (CDS->isString()) 2121 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2122 2123 // Otherwise, emit the values in successive locations. 2124 unsigned ElementByteSize = CDS->getElementByteSize(); 2125 if (isa<IntegerType>(CDS->getElementType())) { 2126 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2127 if (AP.isVerbose()) 2128 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2129 CDS->getElementAsInteger(i)); 2130 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2131 ElementByteSize); 2132 } 2133 } else { 2134 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2135 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2136 } 2137 2138 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2139 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2140 CDS->getNumElements(); 2141 if (unsigned Padding = Size - EmittedSize) 2142 AP.OutStreamer->EmitZeros(Padding); 2143 } 2144 2145 static void emitGlobalConstantArray(const DataLayout &DL, 2146 const ConstantArray *CA, AsmPrinter &AP, 2147 const Constant *BaseCV, uint64_t Offset) { 2148 // See if we can aggregate some values. Make sure it can be 2149 // represented as a series of bytes of the constant value. 2150 int Value = isRepeatedByteSequence(CA, DL); 2151 2152 if (Value != -1) { 2153 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2154 AP.OutStreamer->emitFill(Bytes, Value); 2155 } 2156 else { 2157 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2158 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2159 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2160 } 2161 } 2162 } 2163 2164 static void emitGlobalConstantVector(const DataLayout &DL, 2165 const ConstantVector *CV, AsmPrinter &AP) { 2166 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2167 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2168 2169 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2170 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2171 CV->getType()->getNumElements(); 2172 if (unsigned Padding = Size - EmittedSize) 2173 AP.OutStreamer->EmitZeros(Padding); 2174 } 2175 2176 static void emitGlobalConstantStruct(const DataLayout &DL, 2177 const ConstantStruct *CS, AsmPrinter &AP, 2178 const Constant *BaseCV, uint64_t Offset) { 2179 // Print the fields in successive locations. Pad to align if needed! 2180 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2181 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2182 uint64_t SizeSoFar = 0; 2183 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2184 const Constant *Field = CS->getOperand(i); 2185 2186 // Print the actual field value. 2187 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2188 2189 // Check if padding is needed and insert one or more 0s. 2190 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2191 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2192 - Layout->getElementOffset(i)) - FieldSize; 2193 SizeSoFar += FieldSize + PadSize; 2194 2195 // Insert padding - this may include padding to increase the size of the 2196 // current field up to the ABI size (if the struct is not packed) as well 2197 // as padding to ensure that the next field starts at the right offset. 2198 AP.OutStreamer->EmitZeros(PadSize); 2199 } 2200 assert(SizeSoFar == Layout->getSizeInBytes() && 2201 "Layout of constant struct may be incorrect!"); 2202 } 2203 2204 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2205 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2206 2207 // First print a comment with what we think the original floating-point value 2208 // should have been. 2209 if (AP.isVerbose()) { 2210 SmallString<8> StrVal; 2211 CFP->getValueAPF().toString(StrVal); 2212 2213 if (CFP->getType()) 2214 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2215 else 2216 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2217 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2218 } 2219 2220 // Now iterate through the APInt chunks, emitting them in endian-correct 2221 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2222 // floats). 2223 unsigned NumBytes = API.getBitWidth() / 8; 2224 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2225 const uint64_t *p = API.getRawData(); 2226 2227 // PPC's long double has odd notions of endianness compared to how LLVM 2228 // handles it: p[0] goes first for *big* endian on PPC. 2229 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2230 int Chunk = API.getNumWords() - 1; 2231 2232 if (TrailingBytes) 2233 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2234 2235 for (; Chunk >= 0; --Chunk) 2236 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2237 } else { 2238 unsigned Chunk; 2239 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2240 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2241 2242 if (TrailingBytes) 2243 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2244 } 2245 2246 // Emit the tail padding for the long double. 