1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "WasmException.h"
18 #include "WinCFGuard.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/BinaryFormat/COFF.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/MC/MCAsmInfo.h"
83 #include "llvm/MC/MCContext.h"
84 #include "llvm/MC/MCDirectives.h"
85 #include "llvm/MC/MCDwarf.h"
86 #include "llvm/MC/MCExpr.h"
87 #include "llvm/MC/MCInst.h"
88 #include "llvm/MC/MCSection.h"
89 #include "llvm/MC/MCSectionCOFF.h"
90 #include "llvm/MC/MCSectionELF.h"
91 #include "llvm/MC/MCSectionMachO.h"
92 #include "llvm/MC/MCSectionXCOFF.h"
93 #include "llvm/MC/MCStreamer.h"
94 #include "llvm/MC/MCSubtargetInfo.h"
95 #include "llvm/MC/MCSymbol.h"
96 #include "llvm/MC/MCSymbolELF.h"
97 #include "llvm/MC/MCSymbolXCOFF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Remarks/Remark.h"
103 #include "llvm/Remarks/RemarkFormat.h"
104 #include "llvm/Remarks/RemarkStreamer.h"
105 #include "llvm/Remarks/RemarkStringTable.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/Format.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/Path.h"
113 #include "llvm/Support/TargetRegistry.h"
114 #include "llvm/Support/Timer.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetLoweringObjectFile.h"
117 #include "llvm/Target/TargetMachine.h"
118 #include "llvm/Target/TargetOptions.h"
119 #include <algorithm>
120 #include <cassert>
121 #include <cinttypes>
122 #include <cstdint>
123 #include <iterator>
124 #include <limits>
125 #include <memory>
126 #include <string>
127 #include <utility>
128 #include <vector>
129 
130 using namespace llvm;
131 
132 #define DEBUG_TYPE "asm-printer"
133 
134 static const char *const DWARFGroupName = "dwarf";
135 static const char *const DWARFGroupDescription = "DWARF Emission";
136 static const char *const DbgTimerName = "emit";
137 static const char *const DbgTimerDescription = "Debug Info Emission";
138 static const char *const EHTimerName = "write_exception";
139 static const char *const EHTimerDescription = "DWARF Exception Writer";
140 static const char *const CFGuardName = "Control Flow Guard";
141 static const char *const CFGuardDescription = "Control Flow Guard";
142 static const char *const CodeViewLineTablesGroupName = "linetables";
143 static const char *const CodeViewLineTablesGroupDescription =
144   "CodeView Line Tables";
145 
146 STATISTIC(EmittedInsts, "Number of machine instrs printed");
147 
148 char AsmPrinter::ID = 0;
149 
150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
151 
152 static gcp_map_type &getGCMap(void *&P) {
153   if (!P)
154     P = new gcp_map_type();
155   return *(gcp_map_type*)P;
156 }
157 
158 /// getGVAlignment - Return the alignment to use for the specified global
159 /// value.  This rounds up to the preferred alignment if possible and legal.
160 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
161                                  Align InAlign) {
162   Align Alignment;
163   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
164     Alignment = DL.getPreferredAlign(GVar);
165 
166   // If InAlign is specified, round it to it.
167   if (InAlign > Alignment)
168     Alignment = InAlign;
169 
170   // If the GV has a specified alignment, take it into account.
171   const MaybeAlign GVAlign(GV->getAlignment());
172   if (!GVAlign)
173     return Alignment;
174 
175   assert(GVAlign && "GVAlign must be set");
176 
177   // If the GVAlign is larger than NumBits, or if we are required to obey
178   // NumBits because the GV has an assigned section, obey it.
179   if (*GVAlign > Alignment || GV->hasSection())
180     Alignment = *GVAlign;
181   return Alignment;
182 }
183 
184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
185     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
186       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
187   VerboseAsm = OutStreamer->isVerboseAsm();
188 }
189 
190 AsmPrinter::~AsmPrinter() {
191   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
192 
193   if (GCMetadataPrinters) {
194     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
195 
196     delete &GCMap;
197     GCMetadataPrinters = nullptr;
198   }
199 }
200 
201 bool AsmPrinter::isPositionIndependent() const {
202   return TM.isPositionIndependent();
203 }
204 
205 /// getFunctionNumber - Return a unique ID for the current function.
206 unsigned AsmPrinter::getFunctionNumber() const {
207   return MF->getFunctionNumber();
208 }
209 
210 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
211   return *TM.getObjFileLowering();
212 }
213 
214 const DataLayout &AsmPrinter::getDataLayout() const {
215   return MMI->getModule()->getDataLayout();
216 }
217 
218 // Do not use the cached DataLayout because some client use it without a Module
219 // (dsymutil, llvm-dwarfdump).
220 unsigned AsmPrinter::getPointerSize() const {
221   return TM.getPointerSize(0); // FIXME: Default address space
222 }
223 
224 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
225   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
226   return MF->getSubtarget<MCSubtargetInfo>();
227 }
228 
229 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
230   S.emitInstruction(Inst, getSubtargetInfo());
231 }
232 
233 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
234   assert(DD && "Dwarf debug file is not defined.");
235   assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode.");
236   (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
237 }
238 
239 /// getCurrentSection() - Return the current section we are emitting to.
240 const MCSection *AsmPrinter::getCurrentSection() const {
241   return OutStreamer->getCurrentSectionOnly();
242 }
243 
244 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
245   AU.setPreservesAll();
246   MachineFunctionPass::getAnalysisUsage(AU);
247   AU.addRequired<MachineModuleInfoWrapperPass>();
248   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
249   AU.addRequired<GCModuleInfo>();
250 }
251 
252 bool AsmPrinter::doInitialization(Module &M) {
253   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
254   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
255 
256   // Initialize TargetLoweringObjectFile.
257   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
258     .Initialize(OutContext, TM);
259 
260   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
261       .getModuleMetadata(M);
262 
263   OutStreamer->InitSections(false);
264 
265   // Emit the version-min deployment target directive if needed.
266   //
267   // FIXME: If we end up with a collection of these sorts of Darwin-specific
268   // or ELF-specific things, it may make sense to have a platform helper class
269   // that will work with the target helper class. For now keep it here, as the
270   // alternative is duplicated code in each of the target asm printers that
271   // use the directive, where it would need the same conditionalization
272   // anyway.
273   const Triple &Target = TM.getTargetTriple();
274   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
275 
276   // Allow the target to emit any magic that it wants at the start of the file.
277   emitStartOfAsmFile(M);
278 
279   // Very minimal debug info. It is ignored if we emit actual debug info. If we
280   // don't, this at least helps the user find where a global came from.
281   if (MAI->hasSingleParameterDotFile()) {
282     // .file "foo.c"
283     OutStreamer->emitFileDirective(
284         llvm::sys::path::filename(M.getSourceFileName()));
285   }
286 
287   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
288   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
289   for (auto &I : *MI)
290     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
291       MP->beginAssembly(M, *MI, *this);
292 
293   // Emit module-level inline asm if it exists.
294   if (!M.getModuleInlineAsm().empty()) {
295     // We're at the module level. Construct MCSubtarget from the default CPU
296     // and target triple.
297     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
298         TM.getTargetTriple().str(), TM.getTargetCPU(),
299         TM.getTargetFeatureString()));
300     OutStreamer->AddComment("Start of file scope inline assembly");
301     OutStreamer->AddBlankLine();
302     emitInlineAsm(M.getModuleInlineAsm() + "\n",
303                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
304     OutStreamer->AddComment("End of file scope inline assembly");
305     OutStreamer->AddBlankLine();
306   }
307 
308   if (MAI->doesSupportDebugInformation()) {
309     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
310     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
311       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
312                             DbgTimerName, DbgTimerDescription,
313                             CodeViewLineTablesGroupName,
314                             CodeViewLineTablesGroupDescription);
315     }
316     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
317       DD = new DwarfDebug(this, &M);
318       DD->beginModule();
319       Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
320                             DbgTimerDescription, DWARFGroupName,
321                             DWARFGroupDescription);
322     }
323   }
324 
325   switch (MAI->getExceptionHandlingType()) {
326   case ExceptionHandling::SjLj:
327   case ExceptionHandling::DwarfCFI:
328   case ExceptionHandling::ARM:
329     isCFIMoveForDebugging = true;
330     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
331       break;
332     for (auto &F: M.getFunctionList()) {
333       // If the module contains any function with unwind data,
334       // .eh_frame has to be emitted.
335       // Ignore functions that won't get emitted.
336       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
337         isCFIMoveForDebugging = false;
338         break;
339       }
340     }
341     break;
342   default:
343     isCFIMoveForDebugging = false;
344     break;
345   }
346 
347   EHStreamer *ES = nullptr;
348   switch (MAI->getExceptionHandlingType()) {
349   case ExceptionHandling::None:
350     break;
351   case ExceptionHandling::SjLj:
352   case ExceptionHandling::DwarfCFI:
353     ES = new DwarfCFIException(this);
354     break;
355   case ExceptionHandling::ARM:
356     ES = new ARMException(this);
357     break;
358   case ExceptionHandling::WinEH:
359     switch (MAI->getWinEHEncodingType()) {
360     default: llvm_unreachable("unsupported unwinding information encoding");
361     case WinEH::EncodingType::Invalid:
362       break;
363     case WinEH::EncodingType::X86:
364     case WinEH::EncodingType::Itanium:
365       ES = new WinException(this);
366       break;
367     }
368     break;
369   case ExceptionHandling::Wasm:
370     ES = new WasmException(this);
371     break;
372   }
373   if (ES)
374     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
375                           EHTimerDescription, DWARFGroupName,
376                           DWARFGroupDescription);
377 
378   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
379   if (mdconst::extract_or_null<ConstantInt>(
380           MMI->getModule()->getModuleFlag("cfguard")))
381     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
382                           CFGuardDescription, DWARFGroupName,
383                           DWARFGroupDescription);
384   return false;
385 }
386 
387 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
388   if (!MAI.hasWeakDefCanBeHiddenDirective())
389     return false;
390 
391   return GV->canBeOmittedFromSymbolTable();
392 }
393 
394 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
395   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
396   switch (Linkage) {
397   case GlobalValue::CommonLinkage:
398   case GlobalValue::LinkOnceAnyLinkage:
399   case GlobalValue::LinkOnceODRLinkage:
400   case GlobalValue::WeakAnyLinkage:
401   case GlobalValue::WeakODRLinkage:
402     if (MAI->hasWeakDefDirective()) {
403       // .globl _foo
404       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
405 
406       if (!canBeHidden(GV, *MAI))
407         // .weak_definition _foo
408         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
409       else
410         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
411     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
412       // .globl _foo
413       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
414       //NOTE: linkonce is handled by the section the symbol was assigned to.
415     } else {
416       // .weak _foo
417       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
418     }
419     return;
420   case GlobalValue::ExternalLinkage:
421     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
422     return;
423   case GlobalValue::PrivateLinkage:
424   case GlobalValue::InternalLinkage:
425     return;
426   case GlobalValue::ExternalWeakLinkage:
427   case GlobalValue::AvailableExternallyLinkage:
428   case GlobalValue::AppendingLinkage:
429     llvm_unreachable("Should never emit this");
430   }
431   llvm_unreachable("Unknown linkage type!");
432 }
433 
434 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
435                                    const GlobalValue *GV) const {
436   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
437 }
438 
439 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
440   return TM.getSymbol(GV);
441 }
442 
443 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
444   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
445   // exact definion (intersection of GlobalValue::hasExactDefinition() and
446   // !isInterposable()). These linkages include: external, appending, internal,
447   // private. It may be profitable to use a local alias for external. The
448   // assembler would otherwise be conservative and assume a global default
449   // visibility symbol can be interposable, even if the code generator already
450   // assumed it.
451   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
452     const Module &M = *GV.getParent();
453     if (TM.getRelocationModel() != Reloc::Static &&
454         M.getPIELevel() == PIELevel::Default)
455       if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() &&
456                               GV.getParent()->noSemanticInterposition()))
457         return getSymbolWithGlobalValueBase(&GV, "$local");
458   }
459   return TM.getSymbol(&GV);
460 }
461 
462 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
463 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
464   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
465   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
466          "No emulated TLS variables in the common section");
467 
468   // Never emit TLS variable xyz in emulated TLS model.
469   // The initialization value is in __emutls_t.xyz instead of xyz.
470   if (IsEmuTLSVar)
471     return;
472 
473   if (GV->hasInitializer()) {
474     // Check to see if this is a special global used by LLVM, if so, emit it.
475     if (emitSpecialLLVMGlobal(GV))
476       return;
477 
478     // Skip the emission of global equivalents. The symbol can be emitted later
479     // on by emitGlobalGOTEquivs in case it turns out to be needed.
480     if (GlobalGOTEquivs.count(getSymbol(GV)))
481       return;
482 
483     if (isVerbose()) {
484       // When printing the control variable __emutls_v.*,
485       // we don't need to print the original TLS variable name.
486       GV->printAsOperand(OutStreamer->GetCommentOS(),
487                      /*PrintType=*/false, GV->getParent());
488       OutStreamer->GetCommentOS() << '\n';
489     }
490   }
491 
492   MCSymbol *GVSym = getSymbol(GV);
493   MCSymbol *EmittedSym = GVSym;
494 
495   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
496   // attributes.
