1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinException.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/GCMetadataPrinter.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstrBundle.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DebugInfo.h" 33 #include "llvm/IR/Mangler.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/MC/MCAsmInfo.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCExpr.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSymbolELF.h" 43 #include "llvm/MC/MCValue.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Target/TargetFrameLowering.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetLoweringObjectFile.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "asm-printer" 58 59 static const char *const DWARFGroupName = "DWARF Emission"; 60 static const char *const DbgTimerName = "Debug Info Emission"; 61 static const char *const EHTimerName = "DWARF Exception Writer"; 62 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 63 64 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 65 66 char AsmPrinter::ID = 0; 67 68 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 69 static gcp_map_type &getGCMap(void *&P) { 70 if (!P) 71 P = new gcp_map_type(); 72 return *(gcp_map_type*)P; 73 } 74 75 76 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 77 /// value in log2 form. This rounds up to the preferred alignment if possible 78 /// and legal. 79 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 80 unsigned InBits = 0) { 81 unsigned NumBits = 0; 82 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 83 NumBits = DL.getPreferredAlignmentLog(GVar); 84 85 // If InBits is specified, round it to it. 86 if (InBits > NumBits) 87 NumBits = InBits; 88 89 // If the GV has a specified alignment, take it into account. 90 if (GV->getAlignment() == 0) 91 return NumBits; 92 93 unsigned GVAlign = Log2_32(GV->getAlignment()); 94 95 // If the GVAlign is larger than NumBits, or if we are required to obey 96 // NumBits because the GV has an assigned section, obey it. 97 if (GVAlign > NumBits || GV->hasSection()) 98 NumBits = GVAlign; 99 return NumBits; 100 } 101 102 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 103 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 104 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 105 LastMI(nullptr), LastFn(0), Counter(~0U) { 106 DD = nullptr; 107 MMI = nullptr; 108 LI = nullptr; 109 MF = nullptr; 110 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 111 CurrentFnBegin = nullptr; 112 CurrentFnEnd = nullptr; 113 GCMetadataPrinters = nullptr; 114 VerboseAsm = OutStreamer->isVerboseAsm(); 115 } 116 117 AsmPrinter::~AsmPrinter() { 118 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 119 120 if (GCMetadataPrinters) { 121 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 122 123 delete &GCMap; 124 GCMetadataPrinters = nullptr; 125 } 126 } 127 128 /// getFunctionNumber - Return a unique ID for the current function. 129 /// 130 unsigned AsmPrinter::getFunctionNumber() const { 131 return MF->getFunctionNumber(); 132 } 133 134 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 135 return *TM.getObjFileLowering(); 136 } 137 138 const DataLayout &AsmPrinter::getDataLayout() const { 139 return MMI->getModule()->getDataLayout(); 140 } 141 142 // Do not use the cached DataLayout because some client use it without a Module 143 // (llmv-dsymutil, llvm-dwarfdump). 144 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 145 146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 148 return MF->getSubtarget<MCSubtargetInfo>(); 149 } 150 151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 152 S.EmitInstruction(Inst, getSubtargetInfo()); 153 } 154 155 StringRef AsmPrinter::getTargetTriple() const { 156 return TM.getTargetTriple().str(); 157 } 158 159 /// getCurrentSection() - Return the current section we are emitting to. 160 const MCSection *AsmPrinter::getCurrentSection() const { 161 return OutStreamer->getCurrentSection().first; 162 } 163 164 165 166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesAll(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 AU.addRequired<MachineModuleInfo>(); 170 AU.addRequired<GCModuleInfo>(); 171 if (isVerbose()) 172 AU.addRequired<MachineLoopInfo>(); 173 } 174 175 bool AsmPrinter::doInitialization(Module &M) { 176 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 177 178 // Initialize TargetLoweringObjectFile. 179 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 180 .Initialize(OutContext, TM); 181 182 OutStreamer->InitSections(false); 183 184 Mang = new Mangler(); 185 186 // Emit the version-min deplyment target directive if needed. 187 // 188 // FIXME: If we end up with a collection of these sorts of Darwin-specific 189 // or ELF-specific things, it may make sense to have a platform helper class 190 // that will work with the target helper class. For now keep it here, as the 191 // alternative is duplicated code in each of the target asm printers that 192 // use the directive, where it would need the same conditionalization 193 // anyway. 194 Triple TT(getTargetTriple()); 195 if (TT.isOSDarwin()) { 196 unsigned Major, Minor, Update; 197 TT.getOSVersion(Major, Minor, Update); 198 // If there is a version specified, Major will be non-zero. 199 if (Major) { 200 MCVersionMinType VersionType; 201 if (TT.isWatchOS()) 202 VersionType = MCVM_WatchOSVersionMin; 203 else if (TT.isTvOS()) 204 VersionType = MCVM_TvOSVersionMin; 205 else if (TT.isMacOSX()) 206 VersionType = MCVM_OSXVersionMin; 207 else 208 VersionType = MCVM_IOSVersionMin; 209 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 210 } 211 } 212 213 // Allow the target to emit any magic that it wants at the start of the file. 214 EmitStartOfAsmFile(M); 215 216 // Very minimal debug info. It is ignored if we emit actual debug info. If we 217 // don't, this at least helps the user find where a global came from. 218 if (MAI->hasSingleParameterDotFile()) { 219 // .file "foo.c" 220 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 221 } 222 223 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 224 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 225 for (auto &I : *MI) 226 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 227 MP->beginAssembly(M, *MI, *this); 228 229 // Emit module-level inline asm if it exists. 230 if (!M.getModuleInlineAsm().empty()) { 231 // We're at the module level. Construct MCSubtarget from the default CPU 232 // and target triple. 233 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 234 TM.getTargetTriple().str(), TM.getTargetCPU(), 235 TM.getTargetFeatureString())); 236 OutStreamer->AddComment("Start of file scope inline assembly"); 237 OutStreamer->AddBlankLine(); 238 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 239 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 240 OutStreamer->AddComment("End of file scope inline assembly"); 241 OutStreamer->AddBlankLine(); 242 } 243 244 if (MAI->doesSupportDebugInformation()) { 245 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 246 if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 247 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 248 DbgTimerName, 249 CodeViewLineTablesGroupName)); 250 } 251 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 252 DD = new DwarfDebug(this, &M); 253 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 254 } 255 } 256 257 EHStreamer *ES = nullptr; 258 switch (MAI->getExceptionHandlingType()) { 259 case ExceptionHandling::None: 260 break; 261 case ExceptionHandling::SjLj: 262 case ExceptionHandling::DwarfCFI: 263 ES = new DwarfCFIException(this); 264 break; 265 case ExceptionHandling::ARM: 266 ES = new ARMException(this); 267 break; 268 case ExceptionHandling::WinEH: 269 switch (MAI->getWinEHEncodingType()) { 270 default: llvm_unreachable("unsupported unwinding information encoding"); 271 case WinEH::EncodingType::Invalid: 272 break; 273 case WinEH::EncodingType::X86: 274 case WinEH::EncodingType::Itanium: 275 ES = new WinException(this); 276 break; 277 } 278 break; 279 } 280 if (ES) 281 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 282 return false; 283 } 284 285 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 286 if (!MAI.hasWeakDefCanBeHiddenDirective()) 287 return false; 288 289 return canBeOmittedFromSymbolTable(GV); 290 } 291 292 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 293 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 294 switch (Linkage) { 295 case GlobalValue::CommonLinkage: 296 case GlobalValue::LinkOnceAnyLinkage: 297 case GlobalValue::LinkOnceODRLinkage: 298 case GlobalValue::WeakAnyLinkage: 299 case GlobalValue::WeakODRLinkage: 300 if (MAI->hasWeakDefDirective()) { 301 // .globl _foo 302 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 303 304 if (!canBeHidden(GV, *MAI)) 305 // .weak_definition _foo 306 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 307 else 308 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 309 } else if (MAI->hasLinkOnceDirective()) { 310 // .globl _foo 311 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 312 //NOTE: linkonce is handled by the section the symbol was assigned to. 313 } else { 314 // .weak _foo 315 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 316 } 317 return; 318 case GlobalValue::AppendingLinkage: 319 // FIXME: appending linkage variables should go into a section of 320 // their name or something. For now, just emit them as external. 321 case GlobalValue::ExternalLinkage: 322 // If external or appending, declare as a global symbol. 323 // .globl _foo 324 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 325 return; 326 case GlobalValue::PrivateLinkage: 327 case GlobalValue::InternalLinkage: 328 return; 329 case GlobalValue::AvailableExternallyLinkage: 330 llvm_unreachable("Should never emit this"); 331 case GlobalValue::ExternalWeakLinkage: 332 llvm_unreachable("Don't know how to emit these"); 333 } 334 llvm_unreachable("Unknown linkage type!"); 335 } 336 337 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 338 const GlobalValue *GV) const { 339 TM.getNameWithPrefix(Name, GV, *Mang); 340 } 341 342 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 343 return TM.getSymbol(GV, *Mang); 344 } 345 346 static MCSymbol *getOrCreateEmuTLSControlSym(MCSymbol *GVSym, MCContext &C) { 347 return C.getOrCreateSymbol(Twine("__emutls_v.") + GVSym->getName()); 348 } 349 350 static MCSymbol *getOrCreateEmuTLSInitSym(MCSymbol *GVSym, MCContext &C) { 351 return C.getOrCreateSymbol(Twine("__emutls_t.") + GVSym->getName()); 352 } 353 354 /// EmitEmulatedTLSControlVariable - Emit the control variable for an emulated TLS variable. 355 void AsmPrinter::EmitEmulatedTLSControlVariable(const GlobalVariable *GV, 356 MCSymbol *EmittedSym, 357 bool AllZeroInitValue) { 358 MCSection *TLSVarSection = getObjFileLowering().getDataSection(); 359 OutStreamer->SwitchSection(TLSVarSection); 360 MCSymbol *GVSym = getSymbol(GV); 361 EmitLinkage(GV, EmittedSym); // same linkage as GV 362 const DataLayout &DL = GV->getParent()->getDataLayout(); 363 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 364 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 365 unsigned WordSize = DL.getPointerSize(); 366 unsigned Alignment = DL.getPointerABIAlignment(); 367 EmitAlignment(Log2_32(Alignment)); 368 OutStreamer->EmitLabel(EmittedSym); 369 OutStreamer->EmitIntValue(Size, WordSize); 370 OutStreamer->EmitIntValue((1 << AlignLog), WordSize); 371 OutStreamer->EmitIntValue(0, WordSize); 372 if (GV->hasInitializer() && !AllZeroInitValue) { 373 OutStreamer->EmitSymbolValue( 374 getOrCreateEmuTLSInitSym(GVSym, OutContext), WordSize); 375 } else 376 OutStreamer->EmitIntValue(0, WordSize); 377 if (MAI->hasDotTypeDotSizeDirective()) 378 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedSym), 379 MCConstantExpr::create(4 * WordSize, OutContext)); 380 OutStreamer->AddBlankLine(); // End of the __emutls_v.