2247 const DataLayout &DL = AP.getDataLayout(); 2248 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2249 DL.getTypeStoreSize(CFP->getType())); 2250 } 2251 2252 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2253 const DataLayout &DL = AP.getDataLayout(); 2254 unsigned BitWidth = CI->getBitWidth(); 2255 2256 // Copy the value as we may massage the layout for constants whose bit width 2257 // is not a multiple of 64-bits. 2258 APInt Realigned(CI->getValue()); 2259 uint64_t ExtraBits = 0; 2260 unsigned ExtraBitsSize = BitWidth & 63; 2261 2262 if (ExtraBitsSize) { 2263 // The bit width of the data is not a multiple of 64-bits. 2264 // The extra bits are expected to be at the end of the chunk of the memory. 2265 // Little endian: 2266 // * Nothing to be done, just record the extra bits to emit. 2267 // Big endian: 2268 // * Record the extra bits to emit. 2269 // * Realign the raw data to emit the chunks of 64-bits. 2270 if (DL.isBigEndian()) { 2271 // Basically the structure of the raw data is a chunk of 64-bits cells: 2272 // 0 1 BitWidth / 64 2273 // [chunk1][chunk2] ... [chunkN]. 2274 // The most significant chunk is chunkN and it should be emitted first. 2275 // However, due to the alignment issue chunkN contains useless bits. 2276 // Realign the chunks so that they contain only useless information: 2277 // ExtraBits 0 1 (BitWidth / 64) - 1 2278 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2279 ExtraBits = Realigned.getRawData()[0] & 2280 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2281 Realigned.lshrInPlace(ExtraBitsSize); 2282 } else 2283 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2284 } 2285 2286 // We don't expect assemblers to support integer data directives 2287 // for more than 64 bits, so we emit the data in at most 64-bit 2288 // quantities at a time. 2289 const uint64_t *RawData = Realigned.getRawData(); 2290 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2291 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2292 AP.OutStreamer->EmitIntValue(Val, 8); 2293 } 2294 2295 if (ExtraBitsSize) { 2296 // Emit the extra bits after the 64-bits chunks. 2297 2298 // Emit a directive that fills the expected size. 2299 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2300 Size -= (BitWidth / 64) * 8; 2301 assert(Size && Size * 8 >= ExtraBitsSize && 2302 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2303 == ExtraBits && "Directive too small for extra bits."); 2304 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2305 } 2306 } 2307 2308 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2309 /// equivalent global, by a target specific GOT pc relative access to the 2310 /// final symbol. 2311 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2312 const Constant *BaseCst, 2313 uint64_t Offset) { 2314 // The global @foo below illustrates a global that uses a got equivalent. 2315 // 2316 // @bar = global i32 42 2317 // @gotequiv = private unnamed_addr constant i32* @bar 2318 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2319 // i64 ptrtoint (i32* @foo to i64)) 2320 // to i32) 2321 // 2322 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2323 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2324 // form: 2325 // 2326 // foo = cstexpr, where 2327 // cstexpr := <gotequiv> - "." + <cst> 2328 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2329 // 2330 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2331 // 2332 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2333 // gotpcrelcst := <offset from @foo base> + <cst> 2334 MCValue MV; 2335 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2336 return; 2337 const MCSymbolRefExpr *SymA = MV.getSymA(); 2338 if (!SymA) 2339 return; 2340 2341 // Check that GOT equivalent symbol is cached. 2342 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2343 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2344 return; 2345 2346 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2347 if (!BaseGV) 2348 return; 2349 2350 // Check for a valid base symbol 2351 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2352 const MCSymbolRefExpr *SymB = MV.getSymB(); 2353 2354 if (!SymB || BaseSym != &SymB->getSymbol()) 2355 return; 2356 2357 // Make sure to match: 2358 // 2359 // gotpcrelcst := <offset from @foo base> + <cst> 2360 // 2361 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2362 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2363 // if the target knows how to encode it. 2364 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2365 if (GOTPCRelCst < 0) 2366 return; 2367 