1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/RemarkStreamer.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCStreamer.h" 95 #include "llvm/MC/MCSubtargetInfo.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/MC/MCSymbolELF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/Compiler.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/Format.h" 108 #include "llvm/Support/MathExtras.h" 109 #include "llvm/Support/Path.h" 110 #include "llvm/Support/TargetRegistry.h" 111 #include "llvm/Support/Timer.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetLoweringObjectFile.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cinttypes> 119 #include <cstdint> 120 #include <iterator> 121 #include <limits> 122 #include <memory> 123 #include <string> 124 #include <utility> 125 #include <vector> 126 127 using namespace llvm; 128 129 #define DEBUG_TYPE "asm-printer" 130 131 static const char *const DWARFGroupName = "dwarf"; 132 static const char *const DWARFGroupDescription = "DWARF Emission"; 133 static const char *const DbgTimerName = "emit"; 134 static const char *const DbgTimerDescription = "Debug Info Emission"; 135 static const char *const EHTimerName = "write_exception"; 136 static const char *const EHTimerDescription = "DWARF Exception Writer"; 137 static const char *const CFGuardName = "Control Flow Guard"; 138 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 139 static const char *const CodeViewLineTablesGroupName = "linetables"; 140 static const char *const CodeViewLineTablesGroupDescription = 141 "CodeView Line Tables"; 142 143 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 144 145 static cl::opt<bool> EnableRemarksSection( 146 "remarks-section", 147 cl::desc("Emit a section containing remark diagnostics metadata"), 148 cl::init(false)); 149 150 char AsmPrinter::ID = 0; 151 152 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 153 154 static gcp_map_type &getGCMap(void *&P) { 155 if (!P) 156 P = new gcp_map_type(); 157 return *(gcp_map_type*)P; 158 } 159 160 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 161 /// value in log2 form. This rounds up to the preferred alignment if possible 162 /// and legal. 163 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 164 unsigned InBits = 0) { 165 unsigned NumBits = 0; 166 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 167 NumBits = DL.getPreferredAlignmentLog(GVar); 168 169 // If InBits is specified, round it to it. 170 if (InBits > NumBits) 171 NumBits = InBits; 172 173 // If the GV has a specified alignment, take it into account. 174 if (GV->getAlignment() == 0) 175 return NumBits; 176 177 unsigned GVAlign = Log2_32(GV->getAlignment()); 178 179 // If the GVAlign is larger than NumBits, or if we are required to obey 180 // NumBits because the GV has an assigned section, obey it. 181 if (GVAlign > NumBits || GV->hasSection()) 182 NumBits = GVAlign; 183 return NumBits; 184 } 185 186 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 187 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 188 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 189 VerboseAsm = OutStreamer->isVerboseAsm(); 190 } 191 192 AsmPrinter::~AsmPrinter() { 193 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 194 195 if (GCMetadataPrinters) { 196 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 197 198 delete &GCMap; 199 GCMetadataPrinters = nullptr; 200 } 201 } 202 203 bool AsmPrinter::isPositionIndependent() const { 204 return TM.isPositionIndependent(); 205 } 206 207 /// getFunctionNumber - Return a unique ID for the current function. 208 unsigned AsmPrinter::getFunctionNumber() const { 209 return MF->getFunctionNumber(); 210 } 211 212 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 213 return *TM.getObjFileLowering(); 214 } 215 216 const DataLayout &AsmPrinter::getDataLayout() const { 217 return MMI->getModule()->getDataLayout(); 218 } 219 220 // Do not use the cached DataLayout because some client use it without a Module 221 // (dsymutil, llvm-dwarfdump). 222 unsigned AsmPrinter::getPointerSize() const { 223 return TM.getPointerSize(0); // FIXME: Default address space 224 } 225 226 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 227 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 228 return MF->getSubtarget<MCSubtargetInfo>(); 229 } 230 231 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 232 S.EmitInstruction(Inst, getSubtargetInfo()); 233 } 234 235 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 236 assert(DD && "Dwarf debug file is not defined."); 237 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 238 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 239 } 240 241 /// getCurrentSection() - Return the current section we are emitting to. 242 const MCSection *AsmPrinter::getCurrentSection() const { 243 return OutStreamer->getCurrentSectionOnly(); 244 } 245 246 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 247 AU.setPreservesAll(); 248 MachineFunctionPass::getAnalysisUsage(AU); 249 AU.addRequired<MachineModuleInfo>(); 250 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 251 AU.addRequired<GCModuleInfo>(); 252 } 253 254 bool AsmPrinter::doInitialization(Module &M) { 255 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 256 257 // Initialize TargetLoweringObjectFile. 258 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 259 .Initialize(OutContext, TM); 260 261 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 262 .getModuleMetadata(M); 263 264 OutStreamer->InitSections(false); 265 266 // Emit the version-min deployment target directive if needed. 267 // 268 // FIXME: If we end up with a collection of these sorts of Darwin-specific 269 // or ELF-specific things, it may make sense to have a platform helper class 270 // that will work with the target helper class. For now keep it here, as the 271 // alternative is duplicated code in each of the target asm printers that 272 // use the directive, where it would need the same conditionalization 273 // anyway. 274 const Triple &Target = TM.getTargetTriple(); 275 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 276 277 // Allow the target to emit any magic that it wants at the start of the file. 278 EmitStartOfAsmFile(M); 279 280 // Very minimal debug info. It is ignored if we emit actual debug info. If we 281 // don't, this at least helps the user find where a global came from. 282 if (MAI->hasSingleParameterDotFile()) { 283 // .file "foo.c" 284 OutStreamer->EmitFileDirective( 285 llvm::sys::path::filename(M.getSourceFileName())); 286 } 287 288 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 289 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 290 for (auto &I : *MI) 291 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 292 MP->beginAssembly(M, *MI, *this); 293 294 // Emit module-level inline asm if it exists. 295 if (!M.getModuleInlineAsm().empty()) { 296 // We're at the module level. Construct MCSubtarget from the default CPU 297 // and target triple. 298 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 299 TM.getTargetTriple().str(), TM.getTargetCPU(), 300 TM.getTargetFeatureString())); 301 OutStreamer->AddComment("Start of file scope inline assembly"); 302 OutStreamer->AddBlankLine(); 303 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 304 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 305 OutStreamer->AddComment("End of file scope inline assembly"); 306 OutStreamer->AddBlankLine(); 307 } 308 309 if (MAI->doesSupportDebugInformation()) { 310 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 311 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 312 Handlers.emplace_back(llvm::make_unique<CodeViewDebug>(this), 313 DbgTimerName, DbgTimerDescription, 314 CodeViewLineTablesGroupName, 315 CodeViewLineTablesGroupDescription); 316 } 317 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 318 DD = new DwarfDebug(this, &M); 319 DD->beginModule(); 320 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 321 DbgTimerDescription, DWARFGroupName, 322 DWARFGroupDescription); 323 } 324 } 325 326 switch (MAI->getExceptionHandlingType()) { 327 case ExceptionHandling::SjLj: 328 case ExceptionHandling::DwarfCFI: 329 case ExceptionHandling::ARM: 330 isCFIMoveForDebugging = true; 331 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 332 break; 333 for (auto &F: M.getFunctionList()) { 334 // If the module contains any function with unwind data, 335 // .eh_frame has to be emitted. 336 // Ignore functions that won't get emitted. 337 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 338 isCFIMoveForDebugging = false; 339 break; 340 } 341 } 342 break; 343 default: 344 isCFIMoveForDebugging = false; 345 break; 346 } 347 348 EHStreamer *ES = nullptr; 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::None: 351 break; 352 case ExceptionHandling::SjLj: 353 case ExceptionHandling::DwarfCFI: 354 ES = new DwarfCFIException(this); 355 break; 356 case ExceptionHandling::ARM: 357 ES = new ARMException(this); 358 break; 359 case ExceptionHandling::WinEH: 360 switch (MAI->getWinEHEncodingType()) { 361 default: llvm_unreachable("unsupported unwinding information encoding"); 362 case WinEH::EncodingType::Invalid: 363 break; 364 case WinEH::EncodingType::X86: 365 case WinEH::EncodingType::Itanium: 366 ES = new WinException(this); 367 break; 368 } 369 break; 370 case ExceptionHandling::Wasm: 371 ES = new WasmException(this); 372 break; 373 } 374 if (ES) 375 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 376 EHTimerDescription, DWARFGroupName, 377 DWARFGroupDescription); 378 379 if (mdconst::extract_or_null<ConstantInt>( 380 MMI->getModule()->getModuleFlag("cfguardtable"))) 381 Handlers.emplace_back(llvm::make_unique<WinCFGuard>(this), CFGuardName, 382 CFGuardDescription, DWARFGroupName, 383 DWARFGroupDescription); 384 385 return false; 386 } 387 388 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 389 if (!MAI.hasWeakDefCanBeHiddenDirective()) 390 return false; 391 392 return GV->canBeOmittedFromSymbolTable(); 393 } 394 395 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 396 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 397 switch (Linkage) { 398 case GlobalValue::CommonLinkage: 399 case GlobalValue::LinkOnceAnyLinkage: 400 case GlobalValue::LinkOnceODRLinkage: 401 case GlobalValue::WeakAnyLinkage: 402 case GlobalValue::WeakODRLinkage: 403 if (MAI->hasWeakDefDirective()) { 404 // .globl _foo 405 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 406 407 if (!canBeHidden(GV, *MAI)) 408 // .weak_definition _foo 409 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 410 else 411 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 412 } else if (MAI->hasLinkOnceDirective()) { 413 // .globl _foo 414 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 415 //NOTE: linkonce is handled by the section the symbol was assigned to. 416 } else { 417 // .weak _foo 418 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 419 } 420 return; 421 case GlobalValue::ExternalLinkage: 422 // If external, declare as a global symbol: .globl _foo 423 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 424 return; 425 case GlobalValue::PrivateLinkage: 426 case GlobalValue::InternalLinkage: 427 return; 428 case GlobalValue::AppendingLinkage: 429 case GlobalValue::AvailableExternallyLinkage: 430 case GlobalValue::ExternalWeakLinkage: 431 llvm_unreachable("Should never emit this"); 432 } 433 llvm_unreachable("Unknown linkage type!"); 434 } 435 436 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 437 const GlobalValue *GV) const { 438 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 439 } 440 441 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 442 return TM.getSymbol(GV); 443 } 444 445 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 446 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 447 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 448 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 449 "No emulated TLS variables in the common section"); 450 451 // Never emit TLS variable xyz in emulated TLS model. 452 // The initialization value is in __emutls_t.xyz instead of xyz. 453 if (IsEmuTLSVar) 454 return; 455 456 if (GV->hasInitializer()) { 457 // Check to see if this is a special global used by LLVM, if so, emit it. 458 if (EmitSpecialLLVMGlobal(GV)) 459 return; 460 461 // Skip the emission of global equivalents. The symbol can be emitted later 462 // on by emitGlobalGOTEquivs in case it turns out to be needed. 463 if (GlobalGOTEquivs.count(getSymbol(GV))) 464 return; 465 466 if (isVerbose()) { 467 // When printing the control variable __emutls_v.*, 468 // we don't need to print the original TLS variable name. 469 GV->printAsOperand(OutStreamer->GetCommentOS(), 470 /*PrintType=*/false, GV->getParent()); 471 OutStreamer->GetCommentOS() << '\n'; 472 } 473 } 474 475 MCSymbol *GVSym = getSymbol(GV); 476 MCSymbol *EmittedSym = GVSym; 477 478 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 479 // attributes. 480 // GV's or GVSym's attributes will be used for the EmittedSym. 481 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 482 483 if (!GV->hasInitializer()) // External globals require no extra code. 484 return; 485 486 GVSym->redefineIfPossible(); 487 if (GVSym->isDefined() || GVSym->isVariable()) 488 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 489 "' is already defined"); 490 491 if (MAI->hasDotTypeDotSizeDirective()) 492 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 493 494 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 495 496 const DataLayout &DL = GV->getParent()->getDataLayout(); 497 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 498 499 // If the alignment is specified, we *must* obey it. Overaligning a global 500 // with a specified alignment is a prompt way to break globals emitted to 501 // sections and expected to be contiguous (e.g. ObjC metadata). 