* variable. 381 } 382 383 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 384 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 385 bool IsEmuTLSVar = 386 GV->getThreadLocalMode() != llvm::GlobalVariable::NotThreadLocal && 387 TM.Options.EmulatedTLS; 388 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 389 "No emulated TLS variables in the common section"); 390 391 if (GV->hasInitializer()) { 392 // Check to see if this is a special global used by LLVM, if so, emit it. 393 if (EmitSpecialLLVMGlobal(GV)) 394 return; 395 396 // Skip the emission of global equivalents. The symbol can be emitted later 397 // on by emitGlobalGOTEquivs in case it turns out to be needed. 398 if (GlobalGOTEquivs.count(getSymbol(GV))) 399 return; 400 401 if (isVerbose() && !IsEmuTLSVar) { 402 // When printing the control variable __emutls_v.*, 403 // we don't need to print the original TLS variable name. 404 GV->printAsOperand(OutStreamer->GetCommentOS(), 405 /*PrintType=*/false, GV->getParent()); 406 OutStreamer->GetCommentOS() << '\n'; 407 } 408 } 409 410 MCSymbol *GVSym = getSymbol(GV); 411 MCSymbol *EmittedSym = IsEmuTLSVar ? 412 getOrCreateEmuTLSControlSym(GVSym, OutContext) : GVSym; 413 // getOrCreateEmuTLSControlSym only creates the symbol with name and default attributes. 414 // GV's or GVSym's attributes will be used for the EmittedSym. 415 416 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 417 418 if (!GV->hasInitializer()) // External globals require no extra code. 419 return; 420 421 GVSym->redefineIfPossible(); 422 if (GVSym->isDefined() || GVSym->isVariable()) 423 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 424 "' is already defined"); 425 426 if (MAI->hasDotTypeDotSizeDirective()) 427 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 428 429 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 430 431 const DataLayout &DL = GV->getParent()->getDataLayout(); 432 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 433 434 // If the alignment is specified, we *must* obey it. Overaligning a global 435 // with a specified alignment is a prompt way to break globals emitted to 436 // sections and expected to be contiguous (e.g. ObjC metadata). 437 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 438 439 bool AllZeroInitValue = false; 440 const Constant *InitValue = GV->getInitializer(); 441 if (isa<ConstantAggregateZero>(InitValue)) 442 AllZeroInitValue = true; 443 else { 444 const ConstantInt *InitIntValue = dyn_cast<ConstantInt>(InitValue); 445 if (InitIntValue && InitIntValue->isZero()) 446 AllZeroInitValue = true; 447 } 448 if (IsEmuTLSVar) 449 EmitEmulatedTLSControlVariable(GV, EmittedSym, AllZeroInitValue); 450 451 for (const HandlerInfo &HI : Handlers) { 452 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 453 HI.Handler->setSymbolSize(GVSym, Size); 454 } 455 456 // Handle common and BSS local symbols (.lcomm). 457 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 458 assert(!(IsEmuTLSVar && GVKind.isCommon()) && 459 "No emulated TLS variables in the common section"); 460 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 461 unsigned Align = 1 << AlignLog; 462 463 // Handle common symbols. 464 if (GVKind.isCommon()) { 465 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 466 Align = 0; 467 468 // .comm _foo, 42, 4 469 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 470 return; 471 } 472 473 // Handle local BSS symbols. 474 if (MAI->hasMachoZeroFillDirective()) { 475 MCSection *TheSection = 476 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 477 // .zerofill __DATA, __bss, _foo, 400, 5 478 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 479 return; 480 } 481 482 // Use .lcomm only if it supports user-specified alignment. 483 // Otherwise, while it would still be correct to use .lcomm in some 484 // cases (e.g. when Align == 1), the external assembler might enfore 485 // some -unknown- default alignment behavior, which could cause 486 // spurious differences between external and integrated assembler. 487 // Prefer to simply fall back to .local / .comm in this case. 488 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 489 // .lcomm _foo, 42 490 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 491 return; 492 } 493 494 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 495 Align = 0; 496 497 // .local _foo 498 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 499 // .comm _foo, 42, 4 500 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 501 return; 502 } 503 504 if (IsEmuTLSVar && AllZeroInitValue) 505 return; // No need of initialization values. 506 507 MCSymbol *EmittedInitSym = IsEmuTLSVar ? 508 getOrCreateEmuTLSInitSym(GVSym, OutContext) : GVSym; 509 // getOrCreateEmuTLSInitSym only creates the symbol with name and default attributes. 510 // GV's or GVSym's attributes will be used for the EmittedInitSym. 511 512 MCSection *TheSection = IsEmuTLSVar ? 513 getObjFileLowering().getReadOnlySection() : 514 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 515 516 // Handle the zerofill directive on darwin, which is a special form of BSS 517 // emission. 518 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective() && !IsEmuTLSVar) { 519 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 520 521 // .globl _foo 522 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 523 // .zerofill __DATA, __common, _foo, 400, 5 524 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 525 return; 526 } 527 528 // Handle thread local data for mach-o which requires us to output an 529 // additional structure of data and mangle the original symbol so that we 530 // can reference it later. 531 // 532 // TODO: This should become an "emit thread local global" method on TLOF. 533 // All of this macho specific stuff should be sunk down into TLOFMachO and 534 // stuff like "TLSExtraDataSection" should no longer be part of the parent 535 // TLOF class. This will also make it more obvious that stuff like 536 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 537 // specific code. 538 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective() && !IsEmuTLSVar) { 539 // Emit the .tbss symbol 540 MCSymbol *MangSym = 541 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 542 543 if (GVKind.isThreadBSS()) { 544 TheSection = getObjFileLowering().getTLSBSSSection(); 545 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 546 } else if (GVKind.isThreadData()) { 547 OutStreamer->SwitchSection(TheSection); 548 549 EmitAlignment(AlignLog, GV); 550 OutStreamer->EmitLabel(MangSym); 551 552 EmitGlobalConstant(GV->getParent()->getDataLayout(), 553 GV->getInitializer()); 554 } 555 556 OutStreamer->AddBlankLine(); 557 558 // Emit the variable struct for the runtime. 559 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 560 561 OutStreamer->SwitchSection(TLVSect); 562 // Emit the linkage here. 563 EmitLinkage(GV, GVSym); 564 OutStreamer->EmitLabel(GVSym); 565 566 // Three pointers in size: 567 // - __tlv_bootstrap - used to make sure support exists 568 // - spare pointer, used when mapped by the runtime 569 // - pointer to mangled symbol above with initializer 570 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 571 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 572 PtrSize); 573 OutStreamer->EmitIntValue(0, PtrSize); 574 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 575 576 OutStreamer->AddBlankLine(); 577 return; 578 } 579 580 OutStreamer->SwitchSection(TheSection); 581 582 // emutls_t.* symbols are only used in the current compilation unit. 583 if (!IsEmuTLSVar) 584 EmitLinkage(GV, EmittedInitSym); 585 EmitAlignment(AlignLog, GV); 586 587 OutStreamer->EmitLabel(EmittedInitSym); 588 589 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 590 591 if (MAI->hasDotTypeDotSizeDirective()) 592 // .size foo, 42 593 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym), 594 MCConstantExpr::create(Size, OutContext)); 595 596 OutStreamer->AddBlankLine(); 597 } 598 599 /// EmitFunctionHeader - This method emits the header for the current 600 /// function. 601 void AsmPrinter::EmitFunctionHeader() { 602 // Print out constants referenced by the function 603 EmitConstantPool(); 604 605 // Print the 'header' of function. 606 const Function *F = MF->getFunction(); 607 608 OutStreamer->SwitchSection( 609 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 610 EmitVisibility(CurrentFnSym, F->getVisibility()); 611 612 EmitLinkage(F, CurrentFnSym); 613 if (MAI->hasFunctionAlignment()) 614 EmitAlignment(MF->getAlignment(), F); 615 616 if (MAI->hasDotTypeDotSizeDirective()) 617 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 618 619 if (isVerbose()) { 620 F->printAsOperand(OutStreamer->GetCommentOS(), 621 /*PrintType=*/false, F->getParent()); 622 OutStreamer->GetCommentOS() << '\n'; 623 } 624 625 // Emit the prefix data. 626 if (F->hasPrefixData()) 627 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 628 629 // Emit the CurrentFnSym. This is a virtual function to allow targets to 630 // do their wild and crazy things as required. 631 EmitFunctionEntryLabel(); 632 633 // If the function had address-taken blocks that got deleted, then we have 634 // references to the dangling symbols. Emit them at the start of the function 635 // so that we don't get references to undefined symbols. 636 std::vector<MCSymbol*> DeadBlockSyms; 637 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 638 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 639 OutStreamer->AddComment("Address taken block that was later removed"); 640 OutStreamer->EmitLabel(DeadBlockSyms[i]); 641 } 642 643 if (CurrentFnBegin) { 644 if (MAI->useAssignmentForEHBegin()) { 645 MCSymbol *CurPos = OutContext.createTempSymbol(); 646 OutStreamer->EmitLabel(CurPos); 647 OutStreamer->EmitAssignment(CurrentFnBegin, 648 MCSymbolRefExpr::create(CurPos, OutContext)); 649 } else { 650 OutStreamer->EmitLabel(CurrentFnBegin); 651 } 652 } 653 654 // Emit pre-function debug and/or EH information. 655 for (const HandlerInfo &HI : Handlers) { 656 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 657 HI.Handler->beginFunction(MF); 658 } 659 660 // Emit the prologue data. 661 if (F->hasPrologueData()) 662 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 663 } 664 665 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 666 /// function. This can be overridden by targets as required to do custom stuff. 667 void AsmPrinter::EmitFunctionEntryLabel() { 668 CurrentFnSym->redefineIfPossible(); 669 670 // The function label could have already been emitted if two symbols end up 671 // conflicting due to asm renaming. Detect this and emit an error. 672 if (CurrentFnSym->isVariable()) 673 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 674 "' is a protected alias"); 675 if (CurrentFnSym->isDefined()) 676 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 677 "' label emitted multiple times to assembly file"); 678 679 return OutStreamer->EmitLabel(CurrentFnSym); 680 } 681 682 /// emitComments - Pretty-print comments for instructions. 