497   // GV's or GVSym's attributes will be used for the EmittedSym.
498   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
499 
500   if (!GV->hasInitializer())   // External globals require no extra code.
501     return;
502 
503   GVSym->redefineIfPossible();
504   if (GVSym->isDefined() || GVSym->isVariable())
505     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
506                        "' is already defined");
507 
508   if (MAI->hasDotTypeDotSizeDirective())
509     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
510 
511   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
512 
513   const DataLayout &DL = GV->getParent()->getDataLayout();
514   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
515 
516   // If the alignment is specified, we *must* obey it.  Overaligning a global
517   // with a specified alignment is a prompt way to break globals emitted to
518   // sections and expected to be contiguous (e.g. ObjC metadata).
519   const Align Alignment = getGVAlignment(GV, DL);
520 
521   for (const HandlerInfo &HI : Handlers) {
522     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
523                        HI.TimerGroupName, HI.TimerGroupDescription,
524                        TimePassesIsEnabled);
525     HI.Handler->setSymbolSize(GVSym, Size);
526   }
527 
528   // Handle common symbols
529   if (GVKind.isCommon()) {
530     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
531     // .comm _foo, 42, 4
532     const bool SupportsAlignment =
533         getObjFileLowering().getCommDirectiveSupportsAlignment();
534     OutStreamer->emitCommonSymbol(GVSym, Size,
535                                   SupportsAlignment ? Alignment.value() : 0);
536     return;
537   }
538 
539   // Determine to which section this global should be emitted.
540   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
541 
542   // If we have a bss global going to a section that supports the
543   // zerofill directive, do so here.
544   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
545       TheSection->isVirtualSection()) {
546     if (Size == 0)
547       Size = 1; // zerofill of 0 bytes is undefined.
548     emitLinkage(GV, GVSym);
549     // .zerofill __DATA, __bss, _foo, 400, 5
550     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
551     return;
552   }
553 
554   // If this is a BSS local symbol and we are emitting in the BSS
555   // section use .lcomm/.comm directive.
556   if (GVKind.isBSSLocal() &&
557       getObjFileLowering().getBSSSection() == TheSection) {
558     if (Size == 0)
559       Size = 1; // .comm Foo, 0 is undefined, avoid it.
560 
561     // Use .lcomm only if it supports user-specified alignment.
562     // Otherwise, while it would still be correct to use .lcomm in some
563     // cases (e.g. when Align == 1), the external assembler might enfore
564     // some -unknown- default alignment behavior, which could cause
565     // spurious differences between external and integrated assembler.
566     // Prefer to simply fall back to .local / .comm in this case.
567     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
568       // .lcomm _foo, 42
569       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
570       return;
571     }
572 
573     // .local _foo
574     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
575     // .comm _foo, 42, 4
576     const bool SupportsAlignment =
577         getObjFileLowering().getCommDirectiveSupportsAlignment();
578     OutStreamer->emitCommonSymbol(GVSym, Size,
579                                   SupportsAlignment ? Alignment.value() : 0);
580     return;
581   }
582 
583   // Handle thread local data for mach-o which requires us to output an
584   // additional structure of data and mangle the original symbol so that we
585   // can reference it later.
586   //
587   // TODO: This should become an "emit thread local global" method on TLOF.
588   // All of this macho specific stuff should be sunk down into TLOFMachO and
589   // stuff like "TLSExtraDataSection" should no longer be part of the parent
590   // TLOF class.  This will also make it more obvious that stuff like
591   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
592   // specific code.
593   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
594     // Emit the .tbss symbol
595     MCSymbol *MangSym =
596         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
597 
598     if (GVKind.isThreadBSS()) {
599       TheSection = getObjFileLowering().getTLSBSSSection();
600       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
601     } else if (GVKind.isThreadData()) {
602       OutStreamer->SwitchSection(TheSection);
603 
604       emitAlignment(Alignment, GV);
605       OutStreamer->emitLabel(MangSym);
606 
607       emitGlobalConstant(GV->getParent()->getDataLayout(),
608                          GV->getInitializer());
609     }
610 
611     OutStreamer->AddBlankLine();
612 
613     // Emit the variable struct for the runtime.
614     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
615 
616     OutStreamer->SwitchSection(TLVSect);
617     // Emit the linkage here.
618     emitLinkage(GV, GVSym);
619     OutStreamer->emitLabel(GVSym);
620 
621     // Three pointers in size:
622     //   - __tlv_bootstrap - used to make sure support exists
623     //   - spare pointer, used when mapped by the runtime
624     //   - pointer to mangled symbol above with initializer
625     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
626     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
627                                 PtrSize);
628     OutStreamer->emitIntValue(0, PtrSize);
629     OutStreamer->emitSymbolValue(MangSym, PtrSize);
630 
631     OutStreamer->AddBlankLine();
632     return;
633   }
634 
635   MCSymbol *EmittedInitSym = GVSym;
636 
637   OutStreamer->SwitchSection(TheSection);
638 
639   emitLinkage(GV, EmittedInitSym);
640   emitAlignment(Alignment, GV);
641 
642   OutStreamer->emitLabel(EmittedInitSym);
643   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
644   if (LocalAlias != EmittedInitSym)
645     OutStreamer->emitLabel(LocalAlias);
646 
647   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
648 
649   if (MAI->hasDotTypeDotSizeDirective())
650     // .size foo, 42
651     OutStreamer->emitELFSize(EmittedInitSym,
652                              MCConstantExpr::create(Size, OutContext));
653 
654   OutStreamer->AddBlankLine();
655 }
656 
657 /// Emit the directive and value for debug thread local expression
658 ///
659 /// \p Value - The value to emit.
660 /// \p Size - The size of the integer (in bytes) to emit.
661 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
662   OutStreamer->emitValue(Value, Size);
663 }
664 
665 void AsmPrinter::emitFunctionHeaderComment() {}
666 
667 /// EmitFunctionHeader - This method emits the header for the current
668 /// function.
669 void AsmPrinter::emitFunctionHeader() {
670   const Function &F = MF->getFunction();
671 
672   if (isVerbose())
673     OutStreamer->GetCommentOS()
674         << "-- Begin function "
675         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
676 
677   // Print out constants referenced by the function
678   emitConstantPool();
679 
680   // Print the 'header' of function.
681   MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
682   OutStreamer->SwitchSection(MF->getSection());
683 
684   if (!MAI->hasVisibilityOnlyWithLinkage())
685     emitVisibility(CurrentFnSym, F.getVisibility());
686 
687   if (MAI->needsFunctionDescriptors() &&
688       F.getLinkage() != GlobalValue::InternalLinkage)
689     emitLinkage(&F, CurrentFnDescSym);
690 
691   emitLinkage(&F, CurrentFnSym);
692   if (MAI->hasFunctionAlignment())
693     emitAlignment(MF->getAlignment(), &F);
694 
695   if (MAI->hasDotTypeDotSizeDirective())
696     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
697 
698   if (F.hasFnAttribute(Attribute::Cold))
699     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
700 
701   if (isVerbose()) {
702     F.printAsOperand(OutStreamer->GetCommentOS(),
703                    /*PrintType=*/false, F.getParent());
704     emitFunctionHeaderComment();
705     OutStreamer->GetCommentOS() << '\n';
706   }
707 
708   // Emit the prefix data.
709   if (F.hasPrefixData()) {
710     if (MAI->hasSubsectionsViaSymbols()) {
711       // Preserving prefix data on platforms which use subsections-via-symbols
712       // is a bit tricky. Here we introduce a symbol for the prefix data
713       // and use the .alt_entry attribute to mark the function's real entry point
714       // as an alternative entry point to the prefix-data symbol.
715       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
716       OutStreamer->emitLabel(PrefixSym);
717 
718       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
719 
720       // Emit an .alt_entry directive for the actual function symbol.
721       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
722     } else {
723       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
724     }
725   }
726 
727   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
728   // place prefix data before NOPs.
729   unsigned PatchableFunctionPrefix = 0;
730   unsigned PatchableFunctionEntry = 0;
731   (void)F.getFnAttribute("patchable-function-prefix")
732       .getValueAsString()
733       .getAsInteger(10, PatchableFunctionPrefix);
734   (void)F.getFnAttribute("patchable-function-entry")
735       .getValueAsString()
736       .getAsInteger(10, PatchableFunctionEntry);
737   if (PatchableFunctionPrefix) {
738     CurrentPatchableFunctionEntrySym =
739         OutContext.createLinkerPrivateTempSymbol();
740     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
741     emitNops(PatchableFunctionPrefix);
742   } else if (PatchableFunctionEntry) {
743     // May be reassigned when emitting the body, to reference the label after
744     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
745     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
746   }
747 
748   // Emit the function descriptor. This is a virtual function to allow targets
749   // to emit their specific function descriptor. Right now it is only used by
750   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
751   // descriptors and should be converted to use this hook as well.
752   if (MAI->needsFunctionDescriptors())
753     emitFunctionDescriptor();
754 
755   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
756   // their wild and crazy things as required.
757   emitFunctionEntryLabel();
758 
759   if (CurrentFnBegin) {
760     if (MAI->useAssignmentForEHBegin()) {
761       MCSymbol *CurPos = OutContext.createTempSymbol();
762       OutStreamer->emitLabel(CurPos);
763       OutStreamer->emitAssignment(CurrentFnBegin,
764                                  MCSymbolRefExpr::create(CurPos, OutContext));
765     } else {
766       OutStreamer->emitLabel(CurrentFnBegin);
767     }
768   }
769 
770   // Emit pre-function debug and/or EH information.
771   for (const HandlerInfo &HI : Handlers) {
772     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
773                        HI.TimerGroupDescription, TimePassesIsEnabled);
774     HI.Handler->beginFunction(MF);
775   }
776 
777   // Emit the prologue data.
778   if (F.hasPrologueData())
779     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
780 }
781 
782 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
783 /// function.  This can be overridden by targets as required to do custom stuff.
784 void AsmPrinter::emitFunctionEntryLabel() {
785   CurrentFnSym->redefineIfPossible();
786 
787   // The function label could have already been emitted if two symbols end up
788   // conflicting due to asm renaming.  Detect this and emit an error.
789   if (CurrentFnSym->isVariable())
790     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
791                        "' is a protected alias");
792   if (CurrentFnSym->isDefined())
793     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
794                        "' label emitted multiple times to assembly file");
795 
796   OutStreamer->emitLabel(CurrentFnSym);
797 
798   if (TM.getTargetTriple().isOSBinFormatELF()) {
799     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
800     if (Sym != CurrentFnSym)
801       OutStreamer->emitLabel(Sym);
802   }
803 }
804 
805 /// emitComments - Pretty-print comments for instructions.
806 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
807   const MachineFunction *MF = MI.getMF();
808   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
809 
810   // Check for spills and reloads
811 
812   // We assume a single instruction only has a spill or reload, not
813   // both.
814   Optional<unsigned> Size;
815   if ((Size = MI.getRestoreSize(TII))) {
816     CommentOS << *Size << "-byte Reload\n";
817   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
818     if (*Size)
819       CommentOS << *Size << "-byte Folded Reload\n";
820   } else if ((Size = MI.getSpillSize(TII))) {
821     CommentOS << *Size << "-byte Spill\n";
822   } else if ((Size = MI.getFoldedSpillSize(TII))) {
823     if (*Size)
824       CommentOS << *Size << "-byte Folded Spill\n";
825   }
826 
827   // Check for spill-induced copies
828   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
829     CommentOS << " Reload Reuse\n";
830 }
831 
832 /// emitImplicitDef - This method emits the specified machine instruction
833 /// that is an implicit def.
834 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
835   Register RegNo = MI->getOperand(0).getReg();
836 
837   SmallString<128> Str;
838   raw_svector_ostream OS(Str);
839   OS << "implicit-def: "
840      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
841 
842   OutStreamer->AddComment(OS.str());
843   OutStreamer->AddBlankLine();
844 }
845 
846 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
847   std::string Str;
848   raw_string_ostream OS(Str);
849   OS << "kill:";
850   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
851     const MachineOperand &Op = MI->getOperand(i);
852     assert(Op.isReg() && "KILL instruction must have only register operands");
853     OS << ' ' << (Op.isDef() ? "def " : "killed ")
854        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
855   }
856   AP.OutStreamer->AddComment(OS.str());
857   AP.OutStreamer->AddBlankLine();
858 }
859 
860 /// emitDebugValueComment - This method handles the target-independent form
861 /// of DBG_VALUE, returning true if it was able to do so.  A false return
862 /// means the target will need to handle MI in EmitInstruction.
863 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
864   // This code handles only the 4-operand target-independent form.
865   if (MI->getNumOperands() != 4)
866     return false;
867 
868   SmallString<128> Str;
869   raw_svector_ostream OS(Str);
870   OS << "DEBUG_VALUE: ";
871 
872   const DILocalVariable *V = MI->getDebugVariable();
873   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
874     StringRef Name = SP->getName();
875     if (!Name.empty())
876       OS << Name << ":";
877   }
878   OS << V->getName();
879   OS << " <- ";
880 
881   // The second operand is only an offset if it's an immediate.
