1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/GCStrategy.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineMemOperand.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalIFunc.h" 73 #include "llvm/IR/GlobalIndirectSymbol.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Remarks/Remark.h" 106 #include "llvm/Remarks/RemarkFormat.h" 107 #include "llvm/Remarks/RemarkStreamer.h" 108 #include "llvm/Remarks/RemarkStringTable.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Compiler.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/Support/Format.h" 114 #include "llvm/Support/MathExtras.h" 115 #include "llvm/Support/Path.h" 116 #include "llvm/Support/TargetRegistry.h" 117 #include "llvm/Support/Timer.h" 118 #include "llvm/Support/raw_ostream.h" 119 #include "llvm/Target/TargetLoweringObjectFile.h" 120 #include "llvm/Target/TargetMachine.h" 121 #include "llvm/Target/TargetOptions.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <cinttypes> 125 #include <cstdint> 126 #include <iterator> 127 #include <limits> 128 #include <memory> 129 #include <string> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 135 #define DEBUG_TYPE "asm-printer" 136 137 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 138 static cl::opt<bool> 139 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 140 cl::desc("Disable debug info printing")); 141 142 const char DWARFGroupName[] = "dwarf"; 143 const char DWARFGroupDescription[] = "DWARF Emission"; 144 const char DbgTimerName[] = "emit"; 145 const char DbgTimerDescription[] = "Debug Info Emission"; 146 const char EHTimerName[] = "write_exception"; 147 const char EHTimerDescription[] = "DWARF Exception Writer"; 148 const char CFGuardName[] = "Control Flow Guard"; 149 const char CFGuardDescription[] = "Control Flow Guard"; 150 const char CodeViewLineTablesGroupName[] = "linetables"; 151 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 152 const char PPTimerName[] = "emit"; 153 const char PPTimerDescription[] = "Pseudo Probe Emission"; 154 const char PPGroupName[] = "pseudo probe"; 155 const char PPGroupDescription[] = "Pseudo Probe Emission"; 156 157 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 158 159 char AsmPrinter::ID = 0; 160 161 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 162 163 static gcp_map_type &getGCMap(void *&P) { 164 if (!P) 165 P = new gcp_map_type(); 166 return *(gcp_map_type*)P; 167 } 168 169 /// getGVAlignment - Return the alignment to use for the specified global 170 /// value. This rounds up to the preferred alignment if possible and legal. 171 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 172 Align InAlign) { 173 Align Alignment; 174 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 175 Alignment = DL.getPreferredAlign(GVar); 176 177 // If InAlign is specified, round it to it. 178 if (InAlign > Alignment) 179 Alignment = InAlign; 180 181 // If the GV has a specified alignment, take it into account. 182 const MaybeAlign GVAlign(GV->getAlignment()); 183 if (!GVAlign) 184 return Alignment; 185 186 assert(GVAlign && "GVAlign must be set"); 187 188 // If the GVAlign is larger than NumBits, or if we are required to obey 189 // NumBits because the GV has an assigned section, obey it. 190 if (*GVAlign > Alignment || GV->hasSection()) 191 Alignment = *GVAlign; 192 return Alignment; 193 } 194 195 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 196 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 197 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 198 VerboseAsm = OutStreamer->isVerboseAsm(); 199 } 200 201 AsmPrinter::~AsmPrinter() { 202 assert(!DD && Handlers.size() == NumUserHandlers && 203 "Debug/EH info didn't get finalized"); 204 205 if (GCMetadataPrinters) { 206 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 207 208 delete &GCMap; 209 GCMetadataPrinters = nullptr; 210 } 211 } 212 213 bool AsmPrinter::isPositionIndependent() const { 214 return TM.isPositionIndependent(); 215 } 216 217 /// getFunctionNumber - Return a unique ID for the current function. 218 unsigned AsmPrinter::getFunctionNumber() const { 219 return MF->getFunctionNumber(); 220 } 221 222 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 223 return *TM.getObjFileLowering(); 224 } 225 226 const DataLayout &AsmPrinter::getDataLayout() const { 227 return MMI->getModule()->getDataLayout(); 228 } 229 230 // Do not use the cached DataLayout because some client use it without a Module 231 // (dsymutil, llvm-dwarfdump). 232 unsigned AsmPrinter::getPointerSize() const { 233 return TM.getPointerSize(0); // FIXME: Default address space 234 } 235 236 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 237 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 238 return MF->getSubtarget<MCSubtargetInfo>(); 239 } 240 241 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 242 S.emitInstruction(Inst, getSubtargetInfo()); 243 } 244 245 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 246 if (DD) { 247 assert(OutStreamer->hasRawTextSupport() && 248 "Expected assembly output mode."); 249 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 250 } 251 } 252 253 /// getCurrentSection() - Return the current section we are emitting to. 254 const MCSection *AsmPrinter::getCurrentSection() const { 255 return OutStreamer->getCurrentSectionOnly(); 256 } 257 258 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 259 AU.setPreservesAll(); 260 MachineFunctionPass::getAnalysisUsage(AU); 261 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 262 AU.addRequired<GCModuleInfo>(); 263 } 264 265 bool AsmPrinter::doInitialization(Module &M) { 266 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 267 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 268 269 // Initialize TargetLoweringObjectFile. 270 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 271 .Initialize(OutContext, TM); 272 273 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 274 .getModuleMetadata(M); 275 276 OutStreamer->InitSections(false); 277 278 if (DisableDebugInfoPrinting) 279 MMI->setDebugInfoAvailability(false); 280 281 // Emit the version-min deployment target directive if needed. 282 // 283 // FIXME: If we end up with a collection of these sorts of Darwin-specific 284 // or ELF-specific things, it may make sense to have a platform helper class 285 // that will work with the target helper class. For now keep it here, as the 286 // alternative is duplicated code in each of the target asm printers that 287 // use the directive, where it would need the same conditionalization 288 // anyway. 289 const Triple &Target = TM.getTargetTriple(); 290 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 291 292 // Allow the target to emit any magic that it wants at the start of the file. 293 emitStartOfAsmFile(M); 294 295 // Very minimal debug info. It is ignored if we emit actual debug info. If we 296 // don't, this at least helps the user find where a global came from. 297 if (MAI->hasSingleParameterDotFile()) { 298 // .file "foo.c" 299 OutStreamer->emitFileDirective( 300 llvm::sys::path::filename(M.getSourceFileName())); 301 } 302 303 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 304 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 305 for (auto &I : *MI) 306 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 307 MP->beginAssembly(M, *MI, *this); 308 309 // Emit module-level inline asm if it exists. 310 if (!M.getModuleInlineAsm().empty()) { 311 // We're at the module level. Construct MCSubtarget from the default CPU 312 // and target triple. 313 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 314 TM.getTargetTriple().str(), TM.getTargetCPU(), 315 TM.getTargetFeatureString())); 316 assert(STI && "Unable to create subtarget info"); 317 OutStreamer->AddComment("Start of file scope inline assembly"); 318 OutStreamer->AddBlankLine(); 319 emitInlineAsm(M.getModuleInlineAsm() + "\n", 320 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 321 OutStreamer->AddComment("End of file scope inline assembly"); 322 OutStreamer->AddBlankLine(); 323 } 324 325 if (MAI->doesSupportDebugInformation()) { 326 bool EmitCodeView = M.getCodeViewFlag(); 327 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 328 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 329 DbgTimerName, DbgTimerDescription, 330 CodeViewLineTablesGroupName, 331 CodeViewLineTablesGroupDescription); 332 } 333 if (!EmitCodeView || M.getDwarfVersion()) { 334 if (!DisableDebugInfoPrinting) { 335 DD = new DwarfDebug(this); 336 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 337 DbgTimerDescription, DWARFGroupName, 338 DWARFGroupDescription); 339 } 340 } 341 } 342 343 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 344 PP = new PseudoProbeHandler(this, &M); 345 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 346 PPTimerDescription, PPGroupName, PPGroupDescription); 347 } 348 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::SjLj: 351 case ExceptionHandling::DwarfCFI: 352 case ExceptionHandling::ARM: 353 isCFIMoveForDebugging = true; 354 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 355 break; 356 for (auto &F: M.getFunctionList()) { 357 // If the module contains any function with unwind data, 358 // .eh_frame has to be emitted. 359 // Ignore functions that won't get emitted. 360 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 361 isCFIMoveForDebugging = false; 362 break; 363 } 364 } 365 break; 366 default: 367 isCFIMoveForDebugging = false; 368 break; 369 } 370 371 EHStreamer *ES = nullptr; 372 switch (MAI->getExceptionHandlingType()) { 373 case ExceptionHandling::None: 374 break; 375 case ExceptionHandling::SjLj: 376 case ExceptionHandling::DwarfCFI: 377 ES = new DwarfCFIException(this); 378 break; 379 case ExceptionHandling::ARM: 380 ES = new ARMException(this); 381 break; 382 case ExceptionHandling::WinEH: 383 switch (MAI->getWinEHEncodingType()) { 384 default: llvm_unreachable("unsupported unwinding information encoding"); 385 case WinEH::EncodingType::Invalid: 386 break; 387 case WinEH::EncodingType::X86: 388 case WinEH::EncodingType::Itanium: 389 ES = new WinException(this); 390 break; 391 } 392 break; 393 case ExceptionHandling::Wasm: 394 ES = new WasmException(this); 395 break; 396 case ExceptionHandling::AIX: 397 ES = new AIXException(this); 398 break; 399 } 400 if (ES) 401 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 402 EHTimerDescription, DWARFGroupName, 403 DWARFGroupDescription); 404 405 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 406 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 407 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 408 CFGuardDescription, DWARFGroupName, 409 DWARFGroupDescription); 410 411 for (const HandlerInfo &HI : Handlers) { 412 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 413 HI.TimerGroupDescription, TimePassesIsEnabled); 414 HI.Handler->beginModule(&M); 415 } 416 417 return false; 418 } 419 420 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 421 if (!MAI.hasWeakDefCanBeHiddenDirective()) 422 return false; 423 424 return GV->canBeOmittedFromSymbolTable(); 425 } 426 427 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 428 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 429 switch (Linkage) { 430 case GlobalValue::CommonLinkage: 431 case GlobalValue::LinkOnceAnyLinkage: 432 case GlobalValue::LinkOnceODRLinkage: 433 case GlobalValue::WeakAnyLinkage: 434 case GlobalValue::WeakODRLinkage: 435 if (MAI->hasWeakDefDirective()) { 436 // .globl _foo 437 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 438 439 if (!canBeHidden(GV, *MAI)) 440 // .weak_definition _foo 441 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 442 else 443 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 444 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 445 // .globl _foo 446 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 447 //NOTE: linkonce is handled by the section the symbol was assigned to. 448 } else { 449 // .weak _foo 450 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 451 } 452 return; 453 case GlobalValue::ExternalLinkage: 454 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 455 return; 456 case GlobalValue::PrivateLinkage: 457 case GlobalValue::InternalLinkage: 458 return; 459 case GlobalValue::ExternalWeakLinkage: 460 case GlobalValue::AvailableExternallyLinkage: 461 case GlobalValue::AppendingLinkage: 462 llvm_unreachable("Should never emit this"); 463 } 464 llvm_unreachable("Unknown linkage type!"); 465 } 466 467 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 468 const GlobalValue *GV) const { 469 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 470 } 471 472 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 473 return TM.getSymbol(GV); 474 } 475 476 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 477 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 478 // exact definion (intersection of GlobalValue::hasExactDefinition() and 479 // !isInterposable()). These linkages include: external, appending, internal, 480 // private. It may be profitable to use a local alias for external. The 481 // assembler would otherwise be conservative and assume a global default 482 // visibility symbol can be interposable, even if the code generator already 483 // assumed it. 484 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 485 const Module &M = *GV.getParent(); 486 if (TM.getRelocationModel() != Reloc::Static && 487 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 488 return getSymbolWithGlobalValueBase(&GV, "$local"); 489 } 490 return TM.getSymbol(&GV); 491 } 492 493 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 494 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 495 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 496 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 497 "No emulated TLS variables in the common section"); 498 499 // Never emit TLS variable xyz in emulated TLS model. 500 // The initialization value is in __emutls_t.xyz instead of xyz. 501 if (IsEmuTLSVar) 502 return; 503 504 if (GV->hasInitializer()) { 505 // Check to see if this is a special global used by LLVM, if so, emit it. 506 if (emitSpecialLLVMGlobal(GV)) 507 return; 508 509 // Skip the emission of global equivalents. The symbol can be emitted later 510 // on by emitGlobalGOTEquivs in case it turns out to be needed. 511 if (GlobalGOTEquivs.count(getSymbol(GV))) 512 return; 513 514 if (isVerbose()) { 515 // When printing the control variable __emutls_v.*, 516 // we don't need to print the original TLS variable name. 517 GV->printAsOperand(OutStreamer->GetCommentOS(), 518 /*PrintType=*/false, GV->getParent()); 519 OutStreamer->GetCommentOS() << '\n'; 520 } 521 } 522 523 MCSymbol *GVSym = getSymbol(GV); 524 MCSymbol *EmittedSym = GVSym; 525 526 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 527 // attributes. 528 // GV's or GVSym's attributes will be used for the EmittedSym. 529 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 530 531 if (!GV->hasInitializer()) // External globals require no extra code. 532 return; 533 534 GVSym->redefineIfPossible(); 535 if (GVSym->isDefined() || GVSym->isVariable()) 536 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 537 "' is already defined"); 538 539 if (MAI->hasDotTypeDotSizeDirective()) 540 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 541 542 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 543 544 const DataLayout &DL = GV->getParent()->getDataLayout(); 545 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 546 547 // If the alignment is specified, we *must* obey it. Overaligning a global 548 // with a specified alignment is a prompt way to break globals emitted to 549 // sections and expected to be contiguous (e.g. ObjC metadata). 