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2368 return; 2369 2370 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2371 // 2372 // bar: 2373 // .long 42 2374 // gotequiv: 2375 // .quad bar 2376 // foo: 2377 // .long gotequiv - "." + <cst> 2378 // 2379 // is replaced by the target specific equivalent to: 2380 // 2381 // bar: 2382 // .long 42 2383 // foo: 2384 // .long bar@GOTPCREL+<gotpcrelcst> 2385 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2386 const GlobalVariable *GV = Result.first; 2387 int NumUses = (int)Result.second; 2388 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2389 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2390 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2391 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2392 2393 // Update GOT equivalent usage information 2394 --NumUses; 2395 if (NumUses >= 0) 2396 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2397 } 2398 2399 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2400 AsmPrinter &AP, const Constant *BaseCV, 2401 uint64_t Offset) { 2402 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2403 2404 // Globals with sub-elements such as combinations of arrays and structs 2405 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2406 // constant symbol base and the current position with BaseCV and Offset. 2407 if (!BaseCV && CV->hasOneUse()) 2408 BaseCV = dyn_cast<Constant>(CV->user_back()); 2409 2410 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2411 return AP.OutStreamer->EmitZeros(Size); 2412 2413 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2414 switch (Size) { 2415 case 1: 2416 case 2: 2417 case 4: 2418 case 8: 2419 if (AP.isVerbose()) 2420 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2421 CI->getZExtValue()); 2422 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2423 return; 2424 default: 2425 emitGlobalConstantLargeInt(CI, AP); 2426 return; 2427 } 2428 } 2429 2430 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2431 return emitGlobalConstantFP(CFP, AP); 2432 2433 if (isa<ConstantPointerNull>(CV)) { 2434 AP.OutStreamer->EmitIntValue(0, Size); 2435 return; 2436 } 2437 2438 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2439 return emitGlobalConstantDataSequential(DL, CDS, AP); 2440 2441 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2442 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2443 2444 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2445 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2446 2447 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2448 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2449 // vectors). 2450 if (CE->getOpcode() == Instruction::BitCast) 2451 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2452 2453 if (Size > 8) { 2454 // If the constant expression's size is greater than 64-bits, then we have 2455 // to emit the value in chunks. Try to constant fold the value and emit it 2456 // that way. 2457 Constant *New = ConstantFoldConstant(CE, DL); 2458 if (New && New != CE) 2459 return emitGlobalConstantImpl(DL, New, AP); 2460 } 2461 } 2462 2463 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2464 return emitGlobalConstantVector(DL, V, AP); 2465 2466 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2467 // thread the streamer with EmitValue. 2468 const MCExpr *ME = AP.lowerConstant(CV); 2469 2470 // Since lowerConstant already folded and got rid of all IR pointer and 2471 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2472 // directly. 2473 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2474 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2475 2476 AP.OutStreamer->EmitValue(ME, Size); 2477 } 2478 2479 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2480 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2481 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2482 if (Size) 2483 emitGlobalConstantImpl(DL, CV, *this); 2484 else if (MAI->hasSubsectionsViaSymbols()) { 2485 // If the global has zero size, emit a single byte so that two labels don't 2486 // look like they are at the same location. 2487 OutStreamer->EmitIntValue(0, 1); 2488 } 2489 } 2490 2491 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2492 // Target doesn't support this yet! 2493 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2494 } 2495 2496 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2497 if (Offset > 0) 2498 OS << '+' << Offset; 2499 else if (Offset < 0) 2500 OS << Offset; 2501 } 2502 2503 //===----------------------------------------------------------------------===// 2504 // Symbol Lowering Routines. 