1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/BinaryFormat/COFF.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/CodeGen/TargetSubtargetInfo.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Comdat.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GlobalAlias.h" 71 #include "llvm/IR/GlobalIFunc.h" 72 #include "llvm/IR/GlobalIndirectSymbol.h" 73 #include "llvm/IR/GlobalObject.h" 74 #include "llvm/IR/GlobalValue.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Mangler.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCStreamer.h" 95 #include "llvm/MC/MCSubtargetInfo.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/MC/MCSymbolELF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/Casting.h" 103 #include "llvm/Support/CommandLine.h" 104 #include "llvm/Support/Compiler.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/Format.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/Path.h" 109 #include "llvm/Support/TargetRegistry.h" 110 #include "llvm/Support/Timer.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Target/TargetLoweringObjectFile.h" 113 #include "llvm/Target/TargetMachine.h" 114 #include "llvm/Target/TargetOptions.h" 115 #include <algorithm> 116 #include <cassert> 117 #include <cinttypes> 118 #include <cstdint> 119 #include <iterator> 120 #include <limits> 121 #include <memory> 122 #include <string> 123 #include <utility> 124 #include <vector> 125 126 using namespace llvm; 127 128 #define DEBUG_TYPE "asm-printer" 129 130 static const char *const DWARFGroupName = "dwarf"; 131 static const char *const DWARFGroupDescription = "DWARF Emission"; 132 static const char *const DbgTimerName = "emit"; 133 static const char *const DbgTimerDescription = "Debug Info Emission"; 134 static const char *const EHTimerName = "write_exception"; 135 static const char *const EHTimerDescription = "DWARF Exception Writer"; 136 static const char *const CFGuardName = "Control Flow Guard"; 137 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 138 static const char *const CodeViewLineTablesGroupName = "linetables"; 139 static const char *const CodeViewLineTablesGroupDescription = 140 "CodeView Line Tables"; 141 142 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 143 144 static cl::opt<bool> 145 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 146 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 147 148 char AsmPrinter::ID = 0; 149 150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 151 152 static gcp_map_type &getGCMap(void *&P) { 153 if (!P) 154 P = new gcp_map_type(); 155 return *(gcp_map_type*)P; 156 } 157 158 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 159 /// value in log2 form. This rounds up to the preferred alignment if possible 160 /// and legal. 161 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 162 unsigned InBits = 0) { 163 unsigned NumBits = 0; 164 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 165 NumBits = DL.getPreferredAlignmentLog(GVar); 166 167 // If InBits is specified, round it to it. 168 if (InBits > NumBits) 169 NumBits = InBits; 170 171 // If the GV has a specified alignment, take it into account. 172 if (GV->getAlignment() == 0) 173 return NumBits; 174 175 unsigned GVAlign = Log2_32(GV->getAlignment()); 176 177 // If the GVAlign is larger than NumBits, or if we are required to obey 178 // NumBits because the GV has an assigned section, obey it. 179 if (GVAlign > NumBits || GV->hasSection()) 180 NumBits = GVAlign; 181 return NumBits; 182 } 183 184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 185 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 186 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 187 VerboseAsm = OutStreamer->isVerboseAsm(); 188 } 189 190 AsmPrinter::~AsmPrinter() { 191 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 192 193 if (GCMetadataPrinters) { 194 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 195 196 delete &GCMap; 197 GCMetadataPrinters = nullptr; 198 } 199 } 200 201 bool AsmPrinter::isPositionIndependent() const { 202 return TM.isPositionIndependent(); 203 } 204 205 /// getFunctionNumber - Return a unique ID for the current function. 206 unsigned AsmPrinter::getFunctionNumber() const { 207 return MF->getFunctionNumber(); 208 } 209 210 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 211 return *TM.getObjFileLowering(); 212 } 213 214 const DataLayout &AsmPrinter::getDataLayout() const { 215 return MMI->getModule()->getDataLayout(); 216 } 217 218 // Do not use the cached DataLayout because some client use it without a Module 219 // (dsymutil, llvm-dwarfdump). 220 unsigned AsmPrinter::getPointerSize() const { 221 return TM.getPointerSize(0); // FIXME: Default address space 222 } 223 224 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 225 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 226 return MF->getSubtarget<MCSubtargetInfo>(); 227 } 228 229 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 230 S.EmitInstruction(Inst, getSubtargetInfo()); 231 } 232 233 /// getCurrentSection() - Return the current section we are emitting to. 234 const MCSection *AsmPrinter::getCurrentSection() const { 235 return OutStreamer->getCurrentSectionOnly(); 236 } 237 238 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 239 AU.setPreservesAll(); 240 MachineFunctionPass::getAnalysisUsage(AU); 241 AU.addRequired<MachineModuleInfo>(); 242 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 243 AU.addRequired<GCModuleInfo>(); 244 } 245 246 bool AsmPrinter::doInitialization(Module &M) { 247 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 248 249 // Initialize TargetLoweringObjectFile. 250 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 251 .Initialize(OutContext, TM); 252 253 OutStreamer->InitSections(false); 254 255 // Emit the version-min deployment target directive if needed. 256 // 257 // FIXME: If we end up with a collection of these sorts of Darwin-specific 258 // or ELF-specific things, it may make sense to have a platform helper class 259 // that will work with the target helper class. For now keep it here, as the 260 // alternative is duplicated code in each of the target asm printers that 261 // use the directive, where it would need the same conditionalization 262 // anyway. 263 const Triple &Target = TM.getTargetTriple(); 264 OutStreamer->EmitVersionForTarget(Target); 265 266 // Allow the target to emit any magic that it wants at the start of the file. 267 EmitStartOfAsmFile(M); 268 269 // Very minimal debug info. It is ignored if we emit actual debug info. If we 270 // don't, this at least helps the user find where a global came from. 271 if (MAI->hasSingleParameterDotFile()) { 272 // .file "foo.c" 273 OutStreamer->EmitFileDirective( 274 llvm::sys::path::filename(M.getSourceFileName())); 275 } 276 277 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 278 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 279 for (auto &I : *MI) 280 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 281 MP->beginAssembly(M, *MI, *this); 282 283 // Emit module-level inline asm if it exists. 284 if (!M.getModuleInlineAsm().empty()) { 285 // We're at the module level. Construct MCSubtarget from the default CPU 286 // and target triple. 287 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 288 TM.getTargetTriple().str(), TM.getTargetCPU(), 289 TM.getTargetFeatureString())); 290 OutStreamer->AddComment("Start of file scope inline assembly"); 291 OutStreamer->AddBlankLine(); 292 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 293 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 294 OutStreamer->AddComment("End of file scope inline assembly"); 295 OutStreamer->AddBlankLine(); 296 } 297 298 if (MAI->doesSupportDebugInformation()) { 299 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 300 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 301 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 302 DbgTimerName, DbgTimerDescription, 303 CodeViewLineTablesGroupName, 304 CodeViewLineTablesGroupDescription)); 305 } 306 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 307 DD = new DwarfDebug(this, &M); 308 DD->beginModule(); 309 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 310 DWARFGroupName, DWARFGroupDescription)); 311 } 312 } 313 314 switch (MAI->getExceptionHandlingType()) { 315 case ExceptionHandling::SjLj: 316 case ExceptionHandling::DwarfCFI: 317 case ExceptionHandling::ARM: 318 isCFIMoveForDebugging = true; 319 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 320 break; 321 for (auto &F: M.getFunctionList()) { 322 // If the module contains any function with unwind data, 323 // .eh_frame has to be emitted. 324 // Ignore functions that won't get emitted. 325 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 326 isCFIMoveForDebugging = false; 327 break; 328 } 329 } 330 break; 331 default: 332 isCFIMoveForDebugging = false; 333 break; 334 } 335 336 EHStreamer *ES = nullptr; 337 switch (MAI->getExceptionHandlingType()) { 338 case ExceptionHandling::None: 339 break; 340 case ExceptionHandling::SjLj: 341 case ExceptionHandling::DwarfCFI: 342 ES = new DwarfCFIException(this); 343 break; 344 case ExceptionHandling::ARM: 345 ES = new ARMException(this); 346 break; 347 case ExceptionHandling::WinEH: 348 switch (MAI->getWinEHEncodingType()) { 349 default: llvm_unreachable("unsupported unwinding information encoding"); 350 case WinEH::EncodingType::Invalid: 351 break; 352 case WinEH::EncodingType::X86: 353 case WinEH::EncodingType::Itanium: 354 ES = new WinException(this); 355 break; 356 } 357 break; 358 case ExceptionHandling::Wasm: 359 // TODO to prevent warning 360 break; 361 } 362 if (ES) 363 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 364 DWARFGroupName, DWARFGroupDescription)); 365 366 if (mdconst::extract_or_null<ConstantInt>( 367 MMI->getModule()->getModuleFlag("cfguardtable"))) 368 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName, 369 CFGuardDescription, DWARFGroupName, 370 DWARFGroupDescription)); 371 372 return false; 373 } 374 375 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 376 if (!MAI.hasWeakDefCanBeHiddenDirective()) 377 return false; 378 379 return GV->canBeOmittedFromSymbolTable(); 380 } 381 382 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 383 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 384 switch (Linkage) { 385 case GlobalValue::CommonLinkage: 386 case GlobalValue::LinkOnceAnyLinkage: 387 case GlobalValue::LinkOnceODRLinkage: 388 case GlobalValue::WeakAnyLinkage: 389 case GlobalValue::WeakODRLinkage: 390 if (MAI->hasWeakDefDirective()) { 391 // .globl _foo 392 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 393 394 if (!canBeHidden(GV, *MAI)) 395 // .weak_definition _foo 396 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 397 else 398 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 399 } else if (MAI->hasLinkOnceDirective()) { 400 // .globl _foo 401 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 402 //NOTE: linkonce is handled by the section the symbol was assigned to. 403 } else { 404 // .weak _foo 405 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 406 } 407 return; 408 case GlobalValue::ExternalLinkage: 409 // If external, declare as a global symbol: .globl _foo 410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 411 return; 412 case GlobalValue::PrivateLinkage: 413 case GlobalValue::InternalLinkage: 414 return; 415 case GlobalValue::AppendingLinkage: 416 case GlobalValue::AvailableExternallyLinkage: 417 case GlobalValue::ExternalWeakLinkage: 418 llvm_unreachable("Should never emit this"); 419 } 420 llvm_unreachable("Unknown linkage type!"); 421 } 422 423 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 424 const GlobalValue *GV) const { 425 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 426 } 427 428 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 429 return TM.getSymbol(GV); 430 } 431 432 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 433 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 434 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 435 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 436 "No emulated TLS variables in the common section"); 437 438 // Never emit TLS variable xyz in emulated TLS model. 439 // The initialization value is in __emutls_t.xyz instead of xyz. 440 if (IsEmuTLSVar) 441 return; 442 443 if (GV->hasInitializer()) { 444 // Check to see if this is a special global used by LLVM, if so, emit it. 445 if (EmitSpecialLLVMGlobal(GV)) 446 return; 447 448 // Skip the emission of global equivalents. The symbol can be emitted later 449 // on by emitGlobalGOTEquivs in case it turns out to be needed. 450 if (GlobalGOTEquivs.count(getSymbol(GV))) 451 return; 452 453 if (isVerbose()) { 454 // When printing the control variable __emutls_v.*, 455 // we don't need to print the original TLS variable name. 456 GV->printAsOperand(OutStreamer->GetCommentOS(), 457 /*PrintType=*/false, GV->getParent()); 458 OutStreamer->GetCommentOS() << '\n'; 459 } 460 } 461 462 MCSymbol *GVSym = getSymbol(GV); 463 MCSymbol *EmittedSym = GVSym; 464 465 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 466 // attributes. 467 // GV's or GVSym's attributes will be used for the EmittedSym. 