1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "AsmPrinterHandler.h"
16 #include "CodeViewDebug.h"
17 #include "DwarfDebug.h"
18 #include "DwarfException.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/ObjectUtils.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/Comdat.h"
56 #include "llvm/IR/Constant.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DebugInfoMetadata.h"
60 #include "llvm/IR/DerivedTypes.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/GlobalAlias.h"
63 #include "llvm/IR/GlobalIFunc.h"
64 #include "llvm/IR/GlobalIndirectSymbol.h"
65 #include "llvm/IR/GlobalObject.h"
66 #include "llvm/IR/GlobalValue.h"
67 #include "llvm/IR/GlobalVariable.h"
68 #include "llvm/IR/Instruction.h"
69 #include "llvm/IR/Mangler.h"
70 #include "llvm/IR/Metadata.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/Operator.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/MC/MCAsmInfo.h"
76 #include "llvm/MC/MCCodePadder.h"
77 #include "llvm/MC/MCContext.h"
78 #include "llvm/MC/MCDirectives.h"
79 #include "llvm/MC/MCDwarf.h"
80 #include "llvm/MC/MCExpr.h"
81 #include "llvm/MC/MCInst.h"
82 #include "llvm/MC/MCSection.h"
83 #include "llvm/MC/MCSectionELF.h"
84 #include "llvm/MC/MCSectionMachO.h"
85 #include "llvm/MC/MCStreamer.h"
86 #include "llvm/MC/MCSubtargetInfo.h"
87 #include "llvm/MC/MCSymbol.h"
88 #include "llvm/MC/MCSymbolELF.h"
89 #include "llvm/MC/MCTargetOptions.h"
90 #include "llvm/MC/MCValue.h"
91 #include "llvm/MC/SectionKind.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/ErrorHandling.h"
97 #include "llvm/Support/Format.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/Path.h"
100 #include "llvm/Support/TargetRegistry.h"
101 #include "llvm/Support/Timer.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetFrameLowering.h"
104 #include "llvm/Target/TargetInstrInfo.h"
105 #include "llvm/Target/TargetLowering.h"
106 #include "llvm/Target/TargetLoweringObjectFile.h"
107 #include "llvm/Target/TargetMachine.h"
108 #include "llvm/Target/TargetOpcodes.h"
109 #include "llvm/Target/TargetOptions.h"
110 #include "llvm/Target/TargetRegisterInfo.h"
111 #include "llvm/Target/TargetSubtargetInfo.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cinttypes>
115 #include <cstdint>
116 #include <iterator>
117 #include <limits>
118 #include <memory>
119 #include <string>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "asm-printer"
126 
127 static const char *const DWARFGroupName = "dwarf";
128 static const char *const DWARFGroupDescription = "DWARF Emission";
129 static const char *const DbgTimerName = "emit";
130 static const char *const DbgTimerDescription = "Debug Info Emission";
131 static const char *const EHTimerName = "write_exception";
132 static const char *const EHTimerDescription = "DWARF Exception Writer";
133 static const char *const CodeViewLineTablesGroupName = "linetables";
134 static const char *const CodeViewLineTablesGroupDescription =
135   "CodeView Line Tables";
136 
137 STATISTIC(EmittedInsts, "Number of machine instrs printed");
138 
139 static cl::opt<bool>
140     PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
141                   cl::desc("Print 'sched: [latency:throughput]' in .s output"));
142 
143 char AsmPrinter::ID = 0;
144 
145 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
146 
147 static gcp_map_type &getGCMap(void *&P) {
148   if (!P)
149     P = new gcp_map_type();
150   return *(gcp_map_type*)P;
151 }
152 
153 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
154 /// value in log2 form.  This rounds up to the preferred alignment if possible
155 /// and legal.
156 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
157                                    unsigned InBits = 0) {
158   unsigned NumBits = 0;
159   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
160     NumBits = DL.getPreferredAlignmentLog(GVar);
161 
162   // If InBits is specified, round it to it.
163   if (InBits > NumBits)
164     NumBits = InBits;
165 
166   // If the GV has a specified alignment, take it into account.
167   if (GV->getAlignment() == 0)
168     return NumBits;
169 
170   unsigned GVAlign = Log2_32(GV->getAlignment());
171 
172   // If the GVAlign is larger than NumBits, or if we are required to obey
173   // NumBits because the GV has an assigned section, obey it.
174   if (GVAlign > NumBits || GV->hasSection())
175     NumBits = GVAlign;
176   return NumBits;
177 }
178 
179 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
180     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
181       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
182   VerboseAsm = OutStreamer->isVerboseAsm();
183 }
184 
185 AsmPrinter::~AsmPrinter() {
186   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
187 
188   if (GCMetadataPrinters) {
189     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
190 
191     delete &GCMap;
192     GCMetadataPrinters = nullptr;
193   }
194 }
195 
196 bool AsmPrinter::isPositionIndependent() const {
197   return TM.isPositionIndependent();
198 }
199 
200 /// getFunctionNumber - Return a unique ID for the current function.
201 unsigned AsmPrinter::getFunctionNumber() const {
202   return MF->getFunctionNumber();
203 }
204 
205 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
206   return *TM.getObjFileLowering();
207 }
208 
209 const DataLayout &AsmPrinter::getDataLayout() const {
210   return MMI->getModule()->getDataLayout();
211 }
212 
213 // Do not use the cached DataLayout because some client use it without a Module
214 // (llvm-dsymutil, llvm-dwarfdump).
215 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
216 
217 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
218   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
219   return MF->getSubtarget<MCSubtargetInfo>();
220 }
221 
222 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
223   S.EmitInstruction(Inst, getSubtargetInfo());
224 }
225 
226 /// getCurrentSection() - Return the current section we are emitting to.
227 const MCSection *AsmPrinter::getCurrentSection() const {
228   return OutStreamer->getCurrentSectionOnly();
229 }
230 
231 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
232   AU.setPreservesAll();
233   MachineFunctionPass::getAnalysisUsage(AU);
234   AU.addRequired<MachineModuleInfo>();
235   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
236   AU.addRequired<GCModuleInfo>();
237   AU.addRequired<MachineLoopInfo>();
238 }
239 
240 bool AsmPrinter::doInitialization(Module &M) {
241   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
242 
243   // Initialize TargetLoweringObjectFile.
244   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
245     .Initialize(OutContext, TM);
246 
247   OutStreamer->InitSections(false);
248 
249   // Emit the version-min deplyment target directive if needed.
250   //
251   // FIXME: If we end up with a collection of these sorts of Darwin-specific
252   // or ELF-specific things, it may make sense to have a platform helper class
253   // that will work with the target helper class. For now keep it here, as the
254   // alternative is duplicated code in each of the target asm printers that
255   // use the directive, where it would need the same conditionalization
256   // anyway.
257   const Triple &TT = TM.getTargetTriple();
258   // If there is a version specified, Major will be non-zero.
259   if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) {
260     unsigned Major, Minor, Update;
261     MCVersionMinType VersionType;
262     if (TT.isWatchOS()) {
263       VersionType = MCVM_WatchOSVersionMin;
264       TT.getWatchOSVersion(Major, Minor, Update);
265     } else if (TT.isTvOS()) {
266       VersionType = MCVM_TvOSVersionMin;
267       TT.getiOSVersion(Major, Minor, Update);
268     } else if (TT.isMacOSX()) {
269       VersionType = MCVM_OSXVersionMin;
270       if (!TT.getMacOSXVersion(Major, Minor, Update))
271         Major = 0;
272     } else {
273       VersionType = MCVM_IOSVersionMin;
274       TT.getiOSVersion(Major, Minor, Update);
275     }
276     if (Major != 0)
277       OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
278   }
279 
280   // Allow the target to emit any magic that it wants at the start of the file.
281   EmitStartOfAsmFile(M);
282 
283   // Very minimal debug info. It is ignored if we emit actual debug info. If we
284   // don't, this at least helps the user find where a global came from.
285   if (MAI->hasSingleParameterDotFile()) {
286     // .file "foo.c"
287     OutStreamer->EmitFileDirective(
288         llvm::sys::path::filename(M.getSourceFileName()));
289   }
290 
291   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
292   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
293   for (auto &I : *MI)
294     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
295       MP->beginAssembly(M, *MI, *this);
296 
297   // Emit module-level inline asm if it exists.
298   if (!M.getModuleInlineAsm().empty()) {
299     // We're at the module level. Construct MCSubtarget from the default CPU
300     // and target triple.
301     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
302         TM.getTargetTriple().str(), TM.getTargetCPU(),
303         TM.getTargetFeatureString()));
304     OutStreamer->AddComment("Start of file scope inline assembly");
305     OutStreamer->AddBlankLine();
306     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
307                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
308     OutStreamer->AddComment("End of file scope inline assembly");
309     OutStreamer->AddBlankLine();
310   }
311 
312   if (MAI->doesSupportDebugInformation()) {
313     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
314     if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() ||
315                          TM.getTargetTriple().isWindowsItaniumEnvironment())) {
316       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
317                                      DbgTimerName, DbgTimerDescription,
318                                      CodeViewLineTablesGroupName,
319                                      CodeViewLineTablesGroupDescription));
320     }
321     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
322       DD = new DwarfDebug(this, &M);
323       DD->beginModule();
324       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
325                                      DWARFGroupName, DWARFGroupDescription));
326     }
327   }
328 
329   switch (MAI->getExceptionHandlingType()) {
330   case ExceptionHandling::SjLj:
331   case ExceptionHandling::DwarfCFI:
332   case ExceptionHandling::ARM:
333     isCFIMoveForDebugging = true;
334     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
335       break;
336     for (auto &F: M.getFunctionList()) {
337       // If the module contains any function with unwind data,
338       // .eh_frame has to be emitted.
339       // Ignore functions that won't get emitted.
340       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
341         isCFIMoveForDebugging = false;
342         break;
343       }
344     }
345     break;
346   default:
347     isCFIMoveForDebugging = false;
348     break;
349   }
350 
351   EHStreamer *ES = nullptr;
352   switch (MAI->getExceptionHandlingType()) {
353   case ExceptionHandling::None:
354     break;
355   case ExceptionHandling::SjLj:
356   case ExceptionHandling::DwarfCFI:
357     ES = new DwarfCFIException(this);
358     break;
359   case ExceptionHandling::ARM:
360     ES = new ARMException(this);
361     break;
362   case ExceptionHandling::WinEH:
363     switch (MAI->getWinEHEncodingType()) {
364     default: llvm_unreachable("unsupported unwinding information encoding");
365     case WinEH::EncodingType::Invalid:
366       break;
367     case WinEH::EncodingType::X86:
368     case WinEH::EncodingType::Itanium:
369       ES = new WinException(this);
370       break;
371     }
372     break;
373   }
374   if (ES)
375     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
376                                    DWARFGroupName, DWARFGroupDescription));
377   return false;
378 }
379 
380 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
381   if (!MAI.hasWeakDefCanBeHiddenDirective())
382     return false;
383 
384   return canBeOmittedFromSymbolTable(GV);
385 }
386 
387 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
388   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
389   switch (Linkage) {
390   case GlobalValue::CommonLinkage:
391   case GlobalValue::LinkOnceAnyLinkage:
392   case GlobalValue::LinkOnceODRLinkage:
393   case GlobalValue::WeakAnyLinkage:
394   case GlobalValue::WeakODRLinkage:
395     if (MAI->hasWeakDefDirective()) {
396       // .globl _foo
397       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
398 
399       if (!canBeHidden(GV, *MAI))
400         // .weak_definition _foo
401         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
402       else
403         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
404     } else if (MAI->hasLinkOnceDirective()) {
405       // .globl _foo
406       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
407       //NOTE: linkonce is handled by the section the symbol was assigned to.