683 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 684 const MachineFunction *MF = MI.getParent()->getParent(); 685 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 686 687 // Check for spills and reloads 688 int FI; 689 690 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 691 692 // We assume a single instruction only has a spill or reload, not 693 // both. 694 const MachineMemOperand *MMO; 695 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 696 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 697 MMO = *MI.memoperands_begin(); 698 CommentOS << MMO->getSize() << "-byte Reload\n"; 699 } 700 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 701 if (FrameInfo->isSpillSlotObjectIndex(FI)) 702 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 703 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 704 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 705 MMO = *MI.memoperands_begin(); 706 CommentOS << MMO->getSize() << "-byte Spill\n"; 707 } 708 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 709 if (FrameInfo->isSpillSlotObjectIndex(FI)) 710 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 711 } 712 713 // Check for spill-induced copies 714 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 715 CommentOS << " Reload Reuse\n"; 716 } 717 718 /// emitImplicitDef - This method emits the specified machine instruction 719 /// that is an implicit def. 720 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 721 unsigned RegNo = MI->getOperand(0).getReg(); 722 723 SmallString<128> Str; 724 raw_svector_ostream OS(Str); 725 OS << "implicit-def: " 726 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 727 728 OutStreamer->AddComment(OS.str()); 729 OutStreamer->AddBlankLine(); 730 } 731 732 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 733 std::string Str; 734 raw_string_ostream OS(Str); 735 OS << "kill:"; 736 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 737 const MachineOperand &Op = MI->getOperand(i); 738 assert(Op.isReg() && "KILL instruction must have only register operands"); 739 OS << ' ' 740 << PrintReg(Op.getReg(), 741 AP.MF->getSubtarget().getRegisterInfo()) 742 << (Op.isDef() ? "<def>" : "<kill>"); 743 } 744 AP.OutStreamer->AddComment(Str); 745 AP.OutStreamer->AddBlankLine(); 746 } 747 748 /// emitDebugValueComment - This method handles the target-independent form 749 /// of DBG_VALUE, returning true if it was able to do so. A false return 750 /// means the target will need to handle MI in EmitInstruction. 751 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 752 // This code handles only the 4-operand target-independent form. 753 if (MI->getNumOperands() != 4) 754 return false; 755 756 SmallString<128> Str; 757 raw_svector_ostream OS(Str); 758 OS << "DEBUG_VALUE: "; 759 760 const DILocalVariable *V = MI->getDebugVariable(); 761 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 762 StringRef Name = SP->getDisplayName(); 763 if (!Name.empty()) 764 OS << Name << ":"; 765 } 766 OS << V->getName(); 767 768 const DIExpression *Expr = MI->getDebugExpression(); 769 if (Expr->isBitPiece()) 770 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 771 << " size=" << Expr->getBitPieceSize() << "]"; 772 OS << " <- "; 773 774 // The second operand is only an offset if it's an immediate. 775 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 776 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 777 778 // Register or immediate value. Register 0 means undef. 779 if (MI->getOperand(0).isFPImm()) { 780 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 781 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 782 OS << (double)APF.convertToFloat(); 783 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 784 OS << APF.convertToDouble(); 785 } else { 786 // There is no good way to print long double. Convert a copy to 787 // double. Ah well, it's only a comment. 788 bool ignored; 789 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 790 &ignored); 791 OS << "(long double) " << APF.convertToDouble(); 792 } 793 } else if (MI->getOperand(0).isImm()) { 794 OS << MI->getOperand(0).getImm(); 795 } else if (MI->getOperand(0).isCImm()) { 796 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 797 } else { 798 unsigned Reg; 799 if (MI->getOperand(0).isReg()) { 800 Reg = MI->getOperand(0).getReg(); 801 } else { 802 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 803 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 804 Offset += TFI->getFrameIndexReference(*AP.MF, 805 MI->getOperand(0).getIndex(), Reg); 806 Deref = true; 807 } 808 if (Reg == 0) { 809 // Suppress offset, it is not meaningful here. 810 OS << "undef"; 811 // NOTE: Want this comment at start of line, don't emit with AddComment. 812 AP.OutStreamer->emitRawComment(OS.str()); 813 return true; 814 } 815 if (Deref) 816 OS << '['; 817 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 818 } 819 820 if (Deref) 821 OS << '+' << Offset << ']'; 822 823 // NOTE: Want this comment at start of line, don't emit with AddComment. 824 AP.OutStreamer->emitRawComment(OS.str()); 825 return true; 826 } 827 828 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 829 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 830 MF->getFunction()->needsUnwindTableEntry()) 831 return CFI_M_EH; 832 833 if (MMI->hasDebugInfo()) 834 return CFI_M_Debug; 835 836 return CFI_M_None; 837 } 838 839 bool AsmPrinter::needsSEHMoves() { 840 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 841 } 842 843 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 844 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 845 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 846 ExceptionHandlingType != ExceptionHandling::ARM) 847 return; 848 849 if (needsCFIMoves() == CFI_M_None) 850 return; 851 852 const MachineModuleInfo &MMI = MF->getMMI(); 853 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 854 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 855 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 856 emitCFIInstruction(CFI); 857 } 858 859 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 860 // The operands are the MCSymbol and the frame offset of the allocation. 861 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 862 int FrameOffset = MI.getOperand(1).getImm(); 863 864 // Emit a symbol assignment. 865 OutStreamer->EmitAssignment(FrameAllocSym, 866 MCConstantExpr::create(FrameOffset, OutContext)); 867 } 868 869 /// EmitFunctionBody - This method emits the body and trailer for a 870 /// function. 871 void AsmPrinter::EmitFunctionBody() { 872 EmitFunctionHeader(); 873 874 // Emit target-specific gunk before the function body. 875 EmitFunctionBodyStart(); 876 877 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 878 879 // Print out code for the function. 880 bool HasAnyRealCode = false; 881 for (auto &MBB : *MF) { 882 // Print a label for the basic block. 883 EmitBasicBlockStart(MBB); 884 for (auto &MI : MBB) { 885 886 // Print the assembly for the instruction. 887 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 888 !MI.isDebugValue()) { 889 HasAnyRealCode = true; 890 ++EmittedInsts; 891 } 892 893 if (ShouldPrintDebugScopes) { 894 for (const HandlerInfo &HI : Handlers) { 895 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 896 TimePassesIsEnabled); 897 HI.Handler->beginInstruction(&MI); 898 } 899 } 900 901 if (isVerbose()) 902 emitComments(MI, OutStreamer->GetCommentOS()); 903 904 switch (MI.getOpcode()) { 905 case TargetOpcode::CFI_INSTRUCTION: 906 emitCFIInstruction(MI); 907 break; 908 909 case TargetOpcode::LOCAL_ESCAPE: 910 emitFrameAlloc(MI); 911 break; 912 913 case TargetOpcode::EH_LABEL: 914 case TargetOpcode::GC_LABEL: 915 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 916 break; 917 case TargetOpcode::INLINEASM: 918 EmitInlineAsm(&MI); 919 break; 920 case TargetOpcode::DBG_VALUE: 921 if (isVerbose()) { 922 if (!emitDebugValueComment(&MI, *this)) 923 EmitInstruction(&MI); 924 } 925 break; 926 case TargetOpcode::IMPLICIT_DEF: 927 if (isVerbose()) emitImplicitDef(&MI); 928 break; 929 case TargetOpcode::KILL: 930 if (isVerbose()) emitKill(&MI, *this); 931 break; 932 default: 933 EmitInstruction(&MI); 934 break; 935 } 936 937 if (ShouldPrintDebugScopes) { 938 for (const HandlerInfo &HI : Handlers) { 939 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 940 TimePassesIsEnabled); 941 HI.Handler->endInstruction(); 942 } 943 } 944 } 945 946 EmitBasicBlockEnd(MBB); 947 } 948 949 // If the function is empty and the object file uses .subsections_via_symbols, 950 // then we need to emit *something* to the function body to prevent the 951 // labels from collapsing together. Just emit a noop. 952 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 953 MCInst Noop; 954 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 955 OutStreamer->AddComment("avoids zero-length function"); 956 957 // Targets can opt-out of emitting the noop here by leaving the opcode 958 // unspecified. 959 if (Noop.getOpcode()) 960 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 961 } 962 963 const Function *F = MF->getFunction(); 964 for (const auto &BB : *F) { 965 if (!BB.hasAddressTaken()) 966 continue; 967 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 968 if (Sym->isDefined()) 969 continue; 970 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 971 OutStreamer->EmitLabel(Sym); 972 } 973 974 // Emit target-specific gunk after the function body. 975 EmitFunctionBodyEnd(); 976 977 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 978 MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 979 // Create a symbol for the end of function. 980 CurrentFnEnd = createTempSymbol("func_end"); 981 OutStreamer->EmitLabel(CurrentFnEnd); 982 } 983 984 // If the target wants a .size directive for the size of the function, emit 985 // it. 986 if (MAI->hasDotTypeDotSizeDirective()) { 987 // We can get the size as difference between the function label and the 988 // temp label. 989 const MCExpr *SizeExp = MCBinaryExpr::createSub( 990 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 991 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 992 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 993 OutStreamer->emitELFSize(Sym, SizeExp); 994 } 995 996 for (const HandlerInfo &HI : Handlers) { 997 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 998 HI.Handler->markFunctionEnd(); 999 } 1000 1001 // Print out jump tables referenced by the function. 1002 EmitJumpTableInfo(); 1003 1004 // Emit post-function debug and/or EH information. 1005 for (const HandlerInfo &HI : Handlers) { 1006 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 1007 HI.Handler->endFunction(MF); 1008 } 1009 MMI->EndFunction(); 1010 1011 OutStreamer->AddBlankLine(); 1012 } 1013 1014 /// \brief Compute the number of Global Variables that uses a Constant. 1015 static unsigned getNumGlobalVariableUses(const Constant *C) { 1016 if (!C) 1017 return 0; 1018 1019 if (isa<GlobalVariable>(C)) 1020 return 1; 1021 1022 unsigned NumUses = 0; 1023 for (auto *CU : C->users()) 1024 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1025 1026 return NumUses; 1027 } 1028 1029 /// \brief Only consider global GOT equivalents if at least one user is a 1030 /// cstexpr inside an initializer of another global variables. Also, don't 1031 /// handle cstexpr inside instructions. During global variable emission, 1032 /// candidates are skipped and are emitted later in case at least one cstexpr 1033 /// isn't replaced by a PC relative GOT entry access. 