468 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 469 470 if (!GV->hasInitializer()) // External globals require no extra code. 471 return; 472 473 GVSym->redefineIfPossible(); 474 if (GVSym->isDefined() || GVSym->isVariable()) 475 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 476 "' is already defined"); 477 478 if (MAI->hasDotTypeDotSizeDirective()) 479 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 480 481 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 482 483 const DataLayout &DL = GV->getParent()->getDataLayout(); 484 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 485 486 // If the alignment is specified, we *must* obey it. Overaligning a global 487 // with a specified alignment is a prompt way to break globals emitted to 488 // sections and expected to be contiguous (e.g. ObjC metadata). 489 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 490 491 for (const HandlerInfo &HI : Handlers) { 492 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 493 HI.TimerGroupName, HI.TimerGroupDescription, 494 TimePassesIsEnabled); 495 HI.Handler->setSymbolSize(GVSym, Size); 496 } 497 498 // Handle common symbols 499 if (GVKind.isCommon()) { 500 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 501 unsigned Align = 1 << AlignLog; 502 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 503 Align = 0; 504 505 // .comm _foo, 42, 4 506 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 507 return; 508 } 509 510 // Determine to which section this global should be emitted. 511 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 512 513 // If we have a bss global going to a section that supports the 514 // zerofill directive, do so here. 515 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 516 TheSection->isVirtualSection()) { 517 if (Size == 0) 518 Size = 1; // zerofill of 0 bytes is undefined. 519 unsigned Align = 1 << AlignLog; 520 EmitLinkage(GV, GVSym); 521 // .zerofill __DATA, __bss, _foo, 400, 5 522 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 523 return; 524 } 525 526 // If this is a BSS local symbol and we are emitting in the BSS 527 // section use .lcomm/.comm directive. 528 if (GVKind.isBSSLocal() && 529 getObjFileLowering().getBSSSection() == TheSection) { 530 if (Size == 0) 531 Size = 1; // .comm Foo, 0 is undefined, avoid it. 532 unsigned Align = 1 << AlignLog; 533 534 // Use .lcomm only if it supports user-specified alignment. 535 // Otherwise, while it would still be correct to use .lcomm in some 536 // cases (e.g. when Align == 1), the external assembler might enfore 537 // some -unknown- default alignment behavior, which could cause 538 // spurious differences between external and integrated assembler. 539 // Prefer to simply fall back to .local / .comm in this case. 540 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 541 // .lcomm _foo, 42 542 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 543 return; 544 } 545 546 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 547 Align = 0; 548 549 // .local _foo 550 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 551 // .comm _foo, 42, 4 552 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 553 return; 554 } 555 556 // Handle thread local data for mach-o which requires us to output an 557 // additional structure of data and mangle the original symbol so that we 558 // can reference it later. 559 // 560 // TODO: This should become an "emit thread local global" method on TLOF. 561 // All of this macho specific stuff should be sunk down into TLOFMachO and 562 // stuff like "TLSExtraDataSection" should no longer be part of the parent 563 // TLOF class. This will also make it more obvious that stuff like 564 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 565 // specific code. 566 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 567 // Emit the .tbss symbol 568 MCSymbol *MangSym = 569 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 570 571 if (GVKind.isThreadBSS()) { 572 TheSection = getObjFileLowering().getTLSBSSSection(); 573 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 574 } else if (GVKind.isThreadData()) { 575 OutStreamer->SwitchSection(TheSection); 576 577 EmitAlignment(AlignLog, GV); 578 OutStreamer->EmitLabel(MangSym); 579 580 EmitGlobalConstant(GV->getParent()->getDataLayout(), 581 GV->getInitializer()); 582 } 583 584 OutStreamer->AddBlankLine(); 585 586 // Emit the variable struct for the runtime. 587 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 588 589 OutStreamer->SwitchSection(TLVSect); 590 // Emit the linkage here. 591 EmitLinkage(GV, GVSym); 592 OutStreamer->EmitLabel(GVSym); 593 594 // Three pointers in size: 595 // - __tlv_bootstrap - used to make sure support exists 596 // - spare pointer, used when mapped by the runtime 597 // - pointer to mangled symbol above with initializer 598 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 599 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 600 PtrSize); 601 OutStreamer->EmitIntValue(0, PtrSize); 602 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 603 604 OutStreamer->AddBlankLine(); 605 return; 606 } 607 608 MCSymbol *EmittedInitSym = GVSym; 609 610 OutStreamer->SwitchSection(TheSection); 611 612 EmitLinkage(GV, EmittedInitSym); 613 EmitAlignment(AlignLog, GV); 614 615 OutStreamer->EmitLabel(EmittedInitSym); 616 617 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 618 619 if (MAI->hasDotTypeDotSizeDirective()) 620 // .size foo, 42 621 OutStreamer->emitELFSize(EmittedInitSym, 622 MCConstantExpr::create(Size, OutContext)); 623 624 OutStreamer->AddBlankLine(); 625 } 626 627 /// Emit the directive and value for debug thread local expression 628 /// 629 /// \p Value - The value to emit. 630 /// \p Size - The size of the integer (in bytes) to emit. 631 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 632 unsigned Size) const { 633 OutStreamer->EmitValue(Value, Size); 634 } 635 636 /// EmitFunctionHeader - This method emits the header for the current 637 /// function. 638 void AsmPrinter::EmitFunctionHeader() { 639 const Function &F = MF->getFunction(); 640 641 if (isVerbose()) 642 OutStreamer->GetCommentOS() 643 << "-- Begin function " 644 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 645 646 // Print out constants referenced by the function 647 EmitConstantPool(); 648 649 // Print the 'header' of function. 650 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 651 EmitVisibility(CurrentFnSym, F.getVisibility()); 652 653 EmitLinkage(&F, CurrentFnSym); 654 if (MAI->hasFunctionAlignment()) 655 EmitAlignment(MF->getAlignment(), &F); 656 657 if (MAI->hasDotTypeDotSizeDirective()) 658 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 659 660 if (isVerbose()) { 661 F.printAsOperand(OutStreamer->GetCommentOS(), 662 /*PrintType=*/false, F.getParent()); 663 OutStreamer->GetCommentOS() << '\n'; 664 } 665 666 // Emit the prefix data. 667 if (F.hasPrefixData()) { 668 if (MAI->hasSubsectionsViaSymbols()) { 669 // Preserving prefix data on platforms which use subsections-via-symbols 670 // is a bit tricky. Here we introduce a symbol for the prefix data 671 // and use the .alt_entry attribute to mark the function's real entry point 672 // as an alternative entry point to the prefix-data symbol. 673 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 674 OutStreamer->EmitLabel(PrefixSym); 675 676 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 677 678 // Emit an .alt_entry directive for the actual function symbol. 679 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 680 } else { 681 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 682 } 683 } 684 685 // Emit the CurrentFnSym. This is a virtual function to allow targets to 686 // do their wild and crazy things as required. 687 EmitFunctionEntryLabel(); 688 689 // If the function had address-taken blocks that got deleted, then we have 690 // references to the dangling symbols. Emit them at the start of the function 691 // so that we don't get references to undefined symbols. 692 std::vector<MCSymbol*> DeadBlockSyms; 693 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 694 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 695 OutStreamer->AddComment("Address taken block that was later removed"); 696 OutStreamer->EmitLabel(DeadBlockSyms[i]); 697 } 698 699 if (CurrentFnBegin) { 700 if (MAI->useAssignmentForEHBegin()) { 701 MCSymbol *CurPos = OutContext.createTempSymbol(); 702 OutStreamer->EmitLabel(CurPos); 703 OutStreamer->EmitAssignment(CurrentFnBegin, 704 MCSymbolRefExpr::create(CurPos, OutContext)); 705 } else { 706 OutStreamer->EmitLabel(CurrentFnBegin); 707 } 708 } 709 710 // Emit pre-function debug and/or EH information. 711 for (const HandlerInfo &HI : Handlers) { 712 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 713 HI.TimerGroupDescription, TimePassesIsEnabled); 714 HI.Handler->beginFunction(MF); 715 } 716 717 // Emit the prologue data. 718 if (F.hasPrologueData()) 719 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 720 } 721 722 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 723 /// function. This can be overridden by targets as required to do custom stuff. 724 void AsmPrinter::EmitFunctionEntryLabel() { 725 CurrentFnSym->redefineIfPossible(); 726 727 // The function label could have already been emitted if two symbols end up 728 // conflicting due to asm renaming. Detect this and emit an error. 729 if (CurrentFnSym->isVariable()) 730 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 731 "' is a protected alias"); 732 if (CurrentFnSym->isDefined()) 733 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 734 "' label emitted multiple times to assembly file"); 735 736 return OutStreamer->EmitLabel(CurrentFnSym); 737 } 738 739 /// emitComments - Pretty-print comments for instructions. 740 /// It returns true iff the sched comment was emitted. 741 /// Otherwise it returns false. 742 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 743 AsmPrinter *AP) { 744 const MachineFunction *MF = MI.getMF(); 745 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 746 747 // Check for spills and reloads 748 int FI; 749 750 const MachineFrameInfo &MFI = MF->getFrameInfo(); 751 bool Commented = false; 752 753 // We assume a single instruction only has a spill or reload, not 754 // both. 755 const MachineMemOperand *MMO; 756 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 757 if (MFI.isSpillSlotObjectIndex(FI)) { 758 MMO = *MI.memoperands_begin(); 759 CommentOS << MMO->getSize() << "-byte Reload"; 760 Commented = true; 761 } 762 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 763 if (MFI.isSpillSlotObjectIndex(FI)) { 764 CommentOS << MMO->getSize() << "-byte Folded Reload"; 765 Commented = true; 766 } 767 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 768 if (MFI.isSpillSlotObjectIndex(FI)) { 769 MMO = *MI.memoperands_begin(); 770 CommentOS << MMO->getSize() << "-byte Spill"; 771 Commented = true; 772 } 773 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 774 if (MFI.isSpillSlotObjectIndex(FI)) { 775 CommentOS << MMO->getSize() << "-byte Folded Spill"; 776 Commented = true; 777 } 778 } 779 780 // Check for spill-induced copies 781 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 782 Commented = true; 783 CommentOS << " Reload Reuse"; 784 } 785 786 if (Commented) { 787 if (AP->EnablePrintSchedInfo) { 788 // If any comment was added above and we need sched info comment then add 789 // this new comment just after the above comment w/o "\n" between them. 790 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 791 return true; 792 } 793 CommentOS << "\n"; 794 } 795 return false; 796 } 797 798 /// emitImplicitDef - This method emits the specified machine instruction 799 /// that is an implicit def. 800 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 801 unsigned RegNo = MI->getOperand(0).getReg(); 802 803 SmallString<128> Str; 804 raw_svector_ostream OS(Str); 805 OS << "implicit-def: " 806 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 807 808 OutStreamer->AddComment(OS.str()); 809 OutStreamer->AddBlankLine(); 810 } 811 812 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 813 std::string Str; 814 raw_string_ostream OS(Str); 815 OS << "kill:"; 816 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 817 const MachineOperand &Op = MI->getOperand(i); 818 assert(Op.isReg() && "KILL instruction must have only register operands"); 819 OS << ' ' << (Op.isDef() ? "def " : "killed ") 820 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 821 } 822 AP.OutStreamer->AddComment(OS.str()); 823 AP.OutStreamer->AddBlankLine(); 824 } 825 826 /// emitDebugValueComment - This method handles the target-independent form 827 /// of DBG_VALUE, returning true if it was able to do so. A false return 828 /// means the target will need to handle MI in EmitInstruction. 829 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 830 // This code handles only the 4-operand target-independent form. 831 if (MI->getNumOperands() != 4) 832 return false; 833 834 SmallString<128> Str; 835 raw_svector_ostream OS(Str); 836 OS << "DEBUG_VALUE: "; 837 838 const DILocalVariable *V = MI->getDebugVariable(); 839 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 840 StringRef Name = SP->getName(); 841 if (!Name.empty()) 842 OS << Name << ":"; 843 } 844 OS << V->getName(); 845 OS << " <- "; 846 847 // The second operand is only an offset if it's an immediate. 848 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 849 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 850 const DIExpression *Expr = MI->getDebugExpression(); 851 if (Expr->getNumElements()) { 852 OS << '['; 853 bool NeedSep = false; 854 for (auto Op : Expr->expr_ops()) { 855 if (NeedSep) 856 OS << ", "; 857 else 858 NeedSep = true; 859 OS << dwarf::OperationEncodingString(Op.getOp()); 860 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 861 OS << ' ' << Op.getArg(I); 862 } 863 OS << "] "; 864 } 865 866 // Register or immediate value. Register 0 means undef. 