502 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 503 504 for (const HandlerInfo &HI : Handlers) { 505 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 506 HI.TimerGroupName, HI.TimerGroupDescription, 507 TimePassesIsEnabled); 508 HI.Handler->setSymbolSize(GVSym, Size); 509 } 510 511 // Handle common symbols 512 if (GVKind.isCommon()) { 513 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 514 unsigned Align = 1 << AlignLog; 515 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 516 Align = 0; 517 518 // .comm _foo, 42, 4 519 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 520 return; 521 } 522 523 // Determine to which section this global should be emitted. 524 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 525 526 // If we have a bss global going to a section that supports the 527 // zerofill directive, do so here. 528 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 529 TheSection->isVirtualSection()) { 530 if (Size == 0) 531 Size = 1; // zerofill of 0 bytes is undefined. 532 unsigned Align = 1 << AlignLog; 533 EmitLinkage(GV, GVSym); 534 // .zerofill __DATA, __bss, _foo, 400, 5 535 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 536 return; 537 } 538 539 // If this is a BSS local symbol and we are emitting in the BSS 540 // section use .lcomm/.comm directive. 541 if (GVKind.isBSSLocal() && 542 getObjFileLowering().getBSSSection() == TheSection) { 543 if (Size == 0) 544 Size = 1; // .comm Foo, 0 is undefined, avoid it. 545 unsigned Align = 1 << AlignLog; 546 547 // Use .lcomm only if it supports user-specified alignment. 548 // Otherwise, while it would still be correct to use .lcomm in some 549 // cases (e.g. when Align == 1), the external assembler might enfore 550 // some -unknown- default alignment behavior, which could cause 551 // spurious differences between external and integrated assembler. 552 // Prefer to simply fall back to .local / .comm in this case. 553 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 554 // .lcomm _foo, 42 555 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 556 return; 557 } 558 559 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 560 Align = 0; 561 562 // .local _foo 563 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 564 // .comm _foo, 42, 4 565 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 566 return; 567 } 568 569 // Handle thread local data for mach-o which requires us to output an 570 // additional structure of data and mangle the original symbol so that we 571 // can reference it later. 572 // 573 // TODO: This should become an "emit thread local global" method on TLOF. 574 // All of this macho specific stuff should be sunk down into TLOFMachO and 575 // stuff like "TLSExtraDataSection" should no longer be part of the parent 576 // TLOF class. This will also make it more obvious that stuff like 577 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 578 // specific code. 579 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 580 // Emit the .tbss symbol 581 MCSymbol *MangSym = 582 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 583 584 if (GVKind.isThreadBSS()) { 585 TheSection = getObjFileLowering().getTLSBSSSection(); 586 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 587 } else if (GVKind.isThreadData()) { 588 OutStreamer->SwitchSection(TheSection); 589 590 EmitAlignment(AlignLog, GV); 591 OutStreamer->EmitLabel(MangSym); 592 593 EmitGlobalConstant(GV->getParent()->getDataLayout(), 594 GV->getInitializer()); 595 } 596 597 OutStreamer->AddBlankLine(); 598 599 // Emit the variable struct for the runtime. 600 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 601 602 OutStreamer->SwitchSection(TLVSect); 603 // Emit the linkage here. 604 EmitLinkage(GV, GVSym); 605 OutStreamer->EmitLabel(GVSym); 606 607 // Three pointers in size: 608 // - __tlv_bootstrap - used to make sure support exists 609 // - spare pointer, used when mapped by the runtime 610 // - pointer to mangled symbol above with initializer 611 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 612 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 613 PtrSize); 614 OutStreamer->EmitIntValue(0, PtrSize); 615 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 616 617 OutStreamer->AddBlankLine(); 618 return; 619 } 620 621 MCSymbol *EmittedInitSym = GVSym; 622 623 OutStreamer->SwitchSection(TheSection); 624 625 EmitLinkage(GV, EmittedInitSym); 626 EmitAlignment(AlignLog, GV); 627 628 OutStreamer->EmitLabel(EmittedInitSym); 629 630 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 631 632 if (MAI->hasDotTypeDotSizeDirective()) 633 // .size foo, 42 634 OutStreamer->emitELFSize(EmittedInitSym, 635 MCConstantExpr::create(Size, OutContext)); 636 637 OutStreamer->AddBlankLine(); 638 } 639 640 /// Emit the directive and value for debug thread local expression 641 /// 642 /// \p Value - The value to emit. 643 /// \p Size - The size of the integer (in bytes) to emit. 644 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 645 OutStreamer->EmitValue(Value, Size); 646 } 647 648 /// EmitFunctionHeader - This method emits the header for the current 649 /// function. 650 void AsmPrinter::EmitFunctionHeader() { 651 const Function &F = MF->getFunction(); 652 653 if (isVerbose()) 654 OutStreamer->GetCommentOS() 655 << "-- Begin function " 656 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 657 658 // Print out constants referenced by the function 659 EmitConstantPool(); 660 661 // Print the 'header' of function. 662 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 663 EmitVisibility(CurrentFnSym, F.getVisibility()); 664 665 EmitLinkage(&F, CurrentFnSym); 666 if (MAI->hasFunctionAlignment()) 667 EmitAlignment(MF->getAlignment(), &F); 668 669 if (MAI->hasDotTypeDotSizeDirective()) 670 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 671 672 if (F.hasFnAttribute(Attribute::Cold)) 673 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 674 675 if (isVerbose()) { 676 F.printAsOperand(OutStreamer->GetCommentOS(), 677 /*PrintType=*/false, F.getParent()); 678 OutStreamer->GetCommentOS() << '\n'; 679 } 680 681 // Emit the prefix data. 682 if (F.hasPrefixData()) { 683 if (MAI->hasSubsectionsViaSymbols()) { 684 // Preserving prefix data on platforms which use subsections-via-symbols 685 // is a bit tricky. Here we introduce a symbol for the prefix data 686 // and use the .alt_entry attribute to mark the function's real entry point 687 // as an alternative entry point to the prefix-data symbol. 688 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 689 OutStreamer->EmitLabel(PrefixSym); 690 691 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 692 693 // Emit an .alt_entry directive for the actual function symbol. 694 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 695 } else { 696 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 697 } 698 } 699 700 // Emit the CurrentFnSym. This is a virtual function to allow targets to 701 // do their wild and crazy things as required. 702 EmitFunctionEntryLabel(); 703 704 // If the function had address-taken blocks that got deleted, then we have 705 // references to the dangling symbols. Emit them at the start of the function 706 // so that we don't get references to undefined symbols. 707 std::vector<MCSymbol*> DeadBlockSyms; 708 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 709 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 710 OutStreamer->AddComment("Address taken block that was later removed"); 711 OutStreamer->EmitLabel(DeadBlockSyms[i]); 712 } 713 714 if (CurrentFnBegin) { 715 if (MAI->useAssignmentForEHBegin()) { 716 MCSymbol *CurPos = OutContext.createTempSymbol(); 717 OutStreamer->EmitLabel(CurPos); 718 OutStreamer->EmitAssignment(CurrentFnBegin, 719 MCSymbolRefExpr::create(CurPos, OutContext)); 720 } else { 721 OutStreamer->EmitLabel(CurrentFnBegin); 722 } 723 } 724 725 // Emit pre-function debug and/or EH information. 726 for (const HandlerInfo &HI : Handlers) { 727 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 728 HI.TimerGroupDescription, TimePassesIsEnabled); 729 HI.Handler->beginFunction(MF); 730 } 731 732 // Emit the prologue data. 733 if (F.hasPrologueData()) 734 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 735 } 736 737 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 738 /// function. This can be overridden by targets as required to do custom stuff. 739 void AsmPrinter::EmitFunctionEntryLabel() { 740 CurrentFnSym->redefineIfPossible(); 741 742 // The function label could have already been emitted if two symbols end up 743 // conflicting due to asm renaming. Detect this and emit an error. 744 if (CurrentFnSym->isVariable()) 745 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 746 "' is a protected alias"); 747 if (CurrentFnSym->isDefined()) 748 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 749 "' label emitted multiple times to assembly file"); 750 751 return OutStreamer->EmitLabel(CurrentFnSym); 752 } 753 754 /// emitComments - Pretty-print comments for instructions. 755 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 756 const MachineFunction *MF = MI.getMF(); 757 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 758 759 // Check for spills and reloads 760 761 // We assume a single instruction only has a spill or reload, not 762 // both. 763 Optional<unsigned> Size; 764 if ((Size = MI.getRestoreSize(TII))) { 765 CommentOS << *Size << "-byte Reload\n"; 766 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 767 if (*Size) 768 CommentOS << *Size << "-byte Folded Reload\n"; 769 } else if ((Size = MI.getSpillSize(TII))) { 770 CommentOS << *Size << "-byte Spill\n"; 771 } else if ((Size = MI.getFoldedSpillSize(TII))) { 772 if (*Size) 773 CommentOS << *Size << "-byte Folded Spill\n"; 774 } 775 776 // Check for spill-induced copies 777 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 778 CommentOS << " Reload Reuse\n"; 779 } 780 781 /// emitImplicitDef - This method emits the specified machine instruction 782 /// that is an implicit def. 783 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 784 unsigned RegNo = MI->getOperand(0).getReg(); 785 786 SmallString<128> Str; 787 raw_svector_ostream OS(Str); 788 OS << "implicit-def: " 789 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 790 791 OutStreamer->AddComment(OS.str()); 792 OutStreamer->AddBlankLine(); 793 } 794 795 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 796 std::string Str; 797 raw_string_ostream OS(Str); 798 OS << "kill:"; 799 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 800 const MachineOperand &Op = MI->getOperand(i); 801 assert(Op.isReg() && "KILL instruction must have only register operands"); 802 OS << ' ' << (Op.isDef() ? "def " : "killed ") 803 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 804 } 805 AP.OutStreamer->AddComment(OS.str()); 806 AP.OutStreamer->AddBlankLine(); 807 } 808 809 /// emitDebugValueComment - This method handles the target-independent form 810 /// of DBG_VALUE, returning true if it was able to do so. A false return 811 /// means the target will need to handle MI in EmitInstruction. 812 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 813 // This code handles only the 4-operand target-independent form. 814 if (MI->getNumOperands() != 4) 815 return false; 816 817 SmallString<128> Str; 818 raw_svector_ostream OS(Str); 819 OS << "DEBUG_VALUE: "; 820 821 const DILocalVariable *V = MI->getDebugVariable(); 822 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 823 StringRef Name = SP->getName(); 824 if (!Name.empty()) 825 OS << Name << ":"; 826 } 827 OS << V->getName(); 828 OS << " <- "; 829 830 // The second operand is only an offset if it's an immediate. 831 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 832 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 833 const DIExpression *Expr = MI->getDebugExpression(); 834 if (Expr->getNumElements()) { 835 OS << '['; 836 bool NeedSep = false; 837 for (auto Op : Expr->expr_ops()) { 838 if (NeedSep) 839 OS << ", "; 840 else 841 NeedSep = true; 842 OS << dwarf::OperationEncodingString(Op.getOp()); 843 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 844 OS << ' ' << Op.getArg(I); 845 } 846 OS << "] "; 847 } 848 849 // Register or immediate value. Register 0 means undef. 850 if (MI->getOperand(0).isFPImm()) { 851 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 852 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 853 OS << (double)APF.convertToFloat(); 854 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 855 OS << APF.convertToDouble(); 856 } else { 857 // There is no good way to print long double. Convert a copy to 858 // double. Ah well, it's only a comment. 859 bool ignored; 860 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 861 &ignored); 862 OS << "(long double) " << APF.convertToDouble(); 863 } 864 } else if (MI->getOperand(0).isImm()) { 865 OS << MI->getOperand(0).getImm(); 866 } else if (MI->getOperand(0).isCImm()) { 867 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 868 } else { 869 unsigned Reg; 870 if (MI->getOperand(0).isReg()) { 871 Reg = MI->getOperand(0).getReg(); 872 } else { 873 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 874 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 875 Offset += TFI->getFrameIndexReference(*AP.MF, 876 MI->getOperand(0).getIndex(), Reg); 877 MemLoc = true; 878 } 879 if (Reg == 0) { 880 // Suppress offset, it is not meaningful here. 881 OS << "undef"; 882 // NOTE: Want this comment at start of line, don't emit with AddComment. 883 AP.OutStreamer->emitRawComment(OS.str()); 884 return true; 885 } 886 if (MemLoc) 887 OS << '['; 888 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 889 } 890 891 if (MemLoc) 892 OS << '+' << Offset << ']'; 893 894 // NOTE: Want this comment at start of line, don't emit with AddComment. 