1034 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1035 unsigned &NumGOTEquivUsers) { 1036 // Global GOT equivalents are unnamed private globals with a constant 1037 // pointer initializer to another global symbol. They must point to a 1038 // GlobalVariable or Function, i.e., as GlobalValue. 1039 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 1040 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 1041 return false; 1042 1043 // To be a got equivalent, at least one of its users need to be a constant 1044 // expression used by another global variable. 1045 for (auto *U : GV->users()) 1046 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1047 1048 return NumGOTEquivUsers > 0; 1049 } 1050 1051 /// \brief Unnamed constant global variables solely contaning a pointer to 1052 /// another globals variable is equivalent to a GOT table entry; it contains the 1053 /// the address of another symbol. Optimize it and replace accesses to these 1054 /// "GOT equivalents" by using the GOT entry for the final global instead. 1055 /// Compute GOT equivalent candidates among all global variables to avoid 1056 /// emitting them if possible later on, after it use is replaced by a GOT entry 1057 /// access. 1058 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1059 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1060 return; 1061 1062 for (const auto &G : M.globals()) { 1063 unsigned NumGOTEquivUsers = 0; 1064 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1065 continue; 1066 1067 const MCSymbol *GOTEquivSym = getSymbol(&G); 1068 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1069 } 1070 } 1071 1072 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1073 /// for PC relative GOT entry conversion, in such cases we need to emit such 1074 /// globals we previously omitted in EmitGlobalVariable. 1075 void AsmPrinter::emitGlobalGOTEquivs() { 1076 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1077 return; 1078 1079 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1080 for (auto &I : GlobalGOTEquivs) { 1081 const GlobalVariable *GV = I.second.first; 1082 unsigned Cnt = I.second.second; 1083 if (Cnt) 1084 FailedCandidates.push_back(GV); 1085 } 1086 GlobalGOTEquivs.clear(); 1087 1088 for (auto *GV : FailedCandidates) 1089 EmitGlobalVariable(GV); 1090 } 1091 1092 bool AsmPrinter::doFinalization(Module &M) { 1093 // Set the MachineFunction to nullptr so that we can catch attempted 1094 // accesses to MF specific features at the module level and so that 1095 // we can conditionalize accesses based on whether or not it is nullptr. 1096 MF = nullptr; 1097 1098 // Gather all GOT equivalent globals in the module. We really need two 1099 // passes over the globals: one to compute and another to avoid its emission 1100 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1101 // where the got equivalent shows up before its use. 1102 computeGlobalGOTEquivs(M); 1103 1104 // Emit global variables. 1105 for (const auto &G : M.globals()) 1106 EmitGlobalVariable(&G); 1107 1108 // Emit remaining GOT equivalent globals. 1109 emitGlobalGOTEquivs(); 1110 1111 // Emit visibility info for declarations 1112 for (const Function &F : M) { 1113 if (!F.isDeclarationForLinker()) 1114 continue; 1115 GlobalValue::VisibilityTypes V = F.getVisibility(); 1116 if (V == GlobalValue::DefaultVisibility) 1117 continue; 1118 1119 MCSymbol *Name = getSymbol(&F); 1120 EmitVisibility(Name, V, false); 1121 } 1122 1123 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1124 1125 // Emit module flags. 1126 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1127 M.getModuleFlagsMetadata(ModuleFlags); 1128 if (!ModuleFlags.empty()) 1129 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1130 1131 if (TM.getTargetTriple().isOSBinFormatELF()) { 1132 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1133 1134 // Output stubs for external and common global variables. 1135 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1136 if (!Stubs.empty()) { 1137 OutStreamer->SwitchSection(TLOF.getDataSection()); 1138 const DataLayout &DL = M.getDataLayout(); 1139 1140 for (const auto &Stub : Stubs) { 1141 OutStreamer->EmitLabel(Stub.first); 1142 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1143 DL.getPointerSize()); 1144 } 1145 } 1146 } 1147 1148 // Finalize debug and EH information. 1149 for (const HandlerInfo &HI : Handlers) { 1150 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1151 TimePassesIsEnabled); 1152 HI.Handler->endModule(); 1153 delete HI.Handler; 1154 } 1155 Handlers.clear(); 1156 DD = nullptr; 1157 1158 // If the target wants to know about weak references, print them all. 1159 if (MAI->getWeakRefDirective()) { 1160 // FIXME: This is not lazy, it would be nice to only print weak references 1161 // to stuff that is actually used. Note that doing so would require targets 1162 // to notice uses in operands (due to constant exprs etc). This should 1163 // happen with the MC stuff eventually. 1164 1165 // Print out module-level global variables here. 1166 for (const auto &G : M.globals()) { 1167 if (!G.hasExternalWeakLinkage()) 1168 continue; 1169 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1170 } 1171 1172 for (const auto &F : M) { 1173 if (!F.hasExternalWeakLinkage()) 1174 continue; 1175 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1176 } 1177 } 1178 1179 OutStreamer->AddBlankLine(); 1180 for (const auto &Alias : M.aliases()) { 1181 MCSymbol *Name = getSymbol(&Alias); 1182 1183 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1184 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1185 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1186 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1187 else 1188 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1189 1190 // Set the symbol type to function if the alias has a function type. 1191 // This affects codegen when the aliasee is not a function. 1192 if (Alias.getType()->getPointerElementType()->isFunctionTy()) 1193 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1194 1195 EmitVisibility(Name, Alias.getVisibility()); 1196 1197 // Emit the directives as assignments aka .set: 1198 OutStreamer->EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1199 1200 // If the aliasee does not correspond to a symbol in the output, i.e. the 1201 // alias is not of an object or the aliased object is private, then set the 1202 // size of the alias symbol from the type of the alias. We don't do this in 1203 // other situations as the alias and aliasee having differing types but same 1204 // size may be intentional. 1205 const GlobalObject *BaseObject = Alias.getBaseObject(); 1206 if (MAI->hasDotTypeDotSizeDirective() && Alias.getValueType()->isSized() && 1207 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1208 const DataLayout &DL = M.getDataLayout(); 1209 uint64_t Size = DL.getTypeAllocSize(Alias.getValueType()); 1210 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name), 1211 MCConstantExpr::create(Size, OutContext)); 1212 } 1213 } 1214 1215 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1216 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1217 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1218 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1219 MP->finishAssembly(M, *MI, *this); 1220 1221 // Emit llvm.ident metadata in an '.ident' directive. 1222 EmitModuleIdents(M); 1223 1224 // Emit __morestack address if needed for indirect calls. 1225 if (MMI->usesMorestackAddr()) { 1226 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1227 getDataLayout(), SectionKind::getReadOnly(), 1228 /*C=*/nullptr); 1229 OutStreamer->SwitchSection(ReadOnlySection); 1230 1231 MCSymbol *AddrSymbol = 1232 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1233 OutStreamer->EmitLabel(AddrSymbol); 1234 1235 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1236 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1237 PtrSize); 1238 } 1239 1240 // If we don't have any trampolines, then we don't require stack memory 1241 // to be executable. Some targets have a directive to declare this. 1242 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1243 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1244 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1245 OutStreamer->SwitchSection(S); 1246 1247 // Allow the target to emit any magic that it wants at the end of the file, 1248 // after everything else has gone out. 1249 EmitEndOfAsmFile(M); 1250 1251 delete Mang; Mang = nullptr; 1252 MMI = nullptr; 1253 1254 OutStreamer->Finish(); 1255 OutStreamer->reset(); 1256 1257 return false; 1258 } 1259 1260 MCSymbol *AsmPrinter::getCurExceptionSym() { 1261 if (!CurExceptionSym) 1262 CurExceptionSym = createTempSymbol("exception"); 1263 return CurExceptionSym; 1264 } 1265 1266 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1267 this->MF = &MF; 1268 // Get the function symbol. 1269 CurrentFnSym = getSymbol(MF.getFunction()); 1270 CurrentFnSymForSize = CurrentFnSym; 1271 CurrentFnBegin = nullptr; 1272 CurExceptionSym = nullptr; 1273 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1274 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1275 MMI->hasEHFunclets() || NeedsLocalForSize) { 1276 CurrentFnBegin = createTempSymbol("func_begin"); 1277 if (NeedsLocalForSize) 1278 CurrentFnSymForSize = CurrentFnBegin; 1279 } 1280 1281 if (isVerbose()) 1282 LI = &getAnalysis<MachineLoopInfo>(); 1283 } 1284 1285 namespace { 1286 // Keep track the alignment, constpool entries per Section. 1287 struct SectionCPs { 1288 MCSection *S; 1289 unsigned Alignment; 1290 SmallVector<unsigned, 4> CPEs; 1291 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1292 }; 1293 } 1294 1295 /// EmitConstantPool - Print to the current output stream assembly 1296 /// representations of the constants in the constant pool MCP. This is 1297 /// used to print out constants which have been "spilled to memory" by 1298 /// the code generator. 1299 /// 1300 void AsmPrinter::EmitConstantPool() { 1301 const MachineConstantPool *MCP = MF->getConstantPool(); 1302 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1303 if (CP.empty()) return; 1304 1305 // Calculate sections for constant pool entries. We collect entries to go into 1306 // the same section together to reduce amount of section switch statements. 1307 SmallVector<SectionCPs, 4> CPSections; 1308 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1309 const MachineConstantPoolEntry &CPE = CP[i]; 1310 unsigned Align = CPE.getAlignment(); 1311 1312 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1313 1314 const Constant *C = nullptr; 1315 if (!CPE.isMachineConstantPoolEntry()) 1316 C = CPE.Val.ConstVal; 1317 1318 MCSection *S = 1319 getObjFileLowering().getSectionForConstant(getDataLayout(), Kind, C); 1320 1321 // The number of sections are small, just do a linear search from the 1322 // last section to the first. 1323 bool Found = false; 1324 unsigned SecIdx = CPSections.size(); 1325 while (SecIdx != 0) { 1326 if (CPSections[--SecIdx].S == S) { 1327 Found = true; 1328 break; 1329 } 1330 } 1331 if (!Found) { 1332 SecIdx = CPSections.size(); 1333 CPSections.push_back(SectionCPs(S, Align)); 1334 } 1335 1336 if (Align > CPSections[SecIdx].Alignment) 1337 CPSections[SecIdx].Alignment = Align; 1338 CPSections[SecIdx].CPEs.push_back(i); 1339 } 1340 1341 // Now print stuff into the calculated sections. 