550 const Align Alignment = getGVAlignment(GV, DL); 551 552 for (const HandlerInfo &HI : Handlers) { 553 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 554 HI.TimerGroupName, HI.TimerGroupDescription, 555 TimePassesIsEnabled); 556 HI.Handler->setSymbolSize(GVSym, Size); 557 } 558 559 // Handle common symbols 560 if (GVKind.isCommon()) { 561 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 562 // .comm _foo, 42, 4 563 const bool SupportsAlignment = 564 getObjFileLowering().getCommDirectiveSupportsAlignment(); 565 OutStreamer->emitCommonSymbol(GVSym, Size, 566 SupportsAlignment ? Alignment.value() : 0); 567 return; 568 } 569 570 // Determine to which section this global should be emitted. 571 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 572 573 // If we have a bss global going to a section that supports the 574 // zerofill directive, do so here. 575 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 576 TheSection->isVirtualSection()) { 577 if (Size == 0) 578 Size = 1; // zerofill of 0 bytes is undefined. 579 emitLinkage(GV, GVSym); 580 // .zerofill __DATA, __bss, _foo, 400, 5 581 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 582 return; 583 } 584 585 // If this is a BSS local symbol and we are emitting in the BSS 586 // section use .lcomm/.comm directive. 587 if (GVKind.isBSSLocal() && 588 getObjFileLowering().getBSSSection() == TheSection) { 589 if (Size == 0) 590 Size = 1; // .comm Foo, 0 is undefined, avoid it. 591 592 // Use .lcomm only if it supports user-specified alignment. 593 // Otherwise, while it would still be correct to use .lcomm in some 594 // cases (e.g. when Align == 1), the external assembler might enfore 595 // some -unknown- default alignment behavior, which could cause 596 // spurious differences between external and integrated assembler. 597 // Prefer to simply fall back to .local / .comm in this case. 598 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 599 // .lcomm _foo, 42 600 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 601 return; 602 } 603 604 // .local _foo 605 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 606 // .comm _foo, 42, 4 607 const bool SupportsAlignment = 608 getObjFileLowering().getCommDirectiveSupportsAlignment(); 609 OutStreamer->emitCommonSymbol(GVSym, Size, 610 SupportsAlignment ? Alignment.value() : 0); 611 return; 612 } 613 614 // Handle thread local data for mach-o which requires us to output an 615 // additional structure of data and mangle the original symbol so that we 616 // can reference it later. 617 // 618 // TODO: This should become an "emit thread local global" method on TLOF. 619 // All of this macho specific stuff should be sunk down into TLOFMachO and 620 // stuff like "TLSExtraDataSection" should no longer be part of the parent 621 // TLOF class. This will also make it more obvious that stuff like 622 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 623 // specific code. 624 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 625 // Emit the .tbss symbol 626 MCSymbol *MangSym = 627 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 628 629 if (GVKind.isThreadBSS()) { 630 TheSection = getObjFileLowering().getTLSBSSSection(); 631 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 632 } else if (GVKind.isThreadData()) { 633 OutStreamer->SwitchSection(TheSection); 634 635 emitAlignment(Alignment, GV); 636 OutStreamer->emitLabel(MangSym); 637 638 emitGlobalConstant(GV->getParent()->getDataLayout(), 639 GV->getInitializer()); 640 } 641 642 OutStreamer->AddBlankLine(); 643 644 // Emit the variable struct for the runtime. 645 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 646 647 OutStreamer->SwitchSection(TLVSect); 648 // Emit the linkage here. 649 emitLinkage(GV, GVSym); 650 OutStreamer->emitLabel(GVSym); 651 652 // Three pointers in size: 653 // - __tlv_bootstrap - used to make sure support exists 654 // - spare pointer, used when mapped by the runtime 655 // - pointer to mangled symbol above with initializer 656 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 657 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 658 PtrSize); 659 OutStreamer->emitIntValue(0, PtrSize); 660 OutStreamer->emitSymbolValue(MangSym, PtrSize); 661 662 OutStreamer->AddBlankLine(); 663 return; 664 } 665 666 MCSymbol *EmittedInitSym = GVSym; 667 668 OutStreamer->SwitchSection(TheSection); 669 670 emitLinkage(GV, EmittedInitSym); 671 emitAlignment(Alignment, GV); 672 673 OutStreamer->emitLabel(EmittedInitSym); 674 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 675 if (LocalAlias != EmittedInitSym) 676 OutStreamer->emitLabel(LocalAlias); 677 678 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 679 680 if (MAI->hasDotTypeDotSizeDirective()) 681 // .size foo, 42 682 OutStreamer->emitELFSize(EmittedInitSym, 683 MCConstantExpr::create(Size, OutContext)); 684 685 OutStreamer->AddBlankLine(); 686 } 687 688 /// Emit the directive and value for debug thread local expression 689 /// 690 /// \p Value - The value to emit. 691 /// \p Size - The size of the integer (in bytes) to emit. 692 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 693 OutStreamer->emitValue(Value, Size); 694 } 695 696 void AsmPrinter::emitFunctionHeaderComment() {} 697 698 /// EmitFunctionHeader - This method emits the header for the current 699 /// function. 700 void AsmPrinter::emitFunctionHeader() { 701 const Function &F = MF->getFunction(); 702 703 if (isVerbose()) 704 OutStreamer->GetCommentOS() 705 << "-- Begin function " 706 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 707 708 // Print out constants referenced by the function 709 emitConstantPool(); 710 711 // Print the 'header' of function. 712 // If basic block sections is desired and function sections is off, 713 // explicitly request a unique section for this function. 714 if (MF->front().isBeginSection() && !TM.getFunctionSections()) 715 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 716 else 717 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 718 OutStreamer->SwitchSection(MF->getSection()); 719 720 if (!MAI->hasVisibilityOnlyWithLinkage()) 721 emitVisibility(CurrentFnSym, F.getVisibility()); 722 723 if (MAI->needsFunctionDescriptors()) 724 emitLinkage(&F, CurrentFnDescSym); 725 726 emitLinkage(&F, CurrentFnSym); 727 if (MAI->hasFunctionAlignment()) 728 emitAlignment(MF->getAlignment(), &F); 729 730 if (MAI->hasDotTypeDotSizeDirective()) 731 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 732 733 if (F.hasFnAttribute(Attribute::Cold)) 734 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 735 736 if (isVerbose()) { 737 F.printAsOperand(OutStreamer->GetCommentOS(), 738 /*PrintType=*/false, F.getParent()); 739 emitFunctionHeaderComment(); 740 OutStreamer->GetCommentOS() << '\n'; 741 } 742 743 // Emit the prefix data. 744 if (F.hasPrefixData()) { 745 if (MAI->hasSubsectionsViaSymbols()) { 746 // Preserving prefix data on platforms which use subsections-via-symbols 747 // is a bit tricky. Here we introduce a symbol for the prefix data 748 // and use the .alt_entry attribute to mark the function's real entry point 749 // as an alternative entry point to the prefix-data symbol. 750 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 751 OutStreamer->emitLabel(PrefixSym); 752 753 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 754 755 // Emit an .alt_entry directive for the actual function symbol. 756 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 757 } else { 758 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 759 } 760 } 761 762 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 763 // place prefix data before NOPs. 764 unsigned PatchableFunctionPrefix = 0; 765 unsigned PatchableFunctionEntry = 0; 766 (void)F.getFnAttribute("patchable-function-prefix") 767 .getValueAsString() 768 .getAsInteger(10, PatchableFunctionPrefix); 769 (void)F.getFnAttribute("patchable-function-entry") 770 .getValueAsString() 771 .getAsInteger(10, PatchableFunctionEntry); 772 if (PatchableFunctionPrefix) { 773 CurrentPatchableFunctionEntrySym = 774 OutContext.createLinkerPrivateTempSymbol(); 775 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 776 emitNops(PatchableFunctionPrefix); 777 } else if (PatchableFunctionEntry) { 778 // May be reassigned when emitting the body, to reference the label after 779 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 780 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 781 } 782 783 // Emit the function descriptor. This is a virtual function to allow targets 784 // to emit their specific function descriptor. Right now it is only used by 785 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 786 // descriptors and should be converted to use this hook as well. 787 if (MAI->needsFunctionDescriptors()) 788 emitFunctionDescriptor(); 789 790 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 791 // their wild and crazy things as required. 792 emitFunctionEntryLabel(); 793 794 if (CurrentFnBegin) { 795 if (MAI->useAssignmentForEHBegin()) { 796 MCSymbol *CurPos = OutContext.createTempSymbol(); 797 OutStreamer->emitLabel(CurPos); 798 OutStreamer->emitAssignment(CurrentFnBegin, 799 MCSymbolRefExpr::create(CurPos, OutContext)); 800 } else { 801 OutStreamer->emitLabel(CurrentFnBegin); 802 } 803 } 804 805 // Emit pre-function debug and/or EH information. 806 for (const HandlerInfo &HI : Handlers) { 807 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 808 HI.TimerGroupDescription, TimePassesIsEnabled); 809 HI.Handler->beginFunction(MF); 810 } 811 812 // Emit the prologue data. 813 if (F.hasPrologueData()) 814 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 815 } 816 817 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 818 /// function. This can be overridden by targets as required to do custom stuff. 819 void AsmPrinter::emitFunctionEntryLabel() { 820 CurrentFnSym->redefineIfPossible(); 821 822 // The function label could have already been emitted if two symbols end up 823 // conflicting due to asm renaming. Detect this and emit an error. 824 if (CurrentFnSym->isVariable()) 825 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 826 "' is a protected alias"); 827 if (CurrentFnSym->isDefined()) 828 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 829 "' label emitted multiple times to assembly file"); 830 831 OutStreamer->emitLabel(CurrentFnSym); 832 833 if (TM.getTargetTriple().isOSBinFormatELF()) { 834 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 835 if (Sym != CurrentFnSym) 836 OutStreamer->emitLabel(Sym); 837 } 838 } 839 840 /// emitComments - Pretty-print comments for instructions. 841 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 842 const MachineFunction *MF = MI.getMF(); 843 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 844 845 // Check for spills and reloads 846 847 // We assume a single instruction only has a spill or reload, not 848 // both. 849 Optional<unsigned> Size; 850 if ((Size = MI.getRestoreSize(TII))) { 851 CommentOS << *Size << "-byte Reload\n"; 852 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 853 if (*Size) { 854 if (*Size == unsigned(MemoryLocation::UnknownSize)) 855 CommentOS << "Unknown-size Folded Reload\n"; 856 else 857 CommentOS << *Size << "-byte Folded Reload\n"; 858 } 859 } else if ((Size = MI.getSpillSize(TII))) { 860 CommentOS << *Size << "-byte Spill\n"; 861 } else if ((Size = MI.getFoldedSpillSize(TII))) { 862 if (*Size) { 863 if (*Size == unsigned(MemoryLocation::UnknownSize)) 864 CommentOS << "Unknown-size Folded Spill\n"; 865 else 866 CommentOS << *Size << "-byte Folded Spill\n"; 867 } 868 } 869 870 // Check for spill-induced copies 871 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 872 CommentOS << " Reload Reuse\n"; 873 } 874 875 /// emitImplicitDef - This method emits the specified machine instruction 876 /// that is an implicit def. 877 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 878 Register RegNo = MI->getOperand(0).getReg(); 879 880 SmallString<128> Str; 881 raw_svector_ostream OS(Str); 882 OS << "implicit-def: " 883 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 884 885 OutStreamer->AddComment(OS.str()); 886 OutStreamer->AddBlankLine(); 887 } 888 889 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 890 std::string Str; 891 raw_string_ostream OS(Str); 892 OS << "kill:"; 893 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 894 const MachineOperand &Op = MI->getOperand(i); 895 assert(Op.isReg() && "KILL instruction must have only register operands"); 896 OS << ' ' << (Op.isDef() ? "def " : "killed ") 897 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 898 } 899 AP.OutStreamer->AddComment(OS.str()); 900 AP.OutStreamer->AddBlankLine(); 901 } 902 903 /// emitDebugValueComment - This method handles the target-independent form 904 /// of DBG_VALUE, returning true if it was able to do so. A false return 905 /// means the target will need to handle MI in EmitInstruction. 906 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 907 // This code handles only the 4-operand target-independent form. 908 if (MI->getNumOperands() != 4) 909 return false; 910 911 SmallString<128> Str; 912 raw_svector_ostream OS(Str); 913 OS << "DEBUG_VALUE: "; 914 915 const DILocalVariable *V = MI->getDebugVariable(); 916 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 917 StringRef Name = SP->getName(); 918 if (!Name.empty()) 919 OS << Name << ":"; 920 } 921 OS << V->getName(); 922 OS << " <- "; 923 924 // The second operand is only an offset if it's an immediate. 925 bool MemLoc = MI->isIndirectDebugValue(); 926 auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0); 927 const DIExpression *Expr = MI->getDebugExpression(); 928 if (Expr->getNumElements()) { 929 OS << '['; 930 ListSeparator LS; 931 for (auto Op : Expr->expr_ops()) { 932 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 933 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 934 OS << ' ' << Op.getArg(I); 935 } 936 OS << "] "; 937 } 938 939 // Register or immediate value. Register 0 means undef. 940 if (MI->getDebugOperand(0).isFPImm()) { 941 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF()); 942 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) { 943 OS << (double)APF.convertToFloat(); 944 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) { 945 OS << APF.convertToDouble(); 946 } else { 947 // There is no good way to print long double. Convert a copy to 948 // double. Ah well, it's only a comment. 949 bool ignored; 950 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 951 &ignored); 952 OS << "(long double) " << APF.convertToDouble(); 953 } 954 } else if (MI->getDebugOperand(0).isImm()) { 955 OS << MI->getDebugOperand(0).getImm(); 956 } else if (MI->getDebugOperand(0).isCImm()) { 957 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 958 } else if (MI->getDebugOperand(0).isTargetIndex()) { 959 auto Op = MI->getDebugOperand(0); 960 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 961 // NOTE: Want this comment at start of line, don't emit with AddComment. 