2505 //===----------------------------------------------------------------------===// 2506 2507 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2508 return OutContext.createTempSymbol(Name, true); 2509 } 2510 2511 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2512 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2513 } 2514 2515 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2516 return MMI->getAddrLabelSymbol(BB); 2517 } 2518 2519 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2520 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2521 const DataLayout &DL = getDataLayout(); 2522 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2523 "CPI" + Twine(getFunctionNumber()) + "_" + 2524 Twine(CPID)); 2525 } 2526 2527 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2528 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2529 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2530 } 2531 2532 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2533 /// FIXME: privatize to AsmPrinter. 2534 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2535 const DataLayout &DL = getDataLayout(); 2536 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2537 Twine(getFunctionNumber()) + "_" + 2538 Twine(UID) + "_set_" + Twine(MBBID)); 2539 } 2540 2541 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2542 StringRef Suffix) const { 2543 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2544 } 2545 2546 /// Return the MCSymbol for the specified ExternalSymbol. 2547 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2548 SmallString<60> NameStr; 2549 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2550 return OutContext.getOrCreateSymbol(NameStr); 2551 } 2552 2553 /// PrintParentLoopComment - Print comments about parent loops of this one. 2554 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2555 unsigned FunctionNumber) { 2556 if (!Loop) return; 2557 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2558 OS.indent(Loop->getLoopDepth()*2) 2559 << "Parent Loop BB" << FunctionNumber << "_" 2560 << Loop->getHeader()->getNumber() 2561 << " Depth=" << Loop->getLoopDepth() << '\n'; 2562 } 2563 2564 /// PrintChildLoopComment - Print comments about child loops within 2565 /// the loop for this basic block, with nesting. 2566 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2567 unsigned FunctionNumber) { 2568 // Add child loop information 2569 for (const MachineLoop *CL : *Loop) { 2570 OS.indent(CL->getLoopDepth()*2) 2571 << "Child Loop BB" << FunctionNumber << "_" 2572 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2573 << '\n'; 2574 PrintChildLoopComment(OS, CL, FunctionNumber); 2575 } 2576 } 2577 2578 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2579 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2580 const MachineLoopInfo *LI, 2581 const AsmPrinter &AP) { 2582 // Add loop depth information 2583 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2584 if (!Loop) return; 2585 2586 MachineBasicBlock *Header = Loop->getHeader(); 2587 assert(Header && "No header for loop"); 2588 2589 // If this block is not a loop header, just print out what is the loop header 2590 // and return. 2591 if (Header != &MBB) { 2592 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2593 Twine(AP.getFunctionNumber())+"_" + 2594 Twine(Loop->getHeader()->getNumber())+ 2595 " Depth="+Twine(Loop->getLoopDepth())); 2596 return; 2597 } 2598 2599 // Otherwise, it is a loop header. Print out information about child and 2600 // parent loops. 2601 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2602 2603 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2604 2605 OS << "=>"; 2606 OS.indent(Loop->getLoopDepth()*2-2); 2607 2608 OS << "This "; 2609 if (Loop->empty()) 2610 OS << "Inner "; 2611 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2612 2613 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2614 } 2615 2616 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2617 MCCodePaddingContext &Context) const { 2618 assert(MF != nullptr && "Machine function must be valid"); 2619 assert(LI != nullptr && "Loop info must be valid"); 2620 Context.IsPaddingActive = !MF->hasInlineAsm() && 2621 !MF->getFunction()->optForSize() && 2622 TM.getOptLevel() != CodeGenOpt::None; 2623 const MachineLoop *CurrentLoop = LI->getLoopFor(&MBB); 2624 Context.IsBasicBlockInsideInnermostLoop = 2625 CurrentLoop != nullptr && CurrentLoop->getSubLoops().empty(); 2626 Context.IsBasicBlockReachableViaFallthrough = 2627 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2628 MBB.pred_end(); 2629 Context.IsBasicBlockReachableViaBranch = 2630 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2631 } 2632 2633 /// EmitBasicBlockStart - This method prints the label for the specified 2634 /// MachineBasicBlock, an alignment (if present) and a comment describing 2635 /// it if appropriate. 