1342 const MCSection *CurSection = nullptr; 1343 unsigned Offset = 0; 1344 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1345 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1346 unsigned CPI = CPSections[i].CPEs[j]; 1347 MCSymbol *Sym = GetCPISymbol(CPI); 1348 if (!Sym->isUndefined()) 1349 continue; 1350 1351 if (CurSection != CPSections[i].S) { 1352 OutStreamer->SwitchSection(CPSections[i].S); 1353 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1354 CurSection = CPSections[i].S; 1355 Offset = 0; 1356 } 1357 1358 MachineConstantPoolEntry CPE = CP[CPI]; 1359 1360 // Emit inter-object padding for alignment. 1361 unsigned AlignMask = CPE.getAlignment() - 1; 1362 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1363 OutStreamer->EmitZeros(NewOffset - Offset); 1364 1365 Type *Ty = CPE.getType(); 1366 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1367 1368 OutStreamer->EmitLabel(Sym); 1369 if (CPE.isMachineConstantPoolEntry()) 1370 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1371 else 1372 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1373 } 1374 } 1375 } 1376 1377 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1378 /// by the current function to the current output stream. 1379 /// 1380 void AsmPrinter::EmitJumpTableInfo() { 1381 const DataLayout &DL = MF->getDataLayout(); 1382 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1383 if (!MJTI) return; 1384 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1385 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1386 if (JT.empty()) return; 1387 1388 // Pick the directive to use to print the jump table entries, and switch to 1389 // the appropriate section. 1390 const Function *F = MF->getFunction(); 1391 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1392 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1393 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1394 *F); 1395 if (JTInDiffSection) { 1396 // Drop it in the readonly section. 1397 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1398 OutStreamer->SwitchSection(ReadOnlySection); 1399 } 1400 1401 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1402 1403 // Jump tables in code sections are marked with a data_region directive 1404 // where that's supported. 1405 if (!JTInDiffSection) 1406 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1407 1408 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1409 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1410 1411 // If this jump table was deleted, ignore it. 1412 if (JTBBs.empty()) continue; 1413 1414 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1415 /// emit a .set directive for each unique entry. 1416 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1417 MAI->doesSetDirectiveSuppressesReloc()) { 1418 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1419 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1420 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1421 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1422 const MachineBasicBlock *MBB = JTBBs[ii]; 1423 if (!EmittedSets.insert(MBB).second) 1424 continue; 1425 1426 // .set LJTSet, LBB32-base 1427 const MCExpr *LHS = 1428 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1429 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1430 MCBinaryExpr::createSub(LHS, Base, 1431 OutContext)); 1432 } 1433 } 1434 1435 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1436 // before each jump table. The first label is never referenced, but tells 1437 // the assembler and linker the extents of the jump table object. The 1438 // second label is actually referenced by the code. 1439 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1440 // FIXME: This doesn't have to have any specific name, just any randomly 1441 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1442 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1443 1444 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1445 1446 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1447 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1448 } 1449 if (!JTInDiffSection) 1450 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1451 } 1452 1453 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1454 /// current stream. 1455 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1456 const MachineBasicBlock *MBB, 1457 unsigned UID) const { 1458 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1459 const MCExpr *Value = nullptr; 1460 switch (MJTI->getEntryKind()) { 1461 case MachineJumpTableInfo::EK_Inline: 1462 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1463 case MachineJumpTableInfo::EK_Custom32: 1464 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1465 MJTI, MBB, UID, OutContext); 1466 break; 1467 case MachineJumpTableInfo::EK_BlockAddress: 1468 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1469 // .word LBB123 1470 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1471 break; 1472 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1473 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1474 // with a relocation as gp-relative, e.g.: 1475 // .gprel32 LBB123 1476 MCSymbol *MBBSym = MBB->getSymbol(); 1477 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1478 return; 1479 } 1480 1481 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1482 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1483 // with a relocation as gp-relative, e.g.: 1484 // .gpdword LBB123 1485 MCSymbol *MBBSym = MBB->getSymbol(); 1486 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1487 return; 1488 } 1489 1490 case MachineJumpTableInfo::EK_LabelDifference32: { 1491 // Each entry is the address of the block minus the address of the jump 1492 // table. This is used for PIC jump tables where gprel32 is not supported. 1493 // e.g.: 1494 // .word LBB123 - LJTI1_2 1495 // If the .set directive avoids relocations, this is emitted as: 1496 // .set L4_5_set_123, LBB123 - LJTI1_2 1497 // .word L4_5_set_123 1498 if (MAI->doesSetDirectiveSuppressesReloc()) { 1499 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1500 OutContext); 1501 break; 1502 } 1503 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1504 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1505 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1506 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1507 break; 1508 } 1509 } 1510 1511 assert(Value && "Unknown entry kind!"); 1512 1513 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1514 OutStreamer->EmitValue(Value, EntrySize); 1515 } 1516 1517 1518 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1519 /// special global used by LLVM. If so, emit it and return true, otherwise 1520 /// do nothing and return false. 1521 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1522 if (GV->getName() == "llvm.used") { 1523 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1524 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1525 return true; 1526 } 1527 1528 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1529 if (StringRef(GV->getSection()) == "llvm.metadata" || 1530 GV->hasAvailableExternallyLinkage()) 1531 return true; 1532 1533 if (!GV->hasAppendingLinkage()) return false; 1534 1535 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1536 1537 if (GV->getName() == "llvm.global_ctors") { 1538 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1539 /* isCtor */ true); 1540 1541 if (TM.getRelocationModel() == Reloc::Static && 1542 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1543 StringRef Sym(".constructors_used"); 1544 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1545 MCSA_Reference); 1546 } 1547 return true; 1548 } 1549 1550 if (GV->getName() == "llvm.global_dtors") { 1551 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1552 /* isCtor */ false); 1553 1554 if (TM.getRelocationModel() == Reloc::Static && 1555 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1556 StringRef Sym(".destructors_used"); 1557 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1558 MCSA_Reference); 1559 } 1560 return true; 1561 } 1562 1563 return false; 1564 } 1565 1566 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1567 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1568 /// is true, as being used with this directive. 1569 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1570 // Should be an array of 'i8*'. 1571 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1572 const GlobalValue *GV = 1573 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1574 if (GV) 1575 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1576 } 1577 } 1578 1579 namespace { 1580 struct Structor { 1581 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1582 int Priority; 1583 llvm::Constant *Func; 1584 llvm::GlobalValue *ComdatKey; 1585 }; 1586 } // end namespace 1587 1588 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1589 /// priority. 1590 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1591 bool isCtor) { 1592 // Should be an array of '{ int, void ()* }' structs. The first value is the 1593 // init priority. 1594 if (!isa<ConstantArray>(List)) return; 1595 1596 // Sanity check the structors list. 1597 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1598 if (!InitList) return; // Not an array! 1599 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1600 // FIXME: Only allow the 3-field form in LLVM 4.0. 1601 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1602 return; // Not an array of two or three elements! 1603 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1604 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1605 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1606 return; // Not (int, ptr, ptr). 1607 1608 // Gather the structors in a form that's convenient for sorting by priority. 1609 SmallVector<Structor, 8> Structors; 1610 for (Value *O : InitList->operands()) { 1611 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1612 if (!CS) continue; // Malformed. 1613 if (CS->getOperand(1)->isNullValue()) 1614 break; // Found a null terminator, skip the rest. 1615 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1616 if (!Priority) continue; // Malformed. 1617 Structors.push_back(Structor()); 1618 Structor &S = Structors.back(); 1619 S.Priority = Priority->getLimitedValue(65535); 1620 S.Func = CS->getOperand(1); 1621 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1622 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1623 } 1624 1625 // Emit the function pointers in the target-specific order 1626 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1627 std::stable_sort(Structors.begin(), Structors.end(), 1628 [](const Structor &L, 1629 const Structor &R) { return L.Priority < R.Priority; }); 1630 for (Structor &S : Structors) { 1631 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1632 const MCSymbol *KeySym = nullptr; 1633 if (GlobalValue *GV = S.ComdatKey) { 1634 if (GV->hasAvailableExternallyLinkage()) 1635 // If the associated variable is available_externally, some other TU 1636 // will provide its dynamic initializer. 