962 AP.OutStreamer->emitRawComment(OS.str()); 963 return true; 964 } else { 965 Register Reg; 966 if (MI->getDebugOperand(0).isReg()) { 967 Reg = MI->getDebugOperand(0).getReg(); 968 } else { 969 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type"); 970 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 971 Offset += TFI->getFrameIndexReference( 972 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg); 973 MemLoc = true; 974 } 975 if (Reg == 0) { 976 // Suppress offset, it is not meaningful here. 977 OS << "undef"; 978 // NOTE: Want this comment at start of line, don't emit with AddComment. 979 AP.OutStreamer->emitRawComment(OS.str()); 980 return true; 981 } 982 if (MemLoc) 983 OS << '['; 984 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 985 } 986 987 if (MemLoc) 988 OS << '+' << Offset.getFixed() << ']'; 989 990 // NOTE: Want this comment at start of line, don't emit with AddComment. 991 AP.OutStreamer->emitRawComment(OS.str()); 992 return true; 993 } 994 995 /// This method handles the target-independent form of DBG_LABEL, returning 996 /// true if it was able to do so. A false return means the target will need 997 /// to handle MI in EmitInstruction. 998 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 999 if (MI->getNumOperands() != 1) 1000 return false; 1001 1002 SmallString<128> Str; 1003 raw_svector_ostream OS(Str); 1004 OS << "DEBUG_LABEL: "; 1005 1006 const DILabel *V = MI->getDebugLabel(); 1007 if (auto *SP = dyn_cast<DISubprogram>( 1008 V->getScope()->getNonLexicalBlockFileScope())) { 1009 StringRef Name = SP->getName(); 1010 if (!Name.empty()) 1011 OS << Name << ":"; 1012 } 1013 OS << V->getName(); 1014 1015 // NOTE: Want this comment at start of line, don't emit with AddComment. 1016 AP.OutStreamer->emitRawComment(OS.str()); 1017 return true; 1018 } 1019 1020 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 1021 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1022 MF->getFunction().needsUnwindTableEntry()) 1023 return CFI_M_EH; 1024 1025 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1026 return CFI_M_Debug; 1027 1028 return CFI_M_None; 1029 } 1030 1031 bool AsmPrinter::needsSEHMoves() { 1032 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1033 } 1034 1035 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1036 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1037 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1038 ExceptionHandlingType != ExceptionHandling::ARM) 1039 return; 1040 1041 if (needsCFIMoves() == CFI_M_None) 1042 return; 1043 1044 // If there is no "real" instruction following this CFI instruction, skip 1045 // emitting it; it would be beyond the end of the function's FDE range. 1046 auto *MBB = MI.getParent(); 1047 auto I = std::next(MI.getIterator()); 1048 while (I != MBB->end() && I->isTransient()) 1049 ++I; 1050 if (I == MBB->instr_end() && 1051 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1052 return; 1053 1054 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1055 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1056 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1057 emitCFIInstruction(CFI); 1058 } 1059 1060 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1061 // The operands are the MCSymbol and the frame offset of the allocation. 1062 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1063 int FrameOffset = MI.getOperand(1).getImm(); 1064 1065 // Emit a symbol assignment. 1066 OutStreamer->emitAssignment(FrameAllocSym, 1067 MCConstantExpr::create(FrameOffset, OutContext)); 1068 } 1069 1070 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1071 /// given basic block. This can be used to capture more precise profile 1072 /// information. We use the last 3 bits (LSBs) to ecnode the following 1073 /// information: 1074 /// * (1): set if return block (ret or tail call). 1075 /// * (2): set if ends with a tail call. 1076 /// * (3): set if exception handling (EH) landing pad. 1077 /// The remaining bits are zero. 1078 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1079 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1080 return ((unsigned)MBB.isReturnBlock()) | 1081 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1082 (MBB.isEHPad() << 2); 1083 } 1084 1085 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1086 MCSection *BBAddrMapSection = 1087 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1088 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1089 1090 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1091 1092 OutStreamer->PushSection(); 1093 OutStreamer->SwitchSection(BBAddrMapSection); 1094 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1095 // Emit the total number of basic blocks in this function. 1096 OutStreamer->emitULEB128IntValue(MF.size()); 1097 // Emit BB Information for each basic block in the funciton. 1098 for (const MachineBasicBlock &MBB : MF) { 1099 const MCSymbol *MBBSymbol = 1100 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1101 // Emit the basic block offset. 1102 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1103 // Emit the basic block size. When BBs have alignments, their size cannot 1104 // always be computed from their offsets. 1105 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1106 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1107 } 1108 OutStreamer->PopSection(); 1109 } 1110 1111 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1112 auto GUID = MI.getOperand(0).getImm(); 1113 auto Index = MI.getOperand(1).getImm(); 1114 auto Type = MI.getOperand(2).getImm(); 1115 auto Attr = MI.getOperand(3).getImm(); 1116 DILocation *DebugLoc = MI.getDebugLoc(); 1117 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1118 } 1119 1120 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1121 if (!MF.getTarget().Options.EmitStackSizeSection) 1122 return; 1123 1124 MCSection *StackSizeSection = 1125 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1126 if (!StackSizeSection) 1127 return; 1128 1129 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1130 // Don't emit functions with dynamic stack allocations. 1131 if (FrameInfo.hasVarSizedObjects()) 1132 return; 1133 1134 OutStreamer->PushSection(); 1135 OutStreamer->SwitchSection(StackSizeSection); 1136 1137 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1138 uint64_t StackSize = FrameInfo.getStackSize(); 1139 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1140 OutStreamer->emitULEB128IntValue(StackSize); 1141 1142 OutStreamer->PopSection(); 1143 } 1144 1145 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1146 MachineModuleInfo &MMI = MF.getMMI(); 1147 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1148 return true; 1149 1150 // We might emit an EH table that uses function begin and end labels even if 1151 // we don't have any landingpads. 1152 if (!MF.getFunction().hasPersonalityFn()) 1153 return false; 1154 return !isNoOpWithoutInvoke( 1155 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1156 } 1157 1158 /// EmitFunctionBody - This method emits the body and trailer for a 1159 /// function. 1160 void AsmPrinter::emitFunctionBody() { 1161 emitFunctionHeader(); 1162 1163 // Emit target-specific gunk before the function body. 1164 emitFunctionBodyStart(); 1165 1166 if (isVerbose()) { 1167 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1168 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1169 if (!MDT) { 1170 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1171 OwnedMDT->getBase().recalculate(*MF); 1172 MDT = OwnedMDT.get(); 1173 } 1174 1175 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1176 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1177 if (!MLI) { 1178 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1179 OwnedMLI->getBase().analyze(MDT->getBase()); 1180 MLI = OwnedMLI.get(); 1181 } 1182 } 1183 1184 // Print out code for the function. 1185 bool HasAnyRealCode = false; 1186 int NumInstsInFunction = 0; 1187 1188 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1189 for (auto &MBB : *MF) { 1190 // Print a label for the basic block. 1191 emitBasicBlockStart(MBB); 1192 DenseMap<StringRef, unsigned> MnemonicCounts; 1193 for (auto &MI : MBB) { 1194 // Print the assembly for the instruction. 1195 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1196 !MI.isDebugInstr()) { 1197 HasAnyRealCode = true; 1198 ++NumInstsInFunction; 1199 } 1200 1201 // If there is a pre-instruction symbol, emit a label for it here. 1202 if (MCSymbol *S = MI.getPreInstrSymbol()) 1203 OutStreamer->emitLabel(S); 1204 1205 for (const HandlerInfo &HI : Handlers) { 1206 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1207 HI.TimerGroupDescription, TimePassesIsEnabled); 1208 HI.Handler->beginInstruction(&MI); 1209 } 1210 1211 if (isVerbose()) 1212 emitComments(MI, OutStreamer->GetCommentOS()); 1213 1214 switch (MI.getOpcode()) { 1215 case TargetOpcode::CFI_INSTRUCTION: 1216 emitCFIInstruction(MI); 1217 break; 1218 case TargetOpcode::LOCAL_ESCAPE: 1219 emitFrameAlloc(MI); 1220 break; 1221 case TargetOpcode::ANNOTATION_LABEL: 1222 case TargetOpcode::EH_LABEL: 1223 case TargetOpcode::GC_LABEL: 1224 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1225 break; 1226 case TargetOpcode::INLINEASM: 1227 case TargetOpcode::INLINEASM_BR: 1228 emitInlineAsm(&MI); 1229 break; 1230 case TargetOpcode::DBG_VALUE: 1231 if (isVerbose()) { 1232 if (!emitDebugValueComment(&MI, *this)) 1233 emitInstruction(&MI); 1234 } 1235 break; 1236 case TargetOpcode::DBG_INSTR_REF: 1237 // This instruction reference will have been resolved to a machine 1238 // location, and a nearby DBG_VALUE created. We can safely ignore 1239 // the instruction reference. 1240 break; 1241 case TargetOpcode::DBG_LABEL: 1242 if (isVerbose()) { 1243 if (!emitDebugLabelComment(&MI, *this)) 1244 emitInstruction(&MI); 1245 } 1246 break; 1247 case TargetOpcode::IMPLICIT_DEF: 1248 if (isVerbose()) emitImplicitDef(&MI); 1249 break; 1250 case TargetOpcode::KILL: 1251 if (isVerbose()) emitKill(&MI, *this); 1252 break; 1253 case TargetOpcode::PSEUDO_PROBE: 1254 emitPseudoProbe(MI); 1255 break; 1256 default: 1257 emitInstruction(&MI); 1258 if (CanDoExtraAnalysis) { 1259 MCInst MCI; 1260 MCI.setOpcode(MI.getOpcode()); 1261 auto Name = OutStreamer->getMnemonic(MCI); 1262 auto I = MnemonicCounts.insert({Name, 0u}); 1263 I.first->second++; 1264 } 1265 break; 1266 } 1267 1268 // If there is a post-instruction symbol, emit a label for it here. 1269 if (MCSymbol *S = MI.getPostInstrSymbol()) 1270 OutStreamer->emitLabel(S); 1271 1272 for (const HandlerInfo &HI : Handlers) { 1273 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1274 HI.TimerGroupDescription, TimePassesIsEnabled); 1275 HI.Handler->endInstruction(); 1276 } 1277 } 1278 1279 // We must emit temporary symbol for the end of this basic block, if either 1280 // we have BBLabels enabled or if this basic blocks marks the end of a 1281 // section (except the section containing the entry basic block as the end 1282 // symbol for that section is CurrentFnEnd). 1283 if (MF->hasBBLabels() || 1284 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1285 !MBB.sameSection(&MF->front()))) 1286 OutStreamer->emitLabel(MBB.getEndSymbol()); 1287 1288 if (MBB.isEndSection()) { 1289 // The size directive for the section containing the entry block is 1290 // handled separately by the function section. 1291 if (!MBB.sameSection(&MF->front())) { 1292 if (MAI->hasDotTypeDotSizeDirective()) { 1293 // Emit the size directive for the basic block section. 1294 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1295 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1296 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1297 OutContext); 1298 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1299 } 1300 MBBSectionRanges[MBB.getSectionIDNum()] = 1301 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1302 } 1303 } 1304 emitBasicBlockEnd(MBB); 1305 1306 if (CanDoExtraAnalysis) { 1307 // Skip empty blocks. 1308 if (MBB.empty()) 1309 continue; 1310 1311 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1312 MBB.begin()->getDebugLoc(), &MBB); 1313 1314 // Generate instruction mix remark. First, sort counts in descending order 1315 // by count and name. 1316 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1317 for (auto &KV : MnemonicCounts) 1318 MnemonicVec.emplace_back(KV.first, KV.second); 1319 1320 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1321 const std::pair<StringRef, unsigned> &B) { 1322 if (A.second > B.second) 1323 return true; 1324 if (A.second == B.second) 1325 return StringRef(A.first) < StringRef(B.first); 1326 return false; 1327 }); 1328 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1329 for (auto &KV : MnemonicVec) { 1330 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1331 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1332 } 1333 ORE->emit(R); 1334 } 1335 } 1336 1337 EmittedInsts += NumInstsInFunction; 1338 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1339 MF->getFunction().getSubprogram(), 1340 &MF->front()); 1341 R << ore::NV("NumInstructions", NumInstsInFunction) 1342 << " instructions in function"; 1343 ORE->emit(R); 1344 1345 // If the function is empty and the object file uses .subsections_via_symbols, 1346 // then we need to emit *something* to the function body to prevent the 1347 // labels from collapsing together. Just emit a noop. 1348 // Similarly, don't emit empty functions on Windows either. It can lead to 1349 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1350 // after linking, causing the kernel not to load the binary: 1351 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1352 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1353 const Triple &TT = TM.getTargetTriple(); 1354 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1355 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1356 MCInst Noop; 1357 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1358 1359 // Targets can opt-out of emitting the noop here by leaving the opcode 1360 // unspecified. 1361 if (Noop.getOpcode()) { 1362 OutStreamer->AddComment("avoids zero-length function"); 1363 emitNops(1); 1364 } 1365 } 1366 1367 // Switch to the original section in case basic block sections was used. 1368 OutStreamer->SwitchSection(MF->getSection()); 1369 1370 const Function &F = MF->getFunction(); 1371 for (const auto &BB : F) { 1372 if (!BB.hasAddressTaken()) 1373 continue; 1374 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1375 if (Sym->isDefined()) 1376 continue; 1377 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1378 OutStreamer->emitLabel(Sym); 1379 } 1380 1381 // Emit target-specific gunk after the function body. 1382 emitFunctionBodyEnd(); 1383 1384 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1385 MAI->hasDotTypeDotSizeDirective()) { 1386 // Create a symbol for the end of function. 1387 CurrentFnEnd = createTempSymbol("func_end"); 1388 OutStreamer->emitLabel(CurrentFnEnd); 1389 } 1390 1391 // If the target wants a .size directive for the size of the function, emit 1392 // it. 1393 if (MAI->hasDotTypeDotSizeDirective()) { 1394 // We can get the size as difference between the function label and the 1395 // temp label. 1396 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1397 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1398 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1399 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1400 } 1401 1402 for (const HandlerInfo &HI : Handlers) { 1403 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1404 HI.TimerGroupDescription, TimePassesIsEnabled); 1405 HI.Handler->markFunctionEnd(); 1406 } 1407 1408 MBBSectionRanges[MF->front().getSectionIDNum()] = 1409 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1410 1411 // Print out jump tables referenced by the function. 