882   bool MemLoc = MI->isIndirectDebugValue();
883   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
884   const DIExpression *Expr = MI->getDebugExpression();
885   if (Expr->getNumElements()) {
886     OS << '[';
887     bool NeedSep = false;
888     for (auto Op : Expr->expr_ops()) {
889       if (NeedSep)
890         OS << ", ";
891       else
892         NeedSep = true;
893       OS << dwarf::OperationEncodingString(Op.getOp());
894       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
895         OS << ' ' << Op.getArg(I);
896     }
897     OS << "] ";
898   }
899 
900   // Register or immediate value. Register 0 means undef.
901   if (MI->getDebugOperand(0).isFPImm()) {
902     APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF());
903     if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) {
904       OS << (double)APF.convertToFloat();
905     } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) {
906       OS << APF.convertToDouble();
907     } else {
908       // There is no good way to print long double.  Convert a copy to
909       // double.  Ah well, it's only a comment.
910       bool ignored;
911       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
912                   &ignored);
913       OS << "(long double) " << APF.convertToDouble();
914     }
915   } else if (MI->getDebugOperand(0).isImm()) {
916     OS << MI->getDebugOperand(0).getImm();
917   } else if (MI->getDebugOperand(0).isCImm()) {
918     MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
919   } else if (MI->getDebugOperand(0).isTargetIndex()) {
920     auto Op = MI->getDebugOperand(0);
921     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
922     return true;
923   } else {
924     Register Reg;
925     if (MI->getDebugOperand(0).isReg()) {
926       Reg = MI->getDebugOperand(0).getReg();
927     } else {
928       assert(MI->getDebugOperand(0).isFI() && "Unknown operand type");
929       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
930       Offset += TFI->getFrameIndexReference(
931           *AP.MF, MI->getDebugOperand(0).getIndex(), Reg);
932       MemLoc = true;
933     }
934     if (Reg == 0) {
935       // Suppress offset, it is not meaningful here.
936       OS << "undef";
937       // NOTE: Want this comment at start of line, don't emit with AddComment.
938       AP.OutStreamer->emitRawComment(OS.str());
939       return true;
940     }
941     if (MemLoc)
942       OS << '[';
943     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
944   }
945 
946   if (MemLoc)
947     OS << '+' << Offset << ']';
948 
949   // NOTE: Want this comment at start of line, don't emit with AddComment.
950   AP.OutStreamer->emitRawComment(OS.str());
951   return true;
952 }
953 
954 /// This method handles the target-independent form of DBG_LABEL, returning
955 /// true if it was able to do so.  A false return means the target will need
956 /// to handle MI in EmitInstruction.
957 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
958   if (MI->getNumOperands() != 1)
959     return false;
960 
961   SmallString<128> Str;
962   raw_svector_ostream OS(Str);
963   OS << "DEBUG_LABEL: ";
964 
965   const DILabel *V = MI->getDebugLabel();
966   if (auto *SP = dyn_cast<DISubprogram>(
967           V->getScope()->getNonLexicalBlockFileScope())) {
968     StringRef Name = SP->getName();
969     if (!Name.empty())
970       OS << Name << ":";
971   }
972   OS << V->getName();
973 
974   // NOTE: Want this comment at start of line, don't emit with AddComment.
975   AP.OutStreamer->emitRawComment(OS.str());
976   return true;
977 }
978 
979 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
980   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
981       MF->getFunction().needsUnwindTableEntry())
982     return CFI_M_EH;
983 
984   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
985     return CFI_M_Debug;
986 
987   return CFI_M_None;
988 }
989 
990 bool AsmPrinter::needsSEHMoves() {
991   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
992 }
993 
994 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
995   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
996   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
997       ExceptionHandlingType != ExceptionHandling::ARM)
998     return;
999 
1000   if (needsCFIMoves() == CFI_M_None)
1001     return;
1002 
1003   // If there is no "real" instruction following this CFI instruction, skip
1004   // emitting it; it would be beyond the end of the function's FDE range.
1005   auto *MBB = MI.getParent();
1006   auto I = std::next(MI.getIterator());
1007   while (I != MBB->end() && I->isTransient())
1008     ++I;
1009   if (I == MBB->instr_end() &&
1010       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1011     return;
1012 
1013   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1014   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1015   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1016   emitCFIInstruction(CFI);
1017 }
1018 
1019 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1020   // The operands are the MCSymbol and the frame offset of the allocation.
1021   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1022   int FrameOffset = MI.getOperand(1).getImm();
1023 
1024   // Emit a symbol assignment.
1025   OutStreamer->emitAssignment(FrameAllocSym,
1026                              MCConstantExpr::create(FrameOffset, OutContext));
1027 }
1028 
1029 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1030   if (!MF.getTarget().Options.EmitStackSizeSection)
1031     return;
1032 
1033   MCSection *StackSizeSection =
1034       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1035   if (!StackSizeSection)
1036     return;
1037 
1038   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1039   // Don't emit functions with dynamic stack allocations.
1040   if (FrameInfo.hasVarSizedObjects())
1041     return;
1042 
1043   OutStreamer->PushSection();
1044   OutStreamer->SwitchSection(StackSizeSection);
1045 
1046   const MCSymbol *FunctionSymbol = getFunctionBegin();
1047   uint64_t StackSize = FrameInfo.getStackSize();
1048   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1049   OutStreamer->emitULEB128IntValue(StackSize);
1050 
1051   OutStreamer->PopSection();
1052 }
1053 
1054 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1055                                            MachineModuleInfo *MMI) {
1056   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1057     return true;
1058 
1059   // We might emit an EH table that uses function begin and end labels even if
1060   // we don't have any landingpads.
1061   if (!MF.getFunction().hasPersonalityFn())
1062     return false;
1063   return !isNoOpWithoutInvoke(
1064       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1065 }
1066 
1067 /// EmitFunctionBody - This method emits the body and trailer for a
1068 /// function.
1069 void AsmPrinter::emitFunctionBody() {
1070   emitFunctionHeader();
1071 
1072   // Emit target-specific gunk before the function body.
1073   emitFunctionBodyStart();
1074 
1075   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1076 
1077   if (isVerbose()) {
1078     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1079     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1080     if (!MDT) {
1081       OwnedMDT = std::make_unique<MachineDominatorTree>();
1082       OwnedMDT->getBase().recalculate(*MF);
1083       MDT = OwnedMDT.get();
1084     }
1085 
1086     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1087     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1088     if (!MLI) {
1089       OwnedMLI = std::make_unique<MachineLoopInfo>();
1090       OwnedMLI->getBase().analyze(MDT->getBase());
1091       MLI = OwnedMLI.get();
1092     }
1093   }
1094 
1095   // Print out code for the function.
1096   bool HasAnyRealCode = false;
1097   int NumInstsInFunction = 0;
1098 
1099   for (auto &MBB : *MF) {
1100     // Print a label for the basic block.
1101     emitBasicBlockStart(MBB);
1102     for (auto &MI : MBB) {
1103       // Print the assembly for the instruction.
1104       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1105           !MI.isDebugInstr()) {
1106         HasAnyRealCode = true;
1107         ++NumInstsInFunction;
1108       }
1109 
1110       // If there is a pre-instruction symbol, emit a label for it here.
1111       if (MCSymbol *S = MI.getPreInstrSymbol())
1112         OutStreamer->emitLabel(S);
1113 
1114       if (ShouldPrintDebugScopes) {
1115         for (const HandlerInfo &HI : Handlers) {
1116           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1117                              HI.TimerGroupName, HI.TimerGroupDescription,
1118                              TimePassesIsEnabled);
1119           HI.Handler->beginInstruction(&MI);
1120         }
1121       }
1122 
1123       if (isVerbose())
1124         emitComments(MI, OutStreamer->GetCommentOS());
1125 
1126       switch (MI.getOpcode()) {
1127       case TargetOpcode::CFI_INSTRUCTION:
1128         emitCFIInstruction(MI);
1129         break;
1130       case TargetOpcode::LOCAL_ESCAPE:
1131         emitFrameAlloc(MI);
1132         break;
1133       case TargetOpcode::ANNOTATION_LABEL:
1134       case TargetOpcode::EH_LABEL:
1135       case TargetOpcode::GC_LABEL:
1136         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1137         break;
1138       case TargetOpcode::INLINEASM:
1139       case TargetOpcode::INLINEASM_BR:
1140         emitInlineAsm(&MI);
1141         break;
1142       case TargetOpcode::DBG_VALUE:
1143         if (isVerbose()) {
1144           if (!emitDebugValueComment(&MI, *this))
1145             emitInstruction(&MI);
1146         }
1147         break;
1148       case TargetOpcode::DBG_LABEL:
1149         if (isVerbose()) {
1150           if (!emitDebugLabelComment(&MI, *this))
1151             emitInstruction(&MI);
1152         }
1153         break;
1154       case TargetOpcode::IMPLICIT_DEF:
1155         if (isVerbose()) emitImplicitDef(&MI);
1156         break;
1157       case TargetOpcode::KILL:
1158         if (isVerbose()) emitKill(&MI, *this);
1159         break;
1160       default:
1161         emitInstruction(&MI);
1162         break;
1163       }
1164 
1165       // If there is a post-instruction symbol, emit a label for it here.
1166       if (MCSymbol *S = MI.getPostInstrSymbol())
1167         OutStreamer->emitLabel(S);
1168 
1169       if (ShouldPrintDebugScopes) {
1170         for (const HandlerInfo &HI : Handlers) {
1171           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1172                              HI.TimerGroupName, HI.TimerGroupDescription,
1173                              TimePassesIsEnabled);
1174           HI.Handler->endInstruction();
1175         }
1176       }
1177     }
1178 
1179     // We need a temporary symbol for the end of this basic block, if either we
1180     // have BBLabels enabled and we want to emit size directive for the BBs, or
1181     // if this basic blocks marks the end of a section (except the section
1182     // containing the entry basic block as the end symbol for that section is
1183     // CurrentFnEnd).
1184     MCSymbol *CurrentBBEnd = nullptr;
1185     if ((MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels()) ||
1186         (MBB.isEndSection() && !MBB.sameSection(&MF->front()))) {
1187       CurrentBBEnd = OutContext.createTempSymbol();
1188       OutStreamer->emitLabel(CurrentBBEnd);
1189     }
1190 
1191     // Helper for emitting the size directive associated with a basic block
1192     // symbol.
1193     auto emitELFSizeDirective = [&](MCSymbol *SymForSize) {
1194       assert(CurrentBBEnd && "Basicblock end symbol not set!");
1195       const MCExpr *SizeExp = MCBinaryExpr::createSub(
1196           MCSymbolRefExpr::create(CurrentBBEnd, OutContext),
1197           MCSymbolRefExpr::create(SymForSize, OutContext), OutContext);
1198       OutStreamer->emitELFSize(SymForSize, SizeExp);
1199     };
1200 
1201     // Emit size directive for the size of each basic block, if BBLabels is
1202     // enabled.
1203     if (MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels())
1204       emitELFSizeDirective(MBB.getSymbol());
1205 
1206     // Emit size directive for the size of each basic block section once we
1207     // get to the end of that section.
1208     if (MBB.isEndSection()) {
1209       if (!MBB.sameSection(&MF->front())) {
1210         if (MAI->hasDotTypeDotSizeDirective())
1211           emitELFSizeDirective(CurrentSectionBeginSym);
1212       }
1213     }
1214     emitBasicBlockEnd(MBB);
1215   }
1216 
1217   EmittedInsts += NumInstsInFunction;
1218   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1219                                       MF->getFunction().getSubprogram(),
1220                                       &MF->front());
1221   R << ore::NV("NumInstructions", NumInstsInFunction)
1222     << " instructions in function";
1223   ORE->emit(R);
1224 
1225   // If the function is empty and the object file uses .subsections_via_symbols,
1226   // then we need to emit *something* to the function body to prevent the
1227   // labels from collapsing together.  Just emit a noop.
1228   // Similarly, don't emit empty functions on Windows either. It can lead to
1229   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1230   // after linking, causing the kernel not to load the binary:
1231   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1232   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1233   const Triple &TT = TM.getTargetTriple();
1234   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1235                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1236     MCInst Noop;
1237     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1238 
1239     // Targets can opt-out of emitting the noop here by leaving the opcode
1240     // unspecified.
1241     if (Noop.getOpcode()) {
1242       OutStreamer->AddComment("avoids zero-length function");
1243       emitNops(1);
1244     }
1245   }
1246 
1247   // Switch to the original section in case basic block sections was used.
1248   OutStreamer->SwitchSection(MF->getSection());
1249 
1250   const Function &F = MF->getFunction();
1251   for (const auto &BB : F) {
1252     if (!BB.hasAddressTaken())
1253       continue;
1254     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1255     if (Sym->isDefined())
1256       continue;
1257     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1258     OutStreamer->emitLabel(Sym);
1259   }
1260 
1261   // Emit target-specific gunk after the function body.
1262   emitFunctionBodyEnd();
1263 
1264   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1265       MAI->hasDotTypeDotSizeDirective()) {
1266     // Create a symbol for the end of function.
1267     CurrentFnEnd = createTempSymbol("func_end");
1268     OutStreamer->emitLabel(CurrentFnEnd);
1269   }
1270 
1271   // If the target wants a .size directive for the size of the function, emit
1272   // it.