408     } else {
409       // .weak _foo
410       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
411     }
412     return;
413   case GlobalValue::ExternalLinkage:
414     // If external, declare as a global symbol: .globl _foo
415     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
416     return;
417   case GlobalValue::PrivateLinkage:
418   case GlobalValue::InternalLinkage:
419     return;
420   case GlobalValue::AppendingLinkage:
421   case GlobalValue::AvailableExternallyLinkage:
422   case GlobalValue::ExternalWeakLinkage:
423     llvm_unreachable("Should never emit this");
424   }
425   llvm_unreachable("Unknown linkage type!");
426 }
427 
428 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
429                                    const GlobalValue *GV) const {
430   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
431 }
432 
433 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
434   return TM.getSymbol(GV);
435 }
436 
437 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
438 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
439   bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
440   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
441          "No emulated TLS variables in the common section");
442 
443   // Never emit TLS variable xyz in emulated TLS model.
444   // The initialization value is in __emutls_t.xyz instead of xyz.
445   if (IsEmuTLSVar)
446     return;
447 
448   if (GV->hasInitializer()) {
449     // Check to see if this is a special global used by LLVM, if so, emit it.
450     if (EmitSpecialLLVMGlobal(GV))
451       return;
452 
453     // Skip the emission of global equivalents. The symbol can be emitted later
454     // on by emitGlobalGOTEquivs in case it turns out to be needed.
455     if (GlobalGOTEquivs.count(getSymbol(GV)))
456       return;
457 
458     if (isVerbose()) {
459       // When printing the control variable __emutls_v.*,
460       // we don't need to print the original TLS variable name.
461       GV->printAsOperand(OutStreamer->GetCommentOS(),
462                      /*PrintType=*/false, GV->getParent());
463       OutStreamer->GetCommentOS() << '\n';
464     }
465   }
466 
467   MCSymbol *GVSym = getSymbol(GV);
468   MCSymbol *EmittedSym = GVSym;
469 
470   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
471   // attributes.
472   // GV's or GVSym's attributes will be used for the EmittedSym.
473   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
474 
475   if (!GV->hasInitializer())   // External globals require no extra code.
476     return;
477 
478   GVSym->redefineIfPossible();
479   if (GVSym->isDefined() || GVSym->isVariable())
480     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
481                        "' is already defined");
482 
483   if (MAI->hasDotTypeDotSizeDirective())
484     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
485 
486   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
487 
488   const DataLayout &DL = GV->getParent()->getDataLayout();
489   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
490 
491   // If the alignment is specified, we *must* obey it.  Overaligning a global
492   // with a specified alignment is a prompt way to break globals emitted to
493   // sections and expected to be contiguous (e.g. ObjC metadata).
494   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
495 
496   for (const HandlerInfo &HI : Handlers) {
497     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
498                        HI.TimerGroupName, HI.TimerGroupDescription,
499                        TimePassesIsEnabled);
500     HI.Handler->setSymbolSize(GVSym, Size);
501   }
502 
503   // Handle common symbols
504   if (GVKind.isCommon()) {
505     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
506     unsigned Align = 1 << AlignLog;
507     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
508       Align = 0;
509 
510     // .comm _foo, 42, 4
511     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
512     return;
513   }
514 
515   // Determine to which section this global should be emitted.
516   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
517 
518   // If we have a bss global going to a section that supports the
519   // zerofill directive, do so here.
520   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
521       TheSection->isVirtualSection()) {
522     if (Size == 0)
523       Size = 1; // zerofill of 0 bytes is undefined.
524     unsigned Align = 1 << AlignLog;
525     EmitLinkage(GV, GVSym);
526     // .zerofill __DATA, __bss, _foo, 400, 5
527     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
528     return;
529   }
530 
531   // If this is a BSS local symbol and we are emitting in the BSS
532   // section use .lcomm/.comm directive.
533   if (GVKind.isBSSLocal() &&
534       getObjFileLowering().getBSSSection() == TheSection) {
535     if (Size == 0)
536       Size = 1; // .comm Foo, 0 is undefined, avoid it.
537     unsigned Align = 1 << AlignLog;
538 
539     // Use .lcomm only if it supports user-specified alignment.
540     // Otherwise, while it would still be correct to use .lcomm in some
541     // cases (e.g. when Align == 1), the external assembler might enfore
542     // some -unknown- default alignment behavior, which could cause
543     // spurious differences between external and integrated assembler.
544     // Prefer to simply fall back to .local / .comm in this case.
545     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
546       // .lcomm _foo, 42
547       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
548       return;
549     }
550 
551     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
552       Align = 0;
553 
554     // .local _foo
555     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
556     // .comm _foo, 42, 4
557     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
558     return;
559   }
560 
561   // Handle thread local data for mach-o which requires us to output an
562   // additional structure of data and mangle the original symbol so that we
563   // can reference it later.
564   //
565   // TODO: This should become an "emit thread local global" method on TLOF.
566   // All of this macho specific stuff should be sunk down into TLOFMachO and
567   // stuff like "TLSExtraDataSection" should no longer be part of the parent
568   // TLOF class.  This will also make it more obvious that stuff like
569   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
570   // specific code.
571   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
572     // Emit the .tbss symbol
573     MCSymbol *MangSym =
574         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
575 
576     if (GVKind.isThreadBSS()) {
577       TheSection = getObjFileLowering().getTLSBSSSection();
578       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
579     } else if (GVKind.isThreadData()) {
580       OutStreamer->SwitchSection(TheSection);
581 
582       EmitAlignment(AlignLog, GV);
583       OutStreamer->EmitLabel(MangSym);
584 
585       EmitGlobalConstant(GV->getParent()->getDataLayout(),
586                          GV->getInitializer());
587     }
588 
589     OutStreamer->AddBlankLine();
590 
591     // Emit the variable struct for the runtime.
592     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
593 
594     OutStreamer->SwitchSection(TLVSect);
595     // Emit the linkage here.
596     EmitLinkage(GV, GVSym);
597     OutStreamer->EmitLabel(GVSym);
598 
599     // Three pointers in size:
600     //   - __tlv_bootstrap - used to make sure support exists
601     //   - spare pointer, used when mapped by the runtime
602     //   - pointer to mangled symbol above with initializer
603     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
604     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
605                                 PtrSize);
606     OutStreamer->EmitIntValue(0, PtrSize);
607     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
608 
609     OutStreamer->AddBlankLine();
610     return;
611   }
612 
613   MCSymbol *EmittedInitSym = GVSym;
614 
615   OutStreamer->SwitchSection(TheSection);
616 
617   EmitLinkage(GV, EmittedInitSym);
618   EmitAlignment(AlignLog, GV);
619 
620   OutStreamer->EmitLabel(EmittedInitSym);
621 
622   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
623 
624   if (MAI->hasDotTypeDotSizeDirective())
625     // .size foo, 42
626     OutStreamer->emitELFSize(EmittedInitSym,
627                              MCConstantExpr::create(Size, OutContext));
628 
629   OutStreamer->AddBlankLine();
630 }
631 
632 /// Emit the directive and value for debug thread local expression
633 ///
634 /// \p Value - The value to emit.
635 /// \p Size - The size of the integer (in bytes) to emit.
636 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
637                                       unsigned Size) const {
638   OutStreamer->EmitValue(Value, Size);
639 }
640 
641 /// EmitFunctionHeader - This method emits the header for the current
642 /// function.
643 void AsmPrinter::EmitFunctionHeader() {
644   const Function *F = MF->getFunction();
645 
646   if (isVerbose())
647     OutStreamer->GetCommentOS()
648         << "-- Begin function "
649         << GlobalValue::dropLLVMManglingEscape(F->getName()) << '\n';
650 
651   // Print out constants referenced by the function
652   EmitConstantPool();
653 
654   // Print the 'header' of function.
655   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM));
656   EmitVisibility(CurrentFnSym, F->getVisibility());
657 
658   EmitLinkage(F, CurrentFnSym);
659   if (MAI->hasFunctionAlignment())
660     EmitAlignment(MF->getAlignment(), F);
661 
662   if (MAI->hasDotTypeDotSizeDirective())
663     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
664 
665   if (isVerbose()) {
666     F->printAsOperand(OutStreamer->GetCommentOS(),
667                    /*PrintType=*/false, F->getParent());
668     OutStreamer->GetCommentOS() << '\n';
669   }
670 
671   // Emit the prefix data.
672   if (F->hasPrefixData()) {
673     if (MAI->hasSubsectionsViaSymbols()) {
674       // Preserving prefix data on platforms which use subsections-via-symbols
675       // is a bit tricky. Here we introduce a symbol for the prefix data
676       // and use the .alt_entry attribute to mark the function's real entry point
677       // as an alternative entry point to the prefix-data symbol.
678       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
679       OutStreamer->EmitLabel(PrefixSym);
680 
681       EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
682 
683       // Emit an .alt_entry directive for the actual function symbol.
684       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
685     } else {
686       EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
687     }
688   }
689 
690   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
691   // do their wild and crazy things as required.
692   EmitFunctionEntryLabel();
693 
694   // If the function had address-taken blocks that got deleted, then we have
695   // references to the dangling symbols.  Emit them at the start of the function
696   // so that we don't get references to undefined symbols.
697   std::vector<MCSymbol*> DeadBlockSyms;
698   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
699   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
700     OutStreamer->AddComment("Address taken block that was later removed");
701     OutStreamer->EmitLabel(DeadBlockSyms[i]);
702   }
703 
704   if (CurrentFnBegin) {
705     if (MAI->useAssignmentForEHBegin()) {
706       MCSymbol *CurPos = OutContext.createTempSymbol();
707       OutStreamer->EmitLabel(CurPos);
708       OutStreamer->EmitAssignment(CurrentFnBegin,
709                                  MCSymbolRefExpr::create(CurPos, OutContext));
710     } else {
711       OutStreamer->EmitLabel(CurrentFnBegin);
712     }
713   }
714 
715   // Emit pre-function debug and/or EH information.
716   for (const HandlerInfo &HI : Handlers) {
717     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
718                        HI.TimerGroupDescription, TimePassesIsEnabled);
719     HI.Handler->beginFunction(MF);
720   }
721 
722   // Emit the prologue data.
723   if (F->hasPrologueData())
724     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
725 }
726 
727 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
728 /// function.  This can be overridden by targets as required to do custom stuff.
729 void AsmPrinter::EmitFunctionEntryLabel() {
730   CurrentFnSym->redefineIfPossible();
731 
732   // The function label could have already been emitted if two symbols end up
733   // conflicting due to asm renaming.  Detect this and emit an error.
734   if (CurrentFnSym->isVariable())
735     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
736                        "' is a protected alias");
737   if (CurrentFnSym->isDefined())
738     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
739                        "' label emitted multiple times to assembly file");
740 
741   return OutStreamer->EmitLabel(CurrentFnSym);
742 }
743 
744 /// emitComments - Pretty-print comments for instructions.