1637 continue; 1638 1639 KeySym = getSymbol(GV); 1640 } 1641 MCSection *OutputSection = 1642 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1643 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1644 OutStreamer->SwitchSection(OutputSection); 1645 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1646 EmitAlignment(Align); 1647 EmitXXStructor(DL, S.Func); 1648 } 1649 } 1650 1651 void AsmPrinter::EmitModuleIdents(Module &M) { 1652 if (!MAI->hasIdentDirective()) 1653 return; 1654 1655 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1656 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1657 const MDNode *N = NMD->getOperand(i); 1658 assert(N->getNumOperands() == 1 && 1659 "llvm.ident metadata entry can have only one operand"); 1660 const MDString *S = cast<MDString>(N->getOperand(0)); 1661 OutStreamer->EmitIdent(S->getString()); 1662 } 1663 } 1664 } 1665 1666 //===--------------------------------------------------------------------===// 1667 // Emission and print routines 1668 // 1669 1670 /// EmitInt8 - Emit a byte directive and value. 1671 /// 1672 void AsmPrinter::EmitInt8(int Value) const { 1673 OutStreamer->EmitIntValue(Value, 1); 1674 } 1675 1676 /// EmitInt16 - Emit a short directive and value. 1677 /// 1678 void AsmPrinter::EmitInt16(int Value) const { 1679 OutStreamer->EmitIntValue(Value, 2); 1680 } 1681 1682 /// EmitInt32 - Emit a long directive and value. 1683 /// 1684 void AsmPrinter::EmitInt32(int Value) const { 1685 OutStreamer->EmitIntValue(Value, 4); 1686 } 1687 1688 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1689 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1690 /// .set if it avoids relocations. 1691 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1692 unsigned Size) const { 1693 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1694 } 1695 1696 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1697 /// where the size in bytes of the directive is specified by Size and Label 1698 /// specifies the label. This implicitly uses .set if it is available. 1699 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1700 unsigned Size, 1701 bool IsSectionRelative) const { 1702 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1703 OutStreamer->EmitCOFFSecRel32(Label); 1704 return; 1705 } 1706 1707 // Emit Label+Offset (or just Label if Offset is zero) 1708 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1709 if (Offset) 1710 Expr = MCBinaryExpr::createAdd( 1711 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1712 1713 OutStreamer->EmitValue(Expr, Size); 1714 } 1715 1716 //===----------------------------------------------------------------------===// 1717 1718 // EmitAlignment - Emit an alignment directive to the specified power of 1719 // two boundary. For example, if you pass in 3 here, you will get an 8 1720 // byte alignment. If a global value is specified, and if that global has 1721 // an explicit alignment requested, it will override the alignment request 1722 // if required for correctness. 1723 // 1724 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1725 if (GV) 1726 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1727 1728 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1729 1730 assert(NumBits < 1731 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1732 "undefined behavior"); 1733 if (getCurrentSection()->getKind().isText()) 1734 OutStreamer->EmitCodeAlignment(1u << NumBits); 1735 else 1736 OutStreamer->EmitValueToAlignment(1u << NumBits); 1737 } 1738 1739 //===----------------------------------------------------------------------===// 1740 // Constant emission. 1741 //===----------------------------------------------------------------------===// 1742 1743 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1744 MCContext &Ctx = OutContext; 1745 1746 if (CV->isNullValue() || isa<UndefValue>(CV)) 1747 return MCConstantExpr::create(0, Ctx); 1748 1749 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1750 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1751 1752 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1753 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1754 1755 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1756 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1757 1758 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1759 if (!CE) { 1760 llvm_unreachable("Unknown constant value to lower!"); 1761 } 1762 1763 if (const MCExpr *RelocExpr 1764 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1765 return RelocExpr; 1766 1767 switch (CE->getOpcode()) { 1768 default: 1769 // If the code isn't optimized, there may be outstanding folding 1770 // opportunities. Attempt to fold the expression using DataLayout as a 1771 // last resort before giving up. 1772 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout())) 1773 if (C != CE) 1774 return lowerConstant(C); 1775 1776 // Otherwise report the problem to the user. 1777 { 1778 std::string S; 1779 raw_string_ostream OS(S); 1780 OS << "Unsupported expression in static initializer: "; 1781 CE->printAsOperand(OS, /*PrintType=*/false, 1782 !MF ? nullptr : MF->getFunction()->getParent()); 1783 report_fatal_error(OS.str()); 1784 } 1785 case Instruction::GetElementPtr: { 1786 // Generate a symbolic expression for the byte address 1787 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1788 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1789 1790 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1791 if (!OffsetAI) 1792 return Base; 1793 1794 int64_t Offset = OffsetAI.getSExtValue(); 1795 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1796 Ctx); 1797 } 1798 1799 case Instruction::Trunc: 1800 // We emit the value and depend on the assembler to truncate the generated 1801 // expression properly. This is important for differences between 1802 // blockaddress labels. Since the two labels are in the same function, it 1803 // is reasonable to treat their delta as a 32-bit value. 1804 // FALL THROUGH. 1805 case Instruction::BitCast: 1806 return lowerConstant(CE->getOperand(0)); 1807 1808 case Instruction::IntToPtr: { 1809 const DataLayout &DL = getDataLayout(); 1810 1811 // Handle casts to pointers by changing them into casts to the appropriate 1812 // integer type. This promotes constant folding and simplifies this code. 1813 Constant *Op = CE->getOperand(0); 1814 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1815 false/*ZExt*/); 1816 return lowerConstant(Op); 1817 } 1818 1819 case Instruction::PtrToInt: { 1820 const DataLayout &DL = getDataLayout(); 1821 1822 // Support only foldable casts to/from pointers that can be eliminated by 1823 // changing the pointer to the appropriately sized integer type. 1824 Constant *Op = CE->getOperand(0); 1825 Type *Ty = CE->getType(); 1826 1827 const MCExpr *OpExpr = lowerConstant(Op); 1828 1829 // We can emit the pointer value into this slot if the slot is an 1830 // integer slot equal to the size of the pointer. 1831 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1832 return OpExpr; 1833 1834 // Otherwise the pointer is smaller than the resultant integer, mask off 1835 // the high bits so we are sure to get a proper truncation if the input is 1836 // a constant expr. 1837 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1838 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1839 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1840 } 1841 1842 // The MC library also has a right-shift operator, but it isn't consistently 1843 // signed or unsigned between different targets. 1844 case Instruction::Add: 1845 case Instruction::Sub: 1846 case Instruction::Mul: 1847 case Instruction::SDiv: 1848 case Instruction::SRem: 1849 case Instruction::Shl: 1850 case Instruction::And: 1851 case Instruction::Or: 1852 case Instruction::Xor: { 1853 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1854 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1855 switch (CE->getOpcode()) { 1856 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1857 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1858 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1859 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1860 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1861 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1862 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1863 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1864 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1865 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1866 } 1867 } 1868 } 1869 } 1870 1871 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1872 AsmPrinter &AP, 1873 const Constant *BaseCV = nullptr, 1874 uint64_t Offset = 0); 1875 1876 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1877 1878 /// isRepeatedByteSequence - Determine whether the given value is 1879 /// composed of a repeated sequence of identical bytes and return the 1880 /// byte value. If it is not a repeated sequence, return -1. 1881 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1882 StringRef Data = V->getRawDataValues(); 1883 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1884 char C = Data[0]; 1885 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1886 if (Data[i] != C) return -1; 1887 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1888 } 1889 1890 1891 /// isRepeatedByteSequence - Determine whether the given value is 1892 /// composed of a repeated sequence of identical bytes and return the 1893 /// byte value. If it is not a repeated sequence, return -1. 1894 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1895 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1896 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1897 assert(Size % 8 == 0); 1898 1899 // Extend the element to take zero padding into account. 1900 APInt Value = CI->getValue().zextOrSelf(Size); 1901 if (!Value.isSplat(8)) 1902 return -1; 1903 1904 return Value.zextOrTrunc(8).getZExtValue(); 1905 } 1906 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1907 // Make sure all array elements are sequences of the same repeated 1908 // byte. 1909 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1910 Constant *Op0 = CA->getOperand(0); 1911 int Byte = isRepeatedByteSequence(Op0, DL); 1912 if (Byte == -1) 1913 return -1; 1914 1915 // All array elements must be equal. 1916 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1917 if (CA->getOperand(i) != Op0) 1918 return -1; 1919 return Byte; 1920 } 1921 1922 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1923 return isRepeatedByteSequence(CDS); 1924 1925 return -1; 1926 } 1927 1928 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1929 const ConstantDataSequential *CDS, 1930 AsmPrinter &AP) { 1931 1932 // See if we can aggregate this into a .fill, if so, emit it as such. 1933 int Value = isRepeatedByteSequence(CDS, DL); 1934 if (Value != -1) { 1935 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1936 // Don't emit a 1-byte object as a .fill. 1937 if (Bytes > 1) 1938 return AP.OutStreamer->EmitFill(Bytes, Value); 1939 } 1940 1941 // If this can be emitted with .ascii/.asciz, emit it as such. 1942 if (CDS->isString()) 1943 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1944 1945 // Otherwise, emit the values in successive locations. 