2636 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2637 // End the previous funclet and start a new one. 2638 if (MBB.isEHFuncletEntry()) { 2639 for (const HandlerInfo &HI : Handlers) { 2640 HI.Handler->endFunclet(); 2641 HI.Handler->beginFunclet(MBB); 2642 } 2643 } 2644 2645 // Emit an alignment directive for this block, if needed. 2646 if (unsigned Align = MBB.getAlignment()) 2647 EmitAlignment(Align); 2648 MCCodePaddingContext Context; 2649 setupCodePaddingContext(MBB, Context); 2650 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2651 2652 // If the block has its address taken, emit any labels that were used to 2653 // reference the block. It is possible that there is more than one label 2654 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2655 // the references were generated. 2656 if (MBB.hasAddressTaken()) { 2657 const BasicBlock *BB = MBB.getBasicBlock(); 2658 if (isVerbose()) 2659 OutStreamer->AddComment("Block address taken"); 2660 2661 // MBBs can have their address taken as part of CodeGen without having 2662 // their corresponding BB's address taken in IR 2663 if (BB->hasAddressTaken()) 2664 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2665 OutStreamer->EmitLabel(Sym); 2666 } 2667 2668 // Print some verbose block comments. 2669 if (isVerbose()) { 2670 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2671 if (BB->hasName()) { 2672 BB->printAsOperand(OutStreamer->GetCommentOS(), 2673 /*PrintType=*/false, BB->getModule()); 2674 OutStreamer->GetCommentOS() << '\n'; 2675 } 2676 } 2677 emitBasicBlockLoopComments(MBB, LI, *this); 2678 } 2679 2680 // Print the main label for the block. 2681 if (MBB.pred_empty() || 2682 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2683 if (isVerbose()) { 2684 // NOTE: Want this comment at start of line, don't emit with AddComment. 2685 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2686 } 2687 } else { 2688 OutStreamer->EmitLabel(MBB.getSymbol()); 2689 } 2690 } 2691 2692 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2693 MCCodePaddingContext Context; 2694 setupCodePaddingContext(MBB, Context); 2695 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2696 } 2697 2698 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2699 bool IsDefinition) const { 2700 MCSymbolAttr Attr = MCSA_Invalid; 2701 2702 switch (Visibility) { 2703 default: break; 2704 case GlobalValue::HiddenVisibility: 2705 if (IsDefinition) 2706 Attr = MAI->getHiddenVisibilityAttr(); 2707 else 2708 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2709 break; 2710 case GlobalValue::ProtectedVisibility: 2711 Attr = MAI->getProtectedVisibilityAttr(); 2712 break; 2713 } 2714 2715 if (Attr != MCSA_Invalid) 2716 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2717 } 2718 2719 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2720 /// exactly one predecessor and the control transfer mechanism between 2721 /// the predecessor and this block is a fall-through. 2722 bool AsmPrinter:: 2723 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2724 // If this is a landing pad, it isn't a fall through. If it has no preds, 2725 // then nothing falls through to it. 2726 if (MBB->isEHPad() || MBB->pred_empty()) 2727 return false; 2728 2729 // If there isn't exactly one predecessor, it can't be a fall through. 2730 if (MBB->pred_size() > 1) 2731 return false; 2732 2733 // The predecessor has to be immediately before this block. 2734 MachineBasicBlock *Pred = *MBB->pred_begin(); 2735 if (!Pred->isLayoutSuccessor(MBB)) 2736 return false; 2737 2738 // If the block is completely empty, then it definitely does fall through. 2739 if (Pred->empty()) 2740 return true; 2741 2742 // Check the terminators in the previous blocks 2743 for (const auto &MI : Pred->terminators()) { 2744 // If it is not a simple branch, we are in a table somewhere. 2745 if (!MI.isBranch() || MI.isIndirectBranch()) 2746 return false; 2747 2748 // If we are the operands of one of the branches, this is not a fall 2749 // through. Note that targets with delay slots will usually bundle 2750 // terminators with the delay slot instruction. 