867 if (MI->getOperand(0).isFPImm()) { 868 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 869 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 870 OS << (double)APF.convertToFloat(); 871 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 872 OS << APF.convertToDouble(); 873 } else { 874 // There is no good way to print long double. Convert a copy to 875 // double. Ah well, it's only a comment. 876 bool ignored; 877 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 878 &ignored); 879 OS << "(long double) " << APF.convertToDouble(); 880 } 881 } else if (MI->getOperand(0).isImm()) { 882 OS << MI->getOperand(0).getImm(); 883 } else if (MI->getOperand(0).isCImm()) { 884 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 885 } else { 886 unsigned Reg; 887 if (MI->getOperand(0).isReg()) { 888 Reg = MI->getOperand(0).getReg(); 889 } else { 890 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 891 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 892 Offset += TFI->getFrameIndexReference(*AP.MF, 893 MI->getOperand(0).getIndex(), Reg); 894 MemLoc = true; 895 } 896 if (Reg == 0) { 897 // Suppress offset, it is not meaningful here. 898 OS << "undef"; 899 // NOTE: Want this comment at start of line, don't emit with AddComment. 900 AP.OutStreamer->emitRawComment(OS.str()); 901 return true; 902 } 903 if (MemLoc) 904 OS << '['; 905 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 906 } 907 908 if (MemLoc) 909 OS << '+' << Offset << ']'; 910 911 // NOTE: Want this comment at start of line, don't emit with AddComment. 912 AP.OutStreamer->emitRawComment(OS.str()); 913 return true; 914 } 915 916 /// This method handles the target-independent form of DBG_LABEL, returning 917 /// true if it was able to do so. A false return means the target will need 918 /// to handle MI in EmitInstruction. 919 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 920 if (MI->getNumOperands() != 1) 921 return false; 922 923 SmallString<128> Str; 924 raw_svector_ostream OS(Str); 925 OS << "DEBUG_LABEL: "; 926 927 const DILabel *V = MI->getDebugLabel(); 928 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 929 StringRef Name = SP->getName(); 930 if (!Name.empty()) 931 OS << Name << ":"; 932 } 933 OS << V->getName(); 934 935 // NOTE: Want this comment at start of line, don't emit with AddComment. 936 AP.OutStreamer->emitRawComment(OS.str()); 937 return true; 938 } 939 940 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 941 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 942 MF->getFunction().needsUnwindTableEntry()) 943 return CFI_M_EH; 944 945 if (MMI->hasDebugInfo()) 946 return CFI_M_Debug; 947 948 return CFI_M_None; 949 } 950 951 bool AsmPrinter::needsSEHMoves() { 952 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 953 } 954 955 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 956 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 957 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 958 ExceptionHandlingType != ExceptionHandling::ARM) 959 return; 960 961 if (needsCFIMoves() == CFI_M_None) 962 return; 963 964 // If there is no "real" instruction following this CFI instruction, skip 965 // emitting it; it would be beyond the end of the function's FDE range. 966 auto *MBB = MI.getParent(); 967 auto I = std::next(MI.getIterator()); 968 while (I != MBB->end() && I->isTransient()) 969 ++I; 970 if (I == MBB->instr_end() && 971 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 972 return; 973 974 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 975 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 976 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 977 emitCFIInstruction(CFI); 978 } 979 980 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 981 // The operands are the MCSymbol and the frame offset of the allocation. 982 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 983 int FrameOffset = MI.getOperand(1).getImm(); 984 985 // Emit a symbol assignment. 986 OutStreamer->EmitAssignment(FrameAllocSym, 987 MCConstantExpr::create(FrameOffset, OutContext)); 988 } 989 990 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 991 if (!MF.getTarget().Options.EmitStackSizeSection) 992 return; 993 994 MCSection *StackSizeSection = 995 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 996 if (!StackSizeSection) 997 return; 998 999 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1000 // Don't emit functions with dynamic stack allocations. 1001 if (FrameInfo.hasVarSizedObjects()) 1002 return; 1003 1004 OutStreamer->PushSection(); 1005 OutStreamer->SwitchSection(StackSizeSection); 1006 1007 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1008 uint64_t StackSize = FrameInfo.getStackSize(); 1009 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1010 OutStreamer->EmitULEB128IntValue(StackSize); 1011 1012 OutStreamer->PopSection(); 1013 } 1014 1015 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1016 MachineModuleInfo *MMI) { 1017 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1018 return true; 1019 1020 // We might emit an EH table that uses function begin and end labels even if 1021 // we don't have any landingpads. 1022 if (!MF.getFunction().hasPersonalityFn()) 1023 return false; 1024 return !isNoOpWithoutInvoke( 1025 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1026 } 1027 1028 /// EmitFunctionBody - This method emits the body and trailer for a 1029 /// function. 1030 void AsmPrinter::EmitFunctionBody() { 1031 EmitFunctionHeader(); 1032 1033 // Emit target-specific gunk before the function body. 1034 EmitFunctionBodyStart(); 1035 1036 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1037 1038 if (isVerbose()) { 1039 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1040 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1041 if (!MDT) { 1042 OwnedMDT = make_unique<MachineDominatorTree>(); 1043 OwnedMDT->getBase().recalculate(*MF); 1044 MDT = OwnedMDT.get(); 1045 } 1046 1047 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1048 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1049 if (!MLI) { 1050 OwnedMLI = make_unique<MachineLoopInfo>(); 1051 OwnedMLI->getBase().analyze(MDT->getBase()); 1052 MLI = OwnedMLI.get(); 1053 } 1054 } 1055 1056 // Print out code for the function. 1057 bool HasAnyRealCode = false; 1058 int NumInstsInFunction = 0; 1059 for (auto &MBB : *MF) { 1060 // Print a label for the basic block. 1061 EmitBasicBlockStart(MBB); 1062 for (auto &MI : MBB) { 1063 // Print the assembly for the instruction. 1064 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1065 !MI.isDebugInstr()) { 1066 HasAnyRealCode = true; 1067 ++NumInstsInFunction; 1068 } 1069 1070 // If there is a pre-instruction symbol, emit a label for it here. 1071 if (MCSymbol *S = MI.getPreInstrSymbol()) 1072 OutStreamer->EmitLabel(S); 1073 1074 if (ShouldPrintDebugScopes) { 1075 for (const HandlerInfo &HI : Handlers) { 1076 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1077 HI.TimerGroupName, HI.TimerGroupDescription, 1078 TimePassesIsEnabled); 1079 HI.Handler->beginInstruction(&MI); 1080 } 1081 } 1082 1083 if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) { 1084 MachineInstr *MIP = const_cast<MachineInstr *>(&MI); 1085 MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment); 1086 } 1087 1088 switch (MI.getOpcode()) { 1089 case TargetOpcode::CFI_INSTRUCTION: 1090 emitCFIInstruction(MI); 1091 break; 1092 case TargetOpcode::LOCAL_ESCAPE: 1093 emitFrameAlloc(MI); 1094 break; 1095 case TargetOpcode::EH_LABEL: 1096 case TargetOpcode::GC_LABEL: 1097 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1098 break; 1099 case TargetOpcode::INLINEASM: 1100 EmitInlineAsm(&MI); 1101 break; 1102 case TargetOpcode::DBG_VALUE: 1103 if (isVerbose()) { 1104 if (!emitDebugValueComment(&MI, *this)) 1105 EmitInstruction(&MI); 1106 } 1107 break; 1108 case TargetOpcode::DBG_LABEL: 1109 if (isVerbose()) { 1110 if (!emitDebugLabelComment(&MI, *this)) 1111 EmitInstruction(&MI); 1112 } 1113 break; 1114 case TargetOpcode::IMPLICIT_DEF: 1115 if (isVerbose()) emitImplicitDef(&MI); 1116 break; 1117 case TargetOpcode::KILL: 1118 if (isVerbose()) emitKill(&MI, *this); 1119 break; 1120 default: 1121 EmitInstruction(&MI); 1122 break; 1123 } 1124 1125 // If there is a post-instruction symbol, emit a label for it here. 1126 if (MCSymbol *S = MI.getPostInstrSymbol()) 1127 OutStreamer->EmitLabel(S); 1128 1129 if (ShouldPrintDebugScopes) { 1130 for (const HandlerInfo &HI : Handlers) { 1131 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1132 HI.TimerGroupName, HI.TimerGroupDescription, 1133 TimePassesIsEnabled); 1134 HI.Handler->endInstruction(); 1135 } 1136 } 1137 } 1138 1139 EmitBasicBlockEnd(MBB); 1140 } 1141 1142 EmittedInsts += NumInstsInFunction; 1143 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1144 MF->getFunction().getSubprogram(), 1145 &MF->front()); 1146 R << ore::NV("NumInstructions", NumInstsInFunction) 1147 << " instructions in function"; 1148 ORE->emit(R); 1149 1150 // If the function is empty and the object file uses .subsections_via_symbols, 1151 // then we need to emit *something* to the function body to prevent the 1152 // labels from collapsing together. Just emit a noop. 1153 // Similarly, don't emit empty functions on Windows either. It can lead to 1154 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1155 // after linking, causing the kernel not to load the binary: 1156 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1157 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1158 const Triple &TT = TM.getTargetTriple(); 1159 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1160 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1161 MCInst Noop; 1162 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1163 1164 // Targets can opt-out of emitting the noop here by leaving the opcode 1165 // unspecified. 1166 if (Noop.getOpcode()) { 1167 OutStreamer->AddComment("avoids zero-length function"); 1168 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1169 } 1170 } 1171 1172 const Function &F = MF->getFunction(); 1173 for (const auto &BB : F) { 1174 if (!BB.hasAddressTaken()) 1175 continue; 1176 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1177 if (Sym->isDefined()) 1178 continue; 1179 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1180 OutStreamer->EmitLabel(Sym); 1181 } 1182 1183 // Emit target-specific gunk after the function body. 1184 EmitFunctionBodyEnd(); 1185 1186 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1187 MAI->hasDotTypeDotSizeDirective()) { 1188 // Create a symbol for the end of function. 1189 CurrentFnEnd = createTempSymbol("func_end"); 1190 OutStreamer->EmitLabel(CurrentFnEnd); 1191 } 1192 1193 // If the target wants a .size directive for the size of the function, emit 1194 // it. 1195 if (MAI->hasDotTypeDotSizeDirective()) { 1196 // We can get the size as difference between the function label and the 1197 // temp label. 1198 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1199 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1200 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1201 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1202 } 1203 1204 for (const HandlerInfo &HI : Handlers) { 1205 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1206 HI.TimerGroupDescription, TimePassesIsEnabled); 1207 HI.Handler->markFunctionEnd(); 1208 } 1209 1210 // Print out jump tables referenced by the function. 1211 EmitJumpTableInfo(); 1212 1213 // Emit post-function debug and/or EH information. 1214 for (const HandlerInfo &HI : Handlers) { 1215 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1216 HI.TimerGroupDescription, TimePassesIsEnabled); 1217 HI.Handler->endFunction(MF); 1218 } 1219 1220 // Emit section containing stack size metadata. 1221 emitStackSizeSection(*MF); 1222 1223 if (isVerbose()) 1224 OutStreamer->GetCommentOS() << "-- End function\n"; 1225 1226 OutStreamer->AddBlankLine(); 1227 } 1228 1229 /// Compute the number of Global Variables that uses a Constant. 1230 static unsigned getNumGlobalVariableUses(const Constant *C) { 1231 if (!C) 1232 return 0; 1233 1234 if (isa<GlobalVariable>(C)) 1235 return 1; 1236 1237 unsigned NumUses = 0; 1238 for (auto *CU : C->users()) 1239 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1240 1241 return NumUses; 1242 } 1243 1244 /// Only consider global GOT equivalents if at least one user is a 1245 /// cstexpr inside an initializer of another global variables. Also, don't 1246 /// handle cstexpr inside instructions. During global variable emission, 1247 /// candidates are skipped and are emitted later in case at least one cstexpr 1248 /// isn't replaced by a PC relative GOT entry access. 1249 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1250 unsigned &NumGOTEquivUsers) { 1251 // Global GOT equivalents are unnamed private globals with a constant 1252 // pointer initializer to another global symbol. They must point to a 1253 // GlobalVariable or Function, i.e., as GlobalValue. 1254 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1255 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1256 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1257 return false; 1258 1259 // To be a got equivalent, at least one of its users need to be a constant 1260 // expression used by another global variable. 