1946 unsigned ElementByteSize = CDS->getElementByteSize(); 1947 if (isa<IntegerType>(CDS->getElementType())) { 1948 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1949 if (AP.isVerbose()) 1950 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1951 CDS->getElementAsInteger(i)); 1952 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1953 ElementByteSize); 1954 } 1955 } else { 1956 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 1957 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 1958 } 1959 1960 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1961 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1962 CDS->getNumElements(); 1963 if (unsigned Padding = Size - EmittedSize) 1964 AP.OutStreamer->EmitZeros(Padding); 1965 1966 } 1967 1968 static void emitGlobalConstantArray(const DataLayout &DL, 1969 const ConstantArray *CA, AsmPrinter &AP, 1970 const Constant *BaseCV, uint64_t Offset) { 1971 // See if we can aggregate some values. Make sure it can be 1972 // represented as a series of bytes of the constant value. 1973 int Value = isRepeatedByteSequence(CA, DL); 1974 1975 if (Value != -1) { 1976 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1977 AP.OutStreamer->EmitFill(Bytes, Value); 1978 } 1979 else { 1980 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1981 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 1982 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1983 } 1984 } 1985 } 1986 1987 static void emitGlobalConstantVector(const DataLayout &DL, 1988 const ConstantVector *CV, AsmPrinter &AP) { 1989 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1990 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 1991 1992 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1993 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1994 CV->getType()->getNumElements(); 1995 if (unsigned Padding = Size - EmittedSize) 1996 AP.OutStreamer->EmitZeros(Padding); 1997 } 1998 1999 static void emitGlobalConstantStruct(const DataLayout &DL, 2000 const ConstantStruct *CS, AsmPrinter &AP, 2001 const Constant *BaseCV, uint64_t Offset) { 2002 // Print the fields in successive locations. Pad to align if needed! 2003 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2004 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2005 uint64_t SizeSoFar = 0; 2006 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2007 const Constant *Field = CS->getOperand(i); 2008 2009 // Print the actual field value. 2010 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2011 2012 // Check if padding is needed and insert one or more 0s. 2013 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2014 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2015 - Layout->getElementOffset(i)) - FieldSize; 2016 SizeSoFar += FieldSize + PadSize; 2017 2018 // Insert padding - this may include padding to increase the size of the 2019 // current field up to the ABI size (if the struct is not packed) as well 2020 // as padding to ensure that the next field starts at the right offset. 2021 AP.OutStreamer->EmitZeros(PadSize); 2022 } 2023 assert(SizeSoFar == Layout->getSizeInBytes() && 2024 "Layout of constant struct may be incorrect!"); 2025 } 2026 2027 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2028 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2029 2030 // First print a comment with what we think the original floating-point value 2031 // should have been. 2032 if (AP.isVerbose()) { 2033 SmallString<8> StrVal; 2034 CFP->getValueAPF().toString(StrVal); 2035 2036 if (CFP->getType()) 2037 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2038 else 2039 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2040 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2041 } 2042 2043 // Now iterate through the APInt chunks, emitting them in endian-correct 2044 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2045 // floats). 2046 unsigned NumBytes = API.getBitWidth() / 8; 2047 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2048 const uint64_t *p = API.getRawData(); 2049 2050 // PPC's long double has odd notions of endianness compared to how LLVM 2051 // handles it: p[0] goes first for *big* endian on PPC. 2052 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2053 int Chunk = API.getNumWords() - 1; 2054 2055 if (TrailingBytes) 2056 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2057 2058 for (; Chunk >= 0; --Chunk) 2059 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2060 } else { 2061 unsigned Chunk; 2062 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2063 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2064 2065 if (TrailingBytes) 2066 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2067 } 2068 2069 // Emit the tail padding for the long double. 2070 const DataLayout &DL = AP.getDataLayout(); 2071 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2072 DL.getTypeStoreSize(CFP->getType())); 2073 } 2074 2075 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2076 const DataLayout &DL = AP.getDataLayout(); 2077 unsigned BitWidth = CI->getBitWidth(); 2078 2079 // Copy the value as we may massage the layout for constants whose bit width 2080 // is not a multiple of 64-bits. 2081 APInt Realigned(CI->getValue()); 2082 uint64_t ExtraBits = 0; 2083 unsigned ExtraBitsSize = BitWidth & 63; 2084 2085 if (ExtraBitsSize) { 2086 // The bit width of the data is not a multiple of 64-bits. 2087 // The extra bits are expected to be at the end of the chunk of the memory. 2088 // Little endian: 2089 // * Nothing to be done, just record the extra bits to emit. 2090 // Big endian: 2091 // * Record the extra bits to emit. 2092 // * Realign the raw data to emit the chunks of 64-bits. 2093 if (DL.isBigEndian()) { 2094 // Basically the structure of the raw data is a chunk of 64-bits cells: 2095 // 0 1 BitWidth / 64 2096 // [chunk1][chunk2] ... [chunkN]. 2097 // The most significant chunk is chunkN and it should be emitted first. 2098 // However, due to the alignment issue chunkN contains useless bits. 2099 // Realign the chunks so that they contain only useless information: 2100 // ExtraBits 0 1 (BitWidth / 64) - 1 2101 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2102 ExtraBits = Realigned.getRawData()[0] & 2103 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2104 Realigned = Realigned.lshr(ExtraBitsSize); 2105 } else 2106 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2107 } 2108 2109 // We don't expect assemblers to support integer data directives 2110 // for more than 64 bits, so we emit the data in at most 64-bit 2111 // quantities at a time. 2112 const uint64_t *RawData = Realigned.getRawData(); 2113 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2114 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2115 AP.OutStreamer->EmitIntValue(Val, 8); 2116 } 2117 2118 if (ExtraBitsSize) { 2119 // Emit the extra bits after the 64-bits chunks. 2120 2121 // Emit a directive that fills the expected size. 2122 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2123 Size -= (BitWidth / 64) * 8; 2124 assert(Size && Size * 8 >= ExtraBitsSize && 2125 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2126 == ExtraBits && "Directive too small for extra bits."); 2127 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2128 } 2129 } 2130 2131 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2132 /// equivalent global, by a target specific GOT pc relative access to the 2133 /// final symbol. 2134 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2135 const Constant *BaseCst, 2136 uint64_t Offset) { 2137 // The global @foo below illustrates a global that uses a got equivalent. 2138 // 2139 // @bar = global i32 42 2140 // @gotequiv = private unnamed_addr constant i32* @bar 2141 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2142 // i64 ptrtoint (i32* @foo to i64)) 2143 // to i32) 2144 // 2145 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2146 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2147 // form: 2148 // 2149 // foo = cstexpr, where 2150 // cstexpr := <gotequiv> - "." + <cst> 2151 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2152 // 2153 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2154 // 2155 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2156 // gotpcrelcst := <offset from @foo base> + <cst> 2157 // 2158 MCValue MV; 2159 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2160 return; 2161 const MCSymbolRefExpr *SymA = MV.getSymA(); 2162 if (!SymA) 2163 return; 2164 2165 // Check that GOT equivalent symbol is cached. 2166 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2167 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2168 return; 2169 2170 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2171 if (!BaseGV) 2172 return; 2173 2174 // Check for a valid base symbol 2175 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2176 const MCSymbolRefExpr *SymB = MV.getSymB(); 2177 2178 if (!SymB || BaseSym != &SymB->getSymbol()) 2179 return; 2180 2181 // Make sure to match: 2182 // 2183 // gotpcrelcst := <offset from @foo base> + <cst> 2184 // 2185 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2186 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2187 // if the target knows how to encode it. 2188 // 2189 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2190 if (GOTPCRelCst < 0) 2191 return; 2192 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2193 return; 2194 2195 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2196 // 2197 // bar: 2198 // .long 42 2199 // gotequiv: 2200 // .quad bar 2201 // foo: 2202 // .long gotequiv - "." + <cst> 2203 // 2204 // is replaced by the target specific equivalent to: 2205 // 2206 // bar: 2207 // .long 42 2208 // foo: 2209 // .long bar@GOTPCREL+<gotpcrelcst> 2210 // 2211 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2212 const GlobalVariable *GV = Result.first; 2213 int NumUses = (int)Result.second; 2214 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2215 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2216 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2217 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2218 2219 // Update GOT equivalent usage information 2220 --NumUses; 2221 if (NumUses >= 0) 2222 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2223 } 2224 2225 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2226 AsmPrinter &AP, const Constant *BaseCV, 2227 uint64_t Offset) { 2228 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2229 2230 // Globals with sub-elements such as combinations of arrays and structs 2231 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2232 // constant symbol base and the current position with BaseCV and Offset. 2233 if (!BaseCV && CV->hasOneUse()) 2234 BaseCV = dyn_cast<Constant>(CV->user_back()); 2235 2236 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2237 return AP.OutStreamer->EmitZeros(Size); 2238 2239 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2240 switch (Size) { 2241 case 1: 2242 case 2: 2243 case 4: 2244 case 8: 2245 if (AP.isVerbose()) 2246 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2247 CI->getZExtValue()); 2248 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2249 return; 2250 default: 2251 emitGlobalConstantLargeInt(CI, AP); 2252 return; 2253 } 2254 } 2255 2256 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2257 return emitGlobalConstantFP(CFP, AP); 2258 2259 if (isa<ConstantPointerNull>(CV)) { 2260 AP.OutStreamer->EmitIntValue(0, Size); 2261 return; 2262 } 2263 2264 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2265 return emitGlobalConstantDataSequential(DL, CDS, AP); 2266 2267 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2268 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2269 2270 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2271 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2272 2273 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2274 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2275 // vectors). 