895 AP.OutStreamer->emitRawComment(OS.str()); 896 return true; 897 } 898 899 /// This method handles the target-independent form of DBG_LABEL, returning 900 /// true if it was able to do so. A false return means the target will need 901 /// to handle MI in EmitInstruction. 902 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 903 if (MI->getNumOperands() != 1) 904 return false; 905 906 SmallString<128> Str; 907 raw_svector_ostream OS(Str); 908 OS << "DEBUG_LABEL: "; 909 910 const DILabel *V = MI->getDebugLabel(); 911 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 912 StringRef Name = SP->getName(); 913 if (!Name.empty()) 914 OS << Name << ":"; 915 } 916 OS << V->getName(); 917 918 // NOTE: Want this comment at start of line, don't emit with AddComment. 919 AP.OutStreamer->emitRawComment(OS.str()); 920 return true; 921 } 922 923 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 924 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 925 MF->getFunction().needsUnwindTableEntry()) 926 return CFI_M_EH; 927 928 if (MMI->hasDebugInfo()) 929 return CFI_M_Debug; 930 931 return CFI_M_None; 932 } 933 934 bool AsmPrinter::needsSEHMoves() { 935 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 936 } 937 938 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 939 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 940 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 941 ExceptionHandlingType != ExceptionHandling::ARM) 942 return; 943 944 if (needsCFIMoves() == CFI_M_None) 945 return; 946 947 // If there is no "real" instruction following this CFI instruction, skip 948 // emitting it; it would be beyond the end of the function's FDE range. 949 auto *MBB = MI.getParent(); 950 auto I = std::next(MI.getIterator()); 951 while (I != MBB->end() && I->isTransient()) 952 ++I; 953 if (I == MBB->instr_end() && 954 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 955 return; 956 957 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 958 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 959 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 960 emitCFIInstruction(CFI); 961 } 962 963 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 964 // The operands are the MCSymbol and the frame offset of the allocation. 965 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 966 int FrameOffset = MI.getOperand(1).getImm(); 967 968 // Emit a symbol assignment. 969 OutStreamer->EmitAssignment(FrameAllocSym, 970 MCConstantExpr::create(FrameOffset, OutContext)); 971 } 972 973 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 974 if (!MF.getTarget().Options.EmitStackSizeSection) 975 return; 976 977 MCSection *StackSizeSection = 978 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 979 if (!StackSizeSection) 980 return; 981 982 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 983 // Don't emit functions with dynamic stack allocations. 984 if (FrameInfo.hasVarSizedObjects()) 985 return; 986 987 OutStreamer->PushSection(); 988 OutStreamer->SwitchSection(StackSizeSection); 989 990 const MCSymbol *FunctionSymbol = getFunctionBegin(); 991 uint64_t StackSize = FrameInfo.getStackSize(); 992 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 993 OutStreamer->EmitULEB128IntValue(StackSize); 994 995 OutStreamer->PopSection(); 996 } 997 998 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 999 MachineModuleInfo *MMI) { 1000 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1001 return true; 1002 1003 // We might emit an EH table that uses function begin and end labels even if 1004 // we don't have any landingpads. 1005 if (!MF.getFunction().hasPersonalityFn()) 1006 return false; 1007 return !isNoOpWithoutInvoke( 1008 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1009 } 1010 1011 /// EmitFunctionBody - This method emits the body and trailer for a 1012 /// function. 1013 void AsmPrinter::EmitFunctionBody() { 1014 EmitFunctionHeader(); 1015 1016 // Emit target-specific gunk before the function body. 1017 EmitFunctionBodyStart(); 1018 1019 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1020 1021 if (isVerbose()) { 1022 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1023 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1024 if (!MDT) { 1025 OwnedMDT = make_unique<MachineDominatorTree>(); 1026 OwnedMDT->getBase().recalculate(*MF); 1027 MDT = OwnedMDT.get(); 1028 } 1029 1030 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1031 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1032 if (!MLI) { 1033 OwnedMLI = make_unique<MachineLoopInfo>(); 1034 OwnedMLI->getBase().analyze(MDT->getBase()); 1035 MLI = OwnedMLI.get(); 1036 } 1037 } 1038 1039 // Print out code for the function. 1040 bool HasAnyRealCode = false; 1041 int NumInstsInFunction = 0; 1042 for (auto &MBB : *MF) { 1043 // Print a label for the basic block. 1044 EmitBasicBlockStart(MBB); 1045 for (auto &MI : MBB) { 1046 // Print the assembly for the instruction. 1047 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1048 !MI.isDebugInstr()) { 1049 HasAnyRealCode = true; 1050 ++NumInstsInFunction; 1051 } 1052 1053 // If there is a pre-instruction symbol, emit a label for it here. 1054 if (MCSymbol *S = MI.getPreInstrSymbol()) 1055 OutStreamer->EmitLabel(S); 1056 1057 if (ShouldPrintDebugScopes) { 1058 for (const HandlerInfo &HI : Handlers) { 1059 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1060 HI.TimerGroupName, HI.TimerGroupDescription, 1061 TimePassesIsEnabled); 1062 HI.Handler->beginInstruction(&MI); 1063 } 1064 } 1065 1066 if (isVerbose()) 1067 emitComments(MI, OutStreamer->GetCommentOS()); 1068 1069 switch (MI.getOpcode()) { 1070 case TargetOpcode::CFI_INSTRUCTION: 1071 emitCFIInstruction(MI); 1072 break; 1073 case TargetOpcode::LOCAL_ESCAPE: 1074 emitFrameAlloc(MI); 1075 break; 1076 case TargetOpcode::EH_LABEL: 1077 case TargetOpcode::GC_LABEL: 1078 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1079 break; 1080 case TargetOpcode::INLINEASM: 1081 case TargetOpcode::INLINEASM_BR: 1082 EmitInlineAsm(&MI); 1083 break; 1084 case TargetOpcode::DBG_VALUE: 1085 if (isVerbose()) { 1086 if (!emitDebugValueComment(&MI, *this)) 1087 EmitInstruction(&MI); 1088 } 1089 break; 1090 case TargetOpcode::DBG_LABEL: 1091 if (isVerbose()) { 1092 if (!emitDebugLabelComment(&MI, *this)) 1093 EmitInstruction(&MI); 1094 } 1095 break; 1096 case TargetOpcode::IMPLICIT_DEF: 1097 if (isVerbose()) emitImplicitDef(&MI); 1098 break; 1099 case TargetOpcode::KILL: 1100 if (isVerbose()) emitKill(&MI, *this); 1101 break; 1102 default: 1103 EmitInstruction(&MI); 1104 break; 1105 } 1106 1107 // If there is a post-instruction symbol, emit a label for it here. 1108 if (MCSymbol *S = MI.getPostInstrSymbol()) 1109 OutStreamer->EmitLabel(S); 1110 1111 if (ShouldPrintDebugScopes) { 1112 for (const HandlerInfo &HI : Handlers) { 1113 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1114 HI.TimerGroupName, HI.TimerGroupDescription, 1115 TimePassesIsEnabled); 1116 HI.Handler->endInstruction(); 1117 } 1118 } 1119 } 1120 1121 EmitBasicBlockEnd(MBB); 1122 } 1123 1124 EmittedInsts += NumInstsInFunction; 1125 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1126 MF->getFunction().getSubprogram(), 1127 &MF->front()); 1128 R << ore::NV("NumInstructions", NumInstsInFunction) 1129 << " instructions in function"; 1130 ORE->emit(R); 1131 1132 // If the function is empty and the object file uses .subsections_via_symbols, 1133 // then we need to emit *something* to the function body to prevent the 1134 // labels from collapsing together. Just emit a noop. 1135 // Similarly, don't emit empty functions on Windows either. It can lead to 1136 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1137 // after linking, causing the kernel not to load the binary: 1138 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1139 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1140 const Triple &TT = TM.getTargetTriple(); 1141 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1142 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1143 MCInst Noop; 1144 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1145 1146 // Targets can opt-out of emitting the noop here by leaving the opcode 1147 // unspecified. 1148 if (Noop.getOpcode()) { 1149 OutStreamer->AddComment("avoids zero-length function"); 1150 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1151 } 1152 } 1153 1154 const Function &F = MF->getFunction(); 1155 for (const auto &BB : F) { 1156 if (!BB.hasAddressTaken()) 1157 continue; 1158 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1159 if (Sym->isDefined()) 1160 continue; 1161 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1162 OutStreamer->EmitLabel(Sym); 1163 } 1164 1165 // Emit target-specific gunk after the function body. 1166 EmitFunctionBodyEnd(); 1167 1168 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1169 MAI->hasDotTypeDotSizeDirective()) { 1170 // Create a symbol for the end of function. 1171 CurrentFnEnd = createTempSymbol("func_end"); 1172 OutStreamer->EmitLabel(CurrentFnEnd); 1173 } 1174 1175 // If the target wants a .size directive for the size of the function, emit 1176 // it. 1177 if (MAI->hasDotTypeDotSizeDirective()) { 1178 // We can get the size as difference between the function label and the 1179 // temp label. 1180 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1181 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1182 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1183 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1184 } 1185 1186 for (const HandlerInfo &HI : Handlers) { 1187 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1188 HI.TimerGroupDescription, TimePassesIsEnabled); 1189 HI.Handler->markFunctionEnd(); 1190 } 1191 1192 // Print out jump tables referenced by the function. 1193 EmitJumpTableInfo(); 1194 1195 // Emit post-function debug and/or EH information. 1196 for (const HandlerInfo &HI : Handlers) { 1197 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1198 HI.TimerGroupDescription, TimePassesIsEnabled); 1199 HI.Handler->endFunction(MF); 1200 } 1201 1202 // Emit section containing stack size metadata. 1203 emitStackSizeSection(*MF); 1204 1205 if (isVerbose()) 1206 OutStreamer->GetCommentOS() << "-- End function\n"; 1207 1208 OutStreamer->AddBlankLine(); 1209 } 1210 1211 /// Compute the number of Global Variables that uses a Constant. 1212 static unsigned getNumGlobalVariableUses(const Constant *C) { 1213 if (!C) 1214 return 0; 1215 1216 if (isa<GlobalVariable>(C)) 1217 return 1; 1218 1219 unsigned NumUses = 0; 1220 for (auto *CU : C->users()) 1221 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1222 1223 return NumUses; 1224 } 1225 1226 /// Only consider global GOT equivalents if at least one user is a 1227 /// cstexpr inside an initializer of another global variables. Also, don't 1228 /// handle cstexpr inside instructions. During global variable emission, 1229 /// candidates are skipped and are emitted later in case at least one cstexpr 1230 /// isn't replaced by a PC relative GOT entry access. 1231 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1232 unsigned &NumGOTEquivUsers) { 1233 // Global GOT equivalents are unnamed private globals with a constant 1234 // pointer initializer to another global symbol. They must point to a 1235 // GlobalVariable or Function, i.e., as GlobalValue. 1236 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1237 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1238 !isa<GlobalValue>(GV->getOperand(0))) 1239 return false; 1240 1241 // To be a got equivalent, at least one of its users need to be a constant 1242 // expression used by another global variable. 1243 for (auto *U : GV->users()) 1244 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1245 1246 return NumGOTEquivUsers > 0; 1247 } 1248 1249 /// Unnamed constant global variables solely contaning a pointer to 1250 /// another globals variable is equivalent to a GOT table entry; it contains the 1251 /// the address of another symbol. Optimize it and replace accesses to these 1252 /// "GOT equivalents" by using the GOT entry for the final global instead. 1253 /// Compute GOT equivalent candidates among all global variables to avoid 1254 /// emitting them if possible later on, after it use is replaced by a GOT entry 1255 /// access. 1256 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1257 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1258 return; 1259 1260 for (const auto &G : M.globals()) { 1261 unsigned NumGOTEquivUsers = 0; 1262 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1263 continue; 1264 1265 const MCSymbol *GOTEquivSym = getSymbol(&G); 1266 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1267 } 1268 } 1269 1270 /// Constant expressions using GOT equivalent globals may not be eligible 1271 /// for PC relative GOT entry conversion, in such cases we need to emit such 1272 /// globals we previously omitted in EmitGlobalVariable. 1273 void AsmPrinter::emitGlobalGOTEquivs() { 1274 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1275 return; 1276 1277 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1278 for (auto &I : GlobalGOTEquivs) { 1279 const GlobalVariable *GV = I.second.first; 1280 unsigned Cnt = I.second.second; 1281 if (Cnt) 1282 FailedCandidates.push_back(GV); 1283 } 1284 GlobalGOTEquivs.clear(); 1285 1286 for (auto *GV : FailedCandidates) 1287 EmitGlobalVariable(GV); 1288 } 1289 1290 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1291 const GlobalIndirectSymbol& GIS) { 1292 MCSymbol *Name = getSymbol(&GIS); 1293 1294 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1295 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1296 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1297 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1298 else 1299 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1300 1301 bool IsFunction = GIS.getType()->getPointerElementType()->isFunctionTy(); 1302 1303 // Treat bitcasts of functions as functions also. This is important at least 1304 // on WebAssembly where object and function addresses can't alias each other. 