1273   if (MAI->hasDotTypeDotSizeDirective()) {
1274     // We can get the size as difference between the function label and the
1275     // temp label.
1276     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1277         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1278         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1279     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1280   }
1281 
1282   for (const HandlerInfo &HI : Handlers) {
1283     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1284                        HI.TimerGroupDescription, TimePassesIsEnabled);
1285     HI.Handler->markFunctionEnd();
1286   }
1287 
1288 
1289   // Print out jump tables referenced by the function.
1290   emitJumpTableInfo();
1291 
1292   // Emit post-function debug and/or EH information.
1293   for (const HandlerInfo &HI : Handlers) {
1294     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1295                        HI.TimerGroupDescription, TimePassesIsEnabled);
1296     HI.Handler->endFunction(MF);
1297   }
1298 
1299   // Emit section containing stack size metadata.
1300   emitStackSizeSection(*MF);
1301 
1302   emitPatchableFunctionEntries();
1303 
1304   if (isVerbose())
1305     OutStreamer->GetCommentOS() << "-- End function\n";
1306 
1307   OutStreamer->AddBlankLine();
1308 }
1309 
1310 /// Compute the number of Global Variables that uses a Constant.
1311 static unsigned getNumGlobalVariableUses(const Constant *C) {
1312   if (!C)
1313     return 0;
1314 
1315   if (isa<GlobalVariable>(C))
1316     return 1;
1317 
1318   unsigned NumUses = 0;
1319   for (auto *CU : C->users())
1320     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1321 
1322   return NumUses;
1323 }
1324 
1325 /// Only consider global GOT equivalents if at least one user is a
1326 /// cstexpr inside an initializer of another global variables. Also, don't
1327 /// handle cstexpr inside instructions. During global variable emission,
1328 /// candidates are skipped and are emitted later in case at least one cstexpr
1329 /// isn't replaced by a PC relative GOT entry access.
1330 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1331                                      unsigned &NumGOTEquivUsers) {
1332   // Global GOT equivalents are unnamed private globals with a constant
1333   // pointer initializer to another global symbol. They must point to a
1334   // GlobalVariable or Function, i.e., as GlobalValue.
1335   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1336       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1337       !isa<GlobalValue>(GV->getOperand(0)))
1338     return false;
1339 
1340   // To be a got equivalent, at least one of its users need to be a constant
1341   // expression used by another global variable.
1342   for (auto *U : GV->users())
1343     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1344 
1345   return NumGOTEquivUsers > 0;
1346 }
1347 
1348 /// Unnamed constant global variables solely contaning a pointer to
1349 /// another globals variable is equivalent to a GOT table entry; it contains the
1350 /// the address of another symbol. Optimize it and replace accesses to these
1351 /// "GOT equivalents" by using the GOT entry for the final global instead.
1352 /// Compute GOT equivalent candidates among all global variables to avoid
1353 /// emitting them if possible later on, after it use is replaced by a GOT entry
1354 /// access.
1355 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1356   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1357     return;
1358 
1359   for (const auto &G : M.globals()) {
1360     unsigned NumGOTEquivUsers = 0;
1361     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1362       continue;
1363 
1364     const MCSymbol *GOTEquivSym = getSymbol(&G);
1365     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1366   }
1367 }
1368 
1369 /// Constant expressions using GOT equivalent globals may not be eligible
1370 /// for PC relative GOT entry conversion, in such cases we need to emit such
1371 /// globals we previously omitted in EmitGlobalVariable.
1372 void AsmPrinter::emitGlobalGOTEquivs() {
1373   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1374     return;
1375 
1376   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1377   for (auto &I : GlobalGOTEquivs) {
1378     const GlobalVariable *GV = I.second.first;
1379     unsigned Cnt = I.second.second;
1380     if (Cnt)
1381       FailedCandidates.push_back(GV);
1382   }
1383   GlobalGOTEquivs.clear();
1384 
1385   for (auto *GV : FailedCandidates)
1386     emitGlobalVariable(GV);
1387 }
1388 
1389 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1390                                           const GlobalIndirectSymbol& GIS) {
1391   MCSymbol *Name = getSymbol(&GIS);
1392 
1393   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1394     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1395   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1396     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1397   else
1398     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1399 
1400   bool IsFunction = GIS.getValueType()->isFunctionTy();
1401 
1402   // Treat bitcasts of functions as functions also. This is important at least
1403   // on WebAssembly where object and function addresses can't alias each other.
1404   if (!IsFunction)
1405     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1406       if (CE->getOpcode() == Instruction::BitCast)
1407         IsFunction =
1408           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1409 
1410   // Set the symbol type to function if the alias has a function type.
1411   // This affects codegen when the aliasee is not a function.
1412   if (IsFunction)
1413     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1414                                                ? MCSA_ELF_TypeIndFunction
1415                                                : MCSA_ELF_TypeFunction);
1416 
1417   emitVisibility(Name, GIS.getVisibility());
1418 
1419   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1420 
1421   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1422     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1423 
1424   // Emit the directives as assignments aka .set:
1425   OutStreamer->emitAssignment(Name, Expr);
1426   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1427   if (LocalAlias != Name)
1428     OutStreamer->emitAssignment(LocalAlias, Expr);
1429 
1430   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1431     // If the aliasee does not correspond to a symbol in the output, i.e. the
1432     // alias is not of an object or the aliased object is private, then set the
1433     // size of the alias symbol from the type of the alias. We don't do this in
1434     // other situations as the alias and aliasee having differing types but same
1435     // size may be intentional.
1436     const GlobalObject *BaseObject = GA->getBaseObject();
1437     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1438         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1439       const DataLayout &DL = M.getDataLayout();
1440       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1441       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1442     }
1443   }
1444 }
1445 
1446 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1447   if (!RS.needsSection())
1448     return;
1449 
1450   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1451 
1452   Optional<SmallString<128>> Filename;
1453   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1454     Filename = *FilenameRef;
1455     sys::fs::make_absolute(*Filename);
1456     assert(!Filename->empty() && "The filename can't be empty.");
1457   }
1458 
1459   std::string Buf;
1460   raw_string_ostream OS(Buf);
1461   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1462       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1463                : RemarkSerializer.metaSerializer(OS);
1464   MetaSerializer->emit();
1465 
1466   // Switch to the remarks section.
1467   MCSection *RemarksSection =
1468       OutContext.getObjectFileInfo()->getRemarksSection();
1469   OutStreamer->SwitchSection(RemarksSection);
1470 
1471   OutStreamer->emitBinaryData(OS.str());
1472 }
1473 
1474 bool AsmPrinter::doFinalization(Module &M) {
1475   // Set the MachineFunction to nullptr so that we can catch attempted
1476   // accesses to MF specific features at the module level and so that
1477   // we can conditionalize accesses based on whether or not it is nullptr.
1478   MF = nullptr;
1479 
1480   // Gather all GOT equivalent globals in the module. We really need two
1481   // passes over the globals: one to compute and another to avoid its emission
1482   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1483   // where the got equivalent shows up before its use.
1484   computeGlobalGOTEquivs(M);
1485 
1486   // Emit global variables.
1487   for (const auto &G : M.globals())
1488     emitGlobalVariable(&G);
1489 
1490   // Emit remaining GOT equivalent globals.
1491   emitGlobalGOTEquivs();
1492 
1493   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1494 
1495   // Emit linkage(XCOFF) and visibility info for declarations
1496   for (const Function &F : M) {
1497     if (!F.isDeclarationForLinker())
1498       continue;
1499 
1500     MCSymbol *Name = getSymbol(&F);
1501     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1502 
1503     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1504       GlobalValue::VisibilityTypes V = F.getVisibility();
1505       if (V == GlobalValue::DefaultVisibility)
1506         continue;
1507 
1508       emitVisibility(Name, V, false);
1509       continue;
1510     }
1511 
1512     if (F.isIntrinsic())
1513       continue;
1514 
1515     // Handle the XCOFF case.
1516     // Variable `Name` is the function descriptor symbol (see above). Get the
1517     // function entry point symbol.
1518     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1519     if (cast<MCSymbolXCOFF>(FnEntryPointSym)->hasRepresentedCsectSet())
1520       // Emit linkage for the function entry point.
1521       emitLinkage(&F, FnEntryPointSym);
1522 
1523     // Emit linkage for the function descriptor.
1524     emitLinkage(&F, Name);
1525   }
1526 
1527   // Emit the remarks section contents.
1528   // FIXME: Figure out when is the safest time to emit this section. It should
1529   // not come after debug info.
1530   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1531     emitRemarksSection(*RS);
1532 
1533   TLOF.emitModuleMetadata(*OutStreamer, M);
1534 
1535   if (TM.getTargetTriple().isOSBinFormatELF()) {
1536     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1537 
1538     // Output stubs for external and common global variables.
1539     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1540     if (!Stubs.empty()) {
1541       OutStreamer->SwitchSection(TLOF.getDataSection());
1542       const DataLayout &DL = M.getDataLayout();
1543 
1544       emitAlignment(Align(DL.getPointerSize()));
1545       for (const auto &Stub : Stubs) {
1546         OutStreamer->emitLabel(Stub.first);
1547         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1548                                      DL.getPointerSize());
1549       }
1550     }
1551   }
1552 
1553   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1554     MachineModuleInfoCOFF &MMICOFF =
1555         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1556 
1557     // Output stubs for external and common global variables.
1558     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1559     if (!Stubs.empty()) {
1560       const DataLayout &DL = M.getDataLayout();
1561 
1562       for (const auto &Stub : Stubs) {
1563         SmallString<256> SectionName = StringRef(".rdata$");
1564         SectionName += Stub.first->getName();
1565         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1566             SectionName,
1567             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1568                 COFF::IMAGE_SCN_LNK_COMDAT,
1569             SectionKind::getReadOnly(), Stub.first->getName(),
1570             COFF::IMAGE_COMDAT_SELECT_ANY));
1571         emitAlignment(Align(DL.getPointerSize()));
1572         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1573         OutStreamer->emitLabel(Stub.first);
1574         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1575                                      DL.getPointerSize());
1576       }
1577     }
1578   }
1579 
1580   // Finalize debug and EH information.
1581   for (const HandlerInfo &HI : Handlers) {
1582     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1583                        HI.TimerGroupDescription, TimePassesIsEnabled);
1584     HI.Handler->endModule();
1585   }
1586   Handlers.clear();
1587   DD = nullptr;
1588 
1589   // If the target wants to know about weak references, print them all.
1590   if (MAI->getWeakRefDirective()) {
1591     // FIXME: This is not lazy, it would be nice to only print weak references
1592     // to stuff that is actually used.  Note that doing so would require targets
1593     // to notice uses in operands (due to constant exprs etc).  This should
1594     // happen with the MC stuff eventually.
1595 
1596     // Print out module-level global objects here.
1597     for (const auto &GO : M.global_objects()) {
1598       if (!GO.hasExternalWeakLinkage())
1599         continue;
1600       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1601     }
1602   }
1603 
1604   // Print aliases in topological order, that is, for each alias a = b,
1605   // b must be printed before a.
1606   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1607   // such an order to generate correct TOC information.
1608   SmallVector<const GlobalAlias *, 16> AliasStack;
1609   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1610   for (const auto &Alias : M.aliases()) {
1611     for (const GlobalAlias *Cur = &Alias; Cur;
1612          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1613       if (!AliasVisited.insert(Cur).second)
1614         break;
1615       AliasStack.push_back(Cur);
1616     }
1617     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1618       emitGlobalIndirectSymbol(M, *AncestorAlias);
1619     AliasStack.clear();
1620   }
1621   for (const auto &IFunc : M.ifuncs())
1622     emitGlobalIndirectSymbol(M, IFunc);
1623 
1624   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1625   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1626   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1627     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1628       MP->finishAssembly(M, *MI, *this);
1629 
1630   // Emit llvm.ident metadata in an '.ident' directive.
1631   emitModuleIdents(M);
1632 
1633   // Emit bytes for llvm.commandline metadata.
1634   emitModuleCommandLines(M);
1635 
1636   // Emit __morestack address if needed for indirect calls.
1637   if (MMI->usesMorestackAddr()) {
1638     Align Alignment(1);
1639     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1640         getDataLayout(), SectionKind::getReadOnly(),
1641         /*C=*/nullptr, Alignment);
1642     OutStreamer->SwitchSection(ReadOnlySection);
1643 
1644     MCSymbol *AddrSymbol =
1645         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1646     OutStreamer->emitLabel(AddrSymbol);
1647 
1648     unsigned PtrSize = MAI->getCodePointerSize();
1649     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1650                                  PtrSize);
1651   }
1652 
1653   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1654   // split-stack is used.
1655   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1656     OutStreamer->SwitchSection(
1657         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1658     if (MMI->hasNosplitStack())
1659       OutStreamer->SwitchSection(
1660           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1661   }
1662 
1663   // If we don't have any trampolines, then we don't require stack memory
1664   // to be executable. Some targets have a directive to declare this.
1665   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1666   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1667     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1668       OutStreamer->SwitchSection(S);
1669 
1670   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1671     // Emit /EXPORT: flags for each exported global as necessary.