745 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
746                          AsmPrinter *AP) {
747   const MachineFunction *MF = MI.getMF();
748   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
749 
750   // Check for spills and reloads
751   int FI;
752 
753   const MachineFrameInfo &MFI = MF->getFrameInfo();
754   bool Commented = false;
755 
756   // We assume a single instruction only has a spill or reload, not
757   // both.
758   const MachineMemOperand *MMO;
759   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
760     if (MFI.isSpillSlotObjectIndex(FI)) {
761       MMO = *MI.memoperands_begin();
762       CommentOS << MMO->getSize() << "-byte Reload";
763       Commented = true;
764     }
765   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
766     if (MFI.isSpillSlotObjectIndex(FI)) {
767       CommentOS << MMO->getSize() << "-byte Folded Reload";
768       Commented = true;
769     }
770   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
771     if (MFI.isSpillSlotObjectIndex(FI)) {
772       MMO = *MI.memoperands_begin();
773       CommentOS << MMO->getSize() << "-byte Spill";
774       Commented = true;
775     }
776   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
777     if (MFI.isSpillSlotObjectIndex(FI)) {
778       CommentOS << MMO->getSize() << "-byte Folded Spill";
779       Commented = true;
780     }
781   }
782 
783   // Check for spill-induced copies
784   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
785     Commented = true;
786     CommentOS << " Reload Reuse";
787   }
788 
789   if (Commented && AP->EnablePrintSchedInfo)
790     // If any comment was added above and we need sched info comment then
791     // add this new comment just after the above comment w/o "\n" between them.
792     CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
793   else if (Commented)
794     CommentOS << "\n";
795 }
796 
797 /// emitImplicitDef - This method emits the specified machine instruction
798 /// that is an implicit def.
799 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
800   unsigned RegNo = MI->getOperand(0).getReg();
801 
802   SmallString<128> Str;
803   raw_svector_ostream OS(Str);
804   OS << "implicit-def: "
805      << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo());
806 
807   OutStreamer->AddComment(OS.str());
808   OutStreamer->AddBlankLine();
809 }
810 
811 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
812   std::string Str;
813   raw_string_ostream OS(Str);
814   OS << "kill:";
815   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
816     const MachineOperand &Op = MI->getOperand(i);
817     assert(Op.isReg() && "KILL instruction must have only register operands");
818     OS << ' '
819        << PrintReg(Op.getReg(),
820                    AP.MF->getSubtarget().getRegisterInfo())
821        << (Op.isDef() ? "<def>" : "<kill>");
822   }
823   AP.OutStreamer->AddComment(OS.str());
824   AP.OutStreamer->AddBlankLine();
825 }
826 
827 /// emitDebugValueComment - This method handles the target-independent form
828 /// of DBG_VALUE, returning true if it was able to do so.  A false return
829 /// means the target will need to handle MI in EmitInstruction.
830 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
831   // This code handles only the 4-operand target-independent form.
832   if (MI->getNumOperands() != 4)
833     return false;
834 
835   SmallString<128> Str;
836   raw_svector_ostream OS(Str);
837   OS << "DEBUG_VALUE: ";
838 
839   const DILocalVariable *V = MI->getDebugVariable();
840   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
841     StringRef Name = SP->getName();
842     if (!Name.empty())
843       OS << Name << ":";
844   }
845   OS << V->getName();
846   OS << " <- ";
847 
848   // The second operand is only an offset if it's an immediate.
849   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
850   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
851   const DIExpression *Expr = MI->getDebugExpression();
852   if (Expr->getNumElements()) {
853     OS << '[';
854     bool NeedSep = false;
855     for (auto Op : Expr->expr_ops()) {
856       if (NeedSep)
857         OS << ", ";
858       else
859         NeedSep = true;
860       OS << dwarf::OperationEncodingString(Op.getOp());
861       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
862         OS << ' ' << Op.getArg(I);
863     }
864     OS << "] ";
865   }
866 
867   // Register or immediate value. Register 0 means undef.
868   if (MI->getOperand(0).isFPImm()) {
869     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
870     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
871       OS << (double)APF.convertToFloat();
872     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
873       OS << APF.convertToDouble();
874     } else {
875       // There is no good way to print long double.  Convert a copy to
876       // double.  Ah well, it's only a comment.
877       bool ignored;
878       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
879                   &ignored);
880       OS << "(long double) " << APF.convertToDouble();
881     }
882   } else if (MI->getOperand(0).isImm()) {
883     OS << MI->getOperand(0).getImm();
884   } else if (MI->getOperand(0).isCImm()) {
885     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
886   } else {
887     unsigned Reg;
888     if (MI->getOperand(0).isReg()) {
889       Reg = MI->getOperand(0).getReg();
890     } else {
891       assert(MI->getOperand(0).isFI() && "Unknown operand type");
892       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
893       Offset += TFI->getFrameIndexReference(*AP.MF,
894                                             MI->getOperand(0).getIndex(), Reg);
895       MemLoc = true;
896     }
897     if (Reg == 0) {
898       // Suppress offset, it is not meaningful here.
899       OS << "undef";
900       // NOTE: Want this comment at start of line, don't emit with AddComment.
901       AP.OutStreamer->emitRawComment(OS.str());
902       return true;
903     }
904     if (MemLoc)
905       OS << '[';
906     OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
907   }
908 
909   if (MemLoc)
910     OS << '+' << Offset << ']';
911 
912   // NOTE: Want this comment at start of line, don't emit with AddComment.
913   AP.OutStreamer->emitRawComment(OS.str());
914   return true;
915 }
916 
917 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
918   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
919       MF->getFunction()->needsUnwindTableEntry())
920     return CFI_M_EH;
921 
922   if (MMI->hasDebugInfo())
923     return CFI_M_Debug;
924 
925   return CFI_M_None;
926 }
927 
928 bool AsmPrinter::needsSEHMoves() {
929   return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
930 }
931 
932 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
933   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
934   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
935       ExceptionHandlingType != ExceptionHandling::ARM)
936     return;
937 
938   if (needsCFIMoves() == CFI_M_None)
939     return;
940 
941   // If there is no "real" instruction following this CFI instruction, skip
942   // emitting it; it would be beyond the end of the function's FDE range.
943   auto *MBB = MI.getParent();
944   auto I = std::next(MI.getIterator());
945   while (I != MBB->end() && I->isTransient())
946     ++I;
947   if (I == MBB->instr_end() &&
948       MBB->getReverseIterator() == MBB->getParent()->rbegin())
949     return;
950 
951   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
952   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
953   const MCCFIInstruction &CFI = Instrs[CFIIndex];
954   emitCFIInstruction(CFI);
955 }
956 
957 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
958   // The operands are the MCSymbol and the frame offset of the allocation.
959   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
960   int FrameOffset = MI.getOperand(1).getImm();
961 
962   // Emit a symbol assignment.
963   OutStreamer->EmitAssignment(FrameAllocSym,
964                              MCConstantExpr::create(FrameOffset, OutContext));
965 }
966 
967 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
968                                            MachineModuleInfo *MMI) {
969   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
970     return true;
971 
972   // We might emit an EH table that uses function begin and end labels even if
973   // we don't have any landingpads.
974   if (!MF.getFunction()->hasPersonalityFn())
975     return false;
976   return !isNoOpWithoutInvoke(
977       classifyEHPersonality(MF.getFunction()->getPersonalityFn()));
978 }
979 
980 /// EmitFunctionBody - This method emits the body and trailer for a
981 /// function.
982 void AsmPrinter::EmitFunctionBody() {
983   EmitFunctionHeader();
984 
985   // Emit target-specific gunk before the function body.
986   EmitFunctionBodyStart();
987 
988   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
989 
990   // Print out code for the function.
991   bool HasAnyRealCode = false;
992   int NumInstsInFunction = 0;
993   for (auto &MBB : *MF) {
994     // Print a label for the basic block.
995     EmitBasicBlockStart(MBB);
996     for (auto &MI : MBB) {
997       // Print the assembly for the instruction.
998       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
999           !MI.isDebugValue()) {
1000         HasAnyRealCode = true;
1001         ++NumInstsInFunction;
1002       }
1003 
1004       if (ShouldPrintDebugScopes) {
1005         for (const HandlerInfo &HI : Handlers) {
1006           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1007                              HI.TimerGroupName, HI.TimerGroupDescription,
1008                              TimePassesIsEnabled);
1009           HI.Handler->beginInstruction(&MI);
1010         }
1011       }
1012 
1013       if (isVerbose())
1014         emitComments(MI, OutStreamer->GetCommentOS(), this);
1015 
1016       switch (MI.getOpcode()) {
1017       case TargetOpcode::CFI_INSTRUCTION:
1018         emitCFIInstruction(MI);
1019         break;
1020       case TargetOpcode::LOCAL_ESCAPE:
1021         emitFrameAlloc(MI);
1022         break;
1023       case TargetOpcode::EH_LABEL:
1024       case TargetOpcode::GC_LABEL:
1025         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1026         break;
1027       case TargetOpcode::INLINEASM:
1028         EmitInlineAsm(&MI);
1029         break;
1030       case TargetOpcode::DBG_VALUE:
1031         if (isVerbose()) {
1032           if (!emitDebugValueComment(&MI, *this))
1033             EmitInstruction(&MI);
1034         }
1035         break;
1036       case TargetOpcode::IMPLICIT_DEF:
1037         if (isVerbose()) emitImplicitDef(&MI);
1038         break;
1039       case TargetOpcode::KILL:
1040         if (isVerbose()) emitKill(&MI, *this);
1041         break;
1042       default:
1043         EmitInstruction(&MI);
1044         break;
1045       }
1046 
1047       if (ShouldPrintDebugScopes) {
1048         for (const HandlerInfo &HI : Handlers) {
1049           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1050                              HI.TimerGroupName, HI.TimerGroupDescription,
1051                              TimePassesIsEnabled);
1052           HI.Handler->endInstruction();
1053         }
1054       }
1055     }
1056 
1057     EmitBasicBlockEnd(MBB);
1058   }
1059 
1060   EmittedInsts += NumInstsInFunction;
1061   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1062                                       MF->getFunction()->getSubprogram(),
1063                                       &MF->front());
1064   R << ore::NV("NumInstructions", NumInstsInFunction)
1065     << " instructions in function";
1066   ORE->emit(R);
1067 
1068   // If the function is empty and the object file uses .subsections_via_symbols,
1069   // then we need to emit *something* to the function body to prevent the
1070   // labels from collapsing together.  Just emit a noop.
1071   // Similarly, don't emit empty functions on Windows either. It can lead to
1072   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1073   // after linking, causing the kernel not to load the binary:
1074   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1075   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1076   const Triple &TT = TM.getTargetTriple();
1077   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1078                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1079     MCInst Noop;
1080     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1081 
1082     // Targets can opt-out of emitting the noop here by leaving the opcode
1083     // unspecified.