1305 if (!IsFunction) 1306 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1307 if (CE->getOpcode() == Instruction::BitCast) 1308 IsFunction = 1309 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1310 1311 // Set the symbol type to function if the alias has a function type. 1312 // This affects codegen when the aliasee is not a function. 1313 if (IsFunction) { 1314 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1315 if (isa<GlobalIFunc>(GIS)) 1316 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1317 } 1318 1319 EmitVisibility(Name, GIS.getVisibility()); 1320 1321 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1322 1323 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1324 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1325 1326 // Emit the directives as assignments aka .set: 1327 OutStreamer->EmitAssignment(Name, Expr); 1328 1329 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1330 // If the aliasee does not correspond to a symbol in the output, i.e. the 1331 // alias is not of an object or the aliased object is private, then set the 1332 // size of the alias symbol from the type of the alias. We don't do this in 1333 // other situations as the alias and aliasee having differing types but same 1334 // size may be intentional. 1335 const GlobalObject *BaseObject = GA->getBaseObject(); 1336 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1337 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1338 const DataLayout &DL = M.getDataLayout(); 1339 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1340 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1341 } 1342 } 1343 } 1344 1345 void AsmPrinter::emitRemarksSection(Module &M) { 1346 RemarkStreamer *RS = M.getContext().getRemarkStreamer(); 1347 if (!RS) 1348 return; 1349 1350 // Switch to the right section: .remarks/__remarks. 1351 MCSection *RemarksSection = 1352 OutContext.getObjectFileInfo()->getRemarksSection(); 1353 OutStreamer->SwitchSection(RemarksSection); 1354 1355 // Emit the magic number. 1356 OutStreamer->EmitBytes(remarks::Magic); 1357 // Explicitly emit a '\0'. 1358 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1359 1360 // Emit the version number: little-endian uint64_t. 1361 // The version number is located at the offset 0x0 in the section. 1362 std::array<char, 8> Version; 1363 support::endian::write64le(Version.data(), remarks::Version); 1364 OutStreamer->EmitBinaryData(StringRef(Version.data(), Version.size())); 1365 1366 // Emit the string table in the section. 1367 // Note: we need to use the streamer here to emit it in the section. We can't 1368 // just use the serialize function with a raw_ostream because of the way 1369 // MCStreamers work. 1370 const remarks::StringTable &StrTab = RS->getStringTable(); 1371 std::vector<StringRef> StrTabStrings = StrTab.serialize(); 1372 uint64_t StrTabSize = StrTab.SerializedSize; 1373 // Emit the total size of the string table (the size itself excluded): 1374 // little-endian uint64_t. 1375 // The total size is located after the version number. 1376 std::array<char, 8> StrTabSizeBuf; 1377 support::endian::write64le(StrTabSizeBuf.data(), StrTabSize); 1378 OutStreamer->EmitBinaryData( 1379 StringRef(StrTabSizeBuf.data(), StrTabSizeBuf.size())); 1380 // Emit a list of null-terminated strings. 1381 // Note: the order is important here: the ID used in the remarks corresponds 1382 // to the position of the string in the section. 1383 for (StringRef Str : StrTabStrings) { 1384 OutStreamer->EmitBytes(Str); 1385 // Explicitly emit a '\0'. 1386 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1387 } 1388 1389 // Emit the null-terminated absolute path to the remark file. 1390 // The path is located at the offset 0x4 in the section. 1391 StringRef FilenameRef = RS->getFilename(); 1392 SmallString<128> Filename = FilenameRef; 1393 sys::fs::make_absolute(Filename); 1394 assert(!Filename.empty() && "The filename can't be empty."); 1395 OutStreamer->EmitBytes(Filename); 1396 // Explicitly emit a '\0'. 1397 OutStreamer->EmitIntValue(/*Value=*/0, /*Size=*/1); 1398 } 1399 1400 bool AsmPrinter::doFinalization(Module &M) { 1401 // Set the MachineFunction to nullptr so that we can catch attempted 1402 // accesses to MF specific features at the module level and so that 1403 // we can conditionalize accesses based on whether or not it is nullptr. 1404 MF = nullptr; 1405 1406 // Gather all GOT equivalent globals in the module. We really need two 1407 // passes over the globals: one to compute and another to avoid its emission 1408 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1409 // where the got equivalent shows up before its use. 1410 computeGlobalGOTEquivs(M); 1411 1412 // Emit global variables. 1413 for (const auto &G : M.globals()) 1414 EmitGlobalVariable(&G); 1415 1416 // Emit remaining GOT equivalent globals. 1417 emitGlobalGOTEquivs(); 1418 1419 // Emit visibility info for declarations 1420 for (const Function &F : M) { 1421 if (!F.isDeclarationForLinker()) 1422 continue; 1423 GlobalValue::VisibilityTypes V = F.getVisibility(); 1424 if (V == GlobalValue::DefaultVisibility) 1425 continue; 1426 1427 MCSymbol *Name = getSymbol(&F); 1428 EmitVisibility(Name, V, false); 1429 } 1430 1431 // Emit the remarks section contents. 1432 // FIXME: Figure out when is the safest time to emit this section. It should 1433 // not come after debug info. 1434 if (EnableRemarksSection) 1435 emitRemarksSection(M); 1436 1437 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1438 1439 TLOF.emitModuleMetadata(*OutStreamer, M); 1440 1441 if (TM.getTargetTriple().isOSBinFormatELF()) { 1442 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1443 1444 // Output stubs for external and common global variables. 1445 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1446 if (!Stubs.empty()) { 1447 OutStreamer->SwitchSection(TLOF.getDataSection()); 1448 const DataLayout &DL = M.getDataLayout(); 1449 1450 EmitAlignment(Log2_32(DL.getPointerSize())); 1451 for (const auto &Stub : Stubs) { 1452 OutStreamer->EmitLabel(Stub.first); 1453 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1454 DL.getPointerSize()); 1455 } 1456 } 1457 } 1458 1459 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1460 MachineModuleInfoCOFF &MMICOFF = 1461 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1462 1463 // Output stubs for external and common global variables. 1464 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1465 if (!Stubs.empty()) { 1466 const DataLayout &DL = M.getDataLayout(); 1467 1468 for (const auto &Stub : Stubs) { 1469 SmallString<256> SectionName = StringRef(".rdata$"); 1470 SectionName += Stub.first->getName(); 1471 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1472 SectionName, 1473 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1474 COFF::IMAGE_SCN_LNK_COMDAT, 1475 SectionKind::getReadOnly(), Stub.first->getName(), 1476 COFF::IMAGE_COMDAT_SELECT_ANY)); 1477 EmitAlignment(Log2_32(DL.getPointerSize())); 1478 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1479 OutStreamer->EmitLabel(Stub.first); 1480 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1481 DL.getPointerSize()); 1482 } 1483 } 1484 } 1485 1486 // Finalize debug and EH information. 1487 for (const HandlerInfo &HI : Handlers) { 1488 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1489 HI.TimerGroupDescription, TimePassesIsEnabled); 1490 HI.Handler->endModule(); 1491 } 1492 Handlers.clear(); 1493 DD = nullptr; 1494 1495 // If the target wants to know about weak references, print them all. 1496 if (MAI->getWeakRefDirective()) { 1497 // FIXME: This is not lazy, it would be nice to only print weak references 1498 // to stuff that is actually used. Note that doing so would require targets 1499 // to notice uses in operands (due to constant exprs etc). This should 1500 // happen with the MC stuff eventually. 1501 1502 // Print out module-level global objects here. 1503 for (const auto &GO : M.global_objects()) { 1504 if (!GO.hasExternalWeakLinkage()) 1505 continue; 1506 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1507 } 1508 } 1509 1510 OutStreamer->AddBlankLine(); 1511 1512 // Print aliases in topological order, that is, for each alias a = b, 1513 // b must be printed before a. 1514 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1515 // such an order to generate correct TOC information. 1516 SmallVector<const GlobalAlias *, 16> AliasStack; 1517 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1518 for (const auto &Alias : M.aliases()) { 1519 for (const GlobalAlias *Cur = &Alias; Cur; 1520 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1521 if (!AliasVisited.insert(Cur).second) 1522 break; 1523 AliasStack.push_back(Cur); 1524 } 1525 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1526 emitGlobalIndirectSymbol(M, *AncestorAlias); 1527 AliasStack.clear(); 1528 } 1529 for (const auto &IFunc : M.ifuncs()) 1530 emitGlobalIndirectSymbol(M, IFunc); 1531 1532 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1533 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1534 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1535 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1536 MP->finishAssembly(M, *MI, *this); 1537 1538 // Emit llvm.ident metadata in an '.ident' directive. 1539 EmitModuleIdents(M); 1540 1541 // Emit bytes for llvm.commandline metadata. 1542 EmitModuleCommandLines(M); 1543 1544 // Emit __morestack address if needed for indirect calls. 1545 if (MMI->usesMorestackAddr()) { 1546 unsigned Align = 1; 1547 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1548 getDataLayout(), SectionKind::getReadOnly(), 1549 /*C=*/nullptr, Align); 1550 OutStreamer->SwitchSection(ReadOnlySection); 1551 1552 MCSymbol *AddrSymbol = 1553 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1554 OutStreamer->EmitLabel(AddrSymbol); 1555 1556 unsigned PtrSize = MAI->getCodePointerSize(); 1557 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1558 PtrSize); 1559 } 1560 1561 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1562 // split-stack is used. 1563 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1564 OutStreamer->SwitchSection( 1565 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1566 if (MMI->hasNosplitStack()) 1567 OutStreamer->SwitchSection( 1568 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1569 } 1570 1571 // If we don't have any trampolines, then we don't require stack memory 1572 // to be executable. Some targets have a directive to declare this. 1573 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1574 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1575 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1576 OutStreamer->SwitchSection(S); 1577 1578 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1579 // Emit /EXPORT: flags for each exported global as necessary. 1580 const auto &TLOF = getObjFileLowering(); 1581 std::string Flags; 1582 1583 for (const GlobalValue &GV : M.global_values()) { 1584 raw_string_ostream OS(Flags); 1585 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1586 OS.flush(); 1587 if (!Flags.empty()) { 1588 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1589 OutStreamer->EmitBytes(Flags); 1590 } 1591 Flags.clear(); 1592 } 1593 1594 // Emit /INCLUDE: flags for each used global as necessary. 1595 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1596 assert(LU->hasInitializer() && 1597 "expected llvm.used to have an initializer"); 1598 assert(isa<ArrayType>(LU->getValueType()) && 1599 "expected llvm.used to be an array type"); 1600 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1601 for (const Value *Op : A->operands()) { 1602 const auto *GV = 1603 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1604 // Global symbols with internal or private linkage are not visible to 1605 // the linker, and thus would cause an error when the linker tried to 1606 // preserve the symbol due to the `/include:` directive. 1607 if (GV->hasLocalLinkage()) 1608 continue; 1609 1610 raw_string_ostream OS(Flags); 1611 TLOF.emitLinkerFlagsForUsed(OS, GV); 1612 OS.flush(); 1613 1614 if (!Flags.empty()) { 1615 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1616 OutStreamer->EmitBytes(Flags); 1617 } 1618 Flags.clear(); 1619 } 1620 } 1621 } 1622 } 1623 1624 if (TM.Options.EmitAddrsig) { 1625 // Emit address-significance attributes for all globals. 1626 OutStreamer->EmitAddrsig(); 1627 for (const GlobalValue &GV : M.global_values()) 1628 if (!GV.use_empty() && !GV.isThreadLocal() && 1629 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1630 !GV.hasAtLeastLocalUnnamedAddr()) 1631 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1632 } 1633 1634 // Allow the target to emit any magic that it wants at the end of the file, 1635 // after everything else has gone out. 1636 EmitEndOfAsmFile(M); 1637 1638 MMI = nullptr; 1639 1640 OutStreamer->Finish(); 1641 OutStreamer->reset(); 1642 OwnedMLI.reset(); 1643 OwnedMDT.reset(); 1644 1645 return false; 1646 } 1647 1648 MCSymbol *AsmPrinter::getCurExceptionSym() { 1649 if (!CurExceptionSym) 1650 CurExceptionSym = createTempSymbol("exception"); 1651 return CurExceptionSym; 1652 } 1653 1654 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1655 this->MF = &MF; 1656 // Get the function symbol. 1657 CurrentFnSym = getSymbol(&MF.getFunction()); 1658 CurrentFnSymForSize = CurrentFnSym; 1659 CurrentFnBegin = nullptr; 1660 CurExceptionSym = nullptr; 1661 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1662 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1663 MF.getTarget().Options.EmitStackSizeSection) { 1664 CurrentFnBegin = createTempSymbol("func_begin"); 1665 if (NeedsLocalForSize) 1666 CurrentFnSymForSize = CurrentFnBegin; 1667 } 1668 1669 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1670 } 1671 1672 namespace { 1673 1674 // Keep track the alignment, constpool entries per Section. 