1672     const auto &TLOF = getObjFileLowering();
1673     std::string Flags;
1674 
1675     for (const GlobalValue &GV : M.global_values()) {
1676       raw_string_ostream OS(Flags);
1677       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1678       OS.flush();
1679       if (!Flags.empty()) {
1680         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1681         OutStreamer->emitBytes(Flags);
1682       }
1683       Flags.clear();
1684     }
1685 
1686     // Emit /INCLUDE: flags for each used global as necessary.
1687     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1688       assert(LU->hasInitializer() &&
1689              "expected llvm.used to have an initializer");
1690       assert(isa<ArrayType>(LU->getValueType()) &&
1691              "expected llvm.used to be an array type");
1692       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1693         for (const Value *Op : A->operands()) {
1694           const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1695           // Global symbols with internal or private linkage are not visible to
1696           // the linker, and thus would cause an error when the linker tried to
1697           // preserve the symbol due to the `/include:` directive.
1698           if (GV->hasLocalLinkage())
1699             continue;
1700 
1701           raw_string_ostream OS(Flags);
1702           TLOF.emitLinkerFlagsForUsed(OS, GV);
1703           OS.flush();
1704 
1705           if (!Flags.empty()) {
1706             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1707             OutStreamer->emitBytes(Flags);
1708           }
1709           Flags.clear();
1710         }
1711       }
1712     }
1713   }
1714 
1715   if (TM.Options.EmitAddrsig) {
1716     // Emit address-significance attributes for all globals.
1717     OutStreamer->emitAddrsig();
1718     for (const GlobalValue &GV : M.global_values())
1719       if (!GV.use_empty() && !GV.isThreadLocal() &&
1720           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1721           !GV.hasAtLeastLocalUnnamedAddr())
1722         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1723   }
1724 
1725   // Emit symbol partition specifications (ELF only).
1726   if (TM.getTargetTriple().isOSBinFormatELF()) {
1727     unsigned UniqueID = 0;
1728     for (const GlobalValue &GV : M.global_values()) {
1729       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1730           GV.getVisibility() != GlobalValue::DefaultVisibility)
1731         continue;
1732 
1733       OutStreamer->SwitchSection(
1734           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1735                                    "", ++UniqueID, nullptr));
1736       OutStreamer->emitBytes(GV.getPartition());
1737       OutStreamer->emitZeros(1);
1738       OutStreamer->emitValue(
1739           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1740           MAI->getCodePointerSize());
1741     }
1742   }
1743 
1744   // Allow the target to emit any magic that it wants at the end of the file,
1745   // after everything else has gone out.
1746   emitEndOfAsmFile(M);
1747 
1748   MMI = nullptr;
1749 
1750   OutStreamer->Finish();
1751   OutStreamer->reset();
1752   OwnedMLI.reset();
1753   OwnedMDT.reset();
1754 
1755   return false;
1756 }
1757 
1758 MCSymbol *AsmPrinter::getCurExceptionSym() {
1759   if (!CurExceptionSym)
1760     CurExceptionSym = createTempSymbol("exception");
1761   return CurExceptionSym;
1762 }
1763 
1764 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1765   this->MF = &MF;
1766   const Function &F = MF.getFunction();
1767 
1768   // Get the function symbol.
1769   if (!MAI->needsFunctionDescriptors()) {
1770     CurrentFnSym = getSymbol(&MF.getFunction());
1771   } else {
1772     assert(TM.getTargetTriple().isOSAIX() &&
1773            "Only AIX uses the function descriptor hooks.");
1774     // AIX is unique here in that the name of the symbol emitted for the
1775     // function body does not have the same name as the source function's
1776     // C-linkage name.
1777     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1778                                " initalized first.");
1779 
1780     // Get the function entry point symbol.
1781     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1782   }
1783 
1784   CurrentFnSymForSize = CurrentFnSym;
1785   CurrentFnBegin = nullptr;
1786   CurrentSectionBeginSym = nullptr;
1787   CurExceptionSym = nullptr;
1788   bool NeedsLocalForSize = MAI->needsLocalForSize();
1789   if (F.hasFnAttribute("patchable-function-entry") ||
1790       F.hasFnAttribute("function-instrument") ||
1791       F.hasFnAttribute("xray-instruction-threshold") ||
1792       needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1793       MF.getTarget().Options.EmitStackSizeSection) {
1794     CurrentFnBegin = createTempSymbol("func_begin");
1795     if (NeedsLocalForSize)
1796       CurrentFnSymForSize = CurrentFnBegin;
1797   }
1798 
1799   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1800 }
1801 
1802 namespace {
1803 
1804 // Keep track the alignment, constpool entries per Section.
1805   struct SectionCPs {
1806     MCSection *S;
1807     Align Alignment;
1808     SmallVector<unsigned, 4> CPEs;
1809 
1810     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1811   };
1812 
1813 } // end anonymous namespace
1814 
1815 /// EmitConstantPool - Print to the current output stream assembly
1816 /// representations of the constants in the constant pool MCP. This is
1817 /// used to print out constants which have been "spilled to memory" by
1818 /// the code generator.
1819 void AsmPrinter::emitConstantPool() {
1820   const MachineConstantPool *MCP = MF->getConstantPool();
1821   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1822   if (CP.empty()) return;
1823 
1824   // Calculate sections for constant pool entries. We collect entries to go into
1825   // the same section together to reduce amount of section switch statements.
1826   SmallVector<SectionCPs, 4> CPSections;
1827   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1828     const MachineConstantPoolEntry &CPE = CP[i];
1829     Align Alignment = CPE.getAlign();
1830 
1831     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1832 
1833     const Constant *C = nullptr;
1834     if (!CPE.isMachineConstantPoolEntry())
1835       C = CPE.Val.ConstVal;
1836 
1837     MCSection *S = getObjFileLowering().getSectionForConstant(
1838         getDataLayout(), Kind, C, Alignment);
1839 
1840     // The number of sections are small, just do a linear search from the
1841     // last section to the first.
1842     bool Found = false;
1843     unsigned SecIdx = CPSections.size();
1844     while (SecIdx != 0) {
1845       if (CPSections[--SecIdx].S == S) {
1846         Found = true;
1847         break;
1848       }
1849     }
1850     if (!Found) {
1851       SecIdx = CPSections.size();
1852       CPSections.push_back(SectionCPs(S, Alignment));
1853     }
1854 
1855     if (Alignment > CPSections[SecIdx].Alignment)
1856       CPSections[SecIdx].Alignment = Alignment;
1857     CPSections[SecIdx].CPEs.push_back(i);
1858   }
1859 
1860   // Now print stuff into the calculated sections.
1861   const MCSection *CurSection = nullptr;
1862   unsigned Offset = 0;
1863   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1864     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1865       unsigned CPI = CPSections[i].CPEs[j];
1866       MCSymbol *Sym = GetCPISymbol(CPI);
1867       if (!Sym->isUndefined())
1868         continue;
1869 
1870       if (CurSection != CPSections[i].S) {
1871         OutStreamer->SwitchSection(CPSections[i].S);
1872         emitAlignment(Align(CPSections[i].Alignment));
1873         CurSection = CPSections[i].S;
1874         Offset = 0;
1875       }
1876 
1877       MachineConstantPoolEntry CPE = CP[CPI];
1878 
1879       // Emit inter-object padding for alignment.
1880       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
1881       OutStreamer->emitZeros(NewOffset - Offset);
1882 
1883       Type *Ty = CPE.getType();
1884       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1885 
1886       OutStreamer->emitLabel(Sym);
1887       if (CPE.isMachineConstantPoolEntry())
1888         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1889       else
1890         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1891     }
1892   }
1893 }
1894 
1895 // Print assembly representations of the jump tables used by the current
1896 // function.
1897 void AsmPrinter::emitJumpTableInfo() {
1898   const DataLayout &DL = MF->getDataLayout();
1899   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1900   if (!MJTI) return;
1901   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1902   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1903   if (JT.empty()) return;
1904 
1905   // Pick the directive to use to print the jump table entries, and switch to
1906   // the appropriate section.
1907   const Function &F = MF->getFunction();
1908   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1909   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1910       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1911       F);
1912   if (JTInDiffSection) {
1913     // Drop it in the readonly section.
1914     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1915     OutStreamer->SwitchSection(ReadOnlySection);
1916   }
1917 
1918   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
1919 
1920   // Jump tables in code sections are marked with a data_region directive
1921   // where that's supported.
1922   if (!JTInDiffSection)
1923     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
1924 
1925   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1926     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1927 
1928     // If this jump table was deleted, ignore it.
1929     if (JTBBs.empty()) continue;
1930 
1931     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1932     /// emit a .set directive for each unique entry.
1933     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1934         MAI->doesSetDirectiveSuppressReloc()) {
1935       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1936       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1937       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1938       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1939         const MachineBasicBlock *MBB = JTBBs[ii];
1940         if (!EmittedSets.insert(MBB).second)
1941           continue;
1942 
1943         // .set LJTSet, LBB32-base
1944         const MCExpr *LHS =
1945           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1946         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1947                                     MCBinaryExpr::createSub(LHS, Base,
1948                                                             OutContext));
1949       }
1950     }
1951 
1952     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1953     // before each jump table.  The first label is never referenced, but tells
1954     // the assembler and linker the extents of the jump table object.  The
1955     // second label is actually referenced by the code.
1956     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1957       // FIXME: This doesn't have to have any specific name, just any randomly
1958       // named and numbered local label started with 'l' would work.  Simplify
1959       // GetJTISymbol.
1960       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
1961 
1962     MCSymbol* JTISymbol = GetJTISymbol(JTI);
1963     OutStreamer->emitLabel(JTISymbol);
1964 
1965     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1966       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1967   }
1968   if (!JTInDiffSection)
1969     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
1970 }
1971 
1972 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1973 /// current stream.
1974 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1975                                     const MachineBasicBlock *MBB,
1976                                     unsigned UID) const {
1977   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1978   const MCExpr *Value = nullptr;
1979   switch (MJTI->getEntryKind()) {
1980   case MachineJumpTableInfo::EK_Inline:
1981     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1982   case MachineJumpTableInfo::EK_Custom32:
1983     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1984         MJTI, MBB, UID, OutContext);
1985     break;
1986   case MachineJumpTableInfo::EK_BlockAddress:
1987     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1988     //     .word LBB123
1989     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1990     break;
1991   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1992     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1993     // with a relocation as gp-relative, e.g.:
1994     //     .gprel32 LBB123
1995     MCSymbol *MBBSym = MBB->getSymbol();
1996     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1997     return;
1998   }
1999 
2000   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2001     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2002     // with a relocation as gp-relative, e.g.:
2003     //     .gpdword LBB123
2004     MCSymbol *MBBSym = MBB->getSymbol();
2005     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2006     return;
2007   }
2008 
2009   case MachineJumpTableInfo::EK_LabelDifference32: {
2010     // Each entry is the address of the block minus the address of the jump
2011     // table. This is used for PIC jump tables where gprel32 is not supported.
2012     // e.g.:
2013     //      .word LBB123 - LJTI1_2
2014     // If the .set directive avoids relocations, this is emitted as:
2015     //      .set L4_5_set_123, LBB123 - LJTI1_2
2016     //      .word L4_5_set_123
2017     if (MAI->doesSetDirectiveSuppressReloc()) {
2018       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2019                                       OutContext);
2020       break;
2021     }
2022     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2023     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2024     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2025     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2026     break;
2027   }
2028   }
2029 
2030   assert(Value && "Unknown entry kind!");
2031 
2032   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2033   OutStreamer->emitValue(Value, EntrySize);
2034 }
2035 
2036 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2037 /// special global used by LLVM.  If so, emit it and return true, otherwise
2038 /// do nothing and return false.
2039 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2040   if (GV->getName() == "llvm.used") {
2041     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2042       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2043     return true;
2044   }
2045 
2046   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2047   if (GV->getSection() == "llvm.metadata" ||
2048       GV->hasAvailableExternallyLinkage())
2049     return true;
2050 
2051   if (!GV->hasAppendingLinkage()) return false;
2052 
2053   assert(GV->hasInitializer() && "Not a special LLVM global!");
2054 
2055   if (GV->getName() == "llvm.global_ctors") {
2056     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2057                        /* isCtor */ true);
2058 
2059     return true;
2060   }
2061 
2062   if (GV->getName() == "llvm.global_dtors") {
2063     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2064                        /* isCtor */ false);
2065 
2066     return true;
2067   }
2068 
2069   report_fatal_error("unknown special variable");
2070 }
2071 
2072 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2073 /// global in the specified llvm.used list.
2074 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2075   // Should be an array of 'i8*'.
2076   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2077     const GlobalValue *GV =
2078       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2079     if (GV)
2080       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2081   }
2082 }
2083 
2084 namespace {
2085 
2086 struct Structor {
2087   int Priority = 0;
2088   Constant *Func = nullptr;
2089   GlobalValue *ComdatKey = nullptr;
2090 
2091   Structor() = default;
2092 };
2093 
2094 } // end anonymous namespace
2095 
2096 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2097 /// priority.
2098 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2099                                     bool isCtor) {
2100   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is the
2101   // init priority.
2102   if (!isa<ConstantArray>(List)) return;
2103 
2104   // Gather the structors in a form that's convenient for sorting by priority.