1084     if (Noop.getOpcode()) {
1085       OutStreamer->AddComment("avoids zero-length function");
1086       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1087     }
1088   }
1089 
1090   const Function *F = MF->getFunction();
1091   for (const auto &BB : *F) {
1092     if (!BB.hasAddressTaken())
1093       continue;
1094     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1095     if (Sym->isDefined())
1096       continue;
1097     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1098     OutStreamer->EmitLabel(Sym);
1099   }
1100 
1101   // Emit target-specific gunk after the function body.
1102   EmitFunctionBodyEnd();
1103 
1104   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1105       MAI->hasDotTypeDotSizeDirective()) {
1106     // Create a symbol for the end of function.
1107     CurrentFnEnd = createTempSymbol("func_end");
1108     OutStreamer->EmitLabel(CurrentFnEnd);
1109   }
1110 
1111   // If the target wants a .size directive for the size of the function, emit
1112   // it.
1113   if (MAI->hasDotTypeDotSizeDirective()) {
1114     // We can get the size as difference between the function label and the
1115     // temp label.
1116     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1117         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1118         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1119     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1120   }
1121 
1122   for (const HandlerInfo &HI : Handlers) {
1123     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1124                        HI.TimerGroupDescription, TimePassesIsEnabled);
1125     HI.Handler->markFunctionEnd();
1126   }
1127 
1128   // Print out jump tables referenced by the function.
1129   EmitJumpTableInfo();
1130 
1131   // Emit post-function debug and/or EH information.
1132   for (const HandlerInfo &HI : Handlers) {
1133     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1134                        HI.TimerGroupDescription, TimePassesIsEnabled);
1135     HI.Handler->endFunction(MF);
1136   }
1137 
1138   if (isVerbose())
1139     OutStreamer->GetCommentOS() << "-- End function\n";
1140 
1141   OutStreamer->AddBlankLine();
1142 }
1143 
1144 /// \brief Compute the number of Global Variables that uses a Constant.
1145 static unsigned getNumGlobalVariableUses(const Constant *C) {
1146   if (!C)
1147     return 0;
1148 
1149   if (isa<GlobalVariable>(C))
1150     return 1;
1151 
1152   unsigned NumUses = 0;
1153   for (auto *CU : C->users())
1154     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1155 
1156   return NumUses;
1157 }
1158 
1159 /// \brief Only consider global GOT equivalents if at least one user is a
1160 /// cstexpr inside an initializer of another global variables. Also, don't
1161 /// handle cstexpr inside instructions. During global variable emission,
1162 /// candidates are skipped and are emitted later in case at least one cstexpr
1163 /// isn't replaced by a PC relative GOT entry access.
1164 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1165                                      unsigned &NumGOTEquivUsers) {
1166   // Global GOT equivalents are unnamed private globals with a constant
1167   // pointer initializer to another global symbol. They must point to a
1168   // GlobalVariable or Function, i.e., as GlobalValue.
1169   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1170       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1171       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1172     return false;
1173 
1174   // To be a got equivalent, at least one of its users need to be a constant
1175   // expression used by another global variable.
1176   for (auto *U : GV->users())
1177     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1178 
1179   return NumGOTEquivUsers > 0;
1180 }
1181 
1182 /// \brief Unnamed constant global variables solely contaning a pointer to
1183 /// another globals variable is equivalent to a GOT table entry; it contains the
1184 /// the address of another symbol. Optimize it and replace accesses to these
1185 /// "GOT equivalents" by using the GOT entry for the final global instead.
1186 /// Compute GOT equivalent candidates among all global variables to avoid
1187 /// emitting them if possible later on, after it use is replaced by a GOT entry
1188 /// access.
1189 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1190   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1191     return;
1192 
1193   for (const auto &G : M.globals()) {
1194     unsigned NumGOTEquivUsers = 0;
1195     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1196       continue;
1197 
1198     const MCSymbol *GOTEquivSym = getSymbol(&G);
1199     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1200   }
1201 }
1202 
1203 /// \brief Constant expressions using GOT equivalent globals may not be eligible
1204 /// for PC relative GOT entry conversion, in such cases we need to emit such
1205 /// globals we previously omitted in EmitGlobalVariable.
1206 void AsmPrinter::emitGlobalGOTEquivs() {
1207   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1208     return;
1209 
1210   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1211   for (auto &I : GlobalGOTEquivs) {
1212     const GlobalVariable *GV = I.second.first;
1213     unsigned Cnt = I.second.second;
1214     if (Cnt)
1215       FailedCandidates.push_back(GV);
1216   }
1217   GlobalGOTEquivs.clear();
1218 
1219   for (auto *GV : FailedCandidates)
1220     EmitGlobalVariable(GV);
1221 }
1222 
1223 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1224                                           const GlobalIndirectSymbol& GIS) {
1225   MCSymbol *Name = getSymbol(&GIS);
1226 
1227   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1228     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1229   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1230     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1231   else
1232     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1233 
1234   // Set the symbol type to function if the alias has a function type.
1235   // This affects codegen when the aliasee is not a function.
1236   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1237     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1238     if (isa<GlobalIFunc>(GIS))
1239       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1240   }
1241 
1242   EmitVisibility(Name, GIS.getVisibility());
1243 
1244   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1245 
1246   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1247     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1248 
1249   // Emit the directives as assignments aka .set:
1250   OutStreamer->EmitAssignment(Name, Expr);
1251 
1252   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1253     // If the aliasee does not correspond to a symbol in the output, i.e. the
1254     // alias is not of an object or the aliased object is private, then set the
1255     // size of the alias symbol from the type of the alias. We don't do this in
1256     // other situations as the alias and aliasee having differing types but same
1257     // size may be intentional.
1258     const GlobalObject *BaseObject = GA->getBaseObject();
1259     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1260         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1261       const DataLayout &DL = M.getDataLayout();
1262       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1263       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1264     }
1265   }
1266 }
1267 
1268 bool AsmPrinter::doFinalization(Module &M) {
1269   // Set the MachineFunction to nullptr so that we can catch attempted
1270   // accesses to MF specific features at the module level and so that
1271   // we can conditionalize accesses based on whether or not it is nullptr.
1272   MF = nullptr;
1273 
1274   // Gather all GOT equivalent globals in the module. We really need two
1275   // passes over the globals: one to compute and another to avoid its emission
1276   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1277   // where the got equivalent shows up before its use.
1278   computeGlobalGOTEquivs(M);
1279 
1280   // Emit global variables.
1281   for (const auto &G : M.globals())
1282     EmitGlobalVariable(&G);
1283 
1284   // Emit remaining GOT equivalent globals.
1285   emitGlobalGOTEquivs();
1286 
1287   // Emit visibility info for declarations
1288   for (const Function &F : M) {
1289     if (!F.isDeclarationForLinker())
1290       continue;
1291     GlobalValue::VisibilityTypes V = F.getVisibility();
1292     if (V == GlobalValue::DefaultVisibility)
1293       continue;
1294 
1295     MCSymbol *Name = getSymbol(&F);
1296     EmitVisibility(Name, V, false);
1297   }
1298 
1299   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1300 
1301   TLOF.emitModuleMetadata(*OutStreamer, M, TM);
1302 
1303   if (TM.getTargetTriple().isOSBinFormatELF()) {
1304     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1305 
1306     // Output stubs for external and common global variables.
1307     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1308     if (!Stubs.empty()) {
1309       OutStreamer->SwitchSection(TLOF.getDataSection());
1310       const DataLayout &DL = M.getDataLayout();
1311 
1312       for (const auto &Stub : Stubs) {
1313         OutStreamer->EmitLabel(Stub.first);
1314         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1315                                      DL.getPointerSize());
1316       }
1317     }
1318   }
1319 
1320   // Finalize debug and EH information.
1321   for (const HandlerInfo &HI : Handlers) {
1322     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1323                        HI.TimerGroupDescription, TimePassesIsEnabled);
1324     HI.Handler->endModule();
1325     delete HI.Handler;
1326   }
1327   Handlers.clear();
1328   DD = nullptr;
1329 
1330   // If the target wants to know about weak references, print them all.
1331   if (MAI->getWeakRefDirective()) {
1332     // FIXME: This is not lazy, it would be nice to only print weak references
1333     // to stuff that is actually used.  Note that doing so would require targets
1334     // to notice uses in operands (due to constant exprs etc).  This should
1335     // happen with the MC stuff eventually.
1336 
1337     // Print out module-level global objects here.
1338     for (const auto &GO : M.global_objects()) {
1339       if (!GO.hasExternalWeakLinkage())
1340         continue;
1341       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1342     }
1343   }
1344 
1345   OutStreamer->AddBlankLine();
1346 
1347   // Print aliases in topological order, that is, for each alias a = b,
1348   // b must be printed before a.
1349   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1350   // such an order to generate correct TOC information.
1351   SmallVector<const GlobalAlias *, 16> AliasStack;
1352   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1353   for (const auto &Alias : M.aliases()) {
1354     for (const GlobalAlias *Cur = &Alias; Cur;
1355          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1356       if (!AliasVisited.insert(Cur).second)
1357         break;
1358       AliasStack.push_back(Cur);
1359     }
1360     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1361       emitGlobalIndirectSymbol(M, *AncestorAlias);
1362     AliasStack.clear();
1363   }
1364   for (const auto &IFunc : M.ifuncs())
1365     emitGlobalIndirectSymbol(M, IFunc);
1366 
1367   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1368   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1369   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1370     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1371       MP->finishAssembly(M, *MI, *this);
1372 
1373   // Emit llvm.ident metadata in an '.ident' directive.
1374   EmitModuleIdents(M);
1375 
1376   // Emit __morestack address if needed for indirect calls.
1377   if (MMI->usesMorestackAddr()) {
1378     unsigned Align = 1;
1379     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1380         getDataLayout(), SectionKind::getReadOnly(),
1381         /*C=*/nullptr, Align);
1382     OutStreamer->SwitchSection(ReadOnlySection);
1383 
1384     MCSymbol *AddrSymbol =
1385         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1386     OutStreamer->EmitLabel(AddrSymbol);
1387 
1388     unsigned PtrSize = MAI->getCodePointerSize();
1389     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1390                                  PtrSize);
1391   }
1392 
1393   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1394   // split-stack is used.
1395   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1396     OutStreamer->SwitchSection(
1397         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1398     if (MMI->hasNosplitStack())
1399       OutStreamer->SwitchSection(
1400           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1401   }
1402 
1403   // If we don't have any trampolines, then we don't require stack memory
1404   // to be executable. Some targets have a directive to declare this.
1405   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1406   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1407     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1408       OutStreamer->SwitchSection(S);
1409 
1410   // Allow the target to emit any magic that it wants at the end of the file,
1411   // after everything else has gone out.
1412   EmitEndOfAsmFile(M);
1413 
1414   MMI = nullptr;
1415 
1416   OutStreamer->Finish();
1417   OutStreamer->reset();
1418 
1419   return false;
1420 }
1421 
1422 MCSymbol *AsmPrinter::getCurExceptionSym() {
1423   if (!CurExceptionSym)
1424     CurExceptionSym = createTempSymbol("exception");
1425   return CurExceptionSym;
1426 }
1427 
1428 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1429   this->MF = &MF;
1430   // Get the function symbol.