1261 for (auto *U : GV->users()) 1262 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1263 1264 return NumGOTEquivUsers > 0; 1265 } 1266 1267 /// Unnamed constant global variables solely contaning a pointer to 1268 /// another globals variable is equivalent to a GOT table entry; it contains the 1269 /// the address of another symbol. Optimize it and replace accesses to these 1270 /// "GOT equivalents" by using the GOT entry for the final global instead. 1271 /// Compute GOT equivalent candidates among all global variables to avoid 1272 /// emitting them if possible later on, after it use is replaced by a GOT entry 1273 /// access. 1274 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1275 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1276 return; 1277 1278 for (const auto &G : M.globals()) { 1279 unsigned NumGOTEquivUsers = 0; 1280 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1281 continue; 1282 1283 const MCSymbol *GOTEquivSym = getSymbol(&G); 1284 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1285 } 1286 } 1287 1288 /// Constant expressions using GOT equivalent globals may not be eligible 1289 /// for PC relative GOT entry conversion, in such cases we need to emit such 1290 /// globals we previously omitted in EmitGlobalVariable. 1291 void AsmPrinter::emitGlobalGOTEquivs() { 1292 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1293 return; 1294 1295 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1296 for (auto &I : GlobalGOTEquivs) { 1297 const GlobalVariable *GV = I.second.first; 1298 unsigned Cnt = I.second.second; 1299 if (Cnt) 1300 FailedCandidates.push_back(GV); 1301 } 1302 GlobalGOTEquivs.clear(); 1303 1304 for (auto *GV : FailedCandidates) 1305 EmitGlobalVariable(GV); 1306 } 1307 1308 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1309 const GlobalIndirectSymbol& GIS) { 1310 MCSymbol *Name = getSymbol(&GIS); 1311 1312 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1313 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1314 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1315 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1316 else 1317 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1318 1319 // Set the symbol type to function if the alias has a function type. 1320 // This affects codegen when the aliasee is not a function. 1321 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1322 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1323 if (isa<GlobalIFunc>(GIS)) 1324 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1325 } 1326 1327 EmitVisibility(Name, GIS.getVisibility()); 1328 1329 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1330 1331 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1332 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1333 1334 // Emit the directives as assignments aka .set: 1335 OutStreamer->EmitAssignment(Name, Expr); 1336 1337 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1338 // If the aliasee does not correspond to a symbol in the output, i.e. the 1339 // alias is not of an object or the aliased object is private, then set the 1340 // size of the alias symbol from the type of the alias. We don't do this in 1341 // other situations as the alias and aliasee having differing types but same 1342 // size may be intentional. 1343 const GlobalObject *BaseObject = GA->getBaseObject(); 1344 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1345 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1346 const DataLayout &DL = M.getDataLayout(); 1347 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1348 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1349 } 1350 } 1351 } 1352 1353 bool AsmPrinter::doFinalization(Module &M) { 1354 // Set the MachineFunction to nullptr so that we can catch attempted 1355 // accesses to MF specific features at the module level and so that 1356 // we can conditionalize accesses based on whether or not it is nullptr. 1357 MF = nullptr; 1358 1359 // Gather all GOT equivalent globals in the module. We really need two 1360 // passes over the globals: one to compute and another to avoid its emission 1361 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1362 // where the got equivalent shows up before its use. 1363 computeGlobalGOTEquivs(M); 1364 1365 // Emit global variables. 1366 for (const auto &G : M.globals()) 1367 EmitGlobalVariable(&G); 1368 1369 // Emit remaining GOT equivalent globals. 1370 emitGlobalGOTEquivs(); 1371 1372 // Emit visibility info for declarations 1373 for (const Function &F : M) { 1374 if (!F.isDeclarationForLinker()) 1375 continue; 1376 GlobalValue::VisibilityTypes V = F.getVisibility(); 1377 if (V == GlobalValue::DefaultVisibility) 1378 continue; 1379 1380 MCSymbol *Name = getSymbol(&F); 1381 EmitVisibility(Name, V, false); 1382 } 1383 1384 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1385 1386 TLOF.emitModuleMetadata(*OutStreamer, M); 1387 1388 if (TM.getTargetTriple().isOSBinFormatELF()) { 1389 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1390 1391 // Output stubs for external and common global variables. 1392 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1393 if (!Stubs.empty()) { 1394 OutStreamer->SwitchSection(TLOF.getDataSection()); 1395 const DataLayout &DL = M.getDataLayout(); 1396 1397 EmitAlignment(Log2_32(DL.getPointerSize())); 1398 for (const auto &Stub : Stubs) { 1399 OutStreamer->EmitLabel(Stub.first); 1400 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1401 DL.getPointerSize()); 1402 } 1403 } 1404 } 1405 1406 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1407 MachineModuleInfoCOFF &MMICOFF = 1408 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1409 1410 // Output stubs for external and common global variables. 1411 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1412 if (!Stubs.empty()) { 1413 const DataLayout &DL = M.getDataLayout(); 1414 1415 for (const auto &Stub : Stubs) { 1416 SmallString<256> SectionName = StringRef(".rdata$"); 1417 SectionName += Stub.first->getName(); 1418 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1419 SectionName, 1420 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1421 COFF::IMAGE_SCN_LNK_COMDAT, 1422 SectionKind::getReadOnly(), Stub.first->getName(), 1423 COFF::IMAGE_COMDAT_SELECT_ANY)); 1424 EmitAlignment(Log2_32(DL.getPointerSize())); 1425 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1426 OutStreamer->EmitLabel(Stub.first); 1427 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1428 DL.getPointerSize()); 1429 } 1430 } 1431 } 1432 1433 // Finalize debug and EH information. 1434 for (const HandlerInfo &HI : Handlers) { 1435 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1436 HI.TimerGroupDescription, TimePassesIsEnabled); 1437 HI.Handler->endModule(); 1438 delete HI.Handler; 1439 } 1440 Handlers.clear(); 1441 DD = nullptr; 1442 1443 // If the target wants to know about weak references, print them all. 1444 if (MAI->getWeakRefDirective()) { 1445 // FIXME: This is not lazy, it would be nice to only print weak references 1446 // to stuff that is actually used. Note that doing so would require targets 1447 // to notice uses in operands (due to constant exprs etc). This should 1448 // happen with the MC stuff eventually. 1449 1450 // Print out module-level global objects here. 1451 for (const auto &GO : M.global_objects()) { 1452 if (!GO.hasExternalWeakLinkage()) 1453 continue; 1454 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1455 } 1456 } 1457 1458 OutStreamer->AddBlankLine(); 1459 1460 // Print aliases in topological order, that is, for each alias a = b, 1461 // b must be printed before a. 1462 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1463 // such an order to generate correct TOC information. 1464 SmallVector<const GlobalAlias *, 16> AliasStack; 1465 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1466 for (const auto &Alias : M.aliases()) { 1467 for (const GlobalAlias *Cur = &Alias; Cur; 1468 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1469 if (!AliasVisited.insert(Cur).second) 1470 break; 1471 AliasStack.push_back(Cur); 1472 } 1473 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1474 emitGlobalIndirectSymbol(M, *AncestorAlias); 1475 AliasStack.clear(); 1476 } 1477 for (const auto &IFunc : M.ifuncs()) 1478 emitGlobalIndirectSymbol(M, IFunc); 1479 1480 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1481 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1482 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1483 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1484 MP->finishAssembly(M, *MI, *this); 1485 1486 // Emit llvm.ident metadata in an '.ident' directive. 1487 EmitModuleIdents(M); 1488 1489 // Emit __morestack address if needed for indirect calls. 1490 if (MMI->usesMorestackAddr()) { 1491 unsigned Align = 1; 1492 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1493 getDataLayout(), SectionKind::getReadOnly(), 1494 /*C=*/nullptr, Align); 1495 OutStreamer->SwitchSection(ReadOnlySection); 1496 1497 MCSymbol *AddrSymbol = 1498 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1499 OutStreamer->EmitLabel(AddrSymbol); 1500 1501 unsigned PtrSize = MAI->getCodePointerSize(); 1502 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1503 PtrSize); 1504 } 1505 1506 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1507 // split-stack is used. 1508 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1509 OutStreamer->SwitchSection( 1510 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1511 if (MMI->hasNosplitStack()) 1512 OutStreamer->SwitchSection( 1513 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1514 } 1515 1516 // If we don't have any trampolines, then we don't require stack memory 1517 // to be executable. Some targets have a directive to declare this. 1518 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1519 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1520 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1521 OutStreamer->SwitchSection(S); 1522 1523 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1524 // Emit /EXPORT: flags for each exported global as necessary. 1525 const auto &TLOF = getObjFileLowering(); 1526 std::string Flags; 1527 1528 for (const GlobalValue &GV : M.global_values()) { 1529 raw_string_ostream OS(Flags); 1530 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1531 OS.flush(); 1532 if (!Flags.empty()) { 1533 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1534 OutStreamer->EmitBytes(Flags); 1535 } 1536 Flags.clear(); 1537 } 1538 1539 // Emit /INCLUDE: flags for each used global as necessary. 1540 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1541 assert(LU->hasInitializer() && 1542 "expected llvm.used to have an initializer"); 1543 assert(isa<ArrayType>(LU->getValueType()) && 1544 "expected llvm.used to be an array type"); 1545 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1546 for (const Value *Op : A->operands()) { 1547 const auto *GV = 1548 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1549 // Global symbols with internal or private linkage are not visible to 1550 // the linker, and thus would cause an error when the linker tried to 1551 // preserve the symbol due to the `/include:` directive. 1552 if (GV->hasLocalLinkage()) 1553 continue; 1554 1555 raw_string_ostream OS(Flags); 1556 TLOF.emitLinkerFlagsForUsed(OS, GV); 1557 OS.flush(); 1558 1559 if (!Flags.empty()) { 1560 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1561 OutStreamer->EmitBytes(Flags); 1562 } 1563 Flags.clear(); 1564 } 1565 } 1566 } 1567 } 1568 1569 if (TM.Options.EmitAddrsig) { 1570 // Emit address-significance attributes for all globals. 1571 OutStreamer->EmitAddrsig(); 1572 for (const GlobalValue &GV : M.global_values()) 1573 if (!GV.use_empty() && !GV.isThreadLocal() && 1574 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1575 !GV.hasAtLeastLocalUnnamedAddr()) 1576 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1577 } 1578 1579 // Allow the target to emit any magic that it wants at the end of the file, 1580 // after everything else has gone out. 1581 EmitEndOfAsmFile(M); 1582 1583 MMI = nullptr; 1584 1585 OutStreamer->Finish(); 1586 OutStreamer->reset(); 1587 OwnedMLI.reset(); 1588 OwnedMDT.reset(); 1589 1590 return false; 1591 } 1592 1593 MCSymbol *AsmPrinter::getCurExceptionSym() { 1594 if (!CurExceptionSym) 1595 CurExceptionSym = createTempSymbol("exception"); 1596 return CurExceptionSym; 1597 } 1598 1599 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1600 this->MF = &MF; 1601 // Get the function symbol. 1602 CurrentFnSym = getSymbol(&MF.getFunction()); 1603 CurrentFnSymForSize = CurrentFnSym; 1604 CurrentFnBegin = nullptr; 1605 CurExceptionSym = nullptr; 1606 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1607 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1608 MF.getTarget().Options.EmitStackSizeSection) { 1609 CurrentFnBegin = createTempSymbol("func_begin"); 1610 if (NeedsLocalForSize) 1611 CurrentFnSymForSize = CurrentFnBegin; 1612 } 1613 1614 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1615 1616 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1617 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1618 ? PrintSchedule 1619 : STI.supportPrintSchedInfo(); 1620 } 1621 1622 namespace { 1623 1624 // Keep track the alignment, constpool entries per Section. 