1412 emitJumpTableInfo(); 1413 1414 // Emit post-function debug and/or EH information. 1415 for (const HandlerInfo &HI : Handlers) { 1416 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1417 HI.TimerGroupDescription, TimePassesIsEnabled); 1418 HI.Handler->endFunction(MF); 1419 } 1420 1421 // Emit section containing BB address offsets and their metadata, when 1422 // BB labels are requested for this function. 1423 if (MF->hasBBLabels()) 1424 emitBBAddrMapSection(*MF); 1425 1426 // Emit section containing stack size metadata. 1427 emitStackSizeSection(*MF); 1428 1429 emitPatchableFunctionEntries(); 1430 1431 if (isVerbose()) 1432 OutStreamer->GetCommentOS() << "-- End function\n"; 1433 1434 OutStreamer->AddBlankLine(); 1435 } 1436 1437 /// Compute the number of Global Variables that uses a Constant. 1438 static unsigned getNumGlobalVariableUses(const Constant *C) { 1439 if (!C) 1440 return 0; 1441 1442 if (isa<GlobalVariable>(C)) 1443 return 1; 1444 1445 unsigned NumUses = 0; 1446 for (auto *CU : C->users()) 1447 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1448 1449 return NumUses; 1450 } 1451 1452 /// Only consider global GOT equivalents if at least one user is a 1453 /// cstexpr inside an initializer of another global variables. Also, don't 1454 /// handle cstexpr inside instructions. During global variable emission, 1455 /// candidates are skipped and are emitted later in case at least one cstexpr 1456 /// isn't replaced by a PC relative GOT entry access. 1457 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1458 unsigned &NumGOTEquivUsers) { 1459 // Global GOT equivalents are unnamed private globals with a constant 1460 // pointer initializer to another global symbol. They must point to a 1461 // GlobalVariable or Function, i.e., as GlobalValue. 1462 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1463 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1464 !isa<GlobalValue>(GV->getOperand(0))) 1465 return false; 1466 1467 // To be a got equivalent, at least one of its users need to be a constant 1468 // expression used by another global variable. 1469 for (auto *U : GV->users()) 1470 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1471 1472 return NumGOTEquivUsers > 0; 1473 } 1474 1475 /// Unnamed constant global variables solely contaning a pointer to 1476 /// another globals variable is equivalent to a GOT table entry; it contains the 1477 /// the address of another symbol. Optimize it and replace accesses to these 1478 /// "GOT equivalents" by using the GOT entry for the final global instead. 1479 /// Compute GOT equivalent candidates among all global variables to avoid 1480 /// emitting them if possible later on, after it use is replaced by a GOT entry 1481 /// access. 1482 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1483 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1484 return; 1485 1486 for (const auto &G : M.globals()) { 1487 unsigned NumGOTEquivUsers = 0; 1488 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1489 continue; 1490 1491 const MCSymbol *GOTEquivSym = getSymbol(&G); 1492 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1493 } 1494 } 1495 1496 /// Constant expressions using GOT equivalent globals may not be eligible 1497 /// for PC relative GOT entry conversion, in such cases we need to emit such 1498 /// globals we previously omitted in EmitGlobalVariable. 1499 void AsmPrinter::emitGlobalGOTEquivs() { 1500 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1501 return; 1502 1503 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1504 for (auto &I : GlobalGOTEquivs) { 1505 const GlobalVariable *GV = I.second.first; 1506 unsigned Cnt = I.second.second; 1507 if (Cnt) 1508 FailedCandidates.push_back(GV); 1509 } 1510 GlobalGOTEquivs.clear(); 1511 1512 for (auto *GV : FailedCandidates) 1513 emitGlobalVariable(GV); 1514 } 1515 1516 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1517 const GlobalIndirectSymbol& GIS) { 1518 MCSymbol *Name = getSymbol(&GIS); 1519 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1520 // Treat bitcasts of functions as functions also. This is important at least 1521 // on WebAssembly where object and function addresses can't alias each other. 1522 if (!IsFunction) 1523 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1524 if (CE->getOpcode() == Instruction::BitCast) 1525 IsFunction = 1526 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1527 1528 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1529 // so AIX has to use the extra-label-at-definition strategy. At this 1530 // point, all the extra label is emitted, we just have to emit linkage for 1531 // those labels. 1532 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1533 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1534 assert(MAI->hasVisibilityOnlyWithLinkage() && 1535 "Visibility should be handled with emitLinkage() on AIX."); 1536 emitLinkage(&GIS, Name); 1537 // If it's a function, also emit linkage for aliases of function entry 1538 // point. 1539 if (IsFunction) 1540 emitLinkage(&GIS, 1541 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1542 return; 1543 } 1544 1545 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1546 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1547 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1548 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1549 else 1550 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1551 1552 // Set the symbol type to function if the alias has a function type. 1553 // This affects codegen when the aliasee is not a function. 1554 if (IsFunction) 1555 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1556 ? MCSA_ELF_TypeIndFunction 1557 : MCSA_ELF_TypeFunction); 1558 1559 emitVisibility(Name, GIS.getVisibility()); 1560 1561 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1562 1563 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1564 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1565 1566 // Emit the directives as assignments aka .set: 1567 OutStreamer->emitAssignment(Name, Expr); 1568 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1569 if (LocalAlias != Name) 1570 OutStreamer->emitAssignment(LocalAlias, Expr); 1571 1572 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1573 // If the aliasee does not correspond to a symbol in the output, i.e. the 1574 // alias is not of an object or the aliased object is private, then set the 1575 // size of the alias symbol from the type of the alias. We don't do this in 1576 // other situations as the alias and aliasee having differing types but same 1577 // size may be intentional. 1578 const GlobalObject *BaseObject = GA->getBaseObject(); 1579 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1580 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1581 const DataLayout &DL = M.getDataLayout(); 1582 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1583 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1584 } 1585 } 1586 } 1587 1588 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1589 if (!RS.needsSection()) 1590 return; 1591 1592 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1593 1594 Optional<SmallString<128>> Filename; 1595 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1596 Filename = *FilenameRef; 1597 sys::fs::make_absolute(*Filename); 1598 assert(!Filename->empty() && "The filename can't be empty."); 1599 } 1600 1601 std::string Buf; 1602 raw_string_ostream OS(Buf); 1603 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1604 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1605 : RemarkSerializer.metaSerializer(OS); 1606 MetaSerializer->emit(); 1607 1608 // Switch to the remarks section. 1609 MCSection *RemarksSection = 1610 OutContext.getObjectFileInfo()->getRemarksSection(); 1611 OutStreamer->SwitchSection(RemarksSection); 1612 1613 OutStreamer->emitBinaryData(OS.str()); 1614 } 1615 1616 bool AsmPrinter::doFinalization(Module &M) { 1617 // Set the MachineFunction to nullptr so that we can catch attempted 1618 // accesses to MF specific features at the module level and so that 1619 // we can conditionalize accesses based on whether or not it is nullptr. 1620 MF = nullptr; 1621 1622 // Gather all GOT equivalent globals in the module. We really need two 1623 // passes over the globals: one to compute and another to avoid its emission 1624 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1625 // where the got equivalent shows up before its use. 1626 computeGlobalGOTEquivs(M); 1627 1628 // Emit global variables. 1629 for (const auto &G : M.globals()) 1630 emitGlobalVariable(&G); 1631 1632 // Emit remaining GOT equivalent globals. 1633 emitGlobalGOTEquivs(); 1634 1635 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1636 1637 // Emit linkage(XCOFF) and visibility info for declarations 1638 for (const Function &F : M) { 1639 if (!F.isDeclarationForLinker()) 1640 continue; 1641 1642 MCSymbol *Name = getSymbol(&F); 1643 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1644 1645 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1646 GlobalValue::VisibilityTypes V = F.getVisibility(); 1647 if (V == GlobalValue::DefaultVisibility) 1648 continue; 1649 1650 emitVisibility(Name, V, false); 1651 continue; 1652 } 1653 1654 if (F.isIntrinsic()) 1655 continue; 1656 1657 // Handle the XCOFF case. 1658 // Variable `Name` is the function descriptor symbol (see above). Get the 1659 // function entry point symbol. 1660 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1661 // Emit linkage for the function entry point. 1662 emitLinkage(&F, FnEntryPointSym); 1663 1664 // Emit linkage for the function descriptor. 1665 emitLinkage(&F, Name); 1666 } 1667 1668 // Emit the remarks section contents. 1669 // FIXME: Figure out when is the safest time to emit this section. It should 1670 // not come after debug info. 1671 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1672 emitRemarksSection(*RS); 1673 1674 TLOF.emitModuleMetadata(*OutStreamer, M); 1675 1676 if (TM.getTargetTriple().isOSBinFormatELF()) { 1677 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1678 1679 // Output stubs for external and common global variables. 1680 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1681 if (!Stubs.empty()) { 1682 OutStreamer->SwitchSection(TLOF.getDataSection()); 1683 const DataLayout &DL = M.getDataLayout(); 1684 1685 emitAlignment(Align(DL.getPointerSize())); 1686 for (const auto &Stub : Stubs) { 1687 OutStreamer->emitLabel(Stub.first); 1688 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1689 DL.getPointerSize()); 1690 } 1691 } 1692 } 1693 1694 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1695 MachineModuleInfoCOFF &MMICOFF = 1696 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1697 1698 // Output stubs for external and common global variables. 1699 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1700 if (!Stubs.empty()) { 1701 const DataLayout &DL = M.getDataLayout(); 1702 1703 for (const auto &Stub : Stubs) { 1704 SmallString<256> SectionName = StringRef(".rdata$"); 1705 SectionName += Stub.first->getName(); 1706 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1707 SectionName, 1708 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1709 COFF::IMAGE_SCN_LNK_COMDAT, 1710 SectionKind::getReadOnly(), Stub.first->getName(), 1711 COFF::IMAGE_COMDAT_SELECT_ANY)); 1712 emitAlignment(Align(DL.getPointerSize())); 1713 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1714 OutStreamer->emitLabel(Stub.first); 1715 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1716 DL.getPointerSize()); 1717 } 1718 } 1719 } 1720 1721 // Finalize debug and EH information. 1722 for (const HandlerInfo &HI : Handlers) { 1723 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1724 HI.TimerGroupDescription, TimePassesIsEnabled); 1725 HI.Handler->endModule(); 1726 } 1727 1728 // This deletes all the ephemeral handlers that AsmPrinter added, while 1729 // keeping all the user-added handlers alive until the AsmPrinter is 1730 // destroyed. 1731 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1732 DD = nullptr; 1733 1734 // If the target wants to know about weak references, print them all. 1735 if (MAI->getWeakRefDirective()) { 1736 // FIXME: This is not lazy, it would be nice to only print weak references 1737 // to stuff that is actually used. Note that doing so would require targets 1738 // to notice uses in operands (due to constant exprs etc). This should 1739 // happen with the MC stuff eventually. 1740 1741 // Print out module-level global objects here. 1742 for (const auto &GO : M.global_objects()) { 1743 if (!GO.hasExternalWeakLinkage()) 1744 continue; 1745 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1746 } 1747 } 1748 1749 // Print aliases in topological order, that is, for each alias a = b, 1750 // b must be printed before a. 1751 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1752 // such an order to generate correct TOC information. 1753 SmallVector<const GlobalAlias *, 16> AliasStack; 1754 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1755 for (const auto &Alias : M.aliases()) { 1756 for (const GlobalAlias *Cur = &Alias; Cur; 1757 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1758 if (!AliasVisited.insert(Cur).second) 1759 break; 1760 AliasStack.push_back(Cur); 1761 } 1762 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1763 emitGlobalIndirectSymbol(M, *AncestorAlias); 1764 AliasStack.clear(); 1765 } 1766 for (const auto &IFunc : M.ifuncs()) 1767 emitGlobalIndirectSymbol(M, IFunc); 1768 1769 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1770 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1771 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1772 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1773 MP->finishAssembly(M, *MI, *this); 1774 1775 // Emit llvm.ident metadata in an '.ident' directive. 1776 emitModuleIdents(M); 1777 1778 // Emit bytes for llvm.commandline metadata. 1779 emitModuleCommandLines(M); 1780 1781 // Emit __morestack address if needed for indirect calls. 1782 if (MMI->usesMorestackAddr()) { 1783 Align Alignment(1); 1784 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1785 getDataLayout(), SectionKind::getReadOnly(), 1786 /*C=*/nullptr, Alignment); 1787 OutStreamer->SwitchSection(ReadOnlySection); 1788 1789 MCSymbol *AddrSymbol = 1790 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1791 OutStreamer->emitLabel(AddrSymbol); 1792 1793 unsigned PtrSize = MAI->getCodePointerSize(); 1794 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1795 PtrSize); 1796 } 1797 1798 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1799 // split-stack is used. 1800 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1801 OutStreamer->SwitchSection( 1802 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1803 if (MMI->hasNosplitStack()) 1804 OutStreamer->SwitchSection( 1805 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1806 } 1807 1808 // If we don't have any trampolines, then we don't require stack memory 1809 // to be executable. Some targets have a directive to declare this. 1810 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1811 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1812 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1813 OutStreamer->SwitchSection(S); 1814 1815 if (TM.Options.EmitAddrsig) { 1816 // Emit address-significance attributes for all globals. 