2276 if (CE->getOpcode() == Instruction::BitCast) 2277 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2278 2279 if (Size > 8) { 2280 // If the constant expression's size is greater than 64-bits, then we have 2281 // to emit the value in chunks. Try to constant fold the value and emit it 2282 // that way. 2283 Constant *New = ConstantFoldConstantExpression(CE, DL); 2284 if (New && New != CE) 2285 return emitGlobalConstantImpl(DL, New, AP); 2286 } 2287 } 2288 2289 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2290 return emitGlobalConstantVector(DL, V, AP); 2291 2292 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2293 // thread the streamer with EmitValue. 2294 const MCExpr *ME = AP.lowerConstant(CV); 2295 2296 // Since lowerConstant already folded and got rid of all IR pointer and 2297 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2298 // directly. 2299 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2300 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2301 2302 AP.OutStreamer->EmitValue(ME, Size); 2303 } 2304 2305 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2306 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2307 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2308 if (Size) 2309 emitGlobalConstantImpl(DL, CV, *this); 2310 else if (MAI->hasSubsectionsViaSymbols()) { 2311 // If the global has zero size, emit a single byte so that two labels don't 2312 // look like they are at the same location. 2313 OutStreamer->EmitIntValue(0, 1); 2314 } 2315 } 2316 2317 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2318 // Target doesn't support this yet! 2319 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2320 } 2321 2322 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2323 if (Offset > 0) 2324 OS << '+' << Offset; 2325 else if (Offset < 0) 2326 OS << Offset; 2327 } 2328 2329 //===----------------------------------------------------------------------===// 2330 // Symbol Lowering Routines. 2331 //===----------------------------------------------------------------------===// 2332 2333 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2334 return OutContext.createTempSymbol(Name, true); 2335 } 2336 2337 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2338 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2339 } 2340 2341 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2342 return MMI->getAddrLabelSymbol(BB); 2343 } 2344 2345 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2346 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2347 const DataLayout &DL = getDataLayout(); 2348 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2349 "CPI" + Twine(getFunctionNumber()) + "_" + 2350 Twine(CPID)); 2351 } 2352 2353 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2354 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2355 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2356 } 2357 2358 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2359 /// FIXME: privatize to AsmPrinter. 2360 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2361 const DataLayout &DL = getDataLayout(); 2362 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2363 Twine(getFunctionNumber()) + "_" + 2364 Twine(UID) + "_set_" + Twine(MBBID)); 2365 } 2366 2367 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2368 StringRef Suffix) const { 2369 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2370 TM); 2371 } 2372 2373 /// Return the MCSymbol for the specified ExternalSymbol. 2374 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2375 SmallString<60> NameStr; 2376 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2377 return OutContext.getOrCreateSymbol(NameStr); 2378 } 2379 2380 2381 2382 /// PrintParentLoopComment - Print comments about parent loops of this one. 2383 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2384 unsigned FunctionNumber) { 2385 if (!Loop) return; 2386 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2387 OS.indent(Loop->getLoopDepth()*2) 2388 << "Parent Loop BB" << FunctionNumber << "_" 2389 << Loop->getHeader()->getNumber() 2390 << " Depth=" << Loop->getLoopDepth() << '\n'; 2391 } 2392 2393 2394 /// PrintChildLoopComment - Print comments about child loops within 2395 /// the loop for this basic block, with nesting. 2396 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2397 unsigned FunctionNumber) { 2398 // Add child loop information 2399 for (const MachineLoop *CL : *Loop) { 2400 OS.indent(CL->getLoopDepth()*2) 2401 << "Child Loop BB" << FunctionNumber << "_" 2402 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2403 << '\n'; 2404 PrintChildLoopComment(OS, CL, FunctionNumber); 2405 } 2406 } 2407 2408 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2409 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2410 const MachineLoopInfo *LI, 2411 const AsmPrinter &AP) { 2412 // Add loop depth information 2413 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2414 if (!Loop) return; 2415 2416 MachineBasicBlock *Header = Loop->getHeader(); 2417 assert(Header && "No header for loop"); 2418 2419 // If this block is not a loop header, just print out what is the loop header 2420 // and return. 2421 if (Header != &MBB) { 2422 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2423 Twine(AP.getFunctionNumber())+"_" + 2424 Twine(Loop->getHeader()->getNumber())+ 2425 " Depth="+Twine(Loop->getLoopDepth())); 2426 return; 2427 } 2428 2429 // Otherwise, it is a loop header. Print out information about child and 2430 // parent loops. 2431 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2432 2433 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2434 2435 OS << "=>"; 2436 OS.indent(Loop->getLoopDepth()*2-2); 2437 2438 OS << "This "; 2439 if (Loop->empty()) 2440 OS << "Inner "; 2441 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2442 2443 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2444 } 2445 2446 2447 /// EmitBasicBlockStart - This method prints the label for the specified 2448 /// MachineBasicBlock, an alignment (if present) and a comment describing 2449 /// it if appropriate. 2450 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2451 // End the previous funclet and start a new one. 2452 if (MBB.isEHFuncletEntry()) { 2453 for (const HandlerInfo &HI : Handlers) { 2454 HI.Handler->endFunclet(); 2455 HI.Handler->beginFunclet(MBB); 2456 } 2457 } 2458 2459 // Emit an alignment directive for this block, if needed. 2460 if (unsigned Align = MBB.getAlignment()) 2461 EmitAlignment(Align); 2462 2463 // If the block has its address taken, emit any labels that were used to 2464 // reference the block. It is possible that there is more than one label 2465 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2466 // the references were generated. 2467 if (MBB.hasAddressTaken()) { 2468 const BasicBlock *BB = MBB.getBasicBlock(); 2469 if (isVerbose()) 2470 OutStreamer->AddComment("Block address taken"); 2471 2472 // MBBs can have their address taken as part of CodeGen without having 2473 // their corresponding BB's address taken in IR 2474 if (BB->hasAddressTaken()) 2475 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2476 OutStreamer->EmitLabel(Sym); 2477 } 2478 2479 // Print some verbose block comments. 2480 if (isVerbose()) { 2481 if (const BasicBlock *BB = MBB.getBasicBlock()) 2482 if (BB->hasName()) 2483 OutStreamer->AddComment("%" + BB->getName()); 2484 emitBasicBlockLoopComments(MBB, LI, *this); 2485 } 2486 2487 // Print the main label for the block. 2488 if (MBB.pred_empty() || 2489 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2490 if (isVerbose()) { 2491 // NOTE: Want this comment at start of line, don't emit with AddComment. 2492 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2493 } 2494 } else { 2495 OutStreamer->EmitLabel(MBB.getSymbol()); 2496 } 2497 } 2498 2499 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2500 bool IsDefinition) const { 2501 MCSymbolAttr Attr = MCSA_Invalid; 2502 2503 switch (Visibility) { 2504 default: break; 2505 case GlobalValue::HiddenVisibility: 2506 if (IsDefinition) 2507 Attr = MAI->getHiddenVisibilityAttr(); 2508 else 2509 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2510 break; 2511 case GlobalValue::ProtectedVisibility: 2512 Attr = MAI->getProtectedVisibilityAttr(); 2513 break; 2514 } 2515 2516 if (Attr != MCSA_Invalid) 2517 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2518 } 2519 2520 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2521 /// exactly one predecessor and the control transfer mechanism between 2522 /// the predecessor and this block is a fall-through. 2523 bool AsmPrinter:: 2524 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2525 // If this is a landing pad, it isn't a fall through. If it has no preds, 2526 // then nothing falls through to it. 2527 if (MBB->isEHPad() || MBB->pred_empty()) 2528 return false; 2529 2530 // If there isn't exactly one predecessor, it can't be a fall through. 2531 if (MBB->pred_size() > 1) 2532 return false; 2533 2534 // The predecessor has to be immediately before this block. 2535 MachineBasicBlock *Pred = *MBB->pred_begin(); 2536 if (!Pred->isLayoutSuccessor(MBB)) 2537 return false; 2538 2539 // If the block is completely empty, then it definitely does fall through. 2540 if (Pred->empty()) 2541 return true; 2542 2543 // Check the terminators in the previous blocks 2544 for (const auto &MI : Pred->terminators()) { 2545 // If it is not a simple branch, we are in a table somewhere. 2546 if (!MI.isBranch() || MI.isIndirectBranch()) 2547 return false; 2548 2549 // If we are the operands of one of the branches, this is not a fall 2550 // through. Note that targets with delay slots will usually bundle 2551 // terminators with the delay slot instruction. 2552 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2553 if (OP->isJTI()) 2554 return false; 2555 if (OP->isMBB() && OP->getMBB() == MBB) 2556 return false; 2557 } 2558 } 2559 2560 return true; 2561 } 2562 2563 2564 2565 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2566 if (!S.usesMetadata()) 2567 return nullptr; 2568 2569 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2570 " stackmap formats, please see the documentation for a description of" 2571 " the default format. If you really need a custom serialized format," 2572 " please file a bug"); 2573 2574 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2575 gcp_map_type::iterator GCPI = GCMap.find(&S); 2576 if (GCPI != GCMap.end()) 2577 return GCPI->second.get(); 2578 2579 const char *Name = S.getName().c_str(); 2580 2581 for (GCMetadataPrinterRegistry::iterator 2582 I = GCMetadataPrinterRegistry::begin(), 2583 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2584 if (strcmp(Name, I->getName()) == 0) { 2585 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2586 GMP->S = &S; 2587 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2588 return IterBool.first->second.get(); 2589 } 2590 2591 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2592 } 2593 2594 /// Pin vtable to this file. 2595 AsmPrinterHandler::~AsmPrinterHandler() {} 2596 2597 void AsmPrinterHandler::markFunctionEnd() {} 2598