2751 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2752 if (OP->isJTI()) 2753 return false; 2754 if (OP->isMBB() && OP->getMBB() == MBB) 2755 return false; 2756 } 2757 } 2758 2759 return true; 2760 } 2761 2762 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2763 if (!S.usesMetadata()) 2764 return nullptr; 2765 2766 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2767 " stackmap formats, please see the documentation for a description of" 2768 " the default format. If you really need a custom serialized format," 2769 " please file a bug"); 2770 2771 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2772 gcp_map_type::iterator GCPI = GCMap.find(&S); 2773 if (GCPI != GCMap.end()) 2774 return GCPI->second.get(); 2775 2776 auto Name = S.getName(); 2777 2778 for (GCMetadataPrinterRegistry::iterator 2779 I = GCMetadataPrinterRegistry::begin(), 2780 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2781 if (Name == I->getName()) { 2782 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2783 GMP->S = &S; 2784 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2785 return IterBool.first->second.get(); 2786 } 2787 2788 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2789 } 2790 2791 /// Pin vtable to this file. 2792 AsmPrinterHandler::~AsmPrinterHandler() = default; 2793 2794 void AsmPrinterHandler::markFunctionEnd() {} 2795 2796 // In the binary's "xray_instr_map" section, an array of these function entries 2797 // describes each instrumentation point. When XRay patches your code, the index 2798 // into this table will be given to your handler as a patch point identifier. 2799 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2800 const MCSymbol *CurrentFnSym) const { 2801 Out->EmitSymbolValue(Sled, Bytes); 2802 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2803 auto Kind8 = static_cast<uint8_t>(Kind); 2804 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2805 Out->EmitBinaryData( 2806 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2807 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 2808 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 2809 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 2810 Out->EmitZeros(Padding); 2811 } 2812 2813 void AsmPrinter::emitXRayTable() { 2814 if (Sleds.empty()) 2815 return; 2816 2817 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2818 auto Fn = MF->getFunction(); 2819 MCSection *InstMap = nullptr; 2820 MCSection *FnSledIndex = nullptr; 2821 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2822 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 2823 assert(Associated != nullptr); 2824 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 2825 std::string GroupName; 2826 if (Fn->hasComdat()) { 2827 Flags |= ELF::SHF_GROUP; 2828 GroupName = Fn->getComdat()->getName(); 2829 } 2830 2831 auto UniqueID = ++XRayFnUniqueID; 2832 InstMap = 2833 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 2834 GroupName, UniqueID, Associated); 2835 FnSledIndex = 2836 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 2837 GroupName, UniqueID, Associated); 2838 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2839 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2840 SectionKind::getReadOnlyWithRel()); 2841 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2842 SectionKind::getReadOnlyWithRel()); 2843 } else { 2844 llvm_unreachable("Unsupported target"); 2845 } 2846 2847 auto WordSizeBytes = MAI->getCodePointerSize(); 2848 2849 // Now we switch to the instrumentation map section. Because this is done 2850 // per-function, we are able to create an index entry that will represent the 2851 // range of sleds associated with a function. 2852 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 2853 OutStreamer->SwitchSection(InstMap); 2854 OutStreamer->EmitLabel(SledsStart); 2855 for (const auto &Sled : Sleds) 2856 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2857 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 2858 OutStreamer->EmitLabel(SledsEnd); 2859 2860 // We then emit a single entry in the index per function. We use the symbols 2861 // that bound the instrumentation map as the range for a specific function. 2862 // Each entry here will be 2 * word size aligned, as we're writing down two 2863 // pointers. This should work for both 32-bit and 64-bit platforms. 2864 OutStreamer->SwitchSection(FnSledIndex); 2865 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2866 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 2867 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 2868 OutStreamer->SwitchSection(PrevSection); 2869 Sleds.clear(); 2870 } 2871 2872 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2873 SledKind Kind, uint8_t Version) { 2874 auto Fn = MI.getMF()->getFunction(); 2875 auto Attr = Fn->getFnAttribute("function-instrument"); 2876 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2877 bool AlwaysInstrument = 2878 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2879 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2880 Kind = SledKind::LOG_ARGS_ENTER; 2881 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 2882 AlwaysInstrument, Fn, Version}); 2883 } 2884 2885 uint16_t AsmPrinter::getDwarfVersion() const { 2886 return OutStreamer->getContext().getDwarfVersion(); 2887 } 2888 2889 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2890 OutStreamer->getContext().setDwarfVersion(Version); 2891 } 2892