2105   SmallVector<Structor, 8> Structors;
2106   for (Value *O : cast<ConstantArray>(List)->operands()) {
2107     auto *CS = cast<ConstantStruct>(O);
2108     if (CS->getOperand(1)->isNullValue())
2109       break;  // Found a null terminator, skip the rest.
2110     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2111     if (!Priority) continue; // Malformed.
2112     Structors.push_back(Structor());
2113     Structor &S = Structors.back();
2114     S.Priority = Priority->getLimitedValue(65535);
2115     S.Func = CS->getOperand(1);
2116     if (!CS->getOperand(2)->isNullValue())
2117       S.ComdatKey =
2118           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2119   }
2120 
2121   // Emit the function pointers in the target-specific order
2122   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2123     return L.Priority < R.Priority;
2124   });
2125   const Align Align = DL.getPointerPrefAlignment();
2126   for (Structor &S : Structors) {
2127     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2128     const MCSymbol *KeySym = nullptr;
2129     if (GlobalValue *GV = S.ComdatKey) {
2130       if (GV->isDeclarationForLinker())
2131         // If the associated variable is not defined in this module
2132         // (it might be available_externally, or have been an
2133         // available_externally definition that was dropped by the
2134         // EliminateAvailableExternally pass), some other TU
2135         // will provide its dynamic initializer.
2136         continue;
2137 
2138       KeySym = getSymbol(GV);
2139     }
2140     MCSection *OutputSection =
2141         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2142                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2143     OutStreamer->SwitchSection(OutputSection);
2144     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2145       emitAlignment(Align);
2146     emitXXStructor(DL, S.Func);
2147   }
2148 }
2149 
2150 void AsmPrinter::emitModuleIdents(Module &M) {
2151   if (!MAI->hasIdentDirective())
2152     return;
2153 
2154   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2155     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2156       const MDNode *N = NMD->getOperand(i);
2157       assert(N->getNumOperands() == 1 &&
2158              "llvm.ident metadata entry can have only one operand");
2159       const MDString *S = cast<MDString>(N->getOperand(0));
2160       OutStreamer->emitIdent(S->getString());
2161     }
2162   }
2163 }
2164 
2165 void AsmPrinter::emitModuleCommandLines(Module &M) {
2166   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2167   if (!CommandLine)
2168     return;
2169 
2170   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2171   if (!NMD || !NMD->getNumOperands())
2172     return;
2173 
2174   OutStreamer->PushSection();
2175   OutStreamer->SwitchSection(CommandLine);
2176   OutStreamer->emitZeros(1);
2177   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2178     const MDNode *N = NMD->getOperand(i);
2179     assert(N->getNumOperands() == 1 &&
2180            "llvm.commandline metadata entry can have only one operand");
2181     const MDString *S = cast<MDString>(N->getOperand(0));
2182     OutStreamer->emitBytes(S->getString());
2183     OutStreamer->emitZeros(1);
2184   }
2185   OutStreamer->PopSection();
2186 }
2187 
2188 //===--------------------------------------------------------------------===//
2189 // Emission and print routines
2190 //
2191 
2192 /// Emit a byte directive and value.
2193 ///
2194 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2195 
2196 /// Emit a short directive and value.
2197 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2198 
2199 /// Emit a long directive and value.
2200 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2201 
2202 /// Emit a long long directive and value.
2203 void AsmPrinter::emitInt64(uint64_t Value) const {
2204   OutStreamer->emitInt64(Value);
2205 }
2206 
2207 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2208 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2209 /// .set if it avoids relocations.
2210 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2211                                      unsigned Size) const {
2212   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2213 }
2214 
2215 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2216 /// where the size in bytes of the directive is specified by Size and Label
2217 /// specifies the label.  This implicitly uses .set if it is available.
2218 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2219                                      unsigned Size,
2220                                      bool IsSectionRelative) const {
2221   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2222     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2223     if (Size > 4)
2224       OutStreamer->emitZeros(Size - 4);
2225     return;
2226   }
2227 
2228   // Emit Label+Offset (or just Label if Offset is zero)
2229   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2230   if (Offset)
2231     Expr = MCBinaryExpr::createAdd(
2232         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2233 
2234   OutStreamer->emitValue(Expr, Size);
2235 }
2236 
2237 //===----------------------------------------------------------------------===//
2238 
2239 // EmitAlignment - Emit an alignment directive to the specified power of
2240 // two boundary.  If a global value is specified, and if that global has
2241 // an explicit alignment requested, it will override the alignment request
2242 // if required for correctness.
2243 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2244   if (GV)
2245     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2246 
2247   if (Alignment == Align(1))
2248     return; // 1-byte aligned: no need to emit alignment.
2249 
2250   if (getCurrentSection()->getKind().isText())
2251     OutStreamer->emitCodeAlignment(Alignment.value());
2252   else
2253     OutStreamer->emitValueToAlignment(Alignment.value());
2254 }
2255 
2256 //===----------------------------------------------------------------------===//
2257 // Constant emission.
2258 //===----------------------------------------------------------------------===//
2259 
2260 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2261   MCContext &Ctx = OutContext;
2262 
2263   if (CV->isNullValue() || isa<UndefValue>(CV))
2264     return MCConstantExpr::create(0, Ctx);
2265 
2266   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2267     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2268 
2269   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2270     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2271 
2272   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2273     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2274 
2275   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2276   if (!CE) {
2277     llvm_unreachable("Unknown constant value to lower!");
2278   }
2279 
2280   switch (CE->getOpcode()) {
2281   default: {
2282     // If the code isn't optimized, there may be outstanding folding
2283     // opportunities. Attempt to fold the expression using DataLayout as a
2284     // last resort before giving up.
2285     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2286     if (C != CE)
2287       return lowerConstant(C);
2288 
2289     // Otherwise report the problem to the user.
2290     std::string S;
2291     raw_string_ostream OS(S);
2292     OS << "Unsupported expression in static initializer: ";
2293     CE->printAsOperand(OS, /*PrintType=*/false,
2294                    !MF ? nullptr : MF->getFunction().getParent());
2295     report_fatal_error(OS.str());
2296   }
2297   case Instruction::GetElementPtr: {
2298     // Generate a symbolic expression for the byte address
2299     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2300     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2301 
2302     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2303     if (!OffsetAI)
2304       return Base;
2305 
2306     int64_t Offset = OffsetAI.getSExtValue();
2307     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2308                                    Ctx);
2309   }
2310 
2311   case Instruction::Trunc:
2312     // We emit the value and depend on the assembler to truncate the generated
2313     // expression properly.  This is important for differences between
2314     // blockaddress labels.  Since the two labels are in the same function, it
2315     // is reasonable to treat their delta as a 32-bit value.
2316     LLVM_FALLTHROUGH;
2317   case Instruction::BitCast:
2318     return lowerConstant(CE->getOperand(0));
2319 
2320   case Instruction::IntToPtr: {
2321     const DataLayout &DL = getDataLayout();
2322 
2323     // Handle casts to pointers by changing them into casts to the appropriate
2324     // integer type.  This promotes constant folding and simplifies this code.
2325     Constant *Op = CE->getOperand(0);
2326     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2327                                       false/*ZExt*/);
2328     return lowerConstant(Op);
2329   }
2330 
2331   case Instruction::PtrToInt: {
2332     const DataLayout &DL = getDataLayout();
2333 
2334     // Support only foldable casts to/from pointers that can be eliminated by
2335     // changing the pointer to the appropriately sized integer type.
2336     Constant *Op = CE->getOperand(0);
2337     Type *Ty = CE->getType();
2338 
2339     const MCExpr *OpExpr = lowerConstant(Op);
2340 
2341     // We can emit the pointer value into this slot if the slot is an
2342     // integer slot equal to the size of the pointer.
2343     //
2344     // If the pointer is larger than the resultant integer, then
2345     // as with Trunc just depend on the assembler to truncate it.
2346     if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType()))
2347       return OpExpr;
2348 
2349     // Otherwise the pointer is smaller than the resultant integer, mask off
2350     // the high bits so we are sure to get a proper truncation if the input is
2351     // a constant expr.
2352     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2353     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2354     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2355   }
2356 
2357   case Instruction::Sub: {
2358     GlobalValue *LHSGV;
2359     APInt LHSOffset;
2360     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2361                                    getDataLayout())) {
2362       GlobalValue *RHSGV;
2363       APInt RHSOffset;
2364       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2365                                      getDataLayout())) {
2366         const MCExpr *RelocExpr =
2367             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2368         if (!RelocExpr)
2369           RelocExpr = MCBinaryExpr::createSub(
2370               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2371               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2372         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2373         if (Addend != 0)
2374           RelocExpr = MCBinaryExpr::createAdd(
2375               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2376         return RelocExpr;
2377       }
2378     }
2379   }
2380   // else fallthrough
2381   LLVM_FALLTHROUGH;
2382 
2383   // The MC library also has a right-shift operator, but it isn't consistently
2384   // signed or unsigned between different targets.
2385   case Instruction::Add:
2386   case Instruction::Mul:
2387   case Instruction::SDiv:
2388   case Instruction::SRem:
2389   case Instruction::Shl:
2390   case Instruction::And:
2391   case Instruction::Or:
2392   case Instruction::Xor: {
2393     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2394     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2395     switch (CE->getOpcode()) {
2396     default: llvm_unreachable("Unknown binary operator constant cast expr");
2397     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2398     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2399     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2400     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2401     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2402     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2403     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2404     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2405     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2406     }
2407   }
2408   }
2409 }
2410 
2411 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2412                                    AsmPrinter &AP,
2413                                    const Constant *BaseCV = nullptr,
2414                                    uint64_t Offset = 0);
2415 
2416 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2417 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2418 
2419 /// isRepeatedByteSequence - Determine whether the given value is
2420 /// composed of a repeated sequence of identical bytes and return the
2421 /// byte value.  If it is not a repeated sequence, return -1.
2422 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2423   StringRef Data = V->getRawDataValues();
2424   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2425   char C = Data[0];
2426   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2427     if (Data[i] != C) return -1;
2428   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2429 }
2430 
2431 /// isRepeatedByteSequence - Determine whether the given value is
2432 /// composed of a repeated sequence of identical bytes and return the
2433 /// byte value.  If it is not a repeated sequence, return -1.
2434 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2435   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2436     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2437     assert(Size % 8 == 0);
2438 
2439     // Extend the element to take zero padding into account.
2440     APInt Value = CI->getValue().zextOrSelf(Size);
2441     if (!Value.isSplat(8))
2442       return -1;
2443 
2444     return Value.zextOrTrunc(8).getZExtValue();
2445   }
2446   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2447     // Make sure all array elements are sequences of the same repeated
2448     // byte.
2449     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2450     Constant *Op0 = CA->getOperand(0);
2451     int Byte = isRepeatedByteSequence(Op0, DL);
2452     if (Byte == -1)
2453       return -1;
2454 
2455     // All array elements must be equal.
2456     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2457       if (CA->getOperand(i) != Op0)
2458         return -1;
2459     return Byte;
2460   }
2461 
2462   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2463     return isRepeatedByteSequence(CDS);
2464 
2465   return -1;
2466 }
2467 
2468 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2469                                              const ConstantDataSequential *CDS,
2470                                              AsmPrinter &AP) {
2471   // See if we can aggregate this into a .fill, if so, emit it as such.
2472   int Value = isRepeatedByteSequence(CDS, DL);
2473   if (Value != -1) {
2474     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2475     // Don't emit a 1-byte object as a .fill.
2476     if (Bytes > 1)
2477       return AP.OutStreamer->emitFill(Bytes, Value);
2478   }
2479 
2480   // If this can be emitted with .ascii/.asciz, emit it as such.
2481   if (CDS->isString())
2482     return AP.OutStreamer->emitBytes(CDS->getAsString());
2483 
2484   // Otherwise, emit the values in successive locations.
2485   unsigned ElementByteSize = CDS->getElementByteSize();
2486   if (isa<IntegerType>(CDS->getElementType())) {
2487     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2488       if (AP.isVerbose())
2489         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2490                                                  CDS->getElementAsInteger(i));
2491       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2492                                    ElementByteSize);
2493     }
2494   } else {
2495     Type *ET = CDS->getElementType();
2496     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2497       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2498   }
2499 
2500   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2501   unsigned EmittedSize =
2502       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2503   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2504   if (unsigned Padding = Size - EmittedSize)
2505     AP.OutStreamer->emitZeros(Padding);
2506 }
2507 
2508 static void emitGlobalConstantArray(const DataLayout &DL,
2509                                     const ConstantArray *CA, AsmPrinter &AP,
2510                                     const Constant *BaseCV, uint64_t Offset) {
2511   // See if we can aggregate some values.  Make sure it can be
2512   // represented as a series of bytes of the constant value.
2513   int Value = isRepeatedByteSequence(CA, DL);
2514 
2515   if (Value != -1) {
2516     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2517     AP.OutStreamer->emitFill(Bytes, Value);
2518   }
2519   else {
2520     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2521       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2522       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2523     }
2524   }
2525 }
2526 
2527 static void emitGlobalConstantVector(const DataLayout &DL,
2528                                      const ConstantVector *CV, AsmPrinter &AP) {
2529   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2530     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2531 
2532   unsigned Size = DL.getTypeAllocSize(CV->getType());
2533   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2534                          CV->getType()->getNumElements();
2535   if (unsigned Padding = Size - EmittedSize)
2536     AP.OutStreamer->emitZeros(Padding);
2537 }
2538 
2539 static void emitGlobalConstantStruct(const DataLayout &DL,
2540                                      const ConstantStruct *CS, AsmPrinter &AP,
2541                                      const Constant *BaseCV, uint64_t Offset) {
2542   // Print the fields in successive locations. Pad to align if needed!