1625 struct SectionCPs { 1626 MCSection *S; 1627 unsigned Alignment; 1628 SmallVector<unsigned, 4> CPEs; 1629 1630 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1631 }; 1632 1633 } // end anonymous namespace 1634 1635 /// EmitConstantPool - Print to the current output stream assembly 1636 /// representations of the constants in the constant pool MCP. This is 1637 /// used to print out constants which have been "spilled to memory" by 1638 /// the code generator. 1639 void AsmPrinter::EmitConstantPool() { 1640 const MachineConstantPool *MCP = MF->getConstantPool(); 1641 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1642 if (CP.empty()) return; 1643 1644 // Calculate sections for constant pool entries. We collect entries to go into 1645 // the same section together to reduce amount of section switch statements. 1646 SmallVector<SectionCPs, 4> CPSections; 1647 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1648 const MachineConstantPoolEntry &CPE = CP[i]; 1649 unsigned Align = CPE.getAlignment(); 1650 1651 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1652 1653 const Constant *C = nullptr; 1654 if (!CPE.isMachineConstantPoolEntry()) 1655 C = CPE.Val.ConstVal; 1656 1657 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1658 Kind, C, Align); 1659 1660 // The number of sections are small, just do a linear search from the 1661 // last section to the first. 1662 bool Found = false; 1663 unsigned SecIdx = CPSections.size(); 1664 while (SecIdx != 0) { 1665 if (CPSections[--SecIdx].S == S) { 1666 Found = true; 1667 break; 1668 } 1669 } 1670 if (!Found) { 1671 SecIdx = CPSections.size(); 1672 CPSections.push_back(SectionCPs(S, Align)); 1673 } 1674 1675 if (Align > CPSections[SecIdx].Alignment) 1676 CPSections[SecIdx].Alignment = Align; 1677 CPSections[SecIdx].CPEs.push_back(i); 1678 } 1679 1680 // Now print stuff into the calculated sections. 1681 const MCSection *CurSection = nullptr; 1682 unsigned Offset = 0; 1683 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1684 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1685 unsigned CPI = CPSections[i].CPEs[j]; 1686 MCSymbol *Sym = GetCPISymbol(CPI); 1687 if (!Sym->isUndefined()) 1688 continue; 1689 1690 if (CurSection != CPSections[i].S) { 1691 OutStreamer->SwitchSection(CPSections[i].S); 1692 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1693 CurSection = CPSections[i].S; 1694 Offset = 0; 1695 } 1696 1697 MachineConstantPoolEntry CPE = CP[CPI]; 1698 1699 // Emit inter-object padding for alignment. 1700 unsigned AlignMask = CPE.getAlignment() - 1; 1701 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1702 OutStreamer->EmitZeros(NewOffset - Offset); 1703 1704 Type *Ty = CPE.getType(); 1705 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1706 1707 OutStreamer->EmitLabel(Sym); 1708 if (CPE.isMachineConstantPoolEntry()) 1709 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1710 else 1711 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1712 } 1713 } 1714 } 1715 1716 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1717 /// by the current function to the current output stream. 1718 void AsmPrinter::EmitJumpTableInfo() { 1719 const DataLayout &DL = MF->getDataLayout(); 1720 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1721 if (!MJTI) return; 1722 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1723 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1724 if (JT.empty()) return; 1725 1726 // Pick the directive to use to print the jump table entries, and switch to 1727 // the appropriate section. 1728 const Function &F = MF->getFunction(); 1729 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1730 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1731 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1732 F); 1733 if (JTInDiffSection) { 1734 // Drop it in the readonly section. 1735 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1736 OutStreamer->SwitchSection(ReadOnlySection); 1737 } 1738 1739 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1740 1741 // Jump tables in code sections are marked with a data_region directive 1742 // where that's supported. 1743 if (!JTInDiffSection) 1744 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1745 1746 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1747 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1748 1749 // If this jump table was deleted, ignore it. 1750 if (JTBBs.empty()) continue; 1751 1752 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1753 /// emit a .set directive for each unique entry. 1754 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1755 MAI->doesSetDirectiveSuppressReloc()) { 1756 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1757 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1758 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1759 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1760 const MachineBasicBlock *MBB = JTBBs[ii]; 1761 if (!EmittedSets.insert(MBB).second) 1762 continue; 1763 1764 // .set LJTSet, LBB32-base 1765 const MCExpr *LHS = 1766 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1767 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1768 MCBinaryExpr::createSub(LHS, Base, 1769 OutContext)); 1770 } 1771 } 1772 1773 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1774 // before each jump table. The first label is never referenced, but tells 1775 // the assembler and linker the extents of the jump table object. The 1776 // second label is actually referenced by the code. 1777 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1778 // FIXME: This doesn't have to have any specific name, just any randomly 1779 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1780 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1781 1782 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1783 1784 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1785 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1786 } 1787 if (!JTInDiffSection) 1788 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1789 } 1790 1791 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1792 /// current stream. 1793 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1794 const MachineBasicBlock *MBB, 1795 unsigned UID) const { 1796 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1797 const MCExpr *Value = nullptr; 1798 switch (MJTI->getEntryKind()) { 1799 case MachineJumpTableInfo::EK_Inline: 1800 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1801 case MachineJumpTableInfo::EK_Custom32: 1802 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1803 MJTI, MBB, UID, OutContext); 1804 break; 1805 case MachineJumpTableInfo::EK_BlockAddress: 1806 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1807 // .word LBB123 1808 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1809 break; 1810 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1811 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1812 // with a relocation as gp-relative, e.g.: 1813 // .gprel32 LBB123 1814 MCSymbol *MBBSym = MBB->getSymbol(); 1815 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1816 return; 1817 } 1818 1819 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1820 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1821 // with a relocation as gp-relative, e.g.: 1822 // .gpdword LBB123 1823 MCSymbol *MBBSym = MBB->getSymbol(); 1824 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1825 return; 1826 } 1827 1828 case MachineJumpTableInfo::EK_LabelDifference32: { 1829 // Each entry is the address of the block minus the address of the jump 1830 // table. This is used for PIC jump tables where gprel32 is not supported. 1831 // e.g.: 1832 // .word LBB123 - LJTI1_2 1833 // If the .set directive avoids relocations, this is emitted as: 1834 // .set L4_5_set_123, LBB123 - LJTI1_2 1835 // .word L4_5_set_123 1836 if (MAI->doesSetDirectiveSuppressReloc()) { 1837 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1838 OutContext); 1839 break; 1840 } 1841 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1842 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1843 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1844 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1845 break; 1846 } 1847 } 1848 1849 assert(Value && "Unknown entry kind!"); 1850 1851 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1852 OutStreamer->EmitValue(Value, EntrySize); 1853 } 1854 1855 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1856 /// special global used by LLVM. If so, emit it and return true, otherwise 1857 /// do nothing and return false. 1858 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1859 if (GV->getName() == "llvm.used") { 1860 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1861 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1862 return true; 1863 } 1864 1865 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1866 if (GV->getSection() == "llvm.metadata" || 1867 GV->hasAvailableExternallyLinkage()) 1868 return true; 1869 1870 if (!GV->hasAppendingLinkage()) return false; 1871 1872 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1873 1874 if (GV->getName() == "llvm.global_ctors") { 1875 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1876 /* isCtor */ true); 1877 1878 return true; 1879 } 1880 1881 if (GV->getName() == "llvm.global_dtors") { 1882 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1883 /* isCtor */ false); 1884 1885 return true; 1886 } 1887 1888 report_fatal_error("unknown special variable"); 1889 } 1890 1891 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1892 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1893 /// is true, as being used with this directive. 1894 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1895 // Should be an array of 'i8*'. 1896 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1897 const GlobalValue *GV = 1898 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1899 if (GV) 1900 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1901 } 1902 } 1903 1904 namespace { 1905 1906 struct Structor { 1907 int Priority = 0; 1908 Constant *Func = nullptr; 1909 GlobalValue *ComdatKey = nullptr; 1910 1911 Structor() = default; 1912 }; 1913 1914 } // end anonymous namespace 1915 1916 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1917 /// priority. 1918 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1919 bool isCtor) { 1920 // Should be an array of '{ int, void ()* }' structs. The first value is the 1921 // init priority. 1922 if (!isa<ConstantArray>(List)) return; 1923 1924 // Sanity check the structors list. 1925 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1926 if (!InitList) return; // Not an array! 1927 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1928 // FIXME: Only allow the 3-field form in LLVM 4.0. 1929 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1930 return; // Not an array of two or three elements! 1931 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1932 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1933 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1934 return; // Not (int, ptr, ptr). 1935 1936 // Gather the structors in a form that's convenient for sorting by priority. 1937 SmallVector<Structor, 8> Structors; 1938 for (Value *O : InitList->operands()) { 1939 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1940 if (!CS) continue; // Malformed. 1941 if (CS->getOperand(1)->isNullValue()) 1942 break; // Found a null terminator, skip the rest. 1943 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1944 if (!Priority) continue; // Malformed. 1945 Structors.push_back(Structor()); 1946 Structor &S = Structors.back(); 1947 S.Priority = Priority->getLimitedValue(65535); 1948 S.Func = CS->getOperand(1); 1949 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1950 S.ComdatKey = 1951 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1952 } 1953 1954 // Emit the function pointers in the target-specific order 1955 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1956 std::stable_sort(Structors.begin(), Structors.end(), 1957 [](const Structor &L, 1958 const Structor &R) { return L.Priority < R.Priority; }); 1959 for (Structor &S : Structors) { 1960 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1961 const MCSymbol *KeySym = nullptr; 1962 if (GlobalValue *GV = S.ComdatKey) { 1963 if (GV->isDeclarationForLinker()) 1964 // If the associated variable is not defined in this module 1965 // (it might be available_externally, or have been an 1966 // available_externally definition that was dropped by the 1967 // EliminateAvailableExternally pass), some other TU 1968 // will provide its dynamic initializer. 1969 continue; 1970 1971 KeySym = getSymbol(GV); 1972 } 1973 MCSection *OutputSection = 1974 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1975 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1976 OutStreamer->SwitchSection(OutputSection); 1977 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1978 EmitAlignment(Align); 1979 EmitXXStructor(DL, S.Func); 1980 } 1981 } 1982 1983 void AsmPrinter::EmitModuleIdents(Module &M) { 1984 if (!MAI->hasIdentDirective()) 1985 return; 1986 1987 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1988 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1989 const MDNode *N = NMD->getOperand(i); 1990 assert(N->getNumOperands() == 1 && 1991 "llvm.ident metadata entry can have only one operand"); 1992 const MDString *S = cast<MDString>(N->getOperand(0)); 1993 OutStreamer->EmitIdent(S->getString()); 1994 } 1995 } 1996 } 1997 1998 //===--------------------------------------------------------------------===// 1999 // Emission and print routines 2000 // 2001 2002 /// Emit a byte directive and value. 