1431   CurrentFnSym = getSymbol(MF.getFunction());
1432   CurrentFnSymForSize = CurrentFnSym;
1433   CurrentFnBegin = nullptr;
1434   CurExceptionSym = nullptr;
1435   bool NeedsLocalForSize = MAI->needsLocalForSize();
1436   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) {
1437     CurrentFnBegin = createTempSymbol("func_begin");
1438     if (NeedsLocalForSize)
1439       CurrentFnSymForSize = CurrentFnBegin;
1440   }
1441 
1442   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1443   LI = &getAnalysis<MachineLoopInfo>();
1444 
1445   const TargetSubtargetInfo &STI = MF.getSubtarget();
1446   EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1447                              ? PrintSchedule
1448                              : STI.supportPrintSchedInfo();
1449 }
1450 
1451 namespace {
1452 
1453 // Keep track the alignment, constpool entries per Section.
1454   struct SectionCPs {
1455     MCSection *S;
1456     unsigned Alignment;
1457     SmallVector<unsigned, 4> CPEs;
1458 
1459     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1460   };
1461 
1462 } // end anonymous namespace
1463 
1464 /// EmitConstantPool - Print to the current output stream assembly
1465 /// representations of the constants in the constant pool MCP. This is
1466 /// used to print out constants which have been "spilled to memory" by
1467 /// the code generator.
1468 void AsmPrinter::EmitConstantPool() {
1469   const MachineConstantPool *MCP = MF->getConstantPool();
1470   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1471   if (CP.empty()) return;
1472 
1473   // Calculate sections for constant pool entries. We collect entries to go into
1474   // the same section together to reduce amount of section switch statements.
1475   SmallVector<SectionCPs, 4> CPSections;
1476   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1477     const MachineConstantPoolEntry &CPE = CP[i];
1478     unsigned Align = CPE.getAlignment();
1479 
1480     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1481 
1482     const Constant *C = nullptr;
1483     if (!CPE.isMachineConstantPoolEntry())
1484       C = CPE.Val.ConstVal;
1485 
1486     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1487                                                               Kind, C, Align);
1488 
1489     // The number of sections are small, just do a linear search from the
1490     // last section to the first.
1491     bool Found = false;
1492     unsigned SecIdx = CPSections.size();
1493     while (SecIdx != 0) {
1494       if (CPSections[--SecIdx].S == S) {
1495         Found = true;
1496         break;
1497       }
1498     }
1499     if (!Found) {
1500       SecIdx = CPSections.size();
1501       CPSections.push_back(SectionCPs(S, Align));
1502     }
1503 
1504     if (Align > CPSections[SecIdx].Alignment)
1505       CPSections[SecIdx].Alignment = Align;
1506     CPSections[SecIdx].CPEs.push_back(i);
1507   }
1508 
1509   // Now print stuff into the calculated sections.
1510   const MCSection *CurSection = nullptr;
1511   unsigned Offset = 0;
1512   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1513     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1514       unsigned CPI = CPSections[i].CPEs[j];
1515       MCSymbol *Sym = GetCPISymbol(CPI);
1516       if (!Sym->isUndefined())
1517         continue;
1518 
1519       if (CurSection != CPSections[i].S) {
1520         OutStreamer->SwitchSection(CPSections[i].S);
1521         EmitAlignment(Log2_32(CPSections[i].Alignment));
1522         CurSection = CPSections[i].S;
1523         Offset = 0;
1524       }
1525 
1526       MachineConstantPoolEntry CPE = CP[CPI];
1527 
1528       // Emit inter-object padding for alignment.
1529       unsigned AlignMask = CPE.getAlignment() - 1;
1530       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1531       OutStreamer->EmitZeros(NewOffset - Offset);
1532 
1533       Type *Ty = CPE.getType();
1534       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1535 
1536       OutStreamer->EmitLabel(Sym);
1537       if (CPE.isMachineConstantPoolEntry())
1538         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1539       else
1540         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1541     }
1542   }
1543 }
1544 
1545 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1546 /// by the current function to the current output stream.
1547 void AsmPrinter::EmitJumpTableInfo() {
1548   const DataLayout &DL = MF->getDataLayout();
1549   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1550   if (!MJTI) return;
1551   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1552   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1553   if (JT.empty()) return;
1554 
1555   // Pick the directive to use to print the jump table entries, and switch to
1556   // the appropriate section.
1557   const Function *F = MF->getFunction();
1558   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1559   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1560       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1561       *F);
1562   if (JTInDiffSection) {
1563     // Drop it in the readonly section.
1564     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM);
1565     OutStreamer->SwitchSection(ReadOnlySection);
1566   }
1567 
1568   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1569 
1570   // Jump tables in code sections are marked with a data_region directive
1571   // where that's supported.
1572   if (!JTInDiffSection)
1573     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1574 
1575   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1576     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1577 
1578     // If this jump table was deleted, ignore it.
1579     if (JTBBs.empty()) continue;
1580 
1581     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1582     /// emit a .set directive for each unique entry.
1583     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1584         MAI->doesSetDirectiveSuppressReloc()) {
1585       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1586       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1587       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1588       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1589         const MachineBasicBlock *MBB = JTBBs[ii];
1590         if (!EmittedSets.insert(MBB).second)
1591           continue;
1592 
1593         // .set LJTSet, LBB32-base
1594         const MCExpr *LHS =
1595           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1596         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1597                                     MCBinaryExpr::createSub(LHS, Base,
1598                                                             OutContext));
1599       }
1600     }
1601 
1602     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1603     // before each jump table.  The first label is never referenced, but tells
1604     // the assembler and linker the extents of the jump table object.  The
1605     // second label is actually referenced by the code.
1606     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1607       // FIXME: This doesn't have to have any specific name, just any randomly
1608       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1609       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1610 
1611     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1612 
1613     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1614       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1615   }
1616   if (!JTInDiffSection)
1617     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1618 }
1619 
1620 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1621 /// current stream.
1622 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1623                                     const MachineBasicBlock *MBB,
1624                                     unsigned UID) const {
1625   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1626   const MCExpr *Value = nullptr;
1627   switch (MJTI->getEntryKind()) {
1628   case MachineJumpTableInfo::EK_Inline:
1629     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1630   case MachineJumpTableInfo::EK_Custom32:
1631     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1632         MJTI, MBB, UID, OutContext);
1633     break;
1634   case MachineJumpTableInfo::EK_BlockAddress:
1635     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1636     //     .word LBB123
1637     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1638     break;
1639   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1640     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1641     // with a relocation as gp-relative, e.g.:
1642     //     .gprel32 LBB123
1643     MCSymbol *MBBSym = MBB->getSymbol();
1644     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1645     return;
1646   }
1647 
1648   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1649     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1650     // with a relocation as gp-relative, e.g.:
1651     //     .gpdword LBB123
1652     MCSymbol *MBBSym = MBB->getSymbol();
1653     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1654     return;
1655   }
1656 
1657   case MachineJumpTableInfo::EK_LabelDifference32: {
1658     // Each entry is the address of the block minus the address of the jump
1659     // table. This is used for PIC jump tables where gprel32 is not supported.
1660     // e.g.:
1661     //      .word LBB123 - LJTI1_2
1662     // If the .set directive avoids relocations, this is emitted as:
1663     //      .set L4_5_set_123, LBB123 - LJTI1_2
1664     //      .word L4_5_set_123
1665     if (MAI->doesSetDirectiveSuppressReloc()) {
1666       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1667                                       OutContext);
1668       break;
1669     }
1670     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1671     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1672     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1673     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1674     break;
1675   }
1676   }
1677 
1678   assert(Value && "Unknown entry kind!");
1679 
1680   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1681   OutStreamer->EmitValue(Value, EntrySize);
1682 }
1683 
1684 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1685 /// special global used by LLVM.  If so, emit it and return true, otherwise
1686 /// do nothing and return false.
1687 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1688   if (GV->getName() == "llvm.used") {
1689     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1690       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1691     return true;
1692   }
1693 
1694   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1695   if (GV->getSection() == "llvm.metadata" ||
1696       GV->hasAvailableExternallyLinkage())
1697     return true;
1698 
1699   if (!GV->hasAppendingLinkage()) return false;
1700 
1701   assert(GV->hasInitializer() && "Not a special LLVM global!");
1702 
1703   if (GV->getName() == "llvm.global_ctors") {
1704     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1705                        /* isCtor */ true);
1706 
1707     return true;
1708   }
1709 
1710   if (GV->getName() == "llvm.global_dtors") {
1711     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1712                        /* isCtor */ false);
1713 
1714     return true;
1715   }
1716 
1717   report_fatal_error("unknown special variable");
1718 }
1719 
1720 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1721 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1722 /// is true, as being used with this directive.
1723 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1724   // Should be an array of 'i8*'.
1725   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1726     const GlobalValue *GV =
1727       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1728     if (GV)
1729       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1730   }
1731 }
1732 
1733 namespace {
1734 
1735 struct Structor {
1736   int Priority = 0;
1737   Constant *Func = nullptr;
1738   GlobalValue *ComdatKey = nullptr;
1739 
1740   Structor() = default;
1741 };
1742 
1743 } // end anonymous namespace
1744 
1745 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1746 /// priority.
1747 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1748                                     bool isCtor) {
1749   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1750   // init priority.
1751   if (!isa<ConstantArray>(List)) return;
1752 
1753   // Sanity check the structors list.
1754   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1755   if (!InitList) return; // Not an array!
1756   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1757   // FIXME: Only allow the 3-field form in LLVM 4.0.
1758   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1759     return; // Not an array of two or three elements!
1760   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1761       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1762   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1763     return; // Not (int, ptr, ptr).
1764 
1765   // Gather the structors in a form that's convenient for sorting by priority.
1766   SmallVector<Structor, 8> Structors;
1767   for (Value *O : InitList->operands()) {
1768     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1769     if (!CS) continue; // Malformed.
1770     if (CS->getOperand(1)->isNullValue())
1771       break;  // Found a null terminator, skip the rest.
1772     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1773     if (!Priority) continue; // Malformed.
1774     Structors.push_back(Structor());
1775     Structor &S = Structors.back();
1776     S.Priority = Priority->getLimitedValue(65535);
1777     S.Func = CS->getOperand(1);
1778     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1779       S.ComdatKey =
1780           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1781   }
1782 
1783   // Emit the function pointers in the target-specific order
1784   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1785   std::stable_sort(Structors.begin(), Structors.end(),
1786                    [](const Structor &L,
1787                       const Structor &R) { return L.Priority < R.Priority; });
1788   for (Structor &S : Structors) {
1789     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1790     const MCSymbol *KeySym = nullptr;
1791     if (GlobalValue *GV = S.ComdatKey) {
1792       if (GV->isDeclarationForLinker())
1793         // If the associated variable is not defined in this module
1794         // (it might be available_externally, or have been an
1795         // available_externally definition that was dropped by the
1796         // EliminateAvailableExternally pass), some other TU
1797         // will provide its dynamic initializer.