1817 OutStreamer->emitAddrsig(); 1818 for (const GlobalValue &GV : M.global_values()) 1819 if (!GV.use_empty() && !GV.isThreadLocal() && 1820 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1821 !GV.hasAtLeastLocalUnnamedAddr()) 1822 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1823 } 1824 1825 // Emit symbol partition specifications (ELF only). 1826 if (TM.getTargetTriple().isOSBinFormatELF()) { 1827 unsigned UniqueID = 0; 1828 for (const GlobalValue &GV : M.global_values()) { 1829 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1830 GV.getVisibility() != GlobalValue::DefaultVisibility) 1831 continue; 1832 1833 OutStreamer->SwitchSection( 1834 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1835 "", false, ++UniqueID, nullptr)); 1836 OutStreamer->emitBytes(GV.getPartition()); 1837 OutStreamer->emitZeros(1); 1838 OutStreamer->emitValue( 1839 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1840 MAI->getCodePointerSize()); 1841 } 1842 } 1843 1844 // Allow the target to emit any magic that it wants at the end of the file, 1845 // after everything else has gone out. 1846 emitEndOfAsmFile(M); 1847 1848 MMI = nullptr; 1849 1850 OutStreamer->Finish(); 1851 OutStreamer->reset(); 1852 OwnedMLI.reset(); 1853 OwnedMDT.reset(); 1854 1855 return false; 1856 } 1857 1858 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1859 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1860 if (Res.second) 1861 Res.first->second = createTempSymbol("exception"); 1862 return Res.first->second; 1863 } 1864 1865 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1866 this->MF = &MF; 1867 const Function &F = MF.getFunction(); 1868 1869 // Get the function symbol. 1870 if (!MAI->needsFunctionDescriptors()) { 1871 CurrentFnSym = getSymbol(&MF.getFunction()); 1872 } else { 1873 assert(TM.getTargetTriple().isOSAIX() && 1874 "Only AIX uses the function descriptor hooks."); 1875 // AIX is unique here in that the name of the symbol emitted for the 1876 // function body does not have the same name as the source function's 1877 // C-linkage name. 1878 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1879 " initalized first."); 1880 1881 // Get the function entry point symbol. 1882 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1883 } 1884 1885 CurrentFnSymForSize = CurrentFnSym; 1886 CurrentFnBegin = nullptr; 1887 CurrentSectionBeginSym = nullptr; 1888 MBBSectionRanges.clear(); 1889 MBBSectionExceptionSyms.clear(); 1890 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1891 if (F.hasFnAttribute("patchable-function-entry") || 1892 F.hasFnAttribute("function-instrument") || 1893 F.hasFnAttribute("xray-instruction-threshold") || 1894 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1895 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1896 CurrentFnBegin = createTempSymbol("func_begin"); 1897 if (NeedsLocalForSize) 1898 CurrentFnSymForSize = CurrentFnBegin; 1899 } 1900 1901 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1902 } 1903 1904 namespace { 1905 1906 // Keep track the alignment, constpool entries per Section. 1907 struct SectionCPs { 1908 MCSection *S; 1909 Align Alignment; 1910 SmallVector<unsigned, 4> CPEs; 1911 1912 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1913 }; 1914 1915 } // end anonymous namespace 1916 1917 /// EmitConstantPool - Print to the current output stream assembly 1918 /// representations of the constants in the constant pool MCP. This is 1919 /// used to print out constants which have been "spilled to memory" by 1920 /// the code generator. 1921 void AsmPrinter::emitConstantPool() { 1922 const MachineConstantPool *MCP = MF->getConstantPool(); 1923 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1924 if (CP.empty()) return; 1925 1926 // Calculate sections for constant pool entries. We collect entries to go into 1927 // the same section together to reduce amount of section switch statements. 1928 SmallVector<SectionCPs, 4> CPSections; 1929 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1930 const MachineConstantPoolEntry &CPE = CP[i]; 1931 Align Alignment = CPE.getAlign(); 1932 1933 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1934 1935 const Constant *C = nullptr; 1936 if (!CPE.isMachineConstantPoolEntry()) 1937 C = CPE.Val.ConstVal; 1938 1939 MCSection *S = getObjFileLowering().getSectionForConstant( 1940 getDataLayout(), Kind, C, Alignment); 1941 1942 // The number of sections are small, just do a linear search from the 1943 // last section to the first. 1944 bool Found = false; 1945 unsigned SecIdx = CPSections.size(); 1946 while (SecIdx != 0) { 1947 if (CPSections[--SecIdx].S == S) { 1948 Found = true; 1949 break; 1950 } 1951 } 1952 if (!Found) { 1953 SecIdx = CPSections.size(); 1954 CPSections.push_back(SectionCPs(S, Alignment)); 1955 } 1956 1957 if (Alignment > CPSections[SecIdx].Alignment) 1958 CPSections[SecIdx].Alignment = Alignment; 1959 CPSections[SecIdx].CPEs.push_back(i); 1960 } 1961 1962 // Now print stuff into the calculated sections. 1963 const MCSection *CurSection = nullptr; 1964 unsigned Offset = 0; 1965 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1966 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1967 unsigned CPI = CPSections[i].CPEs[j]; 1968 MCSymbol *Sym = GetCPISymbol(CPI); 1969 if (!Sym->isUndefined()) 1970 continue; 1971 1972 if (CurSection != CPSections[i].S) { 1973 OutStreamer->SwitchSection(CPSections[i].S); 1974 emitAlignment(Align(CPSections[i].Alignment)); 1975 CurSection = CPSections[i].S; 1976 Offset = 0; 1977 } 1978 1979 MachineConstantPoolEntry CPE = CP[CPI]; 1980 1981 // Emit inter-object padding for alignment. 1982 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1983 OutStreamer->emitZeros(NewOffset - Offset); 1984 1985 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 1986 1987 OutStreamer->emitLabel(Sym); 1988 if (CPE.isMachineConstantPoolEntry()) 1989 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1990 else 1991 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1992 } 1993 } 1994 } 1995 1996 // Print assembly representations of the jump tables used by the current 1997 // function. 1998 void AsmPrinter::emitJumpTableInfo() { 1999 const DataLayout &DL = MF->getDataLayout(); 2000 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2001 if (!MJTI) return; 2002 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2003 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2004 if (JT.empty()) return; 2005 2006 // Pick the directive to use to print the jump table entries, and switch to 2007 // the appropriate section. 2008 const Function &F = MF->getFunction(); 2009 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2010 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2011 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2012 F); 2013 if (JTInDiffSection) { 2014 // Drop it in the readonly section. 2015 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2016 OutStreamer->SwitchSection(ReadOnlySection); 2017 } 2018 2019 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2020 2021 // Jump tables in code sections are marked with a data_region directive 2022 // where that's supported. 2023 if (!JTInDiffSection) 2024 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2025 2026 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2027 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2028 2029 // If this jump table was deleted, ignore it. 2030 if (JTBBs.empty()) continue; 2031 2032 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2033 /// emit a .set directive for each unique entry. 2034 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2035 MAI->doesSetDirectiveSuppressReloc()) { 2036 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2037 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2038 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2039 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2040 const MachineBasicBlock *MBB = JTBBs[ii]; 2041 if (!EmittedSets.insert(MBB).second) 2042 continue; 2043 2044 // .set LJTSet, LBB32-base 2045 const MCExpr *LHS = 2046 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2047 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2048 MCBinaryExpr::createSub(LHS, Base, 2049 OutContext)); 2050 } 2051 } 2052 2053 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2054 // before each jump table. The first label is never referenced, but tells 2055 // the assembler and linker the extents of the jump table object. The 2056 // second label is actually referenced by the code. 2057 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2058 // FIXME: This doesn't have to have any specific name, just any randomly 2059 // named and numbered local label started with 'l' would work. Simplify 2060 // GetJTISymbol. 2061 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2062 2063 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2064 OutStreamer->emitLabel(JTISymbol); 2065 2066 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2067 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2068 } 2069 if (!JTInDiffSection) 2070 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2071 } 2072 2073 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2074 /// current stream. 2075 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2076 const MachineBasicBlock *MBB, 2077 unsigned UID) const { 2078 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2079 const MCExpr *Value = nullptr; 2080 switch (MJTI->getEntryKind()) { 2081 case MachineJumpTableInfo::EK_Inline: 2082 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2083 case MachineJumpTableInfo::EK_Custom32: 2084 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2085 MJTI, MBB, UID, OutContext); 2086 break; 2087 case MachineJumpTableInfo::EK_BlockAddress: 2088 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2089 // .word LBB123 2090 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2091 break; 2092 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2093 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2094 // with a relocation as gp-relative, e.g.: 2095 // .gprel32 LBB123 2096 MCSymbol *MBBSym = MBB->getSymbol(); 2097 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2098 return; 2099 } 2100 2101 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2102 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2103 // with a relocation as gp-relative, e.g.: 2104 // .gpdword LBB123 2105 MCSymbol *MBBSym = MBB->getSymbol(); 2106 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2107 return; 2108 } 2109 2110 case MachineJumpTableInfo::EK_LabelDifference32: { 2111 // Each entry is the address of the block minus the address of the jump 2112 // table. This is used for PIC jump tables where gprel32 is not supported. 2113 // e.g.: 2114 // .word LBB123 - LJTI1_2 2115 // If the .set directive avoids relocations, this is emitted as: 2116 // .set L4_5_set_123, LBB123 - LJTI1_2 2117 // .word L4_5_set_123 2118 if (MAI->doesSetDirectiveSuppressReloc()) { 2119 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2120 OutContext); 2121 break; 2122 } 2123 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2124 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2125 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2126 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2127 break; 2128 } 2129 } 2130 2131 assert(Value && "Unknown entry kind!"); 2132 2133 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2134 OutStreamer->emitValue(Value, EntrySize); 2135 } 2136 2137 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2138 /// special global used by LLVM. If so, emit it and return true, otherwise 2139 /// do nothing and return false. 2140 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2141 if (GV->getName() == "llvm.used") { 2142 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2143 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2144 return true; 2145 } 2146 2147 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2148 if (GV->getSection() == "llvm.metadata" || 2149 GV->hasAvailableExternallyLinkage()) 2150 return true; 2151 2152 if (!GV->hasAppendingLinkage()) return false; 2153 2154 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2155 2156 if (GV->getName() == "llvm.global_ctors") { 2157 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2158 /* isCtor */ true); 2159 2160 return true; 2161 } 2162 2163 if (GV->getName() == "llvm.global_dtors") { 2164 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2165 /* isCtor */ false); 2166 2167 return true; 2168 } 2169 2170 report_fatal_error("unknown special variable"); 2171 } 2172 2173 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2174 /// global in the specified llvm.used list. 2175 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2176 // Should be an array of 'i8*'. 2177 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2178 const GlobalValue *GV = 2179 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2180 if (GV) 2181 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2182 } 2183 } 2184 2185 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2186 const Constant *List, 2187 SmallVector<Structor, 8> &Structors) { 2188 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2189 // the init priority. 2190 if (!isa<ConstantArray>(List)) 2191 return; 2192 2193 // Gather the structors in a form that's convenient for sorting by priority. 2194 for (Value *O : cast<ConstantArray>(List)->operands()) { 2195 auto *CS = cast<ConstantStruct>(O); 2196 if (CS->getOperand(1)->isNullValue()) 2197 break; // Found a null terminator, skip the rest. 2198 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2199 if (!Priority) 2200 continue; // Malformed. 2201 Structors.push_back(Structor()); 2202 Structor &S = Structors.back(); 2203 S.Priority = Priority->getLimitedValue(65535); 2204 S.Func = CS->getOperand(1); 2205 if (!CS->getOperand(2)->isNullValue()) { 2206 if (TM.getTargetTriple().isOSAIX()) 2207 llvm::report_fatal_error( 2208 "associated data of XXStructor list is not yet supported on AIX"); 2209 S.ComdatKey = 2210 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2211 } 2212 } 2213 2214 // Emit the function pointers in the target-specific order 2215 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2216 return L.Priority < R.Priority; 2217 }); 2218 } 2219 2220 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2221 /// priority. 2222 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2223 bool IsCtor) { 2224 SmallVector<Structor, 8> Structors; 2225 preprocessXXStructorList(DL, List, Structors); 2226 if (Structors.empty()) 2227 return; 2228 2229 const Align Align = DL.getPointerPrefAlignment(); 2230 for (Structor &S : Structors) { 2231 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2232 const MCSymbol *KeySym = nullptr; 2233 if (GlobalValue *GV = S.ComdatKey) { 2234 if (GV->isDeclarationForLinker()) 2235 // If the associated variable is not defined in this module 2236 // (it might be available_externally, or have been an 2237 // available_externally definition that was dropped by the 2238 // EliminateAvailableExternally pass), some other TU 2239 // will provide its dynamic initializer. 