2543   unsigned Size = DL.getTypeAllocSize(CS->getType());
2544   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2545   uint64_t SizeSoFar = 0;
2546   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2547     const Constant *Field = CS->getOperand(i);
2548 
2549     // Print the actual field value.
2550     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2551 
2552     // Check if padding is needed and insert one or more 0s.
2553     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2554     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2555                         - Layout->getElementOffset(i)) - FieldSize;
2556     SizeSoFar += FieldSize + PadSize;
2557 
2558     // Insert padding - this may include padding to increase the size of the
2559     // current field up to the ABI size (if the struct is not packed) as well
2560     // as padding to ensure that the next field starts at the right offset.
2561     AP.OutStreamer->emitZeros(PadSize);
2562   }
2563   assert(SizeSoFar == Layout->getSizeInBytes() &&
2564          "Layout of constant struct may be incorrect!");
2565 }
2566 
2567 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2568   assert(ET && "Unknown float type");
2569   APInt API = APF.bitcastToAPInt();
2570 
2571   // First print a comment with what we think the original floating-point value
2572   // should have been.
2573   if (AP.isVerbose()) {
2574     SmallString<8> StrVal;
2575     APF.toString(StrVal);
2576     ET->print(AP.OutStreamer->GetCommentOS());
2577     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2578   }
2579 
2580   // Now iterate through the APInt chunks, emitting them in endian-correct
2581   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2582   // floats).
2583   unsigned NumBytes = API.getBitWidth() / 8;
2584   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2585   const uint64_t *p = API.getRawData();
2586 
2587   // PPC's long double has odd notions of endianness compared to how LLVM
2588   // handles it: p[0] goes first for *big* endian on PPC.
2589   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2590     int Chunk = API.getNumWords() - 1;
2591 
2592     if (TrailingBytes)
2593       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2594 
2595     for (; Chunk >= 0; --Chunk)
2596       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2597   } else {
2598     unsigned Chunk;
2599     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2600       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2601 
2602     if (TrailingBytes)
2603       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2604   }
2605 
2606   // Emit the tail padding for the long double.
2607   const DataLayout &DL = AP.getDataLayout();
2608   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2609 }
2610 
2611 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2612   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2613 }
2614 
2615 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2616   const DataLayout &DL = AP.getDataLayout();
2617   unsigned BitWidth = CI->getBitWidth();
2618 
2619   // Copy the value as we may massage the layout for constants whose bit width
2620   // is not a multiple of 64-bits.
2621   APInt Realigned(CI->getValue());
2622   uint64_t ExtraBits = 0;
2623   unsigned ExtraBitsSize = BitWidth & 63;
2624 
2625   if (ExtraBitsSize) {
2626     // The bit width of the data is not a multiple of 64-bits.
2627     // The extra bits are expected to be at the end of the chunk of the memory.
2628     // Little endian:
2629     // * Nothing to be done, just record the extra bits to emit.
2630     // Big endian:
2631     // * Record the extra bits to emit.
2632     // * Realign the raw data to emit the chunks of 64-bits.
2633     if (DL.isBigEndian()) {
2634       // Basically the structure of the raw data is a chunk of 64-bits cells:
2635       //    0        1         BitWidth / 64
2636       // [chunk1][chunk2] ... [chunkN].
2637       // The most significant chunk is chunkN and it should be emitted first.
2638       // However, due to the alignment issue chunkN contains useless bits.
2639       // Realign the chunks so that they contain only useful information:
2640       // ExtraBits     0       1       (BitWidth / 64) - 1
2641       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2642       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2643       ExtraBits = Realigned.getRawData()[0] &
2644         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2645       Realigned.lshrInPlace(ExtraBitsSize);
2646     } else
2647       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2648   }
2649 
2650   // We don't expect assemblers to support integer data directives
2651   // for more than 64 bits, so we emit the data in at most 64-bit
2652   // quantities at a time.
2653   const uint64_t *RawData = Realigned.getRawData();
2654   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2655     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2656     AP.OutStreamer->emitIntValue(Val, 8);
2657   }
2658 
2659   if (ExtraBitsSize) {
2660     // Emit the extra bits after the 64-bits chunks.
2661 
2662     // Emit a directive that fills the expected size.
2663     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2664     Size -= (BitWidth / 64) * 8;
2665     assert(Size && Size * 8 >= ExtraBitsSize &&
2666            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2667            == ExtraBits && "Directive too small for extra bits.");
2668     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2669   }
2670 }
2671 
2672 /// Transform a not absolute MCExpr containing a reference to a GOT
2673 /// equivalent global, by a target specific GOT pc relative access to the
2674 /// final symbol.
2675 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2676                                          const Constant *BaseCst,
2677                                          uint64_t Offset) {
2678   // The global @foo below illustrates a global that uses a got equivalent.
2679   //
2680   //  @bar = global i32 42
2681   //  @gotequiv = private unnamed_addr constant i32* @bar
2682   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2683   //                             i64 ptrtoint (i32* @foo to i64))
2684   //                        to i32)
2685   //
2686   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2687   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2688   // form:
2689   //
2690   //  foo = cstexpr, where
2691   //    cstexpr := <gotequiv> - "." + <cst>
2692   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2693   //
2694   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2695   //
2696   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2697   //    gotpcrelcst := <offset from @foo base> + <cst>
2698   MCValue MV;
2699   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2700     return;
2701   const MCSymbolRefExpr *SymA = MV.getSymA();
2702   if (!SymA)
2703     return;
2704 
2705   // Check that GOT equivalent symbol is cached.
2706   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2707   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2708     return;
2709 
2710   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2711   if (!BaseGV)
2712     return;
2713 
2714   // Check for a valid base symbol
2715   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2716   const MCSymbolRefExpr *SymB = MV.getSymB();
2717 
2718   if (!SymB || BaseSym != &SymB->getSymbol())
2719     return;
2720 
2721   // Make sure to match:
2722   //
2723   //    gotpcrelcst := <offset from @foo base> + <cst>
2724   //
2725   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2726   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2727   // if the target knows how to encode it.
2728   int64_t GOTPCRelCst = Offset + MV.getConstant();
2729   if (GOTPCRelCst < 0)
2730     return;
2731   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2732     return;
2733 
2734   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2735   //
2736   //  bar:
2737   //    .long 42
2738   //  gotequiv:
2739   //    .quad bar
2740   //  foo:
2741   //    .long gotequiv - "." + <cst>
2742   //
2743   // is replaced by the target specific equivalent to:
2744   //
2745   //  bar:
2746   //    .long 42
2747   //  foo:
2748   //    .long bar@GOTPCREL+<gotpcrelcst>
2749   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2750   const GlobalVariable *GV = Result.first;
2751   int NumUses = (int)Result.second;
2752   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2753   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2754   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2755       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2756 
2757   // Update GOT equivalent usage information
2758   --NumUses;
2759   if (NumUses >= 0)
2760     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2761 }
2762 
2763 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2764                                    AsmPrinter &AP, const Constant *BaseCV,
2765                                    uint64_t Offset) {
2766   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2767 
2768   // Globals with sub-elements such as combinations of arrays and structs
2769   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2770   // constant symbol base and the current position with BaseCV and Offset.
2771   if (!BaseCV && CV->hasOneUse())
2772     BaseCV = dyn_cast<Constant>(CV->user_back());
2773 
2774   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2775     return AP.OutStreamer->emitZeros(Size);
2776 
2777   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2778     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2779 
2780     if (StoreSize < 8) {
2781       if (AP.isVerbose())
2782         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2783                                                  CI->getZExtValue());
2784       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2785     } else {
2786       emitGlobalConstantLargeInt(CI, AP);
2787     }
2788 
2789     // Emit tail padding if needed
2790     if (Size != StoreSize)
2791       AP.OutStreamer->emitZeros(Size - StoreSize);
2792 
2793     return;
2794   }
2795 
2796   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2797     return emitGlobalConstantFP(CFP, AP);
2798 
2799   if (isa<ConstantPointerNull>(CV)) {
2800     AP.OutStreamer->emitIntValue(0, Size);
2801     return;
2802   }
2803 
2804   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2805     return emitGlobalConstantDataSequential(DL, CDS, AP);
2806 
2807   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2808     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2809 
2810   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2811     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2812 
2813   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2814     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2815     // vectors).
2816     if (CE->getOpcode() == Instruction::BitCast)
2817       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2818 
2819     if (Size > 8) {
2820       // If the constant expression's size is greater than 64-bits, then we have
2821       // to emit the value in chunks. Try to constant fold the value and emit it
2822       // that way.
2823       Constant *New = ConstantFoldConstant(CE, DL);
2824       if (New != CE)
2825         return emitGlobalConstantImpl(DL, New, AP);
2826     }
2827   }
2828 
2829   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2830     return emitGlobalConstantVector(DL, V, AP);
2831 
2832   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2833   // thread the streamer with EmitValue.
2834   const MCExpr *ME = AP.lowerConstant(CV);
2835 
2836   // Since lowerConstant already folded and got rid of all IR pointer and
2837   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2838   // directly.
2839   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2840     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2841 
2842   AP.OutStreamer->emitValue(ME, Size);
2843 }
2844 
2845 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2846 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2847   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2848   if (Size)
2849     emitGlobalConstantImpl(DL, CV, *this);
2850   else if (MAI->hasSubsectionsViaSymbols()) {
2851     // If the global has zero size, emit a single byte so that two labels don't
2852     // look like they are at the same location.
2853     OutStreamer->emitIntValue(0, 1);
2854   }
2855 }
2856 
2857 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2858   // Target doesn't support this yet!
2859   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2860 }
2861 
2862 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2863   if (Offset > 0)
2864     OS << '+' << Offset;
2865   else if (Offset < 0)
2866     OS << Offset;
2867 }
2868 
2869 void AsmPrinter::emitNops(unsigned N) {
2870   MCInst Nop;
2871   MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2872   for (; N; --N)
2873     EmitToStreamer(*OutStreamer, Nop);
2874 }
2875 
2876 //===----------------------------------------------------------------------===//
2877 // Symbol Lowering Routines.
2878 //===----------------------------------------------------------------------===//
2879 
2880 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2881   return OutContext.createTempSymbol(Name, true);
2882 }
2883 
2884 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2885   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2886 }
2887 
2888 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2889   return MMI->getAddrLabelSymbol(BB);
2890 }
2891 
2892 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2893 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2894   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
2895     const MachineConstantPoolEntry &CPE =
2896         MF->getConstantPool()->getConstants()[CPID];
2897     if (!CPE.isMachineConstantPoolEntry()) {
2898       const DataLayout &DL = MF->getDataLayout();
2899       SectionKind Kind = CPE.getSectionKind(&DL);
2900       const Constant *C = CPE.Val.ConstVal;
2901       Align Alignment = CPE.Alignment;
2902       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2903               getObjFileLowering().getSectionForConstant(DL, Kind, C,
2904                                                          Alignment))) {
2905         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2906           if (Sym->isUndefined())
2907             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
2908           return Sym;
2909         }
2910       }
2911     }
2912   }
2913 
2914   const DataLayout &DL = getDataLayout();
2915   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2916                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2917                                       Twine(CPID));
2918 }
2919 
2920 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2921 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2922   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2923 }
2924 
2925 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2926 /// FIXME: privatize to AsmPrinter.
2927 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2928   const DataLayout &DL = getDataLayout();
2929   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2930                                       Twine(getFunctionNumber()) + "_" +
2931                                       Twine(UID) + "_set_" + Twine(MBBID));
2932 }
2933 
2934 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2935                                                    StringRef Suffix) const {
2936   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2937 }
2938 
2939 /// Return the MCSymbol for the specified ExternalSymbol.
2940 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2941   SmallString<60> NameStr;
2942   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2943   return OutContext.getOrCreateSymbol(NameStr);
2944 }
2945 
2946 /// PrintParentLoopComment - Print comments about parent loops of this one.
2947 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2948                                    unsigned FunctionNumber) {
2949   if (!Loop) return;
2950   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2951   OS.indent(Loop->getLoopDepth()*2)
2952     << "Parent Loop BB" << FunctionNumber << "_"
2953     << Loop->getHeader()->getNumber()
2954     << " Depth=" << Loop->getLoopDepth() << '\n';
2955 }
2956 
2957 /// PrintChildLoopComment - Print comments about child loops within
2958 /// the loop for this basic block, with nesting.