1798         continue;
1799 
1800       KeySym = getSymbol(GV);
1801     }
1802     MCSection *OutputSection =
1803         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1804                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1805     OutStreamer->SwitchSection(OutputSection);
1806     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1807       EmitAlignment(Align);
1808     EmitXXStructor(DL, S.Func);
1809   }
1810 }
1811 
1812 void AsmPrinter::EmitModuleIdents(Module &M) {
1813   if (!MAI->hasIdentDirective())
1814     return;
1815 
1816   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1817     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1818       const MDNode *N = NMD->getOperand(i);
1819       assert(N->getNumOperands() == 1 &&
1820              "llvm.ident metadata entry can have only one operand");
1821       const MDString *S = cast<MDString>(N->getOperand(0));
1822       OutStreamer->EmitIdent(S->getString());
1823     }
1824   }
1825 }
1826 
1827 //===--------------------------------------------------------------------===//
1828 // Emission and print routines
1829 //
1830 
1831 /// EmitInt8 - Emit a byte directive and value.
1832 ///
1833 void AsmPrinter::EmitInt8(int Value) const {
1834   OutStreamer->EmitIntValue(Value, 1);
1835 }
1836 
1837 /// EmitInt16 - Emit a short directive and value.
1838 void AsmPrinter::EmitInt16(int Value) const {
1839   OutStreamer->EmitIntValue(Value, 2);
1840 }
1841 
1842 /// EmitInt32 - Emit a long directive and value.
1843 void AsmPrinter::EmitInt32(int Value) const {
1844   OutStreamer->EmitIntValue(Value, 4);
1845 }
1846 
1847 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1848 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1849 /// .set if it avoids relocations.
1850 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1851                                      unsigned Size) const {
1852   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1853 }
1854 
1855 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1856 /// where the size in bytes of the directive is specified by Size and Label
1857 /// specifies the label.  This implicitly uses .set if it is available.
1858 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1859                                      unsigned Size,
1860                                      bool IsSectionRelative) const {
1861   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1862     OutStreamer->EmitCOFFSecRel32(Label, Offset);
1863     if (Size > 4)
1864       OutStreamer->EmitZeros(Size - 4);
1865     return;
1866   }
1867 
1868   // Emit Label+Offset (or just Label if Offset is zero)
1869   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1870   if (Offset)
1871     Expr = MCBinaryExpr::createAdd(
1872         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1873 
1874   OutStreamer->EmitValue(Expr, Size);
1875 }
1876 
1877 //===----------------------------------------------------------------------===//
1878 
1879 // EmitAlignment - Emit an alignment directive to the specified power of
1880 // two boundary.  For example, if you pass in 3 here, you will get an 8
1881 // byte alignment.  If a global value is specified, and if that global has
1882 // an explicit alignment requested, it will override the alignment request
1883 // if required for correctness.
1884 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1885   if (GV)
1886     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1887 
1888   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1889 
1890   assert(NumBits <
1891              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1892          "undefined behavior");
1893   if (getCurrentSection()->getKind().isText())
1894     OutStreamer->EmitCodeAlignment(1u << NumBits);
1895   else
1896     OutStreamer->EmitValueToAlignment(1u << NumBits);
1897 }
1898 
1899 //===----------------------------------------------------------------------===//
1900 // Constant emission.
1901 //===----------------------------------------------------------------------===//
1902 
1903 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1904   MCContext &Ctx = OutContext;
1905 
1906   if (CV->isNullValue() || isa<UndefValue>(CV))
1907     return MCConstantExpr::create(0, Ctx);
1908 
1909   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1910     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1911 
1912   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1913     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1914 
1915   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1916     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1917 
1918   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1919   if (!CE) {
1920     llvm_unreachable("Unknown constant value to lower!");
1921   }
1922 
1923   switch (CE->getOpcode()) {
1924   default:
1925     // If the code isn't optimized, there may be outstanding folding
1926     // opportunities. Attempt to fold the expression using DataLayout as a
1927     // last resort before giving up.
1928     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
1929       if (C != CE)
1930         return lowerConstant(C);
1931 
1932     // Otherwise report the problem to the user.
1933     {
1934       std::string S;
1935       raw_string_ostream OS(S);
1936       OS << "Unsupported expression in static initializer: ";
1937       CE->printAsOperand(OS, /*PrintType=*/false,
1938                      !MF ? nullptr : MF->getFunction()->getParent());
1939       report_fatal_error(OS.str());
1940     }
1941   case Instruction::GetElementPtr: {
1942     // Generate a symbolic expression for the byte address
1943     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
1944     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
1945 
1946     const MCExpr *Base = lowerConstant(CE->getOperand(0));
1947     if (!OffsetAI)
1948       return Base;
1949 
1950     int64_t Offset = OffsetAI.getSExtValue();
1951     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
1952                                    Ctx);
1953   }
1954 
1955   case Instruction::Trunc:
1956     // We emit the value and depend on the assembler to truncate the generated
1957     // expression properly.  This is important for differences between
1958     // blockaddress labels.  Since the two labels are in the same function, it
1959     // is reasonable to treat their delta as a 32-bit value.
1960     LLVM_FALLTHROUGH;
1961   case Instruction::BitCast:
1962     return lowerConstant(CE->getOperand(0));
1963 
1964   case Instruction::IntToPtr: {
1965     const DataLayout &DL = getDataLayout();
1966 
1967     // Handle casts to pointers by changing them into casts to the appropriate
1968     // integer type.  This promotes constant folding and simplifies this code.
1969     Constant *Op = CE->getOperand(0);
1970     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1971                                       false/*ZExt*/);
1972     return lowerConstant(Op);
1973   }
1974 
1975   case Instruction::PtrToInt: {
1976     const DataLayout &DL = getDataLayout();
1977 
1978     // Support only foldable casts to/from pointers that can be eliminated by
1979     // changing the pointer to the appropriately sized integer type.
1980     Constant *Op = CE->getOperand(0);
1981     Type *Ty = CE->getType();
1982 
1983     const MCExpr *OpExpr = lowerConstant(Op);
1984 
1985     // We can emit the pointer value into this slot if the slot is an
1986     // integer slot equal to the size of the pointer.
1987     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1988       return OpExpr;
1989 
1990     // Otherwise the pointer is smaller than the resultant integer, mask off
1991     // the high bits so we are sure to get a proper truncation if the input is
1992     // a constant expr.
1993     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1994     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
1995     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
1996   }
1997 
1998   case Instruction::Sub: {
1999     GlobalValue *LHSGV;
2000     APInt LHSOffset;
2001     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2002                                    getDataLayout())) {
2003       GlobalValue *RHSGV;
2004       APInt RHSOffset;
2005       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2006                                      getDataLayout())) {
2007         const MCExpr *RelocExpr =
2008             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2009         if (!RelocExpr)
2010           RelocExpr = MCBinaryExpr::createSub(
2011               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2012               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2013         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2014         if (Addend != 0)
2015           RelocExpr = MCBinaryExpr::createAdd(
2016               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2017         return RelocExpr;
2018       }
2019     }
2020   }
2021   // else fallthrough
2022 
2023   // The MC library also has a right-shift operator, but it isn't consistently
2024   // signed or unsigned between different targets.
2025   case Instruction::Add:
2026   case Instruction::Mul:
2027   case Instruction::SDiv:
2028   case Instruction::SRem:
2029   case Instruction::Shl:
2030   case Instruction::And:
2031   case Instruction::Or:
2032   case Instruction::Xor: {
2033     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2034     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2035     switch (CE->getOpcode()) {
2036     default: llvm_unreachable("Unknown binary operator constant cast expr");
2037     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2038     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2039     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2040     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2041     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2042     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2043     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2044     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2045     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2046     }
2047   }
2048   }
2049 }
2050 
2051 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2052                                    AsmPrinter &AP,
2053                                    const Constant *BaseCV = nullptr,
2054                                    uint64_t Offset = 0);
2055 
2056 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2057 
2058 /// isRepeatedByteSequence - Determine whether the given value is
2059 /// composed of a repeated sequence of identical bytes and return the
2060 /// byte value.  If it is not a repeated sequence, return -1.
2061 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2062   StringRef Data = V->getRawDataValues();
2063   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2064   char C = Data[0];
2065   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2066     if (Data[i] != C) return -1;
2067   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2068 }
2069 
2070 /// isRepeatedByteSequence - Determine whether the given value is
2071 /// composed of a repeated sequence of identical bytes and return the
2072 /// byte value.  If it is not a repeated sequence, return -1.
2073 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2074   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2075     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2076     assert(Size % 8 == 0);
2077 
2078     // Extend the element to take zero padding into account.
2079     APInt Value = CI->getValue().zextOrSelf(Size);
2080     if (!Value.isSplat(8))
2081       return -1;
2082 
2083     return Value.zextOrTrunc(8).getZExtValue();
2084   }
2085   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2086     // Make sure all array elements are sequences of the same repeated
2087     // byte.
2088     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2089     Constant *Op0 = CA->getOperand(0);
2090     int Byte = isRepeatedByteSequence(Op0, DL);
2091     if (Byte == -1)
2092       return -1;
2093 
2094     // All array elements must be equal.
2095     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2096       if (CA->getOperand(i) != Op0)
2097         return -1;
2098     return Byte;
2099   }
2100 
2101   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2102     return isRepeatedByteSequence(CDS);
2103 
2104   return -1;
2105 }
2106 
2107 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2108                                              const ConstantDataSequential *CDS,
2109                                              AsmPrinter &AP) {
2110   // See if we can aggregate this into a .fill, if so, emit it as such.
2111   int Value = isRepeatedByteSequence(CDS, DL);
2112   if (Value != -1) {
2113     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2114     // Don't emit a 1-byte object as a .fill.
2115     if (Bytes > 1)
2116       return AP.OutStreamer->emitFill(Bytes, Value);
2117   }
2118 
2119   // If this can be emitted with .ascii/.asciz, emit it as such.
2120   if (CDS->isString())
2121     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2122 
2123   // Otherwise, emit the values in successive locations.
2124   unsigned ElementByteSize = CDS->getElementByteSize();
2125   if (isa<IntegerType>(CDS->getElementType())) {
2126     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2127       if (AP.isVerbose())
2128         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2129                                                  CDS->getElementAsInteger(i));
2130       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2131                                    ElementByteSize);
2132     }
2133   } else {
2134     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2135       emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
2136   }
2137 
2138   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2139   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2140                         CDS->getNumElements();
2141   if (unsigned Padding = Size - EmittedSize)
2142     AP.OutStreamer->EmitZeros(Padding);
2143 }
2144 
2145 static void emitGlobalConstantArray(const DataLayout &DL,
2146                                     const ConstantArray *CA, AsmPrinter &AP,
2147                                     const Constant *BaseCV, uint64_t Offset) {
2148   // See if we can aggregate some values.  Make sure it can be
2149   // represented as a series of bytes of the constant value.
2150   int Value = isRepeatedByteSequence(CA, DL);
2151 
2152   if (Value != -1) {
2153     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2154     AP.OutStreamer->emitFill(Bytes, Value);
2155   }
2156   else {
2157     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2158       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2159       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2160     }
2161   }
2162 }
2163 
2164 static void emitGlobalConstantVector(const DataLayout &DL,
2165                                      const ConstantVector *CV, AsmPrinter &AP) {
2166   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2167     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2168 
2169   unsigned Size = DL.getTypeAllocSize(CV->getType());
2170   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2171                          CV->getType()->getNumElements();
2172   if (unsigned Padding = Size - EmittedSize)
2173     AP.OutStreamer->EmitZeros(Padding);
2174 }
2175 
2176 static void emitGlobalConstantStruct(const DataLayout &DL,
2177                                      const ConstantStruct *CS, AsmPrinter &AP,
2178                                      const Constant *BaseCV, uint64_t Offset) {
2179   // Print the fields in successive locations. Pad to align if needed!