2240 continue; 2241 2242 KeySym = getSymbol(GV); 2243 } 2244 2245 MCSection *OutputSection = 2246 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2247 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2248 OutStreamer->SwitchSection(OutputSection); 2249 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2250 emitAlignment(Align); 2251 emitXXStructor(DL, S.Func); 2252 } 2253 } 2254 2255 void AsmPrinter::emitModuleIdents(Module &M) { 2256 if (!MAI->hasIdentDirective()) 2257 return; 2258 2259 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2260 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2261 const MDNode *N = NMD->getOperand(i); 2262 assert(N->getNumOperands() == 1 && 2263 "llvm.ident metadata entry can have only one operand"); 2264 const MDString *S = cast<MDString>(N->getOperand(0)); 2265 OutStreamer->emitIdent(S->getString()); 2266 } 2267 } 2268 } 2269 2270 void AsmPrinter::emitModuleCommandLines(Module &M) { 2271 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2272 if (!CommandLine) 2273 return; 2274 2275 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2276 if (!NMD || !NMD->getNumOperands()) 2277 return; 2278 2279 OutStreamer->PushSection(); 2280 OutStreamer->SwitchSection(CommandLine); 2281 OutStreamer->emitZeros(1); 2282 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2283 const MDNode *N = NMD->getOperand(i); 2284 assert(N->getNumOperands() == 1 && 2285 "llvm.commandline metadata entry can have only one operand"); 2286 const MDString *S = cast<MDString>(N->getOperand(0)); 2287 OutStreamer->emitBytes(S->getString()); 2288 OutStreamer->emitZeros(1); 2289 } 2290 OutStreamer->PopSection(); 2291 } 2292 2293 //===--------------------------------------------------------------------===// 2294 // Emission and print routines 2295 // 2296 2297 /// Emit a byte directive and value. 2298 /// 2299 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2300 2301 /// Emit a short directive and value. 2302 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2303 2304 /// Emit a long directive and value. 2305 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2306 2307 /// Emit a long long directive and value. 2308 void AsmPrinter::emitInt64(uint64_t Value) const { 2309 OutStreamer->emitInt64(Value); 2310 } 2311 2312 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2313 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2314 /// .set if it avoids relocations. 2315 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2316 unsigned Size) const { 2317 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2318 } 2319 2320 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2321 /// where the size in bytes of the directive is specified by Size and Label 2322 /// specifies the label. This implicitly uses .set if it is available. 2323 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2324 unsigned Size, 2325 bool IsSectionRelative) const { 2326 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2327 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2328 if (Size > 4) 2329 OutStreamer->emitZeros(Size - 4); 2330 return; 2331 } 2332 2333 // Emit Label+Offset (or just Label if Offset is zero) 2334 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2335 if (Offset) 2336 Expr = MCBinaryExpr::createAdd( 2337 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2338 2339 OutStreamer->emitValue(Expr, Size); 2340 } 2341 2342 //===----------------------------------------------------------------------===// 2343 2344 // EmitAlignment - Emit an alignment directive to the specified power of 2345 // two boundary. If a global value is specified, and if that global has 2346 // an explicit alignment requested, it will override the alignment request 2347 // if required for correctness. 2348 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2349 if (GV) 2350 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2351 2352 if (Alignment == Align(1)) 2353 return; // 1-byte aligned: no need to emit alignment. 2354 2355 if (getCurrentSection()->getKind().isText()) 2356 OutStreamer->emitCodeAlignment(Alignment.value()); 2357 else 2358 OutStreamer->emitValueToAlignment(Alignment.value()); 2359 } 2360 2361 //===----------------------------------------------------------------------===// 2362 // Constant emission. 2363 //===----------------------------------------------------------------------===// 2364 2365 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2366 MCContext &Ctx = OutContext; 2367 2368 if (CV->isNullValue() || isa<UndefValue>(CV)) 2369 return MCConstantExpr::create(0, Ctx); 2370 2371 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2372 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2373 2374 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2375 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2376 2377 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2378 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2379 2380 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2381 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2382 2383 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2384 if (!CE) { 2385 llvm_unreachable("Unknown constant value to lower!"); 2386 } 2387 2388 switch (CE->getOpcode()) { 2389 case Instruction::AddrSpaceCast: { 2390 const Constant *Op = CE->getOperand(0); 2391 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2392 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2393 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2394 return lowerConstant(Op); 2395 2396 // Fallthrough to error. 2397 LLVM_FALLTHROUGH; 2398 } 2399 default: { 2400 // If the code isn't optimized, there may be outstanding folding 2401 // opportunities. Attempt to fold the expression using DataLayout as a 2402 // last resort before giving up. 2403 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2404 if (C != CE) 2405 return lowerConstant(C); 2406 2407 // Otherwise report the problem to the user. 2408 std::string S; 2409 raw_string_ostream OS(S); 2410 OS << "Unsupported expression in static initializer: "; 2411 CE->printAsOperand(OS, /*PrintType=*/false, 2412 !MF ? nullptr : MF->getFunction().getParent()); 2413 report_fatal_error(OS.str()); 2414 } 2415 case Instruction::GetElementPtr: { 2416 // Generate a symbolic expression for the byte address 2417 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2418 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2419 2420 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2421 if (!OffsetAI) 2422 return Base; 2423 2424 int64_t Offset = OffsetAI.getSExtValue(); 2425 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2426 Ctx); 2427 } 2428 2429 case Instruction::Trunc: 2430 // We emit the value and depend on the assembler to truncate the generated 2431 // expression properly. This is important for differences between 2432 // blockaddress labels. Since the two labels are in the same function, it 2433 // is reasonable to treat their delta as a 32-bit value. 2434 LLVM_FALLTHROUGH; 2435 case Instruction::BitCast: 2436 return lowerConstant(CE->getOperand(0)); 2437 2438 case Instruction::IntToPtr: { 2439 const DataLayout &DL = getDataLayout(); 2440 2441 // Handle casts to pointers by changing them into casts to the appropriate 2442 // integer type. This promotes constant folding and simplifies this code. 2443 Constant *Op = CE->getOperand(0); 2444 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2445 false/*ZExt*/); 2446 return lowerConstant(Op); 2447 } 2448 2449 case Instruction::PtrToInt: { 2450 const DataLayout &DL = getDataLayout(); 2451 2452 // Support only foldable casts to/from pointers that can be eliminated by 2453 // changing the pointer to the appropriately sized integer type. 2454 Constant *Op = CE->getOperand(0); 2455 Type *Ty = CE->getType(); 2456 2457 const MCExpr *OpExpr = lowerConstant(Op); 2458 2459 // We can emit the pointer value into this slot if the slot is an 2460 // integer slot equal to the size of the pointer. 2461 // 2462 // If the pointer is larger than the resultant integer, then 2463 // as with Trunc just depend on the assembler to truncate it. 2464 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2465 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2466 return OpExpr; 2467 2468 // Otherwise the pointer is smaller than the resultant integer, mask off 2469 // the high bits so we are sure to get a proper truncation if the input is 2470 // a constant expr. 2471 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2472 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2473 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2474 } 2475 2476 case Instruction::Sub: { 2477 GlobalValue *LHSGV; 2478 APInt LHSOffset; 2479 DSOLocalEquivalent *DSOEquiv; 2480 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2481 getDataLayout(), &DSOEquiv)) { 2482 GlobalValue *RHSGV; 2483 APInt RHSOffset; 2484 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2485 getDataLayout())) { 2486 const MCExpr *RelocExpr = 2487 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2488 if (!RelocExpr) { 2489 const MCExpr *LHSExpr = 2490 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2491 if (DSOEquiv && 2492 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2493 LHSExpr = 2494 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2495 RelocExpr = MCBinaryExpr::createSub( 2496 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2497 } 2498 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2499 if (Addend != 0) 2500 RelocExpr = MCBinaryExpr::createAdd( 2501 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2502 return RelocExpr; 2503 } 2504 } 2505 } 2506 // else fallthrough 2507 LLVM_FALLTHROUGH; 2508 2509 // The MC library also has a right-shift operator, but it isn't consistently 2510 // signed or unsigned between different targets. 2511 case Instruction::Add: 2512 case Instruction::Mul: 2513 case Instruction::SDiv: 2514 case Instruction::SRem: 2515 case Instruction::Shl: 2516 case Instruction::And: 2517 case Instruction::Or: 2518 case Instruction::Xor: { 2519 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2520 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2521 switch (CE->getOpcode()) { 2522 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2523 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2524 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2525 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2526 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2527 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2528 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2529 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2530 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2531 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2532 } 2533 } 2534 } 2535 } 2536 2537 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2538 AsmPrinter &AP, 2539 const Constant *BaseCV = nullptr, 2540 uint64_t Offset = 0); 2541 2542 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2543 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2544 2545 /// isRepeatedByteSequence - Determine whether the given value is 2546 /// composed of a repeated sequence of identical bytes and return the 2547 /// byte value. If it is not a repeated sequence, return -1. 2548 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2549 StringRef Data = V->getRawDataValues(); 2550 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2551 char C = Data[0]; 2552 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2553 if (Data[i] != C) return -1; 2554 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2555 } 2556 2557 /// isRepeatedByteSequence - Determine whether the given value is 2558 /// composed of a repeated sequence of identical bytes and return the 2559 /// byte value. If it is not a repeated sequence, return -1. 2560 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2561 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2562 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2563 assert(Size % 8 == 0); 2564 2565 // Extend the element to take zero padding into account. 2566 APInt Value = CI->getValue().zextOrSelf(Size); 2567 if (!Value.isSplat(8)) 2568 return -1; 2569 2570 return Value.zextOrTrunc(8).getZExtValue(); 2571 } 2572 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2573 // Make sure all array elements are sequences of the same repeated 2574 // byte. 2575 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2576 Constant *Op0 = CA->getOperand(0); 2577 int Byte = isRepeatedByteSequence(Op0, DL); 2578 if (Byte == -1) 2579 return -1; 2580 2581 // All array elements must be equal. 2582 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2583 if (CA->getOperand(i) != Op0) 2584 return -1; 2585 return Byte; 2586 } 2587 2588 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2589 return isRepeatedByteSequence(CDS); 2590 2591 return -1; 2592 } 2593 2594 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2595 const ConstantDataSequential *CDS, 2596 AsmPrinter &AP) { 2597 // See if we can aggregate this into a .fill, if so, emit it as such. 2598 int Value = isRepeatedByteSequence(CDS, DL); 2599 if (Value != -1) { 2600 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2601 // Don't emit a 1-byte object as a .fill. 2602 if (Bytes > 1) 2603 return AP.OutStreamer->emitFill(Bytes, Value); 2604 } 2605 2606 // If this can be emitted with .ascii/.asciz, emit it as such. 2607 if (CDS->isString()) 2608 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2609 2610 // Otherwise, emit the values in successive locations. 2611 unsigned ElementByteSize = CDS->getElementByteSize(); 2612 if (isa<IntegerType>(CDS->getElementType())) { 2613 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2614 if (AP.isVerbose()) 2615 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2616 CDS->getElementAsInteger(i)); 2617 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2618 ElementByteSize); 2619 } 2620 } else { 2621 Type *ET = CDS->getElementType(); 2622 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2623 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2624 } 2625 2626 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2627 unsigned EmittedSize = 2628 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2629 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2630 if (unsigned Padding = Size - EmittedSize) 2631 AP.OutStreamer->emitZeros(Padding); 2632 } 2633 2634 static void emitGlobalConstantArray(const DataLayout &DL, 2635 const ConstantArray *CA, AsmPrinter &AP, 2636 const Constant *BaseCV, uint64_t Offset) { 2637 // See if we can aggregate some values. Make sure it can be 2638 // represented as a series of bytes of the constant value. 2639 int Value = isRepeatedByteSequence(CA, DL); 2640 2641 if (Value != -1) { 2642 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2643 AP.OutStreamer->emitFill(Bytes, Value); 2644 } 2645 else { 2646 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2647 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2648 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2649 } 2650 } 2651 } 2652 2653 static void emitGlobalConstantVector(const DataLayout &DL, 2654 const ConstantVector *CV, AsmPrinter &AP) { 2655 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2656 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2657 2658 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2659 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2660 CV->getType()->getNumElements(); 2661 if (unsigned Padding = Size - EmittedSize) 2662 AP.OutStreamer->emitZeros(Padding); 2663 } 2664 2665 static void emitGlobalConstantStruct(const DataLayout &DL, 2666 const ConstantStruct *CS, AsmPrinter &AP, 2667 const Constant *BaseCV, uint64_t Offset) { 2668 // Print the fields in successive locations. Pad to align if needed! 