2003 /// 2004 void AsmPrinter::emitInt8(int Value) const { 2005 OutStreamer->EmitIntValue(Value, 1); 2006 } 2007 2008 /// Emit a short directive and value. 2009 void AsmPrinter::emitInt16(int Value) const { 2010 OutStreamer->EmitIntValue(Value, 2); 2011 } 2012 2013 /// Emit a long directive and value. 2014 void AsmPrinter::emitInt32(int Value) const { 2015 OutStreamer->EmitIntValue(Value, 4); 2016 } 2017 2018 /// Emit a long long directive and value. 2019 void AsmPrinter::emitInt64(uint64_t Value) const { 2020 OutStreamer->EmitIntValue(Value, 8); 2021 } 2022 2023 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2024 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2025 /// .set if it avoids relocations. 2026 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2027 unsigned Size) const { 2028 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2029 } 2030 2031 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2032 /// where the size in bytes of the directive is specified by Size and Label 2033 /// specifies the label. This implicitly uses .set if it is available. 2034 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2035 unsigned Size, 2036 bool IsSectionRelative) const { 2037 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2038 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2039 if (Size > 4) 2040 OutStreamer->EmitZeros(Size - 4); 2041 return; 2042 } 2043 2044 // Emit Label+Offset (or just Label if Offset is zero) 2045 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2046 if (Offset) 2047 Expr = MCBinaryExpr::createAdd( 2048 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2049 2050 OutStreamer->EmitValue(Expr, Size); 2051 } 2052 2053 //===----------------------------------------------------------------------===// 2054 2055 // EmitAlignment - Emit an alignment directive to the specified power of 2056 // two boundary. For example, if you pass in 3 here, you will get an 8 2057 // byte alignment. If a global value is specified, and if that global has 2058 // an explicit alignment requested, it will override the alignment request 2059 // if required for correctness. 2060 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2061 if (GV) 2062 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2063 2064 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2065 2066 assert(NumBits < 2067 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2068 "undefined behavior"); 2069 if (getCurrentSection()->getKind().isText()) 2070 OutStreamer->EmitCodeAlignment(1u << NumBits); 2071 else 2072 OutStreamer->EmitValueToAlignment(1u << NumBits); 2073 } 2074 2075 //===----------------------------------------------------------------------===// 2076 // Constant emission. 2077 //===----------------------------------------------------------------------===// 2078 2079 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2080 MCContext &Ctx = OutContext; 2081 2082 if (CV->isNullValue() || isa<UndefValue>(CV)) 2083 return MCConstantExpr::create(0, Ctx); 2084 2085 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2086 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2087 2088 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2089 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2090 2091 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2092 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2093 2094 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2095 if (!CE) { 2096 llvm_unreachable("Unknown constant value to lower!"); 2097 } 2098 2099 switch (CE->getOpcode()) { 2100 default: 2101 // If the code isn't optimized, there may be outstanding folding 2102 // opportunities. Attempt to fold the expression using DataLayout as a 2103 // last resort before giving up. 2104 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2105 if (C != CE) 2106 return lowerConstant(C); 2107 2108 // Otherwise report the problem to the user. 2109 { 2110 std::string S; 2111 raw_string_ostream OS(S); 2112 OS << "Unsupported expression in static initializer: "; 2113 CE->printAsOperand(OS, /*PrintType=*/false, 2114 !MF ? nullptr : MF->getFunction().getParent()); 2115 report_fatal_error(OS.str()); 2116 } 2117 case Instruction::GetElementPtr: { 2118 // Generate a symbolic expression for the byte address 2119 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2120 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2121 2122 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2123 if (!OffsetAI) 2124 return Base; 2125 2126 int64_t Offset = OffsetAI.getSExtValue(); 2127 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2128 Ctx); 2129 } 2130 2131 case Instruction::Trunc: 2132 // We emit the value and depend on the assembler to truncate the generated 2133 // expression properly. This is important for differences between 2134 // blockaddress labels. Since the two labels are in the same function, it 2135 // is reasonable to treat their delta as a 32-bit value. 2136 LLVM_FALLTHROUGH; 2137 case Instruction::BitCast: 2138 return lowerConstant(CE->getOperand(0)); 2139 2140 case Instruction::IntToPtr: { 2141 const DataLayout &DL = getDataLayout(); 2142 2143 // Handle casts to pointers by changing them into casts to the appropriate 2144 // integer type. This promotes constant folding and simplifies this code. 2145 Constant *Op = CE->getOperand(0); 2146 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2147 false/*ZExt*/); 2148 return lowerConstant(Op); 2149 } 2150 2151 case Instruction::PtrToInt: { 2152 const DataLayout &DL = getDataLayout(); 2153 2154 // Support only foldable casts to/from pointers that can be eliminated by 2155 // changing the pointer to the appropriately sized integer type. 2156 Constant *Op = CE->getOperand(0); 2157 Type *Ty = CE->getType(); 2158 2159 const MCExpr *OpExpr = lowerConstant(Op); 2160 2161 // We can emit the pointer value into this slot if the slot is an 2162 // integer slot equal to the size of the pointer. 2163 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2164 return OpExpr; 2165 2166 // Otherwise the pointer is smaller than the resultant integer, mask off 2167 // the high bits so we are sure to get a proper truncation if the input is 2168 // a constant expr. 2169 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2170 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2171 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2172 } 2173 2174 case Instruction::Sub: { 2175 GlobalValue *LHSGV; 2176 APInt LHSOffset; 2177 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2178 getDataLayout())) { 2179 GlobalValue *RHSGV; 2180 APInt RHSOffset; 2181 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2182 getDataLayout())) { 2183 const MCExpr *RelocExpr = 2184 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2185 if (!RelocExpr) 2186 RelocExpr = MCBinaryExpr::createSub( 2187 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2188 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2189 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2190 if (Addend != 0) 2191 RelocExpr = MCBinaryExpr::createAdd( 2192 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2193 return RelocExpr; 2194 } 2195 } 2196 } 2197 // else fallthrough 2198 LLVM_FALLTHROUGH; 2199 2200 // The MC library also has a right-shift operator, but it isn't consistently 2201 // signed or unsigned between different targets. 2202 case Instruction::Add: 2203 case Instruction::Mul: 2204 case Instruction::SDiv: 2205 case Instruction::SRem: 2206 case Instruction::Shl: 2207 case Instruction::And: 2208 case Instruction::Or: 2209 case Instruction::Xor: { 2210 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2211 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2212 switch (CE->getOpcode()) { 2213 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2214 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2215 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2216 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2217 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2218 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2219 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2220 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2221 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2222 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2223 } 2224 } 2225 } 2226 } 2227 2228 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2229 AsmPrinter &AP, 2230 const Constant *BaseCV = nullptr, 2231 uint64_t Offset = 0); 2232 2233 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2234 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2235 2236 /// isRepeatedByteSequence - Determine whether the given value is 2237 /// composed of a repeated sequence of identical bytes and return the 2238 /// byte value. If it is not a repeated sequence, return -1. 2239 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2240 StringRef Data = V->getRawDataValues(); 2241 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2242 char C = Data[0]; 2243 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2244 if (Data[i] != C) return -1; 2245 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2246 } 2247 2248 /// isRepeatedByteSequence - Determine whether the given value is 2249 /// composed of a repeated sequence of identical bytes and return the 2250 /// byte value. If it is not a repeated sequence, return -1. 2251 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2252 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2253 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2254 assert(Size % 8 == 0); 2255 2256 // Extend the element to take zero padding into account. 2257 APInt Value = CI->getValue().zextOrSelf(Size); 2258 if (!Value.isSplat(8)) 2259 return -1; 2260 2261 return Value.zextOrTrunc(8).getZExtValue(); 2262 } 2263 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2264 // Make sure all array elements are sequences of the same repeated 2265 // byte. 2266 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2267 Constant *Op0 = CA->getOperand(0); 2268 int Byte = isRepeatedByteSequence(Op0, DL); 2269 if (Byte == -1) 2270 return -1; 2271 2272 // All array elements must be equal. 2273 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2274 if (CA->getOperand(i) != Op0) 2275 return -1; 2276 return Byte; 2277 } 2278 2279 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2280 return isRepeatedByteSequence(CDS); 2281 2282 return -1; 2283 } 2284 2285 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2286 const ConstantDataSequential *CDS, 2287 AsmPrinter &AP) { 2288 // See if we can aggregate this into a .fill, if so, emit it as such. 2289 int Value = isRepeatedByteSequence(CDS, DL); 2290 if (Value != -1) { 2291 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2292 // Don't emit a 1-byte object as a .fill. 2293 if (Bytes > 1) 2294 return AP.OutStreamer->emitFill(Bytes, Value); 2295 } 2296 2297 // If this can be emitted with .ascii/.asciz, emit it as such. 2298 if (CDS->isString()) 2299 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2300 2301 // Otherwise, emit the values in successive locations. 2302 unsigned ElementByteSize = CDS->getElementByteSize(); 2303 if (isa<IntegerType>(CDS->getElementType())) { 2304 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2305 if (AP.isVerbose()) 2306 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2307 CDS->getElementAsInteger(i)); 2308 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2309 ElementByteSize); 2310 } 2311 } else { 2312 Type *ET = CDS->getElementType(); 2313 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2314 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2315 } 2316 2317 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2318 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2319 CDS->getNumElements(); 2320 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2321 if (unsigned Padding = Size - EmittedSize) 2322 AP.OutStreamer->EmitZeros(Padding); 2323 } 2324 2325 static void emitGlobalConstantArray(const DataLayout &DL, 2326 const ConstantArray *CA, AsmPrinter &AP, 2327 const Constant *BaseCV, uint64_t Offset) { 2328 // See if we can aggregate some values. Make sure it can be 2329 // represented as a series of bytes of the constant value. 2330 int Value = isRepeatedByteSequence(CA, DL); 2331 2332 if (Value != -1) { 2333 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2334 AP.OutStreamer->emitFill(Bytes, Value); 2335 } 2336 else { 2337 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2338 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2339 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2340 } 2341 } 2342 } 2343 2344 static void emitGlobalConstantVector(const DataLayout &DL, 2345 const ConstantVector *CV, AsmPrinter &AP) { 2346 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2347 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2348 2349 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2350 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2351 CV->getType()->getNumElements(); 2352 if (unsigned Padding = Size - EmittedSize) 2353 AP.OutStreamer->EmitZeros(Padding); 2354 } 2355 2356 static void emitGlobalConstantStruct(const DataLayout &DL, 2357 const ConstantStruct *CS, AsmPrinter &AP, 2358 const Constant *BaseCV, uint64_t Offset) { 2359 // Print the fields in successive locations. Pad to align if needed! 