2180   unsigned Size = DL.getTypeAllocSize(CS->getType());
2181   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2182   uint64_t SizeSoFar = 0;
2183   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2184     const Constant *Field = CS->getOperand(i);
2185 
2186     // Print the actual field value.
2187     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2188 
2189     // Check if padding is needed and insert one or more 0s.
2190     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2191     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2192                         - Layout->getElementOffset(i)) - FieldSize;
2193     SizeSoFar += FieldSize + PadSize;
2194 
2195     // Insert padding - this may include padding to increase the size of the
2196     // current field up to the ABI size (if the struct is not packed) as well
2197     // as padding to ensure that the next field starts at the right offset.
2198     AP.OutStreamer->EmitZeros(PadSize);
2199   }
2200   assert(SizeSoFar == Layout->getSizeInBytes() &&
2201          "Layout of constant struct may be incorrect!");
2202 }
2203 
2204 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2205   APInt API = CFP->getValueAPF().bitcastToAPInt();
2206 
2207   // First print a comment with what we think the original floating-point value
2208   // should have been.
2209   if (AP.isVerbose()) {
2210     SmallString<8> StrVal;
2211     CFP->getValueAPF().toString(StrVal);
2212 
2213     if (CFP->getType())
2214       CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2215     else
2216       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2217     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2218   }
2219 
2220   // Now iterate through the APInt chunks, emitting them in endian-correct
2221   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2222   // floats).
2223   unsigned NumBytes = API.getBitWidth() / 8;
2224   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2225   const uint64_t *p = API.getRawData();
2226 
2227   // PPC's long double has odd notions of endianness compared to how LLVM
2228   // handles it: p[0] goes first for *big* endian on PPC.
2229   if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2230     int Chunk = API.getNumWords() - 1;
2231 
2232     if (TrailingBytes)
2233       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2234 
2235     for (; Chunk >= 0; --Chunk)
2236       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2237   } else {
2238     unsigned Chunk;
2239     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2240       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2241 
2242     if (TrailingBytes)
2243       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2244   }
2245 
2246   // Emit the tail padding for the long double.
2247   const DataLayout &DL = AP.getDataLayout();
2248   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2249                             DL.getTypeStoreSize(CFP->getType()));
2250 }
2251 
2252 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2253   const DataLayout &DL = AP.getDataLayout();
2254   unsigned BitWidth = CI->getBitWidth();
2255 
2256   // Copy the value as we may massage the layout for constants whose bit width
2257   // is not a multiple of 64-bits.
2258   APInt Realigned(CI->getValue());
2259   uint64_t ExtraBits = 0;
2260   unsigned ExtraBitsSize = BitWidth & 63;
2261 
2262   if (ExtraBitsSize) {
2263     // The bit width of the data is not a multiple of 64-bits.
2264     // The extra bits are expected to be at the end of the chunk of the memory.
2265     // Little endian:
2266     // * Nothing to be done, just record the extra bits to emit.
2267     // Big endian:
2268     // * Record the extra bits to emit.
2269     // * Realign the raw data to emit the chunks of 64-bits.
2270     if (DL.isBigEndian()) {
2271       // Basically the structure of the raw data is a chunk of 64-bits cells:
2272       //    0        1         BitWidth / 64
2273       // [chunk1][chunk2] ... [chunkN].
2274       // The most significant chunk is chunkN and it should be emitted first.
2275       // However, due to the alignment issue chunkN contains useless bits.
2276       // Realign the chunks so that they contain only useless information:
2277       // ExtraBits     0       1       (BitWidth / 64) - 1
2278       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2279       ExtraBits = Realigned.getRawData()[0] &
2280         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2281       Realigned.lshrInPlace(ExtraBitsSize);
2282     } else
2283       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2284   }
2285 
2286   // We don't expect assemblers to support integer data directives
2287   // for more than 64 bits, so we emit the data in at most 64-bit
2288   // quantities at a time.
2289   const uint64_t *RawData = Realigned.getRawData();
2290   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2291     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2292     AP.OutStreamer->EmitIntValue(Val, 8);
2293   }
2294 
2295   if (ExtraBitsSize) {
2296     // Emit the extra bits after the 64-bits chunks.
2297 
2298     // Emit a directive that fills the expected size.
2299     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2300     Size -= (BitWidth / 64) * 8;
2301     assert(Size && Size * 8 >= ExtraBitsSize &&
2302            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2303            == ExtraBits && "Directive too small for extra bits.");
2304     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2305   }
2306 }
2307 
2308 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2309 /// equivalent global, by a target specific GOT pc relative access to the
2310 /// final symbol.
2311 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2312                                          const Constant *BaseCst,
2313                                          uint64_t Offset) {
2314   // The global @foo below illustrates a global that uses a got equivalent.
2315   //
2316   //  @bar = global i32 42
2317   //  @gotequiv = private unnamed_addr constant i32* @bar
2318   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2319   //                             i64 ptrtoint (i32* @foo to i64))
2320   //                        to i32)
2321   //
2322   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2323   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2324   // form:
2325   //
2326   //  foo = cstexpr, where
2327   //    cstexpr := <gotequiv> - "." + <cst>
2328   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2329   //
2330   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2331   //
2332   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2333   //    gotpcrelcst := <offset from @foo base> + <cst>
2334   MCValue MV;
2335   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2336     return;
2337   const MCSymbolRefExpr *SymA = MV.getSymA();
2338   if (!SymA)
2339     return;
2340 
2341   // Check that GOT equivalent symbol is cached.
2342   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2343   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2344     return;
2345 
2346   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2347   if (!BaseGV)
2348     return;
2349 
2350   // Check for a valid base symbol
2351   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2352   const MCSymbolRefExpr *SymB = MV.getSymB();
2353 
2354   if (!SymB || BaseSym != &SymB->getSymbol())
2355     return;
2356 
2357   // Make sure to match:
2358   //
2359   //    gotpcrelcst := <offset from @foo base> + <cst>
2360   //
2361   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2362   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2363   // if the target knows how to encode it.
2364   int64_t GOTPCRelCst = Offset + MV.getConstant();
2365   if (GOTPCRelCst < 0)
2366     return;
2367   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2368     return;
2369 
2370   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2371   //
2372   //  bar:
2373   //    .long 42
2374   //  gotequiv:
2375   //    .quad bar
2376   //  foo:
2377   //    .long gotequiv - "." + <cst>
2378   //
2379   // is replaced by the target specific equivalent to:
2380   //
2381   //  bar:
2382   //    .long 42
2383   //  foo:
2384   //    .long bar@GOTPCREL+<gotpcrelcst>
2385   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2386   const GlobalVariable *GV = Result.first;
2387   int NumUses = (int)Result.second;
2388   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2389   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2390   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2391       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2392 
2393   // Update GOT equivalent usage information
2394   --NumUses;
2395   if (NumUses >= 0)
2396     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2397 }
2398 
2399 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2400                                    AsmPrinter &AP, const Constant *BaseCV,
2401                                    uint64_t Offset) {
2402   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2403 
2404   // Globals with sub-elements such as combinations of arrays and structs
2405   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2406   // constant symbol base and the current position with BaseCV and Offset.
2407   if (!BaseCV && CV->hasOneUse())
2408     BaseCV = dyn_cast<Constant>(CV->user_back());
2409 
2410   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2411     return AP.OutStreamer->EmitZeros(Size);
2412 
2413   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2414     switch (Size) {
2415     case 1:
2416     case 2:
2417     case 4:
2418     case 8:
2419       if (AP.isVerbose())
2420         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2421                                                  CI->getZExtValue());
2422       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2423       return;
2424     default:
2425       emitGlobalConstantLargeInt(CI, AP);
2426       return;
2427     }
2428   }
2429 
2430   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2431     return emitGlobalConstantFP(CFP, AP);
2432 
2433   if (isa<ConstantPointerNull>(CV)) {
2434     AP.OutStreamer->EmitIntValue(0, Size);
2435     return;
2436   }
2437 
2438   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2439     return emitGlobalConstantDataSequential(DL, CDS, AP);
2440 
2441   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2442     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2443 
2444   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2445     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2446 
2447   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2448     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2449     // vectors).
2450     if (CE->getOpcode() == Instruction::BitCast)
2451       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2452 
2453     if (Size > 8) {
2454       // If the constant expression's size is greater than 64-bits, then we have
2455       // to emit the value in chunks. Try to constant fold the value and emit it
2456       // that way.
2457       Constant *New = ConstantFoldConstant(CE, DL);
2458       if (New && New != CE)
2459         return emitGlobalConstantImpl(DL, New, AP);
2460     }
2461   }
2462 
2463   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2464     return emitGlobalConstantVector(DL, V, AP);
2465 
2466   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2467   // thread the streamer with EmitValue.
2468   const MCExpr *ME = AP.lowerConstant(CV);
2469 
2470   // Since lowerConstant already folded and got rid of all IR pointer and
2471   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2472   // directly.
2473   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2474     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2475 
2476   AP.OutStreamer->EmitValue(ME, Size);
2477 }
2478 
2479 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2480 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2481   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2482   if (Size)
2483     emitGlobalConstantImpl(DL, CV, *this);
2484   else if (MAI->hasSubsectionsViaSymbols()) {
2485     // If the global has zero size, emit a single byte so that two labels don't
2486     // look like they are at the same location.
2487     OutStreamer->EmitIntValue(0, 1);
2488   }
2489 }
2490 
2491 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2492   // Target doesn't support this yet!
2493   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2494 }
2495 
2496 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2497   if (Offset > 0)
2498     OS << '+' << Offset;
2499   else if (Offset < 0)
2500     OS << Offset;
2501 }
2502 
2503 //===----------------------------------------------------------------------===//
2504 // Symbol Lowering Routines.
2505 //===----------------------------------------------------------------------===//
2506 
2507 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2508   return OutContext.createTempSymbol(Name, true);
2509 }
2510 
2511 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2512   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2513 }
2514 
2515 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2516   return MMI->getAddrLabelSymbol(BB);
2517 }
2518 
2519 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2520 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2521   const DataLayout &DL = getDataLayout();
2522   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2523                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2524                                       Twine(CPID));
2525 }
2526 
2527 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2528 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2529   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2530 }
2531 
2532 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2533 /// FIXME: privatize to AsmPrinter.
2534 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2535   const DataLayout &DL = getDataLayout();
2536   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2537                                       Twine(getFunctionNumber()) + "_" +
2538                                       Twine(UID) + "_set_" + Twine(MBBID));
2539 }
2540 
2541 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2542                                                    StringRef Suffix) const {
2543   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2544 }
2545 
2546 /// Return the MCSymbol for the specified ExternalSymbol.
2547 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2548   SmallString<60> NameStr;
2549   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2550   return OutContext.getOrCreateSymbol(NameStr);
2551 }
2552 
2553 /// PrintParentLoopComment - Print comments about parent loops of this one.