2669 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2670 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2671 uint64_t SizeSoFar = 0; 2672 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2673 const Constant *Field = CS->getOperand(i); 2674 2675 // Print the actual field value. 2676 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2677 2678 // Check if padding is needed and insert one or more 0s. 2679 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2680 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2681 - Layout->getElementOffset(i)) - FieldSize; 2682 SizeSoFar += FieldSize + PadSize; 2683 2684 // Insert padding - this may include padding to increase the size of the 2685 // current field up to the ABI size (if the struct is not packed) as well 2686 // as padding to ensure that the next field starts at the right offset. 2687 AP.OutStreamer->emitZeros(PadSize); 2688 } 2689 assert(SizeSoFar == Layout->getSizeInBytes() && 2690 "Layout of constant struct may be incorrect!"); 2691 } 2692 2693 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2694 assert(ET && "Unknown float type"); 2695 APInt API = APF.bitcastToAPInt(); 2696 2697 // First print a comment with what we think the original floating-point value 2698 // should have been. 2699 if (AP.isVerbose()) { 2700 SmallString<8> StrVal; 2701 APF.toString(StrVal); 2702 ET->print(AP.OutStreamer->GetCommentOS()); 2703 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2704 } 2705 2706 // Now iterate through the APInt chunks, emitting them in endian-correct 2707 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2708 // floats). 2709 unsigned NumBytes = API.getBitWidth() / 8; 2710 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2711 const uint64_t *p = API.getRawData(); 2712 2713 // PPC's long double has odd notions of endianness compared to how LLVM 2714 // handles it: p[0] goes first for *big* endian on PPC. 2715 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2716 int Chunk = API.getNumWords() - 1; 2717 2718 if (TrailingBytes) 2719 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2720 2721 for (; Chunk >= 0; --Chunk) 2722 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2723 } else { 2724 unsigned Chunk; 2725 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2726 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2727 2728 if (TrailingBytes) 2729 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2730 } 2731 2732 // Emit the tail padding for the long double. 2733 const DataLayout &DL = AP.getDataLayout(); 2734 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2735 } 2736 2737 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2738 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2739 } 2740 2741 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2742 const DataLayout &DL = AP.getDataLayout(); 2743 unsigned BitWidth = CI->getBitWidth(); 2744 2745 // Copy the value as we may massage the layout for constants whose bit width 2746 // is not a multiple of 64-bits. 2747 APInt Realigned(CI->getValue()); 2748 uint64_t ExtraBits = 0; 2749 unsigned ExtraBitsSize = BitWidth & 63; 2750 2751 if (ExtraBitsSize) { 2752 // The bit width of the data is not a multiple of 64-bits. 2753 // The extra bits are expected to be at the end of the chunk of the memory. 2754 // Little endian: 2755 // * Nothing to be done, just record the extra bits to emit. 2756 // Big endian: 2757 // * Record the extra bits to emit. 2758 // * Realign the raw data to emit the chunks of 64-bits. 2759 if (DL.isBigEndian()) { 2760 // Basically the structure of the raw data is a chunk of 64-bits cells: 2761 // 0 1 BitWidth / 64 2762 // [chunk1][chunk2] ... [chunkN]. 2763 // The most significant chunk is chunkN and it should be emitted first. 2764 // However, due to the alignment issue chunkN contains useless bits. 2765 // Realign the chunks so that they contain only useful information: 2766 // ExtraBits 0 1 (BitWidth / 64) - 1 2767 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2768 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2769 ExtraBits = Realigned.getRawData()[0] & 2770 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2771 Realigned.lshrInPlace(ExtraBitsSize); 2772 } else 2773 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2774 } 2775 2776 // We don't expect assemblers to support integer data directives 2777 // for more than 64 bits, so we emit the data in at most 64-bit 2778 // quantities at a time. 2779 const uint64_t *RawData = Realigned.getRawData(); 2780 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2781 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2782 AP.OutStreamer->emitIntValue(Val, 8); 2783 } 2784 2785 if (ExtraBitsSize) { 2786 // Emit the extra bits after the 64-bits chunks. 2787 2788 // Emit a directive that fills the expected size. 2789 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2790 Size -= (BitWidth / 64) * 8; 2791 assert(Size && Size * 8 >= ExtraBitsSize && 2792 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2793 == ExtraBits && "Directive too small for extra bits."); 2794 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2795 } 2796 } 2797 2798 /// Transform a not absolute MCExpr containing a reference to a GOT 2799 /// equivalent global, by a target specific GOT pc relative access to the 2800 /// final symbol. 2801 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2802 const Constant *BaseCst, 2803 uint64_t Offset) { 2804 // The global @foo below illustrates a global that uses a got equivalent. 2805 // 2806 // @bar = global i32 42 2807 // @gotequiv = private unnamed_addr constant i32* @bar 2808 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2809 // i64 ptrtoint (i32* @foo to i64)) 2810 // to i32) 2811 // 2812 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2813 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2814 // form: 2815 // 2816 // foo = cstexpr, where 2817 // cstexpr := <gotequiv> - "." + <cst> 2818 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2819 // 2820 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2821 // 2822 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2823 // gotpcrelcst := <offset from @foo base> + <cst> 2824 MCValue MV; 2825 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2826 return; 2827 const MCSymbolRefExpr *SymA = MV.getSymA(); 2828 if (!SymA) 2829 return; 2830 2831 // Check that GOT equivalent symbol is cached. 2832 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2833 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2834 return; 2835 2836 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2837 if (!BaseGV) 2838 return; 2839 2840 // Check for a valid base symbol 2841 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2842 const MCSymbolRefExpr *SymB = MV.getSymB(); 2843 2844 if (!SymB || BaseSym != &SymB->getSymbol()) 2845 return; 2846 2847 // Make sure to match: 2848 // 2849 // gotpcrelcst := <offset from @foo base> + <cst> 2850 // 2851 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2852 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2853 // if the target knows how to encode it. 2854 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2855 if (GOTPCRelCst < 0) 2856 return; 2857 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2858 return; 2859 2860 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2861 // 2862 // bar: 2863 // .long 42 2864 // gotequiv: 2865 // .quad bar 2866 // foo: 2867 // .long gotequiv - "." + <cst> 2868 // 2869 // is replaced by the target specific equivalent to: 2870 // 2871 // bar: 2872 // .long 42 2873 // foo: 2874 // .long bar@GOTPCREL+<gotpcrelcst> 2875 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2876 const GlobalVariable *GV = Result.first; 2877 int NumUses = (int)Result.second; 2878 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2879 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2880 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2881 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2882 2883 // Update GOT equivalent usage information 2884 --NumUses; 2885 if (NumUses >= 0) 2886 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2887 } 2888 2889 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2890 AsmPrinter &AP, const Constant *BaseCV, 2891 uint64_t Offset) { 2892 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2893 2894 // Globals with sub-elements such as combinations of arrays and structs 2895 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2896 // constant symbol base and the current position with BaseCV and Offset. 2897 if (!BaseCV && CV->hasOneUse()) 2898 BaseCV = dyn_cast<Constant>(CV->user_back()); 2899 2900 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2901 return AP.OutStreamer->emitZeros(Size); 2902 2903 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2904 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2905 2906 if (StoreSize <= 8) { 2907 if (AP.isVerbose()) 2908 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2909 CI->getZExtValue()); 2910 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2911 } else { 2912 emitGlobalConstantLargeInt(CI, AP); 2913 } 2914 2915 // Emit tail padding if needed 2916 if (Size != StoreSize) 2917 AP.OutStreamer->emitZeros(Size - StoreSize); 2918 2919 return; 2920 } 2921 2922 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2923 return emitGlobalConstantFP(CFP, AP); 2924 2925 if (isa<ConstantPointerNull>(CV)) { 2926 AP.OutStreamer->emitIntValue(0, Size); 2927 return; 2928 } 2929 2930 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2931 return emitGlobalConstantDataSequential(DL, CDS, AP); 2932 2933 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2934 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2935 2936 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2937 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2938 2939 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2940 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2941 // vectors). 2942 if (CE->getOpcode() == Instruction::BitCast) 2943 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2944 2945 if (Size > 8) { 2946 // If the constant expression's size is greater than 64-bits, then we have 2947 // to emit the value in chunks. Try to constant fold the value and emit it 2948 // that way. 2949 Constant *New = ConstantFoldConstant(CE, DL); 2950 if (New != CE) 2951 return emitGlobalConstantImpl(DL, New, AP); 2952 } 2953 } 2954 2955 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2956 return emitGlobalConstantVector(DL, V, AP); 2957 2958 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2959 // thread the streamer with EmitValue. 2960 const MCExpr *ME = AP.lowerConstant(CV); 2961 2962 // Since lowerConstant already folded and got rid of all IR pointer and 2963 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2964 // directly. 2965 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2966 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2967 2968 AP.OutStreamer->emitValue(ME, Size); 2969 } 2970 2971 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2972 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2973 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2974 if (Size) 2975 emitGlobalConstantImpl(DL, CV, *this); 2976 else if (MAI->hasSubsectionsViaSymbols()) { 2977 // If the global has zero size, emit a single byte so that two labels don't 2978 // look like they are at the same location. 2979 OutStreamer->emitIntValue(0, 1); 2980 } 2981 } 2982 2983 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2984 // Target doesn't support this yet! 2985 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2986 } 2987 2988 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2989 if (Offset > 0) 2990 OS << '+' << Offset; 2991 else if (Offset < 0) 2992 OS << Offset; 2993 } 2994 2995 void AsmPrinter::emitNops(unsigned N) { 2996 MCInst Nop; 2997 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2998 for (; N; --N) 2999 EmitToStreamer(*OutStreamer, Nop); 3000 } 3001 3002 //===----------------------------------------------------------------------===// 3003 // Symbol Lowering Routines. 3004 //===----------------------------------------------------------------------===// 3005 3006 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3007 return OutContext.createTempSymbol(Name, true); 3008 } 3009 3010 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3011 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3012 } 3013 3014 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3015 return MMI->getAddrLabelSymbol(BB); 3016 } 3017 3018 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3019 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3020 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3021 const MachineConstantPoolEntry &CPE = 3022 MF->getConstantPool()->getConstants()[CPID]; 3023 if (!CPE.isMachineConstantPoolEntry()) { 3024 const DataLayout &DL = MF->getDataLayout(); 3025 SectionKind Kind = CPE.getSectionKind(&DL); 3026 const Constant *C = CPE.Val.ConstVal; 3027 Align Alignment = CPE.Alignment; 3028 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3029 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3030 Alignment))) { 3031 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3032 if (Sym->isUndefined()) 3033 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3034 return Sym; 3035 } 3036 } 3037 } 3038 } 3039 3040 const DataLayout &DL = getDataLayout(); 3041 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3042 "CPI" + Twine(getFunctionNumber()) + "_" + 3043 Twine(CPID)); 3044 } 3045 3046 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3047 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3048 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3049 } 3050 3051 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3052 /// FIXME: privatize to AsmPrinter. 3053 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3054 const DataLayout &DL = getDataLayout(); 3055 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3056 Twine(getFunctionNumber()) + "_" + 3057 Twine(UID) + "_set_" + Twine(MBBID)); 3058 } 3059 3060 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3061 StringRef Suffix) const { 3062 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3063 } 3064 3065 /// Return the MCSymbol for the specified ExternalSymbol. 3066 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3067 SmallString<60> NameStr; 3068 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3069 return OutContext.getOrCreateSymbol(NameStr); 3070 } 3071 3072 /// PrintParentLoopComment - Print comments about parent loops of this one. 3073 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3074 unsigned FunctionNumber) { 3075 if (!Loop) return; 3076 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3077 OS.indent(Loop->getLoopDepth()*2) 3078 << "Parent Loop BB" << FunctionNumber << "_" 3079 << Loop->getHeader()->getNumber() 3080 << " Depth=" << Loop->getLoopDepth() << '\n'; 3081 } 3082 3083 /// PrintChildLoopComment - Print comments about child loops within 3084 /// the loop for this basic block, with nesting. 