1675 struct SectionCPs { 1676 MCSection *S; 1677 unsigned Alignment; 1678 SmallVector<unsigned, 4> CPEs; 1679 1680 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1681 }; 1682 1683 } // end anonymous namespace 1684 1685 /// EmitConstantPool - Print to the current output stream assembly 1686 /// representations of the constants in the constant pool MCP. This is 1687 /// used to print out constants which have been "spilled to memory" by 1688 /// the code generator. 1689 void AsmPrinter::EmitConstantPool() { 1690 const MachineConstantPool *MCP = MF->getConstantPool(); 1691 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1692 if (CP.empty()) return; 1693 1694 // Calculate sections for constant pool entries. We collect entries to go into 1695 // the same section together to reduce amount of section switch statements. 1696 SmallVector<SectionCPs, 4> CPSections; 1697 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1698 const MachineConstantPoolEntry &CPE = CP[i]; 1699 unsigned Align = CPE.getAlignment(); 1700 1701 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1702 1703 const Constant *C = nullptr; 1704 if (!CPE.isMachineConstantPoolEntry()) 1705 C = CPE.Val.ConstVal; 1706 1707 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1708 Kind, C, Align); 1709 1710 // The number of sections are small, just do a linear search from the 1711 // last section to the first. 1712 bool Found = false; 1713 unsigned SecIdx = CPSections.size(); 1714 while (SecIdx != 0) { 1715 if (CPSections[--SecIdx].S == S) { 1716 Found = true; 1717 break; 1718 } 1719 } 1720 if (!Found) { 1721 SecIdx = CPSections.size(); 1722 CPSections.push_back(SectionCPs(S, Align)); 1723 } 1724 1725 if (Align > CPSections[SecIdx].Alignment) 1726 CPSections[SecIdx].Alignment = Align; 1727 CPSections[SecIdx].CPEs.push_back(i); 1728 } 1729 1730 // Now print stuff into the calculated sections. 1731 const MCSection *CurSection = nullptr; 1732 unsigned Offset = 0; 1733 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1734 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1735 unsigned CPI = CPSections[i].CPEs[j]; 1736 MCSymbol *Sym = GetCPISymbol(CPI); 1737 if (!Sym->isUndefined()) 1738 continue; 1739 1740 if (CurSection != CPSections[i].S) { 1741 OutStreamer->SwitchSection(CPSections[i].S); 1742 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1743 CurSection = CPSections[i].S; 1744 Offset = 0; 1745 } 1746 1747 MachineConstantPoolEntry CPE = CP[CPI]; 1748 1749 // Emit inter-object padding for alignment. 1750 unsigned AlignMask = CPE.getAlignment() - 1; 1751 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1752 OutStreamer->EmitZeros(NewOffset - Offset); 1753 1754 Type *Ty = CPE.getType(); 1755 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1756 1757 OutStreamer->EmitLabel(Sym); 1758 if (CPE.isMachineConstantPoolEntry()) 1759 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1760 else 1761 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1762 } 1763 } 1764 } 1765 1766 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1767 /// by the current function to the current output stream. 1768 void AsmPrinter::EmitJumpTableInfo() { 1769 const DataLayout &DL = MF->getDataLayout(); 1770 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1771 if (!MJTI) return; 1772 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1773 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1774 if (JT.empty()) return; 1775 1776 // Pick the directive to use to print the jump table entries, and switch to 1777 // the appropriate section. 1778 const Function &F = MF->getFunction(); 1779 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1780 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1781 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1782 F); 1783 if (JTInDiffSection) { 1784 // Drop it in the readonly section. 1785 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1786 OutStreamer->SwitchSection(ReadOnlySection); 1787 } 1788 1789 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1790 1791 // Jump tables in code sections are marked with a data_region directive 1792 // where that's supported. 1793 if (!JTInDiffSection) 1794 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1795 1796 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1797 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1798 1799 // If this jump table was deleted, ignore it. 1800 if (JTBBs.empty()) continue; 1801 1802 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1803 /// emit a .set directive for each unique entry. 1804 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1805 MAI->doesSetDirectiveSuppressReloc()) { 1806 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1807 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1808 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1809 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1810 const MachineBasicBlock *MBB = JTBBs[ii]; 1811 if (!EmittedSets.insert(MBB).second) 1812 continue; 1813 1814 // .set LJTSet, LBB32-base 1815 const MCExpr *LHS = 1816 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1817 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1818 MCBinaryExpr::createSub(LHS, Base, 1819 OutContext)); 1820 } 1821 } 1822 1823 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1824 // before each jump table. The first label is never referenced, but tells 1825 // the assembler and linker the extents of the jump table object. The 1826 // second label is actually referenced by the code. 1827 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1828 // FIXME: This doesn't have to have any specific name, just any randomly 1829 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1830 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1831 1832 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1833 1834 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1835 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1836 } 1837 if (!JTInDiffSection) 1838 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1839 } 1840 1841 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1842 /// current stream. 1843 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1844 const MachineBasicBlock *MBB, 1845 unsigned UID) const { 1846 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1847 const MCExpr *Value = nullptr; 1848 switch (MJTI->getEntryKind()) { 1849 case MachineJumpTableInfo::EK_Inline: 1850 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1851 case MachineJumpTableInfo::EK_Custom32: 1852 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1853 MJTI, MBB, UID, OutContext); 1854 break; 1855 case MachineJumpTableInfo::EK_BlockAddress: 1856 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1857 // .word LBB123 1858 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1859 break; 1860 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1861 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1862 // with a relocation as gp-relative, e.g.: 1863 // .gprel32 LBB123 1864 MCSymbol *MBBSym = MBB->getSymbol(); 1865 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1866 return; 1867 } 1868 1869 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1870 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1871 // with a relocation as gp-relative, e.g.: 1872 // .gpdword LBB123 1873 MCSymbol *MBBSym = MBB->getSymbol(); 1874 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1875 return; 1876 } 1877 1878 case MachineJumpTableInfo::EK_LabelDifference32: { 1879 // Each entry is the address of the block minus the address of the jump 1880 // table. This is used for PIC jump tables where gprel32 is not supported. 1881 // e.g.: 1882 // .word LBB123 - LJTI1_2 1883 // If the .set directive avoids relocations, this is emitted as: 1884 // .set L4_5_set_123, LBB123 - LJTI1_2 1885 // .word L4_5_set_123 1886 if (MAI->doesSetDirectiveSuppressReloc()) { 1887 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1888 OutContext); 1889 break; 1890 } 1891 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1892 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1893 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1894 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1895 break; 1896 } 1897 } 1898 1899 assert(Value && "Unknown entry kind!"); 1900 1901 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1902 OutStreamer->EmitValue(Value, EntrySize); 1903 } 1904 1905 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1906 /// special global used by LLVM. If so, emit it and return true, otherwise 1907 /// do nothing and return false. 1908 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1909 if (GV->getName() == "llvm.used") { 1910 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1911 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1912 return true; 1913 } 1914 1915 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1916 if (GV->getSection() == "llvm.metadata" || 1917 GV->hasAvailableExternallyLinkage()) 1918 return true; 1919 1920 if (!GV->hasAppendingLinkage()) return false; 1921 1922 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1923 1924 if (GV->getName() == "llvm.global_ctors") { 1925 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1926 /* isCtor */ true); 1927 1928 return true; 1929 } 1930 1931 if (GV->getName() == "llvm.global_dtors") { 1932 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1933 /* isCtor */ false); 1934 1935 return true; 1936 } 1937 1938 report_fatal_error("unknown special variable"); 1939 } 1940 1941 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1942 /// global in the specified llvm.used list. 1943 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1944 // Should be an array of 'i8*'. 1945 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1946 const GlobalValue *GV = 1947 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1948 if (GV) 1949 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1950 } 1951 } 1952 1953 namespace { 1954 1955 struct Structor { 1956 int Priority = 0; 1957 Constant *Func = nullptr; 1958 GlobalValue *ComdatKey = nullptr; 1959 1960 Structor() = default; 1961 }; 1962 1963 } // end anonymous namespace 1964 1965 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1966 /// priority. 1967 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1968 bool isCtor) { 1969 // Should be an array of '{ int, void ()* }' structs. The first value is the 1970 // init priority. 1971 if (!isa<ConstantArray>(List)) return; 1972 1973 // Sanity check the structors list. 1974 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1975 if (!InitList) return; // Not an array! 1976 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1977 // FIXME: Only allow the 3-field form in LLVM 4.0. 1978 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1979 return; // Not an array of two or three elements! 1980 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1981 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1982 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1983 return; // Not (int, ptr, ptr). 1984 1985 // Gather the structors in a form that's convenient for sorting by priority. 1986 SmallVector<Structor, 8> Structors; 1987 for (Value *O : InitList->operands()) { 1988 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1989 if (!CS) continue; // Malformed. 1990 if (CS->getOperand(1)->isNullValue()) 1991 break; // Found a null terminator, skip the rest. 1992 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1993 if (!Priority) continue; // Malformed. 1994 Structors.push_back(Structor()); 1995 Structor &S = Structors.back(); 1996 S.Priority = Priority->getLimitedValue(65535); 1997 S.Func = CS->getOperand(1); 1998 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1999 S.ComdatKey = 2000 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2001 } 2002 2003 // Emit the function pointers in the target-specific order 2004 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 2005 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2006 return L.Priority < R.Priority; 2007 }); 2008 for (Structor &S : Structors) { 2009 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2010 const MCSymbol *KeySym = nullptr; 2011 if (GlobalValue *GV = S.ComdatKey) { 2012 if (GV->isDeclarationForLinker()) 2013 // If the associated variable is not defined in this module 2014 // (it might be available_externally, or have been an 2015 // available_externally definition that was dropped by the 2016 // EliminateAvailableExternally pass), some other TU 2017 // will provide its dynamic initializer. 2018 continue; 2019 2020 KeySym = getSymbol(GV); 2021 } 2022 MCSection *OutputSection = 2023 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2024 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2025 OutStreamer->SwitchSection(OutputSection); 2026 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2027 EmitAlignment(Align); 2028 EmitXXStructor(DL, S.Func); 2029 } 2030 } 2031 2032 void AsmPrinter::EmitModuleIdents(Module &M) { 2033 if (!MAI->hasIdentDirective()) 2034 return; 2035 2036 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2037 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2038 const MDNode *N = NMD->getOperand(i); 2039 assert(N->getNumOperands() == 1 && 2040 "llvm.ident metadata entry can have only one operand"); 2041 const MDString *S = cast<MDString>(N->getOperand(0)); 2042 OutStreamer->EmitIdent(S->getString()); 2043 } 2044 } 2045 } 2046 2047 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2048 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2049 if (!CommandLine) 2050 return; 2051 2052 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2053 if (!NMD || !NMD->getNumOperands()) 2054 return; 2055 2056 OutStreamer->PushSection(); 2057 OutStreamer->SwitchSection(CommandLine); 2058 OutStreamer->EmitZeros(1); 2059 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2060 const MDNode *N = NMD->getOperand(i); 2061 assert(N->getNumOperands() == 1 && 2062 "llvm.commandline metadata entry can have only one operand"); 2063 const MDString *S = cast<MDString>(N->getOperand(0)); 2064 OutStreamer->EmitBytes(S->getString()); 2065 OutStreamer->EmitZeros(1); 2066 } 2067 OutStreamer->PopSection(); 2068 } 2069 2070 //===--------------------------------------------------------------------===// 2071 // Emission and print routines 2072 // 2073 2074 /// Emit a byte directive and value. 