2360 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2361 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2362 uint64_t SizeSoFar = 0; 2363 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2364 const Constant *Field = CS->getOperand(i); 2365 2366 // Print the actual field value. 2367 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2368 2369 // Check if padding is needed and insert one or more 0s. 2370 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2371 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2372 - Layout->getElementOffset(i)) - FieldSize; 2373 SizeSoFar += FieldSize + PadSize; 2374 2375 // Insert padding - this may include padding to increase the size of the 2376 // current field up to the ABI size (if the struct is not packed) as well 2377 // as padding to ensure that the next field starts at the right offset. 2378 AP.OutStreamer->EmitZeros(PadSize); 2379 } 2380 assert(SizeSoFar == Layout->getSizeInBytes() && 2381 "Layout of constant struct may be incorrect!"); 2382 } 2383 2384 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2385 APInt API = APF.bitcastToAPInt(); 2386 2387 // First print a comment with what we think the original floating-point value 2388 // should have been. 2389 if (AP.isVerbose()) { 2390 SmallString<8> StrVal; 2391 APF.toString(StrVal); 2392 2393 if (ET) 2394 ET->print(AP.OutStreamer->GetCommentOS()); 2395 else 2396 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2397 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2398 } 2399 2400 // Now iterate through the APInt chunks, emitting them in endian-correct 2401 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2402 // floats). 2403 unsigned NumBytes = API.getBitWidth() / 8; 2404 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2405 const uint64_t *p = API.getRawData(); 2406 2407 // PPC's long double has odd notions of endianness compared to how LLVM 2408 // handles it: p[0] goes first for *big* endian on PPC. 2409 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2410 int Chunk = API.getNumWords() - 1; 2411 2412 if (TrailingBytes) 2413 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2414 2415 for (; Chunk >= 0; --Chunk) 2416 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2417 } else { 2418 unsigned Chunk; 2419 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2420 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2421 2422 if (TrailingBytes) 2423 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2424 } 2425 2426 // Emit the tail padding for the long double. 2427 const DataLayout &DL = AP.getDataLayout(); 2428 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2429 } 2430 2431 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2432 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2433 } 2434 2435 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2436 const DataLayout &DL = AP.getDataLayout(); 2437 unsigned BitWidth = CI->getBitWidth(); 2438 2439 // Copy the value as we may massage the layout for constants whose bit width 2440 // is not a multiple of 64-bits. 2441 APInt Realigned(CI->getValue()); 2442 uint64_t ExtraBits = 0; 2443 unsigned ExtraBitsSize = BitWidth & 63; 2444 2445 if (ExtraBitsSize) { 2446 // The bit width of the data is not a multiple of 64-bits. 2447 // The extra bits are expected to be at the end of the chunk of the memory. 2448 // Little endian: 2449 // * Nothing to be done, just record the extra bits to emit. 2450 // Big endian: 2451 // * Record the extra bits to emit. 2452 // * Realign the raw data to emit the chunks of 64-bits. 2453 if (DL.isBigEndian()) { 2454 // Basically the structure of the raw data is a chunk of 64-bits cells: 2455 // 0 1 BitWidth / 64 2456 // [chunk1][chunk2] ... [chunkN]. 2457 // The most significant chunk is chunkN and it should be emitted first. 2458 // However, due to the alignment issue chunkN contains useless bits. 2459 // Realign the chunks so that they contain only useless information: 2460 // ExtraBits 0 1 (BitWidth / 64) - 1 2461 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2462 ExtraBits = Realigned.getRawData()[0] & 2463 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2464 Realigned.lshrInPlace(ExtraBitsSize); 2465 } else 2466 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2467 } 2468 2469 // We don't expect assemblers to support integer data directives 2470 // for more than 64 bits, so we emit the data in at most 64-bit 2471 // quantities at a time. 2472 const uint64_t *RawData = Realigned.getRawData(); 2473 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2474 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2475 AP.OutStreamer->EmitIntValue(Val, 8); 2476 } 2477 2478 if (ExtraBitsSize) { 2479 // Emit the extra bits after the 64-bits chunks. 2480 2481 // Emit a directive that fills the expected size. 2482 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2483 Size -= (BitWidth / 64) * 8; 2484 assert(Size && Size * 8 >= ExtraBitsSize && 2485 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2486 == ExtraBits && "Directive too small for extra bits."); 2487 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2488 } 2489 } 2490 2491 /// Transform a not absolute MCExpr containing a reference to a GOT 2492 /// equivalent global, by a target specific GOT pc relative access to the 2493 /// final symbol. 2494 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2495 const Constant *BaseCst, 2496 uint64_t Offset) { 2497 // The global @foo below illustrates a global that uses a got equivalent. 2498 // 2499 // @bar = global i32 42 2500 // @gotequiv = private unnamed_addr constant i32* @bar 2501 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2502 // i64 ptrtoint (i32* @foo to i64)) 2503 // to i32) 2504 // 2505 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2506 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2507 // form: 2508 // 2509 // foo = cstexpr, where 2510 // cstexpr := <gotequiv> - "." + <cst> 2511 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2512 // 2513 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2514 // 2515 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2516 // gotpcrelcst := <offset from @foo base> + <cst> 2517 MCValue MV; 2518 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2519 return; 2520 const MCSymbolRefExpr *SymA = MV.getSymA(); 2521 if (!SymA) 2522 return; 2523 2524 // Check that GOT equivalent symbol is cached. 2525 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2526 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2527 return; 2528 2529 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2530 if (!BaseGV) 2531 return; 2532 2533 // Check for a valid base symbol 2534 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2535 const MCSymbolRefExpr *SymB = MV.getSymB(); 2536 2537 if (!SymB || BaseSym != &SymB->getSymbol()) 2538 return; 2539 2540 // Make sure to match: 2541 // 2542 // gotpcrelcst := <offset from @foo base> + <cst> 2543 // 2544 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2545 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2546 // if the target knows how to encode it. 2547 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2548 if (GOTPCRelCst < 0) 2549 return; 2550 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2551 return; 2552 2553 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2554 // 2555 // bar: 2556 // .long 42 2557 // gotequiv: 2558 // .quad bar 2559 // foo: 2560 // .long gotequiv - "." + <cst> 2561 // 2562 // is replaced by the target specific equivalent to: 2563 // 2564 // bar: 2565 // .long 42 2566 // foo: 2567 // .long bar@GOTPCREL+<gotpcrelcst> 2568 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2569 const GlobalVariable *GV = Result.first; 2570 int NumUses = (int)Result.second; 2571 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2572 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2573 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2574 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2575 2576 // Update GOT equivalent usage information 2577 --NumUses; 2578 if (NumUses >= 0) 2579 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2580 } 2581 2582 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2583 AsmPrinter &AP, const Constant *BaseCV, 2584 uint64_t Offset) { 2585 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2586 2587 // Globals with sub-elements such as combinations of arrays and structs 2588 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2589 // constant symbol base and the current position with BaseCV and Offset. 2590 if (!BaseCV && CV->hasOneUse()) 2591 BaseCV = dyn_cast<Constant>(CV->user_back()); 2592 2593 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2594 return AP.OutStreamer->EmitZeros(Size); 2595 2596 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2597 switch (Size) { 2598 case 1: 2599 case 2: 2600 case 4: 2601 case 8: 2602 if (AP.isVerbose()) 2603 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2604 CI->getZExtValue()); 2605 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2606 return; 2607 default: 2608 emitGlobalConstantLargeInt(CI, AP); 2609 return; 2610 } 2611 } 2612 2613 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2614 return emitGlobalConstantFP(CFP, AP); 2615 2616 if (isa<ConstantPointerNull>(CV)) { 2617 AP.OutStreamer->EmitIntValue(0, Size); 2618 return; 2619 } 2620 2621 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2622 return emitGlobalConstantDataSequential(DL, CDS, AP); 2623 2624 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2625 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2626 2627 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2628 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2629 2630 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2631 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2632 // vectors). 2633 if (CE->getOpcode() == Instruction::BitCast) 2634 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2635 2636 if (Size > 8) { 2637 // If the constant expression's size is greater than 64-bits, then we have 2638 // to emit the value in chunks. Try to constant fold the value and emit it 2639 // that way. 2640 Constant *New = ConstantFoldConstant(CE, DL); 2641 if (New && New != CE) 2642 return emitGlobalConstantImpl(DL, New, AP); 2643 } 2644 } 2645 2646 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2647 return emitGlobalConstantVector(DL, V, AP); 2648 2649 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2650 // thread the streamer with EmitValue. 2651 const MCExpr *ME = AP.lowerConstant(CV); 2652 2653 // Since lowerConstant already folded and got rid of all IR pointer and 2654 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2655 // directly. 2656 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2657 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2658 2659 AP.OutStreamer->EmitValue(ME, Size); 2660 } 2661 2662 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2663 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2664 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2665 if (Size) 2666 emitGlobalConstantImpl(DL, CV, *this); 2667 else if (MAI->hasSubsectionsViaSymbols()) { 2668 // If the global has zero size, emit a single byte so that two labels don't 2669 // look like they are at the same location. 2670 OutStreamer->EmitIntValue(0, 1); 2671 } 2672 } 2673 2674 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2675 // Target doesn't support this yet! 2676 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2677 } 2678 2679 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2680 if (Offset > 0) 2681 OS << '+' << Offset; 2682 else if (Offset < 0) 2683 OS << Offset; 2684 } 2685 2686 //===----------------------------------------------------------------------===// 2687 // Symbol Lowering Routines. 2688 //===----------------------------------------------------------------------===// 2689 2690 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2691 return OutContext.createTempSymbol(Name, true); 2692 } 2693 2694 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2695 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2696 } 2697 2698 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2699 return MMI->getAddrLabelSymbol(BB); 2700 } 2701 2702 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2703 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2704 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) { 2705 const MachineConstantPoolEntry &CPE = 2706 MF->getConstantPool()->getConstants()[CPID]; 2707 if (!CPE.isMachineConstantPoolEntry()) { 2708 const DataLayout &DL = MF->getDataLayout(); 2709 SectionKind Kind = CPE.getSectionKind(&DL); 2710 const Constant *C = CPE.Val.ConstVal; 2711 unsigned Align = CPE.Alignment; 2712 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2713 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2714 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2715 if (Sym->isUndefined()) 2716 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2717 return Sym; 2718 } 2719 } 2720 } 2721 } 2722 2723 const DataLayout &DL = getDataLayout(); 2724 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2725 "CPI" + Twine(getFunctionNumber()) + "_" + 2726 Twine(CPID)); 2727 } 2728 2729 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2730 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2731 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2732 } 2733 2734 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2735 /// FIXME: privatize to AsmPrinter. 