2554 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2555                                    unsigned FunctionNumber) {
2556   if (!Loop) return;
2557   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2558   OS.indent(Loop->getLoopDepth()*2)
2559     << "Parent Loop BB" << FunctionNumber << "_"
2560     << Loop->getHeader()->getNumber()
2561     << " Depth=" << Loop->getLoopDepth() << '\n';
2562 }
2563 
2564 /// PrintChildLoopComment - Print comments about child loops within
2565 /// the loop for this basic block, with nesting.
2566 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2567                                   unsigned FunctionNumber) {
2568   // Add child loop information
2569   for (const MachineLoop *CL : *Loop) {
2570     OS.indent(CL->getLoopDepth()*2)
2571       << "Child Loop BB" << FunctionNumber << "_"
2572       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2573       << '\n';
2574     PrintChildLoopComment(OS, CL, FunctionNumber);
2575   }
2576 }
2577 
2578 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2579 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2580                                        const MachineLoopInfo *LI,
2581                                        const AsmPrinter &AP) {
2582   // Add loop depth information
2583   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2584   if (!Loop) return;
2585 
2586   MachineBasicBlock *Header = Loop->getHeader();
2587   assert(Header && "No header for loop");
2588 
2589   // If this block is not a loop header, just print out what is the loop header
2590   // and return.
2591   if (Header != &MBB) {
2592     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2593                                Twine(AP.getFunctionNumber())+"_" +
2594                                Twine(Loop->getHeader()->getNumber())+
2595                                " Depth="+Twine(Loop->getLoopDepth()));
2596     return;
2597   }
2598 
2599   // Otherwise, it is a loop header.  Print out information about child and
2600   // parent loops.
2601   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2602 
2603   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2604 
2605   OS << "=>";
2606   OS.indent(Loop->getLoopDepth()*2-2);
2607 
2608   OS << "This ";
2609   if (Loop->empty())
2610     OS << "Inner ";
2611   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2612 
2613   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2614 }
2615 
2616 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2617                                          MCCodePaddingContext &Context) const {
2618   assert(MF != nullptr && "Machine function must be valid");
2619   assert(LI != nullptr && "Loop info must be valid");
2620   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2621                             !MF->getFunction()->optForSize() &&
2622                             TM.getOptLevel() != CodeGenOpt::None;
2623   const MachineLoop *CurrentLoop = LI->getLoopFor(&MBB);
2624   Context.IsBasicBlockInsideInnermostLoop =
2625       CurrentLoop != nullptr && CurrentLoop->getSubLoops().empty();
2626   Context.IsBasicBlockReachableViaFallthrough =
2627       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2628       MBB.pred_end();
2629   Context.IsBasicBlockReachableViaBranch =
2630       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2631 }
2632 
2633 /// EmitBasicBlockStart - This method prints the label for the specified
2634 /// MachineBasicBlock, an alignment (if present) and a comment describing
2635 /// it if appropriate.
2636 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2637   // End the previous funclet and start a new one.
2638   if (MBB.isEHFuncletEntry()) {
2639     for (const HandlerInfo &HI : Handlers) {
2640       HI.Handler->endFunclet();
2641       HI.Handler->beginFunclet(MBB);
2642     }
2643   }
2644 
2645   // Emit an alignment directive for this block, if needed.
2646   if (unsigned Align = MBB.getAlignment())
2647     EmitAlignment(Align);
2648   MCCodePaddingContext Context;
2649   setupCodePaddingContext(MBB, Context);
2650   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2651 
2652   // If the block has its address taken, emit any labels that were used to
2653   // reference the block.  It is possible that there is more than one label
2654   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2655   // the references were generated.
2656   if (MBB.hasAddressTaken()) {
2657     const BasicBlock *BB = MBB.getBasicBlock();
2658     if (isVerbose())
2659       OutStreamer->AddComment("Block address taken");
2660 
2661     // MBBs can have their address taken as part of CodeGen without having
2662     // their corresponding BB's address taken in IR
2663     if (BB->hasAddressTaken())
2664       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2665         OutStreamer->EmitLabel(Sym);
2666   }
2667 
2668   // Print some verbose block comments.
2669   if (isVerbose()) {
2670     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2671       if (BB->hasName()) {
2672         BB->printAsOperand(OutStreamer->GetCommentOS(),
2673                            /*PrintType=*/false, BB->getModule());
2674         OutStreamer->GetCommentOS() << '\n';
2675       }
2676     }
2677     emitBasicBlockLoopComments(MBB, LI, *this);
2678   }
2679 
2680   // Print the main label for the block.
2681   if (MBB.pred_empty() ||
2682       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2683     if (isVerbose()) {
2684       // NOTE: Want this comment at start of line, don't emit with AddComment.
2685       OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2686     }
2687   } else {
2688     OutStreamer->EmitLabel(MBB.getSymbol());
2689   }
2690 }
2691 
2692 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2693   MCCodePaddingContext Context;
2694   setupCodePaddingContext(MBB, Context);
2695   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2696 }
2697 
2698 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2699                                 bool IsDefinition) const {
2700   MCSymbolAttr Attr = MCSA_Invalid;
2701 
2702   switch (Visibility) {
2703   default: break;
2704   case GlobalValue::HiddenVisibility:
2705     if (IsDefinition)
2706       Attr = MAI->getHiddenVisibilityAttr();
2707     else
2708       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2709     break;
2710   case GlobalValue::ProtectedVisibility:
2711     Attr = MAI->getProtectedVisibilityAttr();
2712     break;
2713   }
2714 
2715   if (Attr != MCSA_Invalid)
2716     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2717 }
2718 
2719 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2720 /// exactly one predecessor and the control transfer mechanism between
2721 /// the predecessor and this block is a fall-through.
2722 bool AsmPrinter::
2723 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2724   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2725   // then nothing falls through to it.
2726   if (MBB->isEHPad() || MBB->pred_empty())
2727     return false;
2728 
2729   // If there isn't exactly one predecessor, it can't be a fall through.
2730   if (MBB->pred_size() > 1)
2731     return false;
2732 
2733   // The predecessor has to be immediately before this block.
2734   MachineBasicBlock *Pred = *MBB->pred_begin();
2735   if (!Pred->isLayoutSuccessor(MBB))
2736     return false;
2737 
2738   // If the block is completely empty, then it definitely does fall through.
2739   if (Pred->empty())
2740     return true;
2741 
2742   // Check the terminators in the previous blocks
2743   for (const auto &MI : Pred->terminators()) {
2744     // If it is not a simple branch, we are in a table somewhere.
2745     if (!MI.isBranch() || MI.isIndirectBranch())
2746       return false;
2747 
2748     // If we are the operands of one of the branches, this is not a fall
2749     // through. Note that targets with delay slots will usually bundle
2750     // terminators with the delay slot instruction.
2751     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2752       if (OP->isJTI())
2753         return false;
2754       if (OP->isMBB() && OP->getMBB() == MBB)
2755         return false;
2756     }
2757   }
2758 
2759   return true;
2760 }
2761 
2762 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2763   if (!S.usesMetadata())
2764     return nullptr;
2765 
2766   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2767          " stackmap formats, please see the documentation for a description of"
2768          " the default format.  If you really need a custom serialized format,"
2769          " please file a bug");
2770 
2771   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2772   gcp_map_type::iterator GCPI = GCMap.find(&S);
2773   if (GCPI != GCMap.end())
2774     return GCPI->second.get();
2775 
2776   auto Name = S.getName();
2777 
2778   for (GCMetadataPrinterRegistry::iterator
2779          I = GCMetadataPrinterRegistry::begin(),
2780          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2781     if (Name == I->getName()) {
2782       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2783       GMP->S = &S;
2784       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2785       return IterBool.first->second.get();
2786     }
2787 
2788   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2789 }
2790 
2791 /// Pin vtable to this file.
2792 AsmPrinterHandler::~AsmPrinterHandler() = default;
2793 
2794 void AsmPrinterHandler::markFunctionEnd() {}
2795 
2796 // In the binary's "xray_instr_map" section, an array of these function entries
2797 // describes each instrumentation point.  When XRay patches your code, the index
2798 // into this table will be given to your handler as a patch point identifier.
2799 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
2800                                          const MCSymbol *CurrentFnSym) const {
2801   Out->EmitSymbolValue(Sled, Bytes);
2802   Out->EmitSymbolValue(CurrentFnSym, Bytes);
2803   auto Kind8 = static_cast<uint8_t>(Kind);
2804   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
2805   Out->EmitBinaryData(
2806       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
2807   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
2808   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
2809   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
2810   Out->EmitZeros(Padding);
2811 }
2812 
2813 void AsmPrinter::emitXRayTable() {
2814   if (Sleds.empty())
2815     return;
2816 
2817   auto PrevSection = OutStreamer->getCurrentSectionOnly();
2818   auto Fn = MF->getFunction();
2819   MCSection *InstMap = nullptr;
2820   MCSection *FnSledIndex = nullptr;
2821   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
2822     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
2823     assert(Associated != nullptr);
2824     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
2825     std::string GroupName;
2826     if (Fn->hasComdat()) {
2827       Flags |= ELF::SHF_GROUP;
2828       GroupName = Fn->getComdat()->getName();
2829     }
2830 
2831     auto UniqueID = ++XRayFnUniqueID;
2832     InstMap =
2833         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
2834                                  GroupName, UniqueID, Associated);
2835     FnSledIndex =
2836         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
2837                                  GroupName, UniqueID, Associated);
2838   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
2839     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
2840                                          SectionKind::getReadOnlyWithRel());
2841     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
2842                                              SectionKind::getReadOnlyWithRel());
2843   } else {
2844     llvm_unreachable("Unsupported target");
2845   }
2846 
2847   auto WordSizeBytes = MAI->getCodePointerSize();
2848 
2849   // Now we switch to the instrumentation map section. Because this is done
2850   // per-function, we are able to create an index entry that will represent the
2851   // range of sleds associated with a function.
2852   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
2853   OutStreamer->SwitchSection(InstMap);
2854   OutStreamer->EmitLabel(SledsStart);
2855   for (const auto &Sled : Sleds)
2856     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
2857   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
2858   OutStreamer->EmitLabel(SledsEnd);
2859 
2860   // We then emit a single entry in the index per function. We use the symbols
2861   // that bound the instrumentation map as the range for a specific function.
2862   // Each entry here will be 2 * word size aligned, as we're writing down two
2863   // pointers. This should work for both 32-bit and 64-bit platforms.
2864   OutStreamer->SwitchSection(FnSledIndex);
2865   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
2866   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
2867   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
2868   OutStreamer->SwitchSection(PrevSection);
2869   Sleds.clear();
2870 }
2871 
2872 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
2873                             SledKind Kind, uint8_t Version) {
2874   auto Fn = MI.getMF()->getFunction();
2875   auto Attr = Fn->getFnAttribute("function-instrument");
2876   bool LogArgs = Fn->hasFnAttribute("xray-log-args");
2877   bool AlwaysInstrument =
2878     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
2879   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
2880     Kind = SledKind::LOG_ARGS_ENTER;
2881   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
2882                                        AlwaysInstrument, Fn, Version});
2883 }
2884 
2885 uint16_t AsmPrinter::getDwarfVersion() const {
2886   return OutStreamer->getContext().getDwarfVersion();
2887 }
2888 
2889 void AsmPrinter::setDwarfVersion(uint16_t Version) {
2890   OutStreamer->getContext().setDwarfVersion(Version);
2891 }
2892