2075 /// 2076 void AsmPrinter::emitInt8(int Value) const { 2077 OutStreamer->EmitIntValue(Value, 1); 2078 } 2079 2080 /// Emit a short directive and value. 2081 void AsmPrinter::emitInt16(int Value) const { 2082 OutStreamer->EmitIntValue(Value, 2); 2083 } 2084 2085 /// Emit a long directive and value. 2086 void AsmPrinter::emitInt32(int Value) const { 2087 OutStreamer->EmitIntValue(Value, 4); 2088 } 2089 2090 /// Emit a long long directive and value. 2091 void AsmPrinter::emitInt64(uint64_t Value) const { 2092 OutStreamer->EmitIntValue(Value, 8); 2093 } 2094 2095 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2096 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2097 /// .set if it avoids relocations. 2098 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2099 unsigned Size) const { 2100 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2101 } 2102 2103 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2104 /// where the size in bytes of the directive is specified by Size and Label 2105 /// specifies the label. This implicitly uses .set if it is available. 2106 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2107 unsigned Size, 2108 bool IsSectionRelative) const { 2109 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2110 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2111 if (Size > 4) 2112 OutStreamer->EmitZeros(Size - 4); 2113 return; 2114 } 2115 2116 // Emit Label+Offset (or just Label if Offset is zero) 2117 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2118 if (Offset) 2119 Expr = MCBinaryExpr::createAdd( 2120 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2121 2122 OutStreamer->EmitValue(Expr, Size); 2123 } 2124 2125 //===----------------------------------------------------------------------===// 2126 2127 // EmitAlignment - Emit an alignment directive to the specified power of 2128 // two boundary. For example, if you pass in 3 here, you will get an 8 2129 // byte alignment. If a global value is specified, and if that global has 2130 // an explicit alignment requested, it will override the alignment request 2131 // if required for correctness. 2132 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2133 if (GV) 2134 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2135 2136 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2137 2138 assert(NumBits < 2139 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2140 "undefined behavior"); 2141 if (getCurrentSection()->getKind().isText()) 2142 OutStreamer->EmitCodeAlignment(1u << NumBits); 2143 else 2144 OutStreamer->EmitValueToAlignment(1u << NumBits); 2145 } 2146 2147 //===----------------------------------------------------------------------===// 2148 // Constant emission. 2149 //===----------------------------------------------------------------------===// 2150 2151 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2152 MCContext &Ctx = OutContext; 2153 2154 if (CV->isNullValue() || isa<UndefValue>(CV)) 2155 return MCConstantExpr::create(0, Ctx); 2156 2157 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2158 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2159 2160 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2161 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2162 2163 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2164 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2165 2166 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2167 if (!CE) { 2168 llvm_unreachable("Unknown constant value to lower!"); 2169 } 2170 2171 switch (CE->getOpcode()) { 2172 default: 2173 // If the code isn't optimized, there may be outstanding folding 2174 // opportunities. Attempt to fold the expression using DataLayout as a 2175 // last resort before giving up. 2176 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2177 if (C != CE) 2178 return lowerConstant(C); 2179 2180 // Otherwise report the problem to the user. 2181 { 2182 std::string S; 2183 raw_string_ostream OS(S); 2184 OS << "Unsupported expression in static initializer: "; 2185 CE->printAsOperand(OS, /*PrintType=*/false, 2186 !MF ? nullptr : MF->getFunction().getParent()); 2187 report_fatal_error(OS.str()); 2188 } 2189 case Instruction::GetElementPtr: { 2190 // Generate a symbolic expression for the byte address 2191 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2192 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2193 2194 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2195 if (!OffsetAI) 2196 return Base; 2197 2198 int64_t Offset = OffsetAI.getSExtValue(); 2199 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2200 Ctx); 2201 } 2202 2203 case Instruction::Trunc: 2204 // We emit the value and depend on the assembler to truncate the generated 2205 // expression properly. This is important for differences between 2206 // blockaddress labels. Since the two labels are in the same function, it 2207 // is reasonable to treat their delta as a 32-bit value. 2208 LLVM_FALLTHROUGH; 2209 case Instruction::BitCast: 2210 return lowerConstant(CE->getOperand(0)); 2211 2212 case Instruction::IntToPtr: { 2213 const DataLayout &DL = getDataLayout(); 2214 2215 // Handle casts to pointers by changing them into casts to the appropriate 2216 // integer type. This promotes constant folding and simplifies this code. 2217 Constant *Op = CE->getOperand(0); 2218 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2219 false/*ZExt*/); 2220 return lowerConstant(Op); 2221 } 2222 2223 case Instruction::PtrToInt: { 2224 const DataLayout &DL = getDataLayout(); 2225 2226 // Support only foldable casts to/from pointers that can be eliminated by 2227 // changing the pointer to the appropriately sized integer type. 2228 Constant *Op = CE->getOperand(0); 2229 Type *Ty = CE->getType(); 2230 2231 const MCExpr *OpExpr = lowerConstant(Op); 2232 2233 // We can emit the pointer value into this slot if the slot is an 2234 // integer slot equal to the size of the pointer. 2235 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2236 return OpExpr; 2237 2238 // Otherwise the pointer is smaller than the resultant integer, mask off 2239 // the high bits so we are sure to get a proper truncation if the input is 2240 // a constant expr. 2241 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2242 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2243 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2244 } 2245 2246 case Instruction::Sub: { 2247 GlobalValue *LHSGV; 2248 APInt LHSOffset; 2249 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2250 getDataLayout())) { 2251 GlobalValue *RHSGV; 2252 APInt RHSOffset; 2253 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2254 getDataLayout())) { 2255 const MCExpr *RelocExpr = 2256 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2257 if (!RelocExpr) 2258 RelocExpr = MCBinaryExpr::createSub( 2259 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2260 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2261 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2262 if (Addend != 0) 2263 RelocExpr = MCBinaryExpr::createAdd( 2264 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2265 return RelocExpr; 2266 } 2267 } 2268 } 2269 // else fallthrough 2270 LLVM_FALLTHROUGH; 2271 2272 // The MC library also has a right-shift operator, but it isn't consistently 2273 // signed or unsigned between different targets. 2274 case Instruction::Add: 2275 case Instruction::Mul: 2276 case Instruction::SDiv: 2277 case Instruction::SRem: 2278 case Instruction::Shl: 2279 case Instruction::And: 2280 case Instruction::Or: 2281 case Instruction::Xor: { 2282 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2283 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2284 switch (CE->getOpcode()) { 2285 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2286 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2287 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2288 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2289 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2290 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2291 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2292 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2293 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2294 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2295 } 2296 } 2297 } 2298 } 2299 2300 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2301 AsmPrinter &AP, 2302 const Constant *BaseCV = nullptr, 2303 uint64_t Offset = 0); 2304 2305 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2306 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2307 2308 /// isRepeatedByteSequence - Determine whether the given value is 2309 /// composed of a repeated sequence of identical bytes and return the 2310 /// byte value. If it is not a repeated sequence, return -1. 2311 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2312 StringRef Data = V->getRawDataValues(); 2313 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2314 char C = Data[0]; 2315 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2316 if (Data[i] != C) return -1; 2317 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2318 } 2319 2320 /// isRepeatedByteSequence - Determine whether the given value is 2321 /// composed of a repeated sequence of identical bytes and return the 2322 /// byte value. If it is not a repeated sequence, return -1. 2323 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2324 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2325 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2326 assert(Size % 8 == 0); 2327 2328 // Extend the element to take zero padding into account. 2329 APInt Value = CI->getValue().zextOrSelf(Size); 2330 if (!Value.isSplat(8)) 2331 return -1; 2332 2333 return Value.zextOrTrunc(8).getZExtValue(); 2334 } 2335 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2336 // Make sure all array elements are sequences of the same repeated 2337 // byte. 2338 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2339 Constant *Op0 = CA->getOperand(0); 2340 int Byte = isRepeatedByteSequence(Op0, DL); 2341 if (Byte == -1) 2342 return -1; 2343 2344 // All array elements must be equal. 2345 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2346 if (CA->getOperand(i) != Op0) 2347 return -1; 2348 return Byte; 2349 } 2350 2351 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2352 return isRepeatedByteSequence(CDS); 2353 2354 return -1; 2355 } 2356 2357 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2358 const ConstantDataSequential *CDS, 2359 AsmPrinter &AP) { 2360 // See if we can aggregate this into a .fill, if so, emit it as such. 2361 int Value = isRepeatedByteSequence(CDS, DL); 2362 if (Value != -1) { 2363 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2364 // Don't emit a 1-byte object as a .fill. 2365 if (Bytes > 1) 2366 return AP.OutStreamer->emitFill(Bytes, Value); 2367 } 2368 2369 // If this can be emitted with .ascii/.asciz, emit it as such. 2370 if (CDS->isString()) 2371 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2372 2373 // Otherwise, emit the values in successive locations. 2374 unsigned ElementByteSize = CDS->getElementByteSize(); 2375 if (isa<IntegerType>(CDS->getElementType())) { 2376 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2377 if (AP.isVerbose()) 2378 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2379 CDS->getElementAsInteger(i)); 2380 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2381 ElementByteSize); 2382 } 2383 } else { 2384 Type *ET = CDS->getElementType(); 2385 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2386 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2387 } 2388 2389 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2390 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2391 CDS->getNumElements(); 2392 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2393 if (unsigned Padding = Size - EmittedSize) 2394 AP.OutStreamer->EmitZeros(Padding); 2395 } 2396 2397 static void emitGlobalConstantArray(const DataLayout &DL, 2398 const ConstantArray *CA, AsmPrinter &AP, 2399 const Constant *BaseCV, uint64_t Offset) { 2400 // See if we can aggregate some values. Make sure it can be 2401 // represented as a series of bytes of the constant value. 2402 int Value = isRepeatedByteSequence(CA, DL); 2403 2404 if (Value != -1) { 2405 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2406 AP.OutStreamer->emitFill(Bytes, Value); 2407 } 2408 else { 2409 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2410 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2411 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2412 } 2413 } 2414 } 2415 2416 static void emitGlobalConstantVector(const DataLayout &DL, 2417 const ConstantVector *CV, AsmPrinter &AP) { 2418 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2419 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2420 2421 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2422 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2423 CV->getType()->getNumElements(); 2424 if (unsigned Padding = Size - EmittedSize) 2425 AP.OutStreamer->EmitZeros(Padding); 2426 } 2427 2428 static void emitGlobalConstantStruct(const DataLayout &DL, 2429 const ConstantStruct *CS, AsmPrinter &AP, 2430 const Constant *BaseCV, uint64_t Offset) { 2431 // Print the fields in successive locations. Pad to align if needed! 