2736 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2737 const DataLayout &DL = getDataLayout(); 2738 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2739 Twine(getFunctionNumber()) + "_" + 2740 Twine(UID) + "_set_" + Twine(MBBID)); 2741 } 2742 2743 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2744 StringRef Suffix) const { 2745 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2746 } 2747 2748 /// Return the MCSymbol for the specified ExternalSymbol. 2749 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2750 SmallString<60> NameStr; 2751 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2752 return OutContext.getOrCreateSymbol(NameStr); 2753 } 2754 2755 /// PrintParentLoopComment - Print comments about parent loops of this one. 2756 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2757 unsigned FunctionNumber) { 2758 if (!Loop) return; 2759 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2760 OS.indent(Loop->getLoopDepth()*2) 2761 << "Parent Loop BB" << FunctionNumber << "_" 2762 << Loop->getHeader()->getNumber() 2763 << " Depth=" << Loop->getLoopDepth() << '\n'; 2764 } 2765 2766 /// PrintChildLoopComment - Print comments about child loops within 2767 /// the loop for this basic block, with nesting. 2768 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2769 unsigned FunctionNumber) { 2770 // Add child loop information 2771 for (const MachineLoop *CL : *Loop) { 2772 OS.indent(CL->getLoopDepth()*2) 2773 << "Child Loop BB" << FunctionNumber << "_" 2774 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2775 << '\n'; 2776 PrintChildLoopComment(OS, CL, FunctionNumber); 2777 } 2778 } 2779 2780 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2781 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2782 const MachineLoopInfo *LI, 2783 const AsmPrinter &AP) { 2784 // Add loop depth information 2785 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2786 if (!Loop) return; 2787 2788 MachineBasicBlock *Header = Loop->getHeader(); 2789 assert(Header && "No header for loop"); 2790 2791 // If this block is not a loop header, just print out what is the loop header 2792 // and return. 2793 if (Header != &MBB) { 2794 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2795 Twine(AP.getFunctionNumber())+"_" + 2796 Twine(Loop->getHeader()->getNumber())+ 2797 " Depth="+Twine(Loop->getLoopDepth())); 2798 return; 2799 } 2800 2801 // Otherwise, it is a loop header. Print out information about child and 2802 // parent loops. 2803 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2804 2805 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2806 2807 OS << "=>"; 2808 OS.indent(Loop->getLoopDepth()*2-2); 2809 2810 OS << "This "; 2811 if (Loop->empty()) 2812 OS << "Inner "; 2813 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2814 2815 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2816 } 2817 2818 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2819 MCCodePaddingContext &Context) const { 2820 assert(MF != nullptr && "Machine function must be valid"); 2821 Context.IsPaddingActive = !MF->hasInlineAsm() && 2822 !MF->getFunction().optForSize() && 2823 TM.getOptLevel() != CodeGenOpt::None; 2824 Context.IsBasicBlockReachableViaFallthrough = 2825 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2826 MBB.pred_end(); 2827 Context.IsBasicBlockReachableViaBranch = 2828 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2829 } 2830 2831 /// EmitBasicBlockStart - This method prints the label for the specified 2832 /// MachineBasicBlock, an alignment (if present) and a comment describing 2833 /// it if appropriate. 2834 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2835 // End the previous funclet and start a new one. 2836 if (MBB.isEHFuncletEntry()) { 2837 for (const HandlerInfo &HI : Handlers) { 2838 HI.Handler->endFunclet(); 2839 HI.Handler->beginFunclet(MBB); 2840 } 2841 } 2842 2843 // Emit an alignment directive for this block, if needed. 2844 if (unsigned Align = MBB.getAlignment()) 2845 EmitAlignment(Align); 2846 MCCodePaddingContext Context; 2847 setupCodePaddingContext(MBB, Context); 2848 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2849 2850 // If the block has its address taken, emit any labels that were used to 2851 // reference the block. It is possible that there is more than one label 2852 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2853 // the references were generated. 2854 if (MBB.hasAddressTaken()) { 2855 const BasicBlock *BB = MBB.getBasicBlock(); 2856 if (isVerbose()) 2857 OutStreamer->AddComment("Block address taken"); 2858 2859 // MBBs can have their address taken as part of CodeGen without having 2860 // their corresponding BB's address taken in IR 2861 if (BB->hasAddressTaken()) 2862 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2863 OutStreamer->EmitLabel(Sym); 2864 } 2865 2866 // Print some verbose block comments. 2867 if (isVerbose()) { 2868 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2869 if (BB->hasName()) { 2870 BB->printAsOperand(OutStreamer->GetCommentOS(), 2871 /*PrintType=*/false, BB->getModule()); 2872 OutStreamer->GetCommentOS() << '\n'; 2873 } 2874 } 2875 2876 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2877 emitBasicBlockLoopComments(MBB, MLI, *this); 2878 } 2879 2880 // Print the main label for the block. 2881 if (MBB.pred_empty() || 2882 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2883 if (isVerbose()) { 2884 // NOTE: Want this comment at start of line, don't emit with AddComment. 2885 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2886 false); 2887 } 2888 } else { 2889 OutStreamer->EmitLabel(MBB.getSymbol()); 2890 } 2891 } 2892 2893 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2894 MCCodePaddingContext Context; 2895 setupCodePaddingContext(MBB, Context); 2896 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2897 } 2898 2899 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2900 bool IsDefinition) const { 2901 MCSymbolAttr Attr = MCSA_Invalid; 2902 2903 switch (Visibility) { 2904 default: break; 2905 case GlobalValue::HiddenVisibility: 2906 if (IsDefinition) 2907 Attr = MAI->getHiddenVisibilityAttr(); 2908 else 2909 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2910 break; 2911 case GlobalValue::ProtectedVisibility: 2912 Attr = MAI->getProtectedVisibilityAttr(); 2913 break; 2914 } 2915 2916 if (Attr != MCSA_Invalid) 2917 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2918 } 2919 2920 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2921 /// exactly one predecessor and the control transfer mechanism between 2922 /// the predecessor and this block is a fall-through. 2923 bool AsmPrinter:: 2924 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2925 // If this is a landing pad, it isn't a fall through. If it has no preds, 2926 // then nothing falls through to it. 2927 if (MBB->isEHPad() || MBB->pred_empty()) 2928 return false; 2929 2930 // If there isn't exactly one predecessor, it can't be a fall through. 2931 if (MBB->pred_size() > 1) 2932 return false; 2933 2934 // The predecessor has to be immediately before this block. 2935 MachineBasicBlock *Pred = *MBB->pred_begin(); 2936 if (!Pred->isLayoutSuccessor(MBB)) 2937 return false; 2938 2939 // If the block is completely empty, then it definitely does fall through. 2940 if (Pred->empty()) 2941 return true; 2942 2943 // Check the terminators in the previous blocks 2944 for (const auto &MI : Pred->terminators()) { 2945 // If it is not a simple branch, we are in a table somewhere. 2946 if (!MI.isBranch() || MI.isIndirectBranch()) 2947 return false; 2948 2949 // If we are the operands of one of the branches, this is not a fall 2950 // through. Note that targets with delay slots will usually bundle 2951 // terminators with the delay slot instruction. 2952 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2953 if (OP->isJTI()) 2954 return false; 2955 if (OP->isMBB() && OP->getMBB() == MBB) 2956 return false; 2957 } 2958 } 2959 2960 return true; 2961 } 2962 2963 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2964 if (!S.usesMetadata()) 2965 return nullptr; 2966 2967 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2968 " stackmap formats, please see the documentation for a description of" 2969 " the default format. If you really need a custom serialized format," 2970 " please file a bug"); 2971 2972 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2973 gcp_map_type::iterator GCPI = GCMap.find(&S); 2974 if (GCPI != GCMap.end()) 2975 return GCPI->second.get(); 2976 2977 auto Name = S.getName(); 2978 2979 for (GCMetadataPrinterRegistry::iterator 2980 I = GCMetadataPrinterRegistry::begin(), 2981 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2982 if (Name == I->getName()) { 2983 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2984 GMP->S = &S; 2985 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2986 return IterBool.first->second.get(); 2987 } 2988 2989 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2990 } 2991 2992 /// Pin vtable to this file. 2993 AsmPrinterHandler::~AsmPrinterHandler() = default; 2994 2995 void AsmPrinterHandler::markFunctionEnd() {} 2996 2997 // In the binary's "xray_instr_map" section, an array of these function entries 2998 // describes each instrumentation point. When XRay patches your code, the index 2999 // into this table will be given to your handler as a patch point identifier. 3000 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3001 const MCSymbol *CurrentFnSym) const { 3002 Out->EmitSymbolValue(Sled, Bytes); 3003 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3004 auto Kind8 = static_cast<uint8_t>(Kind); 3005 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3006 Out->EmitBinaryData( 3007 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3008 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3009 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3010 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3011 Out->EmitZeros(Padding); 3012 } 3013 3014 void AsmPrinter::emitXRayTable() { 3015 if (Sleds.empty()) 3016 return; 3017 3018 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3019 const Function &F = MF->getFunction(); 3020 MCSection *InstMap = nullptr; 3021 MCSection *FnSledIndex = nullptr; 3022 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3023 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3024 assert(Associated != nullptr); 3025 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3026 std::string GroupName; 3027 if (F.hasComdat()) { 3028 Flags |= ELF::SHF_GROUP; 3029 GroupName = F.getComdat()->getName(); 3030 } 3031 3032 auto UniqueID = ++XRayFnUniqueID; 3033 InstMap = 3034 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3035 GroupName, UniqueID, Associated); 3036 FnSledIndex = 3037 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3038 GroupName, UniqueID, Associated); 3039 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3040 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3041 SectionKind::getReadOnlyWithRel()); 3042 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3043 SectionKind::getReadOnlyWithRel()); 3044 } else { 3045 llvm_unreachable("Unsupported target"); 3046 } 3047 3048 auto WordSizeBytes = MAI->getCodePointerSize(); 3049 3050 // Now we switch to the instrumentation map section. Because this is done 3051 // per-function, we are able to create an index entry that will represent the 3052 // range of sleds associated with a function. 3053 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3054 OutStreamer->SwitchSection(InstMap); 3055 OutStreamer->EmitLabel(SledsStart); 3056 for (const auto &Sled : Sleds) 3057 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3058 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3059 OutStreamer->EmitLabel(SledsEnd); 3060 3061 // We then emit a single entry in the index per function. We use the symbols 3062 // that bound the instrumentation map as the range for a specific function. 3063 // Each entry here will be 2 * word size aligned, as we're writing down two 3064 // pointers. This should work for both 32-bit and 64-bit platforms. 3065 OutStreamer->SwitchSection(FnSledIndex); 3066 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3067 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3068 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3069 OutStreamer->SwitchSection(PrevSection); 3070 Sleds.clear(); 3071 } 3072 3073 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3074 SledKind Kind, uint8_t Version) { 3075 const Function &F = MI.getMF()->getFunction(); 3076 auto Attr = F.getFnAttribute("function-instrument"); 3077 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3078 bool AlwaysInstrument = 3079 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3080 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3081 Kind = SledKind::LOG_ARGS_ENTER; 3082 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3083 AlwaysInstrument, &F, Version}); 3084 } 3085 3086 uint16_t AsmPrinter::getDwarfVersion() const { 3087 return OutStreamer->getContext().getDwarfVersion(); 3088 } 3089 3090 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3091 OutStreamer->getContext().setDwarfVersion(Version); 3092 } 3093