3085 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3086 unsigned FunctionNumber) { 3087 // Add child loop information 3088 for (const MachineLoop *CL : *Loop) { 3089 OS.indent(CL->getLoopDepth()*2) 3090 << "Child Loop BB" << FunctionNumber << "_" 3091 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3092 << '\n'; 3093 PrintChildLoopComment(OS, CL, FunctionNumber); 3094 } 3095 } 3096 3097 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3098 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3099 const MachineLoopInfo *LI, 3100 const AsmPrinter &AP) { 3101 // Add loop depth information 3102 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3103 if (!Loop) return; 3104 3105 MachineBasicBlock *Header = Loop->getHeader(); 3106 assert(Header && "No header for loop"); 3107 3108 // If this block is not a loop header, just print out what is the loop header 3109 // and return. 3110 if (Header != &MBB) { 3111 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3112 Twine(AP.getFunctionNumber())+"_" + 3113 Twine(Loop->getHeader()->getNumber())+ 3114 " Depth="+Twine(Loop->getLoopDepth())); 3115 return; 3116 } 3117 3118 // Otherwise, it is a loop header. Print out information about child and 3119 // parent loops. 3120 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3121 3122 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3123 3124 OS << "=>"; 3125 OS.indent(Loop->getLoopDepth()*2-2); 3126 3127 OS << "This "; 3128 if (Loop->isInnermost()) 3129 OS << "Inner "; 3130 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3131 3132 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3133 } 3134 3135 /// emitBasicBlockStart - This method prints the label for the specified 3136 /// MachineBasicBlock, an alignment (if present) and a comment describing 3137 /// it if appropriate. 3138 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3139 // End the previous funclet and start a new one. 3140 if (MBB.isEHFuncletEntry()) { 3141 for (const HandlerInfo &HI : Handlers) { 3142 HI.Handler->endFunclet(); 3143 HI.Handler->beginFunclet(MBB); 3144 } 3145 } 3146 3147 // Emit an alignment directive for this block, if needed. 3148 const Align Alignment = MBB.getAlignment(); 3149 if (Alignment != Align(1)) 3150 emitAlignment(Alignment); 3151 3152 // Switch to a new section if this basic block must begin a section. The 3153 // entry block is always placed in the function section and is handled 3154 // separately. 3155 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3156 OutStreamer->SwitchSection( 3157 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3158 MBB, TM)); 3159 CurrentSectionBeginSym = MBB.getSymbol(); 3160 } 3161 3162 // If the block has its address taken, emit any labels that were used to 3163 // reference the block. It is possible that there is more than one label 3164 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3165 // the references were generated. 3166 if (MBB.hasAddressTaken()) { 3167 const BasicBlock *BB = MBB.getBasicBlock(); 3168 if (isVerbose()) 3169 OutStreamer->AddComment("Block address taken"); 3170 3171 // MBBs can have their address taken as part of CodeGen without having 3172 // their corresponding BB's address taken in IR 3173 if (BB->hasAddressTaken()) 3174 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3175 OutStreamer->emitLabel(Sym); 3176 } 3177 3178 // Print some verbose block comments. 3179 if (isVerbose()) { 3180 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3181 if (BB->hasName()) { 3182 BB->printAsOperand(OutStreamer->GetCommentOS(), 3183 /*PrintType=*/false, BB->getModule()); 3184 OutStreamer->GetCommentOS() << '\n'; 3185 } 3186 } 3187 3188 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3189 emitBasicBlockLoopComments(MBB, MLI, *this); 3190 } 3191 3192 // Print the main label for the block. 3193 if (shouldEmitLabelForBasicBlock(MBB)) { 3194 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3195 OutStreamer->AddComment("Label of block must be emitted"); 3196 OutStreamer->emitLabel(MBB.getSymbol()); 3197 } else { 3198 if (isVerbose()) { 3199 // NOTE: Want this comment at start of line, don't emit with AddComment. 3200 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3201 false); 3202 } 3203 } 3204 3205 if (MBB.isEHCatchretTarget() && 3206 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3207 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3208 } 3209 3210 // With BB sections, each basic block must handle CFI information on its own 3211 // if it begins a section (Entry block is handled separately by 3212 // AsmPrinterHandler::beginFunction). 3213 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3214 for (const HandlerInfo &HI : Handlers) 3215 HI.Handler->beginBasicBlock(MBB); 3216 } 3217 3218 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3219 // Check if CFI information needs to be updated for this MBB with basic block 3220 // sections. 3221 if (MBB.isEndSection()) 3222 for (const HandlerInfo &HI : Handlers) 3223 HI.Handler->endBasicBlock(MBB); 3224 } 3225 3226 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3227 bool IsDefinition) const { 3228 MCSymbolAttr Attr = MCSA_Invalid; 3229 3230 switch (Visibility) { 3231 default: break; 3232 case GlobalValue::HiddenVisibility: 3233 if (IsDefinition) 3234 Attr = MAI->getHiddenVisibilityAttr(); 3235 else 3236 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3237 break; 3238 case GlobalValue::ProtectedVisibility: 3239 Attr = MAI->getProtectedVisibilityAttr(); 3240 break; 3241 } 3242 3243 if (Attr != MCSA_Invalid) 3244 OutStreamer->emitSymbolAttribute(Sym, Attr); 3245 } 3246 3247 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3248 const MachineBasicBlock &MBB) const { 3249 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3250 // in the labels mode (option `=labels`) and every section beginning in the 3251 // sections mode (`=all` and `=list=`). 3252 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3253 return true; 3254 // A label is needed for any block with at least one predecessor (when that 3255 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3256 // entry, or if a label is forced). 3257 return !MBB.pred_empty() && 3258 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3259 MBB.hasLabelMustBeEmitted()); 3260 } 3261 3262 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3263 /// exactly one predecessor and the control transfer mechanism between 3264 /// the predecessor and this block is a fall-through. 3265 bool AsmPrinter:: 3266 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3267 // If this is a landing pad, it isn't a fall through. If it has no preds, 3268 // then nothing falls through to it. 3269 if (MBB->isEHPad() || MBB->pred_empty()) 3270 return false; 3271 3272 // If there isn't exactly one predecessor, it can't be a fall through. 3273 if (MBB->pred_size() > 1) 3274 return false; 3275 3276 // The predecessor has to be immediately before this block. 3277 MachineBasicBlock *Pred = *MBB->pred_begin(); 3278 if (!Pred->isLayoutSuccessor(MBB)) 3279 return false; 3280 3281 // If the block is completely empty, then it definitely does fall through. 3282 if (Pred->empty()) 3283 return true; 3284 3285 // Check the terminators in the previous blocks 3286 for (const auto &MI : Pred->terminators()) { 3287 // If it is not a simple branch, we are in a table somewhere. 3288 if (!MI.isBranch() || MI.isIndirectBranch()) 3289 return false; 3290 3291 // If we are the operands of one of the branches, this is not a fall 3292 // through. Note that targets with delay slots will usually bundle 3293 // terminators with the delay slot instruction. 3294 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3295 if (OP->isJTI()) 3296 return false; 3297 if (OP->isMBB() && OP->getMBB() == MBB) 3298 return false; 3299 } 3300 } 3301 3302 return true; 3303 } 3304 3305 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3306 if (!S.usesMetadata()) 3307 return nullptr; 3308 3309 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3310 gcp_map_type::iterator GCPI = GCMap.find(&S); 3311 if (GCPI != GCMap.end()) 3312 return GCPI->second.get(); 3313 3314 auto Name = S.getName(); 3315 3316 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3317 GCMetadataPrinterRegistry::entries()) 3318 if (Name == GCMetaPrinter.getName()) { 3319 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3320 GMP->S = &S; 3321 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3322 return IterBool.first->second.get(); 3323 } 3324 3325 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3326 } 3327 3328 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3329 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3330 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3331 bool NeedsDefault = false; 3332 if (MI->begin() == MI->end()) 3333 // No GC strategy, use the default format. 3334 NeedsDefault = true; 3335 else 3336 for (auto &I : *MI) { 3337 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3338 if (MP->emitStackMaps(SM, *this)) 3339 continue; 3340 // The strategy doesn't have printer or doesn't emit custom stack maps. 3341 // Use the default format. 3342 NeedsDefault = true; 3343 } 3344 3345 if (NeedsDefault) 3346 SM.serializeToStackMapSection(); 3347 } 3348 3349 /// Pin vtable to this file. 3350 AsmPrinterHandler::~AsmPrinterHandler() = default; 3351 3352 void AsmPrinterHandler::markFunctionEnd() {} 3353 3354 // In the binary's "xray_instr_map" section, an array of these function entries 3355 // describes each instrumentation point. When XRay patches your code, the index 3356 // into this table will be given to your handler as a patch point identifier. 3357 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3358 auto Kind8 = static_cast<uint8_t>(Kind); 3359 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3360 Out->emitBinaryData( 3361 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3362 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3363 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3364 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3365 Out->emitZeros(Padding); 3366 } 3367 3368 void AsmPrinter::emitXRayTable() { 3369 if (Sleds.empty()) 3370 return; 3371 3372 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3373 const Function &F = MF->getFunction(); 3374 MCSection *InstMap = nullptr; 3375 MCSection *FnSledIndex = nullptr; 3376 const Triple &TT = TM.getTargetTriple(); 3377 // Use PC-relative addresses on all targets. 3378 if (TT.isOSBinFormatELF()) { 3379 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3380 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3381 StringRef GroupName; 3382 if (F.hasComdat()) { 3383 Flags |= ELF::SHF_GROUP; 3384 GroupName = F.getComdat()->getName(); 3385 } 3386 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3387 Flags, 0, GroupName, F.hasComdat(), 3388 MCSection::NonUniqueID, LinkedToSym); 3389 3390 if (!TM.Options.XRayOmitFunctionIndex) 3391 FnSledIndex = OutContext.getELFSection( 3392 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3393 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3394 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3395 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3396 SectionKind::getReadOnlyWithRel()); 3397 if (!TM.Options.XRayOmitFunctionIndex) 3398 FnSledIndex = OutContext.getMachOSection( 3399 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3400 } else { 3401 llvm_unreachable("Unsupported target"); 3402 } 3403 3404 auto WordSizeBytes = MAI->getCodePointerSize(); 3405 3406 // Now we switch to the instrumentation map section. Because this is done 3407 // per-function, we are able to create an index entry that will represent the 3408 // range of sleds associated with a function. 3409 auto &Ctx = OutContext; 3410 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3411 OutStreamer->SwitchSection(InstMap); 3412 OutStreamer->emitLabel(SledsStart); 3413 for (const auto &Sled : Sleds) { 3414 MCSymbol *Dot = Ctx.createTempSymbol(); 3415 OutStreamer->emitLabel(Dot); 3416 OutStreamer->emitValueImpl( 3417 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3418 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3419 WordSizeBytes); 3420 OutStreamer->emitValueImpl( 3421 MCBinaryExpr::createSub( 3422 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3423 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3424 MCConstantExpr::create(WordSizeBytes, Ctx), 3425 Ctx), 3426 Ctx), 3427 WordSizeBytes); 3428 Sled.emit(WordSizeBytes, OutStreamer.get()); 3429 } 3430 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3431 OutStreamer->emitLabel(SledsEnd); 3432 3433 // We then emit a single entry in the index per function. We use the symbols 3434 // that bound the instrumentation map as the range for a specific function. 3435 // Each entry here will be 2 * word size aligned, as we're writing down two 3436 // pointers. This should work for both 32-bit and 64-bit platforms. 3437 if (FnSledIndex) { 3438 OutStreamer->SwitchSection(FnSledIndex); 3439 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3440 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3441 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3442 OutStreamer->SwitchSection(PrevSection); 3443 } 3444 Sleds.clear(); 3445 } 3446 3447 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3448 SledKind Kind, uint8_t Version) { 3449 const Function &F = MI.getMF()->getFunction(); 3450 auto Attr = F.getFnAttribute("function-instrument"); 3451 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3452 bool AlwaysInstrument = 3453 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3454 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3455 Kind = SledKind::LOG_ARGS_ENTER; 3456 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3457 AlwaysInstrument, &F, Version}); 3458 } 3459 3460 void AsmPrinter::emitPatchableFunctionEntries() { 3461 const Function &F = MF->getFunction(); 3462 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3463 (void)F.getFnAttribute("patchable-function-prefix") 3464 .getValueAsString() 3465 .getAsInteger(10, PatchableFunctionPrefix); 3466 (void)F.getFnAttribute("patchable-function-entry") 3467 .getValueAsString() 3468 .getAsInteger(10, PatchableFunctionEntry); 3469 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3470 return; 3471 const unsigned PointerSize = getPointerSize(); 3472 if (TM.getTargetTriple().isOSBinFormatELF()) { 3473 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3474 const MCSymbolELF *LinkedToSym = nullptr; 3475 StringRef GroupName; 3476 3477 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3478 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3479 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3480 Flags |= ELF::SHF_LINK_ORDER; 3481 if (F.hasComdat()) { 3482 Flags |= ELF::SHF_GROUP; 3483 GroupName = F.getComdat()->getName(); 3484 } 3485 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3486 } 3487 OutStreamer->SwitchSection(OutContext.getELFSection( 3488 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3489 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3490 emitAlignment(Align(PointerSize)); 3491 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3492 } 3493 } 3494 3495 uint16_t AsmPrinter::getDwarfVersion() const { 3496 return OutStreamer->getContext().getDwarfVersion(); 3497 } 3498 3499 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3500 OutStreamer->getContext().setDwarfVersion(Version); 3501 } 3502 3503 bool AsmPrinter::isDwarf64() const { 3504 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3505 } 3506 3507 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3508 return dwarf::getDwarfOffsetByteSize( 3509 OutStreamer->getContext().getDwarfFormat()); 3510 } 3511 3512 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3513 return dwarf::getUnitLengthFieldByteSize( 3514 OutStreamer->getContext().getDwarfFormat()); 3515 } 3516