2432 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2433 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2434 uint64_t SizeSoFar = 0; 2435 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2436 const Constant *Field = CS->getOperand(i); 2437 2438 // Print the actual field value. 2439 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2440 2441 // Check if padding is needed and insert one or more 0s. 2442 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2443 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2444 - Layout->getElementOffset(i)) - FieldSize; 2445 SizeSoFar += FieldSize + PadSize; 2446 2447 // Insert padding - this may include padding to increase the size of the 2448 // current field up to the ABI size (if the struct is not packed) as well 2449 // as padding to ensure that the next field starts at the right offset. 2450 AP.OutStreamer->EmitZeros(PadSize); 2451 } 2452 assert(SizeSoFar == Layout->getSizeInBytes() && 2453 "Layout of constant struct may be incorrect!"); 2454 } 2455 2456 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2457 APInt API = APF.bitcastToAPInt(); 2458 2459 // First print a comment with what we think the original floating-point value 2460 // should have been. 2461 if (AP.isVerbose()) { 2462 SmallString<8> StrVal; 2463 APF.toString(StrVal); 2464 2465 if (ET) 2466 ET->print(AP.OutStreamer->GetCommentOS()); 2467 else 2468 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2469 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2470 } 2471 2472 // Now iterate through the APInt chunks, emitting them in endian-correct 2473 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2474 // floats). 2475 unsigned NumBytes = API.getBitWidth() / 8; 2476 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2477 const uint64_t *p = API.getRawData(); 2478 2479 // PPC's long double has odd notions of endianness compared to how LLVM 2480 // handles it: p[0] goes first for *big* endian on PPC. 2481 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2482 int Chunk = API.getNumWords() - 1; 2483 2484 if (TrailingBytes) 2485 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2486 2487 for (; Chunk >= 0; --Chunk) 2488 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2489 } else { 2490 unsigned Chunk; 2491 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2492 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2493 2494 if (TrailingBytes) 2495 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2496 } 2497 2498 // Emit the tail padding for the long double. 2499 const DataLayout &DL = AP.getDataLayout(); 2500 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2501 } 2502 2503 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2504 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2505 } 2506 2507 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2508 const DataLayout &DL = AP.getDataLayout(); 2509 unsigned BitWidth = CI->getBitWidth(); 2510 2511 // Copy the value as we may massage the layout for constants whose bit width 2512 // is not a multiple of 64-bits. 2513 APInt Realigned(CI->getValue()); 2514 uint64_t ExtraBits = 0; 2515 unsigned ExtraBitsSize = BitWidth & 63; 2516 2517 if (ExtraBitsSize) { 2518 // The bit width of the data is not a multiple of 64-bits. 2519 // The extra bits are expected to be at the end of the chunk of the memory. 2520 // Little endian: 2521 // * Nothing to be done, just record the extra bits to emit. 2522 // Big endian: 2523 // * Record the extra bits to emit. 2524 // * Realign the raw data to emit the chunks of 64-bits. 2525 if (DL.isBigEndian()) { 2526 // Basically the structure of the raw data is a chunk of 64-bits cells: 2527 // 0 1 BitWidth / 64 2528 // [chunk1][chunk2] ... [chunkN]. 2529 // The most significant chunk is chunkN and it should be emitted first. 2530 // However, due to the alignment issue chunkN contains useless bits. 2531 // Realign the chunks so that they contain only useless information: 2532 // ExtraBits 0 1 (BitWidth / 64) - 1 2533 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2534 ExtraBits = Realigned.getRawData()[0] & 2535 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2536 Realigned.lshrInPlace(ExtraBitsSize); 2537 } else 2538 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2539 } 2540 2541 // We don't expect assemblers to support integer data directives 2542 // for more than 64 bits, so we emit the data in at most 64-bit 2543 // quantities at a time. 2544 const uint64_t *RawData = Realigned.getRawData(); 2545 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2546 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2547 AP.OutStreamer->EmitIntValue(Val, 8); 2548 } 2549 2550 if (ExtraBitsSize) { 2551 // Emit the extra bits after the 64-bits chunks. 2552 2553 // Emit a directive that fills the expected size. 2554 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2555 Size -= (BitWidth / 64) * 8; 2556 assert(Size && Size * 8 >= ExtraBitsSize && 2557 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2558 == ExtraBits && "Directive too small for extra bits."); 2559 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2560 } 2561 } 2562 2563 /// Transform a not absolute MCExpr containing a reference to a GOT 2564 /// equivalent global, by a target specific GOT pc relative access to the 2565 /// final symbol. 2566 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2567 const Constant *BaseCst, 2568 uint64_t Offset) { 2569 // The global @foo below illustrates a global that uses a got equivalent. 2570 // 2571 // @bar = global i32 42 2572 // @gotequiv = private unnamed_addr constant i32* @bar 2573 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2574 // i64 ptrtoint (i32* @foo to i64)) 2575 // to i32) 2576 // 2577 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2578 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2579 // form: 2580 // 2581 // foo = cstexpr, where 2582 // cstexpr := <gotequiv> - "." + <cst> 2583 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2584 // 2585 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2586 // 2587 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2588 // gotpcrelcst := <offset from @foo base> + <cst> 2589 MCValue MV; 2590 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2591 return; 2592 const MCSymbolRefExpr *SymA = MV.getSymA(); 2593 if (!SymA) 2594 return; 2595 2596 // Check that GOT equivalent symbol is cached. 2597 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2598 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2599 return; 2600 2601 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2602 if (!BaseGV) 2603 return; 2604 2605 // Check for a valid base symbol 2606 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2607 const MCSymbolRefExpr *SymB = MV.getSymB(); 2608 2609 if (!SymB || BaseSym != &SymB->getSymbol()) 2610 return; 2611 2612 // Make sure to match: 2613 // 2614 // gotpcrelcst := <offset from @foo base> + <cst> 2615 // 2616 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2617 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2618 // if the target knows how to encode it. 2619 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2620 if (GOTPCRelCst < 0) 2621 return; 2622 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2623 return; 2624 2625 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2626 // 2627 // bar: 2628 // .long 42 2629 // gotequiv: 2630 // .quad bar 2631 // foo: 2632 // .long gotequiv - "." + <cst> 2633 // 2634 // is replaced by the target specific equivalent to: 2635 // 2636 // bar: 2637 // .long 42 2638 // foo: 2639 // .long bar@GOTPCREL+<gotpcrelcst> 2640 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2641 const GlobalVariable *GV = Result.first; 2642 int NumUses = (int)Result.second; 2643 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2644 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2645 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2646 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2647 2648 // Update GOT equivalent usage information 2649 --NumUses; 2650 if (NumUses >= 0) 2651 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2652 } 2653 2654 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2655 AsmPrinter &AP, const Constant *BaseCV, 2656 uint64_t Offset) { 2657 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2658 2659 // Globals with sub-elements such as combinations of arrays and structs 2660 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2661 // constant symbol base and the current position with BaseCV and Offset. 2662 if (!BaseCV && CV->hasOneUse()) 2663 BaseCV = dyn_cast<Constant>(CV->user_back()); 2664 2665 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2666 return AP.OutStreamer->EmitZeros(Size); 2667 2668 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2669 switch (Size) { 2670 case 1: 2671 case 2: 2672 case 4: 2673 case 8: 2674 if (AP.isVerbose()) 2675 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2676 CI->getZExtValue()); 2677 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2678 return; 2679 default: 2680 emitGlobalConstantLargeInt(CI, AP); 2681 return; 2682 } 2683 } 2684 2685 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2686 return emitGlobalConstantFP(CFP, AP); 2687 2688 if (isa<ConstantPointerNull>(CV)) { 2689 AP.OutStreamer->EmitIntValue(0, Size); 2690 return; 2691 } 2692 2693 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2694 return emitGlobalConstantDataSequential(DL, CDS, AP); 2695 2696 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2697 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2698 2699 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2700 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2701 2702 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2703 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2704 // vectors). 2705 if (CE->getOpcode() == Instruction::BitCast) 2706 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2707 2708 if (Size > 8) { 2709 // If the constant expression's size is greater than 64-bits, then we have 2710 // to emit the value in chunks. Try to constant fold the value and emit it 2711 // that way. 2712 Constant *New = ConstantFoldConstant(CE, DL); 2713 if (New && New != CE) 2714 return emitGlobalConstantImpl(DL, New, AP); 2715 } 2716 } 2717 2718 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2719 return emitGlobalConstantVector(DL, V, AP); 2720 2721 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2722 // thread the streamer with EmitValue. 2723 const MCExpr *ME = AP.lowerConstant(CV); 2724 2725 // Since lowerConstant already folded and got rid of all IR pointer and 2726 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2727 // directly. 2728 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2729 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2730 2731 AP.OutStreamer->EmitValue(ME, Size); 2732 } 2733 2734 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2735 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2736 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2737 if (Size) 2738 emitGlobalConstantImpl(DL, CV, *this); 2739 else if (MAI->hasSubsectionsViaSymbols()) { 2740 // If the global has zero size, emit a single byte so that two labels don't 2741 // look like they are at the same location. 2742 OutStreamer->EmitIntValue(0, 1); 2743 } 2744 } 2745 2746 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2747 // Target doesn't support this yet! 2748 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2749 } 2750 2751 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2752 if (Offset > 0) 2753 OS << '+' << Offset; 2754 else if (Offset < 0) 2755 OS << Offset; 2756 } 2757 2758 //===----------------------------------------------------------------------===// 2759 // Symbol Lowering Routines. 2760 //===----------------------------------------------------------------------===// 2761 2762 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2763 return OutContext.createTempSymbol(Name, true); 2764 } 2765 2766 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2767 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2768 } 2769 2770 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2771 return MMI->getAddrLabelSymbol(BB); 2772 } 2773 2774 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2775 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2776 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) { 2777 const MachineConstantPoolEntry &CPE = 2778 MF->getConstantPool()->getConstants()[CPID]; 2779 if (!CPE.isMachineConstantPoolEntry()) { 2780 const DataLayout &DL = MF->getDataLayout(); 2781 SectionKind Kind = CPE.getSectionKind(&DL); 2782 const Constant *C = CPE.Val.ConstVal; 2783 unsigned Align = CPE.Alignment; 2784 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2785 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2786 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2787 if (Sym->isUndefined()) 2788 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2789 return Sym; 2790 } 2791 } 2792 } 2793 } 2794 2795 const DataLayout &DL = getDataLayout(); 2796 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2797 "CPI" + Twine(getFunctionNumber()) + "_" + 2798 Twine(CPID)); 2799 } 2800 2801 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2802 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2803 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2804 } 2805 2806 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2807 /// FIXME: privatize to AsmPrinter. 