2959 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2960                                   unsigned FunctionNumber) {
2961   // Add child loop information
2962   for (const MachineLoop *CL : *Loop) {
2963     OS.indent(CL->getLoopDepth()*2)
2964       << "Child Loop BB" << FunctionNumber << "_"
2965       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2966       << '\n';
2967     PrintChildLoopComment(OS, CL, FunctionNumber);
2968   }
2969 }
2970 
2971 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2972 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2973                                        const MachineLoopInfo *LI,
2974                                        const AsmPrinter &AP) {
2975   // Add loop depth information
2976   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2977   if (!Loop) return;
2978 
2979   MachineBasicBlock *Header = Loop->getHeader();
2980   assert(Header && "No header for loop");
2981 
2982   // If this block is not a loop header, just print out what is the loop header
2983   // and return.
2984   if (Header != &MBB) {
2985     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2986                                Twine(AP.getFunctionNumber())+"_" +
2987                                Twine(Loop->getHeader()->getNumber())+
2988                                " Depth="+Twine(Loop->getLoopDepth()));
2989     return;
2990   }
2991 
2992   // Otherwise, it is a loop header.  Print out information about child and
2993   // parent loops.
2994   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2995 
2996   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2997 
2998   OS << "=>";
2999   OS.indent(Loop->getLoopDepth()*2-2);
3000 
3001   OS << "This ";
3002   if (Loop->empty())
3003     OS << "Inner ";
3004   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3005 
3006   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3007 }
3008 
3009 /// emitBasicBlockStart - This method prints the label for the specified
3010 /// MachineBasicBlock, an alignment (if present) and a comment describing
3011 /// it if appropriate.
3012 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3013   // End the previous funclet and start a new one.
3014   if (MBB.isEHFuncletEntry()) {
3015     for (const HandlerInfo &HI : Handlers) {
3016       HI.Handler->endFunclet();
3017       HI.Handler->beginFunclet(MBB);
3018     }
3019   }
3020 
3021   // Emit an alignment directive for this block, if needed.
3022   const Align Alignment = MBB.getAlignment();
3023   if (Alignment != Align(1))
3024     emitAlignment(Alignment);
3025 
3026   // If the block has its address taken, emit any labels that were used to
3027   // reference the block.  It is possible that there is more than one label
3028   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3029   // the references were generated.
3030   if (MBB.hasAddressTaken()) {
3031     const BasicBlock *BB = MBB.getBasicBlock();
3032     if (isVerbose())
3033       OutStreamer->AddComment("Block address taken");
3034 
3035     // MBBs can have their address taken as part of CodeGen without having
3036     // their corresponding BB's address taken in IR
3037     if (BB->hasAddressTaken())
3038       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3039         OutStreamer->emitLabel(Sym);
3040   }
3041 
3042   // Print some verbose block comments.
3043   if (isVerbose()) {
3044     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3045       if (BB->hasName()) {
3046         BB->printAsOperand(OutStreamer->GetCommentOS(),
3047                            /*PrintType=*/false, BB->getModule());
3048         OutStreamer->GetCommentOS() << '\n';
3049       }
3050     }
3051 
3052     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3053     emitBasicBlockLoopComments(MBB, MLI, *this);
3054   }
3055 
3056   if (MBB.pred_empty() ||
3057       (!MF->hasBBLabels() && isBlockOnlyReachableByFallthrough(&MBB) &&
3058        !MBB.isEHFuncletEntry() && !MBB.hasLabelMustBeEmitted())) {
3059     if (isVerbose()) {
3060       // NOTE: Want this comment at start of line, don't emit with AddComment.
3061       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3062                                   false);
3063     }
3064   } else {
3065     if (isVerbose() && MBB.hasLabelMustBeEmitted()) {
3066       OutStreamer->AddComment("Label of block must be emitted");
3067     }
3068     // Switch to a new section if this basic block must begin a section.
3069     if (MBB.isBeginSection()) {
3070       OutStreamer->SwitchSection(
3071           getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3072                                                               MBB, TM));
3073       CurrentSectionBeginSym = MBB.getSymbol();
3074     }
3075     OutStreamer->emitLabel(MBB.getSymbol());
3076   }
3077 }
3078 
3079 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {}
3080 
3081 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3082                                 bool IsDefinition) const {
3083   MCSymbolAttr Attr = MCSA_Invalid;
3084 
3085   switch (Visibility) {
3086   default: break;
3087   case GlobalValue::HiddenVisibility:
3088     if (IsDefinition)
3089       Attr = MAI->getHiddenVisibilityAttr();
3090     else
3091       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3092     break;
3093   case GlobalValue::ProtectedVisibility:
3094     Attr = MAI->getProtectedVisibilityAttr();
3095     break;
3096   }
3097 
3098   if (Attr != MCSA_Invalid)
3099     OutStreamer->emitSymbolAttribute(Sym, Attr);
3100 }
3101 
3102 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3103 /// exactly one predecessor and the control transfer mechanism between
3104 /// the predecessor and this block is a fall-through.
3105 bool AsmPrinter::
3106 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3107   // With BasicBlock Sections, beginning of the section is not a fallthrough.
3108   if (MBB->isBeginSection())
3109     return false;
3110 
3111   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3112   // then nothing falls through to it.
3113   if (MBB->isEHPad() || MBB->pred_empty())
3114     return false;
3115 
3116   // If there isn't exactly one predecessor, it can't be a fall through.
3117   if (MBB->pred_size() > 1)
3118     return false;
3119 
3120   // The predecessor has to be immediately before this block.
3121   MachineBasicBlock *Pred = *MBB->pred_begin();
3122   if (!Pred->isLayoutSuccessor(MBB))
3123     return false;
3124 
3125   // If the block is completely empty, then it definitely does fall through.
3126   if (Pred->empty())
3127     return true;
3128 
3129   // Check the terminators in the previous blocks
3130   for (const auto &MI : Pred->terminators()) {
3131     // If it is not a simple branch, we are in a table somewhere.
3132     if (!MI.isBranch() || MI.isIndirectBranch())
3133       return false;
3134 
3135     // If we are the operands of one of the branches, this is not a fall
3136     // through. Note that targets with delay slots will usually bundle
3137     // terminators with the delay slot instruction.
3138     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3139       if (OP->isJTI())
3140         return false;
3141       if (OP->isMBB() && OP->getMBB() == MBB)
3142         return false;
3143     }
3144   }
3145 
3146   return true;
3147 }
3148 
3149 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3150   if (!S.usesMetadata())
3151     return nullptr;
3152 
3153   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3154   gcp_map_type::iterator GCPI = GCMap.find(&S);
3155   if (GCPI != GCMap.end())
3156     return GCPI->second.get();
3157 
3158   auto Name = S.getName();
3159 
3160   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3161        GCMetadataPrinterRegistry::entries())
3162     if (Name == GCMetaPrinter.getName()) {
3163       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3164       GMP->S = &S;
3165       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3166       return IterBool.first->second.get();
3167     }
3168 
3169   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3170 }
3171 
3172 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3173   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3174   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3175   bool NeedsDefault = false;
3176   if (MI->begin() == MI->end())
3177     // No GC strategy, use the default format.
3178     NeedsDefault = true;
3179   else
3180     for (auto &I : *MI) {
3181       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3182         if (MP->emitStackMaps(SM, *this))
3183           continue;
3184       // The strategy doesn't have printer or doesn't emit custom stack maps.
3185       // Use the default format.
3186       NeedsDefault = true;
3187     }
3188 
3189   if (NeedsDefault)
3190     SM.serializeToStackMapSection();
3191 }
3192 
3193 /// Pin vtable to this file.
3194 AsmPrinterHandler::~AsmPrinterHandler() = default;
3195 
3196 void AsmPrinterHandler::markFunctionEnd() {}
3197 
3198 // In the binary's "xray_instr_map" section, an array of these function entries
3199 // describes each instrumentation point.  When XRay patches your code, the index
3200 // into this table will be given to your handler as a patch point identifier.
3201 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3202   auto Kind8 = static_cast<uint8_t>(Kind);
3203   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3204   Out->emitBinaryData(
3205       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3206   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3207   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3208   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3209   Out->emitZeros(Padding);
3210 }
3211 
3212 void AsmPrinter::emitXRayTable() {
3213   if (Sleds.empty())
3214     return;
3215 
3216   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3217   const Function &F = MF->getFunction();
3218   MCSection *InstMap = nullptr;
3219   MCSection *FnSledIndex = nullptr;
3220   const Triple &TT = TM.getTargetTriple();
3221   // Use PC-relative addresses on all targets except MIPS (MIPS64 cannot use
3222   // PC-relative addresses because R_MIPS_PC64 does not exist).
3223   bool PCRel = !TT.isMIPS();
3224   if (TT.isOSBinFormatELF()) {
3225     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3226     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3227     if (!PCRel)
3228       Flags |= ELF::SHF_WRITE;
3229     StringRef GroupName;
3230     if (F.hasComdat()) {
3231       Flags |= ELF::SHF_GROUP;
3232       GroupName = F.getComdat()->getName();
3233     }
3234     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3235                                        Flags, 0, GroupName,
3236                                        MCSection::NonUniqueID, LinkedToSym);
3237 
3238     if (!TM.Options.XRayOmitFunctionIndex)
3239       FnSledIndex = OutContext.getELFSection(
3240           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3241           GroupName, MCSection::NonUniqueID, LinkedToSym);
3242   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3243     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3244                                          SectionKind::getReadOnlyWithRel());
3245     if (!TM.Options.XRayOmitFunctionIndex)
3246       FnSledIndex = OutContext.getMachOSection(
3247           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3248   } else {
3249     llvm_unreachable("Unsupported target");
3250   }
3251 
3252   auto WordSizeBytes = MAI->getCodePointerSize();
3253 
3254   // Now we switch to the instrumentation map section. Because this is done
3255   // per-function, we are able to create an index entry that will represent the
3256   // range of sleds associated with a function.
3257   auto &Ctx = OutContext;
3258   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3259   OutStreamer->SwitchSection(InstMap);
3260   OutStreamer->emitLabel(SledsStart);
3261   for (const auto &Sled : Sleds) {
3262     if (PCRel) {
3263       MCSymbol *Dot = Ctx.createTempSymbol();
3264       OutStreamer->emitLabel(Dot);
3265       OutStreamer->emitValueImpl(
3266           MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3267                                   MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3268           WordSizeBytes);
3269       OutStreamer->emitValueImpl(
3270           MCBinaryExpr::createSub(
3271               MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3272               MCBinaryExpr::createAdd(
3273                   MCSymbolRefExpr::create(Dot, Ctx),
3274                   MCConstantExpr::create(WordSizeBytes, Ctx), Ctx),
3275               Ctx),
3276           WordSizeBytes);
3277     } else {
3278       OutStreamer->emitSymbolValue(Sled.Sled, WordSizeBytes);
3279       OutStreamer->emitSymbolValue(CurrentFnSym, WordSizeBytes);
3280     }
3281     Sled.emit(WordSizeBytes, OutStreamer.get());
3282   }
3283   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3284   OutStreamer->emitLabel(SledsEnd);
3285 
3286   // We then emit a single entry in the index per function. We use the symbols
3287   // that bound the instrumentation map as the range for a specific function.
3288   // Each entry here will be 2 * word size aligned, as we're writing down two
3289   // pointers. This should work for both 32-bit and 64-bit platforms.
3290   if (FnSledIndex) {
3291     OutStreamer->SwitchSection(FnSledIndex);
3292     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3293     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3294     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3295     OutStreamer->SwitchSection(PrevSection);
3296   }
3297   Sleds.clear();
3298 }
3299 
3300 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3301                             SledKind Kind, uint8_t Version) {
3302   const Function &F = MI.getMF()->getFunction();
3303   auto Attr = F.getFnAttribute("function-instrument");
3304   bool LogArgs = F.hasFnAttribute("xray-log-args");
3305   bool AlwaysInstrument =
3306     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3307   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3308     Kind = SledKind::LOG_ARGS_ENTER;
3309   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3310                                        AlwaysInstrument, &F, Version});
3311 }
3312 
3313 void AsmPrinter::emitPatchableFunctionEntries() {
3314   const Function &F = MF->getFunction();
3315   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3316   (void)F.getFnAttribute("patchable-function-prefix")
3317       .getValueAsString()
3318       .getAsInteger(10, PatchableFunctionPrefix);
3319   (void)F.getFnAttribute("patchable-function-entry")
3320       .getValueAsString()
3321       .getAsInteger(10, PatchableFunctionEntry);
3322   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3323     return;
3324   const unsigned PointerSize = getPointerSize();
3325   if (TM.getTargetTriple().isOSBinFormatELF()) {
3326     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3327     const MCSymbolELF *LinkedToSym = nullptr;
3328     StringRef GroupName;
3329 
3330     // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only
3331     // if we are using the integrated assembler.
3332     if (MAI->useIntegratedAssembler()) {
3333       Flags |= ELF::SHF_LINK_ORDER;
3334       if (F.hasComdat()) {
3335         Flags |= ELF::SHF_GROUP;
3336         GroupName = F.getComdat()->getName();
3337       }
3338       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3339     }
3340     OutStreamer->SwitchSection(OutContext.getELFSection(
3341         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3342         MCSection::NonUniqueID, LinkedToSym));
3343     emitAlignment(Align(PointerSize));
3344     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3345   }
3346 }
3347 
3348 uint16_t AsmPrinter::getDwarfVersion() const {
3349   return OutStreamer->getContext().getDwarfVersion();
3350 }
3351 
3352 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3353   OutStreamer->getContext().setDwarfVersion(Version);
3354 }
3355