2808 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2809 const DataLayout &DL = getDataLayout(); 2810 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2811 Twine(getFunctionNumber()) + "_" + 2812 Twine(UID) + "_set_" + Twine(MBBID)); 2813 } 2814 2815 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2816 StringRef Suffix) const { 2817 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2818 } 2819 2820 /// Return the MCSymbol for the specified ExternalSymbol. 2821 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2822 SmallString<60> NameStr; 2823 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2824 return OutContext.getOrCreateSymbol(NameStr); 2825 } 2826 2827 /// PrintParentLoopComment - Print comments about parent loops of this one. 2828 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2829 unsigned FunctionNumber) { 2830 if (!Loop) return; 2831 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2832 OS.indent(Loop->getLoopDepth()*2) 2833 << "Parent Loop BB" << FunctionNumber << "_" 2834 << Loop->getHeader()->getNumber() 2835 << " Depth=" << Loop->getLoopDepth() << '\n'; 2836 } 2837 2838 /// PrintChildLoopComment - Print comments about child loops within 2839 /// the loop for this basic block, with nesting. 2840 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2841 unsigned FunctionNumber) { 2842 // Add child loop information 2843 for (const MachineLoop *CL : *Loop) { 2844 OS.indent(CL->getLoopDepth()*2) 2845 << "Child Loop BB" << FunctionNumber << "_" 2846 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2847 << '\n'; 2848 PrintChildLoopComment(OS, CL, FunctionNumber); 2849 } 2850 } 2851 2852 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2853 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2854 const MachineLoopInfo *LI, 2855 const AsmPrinter &AP) { 2856 // Add loop depth information 2857 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2858 if (!Loop) return; 2859 2860 MachineBasicBlock *Header = Loop->getHeader(); 2861 assert(Header && "No header for loop"); 2862 2863 // If this block is not a loop header, just print out what is the loop header 2864 // and return. 2865 if (Header != &MBB) { 2866 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2867 Twine(AP.getFunctionNumber())+"_" + 2868 Twine(Loop->getHeader()->getNumber())+ 2869 " Depth="+Twine(Loop->getLoopDepth())); 2870 return; 2871 } 2872 2873 // Otherwise, it is a loop header. Print out information about child and 2874 // parent loops. 2875 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2876 2877 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2878 2879 OS << "=>"; 2880 OS.indent(Loop->getLoopDepth()*2-2); 2881 2882 OS << "This "; 2883 if (Loop->empty()) 2884 OS << "Inner "; 2885 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2886 2887 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2888 } 2889 2890 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2891 MCCodePaddingContext &Context) const { 2892 assert(MF != nullptr && "Machine function must be valid"); 2893 Context.IsPaddingActive = !MF->hasInlineAsm() && 2894 !MF->getFunction().hasOptSize() && 2895 TM.getOptLevel() != CodeGenOpt::None; 2896 Context.IsBasicBlockReachableViaFallthrough = 2897 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2898 MBB.pred_end(); 2899 Context.IsBasicBlockReachableViaBranch = 2900 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2901 } 2902 2903 /// EmitBasicBlockStart - This method prints the label for the specified 2904 /// MachineBasicBlock, an alignment (if present) and a comment describing 2905 /// it if appropriate. 2906 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2907 // End the previous funclet and start a new one. 2908 if (MBB.isEHFuncletEntry()) { 2909 for (const HandlerInfo &HI : Handlers) { 2910 HI.Handler->endFunclet(); 2911 HI.Handler->beginFunclet(MBB); 2912 } 2913 } 2914 2915 // Emit an alignment directive for this block, if needed. 2916 if (unsigned Align = MBB.getAlignment()) 2917 EmitAlignment(Align); 2918 MCCodePaddingContext Context; 2919 setupCodePaddingContext(MBB, Context); 2920 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2921 2922 // If the block has its address taken, emit any labels that were used to 2923 // reference the block. It is possible that there is more than one label 2924 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2925 // the references were generated. 2926 if (MBB.hasAddressTaken()) { 2927 const BasicBlock *BB = MBB.getBasicBlock(); 2928 if (isVerbose()) 2929 OutStreamer->AddComment("Block address taken"); 2930 2931 // MBBs can have their address taken as part of CodeGen without having 2932 // their corresponding BB's address taken in IR 2933 if (BB->hasAddressTaken()) 2934 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2935 OutStreamer->EmitLabel(Sym); 2936 } 2937 2938 // Print some verbose block comments. 2939 if (isVerbose()) { 2940 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2941 if (BB->hasName()) { 2942 BB->printAsOperand(OutStreamer->GetCommentOS(), 2943 /*PrintType=*/false, BB->getModule()); 2944 OutStreamer->GetCommentOS() << '\n'; 2945 } 2946 } 2947 2948 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2949 emitBasicBlockLoopComments(MBB, MLI, *this); 2950 } 2951 2952 // Print the main label for the block. 2953 if (MBB.pred_empty() || 2954 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2955 !MBB.hasLabelMustBeEmitted())) { 2956 if (isVerbose()) { 2957 // NOTE: Want this comment at start of line, don't emit with AddComment. 2958 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2959 false); 2960 } 2961 } else { 2962 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 2963 OutStreamer->AddComment("Label of block must be emitted"); 2964 OutStreamer->EmitLabel(MBB.getSymbol()); 2965 } 2966 } 2967 2968 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2969 MCCodePaddingContext Context; 2970 setupCodePaddingContext(MBB, Context); 2971 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2972 } 2973 2974 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2975 bool IsDefinition) const { 2976 MCSymbolAttr Attr = MCSA_Invalid; 2977 2978 switch (Visibility) { 2979 default: break; 2980 case GlobalValue::HiddenVisibility: 2981 if (IsDefinition) 2982 Attr = MAI->getHiddenVisibilityAttr(); 2983 else 2984 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2985 break; 2986 case GlobalValue::ProtectedVisibility: 2987 Attr = MAI->getProtectedVisibilityAttr(); 2988 break; 2989 } 2990 2991 if (Attr != MCSA_Invalid) 2992 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2993 } 2994 2995 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2996 /// exactly one predecessor and the control transfer mechanism between 2997 /// the predecessor and this block is a fall-through. 2998 bool AsmPrinter:: 2999 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3000 // If this is a landing pad, it isn't a fall through. If it has no preds, 3001 // then nothing falls through to it. 3002 if (MBB->isEHPad() || MBB->pred_empty()) 3003 return false; 3004 3005 // If there isn't exactly one predecessor, it can't be a fall through. 3006 if (MBB->pred_size() > 1) 3007 return false; 3008 3009 // The predecessor has to be immediately before this block. 3010 MachineBasicBlock *Pred = *MBB->pred_begin(); 3011 if (!Pred->isLayoutSuccessor(MBB)) 3012 return false; 3013 3014 // If the block is completely empty, then it definitely does fall through. 3015 if (Pred->empty()) 3016 return true; 3017 3018 // Check the terminators in the previous blocks 3019 for (const auto &MI : Pred->terminators()) { 3020 // If it is not a simple branch, we are in a table somewhere. 3021 if (!MI.isBranch() || MI.isIndirectBranch()) 3022 return false; 3023 3024 // If we are the operands of one of the branches, this is not a fall 3025 // through. Note that targets with delay slots will usually bundle 3026 // terminators with the delay slot instruction. 3027 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3028 if (OP->isJTI()) 3029 return false; 3030 if (OP->isMBB() && OP->getMBB() == MBB) 3031 return false; 3032 } 3033 } 3034 3035 return true; 3036 } 3037 3038 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3039 if (!S.usesMetadata()) 3040 return nullptr; 3041 3042 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3043 gcp_map_type::iterator GCPI = GCMap.find(&S); 3044 if (GCPI != GCMap.end()) 3045 return GCPI->second.get(); 3046 3047 auto Name = S.getName(); 3048 3049 for (GCMetadataPrinterRegistry::iterator 3050 I = GCMetadataPrinterRegistry::begin(), 3051 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3052 if (Name == I->getName()) { 3053 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3054 GMP->S = &S; 3055 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3056 return IterBool.first->second.get(); 3057 } 3058 3059 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3060 } 3061 3062 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3063 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3064 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3065 bool NeedsDefault = false; 3066 if (MI->begin() == MI->end()) 3067 // No GC strategy, use the default format. 3068 NeedsDefault = true; 3069 else 3070 for (auto &I : *MI) { 3071 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3072 if (MP->emitStackMaps(SM, *this)) 3073 continue; 3074 // The strategy doesn't have printer or doesn't emit custom stack maps. 3075 // Use the default format. 3076 NeedsDefault = true; 3077 } 3078 3079 if (NeedsDefault) 3080 SM.serializeToStackMapSection(); 3081 } 3082 3083 /// Pin vtable to this file. 3084 AsmPrinterHandler::~AsmPrinterHandler() = default; 3085 3086 void AsmPrinterHandler::markFunctionEnd() {} 3087 3088 // In the binary's "xray_instr_map" section, an array of these function entries 3089 // describes each instrumentation point. When XRay patches your code, the index 3090 // into this table will be given to your handler as a patch point identifier. 3091 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3092 const MCSymbol *CurrentFnSym) const { 3093 Out->EmitSymbolValue(Sled, Bytes); 3094 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3095 auto Kind8 = static_cast<uint8_t>(Kind); 3096 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3097 Out->EmitBinaryData( 3098 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3099 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3100 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3101 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3102 Out->EmitZeros(Padding); 3103 } 3104 3105 void AsmPrinter::emitXRayTable() { 3106 if (Sleds.empty()) 3107 return; 3108 3109 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3110 const Function &F = MF->getFunction(); 3111 MCSection *InstMap = nullptr; 3112 MCSection *FnSledIndex = nullptr; 3113 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3114 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3115 assert(Associated != nullptr); 3116 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3117 std::string GroupName; 3118 if (F.hasComdat()) { 3119 Flags |= ELF::SHF_GROUP; 3120 GroupName = F.getComdat()->getName(); 3121 } 3122 3123 auto UniqueID = ++XRayFnUniqueID; 3124 InstMap = 3125 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3126 GroupName, UniqueID, Associated); 3127 FnSledIndex = 3128 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3129 GroupName, UniqueID, Associated); 3130 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3131 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3132 SectionKind::getReadOnlyWithRel()); 3133 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3134 SectionKind::getReadOnlyWithRel()); 3135 } else { 3136 llvm_unreachable("Unsupported target"); 3137 } 3138 3139 auto WordSizeBytes = MAI->getCodePointerSize(); 3140 3141 // Now we switch to the instrumentation map section. Because this is done 3142 // per-function, we are able to create an index entry that will represent the 3143 // range of sleds associated with a function. 3144 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3145 OutStreamer->SwitchSection(InstMap); 3146 OutStreamer->EmitLabel(SledsStart); 3147 for (const auto &Sled : Sleds) 3148 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3149 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3150 OutStreamer->EmitLabel(SledsEnd); 3151 3152 // We then emit a single entry in the index per function. We use the symbols 3153 // that bound the instrumentation map as the range for a specific function. 3154 // Each entry here will be 2 * word size aligned, as we're writing down two 3155 // pointers. This should work for both 32-bit and 64-bit platforms. 3156 OutStreamer->SwitchSection(FnSledIndex); 3157 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3158 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3159 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3160 OutStreamer->SwitchSection(PrevSection); 3161 Sleds.clear(); 3162 } 3163 3164 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3165 SledKind Kind, uint8_t Version) { 3166 const Function &F = MI.getMF()->getFunction(); 3167 auto Attr = F.getFnAttribute("function-instrument"); 3168 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3169 bool AlwaysInstrument = 3170 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3171 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3172 Kind = SledKind::LOG_ARGS_ENTER; 3173 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3174 AlwaysInstrument, &F, Version}); 3175 } 3176 3177 uint16_t AsmPrinter::getDwarfVersion() const { 3178 return OutStreamer->getContext().getDwarfVersion(); 3179 } 3180 3181 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3182 OutStreamer->getContext().setDwarfVersion(Version); 3183 } 3184